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Preface

Over the recent decade, advancements and applications have progressed exponentially. This has led to the 
increased interest in this field and projects are being conducted to enhance knowledge. The main objective of 
this book is to present some of the critical challenges and provide insights into possible solutions. This book 
will answer the varied questions that arise in the field and also provide an increased scope for furthering 
studies. 

The application of mathematical methods in different fields such as engineering, science, industry, business 
and computer science is known as applied mathematics. It combines mathematical science with specialized 
knowledge. Applied mathematics is broadly subdivided into three parts- applied analysis, approximation 
theory and applied probability. These categorizations are made complex due to the changes in mathematics 
and science over time. Numerical analysis, algebra, logic, decision theory, financial mathematics are some of 
the areas of mathematics which are widely applied to the domains of scientific computing, actuarial science, 
computer science and mathematical economics. This book discusses the fundamentals as well as modern 
approaches to the field of applied mathematics, and its various principles and techniques. Students, researchers, 
experts and all associated with applied mathematics will benefit alike from this book. 

I hope that this book, with its visionary approach, will be a valuable addition and will promote interest among 
readers. Each of the authors has provided their extraordinary competence in their specific fields by providing 
different perspectives as they come from diverse nations and regions. I thank them for their contributions. 

Editor
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Some New Volterra-Fredholm-Type Nonlinear
Discrete Inequalities with Two Variables 
Involving Iterated Sums and Their Applications

Run Xu

Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, China

Correspondence should be addressed to Run Xu; xurun 2005@163.com

Academic Editor: Samir H. Saker

Some generalized discrete Volterra-Fredholm-type inequalities were developed, which can be used as effective tools in the quali-
tative analysis of the solution to difference equations.

1. Introduction

In recent years, various forms of inequalities played increas-
ingly important roles in the study of quantitative proper-
ties of solutions of differential and integral equations [1–
15]. Discrete inequalities, especially the discrete Volterra-
Fredholm-type inequalities, have been applied to study the
discrete equations widely. For example, see [1–3, 9–11] and
the references therein. In this paper, some new Volterra-
Fredholm-type discrete inequalities involving four iterated
infinite sums were established. Furthermore, to illustrate
the usefulness of the established results, some examples
were provided for the studying of their solutions on the
boundedness, uniqueness, and continuous dependence.

We design the needed symbols as follows:

(a) 𝑁0 denotes the set of nonnegative integers and 𝑍
denotes the set of integers, while 𝑅 denotes the set of
real numbers 𝑅+ = [0,∞).

(b) Let Ω fl ([𝑚0,𝑀] × [𝑛0, 𝑁]) ∩ 𝑍2, where𝑚0, 𝑛0 ∈ 𝑍,
and𝑀,𝑁 ∈ 𝑍 ∪ {∞} are two constants.

(c) 𝐾𝑖 > 0 (𝑖 = 1, 2, 3, 4) are all constants, and 𝑙1, 𝑙2 ∈ 𝑍
are two constants.

(d) If𝑈 is a lattice, then we denote the set of all 𝑅−valued
functions on 𝑈 by ℘(𝑈) and denote the set of all𝑅+−valued functions on 𝑈 by ℘+(𝑈).

(e) For a function 𝑔 ∈ ℘+(𝑈), we have ∑𝑚1𝑠=𝑚0 𝑔(𝑠) = 0
provided𝑚0 > 𝑚1.

We need the following lemmas in the discussions of our
main results.

Lemma 1 (see [4]). Let 𝑢(𝑚, 𝑛) ∈ ℘+(Ω), 𝑏(𝑠, 𝑡, 𝑚, 𝑛) ∈℘+(Ω2) be nondecreasing in the third variable; 𝑘 ≥ 0 is a
constant. For (𝑚, 𝑛) ∈ Ω, if

𝑢 (𝑚, 𝑛) ≤ 𝑘 + 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝑏 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢 (𝑠, 𝑡) , (1)

then

𝑢 (𝑚, 𝑛) ≤ 𝑘 exp{𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝑏 (𝑠, 𝑡, 𝑚, 𝑛)} . (2)

Lemma 2 (see [4]). Let 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑐(𝑚, 𝑛) ∈ ℘+(Ω). If𝑎(𝑚, 𝑛) is nondecreasing in the first variable, then, for (𝑚, 𝑛) ∈Ω,
𝑢 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑚−1∑

𝑠=𝑚0

𝑐 (𝑠, 𝑛) 𝑢 (𝑠, 𝑛) , (3)

then

𝑢 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) 𝑚−1∏
𝑠=𝑚0

[1 + 𝑐 (𝑠, 𝑛)] . (4)

1
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Lemma 3 (see [5]). Let 𝑎 ≥ 0, 𝑝 ≥ 𝑞 ≥ 0, and 𝑝 ̸= 0; then,
for any 𝐾 > 0,

𝑎𝑞/𝑝 ≤ 𝑞𝑝𝐾(𝑞−𝑝)/𝑝𝑎 + 𝑝 − 𝑞𝑝 𝐾𝑞/𝑝. (5)

2. Main Results

Theorem 4. Suppose that 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑏1(𝑚, 𝑛), 𝑏2(𝑚,𝑛) ∈ ℘+(Ω), 𝑐𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑑𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑒𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑓𝑗(𝑠, 𝑡, 𝑚,𝑛), 𝑔𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑤𝑗(𝑠, 𝑡, 𝑚, 𝑛) ∈ ℘+(Ω2), and 𝑝, 𝑞𝑖, 𝑟𝑖, ℎ𝑗, V𝑗
are nonnegative constants with 𝑝 ≥ 𝑞𝑖 > 0, 𝑝 ≥ 𝑟𝑖 > 0 (𝑖 =1, 2, . . . , 𝑙1), 𝑝 ≥ ℎ𝑗 > 0, 𝑝 ≥ V𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑙2), and𝑐𝑖, 𝑑𝑖, 𝑒𝑖, 𝑓𝑗, 𝑔𝑗, 𝑤𝑗 being nondecreasing in the last two variables,𝑏1(𝑚, 𝑛) and 𝑏2(𝑚, 𝑛) are also nondecreasing. If
𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏1 (𝑚, 𝑛)

⋅ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡) + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛)
⋅ 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)] + 𝑏2 (𝑚, 𝑛)
⋅ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢ℎ𝑗 (𝑠, 𝑡)
+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢V𝑗 (𝑠, 𝑡) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] ,

(6)

then, for (𝑚, 𝑛) ∈ Ω, we have
𝑢 (𝑚, 𝑛)
≤ {𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) 𝐽 (𝑀,𝑁)1 − 𝜆 (𝑀,𝑁)𝐶 (𝑚, 𝑛)}

1/𝑝 , (7)

provided that 𝜆(𝑀,𝑁) < 1, where

𝑏 (𝑚, 𝑛) = max {𝑏1 (𝑚, 𝑛) , 𝑏2 (𝑚, 𝑛)} , (8)

𝐶 (𝑚, 𝑛) = exp{𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵 (𝑠, 𝑡, 𝑚, 𝑛)} , (9)

𝐵 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑙1∑
𝑖=1

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 ] 𝑏 (𝑠, 𝑡) , (10)

𝐽 (𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑞𝑖𝑝 𝐾𝑞𝑖/𝑝1 ]

+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑟𝑖𝑝 𝐾𝑟𝑖/𝑝2 ] + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)}

+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) [ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 ]

+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) [V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝
4 ] + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)} ,

(11)

𝜆 (𝑚, 𝑛) = 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡) . (12)

Proof. Given 𝑏(𝑚, 𝑛) = max{𝑏1(𝑚, 𝑛), 𝑏2(𝑚, 𝑛)}, for (𝑚, 𝑛) ∈Ω, we have

𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛)
⋅ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡)

+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)] + 𝑏 (𝑚, 𝑛)
⋅ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢ℎ𝑗 (𝑠, 𝑡)
+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢V𝑗 (𝑠, 𝑡) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] .

(13)

Define a function 𝑧(𝑚, 𝑛) by

2 Applied Mathematics: Principles and Techniques

__________________________ WORLD TECHNOLOGIES __________________________



WT

𝑧 (𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡) + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)]

+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢ℎ𝑗 (𝑠, 𝑡) + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢V𝑗 (𝑠, 𝑡) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] .
(14)

Then

𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) 𝑧 (𝑚, 𝑛) , (15)

or

𝑢 (𝑚, 𝑛) ≤ (𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) 𝑧 (𝑚, 𝑛))1/𝑝 . (16)

By using Lemma 3, for any𝐾𝑖 > 0 (𝑖 = 1, 2, 3, 4), we have

𝑧 (𝑚, 𝑛) ≤ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) 𝑧 (𝑠, 𝑡)) + 𝑝 − 𝑞𝑖𝑝 𝐾𝑞𝑖/𝑝1 ]

+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) 𝑧 (𝑠, 𝑡)) + 𝑝 − 𝑟𝑖𝑝 𝐾𝑟𝑖/𝑝2 ] + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)}

+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) [ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) 𝑧 (𝑠, 𝑡)) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 ]

+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) [V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) 𝑧 (𝑠, 𝑡)) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝
4 ] + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)} = 𝑅 (𝑚, 𝑛)

+ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 ] 𝑏 (𝑠, 𝑡) 𝑧 (𝑠, 𝑡) ,

(17)

where

𝑅 (𝑚, 𝑛) = 𝐽 (𝑚, 𝑛) + 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (𝑠, 𝑡) 𝑧 (𝑠, 𝑡) , (18)

and 𝐽(𝑚, 𝑛) is defined in (11). Then, using that 𝑅(𝑚, 𝑛) is
nondecreasing in every variable, we get

𝑧 (𝑚, 𝑛) ≤ 𝑅 (𝑀,𝑁) + 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 ] 𝑏 (𝑠, 𝑡) 𝑧 (𝑠, 𝑡)

= 𝑅 (𝑀,𝑁) + 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵 (𝑠, 𝑡, 𝑚, 𝑛) 𝑧 (𝑠, 𝑡) ,
(19)

where 𝐵(𝑠, 𝑡, 𝑚, 𝑛) is defined in (10).
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Since 𝑏(𝑚, 𝑛) is nondecreasing and 𝑐𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑑𝑖(𝑠, 𝑡,𝑚, 𝑛) are nondecreasing in the last two variables, then𝐵(𝑠, 𝑡, 𝑚, 𝑛) is also nondecreasing in the last two variables,
and, by Lemma 1 and (19), we get

𝑧 (𝑚, 𝑛) ≤ 𝑅 (𝑀,𝑁) exp{𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵 (𝑠, 𝑡, 𝑚, 𝑛)}
= 𝑅 (𝑀,𝑁)𝐶 (𝑚, 𝑛) ,

(20)

where 𝐶(𝑚, 𝑛) is defined in (9). Considering the definition of𝑅(𝑚, 𝑛) and (20), we have

𝑅 (𝑀,𝑁) = 𝐽 (𝑀,𝑁)
+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡,𝑀,𝑁) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3

+ 𝑔𝑗 (𝑠, 𝑡,𝑀,𝑁) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (𝑠, 𝑡) 𝑧 (𝑠, 𝑡) ≤ 𝐽 (𝑀,
𝑁) + 𝑅 (𝑀,𝑁)
⋅ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡,𝑀,𝑁) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3

+ 𝑔𝑗 (𝑠, 𝑡,𝑀,𝑁) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡)
= 𝐽 (𝑀,𝑁) + 𝑅 (𝑀,𝑁) 𝜆 (𝑀,𝑁) ,

(21)

where 𝜆(𝑚, 𝑛) is defined in (12). Then,

𝑅 (𝑀,𝑁) ≤ 𝐽 (𝑀,𝑁)1 − 𝜆 (𝑀,𝑁) . (22)

Combining (20) and (22), we deduce

𝑧 (𝑚, 𝑛) ≤ 𝐽 (𝑀,𝑁)1 − 𝜆 (𝑀,𝑁)𝐶 (𝑚, 𝑛) , (23)

where 𝐶(𝑚, 𝑛), 𝜆(𝑚, 𝑛) are defined in (9) and (12).
Then, combining (16) and (23), we obtain the desired

result.

Corollary 5. Let 𝑟1𝑖(𝑚, 𝑛), 𝑑1𝑖(𝑚, 𝑛), 𝑐1𝑖(𝑚, 𝑛), 𝑒1𝑖(𝑚, 𝑛) ∈℘+(Ω), (𝑖 = 1, 2, . . . , 𝑙1), 𝑓1𝑗(𝑚, 𝑛), 𝑔1𝑗(𝑚, 𝑛), 𝑤1𝑗(𝑚, 𝑛),𝑟2𝑗(𝑚, 𝑛) ∈ ℘+(Ω), (𝑗 = 1, 2, . . . , 𝑙2), 𝑟1𝑖(𝑚, 𝑛), 𝑟2𝑗(𝑚, 𝑛),𝑏1(𝑚, 𝑛) and 𝑏2(𝑚, 𝑛) be nondecreasing in every variable.𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑏1(𝑚, 𝑛), 𝑏2(𝑚, 𝑛), 𝑝, 𝑞𝑖, 𝑟𝑖, ℎ𝑗, V𝑗 are defined
as in Theorem 4. If

𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏1 (𝑚, 𝑛)
𝑙1∑
𝑖=1

𝑟1𝑖 (𝑚, 𝑛)

⋅ 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐1𝑖 (𝑠, 𝑡) 𝑢𝑞𝑖 (𝑠, 𝑡) + 𝑑1𝑖 (𝑠, 𝑡) 𝑢𝑟𝑖 (𝑠, 𝑡)

+ 𝑒1𝑖 (𝑠, 𝑡)] + 𝑏2 (𝑚, 𝑛)
𝑙2∑
𝑗=1

𝑟2𝑗 (𝑚, 𝑛)

⋅ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓1𝑗 (𝑠, 𝑡) 𝑢ℎ𝑗 (𝑠, 𝑡)
+ 𝑔1𝑗 (𝑠, 𝑡) 𝑢V𝑗 (𝑠, 𝑡) + 𝑤1𝑗 (𝑠, 𝑡)] ,

(24)

then, for (𝑚, 𝑛) ∈ Ω, we have
𝑢 (𝑚, 𝑛)
≤ {𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) 𝐽 (𝑀,𝑁)1 − 𝜆 (𝑀,𝑁)𝐶 (𝑚, 𝑛)}

1/𝑝 , (25)

provided that 𝜆(𝑀,𝑁) < 1, where
𝑏 (𝑚, 𝑛) = max {𝑏1 (𝑚, 𝑛) , 𝑏2 (𝑚, 𝑛)} ,
𝐶 (𝑚, 𝑛) = exp{𝑚−1∑

𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵 (𝑠, 𝑡, 𝑚, 𝑛)} ,

𝐵 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑟1𝑖 (𝑚, 𝑛) [𝑐1𝑖 (𝑠, 𝑡) 𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1

+ 𝑑1𝑖 (𝑠, 𝑡) 𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 ] 𝑏 (𝑠, 𝑡) ,

𝐽 (𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑟1𝑖 (𝑚, 𝑛) 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐1𝑖 (𝑠, 𝑡)

⋅ [𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑞𝑖𝑝 𝐾𝑞𝑖/𝑝1 ] + 𝑑1𝑖 (𝑠, 𝑡)
⋅ [𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑟𝑖𝑝 𝐾𝑟𝑖/𝑝2 ] + 𝑒1i (𝑠, 𝑡)}

+ 𝑙2∑
𝑗=1

𝑟2𝑗 (𝑚, 𝑛)𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓1𝑗 (𝑠, 𝑡)

⋅ [ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 ] + 𝑔1𝑗 (𝑠, 𝑡)
⋅ [V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝

4 ] + 𝑤1𝑗 (𝑠, 𝑡)} ,

𝜆 (𝑚, 𝑛) = 𝑙2∑
𝑗=1

𝑟2𝑗 (𝑚, 𝑛)𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓1𝑗 (𝑠, 𝑡) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3

+ 𝑔1𝑗 (𝑠, 𝑡) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡) .

(26)

The proof of Corollary 5 can be completed by setting𝑐𝑖(𝑠, 𝑡, 𝑚, 𝑛) = 𝑟1𝑖(𝑚, 𝑛)𝑐1𝑖(𝑠, 𝑡), 𝑑𝑖(𝑠, 𝑡, 𝑚, 𝑛) = 𝑟1𝑖(𝑚, 𝑛)𝑑1𝑖(𝑠,𝑡), 𝑒𝑖(𝑠, 𝑡, 𝑚, 𝑛) = 𝑟1𝑖(𝑚, 𝑛)𝑒1𝑖(𝑠, 𝑡), 𝑓𝑗(𝑠, 𝑡, 𝑚, 𝑛) = 𝑟2𝑗(𝑚,
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𝑛)𝑓1𝑗(𝑠, 𝑡), 𝑔𝑗(𝑠, 𝑡, 𝑚, 𝑛) = 𝑟2𝑗(𝑚, 𝑛)𝑔1𝑗(𝑠, 𝑡), 𝑤𝑗(𝑠, 𝑡, 𝑚, 𝑛) =𝑟2𝑗(𝑚, 𝑛)𝑤1𝑗(𝑠, 𝑡) in Theorem 4.
Letting 𝑝 = 1, we get the following corollary.

Corollary 6. Let 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑏1(𝑚, 𝑛), 𝑏2(𝑚, 𝑛), 𝑐𝑖(𝑠, 𝑡, 𝑚,𝑛), 𝑑𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑒𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑓𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑔𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑤𝑗(𝑠,𝑡, 𝑚, 𝑛) be defined as in Theorem 4. If

𝑢 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏1 (𝑚, 𝑛)
𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢 (𝑠, 𝑡) + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)]

+ 𝑏2 (𝑚, 𝑛)
𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢 (𝑠, 𝑡) + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢 (𝑠, 𝑡) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] ,
(27)

then, for (𝑚, 𝑛) ∈ Ω, we have
𝑢 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) 𝐽 (𝑀,𝑁)1 − 𝜆 (𝑀,𝑁)𝐶 (𝑚, 𝑛) , (28)

provided that 𝜆(𝑀,𝑁) < 1, where

𝑏 (𝑚, 𝑛) = max {𝑏1 (𝑚, 𝑛) , 𝑏2 (𝑚, 𝑛)} ,
𝐶 (𝑚, 𝑛) = exp{𝑚−1∑

𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵 (𝑠, 𝑡, 𝑚, 𝑛)} ,

𝐵 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑙1∑
𝑖=1

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛)] 𝑏 (𝑠, 𝑡) ,

𝐽 (𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛)] 𝑎 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)}

+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] 𝑎 (𝑠, 𝑡) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)} ,

𝜆 (𝑚, 𝑛) = 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] 𝑏 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡) .

(29)

Theorem 7. Let 𝜑(𝑚, 𝑛) ∈ ℘+(Ω), 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑏1(𝑚, 𝑛),𝑏2(𝑚, 𝑛), 𝑐𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑑𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑒𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑓𝑗(𝑠, 𝑡, 𝑚, 𝑛),𝑔𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑤𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑝, 𝑞𝑖, 𝑟𝑖, ℎ𝑗, V𝑗 be defined as in The-
orem 4. Assume that 𝑎(𝑚, 𝑛) is nondecreasing in the first
variable. If

𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑚−1∑
𝑠=𝑚0

𝜑 (𝑠, 𝑛) 𝑢𝑝 (𝑠, 𝑛) + 𝑏1 (𝑚, 𝑛)

⋅ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡)
+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)] + 𝑏2 (𝑚, 𝑛)
⋅ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛)

⋅ 𝑢ℎ𝑗 (𝑠, 𝑡) + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢V𝑗 (𝑠, 𝑡) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] ,
(30)

then, for (𝑚, 𝑛) ∈ Ω, we have
𝑢 (𝑚, 𝑛)
≤ {[𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) 𝐽 (𝑀,𝑁)1 − 𝜆̃ (𝑀,𝑁)𝐶 (𝑚, 𝑛)]

⋅ 𝜑 (𝑚, 𝑛)}1/𝑝 ,
(31)

provided that 𝜆̃(𝑀,𝑁) < 1, where
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𝜑 (𝑚, 𝑛) = 𝑚−1∏
𝑠=𝑚0

[1 + 𝜑 (𝑠, 𝑛)] , (32)

𝑏 (𝑚, 𝑛) = max {𝑏1 (𝑚, 𝑛) , 𝑏2 (𝑚, 𝑛)} , (33)

𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))𝑞𝑖/𝑝 ,
𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))𝑟𝑖/𝑝 , 𝑖 = 1, 2, . . . , 𝑙1,
𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))ℎ𝑗/𝑝 ,
𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))V𝑗/𝑝 , 𝑗 = 1, 2, . . . , 𝑙2,

(34)

𝐶 (𝑚, 𝑛) = exp{𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵 (𝑠, 𝑡, 𝑚, 𝑛)} , (35)

𝐵 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑙1∑
𝑖=1

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 ] 𝑏 (𝑠, 𝑡) , (36)

𝐽 (𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑞𝑖𝑝 𝐾𝑞𝑖/𝑝1 ] + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑟𝑖𝑝
⋅ 𝐾𝑟𝑖/𝑝2 ] + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)} +

𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) [ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 ]

+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) [V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝
4 ] + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)} ,

(37)

𝜆̃ (𝑚, 𝑛) = 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡) . (38)

Proof. Given 𝑏(𝑚, 𝑛) = max{𝑏1(𝑚, 𝑛), 𝑏2(𝑚, 𝑛)}, for (𝑚, 𝑛) ∈Ω, we have
𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑚−1∑

s=𝑚0
𝜑 (𝑠, 𝑛) 𝑢𝑝 (𝑠, 𝑛) + 𝑏 (𝑚, 𝑛)

⋅ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡)
+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)] + 𝑏 (𝑚, 𝑛)
⋅ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛)
⋅ 𝑢ℎj (𝑠, 𝑡) + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢V𝑗 (𝑠, 𝑡) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] .

(39)

Define function 𝑧̃(𝑚, 𝑛) by
𝑧̃ (𝑚, 𝑛) = 𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛)
⋅ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡)

+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)] + 𝑏 (𝑚, 𝑛)
⋅ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢ℎ𝑗 (𝑠, 𝑡)
+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢V𝑗 (𝑠, 𝑡) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] .

(40)

Then,

𝑢𝑝 (𝑚, 𝑛) ≤ 𝑧̃ (𝑚, 𝑛) + 𝑚−1∑
𝑠=𝑚0

𝜑 (𝑠, 𝑛) 𝑢𝑝 (𝑠, 𝑛) . (41)

Clearly 𝑧(𝑚, 𝑛) is nondecreasing in the first variable.Then, by
Lemma 2, we get

𝑢𝑝 (𝑚, 𝑛) ≤ 𝑧̃ (𝑚, 𝑛) 𝑚−1∏
𝑠=𝑚0

[1 + 𝜑 (𝑠, 𝑛)]
= 𝑧̃ (𝑚, 𝑛) 𝜑 (𝑚, 𝑛) ,

(42)

where 𝜑(𝑚, 𝑛) is defined in (32). Define function
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V (𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡) + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)]

+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢ℎ𝑗 (𝑠, 𝑡) + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢V𝑗 (𝑠, 𝑡) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] .
(43)

From (40), we get

𝑧̃ (𝑚, 𝑛) = 𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) V (𝑚, 𝑛) . (44)

Then (42) becomes

𝑢 (𝑚, 𝑛) ≤ {[𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) V (𝑚, 𝑛)] 𝜑 (𝑚, 𝑛)}1/𝑝 . (45)

By (45) and Lemma 3, from (43), we have

V (𝑚, 𝑛) ≤ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (s, 𝑡))𝑞𝑖/𝑝 [𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − 𝑞𝑖𝑝 𝐾𝑞𝑖/𝑝1 ]
+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))𝑟𝑖/𝑝 [𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − 𝑟𝑖𝑝 𝐾𝑟𝑖/𝑝2 ] + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)}
+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))ℎ𝑗/𝑝 [ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 ]
+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))V𝑗/𝑝 [V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝

4 ] + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)} = 𝑅̃ (𝑚, 𝑛)
+ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 ] 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡) ,

(46)

where

𝑅̃ (𝑚, 𝑛) = 𝐽 (𝑚, 𝑛) + 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 + 𝑔j (𝑠, 𝑡, 𝑚, 𝑛) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡) , (47)

𝑐𝑖, 𝑑𝑖, 𝑓𝑗, 𝑔𝑗 and 𝐽(𝑚, 𝑛) are defined in (34) and (37), respec-
tively.

Similar to the process of (17)–(23), we deduce that

V (𝑚, 𝑛) ≤ 𝐽 (𝑀,𝑁)1 − 𝜆̃ (𝑀,𝑁)𝐶 (𝑚, 𝑛) , (48)

where 𝐶(𝑚, 𝑛), 𝜆̃(𝑚, 𝑛) are defined in (35) and (38).
Combining (45) and (48), we get the desired result.

Theorem 8. Let 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑏1(𝑚, 𝑛), 𝑏2(𝑚, 𝑛), 𝑐𝑖(𝑠, 𝑡, 𝑚,𝑛), 𝑑𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑒𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑓𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑔𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑤𝑗(𝑠,𝑡, 𝑚, 𝑛), 𝑝, 𝑞𝑖, 𝑟𝑖, ℎ𝑗, V𝑗 be defined as in Theorem 4. 𝐻𝑗, 𝐿𝑗 :Ω × 𝑅+ → 𝑅+ (𝑗 = 1, 2, . . . , 𝑙2) satisfies 0 ≤ 𝐻𝑗(𝑚, 𝑛, 𝑢) −𝐻𝑗(𝑚, 𝑛, V) ≤ 𝐿𝑗(𝑚, 𝑛, V)(𝑢 − V) for 𝑢 ≥ V ≥ 0. If
𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏1 (𝑚, 𝑛)

⋅ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡)
+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)] + 𝑏2 (𝑚, 𝑛)
⋅ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, 𝑢ℎ𝑗 (𝑠, 𝑡))
+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, 𝑢V𝑗 (𝑠, 𝑡)) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] ,

(49)

then, for (𝑚, 𝑛) ∈ Ω, we have
𝑢 (𝑚, 𝑛)
≤ {𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) 𝐽 (𝑀,𝑁)1 − 𝜆 (𝑀,𝑁)𝐶 (𝑚, 𝑛)}

1/𝑝 , (50)
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provided that 𝜆(𝑀,𝑁) < 1, where

𝑏 (𝑚, 𝑛) = max {𝑏1 (𝑚, 𝑛) , 𝑏2 (𝑚, 𝑛)} , (51)

𝐶 (𝑚, 𝑛) = exp{𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵 (𝑠, 𝑡, 𝑚, 𝑛)} , (52)

𝐵 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑙1∑
𝑖=1

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 ] 𝑏 (𝑠, 𝑡) , (53)

𝐽 (𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑞𝑖𝑝 𝐾𝑞𝑖/𝑝1 ]

+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑟𝑖𝑝 𝐾𝑟𝑖/𝑝2 ] + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)}

+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 [𝑠, 𝑡, ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 ]

+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 [𝑠, 𝑡, V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝
4 ] + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)} ,

(54)

𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝐿𝑗 (𝑠, 𝑡, ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 ) , 𝑗 = 1, 2, . . . , 𝑙2, (55)

𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) 𝐿𝑗 (𝑠, 𝑡, V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝
4 ) , 𝑗 = 1, 2, . . . , 𝑙2, (56)

𝜆 (𝑚, 𝑛) = 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡) . (57)

Proof. Given 𝑏(𝑚, 𝑛) = max{𝑏1(𝑚, 𝑛), 𝑏2(𝑚, 𝑛)}, for (𝑚, 𝑛) ∈Ω, we have
𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛)
⋅ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡)
+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)] + 𝑏 (𝑚, 𝑛)

⋅ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, 𝑢ℎ𝑗 (𝑠, 𝑡))
+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, 𝑢V𝑗 (𝑠, 𝑡)) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] .

(58)

Define function V(𝑚, 𝑛) by

V (𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑚−1∑
s=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡) + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)]

+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, 𝑢ℎ𝑗 (𝑠, 𝑡)) + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, 𝑢V𝑗 (𝑠, 𝑡)) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] .
(59)

Then

𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) V (𝑚, 𝑛) , (60)

or

𝑢 (𝑚, 𝑛) ≤ (𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) V (𝑚, 𝑛))1/𝑝 . (61)
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By Lemma 3, we have

V (𝑚, 𝑛) ≤ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡))𝑞𝑖/𝑝

+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡))𝑟𝑖/𝑝 + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)}
+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡))ℎ𝑗/𝑝)
+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡))V𝑗/𝑝) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)}
≤ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − 𝑞𝑖𝑝 𝐾𝑞𝑖/𝑝1 ]

+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − 𝑟𝑖𝑝 𝐾𝑟𝑖/𝑝2 ] + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)}

+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) [𝐻𝑗 (𝑠, 𝑡, ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 )

− 𝐻𝑗 (𝑠, 𝑡, ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 ) + 𝐻𝑗 (𝑠, 𝑡,
ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 )] + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)

⋅ [𝐻𝑗 (𝑠, 𝑡, V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝
4 ) − 𝐻𝑗 (𝑠, 𝑡, V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝

4 )

+ 𝐻𝑗 (𝑠, 𝑡, V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝
4 )] + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)}

≤ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − 𝑞𝑖𝑝 𝐾𝑞𝑖/𝑝1 ]

+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 (𝑎 (𝑠, 𝑡) + 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡)) + 𝑝 − 𝑟𝑖𝑝 𝐾𝑟𝑖/𝑝2 ] + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)}

+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) [𝐿𝑗 (𝑠, 𝑡, ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 )

⋅ ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡) + 𝐻𝑗 (𝑠, 𝑡, ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 )] + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) [𝐿𝑗 (𝑠, 𝑡,
V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡)

+ 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝
4 ) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡) + 𝐻𝑗 (𝑠, 𝑡, V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝

4 )] + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)} = 𝑅 (𝑚, 𝑛)

+ 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 ] 𝑏 (𝑠, 𝑡) V (𝑠, 𝑡) ,

(62)

where
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𝑅 (𝑚, 𝑛) = 𝐽 (𝑚, 𝑛) + 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (s, 𝑡) V (𝑠, 𝑡) , (63)

and 𝐽(𝑚, 𝑛), 𝑓𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑔𝑗(𝑠, 𝑡, 𝑚, 𝑛) are defined in (54)–
(56).

Similar to the process of (17)–(23), we get

V (𝑚, 𝑛) ≤ 𝐽 (𝑀,𝑁)1 − 𝜆 (𝑀,𝑁)𝐶 (𝑚, 𝑛) , (64)

where 𝐶(𝑚, 𝑛), 𝜆(𝑚, 𝑛) are defined in (52) and (57).

Combining (61) and (64), we get the desired result.

Theorem 9. Let 𝜑(𝑚, 𝑛) ∈ ℘+(Ω), 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛), 𝑏1(𝑚, 𝑛),𝑏2(𝑚, 𝑛), 𝑐𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑑𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑒𝑖(𝑠, 𝑡, 𝑚, 𝑛), 𝑓𝑗(𝑠, 𝑡, 𝑚, 𝑛),𝑔𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑤𝑗(𝑠, 𝑡, 𝑚, 𝑛), 𝑝, 𝑞𝑖, 𝑟𝑖, ℎ𝑗, V𝑗 be defined as in The-
orem 4. Assume that 𝑎(𝑚, 𝑛) is nondecreasing in the first
variable.𝐻𝑗, 𝐿𝑗 (𝑗 = 1, 2, . . . , 𝑙2) are defined as in Theorem 7.
If

𝑢𝑝 (𝑚, 𝑛) ≤ 𝑎 (𝑚, 𝑛) + 𝑚−1∑
𝑠=𝑚0

𝜑 (𝑠, 𝑛) 𝑢𝑝 (𝑠, 𝑛)

+ 𝑏1 (𝑚, 𝑛)
𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑞𝑖 (𝑠, 𝑡) + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑢𝑟𝑖 (𝑠, 𝑡) + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)]

+ 𝑏2 (𝑚, 𝑛)
𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, 𝑢ℎ𝑗 (𝑠, 𝑡)) + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 (𝑠, 𝑡, 𝑢V𝑗 (𝑠, 𝑡)) + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)] ,

(65)

then, for (𝑚, 𝑛) ∈ Ω, we have
𝑢 (𝑚, 𝑛)
≤ {𝑎 (𝑚, 𝑛) + 𝑏 (𝑚, 𝑛) 𝐽 (𝑀,𝑁)1 − 𝜆̂ (𝑀,𝑁)𝐶 (𝑚, 𝑛)}

1/𝑝 , (66)

provided that 𝜆̂(𝑀,𝑁) < 1, where

𝜑 (𝑚, 𝑛) = 𝑚−1∏
𝑠=𝑚0

[1 + 𝜑 (𝑠, 𝑛)] ,
𝑏 (𝑚, 𝑛) = max {𝑏1 (𝑚, 𝑛) , 𝑏2 (𝑚, 𝑛)} ,
𝐶 (𝑚, 𝑛) = exp{𝑚−1∑

𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵 (𝑠, 𝑡, 𝑚, 𝑛)} ,

𝐵 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑙1∑
𝑖=1

[𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 + 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) 𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 ] 𝑏 (𝑠, 𝑡) ,

𝐽 (𝑚, 𝑛) = 𝑙1∑
𝑖=1

𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑞𝑖𝑝𝐾(𝑞𝑖−𝑝)/𝑝1 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑞𝑖𝑝 𝐾𝑞𝑖/𝑝1 ]
+ 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) [𝑟𝑖𝑝𝐾(𝑟𝑖−𝑝)/𝑝2 𝑎 (𝑠, 𝑡) + 𝑝 − 𝑟𝑖𝑝 𝐾𝑟𝑖/𝑝2 ] + 𝑒𝑖 (𝑠, 𝑡, 𝑚, 𝑛)}
+ 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓j (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 [𝑠, 𝑡, (𝜑 (𝑠, 𝑡))ℎ𝑗/𝑝 (ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 )]
+ 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛)𝐻𝑗 [𝑠, 𝑡, (𝜑 (𝑠, 𝑡))V𝑗/𝑝 (V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝

4 )] + 𝑤𝑗 (𝑠, 𝑡, 𝑚, 𝑛)} ,
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𝜆̂ (𝑚, 𝑛) = 𝑙2∑
𝑗=1

𝑀−1∑
𝑠=𝑚0

𝑁−1∑
t=𝑛0
[𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 + 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 ] 𝑏 (𝑠, 𝑡) 𝐶 (𝑠, 𝑡) ,

𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑐𝑖 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))𝑞𝑖/𝑝 ,
𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑑𝑖 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))𝑟𝑖/𝑝 , 𝑖 = 1, 2, . . . , 𝑙1,
𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑓𝑗 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))ℎ𝑗/𝑝 𝐿𝑗 [𝑠, 𝑡, (𝜑 (𝑠, 𝑡))ℎ𝑗/𝑝 (ℎ𝑗𝑝 𝐾(ℎ𝑗−𝑝)/𝑝3 𝑎 (𝑠, 𝑡) + 𝑝 − ℎ𝑗𝑝 𝐾ℎ𝑗/𝑝3 )] ,
𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑔𝑗 (𝑠, 𝑡, 𝑚, 𝑛) (𝜑 (𝑠, 𝑡))V𝑗/𝑝 𝐿𝑗 [𝑠, 𝑡, (𝜑 (𝑠, 𝑡))V𝑗/𝑝 (V𝑗𝑝 𝐾(V𝑗−𝑝)/𝑝4 𝑎 (𝑠, 𝑡) + 𝑝 − V𝑗𝑝 𝐾V𝑗/𝑝

4 )] ,
𝑗 = 1, 2, . . . , 𝑙2.

(67)

The proof for Theorem 9 is similar to the combination of
Theorems 7 and 8, and we omit the details here.

3. Applications

In this section, we will present some applications for the
established results to study boundedness, uniqueness, and
continuous dependence of solutions of certain difference
equations.

Consider the following Volterra-Fredholm sum-differ-
ence equations:

𝑢𝑝 (𝑚, 𝑛) = 𝑎 (𝑚, 𝑛) + 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))
+ 𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) + 𝐸 (𝑠, 𝑡, 𝑚, 𝑛)]
+ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))
+ 𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) + 𝑊 (𝑠, 𝑡, 𝑚, 𝑛)] ,

(68)

where 𝑢(𝑚, 𝑛), 𝑎(𝑚, 𝑛) ∈ ℘(Ω), 𝑝 ≥ 1 is an odd number,𝐶,𝐷, 𝐹, 𝐺 : Ω2 × 𝑅 → 𝑅, 𝐸,𝑊 ∈ ℘(Ω2).
Theorem 10. Assume that functions 𝐶,𝐷, 𝐸, 𝐹, 𝐺,𝑊 in equa-
tion (68) satisfy the following conditions:󵄨󵄨󵄨󵄨𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1)󵄨󵄨󵄨󵄨 ≤ 𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨𝑢𝑞1󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1)󵄨󵄨󵄨󵄨 ≤ 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨𝑢𝑟1󵄨󵄨󵄨󵄨 ,

|𝐸 (𝑠, 𝑡, 𝑚, 𝑛)| ≤ 𝑒1 (𝑠, 𝑡, 𝑚, 𝑛) ,
󵄨󵄨󵄨󵄨𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1)󵄨󵄨󵄨󵄨 ≤ 𝑓1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢ℎ1 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1)󵄨󵄨󵄨󵄨 ≤ 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨𝑢V1󵄨󵄨󵄨󵄨 ,
|𝑊 (𝑠, 𝑡, 𝑚, 𝑛)| ≤ 𝑤1 (𝑠, 𝑡, 𝑚, 𝑛)

(69)

for (𝑚, 𝑛) ∈ Ω, 𝑢1 ∈ 𝑅, where 𝑞, 𝑟, ℎ, V are nonnegative con-
stants satisfying 𝑝 ≥ 𝑞 > 0, 𝑝 ≥ 𝑟 > 0, 𝑝 ≥ ℎ > 0, 𝑝 ≥ V > 0,

𝑐1, 𝑑1, 𝑒1, 𝑓1, 𝑔1, 𝑤1 ∈ ℘+(Ω2) which are nondecreasing in the
last two variables; then one has

|𝑢 (𝑚, 𝑛)|
≤ {|𝑎 (𝑚, 𝑛)| + 𝐽1 (𝑀,𝑁)1 − 𝜆1 (𝑀,𝑁)𝐶1 (𝑚, 𝑛)}

1/𝑝 , (70)

provided that 𝜆1(𝑀,𝑁) < 1, where
𝐶1 (𝑚, 𝑛) = exp{𝑚−1∑

𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵1 (𝑠, 𝑡, 𝑚, 𝑛)} ,
𝐵1 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) 𝑞𝑝𝐾(𝑞−𝑝)/𝑝1 + 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛)
⋅ 𝑟𝑝𝐾(𝑟−𝑝)/𝑝2 ,

𝐽1 (𝑚, 𝑛) = 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

{𝑐1 (𝑠, 𝑡, 𝑚, 𝑛)

⋅ [ 𝑞𝑝𝐾(𝑞−𝑝)/𝑝1 |𝑎 (𝑠, 𝑡)| + 𝑝 − 𝑞𝑝 𝐾𝑞/𝑝1 ]
+ 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛) [ 𝑟𝑝𝐾(𝑟−𝑝)/𝑝2 |𝑎 (𝑠, 𝑡)| + 𝑝 − 𝑟𝑝 𝐾𝑟/𝑝2 ]

+ 𝑒1 (𝑠, 𝑡, 𝑚, 𝑛)} + 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

{𝑓1 (𝑠, 𝑡, 𝑚, 𝑛)

⋅ [ ℎ𝑝𝐾(ℎ−𝑝)/𝑝3 |𝑎 (𝑠, 𝑡)| + 𝑝 − ℎ𝑝 𝐾ℎ/𝑝3 ]

+ 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛) [ V𝑝𝐾(V−𝑝)/𝑝4 |𝑎 (𝑠, 𝑡)| + 𝑝 − V𝑝 𝐾V/𝑝
4 ]

+ 𝑤1 (𝑠, 𝑡, 𝑚, 𝑛)} ,
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𝜆1 (𝑚, 𝑛) = 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓1 (𝑠, 𝑡, 𝑚, 𝑛) ℎ𝑝𝐾(ℎ−𝑝)/𝑝3

+ 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛) V𝑝𝐾(V−𝑝)/𝑝4 ]𝐶1 (𝑠, 𝑡) .
(71)

Proof. Using conditions (69) to (68), we have

󵄨󵄨󵄨󵄨𝑢𝑝 (𝑚, 𝑛)󵄨󵄨󵄨󵄨 ≤ |𝑎 (𝑚, 𝑛)|
+ 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[|𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))|
+ |𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))| + |𝐸 (𝑠, 𝑡, 𝑚, 𝑛)|]
+ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[|𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))|
+ |𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))| + |𝑊 (𝑠, 𝑡, 𝑚, 𝑛)|] ≤ |𝑎 (𝑚,
𝑛)| + 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨𝑢𝑞 (𝑠, 𝑡)󵄨󵄨󵄨󵄨
+ 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨𝑢𝑟 (𝑠, 𝑡)󵄨󵄨󵄨󵄨 + 𝑒1 (𝑠, 𝑡, 𝑚, 𝑛)]
+ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢ℎ (𝑠, 𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨𝑢V (𝑠, 𝑡)󵄨󵄨󵄨󵄨 + 𝑤1 (𝑠, 𝑡, 𝑚, 𝑛)] .

(72)

Then a suitable application ofTheorem 4 (with 𝑙1 = 𝑙2 = 1) to
(72) yields the desired result.

The following theorem deals with the uniqueness of the
solutions of (68).

Theorem 11. Supposing that

󵄨󵄨󵄨󵄨𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1) − 𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢2)󵄨󵄨󵄨󵄨
≤ 𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢𝑝1 − 𝑢𝑝2 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1) − 𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢2)󵄨󵄨󵄨󵄨
≤ 𝑓1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢𝑝1 − 𝑢𝑝2 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1) − 𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢2)󵄨󵄨󵄨󵄨
≤ 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢𝑝1 − 𝑢𝑝2 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1) − 𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢2)󵄨󵄨󵄨󵄨
≤ 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢𝑝1 − 𝑢𝑝2 󵄨󵄨󵄨󵄨󵄨

(73)

hold for 𝑢1, 𝑢2 ∈ 𝑅, where 𝑐1, 𝑑1, 𝑓1, 𝑔1 ∈ ℘+(Ω2) are
nondecreasing in the last two variables,

𝜆 (𝑀,𝑁)
= 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓1 (𝑠, 𝑡,𝑀,𝑁) + 𝑔1 (𝑠, 𝑡,𝑀,𝑁)] 𝐶 (𝑠, 𝑡)
< 1,

𝐵 (𝑠, 𝑡, 𝑚, 𝑛) = 𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛) ,
𝐶 (𝑠, 𝑡) = exp{𝑚−1∑

𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵 (𝑠, 𝑡, 𝑚, 𝑛)} ,

(74)

then (68) has at most one solution.

Proof. Assume that 𝑢(𝑚, 𝑛), 𝑢(𝑚, 𝑛) are two solutions of (68).
Then
󵄨󵄨󵄨󵄨𝑢𝑝 (𝑚, 𝑛) − 𝑢𝑝 (𝑚, 𝑛)󵄨󵄨󵄨󵄨
≤ 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[|𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))|
+ |𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))|]
+ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[|𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))|
+ |𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡))|]
≤ 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛)] 󵄨󵄨󵄨󵄨𝑢𝑝 (𝑠, 𝑡)

− 𝑢𝑝 (𝑠, 𝑡)󵄨󵄨󵄨󵄨 +
𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓1 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛)]
⋅ 󵄨󵄨󵄨󵄨𝑢𝑝 (𝑠, 𝑡) − 𝑢𝑝 (𝑠, 𝑡)󵄨󵄨󵄨󵄨 .

(75)

Treat |𝑢𝑝(𝑚, 𝑛) − 𝑢𝑝(𝑚, 𝑛)| as one variable, and a suitable
application of Corollary 6 yields |𝑢𝑝(𝑚, 𝑛) − 𝑢𝑝(𝑚, 𝑛)| ≤ 0,
which implies that 𝑢𝑝(𝑚, 𝑛) ≡ 𝑢𝑝(𝑚, 𝑛). Since 𝑝 is an odd
number, then we have 𝑢𝑝(𝑚, 𝑛) = 𝑢𝑝(𝑚, 𝑛), and the proof is
complete.

Finally we study the continuous dependence of the
solutions of (68) on functions 𝑎, 𝐶,𝐷, 𝐸, 𝐹, 𝐺,𝑊. For this, we
consider the following variation of (68):

𝑢̃𝑝 (𝑚, 𝑛) = 𝑎 (𝑚, 𝑛) + 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))
+ 𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡)) + 𝐸 (𝑠, 𝑡, 𝑚, 𝑛)]
+ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))
+ 𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡)) + 𝑊̃ (𝑠, 𝑡, 𝑚, 𝑛)] ,

(76)
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where 𝐶,𝐷, 𝐹, 𝐺 : Ω2 × 𝑅 → 𝑅, 𝐸, 𝑊̃ ∈ ℘(Ω2) and 𝑝 ≥ 1 is
an odd number.

Theorem 12. Consider (68) and (76). If

󵄨󵄨󵄨󵄨𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1 (𝑠, 𝑡)) − 𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢2 (𝑠, 𝑡))󵄨󵄨󵄨󵄨
≤ 𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢𝑝1 − 𝑢𝑝2 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1 (𝑠, 𝑡)) − 𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢2 (𝑠, 𝑡))󵄨󵄨󵄨󵄨
≤ 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢𝑝1 − 𝑢𝑝2 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1 (𝑠, 𝑡)) − 𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢2 (𝑠, 𝑡))󵄨󵄨󵄨󵄨
≤ 𝑓1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢𝑝1 − 𝑢𝑝2 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢1 (𝑠, 𝑡)) − 𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢2 (𝑠, 𝑡))󵄨󵄨󵄨󵄨
≤ 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛) 󵄨󵄨󵄨󵄨󵄨𝑢𝑝1 − 𝑢𝑝2 󵄨󵄨󵄨󵄨󵄨 ,

(77)

hold for 𝑢1, 𝑢2 ∈ 𝑅, where 𝑐1, 𝑑1, 𝑓1, 𝑔1 ∈ ℘+(Ω2), and are
nondecreasing in the last two variables, furthermore, for all
solution 𝑢̃ of (76), the following conditions hold for (𝑚, 𝑛) ∈ Ω:

|𝑎 (𝑚, 𝑛) − 𝑎 (𝑚, 𝑛)| ≤ 𝜀4 ,
𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

󵄨󵄨󵄨󵄨󵄨𝐸 (𝑠, 𝑡, 𝑚, 𝑛) − 𝐸 (𝑠, 𝑡, 𝑚, 𝑛)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀8 ,
𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

󵄨󵄨󵄨󵄨󵄨𝑊 (𝑠, 𝑡, 𝑚, 𝑛) − 𝑊̃ (𝑠, 𝑡, 𝑚, 𝑛)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀8 ,
𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

󵄨󵄨󵄨󵄨󵄨𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃) − 𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀8 ,
𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

󵄨󵄨󵄨󵄨󵄨𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃) − 𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀8 ,
𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

󵄨󵄨󵄨󵄨󵄨𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃) − 𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀8 ,
𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

󵄨󵄨󵄨󵄨󵄨𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃) − 𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀8 ,

(78)

where 𝜀 > 0 is an arbitrary constant. Then

󵄨󵄨󵄨󵄨𝑢𝑝 (𝑚, 𝑛) − 𝑢̃𝑝 (𝑚, 𝑛)󵄨󵄨󵄨󵄨
≤ 𝜀 [1 + 𝐽2 (𝑀,𝑁)1 − 𝜆2 (𝑀,𝑁)𝐶2 (𝑚, 𝑛)] ,

(79)

where 𝜆2(𝑀,𝑁) < 1, and
𝐶2 (𝑚, 𝑛) = exp{𝑚−1∑

𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

𝐵2 (𝑠, 𝑡, 𝑚, 𝑛)} ,
𝐵2 (𝑠, 𝑡, 𝑚, 𝑛) = [𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛)] ,
𝜆2 (𝑚, 𝑛)
= 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓1 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛)] 𝐶2 (𝑠, 𝑡) ,
𝐽2 (𝑚, 𝑛)
= 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛)]

+ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓1 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛)]

(80)

for (𝑚, 𝑛) ∈ Ω. That is, 𝑢𝑝 depends continuously on the
functions 𝑎, 𝐶,𝐷, 𝐸, 𝐹, 𝐺,𝑊.

Proof. Let 𝑢(𝑚, 𝑛) and 𝑢̃(𝑚, 𝑛) be solutions of (68) and (76),
respectively. Then 𝑢(𝑚, 𝑛) satisfies (68) and 𝑢̃(𝑚, 𝑛) satisfies
(76). Hence
󵄨󵄨󵄨󵄨𝑢𝑝 (𝑚, 𝑛) − 𝑢̃𝑝 (𝑚, 𝑛)󵄨󵄨󵄨󵄨 ≤ |𝑎 (𝑚, 𝑛) − 𝑎 (𝑚, 𝑛)|
+ 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[󵄨󵄨󵄨󵄨󵄨𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨𝐸 (𝑠, 𝑡, 𝑚, 𝑛) − 𝐸 (𝑠, 𝑡, 𝑚, 𝑛)󵄨󵄨󵄨󵄨󵄨]
+ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[󵄨󵄨󵄨󵄨󵄨𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨𝑊 (𝑠, 𝑡, 𝑚, 𝑛) − 𝑊̃ (𝑠, 𝑡, 𝑚, 𝑛)󵄨󵄨󵄨󵄨󵄨] ≤ |𝑎 (𝑚, 𝑛) − 𝑎 (𝑚,
𝑛)|
+ 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[|𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))|
+ 󵄨󵄨󵄨󵄨󵄨𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡)) − 𝐶 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))󵄨󵄨󵄨󵄨󵄨
+ |𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))|
+ 󵄨󵄨󵄨󵄨󵄨𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡)) − 𝐷 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨𝐸 (𝑠, 𝑡, 𝑚, 𝑛) − 𝐸 (𝑠, 𝑡, 𝑚, 𝑛)󵄨󵄨󵄨󵄨󵄨]
+ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[|𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))|
+ 󵄨󵄨󵄨󵄨󵄨𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡)) − 𝐹 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))󵄨󵄨󵄨󵄨󵄨
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+ |𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢 (𝑠, 𝑡)) − 𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))|
+ 󵄨󵄨󵄨󵄨󵄨𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡)) − 𝐺 (𝑠, 𝑡, 𝑚, 𝑛, 𝑢̃ (𝑠, 𝑡))󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨𝑊 (𝑠, 𝑡, 𝑚, 𝑛) − 𝑊̃ (𝑠, 𝑡, 𝑚, 𝑛)󵄨󵄨󵄨󵄨󵄨] ≤ 𝜀
+ 𝑚−1∑
𝑠=𝑚0

𝑛−1∑
𝑡=𝑛0

[𝑐1 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑑1 (𝑠, 𝑡, 𝑚, 𝑛)] [𝑢𝑝 − 𝑢̃𝑝]

+ 𝑀−1∑
𝑠=𝑚0

𝑁−1∑
𝑡=𝑛0

[𝑓1 (𝑠, 𝑡, 𝑚, 𝑛) + 𝑔1 (𝑠, 𝑡, 𝑚, 𝑛)] 󵄨󵄨󵄨󵄨𝑢𝑝 − 𝑢̃𝑝󵄨󵄨󵄨󵄨 .
(81)

Treat |𝑢𝑝(𝑚, 𝑛) − 𝑢̃𝑝(𝑚, 𝑛)| as one variable, and a suitable
application of Corollary 6 (with 𝑙1 = 𝑙2 = 1) yields the desired
result (79). Hence 𝑢𝑝 depends continuously on 𝑎, 𝐶,𝐷, 𝐸,𝐹, 𝐺,𝑊.

4. Conclusions

The author carried out some new Volterra-Fredholm-type
discrete inequalities involving four iterated infinite sums
and their corresponding applications. The results are more
effective to qualitative analysis of solutions for sum-difference
equations, such as the boundedness, uniqueness, and contin-
uous dependence on solutions.
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A Discrete Duality Finite Volume (DDFV) method to solve on unstructured meshes the flow problems in anisotropic
nonhomogeneous porous media with full Neumann boundary conditions is proposed in the present work. We start with the
derivation of the discrete problem. A result of existence and uniqueness of a solution for that problem is given thanks to the
properties of its associated matrix combined with adequate assumptions on data. Their theoretical properties, namely, stability
and error estimates (in discrete energy norms and 𝐿2-norm), are investigated. Numerical test is provided.

1. Introduction and the Model Problem

Efficient schemes are required for addressing flow problems
in geologically complex media. The most important criteria
of efficiency are mass conservation in grid blocks, accurate
approximation of Darcy velocity, capability for dealing with
anisotropic flow on unstructured grids and diverse hetero-
geneities (relevant to absolute permeability, porosity, etc.),
and robust and easy implementation. Schemes well known
in the literature for meeting many of the previous criteria
are the following: Mixed Finite Element methods (see, e.g.,
[1, 2]), Control-Volume Finite Element methods (see, e.g.,
[3, 4]),Mimetic FiniteDifferencemethods (see, e.g., [5, 6] and
references therein), Cell-Centered Finite Volume methods
(see, e.g., [7–11] and certain references therein; see also
[12–14]), Multipoint Flux Approximation (see, e.g., [15–18]
and some contributions to convergence analysis of MPFA
O-scheme like [19]) and Discrete Duality Finite Volume
methods (DDFV methods for short).

The DDFV methods come in two formulations. The
first formulation is based on interface flux computations for

primary and dual meshes, accounting with the interface flux
continuity (see, e.g., [20, 21]) and the second formulation of
DDFV is based on pressure gradient reconstructions over
a diamond grid (see [22–24]). Note that this second for-
mulation attracted the attention of some mathematicians as
Andreianov, Boyer, and Hubert who have greatly contributed
to its mathematical development. Indeed, key ideas involved
in the pressure gradient reconstruction approach have been
generalized by these authors to nonlinear operators of Leray-
Lions type. Motivated by the possibility of increasing the
order of convergence of the pressure gradient reconstruction
method for nonlinear operators, Boyer and Hubert have
proposed in [25] the so-called modified DDFV.

Beyond flow problems, we find the applications of DDFV
methods in many areas: the numerical modeling of the
surface erosion occurring at a fluid/soil interface undergoing
a flow process in [26], the discretisation of partial differ-
ential equation appearing in image processing in [27], the
assessment of nuclear waste repository safety in the context
of simulating flow, transport in porous media in [28], and so
on.
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For presenting our analysis of DDFV method, let us
consider the 2D diffusion problem consisting of finding a
function 𝜑 which satisfies the following partial differen-
tial equation associated with nonhomogeneous Neumann
boundary conditions:

−div (𝐾 grad𝜑) = 𝑓 in Ω, (1)

[−𝐾 grad𝜑] ⋅ 𝜂 = 𝑔 on Γ, (2)

whereΩ is a given open polygonal domain, Γ is its boundary,
𝑓 and 𝑔 are two given functions (defined, resp., in Ω and
Γ, at least almost everywhere in Lebesgue measure sense),
and 𝜂 is the unit normal vector to Γ outward to Ω. The
permeability 𝐾(𝑥), with 𝑥 = (𝑥1, 𝑥2)

𝑡
∈ Ω, may be a full

matrix depending on solely spatial variables and obeying the
following conditions.

(i) The primary mesh is such that the discontinuity of 𝐾
lies on mesh interfaces.

(ii) Symmetry is

𝐾𝑖𝑗 (𝑥) = 𝐾𝑗𝑖 (𝑥) a.e. in Ω, ∀1 ≤ 𝑖, 𝑗 ≤ 2. (3)

(iii) Uniform ellipticity and boundedness are

∃𝛾min, 𝛾max ∈ R
∗
+ such that ∀𝜉 ∈ R2

, 𝜉 ̸= 0,

𝛾min ≤
𝜉
𝑇
𝐾 (𝑥) 𝜉

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2
≤ 𝛾max a.e. in Ω,

(4)

where | ⋅ | denotes the Euclidian norm inR2 and where𝐾𝑖𝑗(⋅)
are the components of 𝐾 satisfying

𝐾𝑖𝑗 ∈ PWC (Ω) , (5)

where PWC(Ω) denotes the subspace of 𝐿∞(Ω) made of
piecewise constant functions defined inΩ.

One also assume that 𝑓 and 𝑔 satisfy the following
conditions.

(i) Compatibility condition is

𝑓 ∈ 𝐿
2
(Ω) , 𝑔 ∈ 𝐿

2
(Γ) ,

such that ∫
Ω
𝑓 (𝑥) 𝑑𝑥 − ∫

Γ
𝑔 (𝑥) 𝑑𝛾 (𝑥) = 0.

(6)

(ii) Null average condition is

∫

Ω
𝜑 (𝑥) 𝑑𝑥 = 0. (7)

(iii) Let us emphasize that the novelty of this work is that
Neumann boundary conditions are imposed on the
whole boundary, which causes additional difficulties
in the analysis.

Figure 1: Example of a primary unstructured conforming mesh.

2. A Finite Volume Formulation of
the Model Problem

We briefly present finite volume formulation of the model
problem (1)-(2) on unstructured meshes into the same spirit
as [20, 25, 29–31]. We assume that

the diffusion matrix 𝐾 is a piecewise constant function
over Ω.

This assumption is currently used at least in industrial
problems (e.g., reservoir simulation problems). Indeed, a
subsurface area is made up of a collection of various geologic
formations that may be characterized at intermediate scales
by averaged full permeability tensors over grid blocks of the
primary grid: for more details on this topic, see [32, 33].

2.1. Formulation of the Discrete Problem. First of all, notice
that the method under consideration is analyzed in this work
for general polygonal domains covered with unstructured
matching primary meshes P made up of arbitrary convex
polygons (see Figure 1). Let us consider some definitions
needed in what follows.

Definition 1. A mesh defined on Ω is compatible with the
discontinuities of the permeability tensor𝐾 if these disconti-
nuities are located along the mesh interfaces.

Definition 2. One defines an edge-point as any point located
over an edge and different from the extremities of that edge.

Definition 3. Two edge-points 𝐼 and 𝐽 are named “neighbor-
ing edge-points” if they share the same vertex 𝑉 in the sense
that 𝐼 and 𝐽 belong to two different edges that intersect in 𝑉.

Let us recall our main objectives in this work:

(i) Compute at the cell-points (to be defined later) and at
the interior vertices from themeshP the values of the
unknown function 𝜑 as a solution (expected unique)
of a linear system.
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Figure 2: A primary mesh (full lines) and the associated auxiliary
mesh (dotted lines), including edge-points and cell-points, respec-
tively, in black and blue colors.

(ii) Analyze the stability and the convergence of this
solution in some discrete energy norm similar to the
one introduced in [31].

In the context of unstructured primarymeshes (including
square primarymesheswith cell-points chosen different from
cell-centers), the definition of a discrete energy norm requires
that the cell-points lie inside certain perimeters. In this
connection, the main steps for defining the cell-points are as
follows:

(a) Choose arbitrarily a unique point (different from a
vertex) on each edge of the mesh P. This process
generates a finite family of edge-points.

(b) Join every pair of neighboring edge-points by a dotted
straight line.
By this way, we generate an auxiliary mesh denoted
A.

(c) Fix arbitrarily a unique point inside each intersection
of a primary cell and an auxiliary cell. These points
define a finite family of cell-points.

Figure 2 illustrates the location of the edge-points and cell-
points within both primary and auxiliary meshes.

Remark 4. Note that, in the 3D framework, for a given
primary mesh the corresponding auxiliary mesh is generated
very easily as follows. Any primary cell 𝐶 involves a finite
number of faces and to each face is assigned one and only one
face point lying necessarily on the boundary of 𝐶. Therefore,
one could associate with these face points the smallest convex
polygon containing all of them.This is the process leading to
generation of the auxiliary mesh associated with the primary
mesh under consideration.

We should emphasize that we need to take cell-points
inside auxiliary cells (see Figure 2) in view of achieving
the following goal which is to define a vector space for
the piecewise constant solution (named “weak approximate”
solution in the sequel) and to equip it with a discrete energy
norm.

Remark 5. Note that there exists a DDFV approach based on
pressure gradient reconstructions that can address nonlinear
elliptic problems: see [25, 34] for more details. Nevertheless
in these works, the choice of edge-points depends strongly
on that of cell-points as each edge-point coincides (by
Definition 2) with the intersection of a primary edge and the
straight line joining two cell-points located in both sides of
that edge.

From the boundary-value problem theory (see, e.g., [35]),
system (1)-(2) possesses a unique solution in 𝐻1

(Ω) under
assumptions (3)–(7). We have assumed that the diffusion
coefficient 𝐾 is a piecewise constant function over Ω. The
discontinuities of 𝐾 naturally divide Ω into a finite number
of convex subdomains (Ω𝑠)𝑠∈𝑆. We now make the additional
assumption that the restriction over Ω𝑠 of the exact solution
to system (1)-(2), denoted by 𝜑|Ω𝑠 , satisfies

𝜑|Ω𝑠
∈ 𝐶

2
(Ω𝑠) ∀𝑠 ∈ 𝑆. (8)

Let us now focus on a finite volume formulation of
problem (1)-(2) in terms of a linear system which should
be derived from the elimination of auxiliary unknowns,
namely, edge-point pressures, in flux balance equations over
primary cells and also dual cells (to be introduced later).This
linear system should involve the real numbers {𝑢𝑃}𝑃∈P and
{𝑢𝐷∗}𝐷∗∈D as discrete unknowns which are expected to be
reasonable approximations of {𝜑𝑃}𝑃∈P (cell-point pressures)
and {𝜑𝐷∗}𝐷∗∈D (interior vertex pressures), respectively, where
𝜑𝑃 = 𝜑(𝑥

𝑃
1 , 𝑥

𝑃
2 ) and 𝜑𝐷∗ = 𝜑(𝑥

𝐷∗

1 , 𝑥
𝐷∗

2 ) and where D stands
for dual mesh. We now give a description of the procedure
leading to the linear discrete system.

Let 𝐶𝑃 be a primary cell, where 𝑃 is the corresponding
cell-point. We integrate the two sides of the mass balance
equation (1) in 𝐶𝑃. Applying Ostrogradsky’s theorem to the
integral in the left-hand side leads to computing the flux
across the boundary of 𝐶𝑃. Thanks to a suitable quadrature
formula this computation yields a relation involving edge-
point pressures. Due to the flux continuity over the mesh
interfaces, the edge-point pressures can be eliminated from
the previous relation.

As an illustration of this technique for computing the
fluxes across primary cell boundaries, we consider the edge
[𝐴

∗
𝐵
∗
] associated with the primary cell 𝐶𝑃 (see Figure 3).

Let 𝐾𝑃 be the diffusion tensor of the primary cell 𝐶𝑃.
Denoting 𝜉𝑃[𝐴∗𝐵∗] as the unit normal vector to [𝐴∗𝐵∗] exterior
to𝐶𝑃, the flux expression over the edge [𝐴

∗
𝐵
∗
] viewed as part

of the boundary of 𝐶𝑃 is given by

𝑄
𝑃
[𝐴∗𝐵∗] = [

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝐴∗𝐵∗

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

] [𝜑𝑃 − 𝜑𝐿]

+ 𝑇
𝑃
𝐼(𝐴∗ ,𝐵∗)

+ [

𝑎̂ℎ (𝐾
𝐿
) 𝑏ℎ (𝐾

𝑃
) ℎ𝑃𝐼 + 𝑎ℎ (𝐾

𝑃
) 𝑏̂ℎ (𝐾

𝐿
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

]

⋅ [𝜑𝐵∗ − 𝜑𝐴∗] ,

(9)
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Figure 3: Two molecules for a finite volume computation of the flux across the edge [𝐴∗
𝐵
∗
]. (a) The edge [𝐴∗

𝐵
∗
] is lying inside the domain

Ω. (b) The edge [𝐴∗
𝐵
∗
] is part of the boundary ofΩ.

where𝑇𝑃𝐼(𝐴∗ ,𝐵∗) is the truncation error andwherewe introduce
the following necessary ingredients:

𝜎𝑃 =

󳨀→
𝑃𝐼

󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→
𝑃𝐼
󵄨󵄨󵄨󵄨󵄨󵄨

,

𝜏ℎ =

󳨀󳨀󳨀󳨀→
𝐴
∗
𝐵
∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀󳨀󳨀󳨀→
𝐴
∗
𝐵
∗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

ℎ = max {size (P) , size (D) , size (A)} ,

𝑎ℎ (𝐾
𝑃
) =

1

cos 𝜃𝑃,𝐼
ℎ

(𝜉
𝑃
[𝐴∗𝐵∗])

𝑡
𝐾
𝑃
(𝜉

𝑃
[𝐴∗𝐵∗]) ,

𝑏ℎ (𝐾
𝑃
) =

1

cos 𝜃𝑃,𝐼
ℎ

(𝜉
𝐵∗

[𝑃𝐼])

𝑡

𝐾
𝑃
(𝜉

𝑃
[𝐴∗𝐵∗]) ,

𝑎̂ℎ (𝐾
𝐿
) =

1

cos 𝜃𝐿,𝐼
ℎ

(𝜉
𝑃
[𝐴∗𝐵∗])

𝑡
𝐾
𝐿
(𝜉

𝑃
[𝐴∗𝐵∗]) ,

𝑏ℎ (𝐾
𝑃
) =

1

cos 𝜃𝐿,𝐼
ℎ

(𝜉
𝐵∗

[𝐼𝐿])

𝑡

𝐾
𝐿
(𝜉

𝑃
[𝐴∗𝐵∗]) ,

(10)

where 𝜃𝑃,𝐼
ℎ

(resp., 𝜃𝐿,𝐼
ℎ
) is the angle defined by the vectors 𝜎𝑃

and 𝜉𝑃[𝐴∗𝐵∗] (resp., −𝜎𝑃 and 𝜉𝑃[𝐴∗𝐵∗]) and where 𝜉𝐵
∗

[𝑃𝐼] (resp.,
𝜉
𝐵∗

[𝐼𝐿]) denotes the unit normal vector to (𝑃𝐼) (resp., to [𝐼𝐿])
exterior to the half-plane from R2 containing the point 𝐵∗
and bordered by the straight line (𝑃𝐼) (resp., (𝐼𝐿)). Notice that

0 ≤ 𝜃
𝑃,𝐼
ℎ , 𝜃𝐿,𝐼

ℎ
< 𝜋/2. Moreover if the primary mesh (P,E) is

regular in the sense of Definition 6, we have 0 ≤ 𝜃𝐿,𝐼
ℎ
< 𝜋/2−𝜃

and therefore 0 < cos(𝜋/2 − 𝜃) < cos(𝜃𝐿,𝐼
ℎ
) ≤ 1, where

𝜃 ∈]0, 𝜋/2[ is a certain real number not depending on ℎ.
In what follows, we will need the following notations. We

denote by E the set of all edge-points (from the primary
mesh of course), Eint the subset of E made up of internal
edge-points, that is, edge-points lying on Ω, Eext the subset
of E made up of edge-points lying on edges included in the
boundary ofΩ, andE𝑃 (for 𝑃 ∈ P) the subset ofEmade up
of edge-points lying on the boundary of the primary cell 𝐶𝑃.

We now introduce the notion of regular primary mesh
that should play a central role in the sequel.

Definition 6. The set {P,E} defines a regular mesh system if
the following conditions are fulfilled.

There exist 0 < 𝜛 ≤ 1 and 0 < 𝜃 ≤ 𝜋/2, both of them
mesh independent, such that

𝑑𝑃 ≤ diam (𝑃) ≤ 1
𝜛
𝑑𝑃 ∀𝑃 ∈ P, (11)

0 ≤ 𝜃
𝑃,𝐼
ℎ <

𝜋

2
− 𝜃 ∀𝑃 ∈ P ∀𝐼 ∈ E

𝑃
, (12)

where P stands for the set of primary cells and where 𝑑𝑃 is
the distance between a cell-point or a vertex from 𝑃 and an
edge-point from 𝑃.

Proposition 7. Assume that (i) the primary mesh P is
compatible with the discontinuities of the permeability tensor
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Figure 4: A primarymesh in full lines with the associated dualmesh
in red discontinuous lines and the corresponding auxiliary mesh in
black dotted lines.

𝐾 (see Definition 1), (ii) the set {P,E} is a regularmesh system,
and (iii) relation (8) is honored.

Then, there exists a strictly positive number 𝐶 mesh
independent such that

𝑇
𝑃
𝐼(𝐴∗ ,𝐵∗) ≤ 𝐶ℎ

2
. (13)

Using the previous notations and thanks to the con-
sistency of the flux approximation across cell edges (see
Proposition 7), one reasonably can approximate the flux
balance within any primary cell 𝐶𝑃 as follows:

∑

𝐼∈E𝑃∩Eint

[(

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝐴∗𝐵∗

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) [𝜑𝑃 − 𝜑𝐿]

+ (

𝑎̂ℎ (𝐾
𝐿
) 𝑏ℎ (𝐾

𝑃
) ℎ𝑃𝐼 + 𝑎ℎ (𝐾

𝑃
) 𝑏ℎ (𝐾

𝐿
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

⋅ [𝜑𝐵∗ − 𝜑𝐴∗]] ≈ ∫
𝐶𝑃

𝑓 (𝑥) 𝑑𝑥 − ∫
Γ𝑃∩Γ
𝑔 (𝑥) 𝑑𝛾 (𝑥)

= 0 ∀𝑃 ∈ P,

(14)

where 𝐿 ∈ P, 𝐴∗ ∈ D, and 𝐵∗ ∈ D are such that
Γ𝑃 ∩ Γ𝐿 = [𝐴

∗
𝐵
∗
] and where E𝑃

∩ E𝐿
= {𝐼}. It is clear that

the number of discrete unknowns {𝜑𝑃}𝑃∈P and {𝜑𝐷∗}𝐷∗∈D
is greater than the number of equations in system (14). It is
then natural to complete this system with discrete equations
obtained from mass flux balance over dual cells; see Figure 4
for the definition of the dual mesh.

In what follows, we will need to use the notion of
pseudoedge associated with dual cells. Let us define now this
notion that is illustrated in Figure 5.

Definition 8. Let 𝑃 and 𝐿 be two cell-points from the primary
mesh (i.e., 𝑃, 𝐿 ∈ P) such that the corresponding primary
cells 𝐶𝑃 and 𝐶𝐿 are adjacent, and consider 𝐼 ∈ E𝑃

∩ E𝐿

L

−𝜏h

A
∗

P

I

𝜎P−𝜎L

𝜉
P
A∗B∗

B
∗

𝜉
B
∗

PI

𝜉
B
∗

IL

Figure 5: A dual cell (blue discontinuous line) with its four
pseudoedges “centered” on red edge-points.

(recall that E𝑃, for 𝐸 ∈ P, is the set of edge-points lying in
the boundary of the primary cell 𝐶𝐸). The line [𝑃𝐼] ∪ [𝐼𝐿]
defines a pseudoedge denoted by [𝑃𝐼𝐿] and “centered” on 𝐼,
with extremities 𝑃 and 𝐿.

We will say that a pseudoedge is associated with a dual
cell 𝐶𝐴∗ if it is lying in the boundary of 𝐶𝐴∗ .

Remark 9. Theboundary of each dual cell is a union of a finite
number of pseudoedges (see Figure 4).

Let us now look for discrete flux balance equations over
dual cells. Integrating the two sides of the balance equation
(1) in a dual cell𝐶𝐵∗ , applying Ostrogradsky’s theorem for the
left-hand side, and exploiting Remark 9 lead to

∑

𝐼∈E𝐵
∗

− ∫
[𝑃𝐼𝐿]

𝐾 grad𝜑 ⋅ 𝑛𝐵∗𝑑𝛾 = ∫
𝐶𝐵∗
𝑓 (𝑥) 𝑑𝑥, (15)

where 𝑛𝐵∗ stands for the outward unit normal vector to the
boundary of 𝐶𝐵∗ and where [𝑃𝐼𝐿] is a pseudoedge associated
with the dual cell𝐶𝐵∗ . Recall thatE

𝐵∗ is the set of edge-points
lying in the boundary of the dual cell 𝐶𝐵∗ .

Let us look for a flux approximation across the pseu-
doedge [𝑃𝐼𝐿] viewed as part of the boundary of 𝐶𝐵∗ . Denot-
ing by 𝑄𝐵∗

[𝑃𝐼𝐿] the exact flux over [𝑃𝐼𝐿], it can be expressed by
the relation

𝑄
𝐵∗

[𝑃𝐼𝐿] = −∫
[𝑃𝐼]

grad𝜑 ⋅ (𝐾𝑃
𝜉
𝐵∗

[𝑃𝐼]) 𝑑𝛾

− ∫
[𝐼𝐿]

grad𝜑 ⋅ (𝐾𝐿
𝜉
𝐵∗

[𝐼𝐿]) 𝑑𝛾.

(16)

By using the same process, the computation of the flux
across [𝑃𝐼] is
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−∫
[𝑃𝐼]

grad𝜑 ⋅ (𝐾𝑃
𝜉
𝐵∗

[𝑃𝐼]) 𝑑𝛾 = (

𝑐ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) [𝜑𝑃 − 𝜑𝐿] + 𝑇
𝐵∗

[𝑃𝐼]

+ ℎ𝑃𝐼(

𝑑ℎ (𝐾
𝑃
) {𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼} + 𝑐ℎ (𝐾

𝑃
) ℎ𝐼𝐿 {𝑏ℎ (𝐾

𝐿
) − 𝑏ℎ (𝐾

𝑃
)}

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
)

⋅ [𝜑𝐵∗ − 𝜑𝐴∗] ,

(17)

where

𝑐ℎ (𝐾
𝑃
) =

1

cos 𝜃𝑃,𝐼
ℎ

(𝜉
𝑃
[𝐴∗𝐵∗])

𝑡
𝐾
𝑃
(𝜉

𝐵∗

[𝑃𝐼]) ,

𝑑ℎ (𝐾
𝑃
) =

1

cos 𝜃𝑃,𝐼
ℎ

(𝜉
𝐵∗

[𝑃𝐼])

𝑡

𝐾
𝑃
(𝜉

𝐵∗

[𝑃𝐼])

(18)

(recall that 𝜃𝑃,𝐼
ℎ

denotes the angle defined by the vectors 𝜎𝑃
and 𝜉𝑃[𝐴∗𝐵∗]).

Similarly, the computation of the flux across [𝐼𝐿] leads to

−∫
[𝐼𝐿]

grad𝜑 ⋅ (𝐾𝐿
𝜉
𝐵∗

[𝐼𝐿]) 𝑑𝛾 = (

𝑐̂ℎ (𝐾
𝐿
) 𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) [𝜑𝑃 − 𝜑𝐿] + 𝑇
𝐵∗

[𝐼𝐿]

+ ℎ𝐼𝐿(

𝑑̂ℎ (𝐾
𝐿
) {𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼} + 𝑐̂ℎ (𝐾

𝑃
) ℎ𝑃𝐼 {𝑏ℎ (𝐾

𝑃
) − 𝑏̂ℎ (𝐾

𝐿
)}

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
)

⋅ [𝜑𝐵∗ − 𝜑𝐴∗] ,

(19)

where

𝑐̂ℎ (𝐾
𝑃
) =

1

cos 𝜃𝐿,𝐼
ℎ

(𝜉
𝑃
[𝐴∗𝐵∗])

𝑡
𝐾
𝐿
(𝜉

𝐵∗

[𝐼𝐿]) ,

𝑑̂ℎ (𝐾
𝐿
) =

1

cos 𝜃𝐿,𝐼
ℎ

(𝜉
𝐵∗

[𝐼𝐿])

𝑡

𝐾
𝐿
(𝜉

𝐵∗

[𝐼𝐿]) .

(20)

We should now formulate a global estimate for the trunca-
tion errors associated with the flux approximation over the
pseudoedge[𝑃𝐼𝐿].

Proposition 10. Under the same assumptions as those of
Proposition 7, there exists a positive number 𝐶 mesh indepen-
dent such that

󵄨󵄨󵄨󵄨󵄨󵄨
𝑇
𝐵∗

[𝑃𝐼]

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑇
𝐵∗

[𝐼𝐿]

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶ℎ

2
. (21)

The above inequality shows the consistency of the flux
approximation across the pseudoedge [𝑃𝐼𝐿]. We summarize
what precedes as

𝑄
𝐵∗

[𝑃𝐼𝐿]

≈ (

𝑐ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼 + 𝑐̂ℎ (𝐾

𝐿
) 𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

⋅ [𝜑𝑃 − 𝜑𝐿]

+ (
𝜔ℎ (𝑃, 𝐿, 𝐼)

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
)

⋅ [𝜑𝐵∗ − 𝜑𝐴∗] ,

(22)

where we have set

𝜔ℎ (𝑃, 𝐿, 𝐼) = [𝑎ℎ (𝐾
𝑃
) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼]

⋅ [𝑑ℎ (𝐾
𝑃
) ℎ𝑃𝐼 + 𝑑̂ℎ (𝐾

𝐿
) ℎ𝐼𝐿]

+ ℎ𝑃𝐼ℎ𝐼𝐿 [𝑏ℎ (𝐾
𝐿
) − 𝑏ℎ (𝐾

𝑃
)]

⋅ [𝑐ℎ (𝐾
𝑃
) − 𝑐̂ℎ (𝐾

𝐿
)] .

(23)

We deduce from (22) that an approximate flux balance
equation over any dual cell 𝐶𝐵∗ can be formulated as follows:

∑

𝐼∈E𝑃∩Eint

[(

𝑐ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼 + 𝑐̂ℎ (𝐾

𝐿
) 𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

⋅ [𝜑𝑃 − 𝜑𝐿] + (
𝜔ℎ (𝑃, 𝐿, 𝐼)

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
)

⋅ [𝜑𝐵∗ − 𝜑𝐴∗]]
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+ ∑

𝐼∈E𝐵
∗
∩Eext

(

ℎ𝐼𝐸 [𝑎 (𝐾
𝐸
) 𝑑ℎ (𝐾

𝐸
) − 𝑐ℎ (𝐾

𝐸
) 𝑏ℎ (𝐾

𝐸
)]

𝑎ℎ (𝐾
𝐸) ℎ𝐵∗𝐷∗

)

⋅ [𝜑𝐵∗ − 𝜑𝐷∗] ≈ ∫
𝐶𝐵∗
𝑓 (𝑥) 𝑑𝑥 − ∫

Γ𝐵∗∩Γ
𝑔𝑑𝛾

+ ∑

𝐼∈E𝐵
∗
∩Eext

𝑐ℎ (𝐾
𝐸
) ℎ𝐼𝐸

𝑎 (𝐾𝐸) ℎ𝐵∗𝐷∗
∫
[𝐵∗𝐷∗]

𝑔𝑑𝛾 ∀𝐵
∗
∈ D,

(24)

where 𝑃 ∈ P, 𝐿 ∈ P, and 𝐴∗ ∈ D are such that Γ𝑃 ∩ Γ𝐿 =
[𝐴

∗
𝐵
∗
] and [𝑃𝐿] ∩ [𝐴∗𝐵∗] = {𝐼} and where 𝐸 ∈ P, 𝐷∗

∈ D
a boundary-vertex are such that [𝐵∗𝐷∗

] ⊂ Γ ∩ Γ𝐸 and 𝐼 ∈
[𝐵

∗
𝐷
∗
].

Systems (14) and (24) naturally suggest defining a finite
volume formulation of the diffusion problem (1)-(2) as
follows.

Find {𝜑𝑃}𝑃∈P and {𝜑𝐷∗}𝐷∗∈D such that

∑

𝐼∈E𝑃∩Eint

[(

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝐴∗𝐵∗

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) [𝜑𝑃 − 𝜑𝐿]

+ (

𝑎̂ℎ (𝐾
𝐿
) 𝑏ℎ (𝐾

𝑃
) ℎ𝑃𝐼 + 𝑎ℎ (𝐾

𝑃
) 𝑏ℎ (𝐾

𝐿
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

⋅ [𝜑𝐵∗ − 𝜑𝐴∗]] = ∫
𝐶𝑃

𝑓 (𝑥) 𝑑𝑥 − ∫
Γ𝑃∩Γ
𝑔𝑑𝛾 = 0

∀𝑃 ∈ P,

(25)

∑

𝐼∈E𝐵
∗
∩Eint

[(

𝑐ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼 + 𝑐̂ℎ (𝐾

𝐿
) 𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

⋅ [𝜑𝑃 − 𝜑𝐿] + (
𝜔ℎ (𝑃, 𝐿, 𝐼)

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
)

⋅ [𝜑𝐵∗ − 𝜑𝐴∗]]

+ ∑

𝐼∈E𝐵
∗
∩Eext

(

ℎ𝐼𝐸 [𝑎 (𝐾
𝐸
) 𝑑ℎ (𝐾

𝐸
) − 𝑐ℎ (𝐾

𝐸
) 𝑏ℎ (𝐾

𝐸
)]

𝑎ℎ (𝐾
𝐸) ℎ𝐵∗𝐷∗

)

⋅ [𝜑𝐵∗ − 𝜑𝐷∗] = ∫
𝐶𝐵∗
𝑓 (𝑥) 𝑑𝑥 − ∫

𝐶𝐵∗∩Γ
𝑔𝑑𝛾

+ ∑

𝐼∈E𝐵
∗
∩Eext

𝑐ℎ (𝐾
𝐸
) ℎ𝐼𝐸

𝑎 (𝐾𝐸) ℎ𝐵∗𝐷∗
∫
[𝐵∗𝐷∗]

𝑔𝑑𝛾 ∀𝐵
∗
∈ D.

(26)

Remark 11. It is useful to note that

∑

𝐵∗∈D

∑

𝐼∈E𝐵
∗
∩Eext

𝑐ℎ (𝐾
𝐸
) ℎ𝐼𝐸

𝑎 (𝐾𝐸) ℎ𝐵∗𝐷∗
∫
[𝐵∗𝐷∗]

𝑔𝑑𝛾 = 0. (27)

2.2. Existence of Solutions to System (25)-(26) Conditions for
Uniqueness

(i) Matrix Properties of the DDFV Problem (25)-(26). It
is easily seen that the symmetry of the matrix associated

with the linear system (25)-(26) essentially follows from the
symmetry of the diffusion coefficient𝐾 (see assumption (3)).
We assume that all the cell-points and all the vertices (with
respect to the primary mesh) are numbered. Therefore one
can identify P and D with two disjoint subsets of the set of
positive integers. To fix ideas, let us set

P ≡ {1, . . . , 𝑛} ,

D ≡ {𝑛 + 1, . . . , 𝑛 + 𝑚} .
(28)

Then Card(P) denotes the total number of cell-points and
Card(D) stands for the total number of vertices. On the other
hand, define the subvectors Φ𝑐𝑐 andΦV𝑐 by

Φ𝑐𝑐 = {𝜑𝑃}𝑃∈P ,

ΦV𝑐 = {𝜑𝐷∗}𝐷∗∈D

(29)

and set

M = [
A B

B𝑡 C
] , (30)

where

M[
Φ𝑐𝑐

ΦV𝑐
] = [

𝐹𝑐𝑐

𝐹V𝑐
] , (31)

where 𝐹𝑐𝑐 is a subvector with Card(P) components defined
by the right-hand side of (25) and 𝐹V𝑐 is a subvector with
Card(D) components defined by the right-hand side of (26).

Remark 12. ThematrixM satisfies the following properties:

(1) 1 ≤ 𝑖, 𝑗 ≤ 𝑚 M𝑖𝑗 = M𝑗𝑖;

(2) 1 ≤ 𝑖, 𝑗 ≤ 𝑚 ∑
𝑚
𝑗=1M𝑖𝑗 = 0;

(3) 1 ≤ 𝑖, 𝑗 ≤ 𝑚 ∑
𝑚
𝑖=1M𝑖𝑗 = 0.

Let us introduce two vectors ofR𝑛+𝑚 namedF𝑐𝑐 andFV𝑐
and defined by

(F𝑐𝑐)𝑖 =
{

{

{

1 if 1 ≤ 𝑖 ≤ 𝑛

0 if 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑚,

(FV𝑐)𝑖 =
{

{

{

0 if 1 ≤ 𝑖 ≤ 𝑛

1 if 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑚.

(32)

Proposition 13 (characterization of Kernel space ofM).

(i) The matrixM is singular.
(ii) Moreover, let ker(M) denote the subset ofR𝑛+𝑚 defined

as follows:
ker(M) = {𝑉 ∈ R𝑛+𝑚

, M𝑉 = 0} (named Kernel space
ofM in the sequel); then we have

ker (M) = ⟨F𝑐𝑐,FV𝑐⟩ . (33)
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Sketch for the Proof

(i) The singularity ofM is an immediate consequence of
Remark 12.

(ii) Define the space RP,D by

R
P,D

= {𝑉 = [𝑉𝑐𝑐, 𝑉V𝑐] ; 𝑉𝑐𝑐 = {𝑉𝑃}𝑃∈P ⊂ R, 𝑉V𝑐

= {𝑉𝐷∗}𝐷∗∈D ⊂ R}

(34)

and endow it with the seminorm | ⋅ |RP,D defined as

|𝑉|RP,D =

{{{{

{{{{

{

∑

(𝑃,𝐿)∈P2, (𝐴∗ ,𝐵∗)∈D2

s.t. Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

[(𝑉𝑃 − 𝑉𝐿)
2

+ (𝑉𝐵∗ − 𝑉𝐴∗)
2
] + ∑

(𝐴∗ ,𝐵∗)∈D2 s.t. [𝐴∗𝐵∗]∈Eext

(𝑉𝐵∗

− 𝑉𝐴∗)
2

}}}}

}}}}

}

1/2

∀𝑉 ∈ R
P,D
.

(35)

Then, find the above identification of the Kernel space of M
using the following Lemma.

Lemma 14. The matrixM is positive; that is,

[𝑉𝑐𝑐, 𝑉V𝑐]M[
𝑉𝑐𝑐

𝑉V𝑐
] ≥ 0 ∀𝑉 ∈ R

P,D
. (36)

Proof. Let 𝑉 = [𝑉𝑐𝑐, 𝑉V𝑐] ∈ RP,D, where 𝑉𝑐𝑐 = {𝑉𝑃}𝑃∈P and
𝑉V𝑐 = {𝑉𝐴∗}𝐴∗∈D.

It follows from what precedes that

[𝑉𝑐𝑐, 𝑉V𝑐]M[
𝑉𝑐𝑐

𝑉V𝑐
] = ∑

𝑃∈P

∑

𝐼∈E𝑃∩Eint

[(

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝐴∗𝐵∗

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)(𝑉𝑃 − 𝑉𝐿) 𝑉𝑃

+ (

𝑎̂ℎ (𝐾
𝐿
) 𝑏ℎ (𝐾

𝑃
) ℎ𝑃𝐼 + 𝑎ℎ (𝐾

𝑃
) 𝑏̂ℎ (𝐾

𝐿
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) (𝑉𝐵∗ − 𝑉𝐴∗) 𝑉𝑃]

+ ∑

𝐵∗∈D

∑

𝐼∈E𝐵
∗
∩Eint

[(

𝑐ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼 + 𝑐̂ℎ (𝐾

𝐿
) 𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) (𝑉𝑃 − 𝑉𝐿) 𝑉𝐵∗

+ (
𝜔ℎ (𝑃, 𝐿, 𝐼)

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
) (𝑉𝐵∗ − 𝑉𝐴∗) 𝑉𝐵∗]

+ ∑

𝐵∗∈D

∑

𝐼∈E𝐵
∗
∩Eext

(

ℎ𝐼𝐸 [𝑎 (𝐾
𝐸
) 𝑑ℎ (𝐾

𝐸
) − 𝑐ℎ (𝐾

𝐸
) 𝑏ℎ (𝐾

𝐸
)]

𝑎ℎ (𝐾
𝐸) ℎ𝐵∗𝐷∗

) (𝑉𝐵∗ − 𝑉𝐷∗) 𝑉𝐵∗ .

(37)

Define

𝐾
𝑃𝐿
11 =

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝐴∗𝐵∗

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

,

𝐾
𝑃𝐿
22 =

𝜔ℎ (𝑃, 𝐿, 𝐼)

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
,

Π𝑃(𝐼,𝐴∗ ,𝐵∗)

=

[𝑎 (𝐾
𝑃
) 𝑑ℎ (𝐾

𝑃
) − 𝑐ℎ (𝐾

𝑃
) 𝑏ℎ (𝐾

𝑃
)] ℎ𝐼𝑃

𝑎ℎ (𝐾
𝑃) ℎ𝐴∗𝐵∗

,

(38)

where 𝑃, 𝐿 ∈ P are two adjacent primary cells sharing the
edge [𝐴∗𝐵∗] as interface containing the edge-point 𝐼. Then,
relation (37) becomes

[𝑉𝑐𝑐, 𝑉V𝑐]M[
𝑉𝑐𝑐

𝑉V𝑐
]

= ∑

(𝑃,𝐿)∈P2,(𝐴∗ ,𝐵∗)∈D2

s.t. Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

[𝐾
𝑃𝐿
11 (𝑉𝑃 − 𝑉𝐿)

2

+ 𝐾
𝑃𝐿
22 (𝑉𝐵∗ − 𝑉𝐴∗)

2

+ 2𝐾
𝑃𝐿
12 (𝑉𝑃 − 𝑉𝐿) (𝑉𝐵∗ − 𝑉𝐴∗)]

+ ∑

𝑃∈Pext ,(𝐴∗,𝐵∗)∈D2∩Γ2

s.t. [𝐴∗𝐵∗]∈E𝑃

Π𝑃(𝐼,𝐴∗ ,𝐵∗) (𝑉𝐵∗ − 𝑉𝐴∗)
2
,

(39)

where Pext denotes the subset of P made of primary cells
adjacent to the domain boundary Γ. Let us prove that the
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homogenized symmetric matrix𝐾𝑃𝐿 is positive definite; that
is,

𝐾
𝑃𝐿
11𝐾

𝑃𝐿
22 − (𝐾

𝑃𝐿
12 )

2
> 0. (40)

Setting

Δ
𝑃𝐿
= 𝐾

𝑃𝐿
11𝐾

𝑃𝐿
22 − (𝐾

𝑃𝐿
12 )

2
, (41)

it is easy to check that

Δ
𝑃𝐿
= 𝑁1 [𝑎ℎ (𝐾

𝑃
) 𝑑ℎ (𝐾

𝑃
) − (𝑏ℎ (𝐾

𝑃
))

2
]

+ 𝑁2 [𝑎̂ℎ (𝐾
𝐿
) 𝑑̂ℎ (𝐾

𝐿
) − (𝑏ℎ (𝐾

𝐿
))

2
] ,

(42)

where we have set

𝑁1 = (

𝑎̂ℎ (𝐾
𝐿
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

2

+

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼ℎ𝐼𝐿

(𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼)
2
,

𝑁2 = (

𝑎ℎ (𝐾
𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

2

+

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼ℎ𝐼𝐿

(𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼)
2

(43)

which are strictly positive numbers.
Since the diffusion matrix 𝐾 is symmetric and positive

definite (see assumptions (3)-(4)), Cauchy-Schwarz’s inequal-
ity for the inner product associated with𝐾 ensures that

𝑎ℎ (𝐾
𝑃
) 𝑑ℎ (𝐾

𝑃
) − (𝑏ℎ (𝐾

𝑃
))

2
> 0,

𝑎̂ℎ (𝐾
𝐿
) 𝑑̂ℎ (𝐾

𝐿
) − (𝑏̂ℎ (𝐾

𝐿
))

2
> 0

(44)

as either 𝜉𝑃[𝐴∗𝐵∗] and 𝜉
𝐵∗

[𝑃𝐼] or 𝜉
𝑃
[𝐴∗𝐵∗] and 𝜉

𝐵∗

[𝐼𝐿] are not collinear.
Therefore, Δ𝑃𝐿 > 0 and thus 𝐾𝑃𝐿 is a symmetric and positive
definite matrix.

It follows from what precedes that the matrix 𝐾𝑃𝐿 pos-
sesses strictly positive eigenvalues. Let 𝜆𝑃𝐿min be its least
eigenvalue. So we have

[𝑉𝑐𝑐, 𝑉V𝑐]M[
𝑉𝑐𝑐

𝑉V𝑐
]

≥ ∑

(𝑃,𝐿)∈P2,(𝐴∗ ,𝐵∗)∈D2

s.t. Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

𝜆
𝑃𝐿
min [(𝑉𝑃 − 𝑉𝐿)

2

+ (𝑉𝐵∗ − 𝑉𝐴∗)
2
]

+ ∑

𝑃∈Pext ,(𝐴∗ ,𝐵∗)∈D2∩Γ2

s.t. [𝐴∗𝐵∗]∈E𝑃

Π𝑃(𝐼,𝐴∗ ,𝐵∗) (𝑉𝐵∗ − 𝑉𝐴∗)
2
.

(45)

Remarking that there exist two real numbers 𝛿 and 𝜂 strictly
positive depending exclusively on the geological structure of
the domain such that

𝛿 ≤ 𝐾
𝑃
11𝐾

𝑃
22 − (𝐾

𝑃
12)

2
≤ 𝜂 ∀𝑃 ∈ P, (46)

the following result is easily seen.

Lemma 15.

Π𝑃(𝐼,𝐴∗ ,𝐵∗) = [𝐾
𝑃
11𝐾

𝑃
22 − (𝐾

𝑃
12)

2
]

ℎ𝑃𝐼

𝑎ℎ (𝐾
𝑃) ℎ𝐴∗𝐵∗

. (47)

Moreover

𝛿𝜛 sin 𝜃
𝛾𝑚𝑎𝑥

< Π𝑃(𝐼,𝐴∗ ,𝐵∗) <
𝜂

𝜛𝛾𝑚𝑖𝑛

. (48)

Thanks to inequality (45) and to Lemma 15 the proof of
Lemma 14 ends.

Lemma 16. The matrixM satisfies the relation

𝛾 (|𝑉|RP,D)
2
≤ [𝑉𝑐𝑐, 𝑉V𝑐]M[

𝑉𝑐𝑐

𝑉V𝑐
] ∀𝑉 ∈ R

P,D
, (49)

where 𝛾 is a strictly positive number mesh independent and
where | ⋅ |RP,D is a seminorm defined onRP,D by relation (35).

Proof. It is conducted with the same arguments as those
developed in the previous proof, except that one should go
much farther by proving that there exists 𝜌 > 0 mesh
independent such that

𝜌 ≤ 𝜆
𝑃𝐿
min ∀𝑃, 𝐿 ∈ P. (50)

The eigenvalues 𝜆 of the symmetric positive definite matrix
𝐾
𝑃𝐿 satisfy the so-called characteristic equation associated

with𝐾𝑃𝐿; that is,

𝜆
2
− [𝐾

𝑃𝐿
11 + 𝐾

𝑃𝐿
22 ] 𝜆 + [𝐾

𝑃𝐿
11𝐾

𝑃𝐿
22 − (𝐾

𝑃𝐿
12 )

2
] = 0. (51)

The least eigenvalue of𝐾𝑃𝐿 denoted by

𝜆
𝑃𝐿
min =

[𝐾
𝑃𝐿
11 + 𝐾

𝑃𝐿
22 ] −

√Δ

2
, (52)

where Δ = [𝐾𝑃𝐿
11 + 𝐾

𝑃𝐿
22 ]

2
− 4[𝐾

𝑃𝐿
11𝐾

𝑃𝐿
22 − (𝐾

𝑃𝐿
12 )

2
], is a strictly

positive number. One can easily deduce that

𝜆
𝑃𝐿
min ≥

det (𝐾𝑃𝐿
)

[𝐾
𝑃𝐿
11 + 𝐾

𝑃𝐿
22 ] + det (𝐾𝑃𝐿) + 1

, (53)

where det(𝐾𝑃𝐿
) = 𝐾

𝑃𝐿
11𝐾

𝑃𝐿
22 − (𝐾

𝑃𝐿
12 )

2 is a strictly positive
number. We should bound the quantities 𝐾𝑃𝐿

11 , 𝐾
𝑃𝐿
22 , and

det(𝐾𝑃𝐿
) by mesh independent strictly positive numbers.

Let us start first with det(𝐾𝑃𝐿
). We consider a change of

coordinates by moving from the initial Cartesian coordinates
to a local one, namely, (𝐽,

󳨀󳨀󳨀󳨀→
𝐶
∗
𝐷
∗
/|
󳨀󳨀󳨀󳨀→
𝐶
∗
𝐷
∗
|, 𝜉

⊥
[𝐶∗𝐷∗]), where 𝐽
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is the edge-point on the interface [𝐶∗𝐷∗
] between the cells

𝐶𝐺 and 𝐶𝐻 and where 𝜉⊥[𝐶∗𝐷∗] is a vector orthogonal to
[𝐶

∗
𝐷
∗
] and oriented such that the basis change matrix𝑀 is

a rotation. Denoting the permeability tensor of the cell 𝐶𝐺
by 𝐾𝐺

= {𝐾
𝐺
𝑖𝑗 } in the initial Cartesian coordinates and by

𝐾̃
𝐺
= {𝐾̃

𝐺

𝑖𝑗} in the local coordinates we have

𝐾̃
𝐺
= 𝑀

−1
𝐾
𝐺
𝑀. (54)

Similarly, we get for the cell 𝐶𝐻

𝐾̃
𝐻
= 𝑀

−1
𝐾
𝐻
𝑀. (55)

Then it is easy to check that

𝑎ℎ (𝐾
𝐺
) 𝑑ℎ (𝐾

𝐺
) − (𝑏ℎ (𝐾

𝐺
))

2
= 𝐾̃

𝐺

11𝐾̃
𝐺

22 − [𝐾̃
𝐺

12]

2

; (56)

that is,

𝑎ℎ (𝐾
𝐺
) 𝑑ℎ (𝐾

𝐺
) − (𝑏ℎ (𝐾

𝐺
))

2
= det (𝐾̃𝐺

)

= det (𝐾𝐺
) ,

(57)

where det(⋅) denotes the determinant. Similarly, we have for
the cell 𝐶𝐻

𝑎̂ℎ (𝐾
𝐻
) 𝑑̂ℎ (𝐾

𝐻
) − (𝑏ℎ (𝐾

𝐻
))

2
= det (𝐾̃𝐻

)

= det (𝐾𝐻
) .

(58)

It follows from what precedes that

det (𝐾𝑃𝐿
) = 𝑁1 det (𝐾

𝐺
) + 𝑁2 det (𝐾

𝐻
) , (59)

where𝑁1 and𝑁2 are given, respectively, by relations (43).
On one hand, we can deduce from (4) and Definition 6

that

𝑁𝑖 ≥
1

2
(
𝜛𝛾min sin 𝜃
𝛾max

)

2

∀𝑖 = 1, 2. (60)

On the other hand, we remark that

det (𝐾𝑃
) ≥ min {det (𝐾𝑠

) , 𝑠 ∈ 𝑆} ∀𝑃 ∈ P, (61)

where the set 𝑆 (introduced in (8)) depends exclusively on the
lithologic structure of the medium Ω. Then we deduce from
(59), (60), and (61) that

det (𝐾𝑃
)

≥
1

2
(
𝜛𝛾min sin 𝜃
𝛾max

)

2

[min {det (𝐾𝑠
) , 𝑠 ∈ 𝑆}]

∀𝑃 ∈ P.

(62)

Remarking that

det (𝐾𝑃𝐿
) ≤ 𝐾

𝑃𝐿
11𝐾

𝑃𝐿
22 + (𝐾

𝑃𝐿
12 )

2 (63)

and exploiting again (4) andDefinition 6 lead to the following
inequality:

det (𝐾𝑃𝐿
) ≤

2 (𝛾max)
4max {2, 𝜛}

(𝜛)
3
(𝛾min)

2
(sin 𝜃)4

. (64)

Thanks again to (4) andDefinition 6 one can easily check that

𝐾
𝑃𝐿
11 + 𝐾

𝑃𝐿
22 ≤ (

𝛾max
√2𝜛 sin 𝜃

)

2

[1 +
2

𝜛
+
4𝛾max
𝜛 sin 𝜃

] . (65)

Lemma 16 follows from the combination of (53), (62), (64),
and (65).

Proposition 17 (discrete compatibility condition). The right-
hand side of the discrete system (25)-(26) satisfies the following
discrete compatibility condition:

∑

𝑃∈P

[∫
𝐶𝑃

𝑓 (𝑥) 𝑑𝑥 − ∫
Γ𝑃∩Γ
𝑔𝑑𝛾] = 0,

∑

𝐵∗∈D

[∫
𝐶𝐵∗
𝑓 (𝑥) 𝑑𝑥 − ∫

Γ𝐵∗∩Γ
𝑔𝑑𝛾]

+ ∑

𝐵∗∈D

∑

𝐼∈E𝐵
∗
∩E𝑒𝑥𝑡

𝑐ℎ (𝐾
𝐸
) ℎ𝐼𝐸

𝑎 (𝐾𝐸) ℎ𝐵∗𝐷∗
∫
[𝐵∗𝐷∗]

𝑔𝑑𝛾 = 0.

(66)

Proof. First of all, note that the double summation in the
previous proposition is equal to zero thanks to Remark 11.
Let us consider two vectors of R𝑛+𝑚 called F𝑐𝑐 and FV𝑐 and
defined by

(F𝑐𝑐)𝑖 =
{

{

{

1 if 1 ≤ 𝑖 ≤ 𝑛

0 if 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑚,

(FV𝑐)𝑖 =
{

{

{

0 if 1 ≤ 𝑖 ≤ 𝑛

1 if 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑚.

(67)

According to the matrix form of the discrete system (see
relation (31)), we have

(F𝑐𝑐)
𝑡
M[
Φ𝑐𝑐

ΦV𝑐
] = (F𝑐𝑐)

𝑡
[

𝐹𝑐𝑐

𝐹V𝑐
] . (68)

It follows from Remark 12 that

(F𝑐𝑐)
𝑡
M[
Φ𝑐𝑐

ΦV𝑐
] = [Φ𝑐𝑐 ΦV𝑐]

𝑡
MF𝑐𝑐 = 0. (69)

Therefore

0 = (F𝑐𝑐)
𝑡
[

𝐹𝑐𝑐

𝐹V𝑐
] = ∑

𝑃∈P

[∫
𝐶𝑃

𝑓 (𝑥) 𝑑𝑥 − ∫
Γ𝑃∩Γ
𝑔𝑑𝛾] . (70)

Similarly we have

0 = (FV𝑐)
𝑡
M[
Φ𝑐𝑐

ΦV𝑐
] = (FV𝑐)

𝑡
[

𝐹𝑐𝑐

𝐹V𝑐
]

= ∑

𝐵∗∈D

[∫
𝐶𝐵∗
𝑓 (𝑥) 𝑑𝑥 − ∫

𝐶𝐵∗∩Γ
𝑔𝑑𝛾] .

(71)

This ends the proof of Proposition 17.
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An immediate consequence of the previous result is
the following existence result for a solution to the discrete
problem (25)-(26).

Proposition 18 (existence result). (1) The linear system (25)-
(26) possesses an infinite number of solutions.

(2) More precisely, if 𝑠ℎ is a solution to the discrete system
(25)-(26), then 𝑠ℎ + ker(M) is the set of all solutions for this
system.

The question to know how to get the physical solution of
the model problem has a natural answer; that is, one should
follow the same way as the continuous problem analysis.
Since the dimension of ker(M) is 2, required are two (linearly
independent) discrete versions of the null average condition
(7). This naturally leads to the following result.

Proposition 19 (uniqueness result). Under the following (null
average) conditions,

(i) ∑
𝑃∈P

mes (𝐶𝑃) 𝜑𝑃 = 0,

(ii) ∑
𝐷∗∈D

mes (𝐶𝐷∗) 𝜑𝐷∗ = 0,
(72)

the discrete problem (25)-(26) possesses a unique solution.

Proof. Let us consider the space

R
P,D

= {𝑉 = [𝑉𝑐𝑐, 𝑉V𝑐] ; 𝑉𝑐𝑐 = {𝑉𝑃}𝑃∈P ⊂ R, 𝑉V𝑐

= {𝑉𝐷∗}𝐷∗∈D ⊂ R} .

(73)

One knows from Lemma 14 that

𝑉
𝑡
M𝑉 ≥ 0 ∀𝑉 ∈ R

P,D
. (74)

Then it follows that, for all 𝑉 in the subspace of RP,D made
up of𝑉 = [{𝑉𝑃}𝑃∈P, {𝑉𝐷∗}𝐷∗∈D] such that conditions (72) are
fulfilled, one has 𝑉𝑡M𝑉 = 0 ⇔ 𝑉 = 0.

3. Stability and Error Estimates

We deal here with a theoretical analysis of the solution for the
discrete system (25), (26), and (72). Recall that the existence
and uniqueness of that solution (under explicit conditions) is
proven in the previous section. We assume in what follows
that the primary mesh is regular in the sense of Definition 6.

3.1. Preliminaries and a Stability Result. Let us consider the
auxiliary mesh A introduced in the previous section (see
Figure 4). Note that each mesh cell of A contains either one
cell-point or one corner point and only one which should be
lying inside or on the boundary ofΩ. In the sequel, a node is a
cell-point or a corner point with respect to the primarymesh.

Definition 20. An auxiliary mesh cell is degenerate if the
corresponding node is lying on the boundary ofΩ.

In the sequel, we will say sometimes “auxiliary cell”
instead of “auxiliary mesh cell.” We denote by E(A) the sub-
space ofRP,D made of functions V which satisfies conditions
(72). This space is obviously nonempty as there is the null
function. Moreover, the solution of the discrete system (25),
(26), and (72) could clearly be identified with one (and only
one) function from E(A). In the sequel we denote by 𝜑ℎ such
a function named “cellwise constant (approximate) solution”
of the diffusion problem (1)-(2). Let us endowRP,D with the
following discrete seminorm.

For all V ≡ [{𝑉𝑃}𝑃∈P, {𝑉𝐷∗}𝐷∗∈D] ∈ R
P,D, define

|V|RP,D =

{{{{

{{{{

{

∑

(𝑃,𝐿)∈P2,(𝐴∗,𝐵∗)∈D2

s.t. Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

[(𝑉𝑃 − 𝑉𝐿)
2

+ (𝑉𝐵∗ − 𝑉𝐴∗)
2
] + ∑

(𝐴∗ ,𝐵∗)∈D2 s.t. [𝐴∗𝐵∗]∈Eext

(𝑉𝐵∗

− 𝑉𝐴∗)
2

}}}}

}}}}

}

1/2

∀𝑉 ∈ R
P,D
,

(75)

where “s.t.” means “such that.” As this seminorm is actually
a discrete energy norm for the space E(A), we denote it by
‖ ⋅ ‖A as far as functions from E(A) are concerned. A norm
on the space RP,D is defined by the mapping

‖⋅‖RP,D = {|⋅|
2
RP,D + ‖⋅‖

2
𝐿2(Ω)}

1/2
. (76)

We focus here on the proof of the stability of the solution
to the system of (25), (26), and (72). For this purpose, we
need to introduce as in [31] a preliminary result, namely, a
discrete version of Poincaré inequality which is based upon
the following ingredients. Consider the following spaces

R
P
= {V = {V𝑃}𝑃∈P ; V𝑃 ∈ R ∀𝑃 ∈ P} ,

R
D
= {V = {V𝐷∗}𝐷∗∈D ; V𝐷∗ ∈ R ∀𝐷

∗
∈ D}

(77)

and the linear operators ΠP and ΠD defined as follows:

v ∈ E (A) 󳨃󳨀→ ΠP (v) ∈ E (P) ,

v ∈ E (A) 󳨃󳨀→ ΠD (v) ∈ E (D)
(78)

with ΠP(v)={V𝑃}𝑃∈P and ΠD(v) = {V𝐷∗}𝐷∗∈D, where
E(P) and E(D) are, respectively, subspaces of RP and RD

made of functions satisfying conditions (72)-(i) and (72)-(ii),
respectively.
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Let us equip the function spaces E(P) and E(D)with the
following discrete energy norms:

‖V‖P =

{{{{

{{{{

{

∑

(𝑃,𝐿)∈P2,(𝐴∗ ,𝐵∗)∈D2

s.t. Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

[V𝑃 − V𝐿]
2

}}}}

}}}}

}

1/2

,

‖V‖D =

{{{{

{{{{

{

∑

(𝑃,𝐿)∈P2,(𝐴∗ ,𝐵∗)∈D2

s.t. Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

[(V𝐵∗ − V𝐴∗)
2
]

+ ∑

(𝐴∗ ,𝐵∗)∈D2 s.t. [𝐴∗𝐵∗]∈Eext

(𝑉𝐵∗ − 𝑉𝐴∗)
2

}}}}

}}}}

}

1/2

.

(79)

Thesemappings are only seminorms, respectively, forRP and
RD that one can transform into norms for these spaces as
follows:

‖⋅‖RP = {|⋅|
2
RP + ‖⋅‖

2
𝐿2(Ω)}

1/2
,

‖⋅‖RD = {|⋅|
2
RD + ‖⋅‖

2
𝐿2(Ω)}

1/2
,

(80)

where we have set | ⋅ |RP = ‖ ⋅ ‖P and | ⋅ |RD = ‖ ⋅ ‖D. The
following results are key ingredients for proving the stability
of the discrete solution in the sense of the discrete energy
norm defined previously on the space E(A).

Lemma 21 (discrete versions of Poincaré inequality). We
have the following inequalities:

‖⋅‖
2
𝐿2(Ω) ≤ 𝐶 ‖V‖

2
P +

2

mes (Ω)
(∫

Ω
V (𝑥) 𝑑𝑥)

2

∀V ∈ RP
,

(81)

‖⋅‖
2
𝐿2(Ω) ≤ 𝐶 ‖V‖

2
D +

2

mes (Ω)
(∫

Ω
V (𝑥) 𝑑𝑥)

2

∀V ∈ RD
,

(82)

where 𝐶 represents diverse strictly positive numbers mesh
independent.

Note that the right-hand side of inequalities (81) and (82)
is, respectively, norms for RP and RD. Since Ω is bounded,
the previous lemma permits seeing that these norms are
equivalent to standard ones, namely, (80). For proving the
preceding lemma one can use the same arguments as in [36].

Lemma22 (a key-result). Let (P,E) be a regularmesh system
(defined on) in the sense of Definition 6 and denote by D the
corresponding dual mesh. For V ∈ 𝐸(P), denote by V𝑃 the value
of V in the control volume𝑃. Let 𝛾(V) be a discrete trace function
defined a.e. (for the (𝑑−1)-Lebesgue measure) by 𝛾(V) = V𝑃 on

Γ𝑃 ∩ Γ, for all 𝑃 ∈ P
𝑒𝑥𝑡
, where P

𝑒𝑥𝑡
denotes the set of mesh

elements adjacent to the domain boundary Γ. Then
󵄩󵄩󵄩󵄩𝛾 (V)

󵄩󵄩󵄩󵄩𝐿2(Γ) ≤ 𝐶 (‖V‖P + ‖⋅‖𝐿2(Ω)) ∀V ∈ 𝐸 (P) . (83)

Similarly, we have
󵄩󵄩󵄩󵄩𝛾 (V)

󵄩󵄩󵄩󵄩𝐿2(Γ) ≤ 𝐶 (‖V‖D + ‖⋅‖𝐿2(Ω)) ∀V ∈ 𝐸 (D) , (84)

where𝐶 stands for diverse positive numbers mesh independent.

Proof. See, for instance, [36].

Remark 23. It is more than useful to note that

‖V‖2A =
󵄩󵄩󵄩󵄩󵄩
VP
󵄩󵄩󵄩󵄩󵄩

2

P
+
󵄩󵄩󵄩󵄩󵄩
VD
󵄩󵄩󵄩󵄩󵄩

2

D
∀V ∈ E (A) . (85)

Let us give now one of the main results of this section.

Proposition 24 (stability result). The cellwise constant
approximate solution 𝜑ℎ of the diffusion problem (1)-(2)
satisfies the following inequality:

󵄩󵄩󵄩󵄩𝜑ℎ
󵄩󵄩󵄩󵄩A
≤ 𝐶 (

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(Ω) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿2(Γ)) , (86)

where 𝐶 is a strictly positive real number not depending on the
spatial discretization.

Proof. Multiplying (25) by 𝜑𝑃 and (26) by 𝜑𝐷∗ and summing
over 𝑃 ∈ P and𝐷∗

∈ D, respectively, lead to

[Φ𝑐𝑐 ΦV𝑐] [
A B

B𝑡 C
][

Φ𝑐𝑐

ΦV𝑐
] = [Φ𝑐𝑐 ΦV𝑐] [

𝐹𝑐𝑐

𝐹V𝑐
] . (87)

Recall that

𝐹𝑐𝑐 = {∫
𝐶𝑃

𝑓 (𝑥) 𝑑𝑥 − ∫
Γ𝑃∩Γ
𝑔𝑑𝛾}

𝑃∈P

,

𝐹V𝑐 =

{{{{{

{{{{{

{

∫
𝐶𝐵∗
𝑓 (𝑥) 𝑑𝑥 − ∫

𝐶𝐵∗∩Γ
𝑔𝑑𝛾

+ ∑

𝐴∗∈N(𝐵∗),𝐼∈E𝐵
∗
∩Eext

with Γ𝐶
𝐴∗

∩Γ𝐶
𝐵∗
=[𝑃𝐼]

𝑐ℎ (𝐾
𝐸
) ℎ𝐼𝐸

𝑎 (𝐾𝐸) ℎ𝐵∗𝐷∗

⋅ ∫
[𝐵∗𝐷∗]

𝑔𝑑𝛾

}}}}}

}}}}}

}𝐵∗∈D

.

(88)

Let us set

LHS = [Φ𝑐𝑐 ΦV𝑐] [
A B

B𝑡 C
][

Φ𝑐𝑐

ΦV𝑐
] ,

RHS = [Φ𝑐𝑐 ΦV𝑐] [
𝐹𝑐𝑐

𝐹V𝑐
] .

(89)
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We know from Lemma 16 that there exists a strictly positive
number 𝜌mesh independent such that

𝜌
󵄩󵄩󵄩󵄩𝜑ℎ
󵄩󵄩󵄩󵄩

2

A
≤ LHS. (90)

On the other hand, according to Remark 11 we have

RHS = ∑
𝑃∈P

∫
𝐶𝑃

𝑓𝜑𝑃𝑑𝑥 − ∑

𝑃∈P

∫
Γ𝑃∩Γ
𝑔𝜑𝑃𝑑𝛾

+ ∑

𝐵∗∈D

∫
𝐶𝐵∗
𝑓 (𝑥) 𝑑𝑥 − ∑

𝐵∗∈D

∫
Γ𝐵∗∩Γ

𝑔𝜑𝐵∗𝑑𝛾

+ ∑

𝐵∗∈D

∑

𝐴∗∈N(𝐵∗) s.t.,
∃𝐼∈E𝐵

∗
∩E𝐴
∗
∩Eext ,∃𝐿∈P,

with Γ𝐴∗∩Γ𝐵∗=[𝐿𝐼]

𝜑𝐵∗

𝑐ℎ (𝐾
𝐿
) ℎ𝐿𝐼

𝑎 (𝐾𝐿) ℎ𝐴∗𝐵∗

⋅ ∫
[𝐴∗𝐵∗]

𝑔𝑑𝛾.

(91)

Cauchy-Schwarz’s inequality leads to

RHS ≤ 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(Ω)

󵄩󵄩󵄩󵄩󵄩
𝜑
P
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
+
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿2(Γ)

󵄩󵄩󵄩󵄩󵄩
𝛾P (𝜑

P
ℎ )
󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(Ω)

󵄩󵄩󵄩󵄩󵄩
𝜑
D
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
+
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿2(Γ)

󵄩󵄩󵄩󵄩󵄩
𝛾D (𝜑

D
ℎ )
󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

+ ∑

𝐴∗,𝐵∗∈Dext s.t.,
∃𝐼∈E𝐵

∗
∩E𝐴
∗
,∃𝐿∈P,

with Γ𝐴∗∩Γ𝐵∗=[𝐿𝐼]

󵄨󵄨󵄨󵄨𝜑𝐵∗ − 𝜑𝐴∗
󵄨󵄨󵄨󵄨

𝑐ℎ (𝐾
𝐿
) ℎ𝐿𝐼

𝑎 (𝐾𝐿) ℎ𝐴∗𝐵∗

⋅ ∫
[𝐴∗𝐵∗]

𝑔𝑑𝛾,

(92)

where 𝛾P and 𝛾D are, respectively, discrete trace operators
associated with grids P and D. Thanks to relation (4),
Definition 6, and Cauchy-Schwarz inequality we get

RHS ≤ 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(Ω) [

󵄩󵄩󵄩󵄩󵄩
𝜑
P
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
+
󵄩󵄩󵄩󵄩󵄩
𝜑
D
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
] +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿2(Γ)

⋅ [
󵄩󵄩󵄩󵄩󵄩
𝛾P (𝜑

P
ℎ )
󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

+
󵄩󵄩󵄩󵄩󵄩
𝛾D (𝜑

D
ℎ )
󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

]

+
1

𝜛𝛾min sin 𝜃
∑

𝐴∗ ,𝐵∗∈Dext s.t.,
E𝐴
∗
∩E𝐵
∗

̸=0

󵄨󵄨󵄨󵄨𝜑𝐵∗ − 𝜑𝐴∗
󵄨󵄨󵄨󵄨

⋅ ∫

[𝐴∗𝐵∗]

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 𝑑𝛾.

(93)

Accounting with the fact that 𝜑ℎ satisfies null average condi-
tion on the gridsP andD, Lemma 21 ensures that

󵄩󵄩󵄩󵄩󵄩
𝜑
P
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
+
󵄩󵄩󵄩󵄩󵄩
𝜑
D
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
≤ 𝐶 [

󵄩󵄩󵄩󵄩󵄩
𝜑
P
ℎ

󵄩󵄩󵄩󵄩󵄩P
+
󵄩󵄩󵄩󵄩󵄩
𝜑
D
ℎ

󵄩󵄩󵄩󵄩󵄩D
] , (94)

whereas Lemma 22 guarantees that
󵄩󵄩󵄩󵄩󵄩
𝛾P (𝜑

P
ℎ )
󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

+
󵄩󵄩󵄩󵄩󵄩
𝛾D (𝜑

D
ℎ )
󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

≤ 𝐶 [
󵄩󵄩󵄩󵄩󵄩
𝜑
P
ℎ

󵄩󵄩󵄩󵄩󵄩P
+
󵄩󵄩󵄩󵄩󵄩
𝜑
D
ℎ

󵄩󵄩󵄩󵄩󵄩D
] .

(95)

A double application of Cauchy-Schwarz’s inequality leads to

∑

𝐴∗ ,𝐵∗∈Dext s.t.,
E𝐴
∗
∩E𝐵
∗

̸=0

󵄨󵄨󵄨󵄨𝜑𝐵∗ − 𝜑𝐴∗
󵄨󵄨󵄨󵄨 ∫

[𝐴∗𝐵∗]

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 𝑑𝛾

≤ [meas (Γ)]1/2 󵄩󵄩󵄩󵄩󵄩𝜑
D
ℎ

󵄩󵄩󵄩󵄩󵄩D

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿2(Γ) .

(96)

Combining relations (93), (94), (95), and (96) on the one
hand and using the inequality of Cauchy-Schwarz and
Remark 23 on the other hand yield

RHS ≤ 𝐶 [󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(Ω) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿2(Γ)]

󵄩󵄩󵄩󵄩𝜑ℎ
󵄩󵄩󵄩󵄩A
. (97)

Recall that 𝐶 represents diverse strictly positive numbers
mesh independent. The stability result follows from relations
(90) and (97). The proof of Proposition 24 ends.

3.2. Error Estimates. Following the original technique
exposed in [28], we investigate in this subsection the error
estimates for the finite volume approximate solution to the
model problem. Recall that 𝜑 denotes the exact solution to
the model problem while 𝜑ℎ ∈ E(A) is the cellwise constant
approximate solution obtained from a DDFV formulation
of this model problem. View also 𝜑ℎ as a representation
in terms of function of the vector Φ = [Φ𝑐𝑐 ΦV𝑐]

𝑡, where
Φ𝑐𝑐 = {𝜑𝑃}𝑃∈P and ΦV𝑐 = {𝜑𝐷∗}𝐷∗∈D. Recall that the vector
Φ is defined above as the unique solution of the DDFV
discrete system, satisfying null average conditions on grids
P andD (see (25)-(26) and (72)). Let us set

𝐸𝑃 = 𝜑 (𝑥𝑃) − 𝜑ℎ (𝑥𝑃) ≡ 𝜑𝑃 − 𝜑𝑃 ∀𝑃 ∈ P,

𝐸𝐷∗ = 𝜑 (𝑥𝐷∗) − 𝜑ℎ (𝑥𝐷∗) ≡ 𝜑𝐷∗ − 𝜑𝐷∗ ∀𝐷
∗
∈ D.

(98)

Note that the components of the so-called error-vector
[{𝐸𝑃}𝑃∈P, {𝐸𝐷∗}𝐷∗∈D]

𝑡
∈ RP,D can be viewed as values in

auxiliary cells of the so-called error-function 𝐸ℎ defined a.e.
in Ω. More precisely let us recall that any auxiliary cell 𝐴 is
associated with a unique cell-point or a unique vertex. Let 𝐸𝐴
be the error corresponding to the auxiliary cell 𝐴; that is,

𝐸𝐴 =

{{

{{

{

𝜑 (𝑥𝑃) − 𝜑ℎ (𝑥𝑃) if 𝑃 is a cell point associated with 𝐴

𝜑 (𝑥𝐷∗) − 𝜑ℎ (𝑥𝐷∗) if 𝐷∗ is a cell point associated with 𝐴.
(99)

27Convergence Analysis on Unstructured Meshes of a DDFV Method for Flow Problems with Full Neumann...

__________________________ WORLD TECHNOLOGIES __________________________



WT

Since the auxiliary mesh define a partition of Ω, one can set

𝐸ℎ = ∑

𝐴∈A

𝐸𝐴 (𝜒𝐴 (𝑥)) , (100)

where 𝜒𝐴 is the characteristic function of any cell 𝐴.
Our first purpose is to show that the error-vector is a

solution to a square linear system of the same type as the
discrete system (25)-(26) in the sense that both of them are
associated with the same matrix M defined above. Note that
unfortunately 𝐸ℎ ∈ RP,D is not in E(A) as it does meet the
null average conditions (72) on grids P and D. So the error
estimates, which are our main purpose in this section, should
be investigated in the sense of the norm defined by (76) on
the spaceRP,D. In this connection we first should prove that

󵄨󵄨󵄨󵄨𝐸ℎ
󵄨󵄨󵄨󵄨RP,D ≤ 𝐶ℎ (101)

and in the next step we should prove that
󵄩󵄩󵄩󵄩𝐸ℎ
󵄩󵄩󵄩󵄩𝐿2(Ω) ≤ 𝐶ℎ. (102)

(i) Let us start with proving that the components of the
error-vector are solution to a square linear system of the same
type as the discrete system (25)-(26).

Accounting with truncation errors, one can see from the
DDFV flux computations that the exact flux across the edge
[𝐴

∗
𝐵
∗
] viewed as part of the boundary of the primary cell𝐶𝑃

is given by

𝑄
𝑃
[𝐴∗𝐵∗] = [

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝐴∗𝐵∗

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

] [𝜑𝑃 − 𝜑𝐿]

+ [

𝑎̂ℎ (𝐾
𝐿
) 𝑏ℎ (𝐾

𝑃
) ℎ𝑃𝐼 + 𝑎ℎ (𝐾

𝑃
) 𝑏ℎ (𝐾

𝐿
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

]

⋅ [𝜑𝐵∗ − 𝜑𝐴∗] + 𝑅
𝑃
𝐼(𝐴∗ ,𝐵∗ ,𝐿),

(103)

where the truncation error 𝑅𝑃𝐼(𝐴∗ ,𝐵∗ ,𝐿) is given by

𝑅
𝑃
𝐼(𝐴∗ ,𝐵∗ ,𝐿)

= [1 +

𝑎ℎ (𝐾
𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

]𝑇
𝑃
𝐼(𝐴∗ ,𝐵∗)

+ [

𝑎ℎ (𝐾
𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

]𝑇
𝐿
𝐼(𝐴∗ ,𝐵∗)

(104)

and meets the following inequality (see Proposition 7):

󵄨󵄨󵄨󵄨󵄨
𝑅
𝑃
𝐼(𝐴∗ ,𝐵∗ ,𝐿)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶ℎ

2
. (105)

On the other hand, the exact fluxes across the pseudoedge
[𝑃𝐼𝐿] for 𝐼 ∈ Ω and across the edge [𝑃𝐼] for 𝐼 ∈ Γ, both of
them acting as part of the boundary of the dual cell 𝐶𝐵∗ , are
given by the following relations (accounting with truncation
errors):

𝑄
𝐵∗

[𝑃𝐼𝐿]

= (

𝑐ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼 + 𝑐̂ℎ (𝐾

𝐿
) 𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

⋅ [𝜑𝑃 − 𝜑𝐿]

+ (
𝜔ℎ (𝑃, 𝐿, 𝐼)

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
)

⋅ [𝜑𝐵∗ − 𝜑𝐴∗] + 𝑅
𝐵∗

𝐼(𝑃,𝐿,𝐴∗),

𝑄
𝐵∗

[𝑃𝐼] =
[
[

[

(𝑎ℎ (𝐾
𝑃
) 𝑑ℎ (𝐾

𝑃
) − (𝑐ℎ (𝐾

𝑃
))

2
) ℎ𝑃𝐼

𝑎ℎ (𝐾
𝑃) ℎ𝐴∗𝐵∗

]
]

]

⋅ [𝜑𝐵∗ − 𝜑𝐴∗] −

𝑐ℎ (𝐾
𝑃
) ℎ𝑃𝐼

𝑎 (𝐾𝑃) ℎ𝐴∗𝐵∗
∫
[𝐴∗𝐵∗]

𝑔𝑑𝛾

+ 𝑅
𝐵∗

𝐼(𝑃,𝐴∗),

(106)

where the truncation errors 𝑅𝐵
∗

𝐼(𝑃,𝐿,𝐴∗) and 𝑅
𝐵∗

𝐼(𝑃,𝐴∗) meet the
following inequalities (according to Propositions 7 and 10):

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵∗

𝐼(𝑃,𝐿,𝐴∗)

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶ℎ

2
,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵∗

𝐼(𝑃,𝐴∗)

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶ℎ

2
.

(107)

The system of equations satisfied by the exact nodal potentials
{𝜑𝑃}𝑃∈P and {𝜑𝐷∗}𝐷∗∈D reads as

∑

𝐿∈N(𝑃) s.t.
∃𝐼∈E,∃𝐴∗ ,𝐵∗∈D,

with 𝐼∈E𝑃∩E𝐿,Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

[(

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝐴∗𝐵∗

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) [𝜑𝑃 − 𝜑𝐿] + (

𝑎̂ℎ (𝐾
𝐿
) 𝑏ℎ (𝐾

𝑃
) ℎ𝑃𝐼 + 𝑎ℎ (𝐾

𝑃
) 𝑏̂ℎ (𝐾

𝐿
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

⋅ [𝜑𝐵∗ − 𝜑𝐴∗]] = ∫
𝐶𝑃

𝑓 (𝑥) 𝑑𝑥 − ∫
Γ𝑃∩Γ
𝑔𝑑𝛾 − ∑

𝐿∈N(𝑃) s.t.
∃𝐼∈E,∃𝐴∗ ,𝐵∗∈D,

with 𝐼∈E𝑃∩E𝐿,Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

𝑅
𝑃
𝐼(𝐴∗ ,𝐵∗,𝐿) ∀𝑃 ∈ P,
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∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E,∃𝑃,𝐿∈P,

with 𝐼∈E𝐴
∗
∩E𝐵
∗
,Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼𝐿]

[(

𝑐ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼 + 𝑐̂ℎ (𝐾

𝐿
) 𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) [𝜑𝑃 − 𝜑𝐿]

+ (
𝜔ℎ (𝑃, 𝐿, 𝐼)

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
) [𝜑𝐵∗ − 𝜑𝐴∗]]

+ ∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E,∃𝑃∈P

with 𝐼∈E𝐴
∗
∩E𝐵
∗
∩Eext ,Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼]

(

(𝑎 (𝐾
𝑃
) 𝑑ℎ (𝐾

𝑃
) − (𝑐ℎ (𝐾

𝑃
))

2
) ℎ𝑃𝐼

𝑎ℎ (𝐾
𝑃) ℎ𝐴∗𝐵∗

)[𝜑𝐵∗ − 𝜑𝐷∗] = ∫
𝐶𝐵∗
𝑓 (𝑥) 𝑑𝑥 − ∫

𝐶𝐵∗∩Γ
𝑔𝑑𝛾

− ∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E,∃𝑃,𝐿∈P

with 𝐼∈E𝐴
∗
∩E𝐵
∗
,Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼𝐿]

𝑅
𝐵∗

𝐼(𝑃,𝐿,𝐴∗) − ∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E,∃𝑃∈P

with 𝐼∈E𝐴
∗
∩E𝐵
∗
∩Eext ,Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼]

𝑅
𝐵∗

𝐼(𝑃,𝐴∗)

+ ∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E,∃𝑃∈P

with 𝐼∈E𝐴
∗
∩E𝐵
∗
∩Eext ,Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼]

𝑐ℎ (𝐾
𝑃
) ℎ𝑃𝐼

𝑎 (𝐾𝑃) ℎ𝐴∗𝐵∗
∫
[𝐴∗𝐵∗]

𝑔𝑑𝛾 ∀𝐵
∗
∈ D,

(108)

where 𝜔ℎ(𝑃, 𝐿, 𝐼) is defined in (23). Recall thatN(⋅) is the set
of neighboring cells of a given (primary or dual) cell.

Due to the conservation of our flux approximation
schemes, the truncation errors naturally obey to the following
relation:

𝑅
𝑎
𝐼(⋅,⋅,𝑏) + 𝑅

𝑏
𝐼(⋅,⋅,𝑎) = 0 ∀𝐼 ∈ E

int
, {𝐼} = E

𝑎
∩E

𝑏
, (109)

𝑅
𝑎
𝐼(⋅,𝑏) + 𝑅

𝑏
𝐼(⋅,𝑎) = 0 ∀𝐼 ∈ E

ext
, {𝐼} = E

𝑎
∩E

𝑏
, (110)

where 𝑎 and 𝑏 are two cell-points or corner points associated
with primary or dual adjacent cells. Note that, in the previous
equality, the truncation errors are written in a very formal
way. This is with a view to involving both primary and dual
adjacent cells. Let us introduce now the set of diamond cells
called in what follows the diamond mesh and denoted as
M (the concept of diamond cell has been introduced for a
different usage in earlier works of some authors: see, e.g.,

[22, 25, 34]). Each diamond cell is associated with one edge-
point and vice versa (see Figure 6). A diamond cell is declared
degenerate if the corresponding edge-point is lying on the
boundary of Ω. An example of a degenerate diamond cell is
provided in Figure 6.

The following assumption plays a key-role in our proof
of the convergence of the piecewise constant (approximate)
solution 𝜑ℎ.

∃] ∈ R∗
+ such that ]ℎ2 ≤ meas (𝑀) ∀𝑃 ∈M, (111)

where meas(⋅) is the Lebesgue measure in any spatial dimen-
sion.

Recall that we have set𝐸𝑃 = 𝜑𝑃−𝜑𝑃, for𝑃 ∈ P, and𝐸𝐷∗ =
𝜑𝐷∗ − 𝜑𝐷∗ , for 𝐷

∗
∈ D. An adequate linear combination of

equations from system (108)-(109) with those from system
(25)-(26) shows that the quantities {𝐸𝑃 = 𝜑𝑃 − 𝜑𝑃}𝑃∈P and
{𝐸𝐷∗ = 𝜑𝐷∗ − 𝜑𝐷∗}𝐷∗∈D satisfy the following equations:

∑

𝐿∈N(𝑃) s.t.
∃𝐼∈E,∃𝐴∗ ,𝐵∗∈D,

with 𝐼∈E𝑃∩E𝐿,Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

[(

𝑎ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝐴∗𝐵∗

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) [𝐸𝑃 − 𝐸𝐿] + (

𝑎̂ℎ (𝐾
𝐿
) 𝑏ℎ (𝐾

𝑃
) ℎ𝑃𝐼 + 𝑎ℎ (𝐾

𝑃
) 𝑏̂ℎ (𝐾

𝐿
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

)

⋅ [𝐸𝐵∗ − 𝐸𝐴∗]] = ∑

𝐿∈N(𝑃) s.t.
∃𝐼∈E,∃𝐴∗ ,𝐵∗∈D,

with 𝐼∈E𝑃∩E𝐿,Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

𝑅
𝑃
𝐼(𝐴∗ ,𝐵∗,𝐿) ∀𝑃 ∈ P,

(112)
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Figure 6: Examples of diamond cells. (a) A normal diamond cell. (b) A degenerate diamond cell.

∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E,∃𝑃,𝐿∈P,

with 𝐼∈E𝐴
∗
∩E𝐵
∗
,Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼𝐿]

[(

𝑐ℎ (𝐾
𝑃
) 𝑎̂ℎ (𝐾

𝐿
) ℎ𝑃𝐼 + 𝑐̂ℎ (𝐾

𝐿
) 𝑎ℎ (𝐾

𝑃
) ℎ𝐼𝐿

𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼

) [𝐸𝑃 − 𝐸𝐿]

+ (
𝜔ℎ (𝑃, 𝐿, 𝐼)

ℎ𝐴∗𝐵∗ [𝑎ℎ (𝐾
𝑃) ℎ𝐼𝐿 + 𝑎̂ℎ (𝐾

𝐿) ℎ𝑃𝐼]
) [𝐸𝐵∗ − 𝐸𝐴∗]]

+ ∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E,∃𝑃∈P

with 𝐼∈E𝐴
∗
∩E𝐵
∗
∩Eext ,Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼]

[
[

[

(𝑎ℎ (𝐾
𝑃
) 𝑑ℎ (𝐾

𝑃
) − (𝑐ℎ (𝐾

𝑃
)
2
)) ℎ𝑃𝐼

𝑎ℎ (𝐾
𝑃) ℎ𝐴∗𝐵∗

]
]

]

[𝐸𝐵∗ − 𝐸𝐴∗]

= − ∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E,∃𝑃,𝐿∈P

with 𝐼∈E𝐴
∗
∩E𝐵
∗
,Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼𝐿]

𝑅
𝐵∗

𝐼(𝑃,𝐿,𝐴∗) − ∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E,∃𝑃∈P

with 𝐼∈E𝐴
∗
∩E𝐵
∗
∩Eext ,Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼]

𝑅
𝐵∗

𝐼(𝑃,𝐴∗) ∀𝐵
∗
∈ D.

(113)

(ii) Let us now prove that |𝐸ℎ|RP,D ≤ 𝐶ℎ, where 𝐶 > 0 is a
mesh independent positive number.

Multiplying (112) by 𝐸𝑃 and (113) by 𝐸𝐵∗ and summing
over 𝑃 ∈ P and 𝐵∗ ∈ D yield (thanks to Lemma 16)

𝛾
󵄨󵄨󵄨󵄨𝐸ℎ
󵄨󵄨󵄨󵄨

2

RP,D

≤ ∑

𝑃∈P

− 𝐸𝑝( ∑

𝐿∈N(𝑃) s.t.
∃𝐼∈E𝑃∩E𝐿,∃𝐴∗ ,𝐵∗∈D,
with Γ𝑃∩Γ𝐿=[𝐴

∗𝐵∗]

𝑅
𝑃
𝐼(𝐴∗ ,𝐵∗ ,𝐿))

+ ∑

𝐵∗∈D

{{{{{{{

{{{{{{{

{

−𝐸𝐵∗
(

(

∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E𝐴

∗
∩E𝐵
∗
,∃𝑃,𝐿∈P

with Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼𝐿]

𝑅
𝐵∗

𝐼(𝑃,𝐿,𝐴∗)
)

)

−𝐸𝐵∗
(

(

∑

𝐴∗∈N(𝐵∗) s.t.
∃𝐼∈E𝐴

∗
∩E𝐵
∗
∩Eext ,∃𝑃∈P

with Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼]

𝑅
𝐵∗

𝐼(𝑃,𝐴∗)
)

)

}}}}}}}

}}}}}}}

}

,

(114)
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where 𝛾 is some strictly positive real number mesh indepen-
dent.

Thanks to (109)-(110) (consequence of the conservation of
the flux approximation scheme) we have

𝛾
󵄨󵄨󵄨󵄨𝐸ℎ
󵄨󵄨󵄨󵄨

2

RP,D

≤ ∑

𝐼∈E s.t.
∃𝑃,𝐿∈P with 𝐼∈E𝑃∩E𝐿,

∃𝐴∗ ,𝐵∗∈D with Γ𝑃∩Γ𝐿=[𝐴
∗𝐵∗]

󵄨󵄨󵄨󵄨𝐸𝑃 − 𝐸𝐿
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑅
𝑃
𝐼(𝐴∗ ,𝐵∗ ,𝐿)

󵄨󵄨󵄨󵄨󵄨

+ ∑

𝐼∈E s.t.
∃𝐴∗ ,𝐵∗∈D with 𝐼∈E𝐴

∗
∩E𝐵
∗
,

∃𝑃,𝐿∈P with Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼𝐿]

󵄨󵄨󵄨󵄨𝐸𝐵∗ − 𝐸𝐴∗
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵∗

𝐼(𝑃,𝐿,𝐴∗)

󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑

𝐼∈E s.t.
∃𝐴∗ ,𝐵∗∈D with 𝐼∈E𝐴

∗
∩E𝐵
∗
∩Γ,

∃𝑃∈P with Γ𝐴∗∩Γ𝐵∗=[𝑃𝐼]

󵄨󵄨󵄨󵄨𝐸𝐵∗ − 𝐸𝐴∗
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵∗

𝐼(𝑃,𝐴∗)

󵄨󵄨󵄨󵄨󵄨󵄨
.

(115)

Therefore

𝛾
󵄨󵄨󵄨󵄨𝐸ℎ
󵄨󵄨󵄨󵄨

2

RP,D ≤ ∑

𝐼(𝑃,𝐿,𝐴∗,𝐵∗)∈Eint

𝑅
max
𝐼(𝑃,𝐿,𝐴∗,𝐵∗) (

󵄨󵄨󵄨󵄨𝐸𝑃 − 𝐸𝐿
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝐸𝐵∗ − 𝐸𝐴∗

󵄨󵄨󵄨󵄨) + ∑

𝐼(𝑃,𝐴∗ ,𝐵∗)∈Eext

𝑅
max
𝐼(𝑃,𝐴∗ ,𝐵∗)

󵄨󵄨󵄨󵄨𝐸𝐵∗

− 𝐸𝐴∗
󵄨󵄨󵄨󵄨 ,

(116)

where we have set

𝑅
max
𝐼(𝑃,𝐿,𝐴∗ ,𝐵∗) = max {󵄨󵄨󵄨󵄨󵄨𝑅

𝑃
𝐼(𝐴∗ ,𝐵∗ ,𝐿)

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵∗

𝐼(𝑃,𝐿,𝐴∗)

󵄨󵄨󵄨󵄨󵄨󵄨
} ,

𝑅𝐼(𝑃,𝐴∗ ,𝐵∗) =
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵∗

𝐼(𝑃,𝐴∗)

󵄨󵄨󵄨󵄨󵄨󵄨
.

(117)

It is important tomention that, due to (105) and (107), we have

0 ≤ 𝑅
max
𝐼(𝑃,𝐿,𝐴∗ ,𝐵∗) ≤ 𝐶ℎ

2
,

0 ≤ 𝑅𝐼(𝑃,𝐴∗ ,𝐵∗) ≤ 𝐶ℎ
2
.

(118)

Define 𝑆𝐼(𝑃,𝐿,𝐴∗,𝐵∗) = 2D Lebesgue measure of the diamond
cell defined by the points 𝑃, 𝐿, 𝐴∗, 𝐵∗ and associated with 𝐼 ∈
Eint and 𝑆𝐼(𝑃,𝐴∗ ,𝐵∗) = 2D Lebesgue measure of the diamond
cell defined by the points 𝑃,𝐴∗, 𝐵∗ and associated with 𝐼 ∈
Eext.

Therefore, thanks to Cauchy-Schwarz’s inequality, it fol-
lows from (116) that

𝛾
󵄨󵄨󵄨󵄨𝐸ℎ
󵄨󵄨󵄨󵄨

2

RP,D ≤ ( ∑

𝐼(𝑃,𝐿,𝐴∗,𝐵∗)∈Eint

𝑆𝐼(𝑃,𝐿,𝐴∗ ,𝐵∗)

+ ∑

𝐼(𝑃,𝐴∗,𝐵∗)∈Eint

𝑆𝐼(𝑃,𝐴∗ ,𝐵∗))

1/2

⋅ ( ∑

𝐼(𝑃,𝐿,𝐴∗,𝐵∗)∈Eint

2 (𝑅
max
𝐼(𝑃,𝐿,𝐴∗,𝐵∗))

2

𝑆𝐼(𝑃,𝐿,𝐴∗ ,𝐵∗)

⋅ [(𝐸𝑃 − 𝐸𝐿)
2
+ (𝐸𝐵∗ − 𝐸𝐴∗)

2
])

1/2

+ ( ∑

𝐼(𝑃,𝐴∗,𝐵∗)∈Eext

2 (𝑅𝐼(𝑃,𝐴∗ ,𝐵∗))
2

𝑆𝐼(𝑃,𝐴∗ ,𝐵∗)

(𝐸𝐵∗ − 𝐸𝐴∗)
2
)

1/2

.

(119)

One concludes with the help of assumption (111) and relation
(118) that

󵄨󵄨󵄨󵄨𝐸ℎ
󵄨󵄨󵄨󵄨RP,D ≤ 𝐶ℎ, (120)

where 𝐶 is a strictly positive constant that is mesh indepen-
dent.

(iii) Let us now prove that ‖𝐸ℎ‖𝐿2(Ω) ≤ 𝐶ℎ.
We start with setting

A (P) = {𝐸 ∈ A; ∃𝑃 ∈ P with 𝑥𝑃 ∈ 𝐸} ,

A (D) = {𝐸 ∈ A; ∃𝐷
∗
∈ D with 𝑥𝐷∗ ∈ 𝐸} .

(121)

Recall 𝐴 is the auxiliary grid and 𝑥𝑃 is a cell-point while 𝑥𝐷∗
is a vertex (with respect to the primary grid introduced in a
preceding section).

Define

ΩP = ⋃

𝐸∈A(P)

𝐸,

ΩD = ⋃

𝐸∈A(D)

𝐸.

(122)

Note thatΩP andΩD are a partition ofΩ in the sense that

(i) ΩP ∩ ΩD = 0,

(ii) Ω = ΩP ∪ ΩD.

(123)

Two main steps are necessary in our technique to get the
estimates of ‖𝜑 − 𝜑‖𝐿2(Ω); before exposing these steps, we
develop some preliminaries.

∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥) − 𝜑ℎ (𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥

= ∫
ΩP

󵄨󵄨󵄨󵄨𝜑 (𝑥) − 𝜑ℎ (𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥

+ ∫
ΩD

󵄨󵄨󵄨󵄨𝜑 (𝑥) − 𝜑ℎ (𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥

≤ ∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥) − ΠP𝜑ℎ (𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥

+ ∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥) − ΠD𝜑ℎ (𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥,

(124)
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where ΠP and ΠD are operators from the function space
E(A) into the function spacesA(P) andA(D), respectively
(see (78) for the definition of ΠP and ΠD).

Let 𝜆P and 𝜆D be two real numbers and𝜑Paux and𝜑
D
aux two

real functions defined almost everywhere in Ω such that

(i) 𝜑Paux = 𝜑 (𝑥) − 𝜆P,

(ii) ∑
𝑃∈P

meas (𝐶𝑃) 𝜑
P
aux (𝑥𝑃) = 0,

(125)

(i) 𝜑Daux = 𝜑 (𝑥) − 𝜆D,

(ii) ∑

𝐷∗∈D

meas (𝐶𝐷∗) 𝜑
D
aux (𝑥𝐷∗) = 0.

(126)

Define

E
P
aux = {𝜑

P
aux (𝑥𝑃) − 𝜑𝑃}𝑃∈P

,

E
D
aux = {𝜑

D
aux (𝑥𝐷∗) − 𝜑𝐷∗}𝐷∗∈D

.

(127)

It is then clear that the vector

Eaux = [E
P
aux,E

D
aux]

𝑡
∈ R

P,D (128)

is identifiable with a function denoted again by Eaux which
lies in the space E(A) and thus in the space RP,D

.

Proposition 25. The function Eaux meets the following trivial
properties:

󵄨󵄨󵄨󵄨𝐸ℎ
󵄨󵄨󵄨󵄨RP,D =

󵄨󵄨󵄨󵄨Eaux
󵄨󵄨󵄨󵄨RP,D , (129)

󵄨󵄨󵄨󵄨Eaux
󵄨󵄨󵄨󵄨

2

RP,D =
󵄨󵄨󵄨󵄨󵄨
E

P
aux
󵄨󵄨󵄨󵄨󵄨

2

RP +
󵄨󵄨󵄨󵄨󵄨
E

D
aux
󵄨󵄨󵄨󵄨󵄨

2

RD , (130)

󵄩󵄩󵄩󵄩󵄩
E

P
aux
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
E

P
aux
󵄨󵄨󵄨󵄨󵄨RP , (131)

󵄩󵄩󵄩󵄩󵄩
E

D
aux
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
E

D
aux
󵄨󵄨󵄨󵄨󵄨RD , (132)

where 𝐶 stands for diverse positive numbers that are mesh
independent.

Let us look for the estimates of ∫
Ω
|𝜑(𝑥) − ΠP𝜑ℎ(𝑥)|

2
𝑑𝑥:

∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥) − ΠP𝜑ℎ (𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥

≤ 3∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑥) − 𝜑

P
aux (𝑥)

󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥

+ 3∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝜑
P
aux (𝑥) − ΠP𝜑

P
aux (𝑥)

󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥

+ 3∫
Ω

󵄨󵄨󵄨󵄨󵄨
ΠP𝜑

P
aux (𝑥) − ΠP𝜑ℎ (𝑥)

󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥.

(133)

(i) Since the primary cells 𝐶𝑃 (with 𝑃 ∈ P) are convex
and the function 𝜑 ∈ 𝐶2(𝑃) the Taylor-Lagrange expansion
applies and gives rise to what follows:

𝜆P = 𝜑 (𝑥) − [𝜑
P
aux (𝑥𝑃) + (𝑥 − 𝑥𝑃)

𝑡 grad𝜑Paux (𝜉𝑃)]

in 𝑃, ∀𝑃 ∈ P.
(134)

Since 𝜑 meets the null average condition (7) and 𝜑Paux aux
honors condition (125)-(ii), integrating the two sides of (134)
in a primary cell 𝑃 and summing on 𝑃 ∈ P yield

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑥) − 𝜑

P
aux (𝑥)

󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 ≤ 𝐶ℎ

2 (135)

when accounting with the fact that |grad𝜑Paux(𝑥)| ≤ 𝐶 a.e. in
Ω, where𝐶 represents diverse positive numbers that aremesh
independent.

(ii) Thanks again to Taylor-Lagrange it is easily seen that

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝜑
P
aux (𝑥) − ΠP𝜑

P
aux (𝑥)

󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 ≤ 𝐶ℎ

2
. (136)

(iii) At last, we have

∫
Ω

󵄨󵄨󵄨󵄨󵄨
ΠP𝜑

P
aux (𝑥) − ΠP𝜑ℎ (𝑥)

󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥

= ∑

𝑃∈P

meas (𝐶𝑃)
󵄨󵄨󵄨󵄨󵄨
𝜑
P
aux (𝑥𝑃) − 𝜑ℎ (𝑥𝑃)

󵄨󵄨󵄨󵄨󵄨

2

=
󵄩󵄩󵄩󵄩󵄩
E

P
aux
󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
E

P
aux
󵄨󵄨󵄨󵄨󵄨

2

RP (due to (131))

≤ 𝐶
󵄨󵄨󵄨󵄨󵄨
E

P
aux
󵄨󵄨󵄨󵄨󵄨

2

RP,D (according to (130))

≤ 𝐶
󵄨󵄨󵄨󵄨𝐸ℎ
󵄨󵄨󵄨󵄨

2

RP,D (according to (129))

≤ 𝐶ℎ
2
(by virtue of (120)) .

(137)

Summarizing what precedes we have proven the following.

Lemma 26. One has

∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥) − ΠP𝜑ℎ (𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥 ≤ 𝐶ℎ

2
. (138)

Remarking that any dual cell 𝐶𝐷∗ (with 𝐷∗
∈ D) is

actually a finite union of convex homogeneous polygons
sharing𝐷∗ as a common vertex, the arguments that have led
to the preceding lemma apply and give rise to the following.

Lemma 27. One has

∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥) − ΠD𝜑ℎ (𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥 ≤ 𝐶ℎ

2
. (139)

Let us summarize the previous developments in the
following proposition in which N0 denotes the set of nodes
(i.e., cell-points and vertices) with respect to themesh system
(P,E,A,D) defined on Ω.

Proposition 28 (error estimate result). Assume that the
primary mesh is regular in the sense of Definition 6 and that
the discontinuities in Ω of the piecewise constant permeability
tensor 𝐾 generate a finite number of convex subdomains
{Ω𝑠}𝑠∈𝑆 over which the exact solution 𝜑 of (1)-(2) meets the
following property:

𝜑|Ω𝑠
∈ 𝐶

2
(Ω𝑠) ∀𝑠 ∈ 𝑆. (140)
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(a) (b)

Figure 7: Triangular mesh with acute angles. (a) Coarse mesh and (b) fine mesh.

Under conditions (3), (4), (6), (11), and (111), the error-
function 𝐸ℎ associated with the error-vector from RP,D with
components {𝐸𝑁 = 𝜑𝑁 − 𝜑𝑁}𝑁∈N0

satisfies the following
estimate:

󵄨󵄨󵄨󵄨𝐸ℎ
󵄨󵄨󵄨󵄨

2

RP,D +
󵄩󵄩󵄩󵄩𝐸ℎ
󵄩󵄩󵄩󵄩

2

𝐿2(Ω) ≤ 𝐶ℎ
2
, (141)

where 𝐶 represents mesh independent real number.

4. Numerical Test

The triangular coarse and fine meshes (see Figure 7) are also
from FVCA5 Benchmark (see, e.g., [37]). Let us consider a
diffusion problem formulated as (1)-(2), where the permeabil-
ity tensor𝐾 is defined by the following relation:

𝐾 = (

1 0

0 10
5
) . (142)

The exact solution is taken to be 𝑢(𝑥, 𝑦) =

sin(2𝜋𝑥)𝑒−2𝜋𝑦√1/10
5

. Furthermore, we shall ensure the
uniqueness of the solution to (1)-(2) by enforcing the
condition

∫
Ω
𝜑 (𝑥) 𝑑𝑥 = 0. (143)

Notations

(i) nunkw: number of unknowns.
(ii) nnmat: number of nonzero terms in the matrix.
(iii) sumflux: the discrete flux balance; that is, sumflux =

flux0 + flux1 + fluy0 + fluy1, where flux0, flux1, fluy0,
and fluy1 are, respectively, the outward numerical
fluxes through the boundaries 𝑥 = 0, 𝑥 = 1, 𝑦 =
0, and 𝑦 = 1 (e.g., flux0 is an approximation of

∫
𝑥=0
𝐾∇𝑢 ⋅ 𝜂 𝑑𝑠), and sum𝑓 = ∑𝐾∈T |𝐾|𝑓(𝑥𝐾), where

𝑥𝐾 denotes some point of the control volume𝐾; note
that the residual sumflux is a measure of the global
conservation of the scheme.

(iv) 𝑢min: value of the minimum of the approximate
solution.

(v) 𝑢max: value of the maximum of the approximate
solution.

(vi) ener1, ener2: approximations of the energy following
the two expressions:𝐸1 = ∫

Ω
𝐾∇𝑢 ⋅ ∇𝑢 𝑑𝑥, 𝐸1 =

∫
Ω
𝐾∇𝑢 ⋅ 𝜂𝑢 𝑑𝑥.

Let us denote by 𝑢 the exact solution, by T the
mesh, and by 𝑢T = (𝑢𝐾)𝐾∈T the piecewise constant
approximate solution.

(vii) erl2: relative discrete 𝐿2-norm of the error; that is, for
instance,

erl2 = (
∑𝑃∈P meas (𝐶𝑃) (𝜑 (𝑥𝑃) − 𝜑ℎ (𝑥𝑃))

2

∑𝑃∈P meas (𝐶𝑃) (𝜑 (𝑥𝑃))
2

)

1/2

. (144)

(viii) ergrad: discrete 𝐿2-norm of the error on the gradient;
that is, for instance,

ergrad

= ( ∑

𝜎∈𝜉int
P

𝑚𝜎

𝑑𝐾𝐿

󵄨󵄨󵄨󵄨𝜑ℎ (𝑥𝑃) − 𝜑ℎ (𝑥𝐿)
󵄨󵄨󵄨󵄨

2
)

+( ∑

𝜎∗∈𝜉int
D

𝑚𝜎∗

𝑑𝐴∗𝐵∗

󵄨󵄨󵄨󵄨𝜑ℎ (𝑥𝐴∗) − 𝜑ℎ (𝑥𝐵∗)
󵄨󵄨󵄨󵄨

2
)

1/2

.

(145)
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Table 1: Numerical results.

(a)

𝑖 nunkw nnmat sumflux erl2 ergrad Ratiol2 ratiograd
1 21 68 −1.16E − 10 4.7E − 01 1.62E − 01 0E00 0E00
2 109 944 −6.03E − 11 1.09E − 01 2.01E02 1.78E00 −8.66E00
3 385 3576 3.50E − 10 2.12E − 02 3.80E01 2.60E00 2.64E00
4 1441 13880 −1.02E − 10 4.82E − 03 9.70E00 2.24E00 2.07E00
5 5569 54648 −6.55E − 11 1.18E − 03 2.45E00 2.09E00 2.03E00

(b)

𝑖 erflx0 erflx1 erfly0 erfly1 erflm 𝑢min 𝑢max
1 1.43E − 16 1.43E − 16 5.13E02 5.11E01 4.14E − 01 −1.79E00 1.79E00
2 2.62E − 13 6.65E − 14 4.1E02 9.22E03 4.59E02 −9.42E − 01 9.23E − 01
3 1.91E − 13 1.37E − 13 1.23E04 4.61E03 8.56E01 −9.88E − 01 9.88E − 01
4 −0E00 0E00 6.14E03 2.78E01 −9.97E − 01 −9.98E − 01 9.97E − 01
5 −0E00 0E00 7.23E02 7.37E00 −9.99E − 01 −9.99E − 01 9.99E − 01

(c)

𝑖 flux0 flux1 fluy0 fluy1 ener1 ener2 eren enerdisc
1 6.22E00 −6.22E00 −5.82E − 11 −5.82E − 11 4.15E01 1.12E00 7.3E − 01 2.9905
2 6.22E00 −6.22E00 4.66E − 10 −5.24E − 10 3.03E01 2.46E01 1.89E − 01 1.2247
3 6.22E00 −6.22E00 −1.75E − 10 5.24E − 10 3.62E01 3.30E01 8.86E − 02 0.3368
4 6.22E00 −6.22E00 −1.31E − 10 2.91E − 11 3.80E01 3.69E01 2.83E − 02 0.1046
5 6.22E00 −6.22E00 1.24E − 10 −1.89E − 10 3.85E01 3.82E01 7.86E − 03 0.0389

(d)

ocvl2 ocvgradl2 ocvenerdisc
2.04E00 1.98E00 1.42E00

(ix) ratiol2: for 𝑖 ≥ 2,

ratiol2 (𝑖)

= −2
ln (erl2 (𝑖)) − ln (erl2 (𝑖 − 1))

ln (nunkw (𝑖)) − ln (nunkw (𝑖 − 1))
.

(146)

(x) ratiograd: for 𝑖 ≥ 2, same formula as above with
ergrad instead of erl2.

(xi) erflx0, erflx1, erfly0, erfly1: relative error between
flux0, flux1, fluy0, fluy1 and the corresponding flux
of the exact solution:

erflx0 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

flux0 + ∫
𝑥=0
𝐾∇𝑢 ⋅ 𝜂 𝑑𝑠

∫
𝑥=0
𝐾∇𝑢 ⋅ 𝜂 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (147)

(xii) ocvl2: order of convergence of the method for 𝐿2-
norm of the solution as defined by erl2 with respect
to the mesh size:

ocvl2 = ln (erl2 (𝑖max)) − ln (erl2 (𝑖max−1))
ln (ℎ (𝑖max)) − ln (ℎ (𝑖max−1))

, (148)

where ℎ is themaximumof the diameter of the control
volume.

(xiii) ocvenerdisc: order of convergence of the method for
the norm defined by Remark 23.

(xiv) ocvgradl2: order of convergence of the method in 𝐿2-
normof the gradient as defined by ergradwith respect
to the mesh size, same formula as above with ergrad
instead of erl2.

Comments about the Numerical Test Results. The results of
numerical computations of pressure and its gradient show
a convergence of order two in 𝐿2-norm and a convergence
of order 1.4 in discrete energy norm (see, e.g., Table 1).
Moreover the similarity of curves erl2 and ergrad (Figure 8)
confirm the closeness of their order of convergence. There
is no discordance with the theoretical result where a linear
convergence is announced (see Proposition 28). Indeed,
the presence of discontinuities in the permeability tensor
coefficients prevents the exact solution from being regular
enough in the whole domain. More precisely in presence of
such discontinuities, the exact pressure is in𝐻1

(Ω) and never
in𝐻2

(Ω) no matter how regular may be the data 𝑓, 𝑔 and the
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Figure 8: Relative discrete 𝐿2-norm of the error (erl2) and of the error on the gradient (ergrad).

domain boundary. So amuch slower convergence should take
place.

Competing Interests

The authors declare that they have no competing interests.

References

[1] F. Brezzi, J. Douglas, and L. D. Marini, “Two families of mixed
finite elements for second order elliptic problems,” Numerische
Mathematik, vol. 47, no. 2, pp. 217–235, 1985.

[2] P. A. Raviart and J. M.Thomas, “Amixed finite element method
for 2nd order elliptic problems,” inMathematical Aspects of the
Finite Element Method, A. Dold and B. Eckmann, Eds., vol. 606
of Lecture Notes in Mathematics, pp. 292–315, Springer, Berlin,
Germany, 1977.

[3] S.-H. Chou, D. Y. Kwak, and K. Y. Kim, “A general framework
for constructing and analyzing mixed finite volume methods
on quadrilateral grids: the overlapping covolume case,” SIAM
Journal onNumerical Analysis, vol. 39, no. 4, pp. 1170–1196, 2001.

[4] T. F. Russell, M. F. Wheeler, and I. Yotov, “Superconvergence for
control-volume mixed finite element methods on rectangular
grids,” SIAM Journal on Numerical Analysis, vol. 45, no. 1, pp.
223–235, 2007.

[5] M. Berndt, K. Lipnikov, M. Shashkov, M. F. Wheeler, and I.
Yotov, “Superconvergence of the velocity in mimetic finite dif-
ferencemethods on quadrilaterals,” SIAM Journal on Numerical
Analysis, vol. 43, no. 4, pp. 1728–1749, 2005.

[6] F. Brezzi, K. Lipnikov, and M. Shashkov, “Convergence of
mimetic finite difference method for diffusion problems on
polyhedral meshes with curved faces,”Mathematical Models &
Methods in Applied Sciences, vol. 16, no. 2, pp. 275–297, 2006.

[7] R. Eymard, T. Gallouet, and R. Herbin, “Finite volume meth-
ods,” in Handbook of Numerical Analysis, VII, P. G. Ciarlet and
J.-L. Lions, Eds., pp. 713–1020, North-Holland, Amsterdam,The
Netherlands, 2000.
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In this paper, we used Bernstein polynomials to modify the Adomian decomposition method which can be used to solve linear
and nonlinear equations. This scheme is tested for four examples from ordinary and partial differential equations; furthermore,
the obtained results demonstrate reliability and activity of the proposed technique. This strategy gives a precise and productive
system in comparison with other traditional techniques and the arrangements methodology is extremely straightforward and few
emphasis prompts high exact solution. The numerical outcomes showed that the acquired estimated solutions were in appropriate
concurrence with the correct solution.

1. Introduction

Adomian decomposition technique was established by
George Adomian and has as of late turned into an extremely
recognized strategy in connected sciences. The technique
does not require any diminutiveness presumptions or lin-
earization to solve the ordinary and partial differential
equations and this produces the strategy extremely effective
among alternate strategies. Recently, many iteration tech-
niques have been used for solving nonlinear equations from
ordinary, partial, and fractional equations [1], like variational
iteration method and differential transform method [2],
homotopy perturbation, and analysismethods [3]. Numerous
works have been tested in various different regions, for
example, warmth or mass exchange, incompressible fluid,
nonlinear optics and gas elements wonders [4, 5], frac-
tional Maxwell fluid [6, 7], and the Oldroyd-B fluid model
[8].

The approximation used polynomials extremely impor-
tant in scientific experiments where many rely on topics
such as the study of statistics different population and the
temperatures and others on the approximation theory. In
addition, many experiments rely mainly on the approximate
measurements and observations to be studied and processed

by the appropriate scientific methods in order to reach the
results expected from the study.

The Adomian decomposition technique is improved via
Chebyshev polynomials in [9, 10], with Legendre polynomials
[11] and with Laguerre polynomials [12].

This paper is organized as follows. In Section 2, the basic
ideas of the modified Bernstein polynomials are described.
Section 3 is devoted to solving a nonlinear differential
equations using Adomian decomposition method based on
modified Bernstein polynomials, the results and comparisons
of the numerical solutions are presented in Section 4, and
concluding remarks are given in Section 5.

2. The Modified Bernstein Polynomials

Polynomials are the mathematical technique as these can
be characterized, figured, separated, and incorporated effort-
lessly. The Bernstein premise polynomials are trying to
inexact the capacities. Bernstein polynomials are the better
guess to a capacity with a couple of terms. These polynomials
are utilized as a part of the fields of connected arithmetic and
material science and PC helped geometric outlines and are
likewise joined with different techniques like Galerkin and

3
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collocation technique to solve some differential and integral
equations [13].

Definition 1 (Bernstein basis polynomials). The Bernstein
basis polynomials of degree m over the interval [0, 1] are
defined by

𝐵𝑖,𝑚 (𝑥) = (𝑚𝑖 )𝑥𝑖 (1 − 𝑥)𝑚−𝑖 (1)

where the binomial coefficient is

(𝑚𝑖 ) = 𝑚!𝑖! (𝑚 − 𝑖)! (2)

For example, when m=5, then the Bernstein terms are

𝐵0,5 (𝑥) = (1 − 𝑥)5
𝐵1,5 (𝑥) = 5𝑥 (1 − 𝑥)4
𝐵2,5 (𝑥) = 10𝑥2 (1 − 𝑥)3
𝐵3,5 (𝑥) = 10𝑥3 (1 − 𝑥)2
𝐵4,5 (𝑥) = 5𝑥4 (1 − 𝑥)
𝐵5,5 (𝑥) = 𝑥5

(3)

Definition 2 (Bernstein polynomials). A linear combination
of Bernstein basis polynomials

𝐵𝑚 (𝑥) = 𝑚∑
𝑖=0

𝐵𝑖,𝑚 (𝑥) 𝛽𝑖 (4)

is called the Bernstein polynomials of degree m, where 𝛽𝑖 are
the Bernstein coefficients.

Definition 3. Let 𝑓 be a real valued function defined and
bounded on [0, 1]; let 𝐵𝑚(𝑓) be the polynomial on [0, 1],
defined by

𝐵𝑚 (𝑓) = 𝑚∑
𝑖=0

(𝑚𝑖 )𝑥𝑖 (1 − 𝑥)𝑚−𝑖 𝑓( 𝑖𝑚) (5)

where 𝐵𝑚(𝑓) is the m-th Bernstein polynomials for 𝑓(𝑥).
For each function 𝑓 : [0, 1] 󳨀→ 𝑅, we have

lim
𝑚󳨀→∞

𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) (6)

Example. If 𝑓(𝑥) = 𝑒𝑥, 𝑥 ∈ [0, 1] then the Bernstein
expanded for the function 𝑓(𝑥) when m=5 is

𝐵𝑚 (𝑓) = 𝑓 (0) (1 − 𝑥)5 + 𝑓(15) 5𝑥 (1 − 𝑥)4
+ 𝑓(25) 10𝑥2 (1 − 𝑥)3
+ 𝑓(35) 10𝑥3 (1 − 𝑥)2
+ 𝑓(45) 5𝑥4 (1 − 𝑥) + 𝑓 (1) 𝑥5

𝐵𝑚 (𝑓) = 𝑒0 (1 − 𝑥)5 + 5𝑒1/5𝑥 (1 − 𝑥)4
+ 10𝑒2/5𝑥2 (1 − 𝑥)3 + 10𝑒3/5𝑥3 (1 − 𝑥)2
+ 5𝑒4/5𝑥4 (1 − 𝑥) + 𝑒1𝑥5

(7)

In (1986) [14] Lorentz, prove that if the 2k-th order derivative𝑓2𝑘(𝑥) is bounded in the interval (0,1) then for each 𝑥 ∈ [0, 1]
𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) + 2𝑘−1∑

𝑎=2

𝑓(𝑎) (𝑥)𝑎!𝑚𝑎 𝑇𝑚,𝑎 (𝑥) + 𝑂( 1𝑚𝑘 ) (8)

where

𝑇𝑚,𝑎 (𝑥) = ∑
𝑘

(𝑘 − 𝑚𝑥)𝑎 (𝑚𝑘)𝑥𝑘 (1 − 𝑥)𝑚−𝑘 (9)

Remark (see [15]). Notice that 𝑇𝑚,𝑎(𝑥) is the a-th central
moment of a random variable with a binomial appropriation
with parameters 𝑚 and 𝑥. Clearly, 𝑇𝑚,0 = 1, 𝑇𝑚,1 = 0. It is
well known that the sequence {𝑇𝑚,𝑎(𝑥)} satisfies the following
recurrence:

𝑇𝑚,𝑎+1 (𝑥) = 𝑥 (1 − 𝑥) (𝑇󸀠𝑚,𝑎 (𝑥) + 𝑚𝑎𝑇𝑚,𝑎−1 (𝑥)) (10)

If we apply (8) to k = 1; 2; 3, then we obtain

𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) + 𝑂( 1𝑚)
𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) + 𝑥 (1 − 𝑥) 𝑓󸀠󸀠 (𝑥)2𝑚 + 𝑂( 1𝑚2)
𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) + 𝑥 (1 − 𝑥) 𝑓󸀠󸀠 (𝑥)2𝑚

+ 𝑥 (1 − 𝑥) (4 (1 − 2𝑥) 𝑓(3) (𝑥) + 3𝑥 (1 − 𝑥) 𝑓(4) (𝑥))
24𝑚2

+ 𝑂( 1𝑚3)

(11)

and higher level approximations can be computed.

3. ADM Based on Modified
Bernstein Polynomials

Let us consider the following equation:

𝐿𝑢 + 𝑁𝑢 + 𝑅𝑢 = 𝑔 (𝑥) (12)

where 𝐿 is an invertible linear term, 𝑁 represents the
nonlinear term, and 𝑅 is the remaining linear part; from (12)
we have

𝐿𝑢 = 𝑔 (𝑥) − 𝑁𝑢 − 𝑅𝑢. (13)

Now, applying the inverse factor𝐿−1 to both sides of (13) then
via the initial conditions we find

𝑢 = 𝑓 (𝑥) − 𝐿−1𝑁𝑢 − 𝐿−1𝑅𝑢, (14)
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where 𝐿−1 = ∫𝑥
0
(.) ds and 𝑓(𝑥) are the terms having from

integrating the rest of the term g (x) and from utilizing the
given initial or boundary conditions. The ADM assumes that
N(u) (nonlinear term) can be decomposed by an infinite
series of polynomials which is expressed in form

𝑁(𝑢) = ∞∑
𝑛=0

𝐴𝑛 (𝑢𝑜, 𝑢1, . . . , 𝑢𝑛) (15)

where 𝐴n are the Adomian’s polynomials [16] defined as

𝐴𝑛 = 1𝑛! 𝑑𝑛𝑑𝜆n [𝑁(∞∑
𝑖=0

𝜆iui)]
𝜆=0

, n = 0, 1, 2, . . . (16)

We expand the function 𝑔(𝑥) by Bernstein series

𝑔 (𝑥) = 𝑚∑
𝑖=0

𝑎𝑖𝐵𝑖 (𝑥) (17)

where 𝐵𝑖(𝑥) is the Bernstein polynomials.
Now, using (14) and (17) we have

𝑢0 = 𝐿−1 (𝑎0𝐵0 (𝑥) + 𝑎1𝐵1 (𝑥) + 𝑎2𝐵2 (𝑥)
+ ⋅ ⋅ ⋅ .𝑎𝑚𝐵𝑚 (𝑥)) + 𝜃 (𝑥) ,

𝑢1 = −𝐿−1 (𝑅𝑢0) − 𝐿−1 (𝑁𝑢0) ,
𝑢2 = −𝐿−1 (𝑅𝑢1) − 𝐿−1 (𝑁𝑢1) ,

...

(18)

and so on.These formulas are easy to compute by usingMaple
13 software.

In this paper, we improve the function 𝑔(𝑥) using modi-
fied Bernstein series

𝑔 (𝑥) = 𝑚∑
𝑖=0

(𝑚𝑖 )𝑥𝑖 (1 − 𝑥)𝑚−𝑖 𝑓( 𝑖𝑚)

− 2𝑘−1∑
𝑎=2

𝑓(𝑎) (𝑥)𝑎!𝑚𝑎 𝑇𝑚,𝑎 (𝑥)
(19)

And we can approach the derivatives using the Bernstein
polynomials

𝑑𝑑𝑥𝐵𝑖,𝑚 (𝑥) = 𝑚 (𝐵𝑖−1,𝑚−1 (𝑥) − 𝐵𝑖,𝑚−1 (𝑥)) , (20)

Then (19) becomes

𝑔 (𝑥) = 𝑚∑
𝑖=0

(𝑚𝑖 )𝑥𝑖 (1 − 𝑥)𝑚−𝑖 𝑓( 𝑖𝑚)

− 2𝑘−1∑
𝑎=2

(𝑑(𝑎)/𝑑𝑥(𝑎)) 𝐵𝑖,𝑚 (𝑥)𝑎!𝑚𝑎 𝑇𝑚,𝑎 (𝑥)
(21)

Now, using (18) and (21) we have

𝑢0 = 𝐿−1 (𝐵𝑖,𝑚 (𝑥)) + 𝜃 (𝑥) ,
𝑢1 = −𝐿−1 (𝑅𝑢0) − 𝐿−1 (𝑁𝑢0) ,
𝑢2 = −𝐿−1 (𝑅𝑢1) − 𝐿−1 (𝑁𝑢1) ,

...

(22)

The above equation is governing equation of ADM using
modified Bernstein polynomials. The obtained approximate
solution, 𝜔𝑉(𝑥) = ∑𝑉𝑖=0 𝑢𝑖, by (22) has a comparison with the
classic approximation solution and the correct solution.

4. Numerical Results

In this section, we solve ordinary and partial differential
equations by ADM based on Bernstein polynomials and we
compare with ADM based on classical Bernstein polynomial.

Example 1. Consider the ordinary equation

𝑑2𝑦
𝑑𝑡2 + 𝑡𝑑𝑦𝑑𝑡 + 𝑡2𝑦3 = (2 + 6𝑡2) 𝑒𝑡2 + 𝑡2𝑒3𝑡2 ,

𝑦 (0) = 1,
𝑑𝑦𝑑𝑡 (0) = 0,

(23)

with the exact solution (𝑡) = 𝑒𝑡2 . Using (12) we have
𝐿𝑦 + 𝑁𝑦 + 𝑅𝑦 = 𝑔 (𝑥) (24)

where 𝐿 = 𝑑2/𝑑𝑡2, 𝑅𝑦 = 𝑡(𝑑/𝑑𝑡), 𝑁𝑦 = 𝑡2𝑦3, and 𝑔(𝑡) = (2 +
6𝑡2)𝑒𝑡2 + 𝑡2𝑒3𝑡2 .

The Adomian polynomials for representing the nonlinear
term Ny are

𝐴0 = 𝑡2𝑦30 ,
𝐴1 = 𝑡2 (3𝑦20𝑦1) ,

𝐴2 = 𝑡2 (3𝑦20𝑦2 + 3𝑦0𝑦21) ,
...

(25)

Now 𝐿−1 = ∫𝑡
0
∫𝑡
0
(.)𝑑𝑡 𝑑𝑡; then using (5) the classical Bernstein

polynomials of 𝑔(𝑡) when v=m=6 are

𝑔𝑏 (𝑡) = 2 + 1.547324𝑡 + 9.290164𝑡2 + 7.83289𝑡3
+ 9.751887𝑡4 + 7.659668𝑡5 + 3.749864𝑡6 (26)

Andmodified Bernstein polynomials (21) of 𝑔(𝑡)with k=2 are
𝑔𝑚𝑏 (𝑡) = 2 − 0.001037𝑡 + 6.922082𝑡2 + 1.997441𝑡3

+ 6.737662𝑡4 + 11.051121𝑡5 + 13.124523𝑡6 (27)
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Table 1: Comparison of absolute errors using 𝑦6 when m=v=6 and k=2.

𝑡 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑏󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑚𝑏󵄨󵄨󵄨󵄨
0 0 0
0.01 2.580000 E-7 2.000000 E-9
0.02 2.068000 E-6 2.900000 E-8
0.03 6.992000 E-6 1.420000 E-7
0.04 1.660300 E-5 4.450000 E-7
0.05 3.249600 E-5 1.074000 E-6
0.06 5.629000 E-5 2.207000 E-6
0.07 8.962800 E-5 4.057000 E-6
0.08 1.341850 E-4 6.872000 E-6
0.09 1.916690 E-4 1.093000 E-5
0.1 2.638350 E-4 1.654900 E-5
MSE 1.369383957 E-8 4.632475500 E-11
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Figure 1: The absolute error between ADM with modified Bernstein polynomials and the exact solution when m=v=6 and k=2.

By (22), we have

𝑦0 = 𝐿−1 (𝑔𝑚𝑏 (𝑡)) + 𝑦 (0) + 𝑑𝑦𝑑𝑡 (0) 𝑡 = 1 + 𝑡2
− 0.000173𝑡3 + 0.57684𝑡4 + 0.099872𝑡5
+ 0.224589𝑡6 + 0.263122𝑡7 + 0.234367𝑡8,

𝑦1 = −𝐿−1 (𝑡 𝑑𝑑𝑡𝑦0) − 𝐿−1 (𝐴0) = −0.25𝑡4
+ 0.000026𝑡5 − 0.176912𝑡6 − 0.011877𝑡7 + ⋅ ⋅ ⋅ ,

𝑦2 = −𝐿−1 (𝑡 𝑑𝑑𝑡𝑦1) − 𝐿−1 (𝐴1) = 0.033333𝑡6

− 0.000003𝑡7 + 0.032348𝑡8 + 0.011536𝑡9 + ⋅ ⋅ ⋅ ,
...

(28)

And we obtain

𝑦𝑚𝑏 (𝑡) = 6∑
𝑖=0

𝑦𝑖
= 1 + 𝑡2 − 0.000173𝑡3 + 0.32684𝑡4 + ⋅ ⋅ ⋅ .

(29)

The absolute error of 𝑦𝑚𝑏(𝑡) and 𝑦𝑏(𝑡) is presented in Table 1
and Figure 1.

Figure 1 presents the absolute error of ADM with Bern-
stein polynomial in (a) and ADM with modified Bernstein
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Table 2: Comparison of absolute errors using 𝑦10 when m=16, v=4, and k=2.

𝑡 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑏󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑚𝑏󵄨󵄨󵄨󵄨
0 0 0
0.1 2.061126 E-6 3.074560 E-7
0.2 1.145239 E-5 1.058636 E-5
0.3 1.315732 E-5 5.114716 E-5
0.4 2.165603 E-4 1.331415 E-4
0.5 8.646500 E-4 2.420463 E-4
0.6 2.311555 E-3 3.299021 E-4
0.7 4.905204 E-3 3.231831 E-4
0.8 8.829753 E-3 1.540876 E-4
0.9 1.391114 E-2 1.870564 E-4
1 1.946226 E-2 6.088701 E-4
MSE 6.804632 E-5 7.217798344 E-8

polynomial in (b) at m=v=6 and k=2. The absolute errors
generated using the ADM with Bernstein polynomial are
of 10−4 while the errors yielded from ADM with modified
Bernstein polynomial are of 10−5.
Example 2. Consider the ordinary equation

𝑑2𝑦
𝑑𝑡2 + 𝑦𝑑𝑦𝑑𝑡 = 𝑡 sin (2𝑡2) − 4𝑡2 sin (𝑡2) + 2 cos (𝑡2) ,

0 ≤ 𝑡 ≤ 1,
𝑦 (0) = 0,

𝑑𝑦𝑑𝑡 (0) = 0,

(30)

with the exact solution (𝑡) = sin(𝑡2).
Here, 𝐿 = 𝑑2/𝑑𝑡2,𝑁𝑦 = 𝑦(𝑑𝑦/𝑑𝑡), and 𝑔(𝑡) = 𝑡 sin(2𝑡2) −4𝑡2 sin(𝑡2) + 2 cos(𝑡2).
The Adomian polynomials for represent the nonlinear

term Nu are

𝐴0 = 𝑦0 𝑑𝑑𝑡𝑦0,
𝐴1 = 𝑦1 𝑑𝑑𝑡𝑦0 + 𝑦0 𝑑𝑑𝑡𝑦1,

𝐴2 = 𝑦2 𝑑𝑑𝑡𝑦0 + 𝑦1 𝑑𝑑𝑡𝑦1 + 𝑦0 𝑑𝑑𝑡𝑦1,
...

(31)

Then using (5) the classical Bernstein polynomials of 𝑔(𝑡)
when v=4 and m=16 is

𝑔𝑏 (𝑡) = 20.00659171𝑡 + 0.2233190𝑡2 + 0.098085𝑡3
− 3.39540𝑡4 + ⋅ ⋅ ⋅ (32)

Andmodified Bernstein polynomials (21) of g(t) with k=2 are

𝑔𝑚𝑏 (𝑡) = 2 − 0.007366𝑡 + 0.2188855𝑡2 + 1.389751𝑡3
− 4.50213𝑡4 + ⋅ ⋅ ⋅ (33)

By (22), we have

𝑦𝑚𝑏 (𝑡) = 4∑
𝑖=0

𝑦𝑖
= 𝑡2 − 0.001228𝑡3 + 0.018241𝑡4 − 0.030513𝑡5

+ ⋅ ⋅ ⋅ ,
(34)

The absolute error of 𝑦𝑚𝑏(𝑡) and 𝑦𝑏(𝑡) is presented in Table 2
and Figure 2.

Figure 2 presents the absolute error of ADM with Bern-
stein polynomial in (a) and ADM with modified Bernstein
polynomial in (b) at m=v=10 and k=3. The absolute errors
generated using the ADM with Bernstein polynomial are
of 10−2 while the errors yielded from ADM with modified
Bernstein polynomial are of 10−4.
Example 3. Consider the ordinary equation

𝑑𝑦𝑑𝑡 − 𝑡𝑦 + 𝑦2 = 𝑒𝑡2 ,
𝑦 (0) = 1,

(35)

with the exact solution (𝑡) = 𝑒𝑡2/2.
Here 𝐿 = 𝑑/𝑑𝑡, 𝑅𝑢 = −𝑡𝑦,𝑁𝑦 = 𝑦2, and 𝑔(𝑡) = 𝑒𝑡2 .
Then using (5) the classical Bernstein polynomials of 𝑔(𝑡)

when v=8 and m=12 is

𝑔𝑏 (𝑡) = 1 + 0.083623𝑡 + 0.939177𝑡2 + 0.197729𝑡3
+ 0.331572𝑡4 + ⋅ ⋅ ⋅ , (36)
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Table 3: Comparison of absolute errors using 𝑦10 when m=12, v=8, and k=3.

𝑡 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑏󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑚𝑏󵄨󵄨󵄨󵄨
0 0 0
0.01 4.134000 E-6 1.750000 E-7
0.02 1.635300 E-5 6.400000 E-7
0.03 3.639700 E-5 1.314000 E-6
0.04 6.402400 E-5 2.123000 E-6
0.05 9.900900 E-5 2.999000 E-6
0.06 1.411460 E-4 3.883000 E-6
0.07 1.902410 E-4 4.720000 E-6
0.08 2.461180 E-4 5.463000 E-6
0.09 3.086100 E-4 6.069000 E-6
0.1 3.775690 E-4 6.501000 E-6
MSE 3.699974901 E-8 1.619641710 E-11
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Figure 2:The absolute error between ADM with modified Bernstein polynomials and the exact solution when m=v=10 and k=3.

andmodified Bernstein polynomials (21) of 𝑔(𝑡) with k=3 are
𝑔𝑚𝑏 (𝑡) = 1 + 0.003794𝑡 + 0.957094𝑡2 + 0.103509𝑡3

+ 0.410289𝑡4 + ⋅ ⋅ ⋅ . (37)

By (22), we have

𝑢𝑚𝑏 (𝑡) = 8∑
𝑖=0

𝑢𝑖
= 1 + 0.501897𝑡2 − 0.015567𝑡3 + 0.159135𝑡4

+ ⋅ ⋅ ⋅ ,
(38)

The absolute error of 𝑢𝑚𝑏(𝑡) and 𝑢𝑏(𝑡) is presented in Table 3
and Figure 3.

Figure 3 presents the absolute error of ADM with Bern-
stein polynomial in (a) and ADM with modified Bernstein

polynomial in (b) at m=12, v=8, and k=3. The absolute errors
generated using the ADM with Bernstein polynomial are
of 10−4 while the errors yielded from ADM with modified
Bernstein polynomial are of 10−6.
Example 4. Consider the partial differential equation

𝜕𝑦𝜕𝑡 + 𝑦𝜕𝑦𝜕𝑥 − V
𝜕2𝑦𝜕𝑥2 = 𝑥 (2𝑡 cos (𝑡2) + sin2 (𝑡2)) ,

𝑦 (𝑥, 0) = 0,
(39)

Using (12) we have

𝐿𝑦 + 𝑁𝑦 + 𝑅𝑦 = 𝑔 (𝑥, 𝑡) (40)

where 𝐿 = 𝑑/𝑑𝑡, 𝑅𝑦 = −V(𝜕2𝑦/𝜕𝑥2), 𝑁𝑦 = 𝑦(𝜕𝑦/𝜕𝑥), and𝑔(𝑥, 𝑡) = 𝑥(2𝑡 cos(𝑡2) + sin2(𝑡2)).
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Figure 3: The absolute error between ADM with modified Bernstein polynomials and the exact solution when m=12, v=8, and k=3.

The Adomian polynomials for Ny are

𝐴0 = 𝑦𝑜 𝜕𝑦𝑜𝜕𝑥 ,
𝐴1 = 𝑦𝑜 𝜕𝑦1𝜕𝑥 + 𝑦1 𝜕𝑦𝑜𝜕𝑥 ,

𝐴2 = 𝑦𝑜 𝜕𝑦2𝜕𝑥 + 𝑦2 𝜕𝑦𝑜𝜕𝑥 + 𝑦1 𝜕𝑦1𝜕𝑥 ,
...

(41)

Then using (5) the classical Bernstein polynomials of 𝑔(𝑥, 𝑡)
when v=m=6 is
𝑔𝑏 (𝑥, 𝑡) = 2.003859𝑥𝑡 + 0.103475𝑥𝑡2 + 0.149954𝑥𝑡3

− 0.27935𝑥𝑡4 + ⋅ ⋅ ⋅ , (42)

and modified Bernstein polynomials (21) of 𝑔(𝑥, 𝑡) with k=2
are

𝑔𝑚𝑏 (𝑥, 𝑡) = 1.986611𝑥𝑡 + 0.045744𝑥𝑡2
+ 0.504281𝑥𝑡3 − 0.25375𝑥𝑡4 + ⋅ ⋅ ⋅ . (43)

By (22) with V = 1, we have
𝑦0 = 𝐿−1 (𝑔𝑚𝑏 (𝑥, 𝑡)) + 𝑦 (𝑥, 0) = 0.993306𝑥𝑡2

+ 0.015248𝑥𝑡3 + 0.12607𝑥𝑡4 − 0.050750𝑥𝑡5 . . . ,
𝑦1 = −𝐿−1 (−V𝜕2𝑦0𝜕𝑥2 ) − 𝐿−1 (𝐴0) = −0.197331𝑥𝑡5

− 0.005049𝑥𝑡6 − 0.035812𝑥𝑡7 + 0.012122𝑥𝑡8
+ ⋅ ⋅ ⋅ ,

𝑦2 = −𝐿−1(−V𝜕2𝑦1𝜕𝑥2 ) − 𝐿−1 (𝐴1) = 0.049003𝑥𝑡8
+ 0.001783𝑥𝑡9 + 0.012105𝑥𝑡10 − 0.003795𝑥𝑡11
+ ⋅ ⋅ ⋅ ,

...
(44)

And we obtain

𝑦𝑚𝑏 (𝑥, 𝑡) = 6∑
𝑖=0

𝑦𝑖
= 0.993306𝑥𝑡2 + 0.015248𝑥𝑡3

+ 0.126070𝑥𝑡4 − 0.248081𝑥𝑡5
− 0.083749𝑥𝑡6 + ⋅ ⋅ ⋅ ,

(45)

The absolute error of 𝑦𝑚𝑏(𝑥, 𝑡) and 𝑦𝑏(𝑥, 𝑡) is presented in
Table 4 and Figure 4 with the exact solution 𝑦(𝑥, 𝑡) =𝑥 sin(𝑡2).

Also Figure 4 presents the absolute error of ADM with
Bernstein polynomial in (a) and ADM with modified Bern-
stein polynomial in (c) atm=v=6 and k=2.The absolute errors
generated using the ADM with Bernstein polynomial are
of 10−3 while the errors yielded from ADM with modified
Bernstein polynomial are of 10−4.
5. Conclusions

In this paper, we show that utilizing modified Bernstein
polynomials is smartly thought to modify the performance
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Table 4: Comparison of absolute errors using 𝑦6 when m=v=6, k=2, and x=0.1.

𝑡 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑏󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑚𝑏󵄨󵄨󵄨󵄨
0 0 0
0.1 5.512102 E-6 4.149093 E-6
0.2 3.401160 E-5 1.849504 E-6
0.3 8.851342 E-5 2.838128 E-5
0.4 1.404426 E-5 9.121566 E-5
0.5 1.256008 E-4 1.620426 E-4
0.6 4.250973 E-5 1.880417 E-4
0.7 4.360788 E-4 1.086168 E-4
0.8 1.050197 E-3 1.020235 E-4
0.9 1.718854 E-3 3.752218 E-4
1 2.024768 E-3 4.863297 E-4
MSE 8.393551358 E-7 4.702782622 E-8
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(c) The absolute error for modified Bernstein polynomials
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(d) The numerical solution for modified Bernstein polynomials

Figure 4:The absolute error between ADMwith classical andmodified Bernstein polynomials and the exact solution using 𝑦6 whenm=v=6,
k=2, and x=0.1.
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of the Adomian decomposition technique. The fundamental
preferred standpoint of this strategy is that it can be used
specifically for all sort of differential and integral equations.

We utilize modified Bernstein extensions of the nonlinear
term to get more exact outcomes. Figures empower us
to consider the difference between utilizing two strategies
graphically. Tables are additionally given to demonstrate the
variety of the outright mistakes for bigger estimation, to
be specific for bigger m. We observed from the numerical
outcomes in Tables 1–4 and Figures 1–4 that the ADM
with modification Bernstein polynomials gives more exact
and robust numerical solution than the classical Bernstein
polynomials. Every one of the calculations was done with the
guide of Maple 13 programming.
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We examine an optimal way of eradicating rabies transmission from dogs into the human population, using preexposure
prophylaxis (vaccination) and postexposure prophylaxis (treatment) due to public education. We obtain the disease-free
equilibrium, the endemic equilibrium, the stability, and the sensitivity analysis of the optimal control model. Using the Latin
hypercube sampling (LHS), the forward-backward sweep scheme and the fourth-order Range-Kutta numerical method predict
that the global alliance for rabies control’s aim of working to eliminate deaths from canine rabies by 2030 is attainable throughmass
vaccination of susceptible dogs and continuous use of pre- and postexposure prophylaxis in humans.

1. Introduction

Rabies is an infection that mostly affects the brain of an
infected animal or individual, caused by viruses belonging to
the genus Lyssavirus of the family Rhabdoviridae and order
Mononegavirales [1, 2]. This disease has become a global
threat and it is also estimated that rabies occurs in more
than 150 countries and territories [2]. Raccoons, skunks, bats,
and foxes are the main animals that transmit the virus in
the United States [2]. In Asia, Africa, and Latin America, it
is known that dogs are the main source of transmission of
the rabies virus into the human population [2]. When the
rabies virus enters the human body or that of an animal, the
infection (virus) moves rapidly along the neural pathways to
the central nervous system; from there the virus continues
to spread to other organs and causes injury by interrupting
various nerves [2]. The symptoms of rabies are quite similar
to those of encephalitis (see [3]). Due tomovement of dogs in
homes or the surroundings, the risk of not being infected by
a rabid dog can never be guaranteed. Rabies is a major health
problem in many populations dense with dogs, especially
in areas where there are less or no preventive measures

(vaccination and treatment) for dogs and humans. Treatment
after exposure to the rabies virus is known as postexposure
prophylaxis (PEP) and vaccination before exposure to the
infection is known as preexposure prophylaxis.

The study of optimal control analysis in maximizing or
minimizing a said target was introduced by Pontryagin and
his collaborators around 1950.They developed the key idea of
introducing the adjoint function to a differential equation, by
forming an objective functional [4], and since then there has
been a considerable study of infectious disease using optimal
control analysis (see [4–12]).

Research published by Aubert [13], on the advancement
of the expense of wildlife rabies in France, incorporated
various variables.They follow immunization of domestic ani-
mals, the reinforcement of epidemiological reconnaissance
system and the bolster given to indicative research laborato-
ries, the costs connected with outbreaks of rabies, the clinical
perception of those mammals which had bitten humans,
the preventive immunization, and postexposure treatment of
people. A significant percentage (72%) of the cost was the
preventive immunization of local animals. In France, as in
other European nations in which the red fox (Vulpes) is the
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speciesmost affected, two primary procedures for controlling
rabies were assessed in [13] at the repository level to be
specific: fox termination and the oral immunization of foxes.
The consolidated costs and advantages of both systems were
looked at and included either the expenses of fox separation
or the cost of oral immunization.The total yearly costs of both
techniques stayed practically identical until the fourth year,
after which the oral immunization methodology turned out
to be more cost effective.This estimate was made in 1988 and
readjusted in 1993 and affirmed by ex-postinvestigation five
years later. Accordingly, it was presumed that fox termination
brought about a transient diminishment in the event of
the infection while oral immunization turned out to be
equipped for wiping out rabies even in circumstances in
which fox population was growing. Anderson and May [14]
formulated a mathematical model based on each time step
dynamic which was calculated independently in every cell.
Later, Bohrer et al. [15] published a paper on the viability of
different rabies spatial immunization designs in a simulated
host population.

The research presented by Bohrer [15] stated that, in
desert environments, where host population size varies over
time, nonuniform spreading of oral rabies vaccination may,
under certain circumstances, be more effective than the com-
monly used uniform spread. The viability of a nonarbitrary
spread of the immunization depends, to some extent, on
the dispersal behavior of the carriers. The outcomes likewise
exhibit that, in a warm domain in a few high-density regions
encompassed by populations with densities below the critical
threshold for the spread of the disease, the rabies infection
can persist.

Levin et al. [16] also presented a model for the immune
responses to rabies virus in bats. Coyne et al. [17] proposed
an SEIR model, which was also used in a study predicting
the local dynamics of rabies among raccoons in the United
States. Childs et al. [18] also researched rabies epidemics in
raccoons with a seasonal birth pulse, using optimal control
of an SEIRSmodel which describes the population dynamics.
Hampson et al. [19] also noted that rabies epidemic cycles
have a period of 3–6 years in dog populations in Africa, so
they built a susceptible, exposed, infectious, and vaccinate
model with an intervention response variable, which showed
significant synchrony.

Carroll et al. [20] also used compartmental models
to describe rabies epidemiology in dog populations and
explored three control methods: vaccination, vaccination
pulse fertility control, and culling. An ordinary differential
equation model was used to characterize the transmission
dynamics of rabies between humans and dogs by [21, 22].
The work by Zinsstag et al. [23] further extended the existing
models on rabies transmission between dogs to include dog-
to-human transmission and concluded that human postex-
posure prophylaxis (PEP) with a dog vaccination campaign
was the more cost effective in controlling the disease in
the long run. Furthermore, Ding et al. [24] formulated an
epidemic model for rabies in raccoons with discrete time
and spatial features. Their goal was to analyze the strategies
for optimal distribution of vaccine baits to minimize the
spread of the disease and the cost of carrying out the control.

Smith and Cheeseman [25] show that culling could be more
effective than vaccination, given the same efficacy of control,
but Tchuenche and Bauch suggest that culling could be
counterproductive, for some parameter values (see [26]).

Thework in [27, 28] also presented amathematical model
of rabies transmission in dogs and from the dog population to
the human population in China.Their study did not consider
the use optimal control analysis to the study of the rabies
virus in dogs and from the dog population to the human
population. Furthermore, the insightful work ofWiraningsih
et al. [29] studied the stability analysis of a rabies model with
vaccination effect and culling in dogs, where they introduced
postexposure prophylaxis to a rabies transmission model,
but the paper did not consider the noneffectiveness of the
pre- and postprophylaxis on the susceptible humans and
exposed humans and that of the dog population and the
use of optimal control analysis. Therefore, motivated by the
research predictions of the global alliance of rabies control
[30] and the workmention above, we seek to adjust themodel
presented in [27–29], by formulating an optimal control
model, so as to ascertain an optimal way of controlling rabies
transmission in dogs and from the dog population to the
human population taking into account the noneffectiveness
(failure) of vaccination and treatment.

The paper is petition as follows. Section 2 contains the
model formulation, mathematical assumptions, the mathe-
matical flowchart, and the model equations. Section 3 con-
tains themodel analysis, invariant region, equilibriumpoints,
basic reproduction number R0, and the stability analysis of
the equilibria. In Section 4 we present the parameter values
leading to numerical values of the basic reproduction number
R0, the herd immunity threshold and sensitivity analysis
using Latin hypercube sampling (LHS), and some numerical
plots. Section 5 contains the objective functional and the
optimality system of the model. Finally, Sections 6 and 7
contain discussion and conclusion, respectively.

2. Model Formulation

We present two subpopulation transmission models of rabies
virus in dogs and that of the human population (see Figure 1),
based on the work presented in [27–29]. The dog population
has a total of four compartments. The compartments repre-
sent the susceptible dogs, 𝑆𝐷(𝑡), exposed dogs, 𝐸𝐷, infected
dogs, 𝐼𝐷(𝑡), and partially immune dogs, 𝑅𝐷(𝑡).Thus, the total
dog population is𝑁𝐷(𝑡) = 𝑆𝐷(𝑡) + 𝐸𝐷(𝑡) + 𝐼𝐷(𝑡) + 𝑅𝐷(𝑡). The
human population also has four compartments representing
susceptible humans, 𝑆𝐻(𝑡), exposed humans, 𝐸𝐻(𝑡), infected
humans, 𝐼𝐻(𝑡), and partially immune humans, 𝑅𝐻(𝑡). Thus,
the total human population is 𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐸𝐻(𝑡) +𝐼𝐻(𝑡) + 𝑅𝐻(𝑡). It is assumed that there is no human to human
transmission of the rabies virus in the human submodel (see
[29]). In the dog submodel, it is assumed that there is a direct
transmission of the rabies virus fromone dog to the other and
from the infected dog compartment to the susceptible human
population. It is further assumed that the susceptible dog
population, 𝑆𝐷(𝑡), is increased by recruitment at a rate 𝐴𝐷
and 𝐵𝐻 is the birth or immigration rate into the susceptible
human population, 𝑆𝐻(𝑡). It is assumed that the transmission
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Figure 1: Optimal control model of rabies transmission dynamics.

and contact rate of the rabid dog into the dog compartment
is 𝛽𝐷𝐷. Suppose that ]𝐷 represents the control strategy due to
public education and vaccination in the dogs compartment;
then the transmission dynamics become (1 − ]𝐷)𝛽𝐷𝐷𝑆𝐷𝐼𝐷,
where (1− ]𝐷) is the noneffectiveness (failure) of the vaccine.
It is also assumed that the contact rate of infectious dogs
to the human population is 𝛽𝐷𝐻. Similarly, administrating
vaccination to the susceptible humans the progression rate
of the susceptible humans to the exposed stage becomes(1 − ]𝐻)𝛽𝐷𝐻𝑆𝐻𝐼𝐷, where ]𝐻 is the preexposure prophylaxis
(vaccination), (1 − ]𝐻) represents the failure of the preex-
posure prophylaxis in the human compartment. Further-
more, administrating postexposure prophylaxis (treatment)
to affected humans at the rate 𝜌𝐻 decreases the progression
rate of the rabies virus, at the exposed class to the infectious
class as (1 − 𝜌𝐻)𝛿𝐻𝛾𝐻𝐸𝐻, where (1 − 𝜌𝐻) is the failure rate of
the postexposure prophylaxis and 𝛿𝐻𝛾𝐻 represents the rate at
which exposed humans progress to the infected compartment
[27]. The rate of losing immunity in both compartments is
represented by 𝛼𝐷 and 𝛼𝐻, respectively.

The exposed humans without clinical rabies that move
back to the susceptible population are denoted by the rate𝛿𝐻𝜀𝐻. The natural death rate of dogs is 𝑚𝐷, and 𝑚𝐻
denotes the mortality rate of humans (natural death rate), 𝜇𝐷
represents the death rate associated with rabies infection in
dogs, and 𝜇𝐻 represents the disease induce death in humans.
The rate at which exposed dogs die due to culling is 𝐶𝐷,
and 𝛿𝜀𝐷 represents the rate at which exposed dogs without
clinical rabies move back to the susceptible dog compart-
ment. Subsequently, using the idea presented in [29], we
assumed that the exposed dogs are treated or quarantined by
their owners at the rate 𝜌𝐷; this implies that (1 − 𝜌𝐷)𝛿𝛾𝐷𝐸𝐷
is the progression rate of the exposed dogs to the infectious
compartment, where (1 − 𝜌𝐷) is the failure of the treatment
or quarantined strategy, and 𝛿𝛾𝐷𝐸𝐷 denotes those exposed
dogs that develop clinical rabies [27]. Figure 1 shows the
mathematical dynamics of the rabies virus in both com-
partments.

From Figure 1 transmission flowchart and assumptions
give the disease pathways as

𝑑𝑆𝐷𝑑𝑡 = 𝐴𝐷 − (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − (𝑚𝐷 + ]𝐷) 𝑆𝐷 + 𝛿𝜀𝐷𝐸𝐷 + 𝛼𝐷𝑅𝐷,
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𝑑𝐸𝐷𝑑𝑡 = (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷,𝑑𝐼𝐷𝑑𝑡 = (1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷,𝑑𝑅𝐷𝑑𝑡 = ]𝐷𝑆𝐷 + 𝜌𝐷𝐸𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷,𝑑𝑆𝐻𝑑𝑡 = 𝐵𝐻 − (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − (𝑚𝐻 + ]𝐻) 𝑆𝐻 + 𝛿𝐻𝜀𝐻𝐸𝐻 + 𝛼𝐻𝑅𝐻,𝑑𝐸𝐻𝑑𝑡 = (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻,𝑑𝐼𝐻𝑑𝑡 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻,𝑑𝑅𝐻𝑑𝑡 = ]𝐻𝑆𝐻 + 𝜌𝐻𝐸𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻,
with 𝑆𝐷 (0) > 0, 𝐸𝐷 (0) ≥ 0, 𝐼𝐷 (0) ≥ 0, 𝑅𝐷 (0) ≥ 0, 𝑆𝐻 (0) > 0, 𝐸𝐻 (0) ≥ 0, 𝐼𝐻 (0) > 0, 𝑅𝐻 (0) > 0.

(1)

3. Model Analysis

Model system (1) will be studied in a biological feasible region
as outlined below. Model system (1) is basically divided into
two regions; thusΩ = Ω𝐷 × Ω𝐻.
Lemma 1. The solution set {𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻} ∈𝑅8+ of model system (1) is contained in the feasible region Ω.
Proof. Suppose {𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻} ∈ 𝑅8+ for all𝑡 > 0. We want to show that the region Ω is positively
invariant, so that it becomes sufficient to look at the dynamics
of model system (1), given that

𝑁𝐷 (𝑡) = 𝑆𝐷 (𝑡) + 𝐸𝐷 (𝑡) + 𝐼𝐷 (𝑡) + 𝑅𝐷 (𝑡) , (2)𝑁𝐻 (𝑡) = 𝑆𝐻 (𝑡) + 𝐸𝐻 (𝑡) + 𝐼𝐻 (𝑡) + 𝑅𝐻 (𝑡) , (3)

where𝑁𝐷(𝑡) is the total population of dogs at any time (𝑡) and𝑁𝐻(𝑡) is total population of humans at any time (𝑡).
Equation (2) gives

𝑑𝑁𝐷𝑑𝑡 = 𝐴𝐷 − (𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷)𝑚𝐷 − 𝜇𝐷𝐼𝐷− 𝐶𝐷𝐸𝐷, (4)

which yields

𝑑𝑁𝐷𝑑𝑡 = 𝐴𝐷 − 𝑚𝐷𝑁𝐷 − 𝜇𝐷𝐼𝐷 − 𝐶𝐷𝐸𝐷. (5)

Similarly (3) gives

𝑑𝑁𝐻𝑑𝑡 = 𝐵𝐻 − 𝑚𝐻𝑁𝐻 − 𝜇𝐻𝐼𝐻. (6)

Now, assuming that there are no disease induced death
rate and culling effect in the dogs’ compartment, it implies
that (5) and (6) become

𝑑𝑁𝐷𝑑𝑡 = 𝐴𝐷 − 𝑚𝐷𝑁𝐷,𝑑𝑁𝐻𝑑𝑡 = 𝐵𝐷 − 𝑚𝐻𝑁𝐻. (7)

Suppose 𝑑𝑁𝐷/𝑑𝑡 ≤ 0, 𝑑𝑁𝐻/𝑑𝑡 ≤ 0,𝑁𝐷 ≤ 𝐴𝐷/𝑚𝐷, and𝑁𝐻 ≤𝐵𝐻/𝑚𝐻, and then imposing the theorem proposed in [32] on
differential inequality results in 0 ≤ 𝑁D ≤ 𝐴𝐷/𝑚𝐷 and 0 ≤𝑁𝐻 ≤ 𝐵𝐻/𝑚𝐻.Therefore (7) becomes

𝑑𝑁𝐷𝑑𝑡 ≤ 𝐴𝐷 − 𝑚𝐷𝑁𝐷, (8)

𝑑𝑁𝐻𝑑𝑡 ≤ 𝐵𝐷 − 𝑚𝐻𝑁𝐻. (9)

Solve (8) and (9) using the integrating factor (IF)method.
Thus 𝑑𝑦/𝑑𝑡 + 𝑝(𝑡)𝑦 = 𝑄, 𝐼𝐹 = 𝑒∫𝑝(𝑡)𝑑𝑡. After some algebraic
manipulation the feasible solution of the dogs’ population in
model system (1) is in the region

Ω𝐷 = {(𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷) ∈ R
4
+, 𝑁𝐷 ≤ 𝐴𝐷𝑚𝐷} . (10)

Similarly the human population follows suit, and from (9)
this implies that the feasible solution of the humanpopulation
of model system (1) is in the region

Ω𝐻 = {(𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻) ∈ R
4
+, 𝑁𝐻 ≤ 𝐵𝐻𝑚𝐻} . (11)
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Therefore, the feasible solutions are contained inΩ.ThusΩ =Ω𝐷 × Ω𝐻. From the standard comparison theorem used on
differential inequality in [33], it implies that

𝑁𝐷 (𝑡) ≤ 𝑁𝐷 (0) 𝑒−(𝑚𝐷)𝑡 + 𝐴𝐷𝑚𝐷 (1 − 𝑒−(𝑚𝐷)𝑡) ,𝑁𝐻 (𝑡) ≤ 𝑁𝐻 (0) 𝑒−(𝑚𝐻)𝑡 + 𝐵𝐻𝑚𝐻 (1 − 𝑒−(𝑚𝐻)𝑡) .
(12)

Hence, the total dog population size𝑁𝐷(𝑡) → 𝐴𝐷/𝑚𝐷 as𝑡 → ∞. Similarly, the total human population size𝑁𝐻(𝑡) →𝐵𝐻/𝑚𝐻 as 𝑡 → ∞.Thismeans that the infected state variables(𝐸𝐷, 𝐼𝐷, 𝐸𝐻, 𝐼𝐻) of the two populations tend to zero as time
goes to infinity.Therefore, the regionΩ is pulling (attracting)
all the solutions in R8+.This gives the feasible solution set of
model system (1) as

(((((((
(

𝑆𝐷𝐸𝐷𝐼𝐷𝑅𝐷𝑆𝐻𝐸𝐻𝐼𝐻𝑅𝐻

)))))))
)

∈ R
8
+ |

(((((((((((((((((
(

𝑆𝐷 > 0𝐸𝐷 ≥ 0𝐼𝐷 ≥ 0𝐼𝐷 ≥ 0𝑅𝐷 ≥ 0𝑆𝐻 > 0𝐸𝐻 ≥ 0𝐼𝐻 ≥ 0𝑅𝐻 ≥ 0𝑁𝐷 ≤ 𝐴𝐷𝑚𝐷𝑁𝐻 ≤ 𝐵𝐻𝑚𝐻

)))))))))))))))))
)

. (13)

Hence, (1) ismathematically well posed and epidemiolog-
ically meaningful.

3.1. Disease-Free Equilibrium E0. Suppose there is no infec-
tion of rabies in both compartments; then (𝐸𝐷 = 0, 𝐼𝐷 =0, 𝐸𝐻 = 0, 𝐼𝐻 = 0). Incorporating this into (1) leads to𝐴𝐷 − (𝑚𝐷 + ]𝐷) 𝑆𝐷 + 𝛼𝐷𝑅𝐷 = 0,

]𝐷𝑆𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷 = 0,𝐵𝐻 − (𝑚𝐻 + ]𝐻) 𝑆𝐻 + 𝛼𝐻𝑅𝐻 = 0,
]𝐻𝑆𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻 = 0.

(14)

After some algebraic manipulation of (14), the disease-
free equilibriumpoint becomesE0 = (𝑆0𝐷, 𝐸0𝐷, 𝐼0𝐷, 𝑅0𝐷, 𝑆0𝐻, 𝐸0𝐻,𝐼0𝐻, 𝑅0𝐻) with

E0 = ( 𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) , 0, 0,𝐴𝐷]𝐷𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) , 𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻) , 0, 0,𝐵𝐻]𝐻𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻)) .
(15)

3.2. Basic Reproduction Number R0. Here, the basic repro-
duction number (R0) measures the average number of new
infections produced by one infected dog in a completely
susceptible (dog and human) population (see also [34]). Now
taking𝐸𝐷, 𝐼𝐷, 𝐸𝐻, and 𝐼𝐻 as our infected compartments gives

𝑓1 = (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷− ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷,𝑓2 = (1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷,𝑓3 = (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷− ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻,𝑓4 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻,
(16)

where 𝑓1 = 𝑑𝐸𝐷/𝑑𝑡, 𝑓2 = 𝑑𝐼𝐷/𝑑𝑡, 𝑓3 = 𝑑𝐸𝐻/𝑑𝑡, and 𝑓4 =𝑑𝐼𝐻/𝑑𝑡.
Now, using the next generation matrix operator 𝐺 =𝐹𝑉−1 and the Jacobian matrix

𝐽 =(((((((
(

𝜕𝑓1𝜕𝐸𝐷 𝜕𝑓1𝜕𝐼𝐷 𝜕𝑓1𝜕𝐸𝐻 𝜕𝑓1𝜕𝐼𝐻𝜕𝑓2𝜕𝐸𝐷 𝜕𝑓2𝜕𝐼𝐷 𝜕𝑓2𝜕𝐸𝐻 𝜕𝑓2𝜕𝐼𝐻𝜕𝑓3𝜕𝐸𝐷 𝜕𝑓3𝜕𝐼𝐷 𝜕𝑓3𝜕𝐸𝐻 𝜕𝑓3𝜕𝐼𝐻𝜕𝑓4𝜕𝐸𝐷 𝜕𝑓4𝜕𝐼𝐷 𝜕𝑓4𝜕𝐸𝐻 𝜕𝑓4𝜕𝐼𝐻

)))))))
)

, (17)

as described in [34], results in

𝐽

=((
(

−((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷 0 0(1 − 𝜌𝐷) 𝛿𝛾𝐷 − (𝑚𝐷 + 𝜇𝐷) 0 00 (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻 − ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 00 0 (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 − (𝑚𝐻 + 𝜇𝐻)
))
)

. (18)
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Using the fact that 𝐽 = 𝐹 − 𝑉 gives 𝐹 and 𝑉 evaluated at
E0 as

𝐹 (E0) =((((
(

0 (1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) 0 00 0 0 0
0 (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻) 𝐵𝐻𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) 0 00 0 0 0

))))
)

,

𝑉(E0) =((
(

((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 0 0 0− (1 − 𝜌𝐷) 𝛿𝛾𝐷 (𝑚𝐷 + 𝜇𝐷) 0 00 0 ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 00 0 − (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 (𝑚𝐻 + 𝜇𝐻)
))
)

,
(19)

where the element in matrix 𝐹 constitutes the new infection
terms, while that of matrix 𝑉 constitutes the new trans-
fer of infection terms from one compartment to another.

Now, splitting matrix 𝑉 into four 2 × 2 submatrices and
finding its corresponding inverses result in 𝐺 = 𝐹𝑉−1, given
by

𝐺

=((((
(

(1 − 𝜌𝐷) (1 − ]𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) (1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) 0 00 0 0 0(1 − 𝜌𝐷) 𝛿𝛾𝐷 (1 − ]𝐻) 𝛽𝐷𝐻𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻) 𝐵𝐻(𝑚𝐷 + ]𝐷)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) 0 00 0 0 0
))))
)

(20)

Letting

𝑎 = (1 − 𝜌𝐷) (1 − ]𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
𝑏 = (1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
𝑐 = (1 − 𝜌𝐷) (1 − ]𝐻) 𝛿𝛾𝐷𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) ,
𝑑 = (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻) 𝐵𝐻(𝑚𝐷 + ]𝐷)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻)

(21)
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implies

𝐺 =((
(

𝑎 𝑏 0 00 0 0 0𝑐 𝑑 0 00 0 0 0
))
)

. (22)

Finding the matrix determinant of (22) and denoting it by 𝐷
give the expression𝐷 = |𝐺−I𝜆|, where I is the identitymatrix
of a 4 × 4matrix; thus

𝐷 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎 − 𝜆 𝑏 0 00 −𝜆 0 0𝑐 𝑑 −𝜆 00 0 0 −𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0. (23)

This gives a characteristic equation of the form 𝜆3(𝑎 −𝜆) = 0; solving the characteristic polynomial results in the
following eigenvalues: 𝜆𝑖 = [0, 0, 0, 𝑎]. The basic reproduc-
tion number R0 is the spectral radius (largest eigenvalue)𝜌(𝐹𝑉−1), also defined as the dominant eigenvalue of 𝐹𝑉−1.

Therefore,

R0 = (1 − 𝜌𝐷) (1 − ]𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) . (24)

Remark 2. R0 contains the secondary infection produced by
the infectious compartment of dogs (in the presence of preex-
posure prophylaxis (vaccination), postexposure prophylaxis
(treatment/quarantine), and culling of exposed dogs). When
R0 < 1, the infection gradually leaves the dog compartment,
but when R0 > 1, the rabies virus remains in the dog

compartments for a longer time, thereby increasing the rate
at which the susceptible dogs and humans get infected by a
rabid dog.

3.3. Endemic Equilibrium E1. The endemic equilibrium is
given as

𝑆∗𝐷 = 𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷)R0 ,
𝐸∗𝐷 = (𝑚𝐷 + 𝜇𝐷)(1 − 𝜌𝐷) 𝛿𝛾𝐷 𝐼∗𝐷,
𝐼∗𝐷 = [(1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝛾𝐷] (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) (R0 − 1)(𝑚𝐷 + 𝛼𝐷) (1 − ]𝐷) 𝛽𝐷𝐷 [(1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝐶𝐷] + 𝑚𝐷 (1 − ]𝐷) 𝛽𝐷𝐷𝜌𝐷 ,
𝑅∗𝐷 = 𝐴𝐷]𝐷 (1 − ]𝐷) 𝛽𝐷𝐷 (1 − 𝜌𝐷) 𝛿𝛾𝐷 (𝑚𝐷 + 𝛼𝐷) + (1 − ]𝐷) 𝛽𝐷𝐷𝜌𝐷 (𝑚𝐷 + 𝜇𝐷) 𝐼∗𝐷𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷)R0 (1 − ]𝐷) 𝛽𝐷𝐷 (1 − 𝜌𝐷) 𝛿𝛾𝐷 (𝑚𝐷 + 𝛼𝐷) ,
𝑆∗𝐻 = 𝐵𝐻 (𝑚𝐻 + 𝛼𝐻) + [𝛿𝐻𝜀𝐻 + 𝛼𝐻𝜌𝐻] 𝐸∗𝐻[(1 − ]𝐻) (𝑚𝐻 + 𝛼𝐻) 𝛽𝐷𝐻𝐼∗𝐷 + 𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻)] ,
𝐸∗𝐻
= (1 − ]𝐻) 𝐵𝐻 (𝑚𝐻 + 𝛼𝐻) 𝛽𝐷𝐻𝐼∗𝐷(𝑚𝐻 + 𝛼𝐻) [(1 − ]𝐻) 𝛽𝐷𝐻𝐼∗𝐷 ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻) + (𝑚𝐻 + ]𝐻) ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻)] − (1 − ]𝐻) 𝛽𝐷𝐻𝐼∗𝐷𝛼𝐻𝜌𝐻 ,
𝐼∗𝐻 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝑚𝐻 + 𝜇𝐻 𝐸∗𝐻,
𝑅∗𝐻 = 𝐵𝐻]𝐻 (𝑚𝐻 + ]𝐻) + [(]𝐻𝛿𝐻𝜀𝐻 + ]𝐻𝛼𝐻𝜌𝐻) + 𝜌𝐻 (1 − ]𝐻) (𝑚𝐻 + 𝛼𝐻) 𝛽𝐷𝐻𝐼∗𝐷 + 𝜌𝐻𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻)] 𝐸∗𝐻[(1 − ]𝐻) (𝑚𝐻 + 𝛼𝐻)2 𝛽𝐷𝐻𝐼∗𝐷 + (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻)] .

(25)

Note that if R0 = 1, it results in the disease-free equi-
librium; if R0 > 1, then there exists a unique endemic

equilibrium; if R0 < 1, then there exist two endemic equi-
libriums.
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3.4. Stability Analysis of E0. Linearizing (1) at E0 and sub-
tracting eigenvalue 𝜆 along the main diagonal yield

J (E0) =
(((((((((((
(

𝑏1 − 𝜆 𝑏7 𝑎1 𝛼𝐷 0 0 0 00 𝑎2 − 𝜆 𝑎3 0 0 0 0 00 𝑏10 𝑏2 − 𝜆 0 0 0 0 0
]𝐷 𝜌𝐷 0 𝑏3 − 𝜆 0 0 0 00 0 𝑎4 0 𝑏4 − 𝜆 𝑏5 0 𝛼𝐻0 0 𝑎5 0 0 𝑎6 − 𝜆 0 00 0 0 0 0 𝑏9 𝑏6 − 𝜆 00 0 0 0 ]𝐻 𝜌𝐻 0 𝑏8 − 𝜆

)))))))))))
)

, (26)

where

𝑎1 = − (1 − ]𝐷) 𝛽𝐷𝐷 (𝑚𝐷 + 𝛼𝐷) 𝐴𝐷𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
𝑎2 = − ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) ,
𝑎3 = (1 − ]𝐷) 𝛽𝐷𝐷 (𝑚𝐷 + 𝛼𝐷) 𝐴𝐷𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
𝑎4 = − (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) ,
𝑎5 = (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) ,
𝑎6 = − ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) ,𝑏1 = − (𝑚𝐷 + ]𝐷) ,𝑏2 = − (𝑚𝐷 + 𝜇𝐷) ,𝑏3 = − (𝑚𝐷 + 𝛼𝐷) ,𝑏4 = − (]𝐻 + 𝑚𝐻) ,𝑏5 = 𝛿𝐻𝜀𝐻,𝑏6 = − (𝑚𝐻 + 𝜇𝐻) ,𝑏7 = 𝛿𝜀𝐷,𝑏8 = − (𝑚𝐻 + 𝛼𝐻) ,𝑏9 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻,𝑏10 = (1 − 𝜌𝐷) 𝛿𝛾𝐷.

(27)

Simplifying matrix J(E0) gives(𝑏6 − 𝜆) (𝑎6 − 𝜆) (𝑏4 − 𝜆) (𝑏8 − 𝜆)⋅ [𝜆4 + 𝑎11𝜆3 + 𝑎12𝜆2 + 𝑎13𝜆 + 𝑎14] = 0, (28)

where𝑎11 = (−𝑏2 − 𝑎2 − 𝑏1 − 𝑏3) ,𝑎12 = ]𝐷𝛼𝐷 + 𝑎2𝑏3 + 𝑎2𝑏1 + 𝑏2𝑏3 + 𝑏2𝑏1 + 𝑏3𝑏1 + 𝑏2𝑎2− (1 − 𝜌𝐷) 𝛿𝛾𝐷𝑎3,𝑎13 = −𝑎2]𝐷𝛼𝐷 − 𝑏2]𝐷𝛼𝐷 + 𝑎3 (1 − 𝜌𝐷) 𝛿𝛾𝐷𝑏2 + 𝑎3 (1− 𝜌𝐷) 𝛿𝛾𝐷𝑏1 − 𝑎2𝑏2𝑏3 − 𝑏2𝑎2𝑏1 − 𝑎2𝑏3𝑏1 − 𝑏2𝑏3𝑏1,𝑎14 = (𝑏1𝑏2𝑏3𝑎2 + (1 − 𝜌𝐷) 𝛿𝛾𝐷𝑎3𝑏3𝑏1+ (1 − 𝜌𝐷) 𝛿𝛾𝐷𝑎3]𝐷 + ]𝐷𝛼𝐷𝑏2𝑎2) .

(29)

From (28) the four characteristic factors that are negative
are 𝜆1 = 𝑏6,𝜆2 = 𝑎6,𝜆3 = 𝑏4,𝜆4 = 𝑏8,

(30)

where 𝑎6 = −((1 − 𝜌𝐻)𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻 + 𝛿𝐻𝜀𝐻),𝑏6 = −(𝑚𝐻 + 𝜇𝐻), 𝑏4 = −(]𝐻 + 𝑚𝐻), and 𝑏8 = −(𝑚𝐻 + 𝛼𝐻).
The other four characteristic factors can be obtained using the
Routh-Hurwitz criterion. Routh-Hurwitz stability criterion is
a test to ascertain the nature of the eigenvalues. If the roots
of the polynomial are all positive, then the polynomial has a
negative real part [35, 36]. The remaining four characteristic
eigenvalues are obtained as follows:

𝜆4 + 𝑎11𝜆3 + 𝑎12𝜆2 + 𝑎13𝜆 + 𝑎14 = 0. (31)

Hence, simplifying the coefficient of the above character-
istic polynomial in (31) yields

𝑎11 = ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)+ (𝑚𝐷 + 𝜇𝐷) + (𝑚𝐷 + 𝛼𝐷) + (𝑚𝐷 + ]𝐷) ,
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𝑎12 = ]𝐷𝛼𝐷 + ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)⋅ [(𝑚𝐷 + 𝛼𝐷) + (𝑚𝐷 + ]𝐷)] + (𝑚𝐷 + 𝜇𝐷)⋅ [(𝑚𝐷 + 𝛼𝐷) + (𝑚𝐷 + ]𝐷)] + (𝑚𝐷 + 𝛼𝐷)⋅ (𝑚𝐷 + ]𝐷) + ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝐶𝐷)⋅ (𝑚𝐷 + 𝜇𝐷) (1 −R0) ,𝑎13 = ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) ]𝐷𝛼𝐷+ (𝑚𝐷 + 𝜇𝐷) ]𝐷𝛼𝐷 + (𝑚𝐷 + 𝜇𝐷) (𝑚𝐷 + 𝛼𝐷)⋅ (𝑚𝐷 + ]𝐷)+ ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)
⋅ (𝑚𝐷 + 𝛼𝐷) (𝑚𝐷 + 𝜇𝐷) [1 − R0 (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 + 𝛼𝐷 ]
+ ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)
⋅ (𝑚𝐷 + 𝛼𝐷) (𝑚𝐷 + ]𝐷) [1 − R0𝑚 + 𝛼] ,𝑎14 = ]𝐷𝛼𝐷 (𝑚𝐷 + ]𝐷)⋅ ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)
+ (1 − 𝜌𝐷) 𝛿𝛾𝐷 (1 − ]𝐷) 𝛽𝐷𝐷 (𝑚𝐷 + 𝛼𝐷) 𝐴𝐷]𝐷𝑚𝐷 (𝑚𝐷 + 𝑚𝐷 + ]𝐷 + 𝛼𝐷)+ (𝑚𝐷 + ]𝐷) (𝑚𝐷 + 𝜇𝐷) (𝑚𝐷 + 𝛼𝐷)⋅ ((1 − 𝜌𝐷) 𝛿𝐷𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)⋅ (1 −R0) .

(32)

Therefore, from the Routh-Hurwitz criterion of order
four, it implies that the conditions, 𝑎11 > 0, 𝑎12 > 0, 𝑎13 >0, 𝑎14 > 0, and 𝑎11𝑎12𝑎13 > 𝑎213 + 𝑎211𝑎14, are satisfied if
R0 < 1. Hence, the disease-free equilibrium E0 is locally
asymptotically stable whenR0 < 1 (see [37]).
3.4.1. Global Stability of E0

Theorem 3. The disease-free equilibrium E0 of model (1) is
globally asymptotically stable ifR0 ≤ 1 and unstable ifR0 > 1.
Proof. LetV be a Lyapunov function with positive constants
K1,K2,K3, andK4 such that

V = (𝑆𝐷 − 𝑆0𝐷 − 𝑆0𝐷 ln 𝑆𝐷𝑆0𝐷) +K1𝐸𝐷 +K2𝐼𝐷
+ (𝑅𝐷 − 𝑅0𝐷 − 𝑅0𝐷 ln 𝑅𝐷𝑅0𝐷)

+ (𝑆𝐻 − 𝑆0𝐻 − 𝑆0𝐻 ln 𝑆𝐻𝑆0𝐻) +K3𝐸𝐻 +K4𝐼𝐻
+ (𝑅𝐻 − 𝑅0𝐻 − 𝑅0𝐻 ln 𝑅𝐻𝑅0𝐻) .

(33)

Taken the derivative of the Lyapunov function with
respect to time gives

𝑑V𝑑𝑡 = (1 − 𝑆0𝐷𝑆𝐷) 𝑑𝑆𝐷𝑑𝑡 +K1
𝑑𝐸𝐷𝑑𝑡 +K2

𝑑𝐼𝐷𝑑𝑡
+ (1 − 𝑅0𝐷𝑅𝐷) 𝑑𝑅𝐷𝑑𝑡 + (1 − 𝑆0𝐻𝑆𝐻) 𝑑𝑆𝐻𝑑𝑡
+K3

𝑑𝐸𝐻𝑑𝑡 +K4
𝑑𝐼𝐻𝑑𝑡 + (1 − 𝑅0𝐻𝑅𝐻) 𝑑𝑅𝐻𝑑𝑡 .

(34)

Plugging (1) into (34) results in

𝑑V𝑑𝑡 = (1 − 𝑆0𝐷𝑆𝐷) [𝐴𝐷 − (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷
− (𝑚𝐷 + ]𝐷) 𝑆𝐷 + 𝛿𝜀𝐷𝐸𝐷 + 𝛼𝑅𝐷]+K1 [(1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷− ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷]
+K2 [(1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷] + (1
− 𝑅0𝐷𝑅𝐷) []𝐷𝑆𝐷 + 𝜌𝐷𝐸𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷] + (1
− 𝑆0𝐻𝑆𝐻) [𝐵𝐻 − (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − (𝑚𝐻 + ]𝐻) 𝑆𝐻
+ 𝛿𝐻𝜀𝐻𝐸𝐻 + 𝛼𝐻𝑅𝐻] +K3 [(1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷− ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻]
+K4 [(1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻] + (1
− 𝑅0𝐻𝑅𝐻) []𝐻𝑆𝐻 + 𝜌𝐻𝐸𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻] .

(35)

Now, after forming the Lyapunov function V on the
space of the eight state variables, thus (𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷,𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻), and introducing the idea from [37], it is
clear that if 𝐸𝐷(𝑡), 𝐼𝐷(𝑡), 𝐸𝐻(𝑡), and 𝐼𝐻(𝑡) at the disease-free
equilibrium are globally stable (thus, 𝐸𝐷 = 0, 𝐼𝐷 = 0, 𝐸𝐻 = 0,
and 𝐼𝐻 = 0), then 𝑆𝐷(𝑡) → 𝐴𝐷(𝑚𝐷+𝛼𝐷)/𝑚𝐷(𝑚𝐷+𝛼𝐷+]𝐷),𝑅𝐷(𝑡) → 𝐴𝐷]𝐷/𝑚𝐷(𝑚𝐷 + 𝛼𝐷 + ]𝐷), 𝑆𝐻(𝑡) → 𝐵𝐻(𝑚𝐻 +𝛼𝐻)/𝑚𝐻(𝑚𝐻 + 𝛼𝐻 + 𝑛𝑢𝐻), and 𝑅𝐻(𝑡) → 𝐵𝐻]𝐻/𝑚𝐻(𝑚𝐻 +𝛼𝐻 + 𝐻 + ]𝐻) as 𝑡 → ∞.
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Therefore, it can be assumed that

𝑆𝐷 ≤ 𝑆0𝐷 = 𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) ,
𝑅𝐷 ≤ 𝑅0𝐷 = 𝐴𝐷]𝐷𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) ,
𝑆𝐻 ≤ 𝑆0𝐻 = 𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + 𝑛𝑢𝐻) ,
𝑅𝐻 ≤ 𝑅0𝐻 = 𝐵𝐻]𝐻𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + 𝐻 + ]𝐻) ,

(36)

(see [38]) and replacing it into (35) yields

𝑑V𝑑𝑡 ≤ K1 [(1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) 𝐼𝐷
− ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷]
+K2 [(1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷]
+K3 [(1 − ]𝐻) 𝛽𝐷𝐻𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻) 𝐼𝑑
− ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻]
+K4 [(1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻] ,

(37)

This implies that

𝑑V𝑑𝑡 ≤ [K1 (1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷)−K2 (𝑚𝐷 + 𝜇𝐷)
+ K3 (1 − ]𝐻) 𝛽𝐷𝐻𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻) ] 𝐼𝐷
+ [K2 (1 − 𝜌𝐷) 𝛿𝛾𝐷−K1 ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)] 𝐸𝐷+ [K4 (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻−K3 ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝛿𝐻𝜀𝐻)] 𝐸𝐻−K4 (𝑚𝐻 + 𝜇𝐻) .

(38)

Equating the coefficient of 𝐼𝐷, 𝐸𝐷, 𝐼𝐻, and 𝐸𝐻 in (38) to
zero gives

K4 = K3 = 0,
K2 = ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) ,
K1 = (1 − 𝜌𝐷) 𝛿𝛾𝐷,

(39)

and we obtain𝑑V𝑑𝑡 ≤ ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)
⋅ (𝑚𝐷 + 𝜇𝐷) (R0 − 1) 𝐼𝐷,≤ 0, if R0 ≤ 1.

(40)

Additionally 𝑑V/𝑑𝑡 = 0 if and only if 𝐼𝐷 = 0. Therefore,
for 𝐸𝐷 = 𝐼𝐷 = 𝐸𝐻 = 𝐼𝐻 = 0 it shows that 𝑆𝐷(𝑡) → 𝐴𝐷(𝑚𝐷 +𝛼𝐷)/𝑚𝐷(𝑚𝐷 +𝛼𝐷 + ]𝐷), 𝑅𝐷(𝑡) → 𝐴𝐷]𝐷/𝑚𝐷(𝑚𝐷 +𝛼𝐷 + ]𝐷),𝑆𝐻(𝑡) → 𝐵𝐻(𝑚𝐻 + 𝛼𝐻)/𝑚𝐻(𝑚𝐻 + 𝛼𝐻 + ]𝐻), and 𝑅𝐻(𝑡) →𝐵𝐻]𝐻/𝑚𝐻(𝑚𝐻 + 𝛼𝐻 + ]𝐻) as 𝑡 → ∞. Hence, the largest
compact invariant set in {(𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻) ∈Ω : 𝑑V/𝑑𝑡 ≤ 0} is the singleton set {E0}. Therefore, from La
Salle’s invariance principle, we conclude that E0 is globally
asymptotically stable inΩ ifR0 ≤ 1 (see also [38, 39]).
3.5. Global Stability of Endemic Equilibrium E1

Theorem 4. The endemic equilibrium E1 of model (1) is
globally asymptotically stable wheneverR0 > 1.
Proof. Suppose R0 > 1; then the existence of the endemic
equilibrium point is assured. Using the common quadratic
Lyapunov function

𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑛∑
𝑖=1

𝑐𝑖2 (𝑥𝑖 − 𝑥∗𝑖 )2 , (41)

as illustrated in [40], we consider a Lyapunov function with
the following candidate:

V (𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻) = 12 [(𝑆𝐷 − 𝑆∗𝐷)
+ (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷) + (𝑅𝐷 − 𝑅∗𝐷)]2
+ 12 [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻) + (𝐼𝐻 − 𝐼∗𝐻)
+ (𝑅𝐻 − 𝑅∗𝐻)]2 .

(42)

Now, differentiating (42) along the solution curve of (1)
gives

𝑑V𝑑𝑡 = [(𝑆𝐷 − 𝑆∗𝐷) + (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷)
+ (𝑅𝐷 − 𝑅∗𝐷)] 𝑑 (𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷)𝑑𝑡+ [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻) + (𝐼𝐻 − 𝐼∗𝐻)
+ (𝑅𝐻 − 𝑅∗𝐻)] 𝑑 (𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻)𝑑𝑡 .

(43)
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From (1) it implies that 𝑑(𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷)/𝑑𝑡 = 𝐴𝐷 −𝑚𝐷(𝑆𝐷+𝐸𝐷+𝐼𝐷+𝑅𝐷) −𝐶𝐷𝐸𝐷−𝜇𝐷𝐼𝐷 and 𝑑(𝑆𝐻+𝐸𝐻+𝐼𝐻+𝑅𝐻)/𝑑𝑡 = 𝐵 − 𝑚(𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻) − 𝜇𝐻𝐼𝐻, which when
plugged into (43) gives

𝑑V𝑑𝑡 = [(𝑆𝐷 − 𝑆∗𝐷) + (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷)+ (𝑅𝐷 − 𝑅∗𝐷)] (𝐴𝐷 − 𝑚𝐷 (𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷)− 𝐶𝐷𝐸𝐷 − 𝜇𝐷𝐼𝐷) + [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻)+ (𝐼𝐻 − 𝐼∗𝐻) + (𝑅𝐻 − 𝑅∗𝐻)] (𝐵𝐻− 𝑚 (𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻) − 𝜇𝐻𝐼𝐻) .
(44)

Now assuming

𝐴𝐷 = 𝑚𝐷 (𝑆∗𝐷 + 𝐸∗𝐷 + 𝐼∗𝐷 + 𝑅∗𝐷) + 𝐶𝐷𝐸∗𝐷 + 𝜇𝐷𝐼∗𝐷,𝐵𝐻 = 𝑚𝐻 (𝑆∗𝐻 + 𝐸∗𝐻 + 𝐼∗𝐻 + 𝑅∗𝐻) + 𝜇𝐻𝐼∗𝐻 (45)

and substituting it into (44), we have

𝑑V𝑑𝑡 = [(𝑆𝐷 − 𝑆∗𝐷) + (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷) + (𝑅𝐷− 𝑅∗𝐷)] [𝑚𝐷 (𝑆∗𝐷 + 𝐸∗𝐷 + 𝐼∗𝐷 + 𝑅∗𝐷) + 𝐶𝐷𝐸∗𝐷 + 𝜇𝐷𝐼∗𝐷− 𝑚𝐷 (𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷) − 𝐶𝐷𝐸𝐷 − 𝜇𝐷𝐼𝐷]+ [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻) + (𝐼𝐻 − 𝐼∗𝐻) + (𝑅𝐻− 𝑅∗𝐻)] [𝑚𝐻 (𝑆∗𝐻 + 𝐸∗𝐻 + 𝐼∗𝐻 + 𝑅∗𝐻) + 𝜇𝐻𝐼∗𝐻− 𝑚 (𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻) − 𝜇𝐻𝐼𝐻] ,𝑑V𝑑𝑡 = [(𝑆𝐷 − 𝑆∗𝐷) + (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷) + (𝑅𝐷− 𝑅∗𝐷)] [(−𝑚𝐷 (𝑆𝐷 − 𝑆∗𝐷) − 𝑚𝐷 (𝐸𝐷 − 𝐸∗𝐷)− 𝑚𝐷 (𝐼𝐷 − 𝐼∗𝐷) − 𝑚𝐷 (𝑅𝐷 − 𝑅∗𝐷) − 𝐶𝐷 (𝐸𝐷 − 𝐸∗𝐷)− 𝜇𝐷 (𝐼𝐷 − 𝐼∗𝐷))] + [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻)+ (𝐼𝐻 − 𝐼∗𝐻) + (𝑅𝐻 − 𝑅∗𝐻)] [(−𝑚𝐻 (𝑆𝐻 − 𝑆∗𝐻)− 𝑚𝐻 (𝐸𝐻 − 𝐸∗𝐻) − 𝑚𝐻 (𝐼𝐻 − 𝐼∗𝐻)− 𝑚𝐻 (𝑅𝐻 − 𝑅∗𝐻) − 𝜇𝐻 (𝐼𝐻 − 𝐼∗𝐻))] .

(46)

This also implies that

𝑑V𝑑𝑡 = −𝑚𝐷 (𝑆𝐷 − 𝑆∗𝐷)2 − (𝐶𝐷 + 𝑚𝐷) (𝐸𝐷 − 𝐸∗𝐷)2
− (𝑚𝐷 + 𝜇𝐷) (𝐼𝐷 − 𝐼∗𝐷)2 − 𝑚𝐷 (𝑅𝐷 − 𝑅∗𝐷)2 − (2𝑚𝐷+ 𝐶𝐷) (𝑆𝐷 − 𝑆∗𝐷) (𝐸𝐷 − 𝐸∗𝐷) − (2𝑚𝐷 + 𝜇𝐷) (𝑆𝐷− 𝑆∗𝐷) (𝐼𝐷 − 𝐼∗𝐷) − (2𝑚𝐷 + 𝜇𝐷 + 𝐶𝐷) (𝐸𝐷 − 𝐸∗𝐷) (𝐼𝐷− 𝐼∗𝐷) − 2𝑚𝐷 (𝑅𝐷 − 𝑅∗𝐷) (𝐼𝐷 − 𝐼∗𝐷) − (2𝑚𝐷 + 𝜇𝐷

+ 𝐶𝐷) (𝑅𝐷 − 𝑅∗𝐷) (𝐼𝐷 − 𝐼∗𝐷) − 𝑚𝐻 (𝑆𝐻 − 𝑆∗𝐻)2− 𝑚𝐻 (𝐸𝐻 − 𝐸∗𝐻)2 − (𝑚𝐻 − 𝜇𝐻) (𝐼𝐻 − 𝐼∗𝐻)2− 𝑚𝐻 (𝑅𝐻 − 𝑅∗𝐻)2 − 2𝑚𝐻 (𝑆𝐻 − 𝑆∗𝐻) (𝐸𝐻 − 𝐸∗𝐻)− (2𝑚𝐻 − 𝜇𝐻) (𝑆𝐻 − 𝑆∗𝐻) (𝐼𝐻 − 𝐼∗𝐻) − (2𝑚𝐻 + 𝜇𝐻)⋅ (𝐸𝐻 − 𝐸∗𝐻) (𝐼𝐻 − 𝐼∗𝐻)− 𝑚𝐻 [(𝐼𝐻 − 𝐼∗𝐻) (𝑅𝐻 − 𝑅∗𝐻)+ (𝑆𝐻 − 𝑆∗𝐻) (𝑅𝐻 − 𝑅∗𝐻)] .
(47)

This shows that 𝑑V/𝑑𝑡 is negative and 𝑑V/𝑑𝑡 = 0, if and
only if 𝑆𝐷 = 𝑆∗𝐷, 𝐸𝐷 = 𝐸∗𝐷, 𝐼𝐷 = 𝐼∗𝐷, 𝑅𝐷 = 𝑅∗𝐷, 𝑆𝐻 =𝑆∗𝐻, 𝐸𝐻 = 𝐸∗𝐻, 𝐼𝐻 = 𝐼∗𝐻, 𝑅𝐻 = 𝑅∗𝐻. Additionally every
solution of (1) with the initial conditions approaches E1 as𝑡 → ∞ (see [38, 39]); therefore, the largest compact invariant
set in {(𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻) ∈ Ω : 𝑑V/𝑑𝑡 ≤ 0}
is the singleton set {E1}. Therefore, from Lasalle’s invariant
principle [41], it implies that the endemic equilibrium E1 is
globally asymptotically stable inΩ wheneverR0 > 1.
4. Numerical Analysis

Considering the parameter values in Table 1, we will ascertain
the numerical importance of our analysis.

4.1. Different Scenarios of the Basic Reproduction Number
R0. We shall denote R0 without pre- and postexposure
prophylaxis (treatment) as R∗0 and R0 without preexpo-
sure prophylaxis and culling as R∗∗0 and the R0 without
postexposure prophylaxis (treatment) and culling as R∗∗∗0 .
Therefore, using the parameter values in Table 1, R∗0 , R

∗∗
0 ,

andR∗∗∗0 are given as follows:

R
∗
0 = 𝛽𝐷𝐷𝐴𝐷𝛿𝛾𝐷(𝛿𝛾𝐷 + 𝑚𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) × (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 ,

R
∗
0 = 3.027,

R
∗∗
0

= (1 − 𝜌𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 ,
R
∗∗
0 = 2.181,

R
∗∗∗
0

= (1 − ]𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)(𝛿𝛾𝐷 + 𝑚𝐷 + 𝛿𝜀𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
R
∗∗∗
0 = 1.914.

(48)

Therefore, from the above calculations it indicates that the
best way in reducing or minimizing the rabies virus in the
dogs compartment is to use more of preexposure prophylaxis
(vaccination).
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Table 1: Parameter values.

Parameter Description Standard value Source𝐴𝐷 Recruitment rate of dogs 3 × 106𝑦−1 [27]𝛼𝐷 Loss of immunity in dogs 1𝑦−1 [27]𝐶𝐷 Death rate of dogs due to culling 0.3𝑦−1 Assumed𝑚𝐷 Natural death rate of dogs 0.056𝑦−1 [27]𝜇𝐷 Disease induced mortality in dogs 1𝑦−1 [27]
]𝐷 Preexposure prophylaxis for dogs 0.25𝑦−1 Assumed𝜌𝐷 Postexposure prophylaxis for dogs 0.2𝑦−1 [27]𝛽𝐷𝐷 Transmission rate in dogs 1.58 × 10−7𝑦−1 [27]𝛾𝐷 Latency period in dogs (2.37/6) 𝑦−1 [27]𝛿𝜀𝐷 Rate of no clinical rabies 0.4𝑦−1 [27]𝐵𝐻 Birth rate (humans) 0.0314𝑦−1 [31]𝛽𝐷𝐻 Transmission rate (dog-humans) 2.29 × 10−12𝑦−1 [27]𝛼𝐻 Loss of immunity (humans) 1𝑦−1 [27]𝑚𝐻 Natural death rate (humans) 0.0074𝑦−1 [31]𝜇𝐻 Disease induced mortality (humans) 1𝑦−1 [27]
]𝐻 Preexposure prophylaxis for humans 0.54𝑦−1 Assumed𝜌𝐻 Postexposure prophylaxis for humans 0.1𝑦−1 [27]𝛾𝐻 Latency rate (humans) (1/6) 𝑦−1 [27]𝛾𝐻𝜀𝐻 Rate of no clinical rabies (humans) 2.4𝑦−1 [27]

4.1.1. Herd Immunity Threshold 𝐻1. Therefore, from the
above numerical values, we are motivated to know the
number of humans or dogs that should be vaccinated when
R∗0 = 3.027.

𝐻1 fl 1 − 1
R∗0

= 0.66. (49)

This shows that if R∗0 = 3.027, then 66% of individuals
and dogs should receive vaccination.

4.2. Sensitivity Analysis. To determine parameters that con-
tribute most to the rabies transmission, we used two sensi-
tivity analysis approach: the normalised forward sensitivity
index as presented in [37] and the Latin hypercube sampling
as described in [42]. To determine the dependence of param-
eters inR0, using a sampling size, 𝑛 = 1000, the partial rank
correction coefficients (PRCC) value of the ten parameters in
R0 are shown in Figure 2(a).The longer the bar in Figure 2(a)
suggests that the statistical influence of those parameters to
changes in R0 is high. Also, using the normalised forward
sensitivity index gives the following values and the nature of
their signs in Table 2, based on the parameter value given in
Table 1.The plus sign orminus sign signifies that the influence
is positive or negative, respectively [42],

Γ𝛽𝐷𝐷
R0

= 𝜕R0𝜕𝛽𝐷 𝛽𝐷𝐷R0
= 1,

Γ𝐴𝐷
R0

= 𝜕R0𝜕𝐴𝐷 𝐴𝐷R0 = 1,
Γ𝜇𝐷
R0

= 𝜕R0𝜕𝜇𝐷 𝜇𝐷
R0

= −𝜇𝐷(𝑚𝐷 + 𝜇𝐷) = −0.95,

Γ𝛿𝜀𝐷
R0

= 𝜕R0𝜕𝛿𝜀𝐷 𝛿𝜀𝐷R0
= 𝛿𝜀𝐷((1 − 𝜌𝐷) 𝛿𝛾𝐷 − 𝛿𝜀𝐷 − 𝐶𝐷 − 𝑚𝐷 − 𝜌𝐷)= −1.61,

Γ𝐶𝐷
R0

= 𝜕R0𝜕𝐶𝐷 𝐶𝐷R0
= 𝐶𝐷((1 − 𝜌𝐷) 𝛿𝛾𝐷 − 𝛿𝜀𝐷 − 𝐶𝐷 − 𝑚𝐷 − 𝜌𝐷)= −0.45,

Γ𝛼𝐷
R0

= 𝜕R0𝜕𝛼𝐷 𝛼𝐷R0 = 0.28,
Γ𝑚𝐷
R0

= 𝜕R0𝜕𝑚𝐷 𝑚𝐷R0 = −1.64,
Γ𝛿𝛾𝐷
R0

= 𝜕R0𝜕𝛿𝛾𝐷 𝛿𝛾𝐷R0 = 1.33,
Γ𝜌𝐷
R0

= 𝜕R0𝜕𝜌𝐷 𝜌𝐷
R0

= −0.5,
Γ]𝐷
R0

= 𝜕R0𝜕]𝐷 ]𝐷
R0

= −0.52.
(50)

Therefore, from Table 2 it shows that an addition or a
reduction in the values of 𝛽𝐷𝐷, 𝛼𝐷, 𝛿𝛾𝐷, and 𝐴𝐷 will have
an increase or a decrease in the spread of the rabies virus. For
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(b) Effect of varying recruitment rate on the infected humans
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(c) Effect of an increase inR0 on the infected humans
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(d) Effect of varying the initial infected dog population size on the infected
humans

Figure 2: The graphical representation of some parameters inR0 and the effect of varying some initial state values on the model.

example, Γ𝛽𝐷
R0

= 1 indicates that increasing or reducing the
transmission rate by 5% may increase or reduce the number
of secondary infection by 5%. The negative sign in Table 2
will have a reduction in the basic reproduction number,R0,
when the values of those parameters are increased, and a
reduction in the values of 𝜌𝐷, ]𝐷, 𝜇𝐷, 𝑚𝐷, and 𝛿𝜀𝐷 will lead
to an increase in the number of secondary infections.

TheLatin hypercube sampling (LHS) in Figure 2(a) shows
that 𝜇𝐷, 𝐶𝐷, 𝛼𝐷, and 𝛿𝛾𝐷 have a minimal influence on the
rate at which the rabies virus is spread. The Latin hypercube
sampling (LHS) plots for the ten parameters inR0 show that
culling of exposed dogs does not actuallyminimize the spread

of rabies as compared to vaccination of susceptible dogs.
Figure 2(a) also shows that the most influential parameter in
spreading the infection is 𝛽𝐷𝐷 followed by 𝐴𝐷. Figure 2(c)
shows that an increase in the basic reproduction number
will contribute to a high level of secondary infection in
the human population. Similarly, Figure 2(a) shows that
vaccination of dogs ]𝐷 is themost effective way of controlling
the rabies virus in the dog population as compared to the
treatment/quarantine of exposed dogs, 𝜌𝐷. Figure 3(a) gives
the contour nature of ]𝐷 and 𝜌𝐷, which shows a more sat-
urated effect on the basic reproduction number. Figure 3(b)
shows that 𝛽𝐷𝐷 and 𝛼𝐷 have a positive relation with the basic
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Table 2: Sensitivity signs ofR0 to the parameters in (24).

Parameter Description Sensitivity sign𝛽𝐷𝐷 Transmission rate of dogs +ve𝐴𝐷 Recruitment rate of dogs +ve𝜇𝐷 Disease induce death rate of dogs −ve𝛿𝜀𝐷 Rate of no clinical rabies −ve𝐶𝐷 Culling of exposed dogs −ve𝛼𝐷 Loss of immunity in dogs +ve𝑚𝐷 Natural death rate of dogs −ve𝛿𝛾𝐷 Rate at which exposed dogs become infective (infective rate) +ve𝜌𝐷 Postexposure prophylaxis (treatment/quarantined) −ve
]𝐷 Preexposure prophylaxis (vaccination) −ve
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(c) The 3D plot ofR0 to𝑚𝐷 and 𝜇𝐷
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(d) The 3D plot ofR0 to 𝜌𝐷 and ]𝐷

Figure 3: The graphical representation of some parameters inR0.

reproduction numberR0. Therefore, an increase in 𝛽𝐷𝐷 and𝛼𝐷 will have a direct increase in the spread of the rabies virus.
Figure 2(b) indicates that with a high number of recruitment
of dogs into the susceptible dog’s compartment will have
a corresponding high increase in the number of infected
humans. Figure 2(d) demonstrates that a high number of
infected dogs in the compartment will lead to an increase

in the number of infected humans. Figure 3(c) shows that
a high increase in the number of disease induce death rate
and natural death rate will have a negative reflection on
R0; biologically, we would not recommend this approach in
minimizing the spread of the disease, since an increase in
both 𝜇𝐷 and 𝑚𝐷 may result in a high rate of the disease in
the human population, even though 𝜇𝐷 and 𝑚𝐷 naturally
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reduce the number of susceptible and infected dogs in
the population. Finally, Figure 3(d) shows the 3D plot of
Figure 3(a).

5. Objective Functional

Given that 𝑦(𝑡) ∈ 𝑌 ∈ R𝑛 is a state variable of model system
(1) and 𝑢(𝑡) ∈ 𝑈 ∈ R𝑛 are the control variables at any time (𝑡)
with 𝑡(0) ≤ 𝑡 ≤ 𝑡(𝑓), then an optimal control problem con-
sists of finding a piecewise continuous control 𝑢(𝑡) and its
corresponding state 𝑦(𝑡). This optimizes the cost functional𝐽[𝑦(𝑡), 𝑢(𝑡)] using Pontryagin’s maximum principle [43].
Therefore we set the following likelihood control strate-
gies:

(1) 𝑢1 = ]𝐷 is the control effort aimed at increasing the
immunity of susceptible dogs (preexposed prophy-
laxis).

(2) 𝑢2 = 𝜌𝐷 is the control effort aimed at treating the
exposed dogs (postexposed prophylaxis).

(3) 𝑢3 = ]𝐻 is the control effort aimed at increasing
the immunity of susceptible humans (preexposure
prophylaxis).

(4) 𝑢4 = 𝜌𝐻 is the control effort aimed at treating the
exposed humans (postexposed prophylaxis).

Our goal is to seek optimal controls such as ]∗𝐷, 𝜌∗𝐷, ]∗𝐻,
and 𝜌∗𝐻 that minimize the objective functional:

𝐽 = min ∫𝑡𝑓
𝑡0
[𝐴1𝐸𝐷 + 𝐴2𝐸𝐻 + 𝐴3𝐼𝐷 + 𝐴4𝐼𝐻 + 𝐵12 ]2𝐷 + 𝐵22 𝜌2𝐷 + 𝐵32 ]2𝐻 + 𝐵42 𝜌2𝐻] 𝑑𝑡. (51)

Therefore, (51) is subject to

𝑑𝑆𝑑𝑑𝑡 = 𝐴𝐷 − (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − (𝑚𝐷 + ]𝐷) 𝑆𝐷 + 𝛿𝜀𝐷𝐸𝐷 + 𝛼𝐷𝑅𝐷,𝑑𝐸𝑑𝑑𝑡 = (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷,𝑑𝐼𝐷𝑑𝑡 = (1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷,𝑑𝑅𝐷𝑑𝑡 = ]𝐷𝑆𝐷 + 𝜌𝐷𝐸𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷,𝑑𝑆𝐻𝑑𝑡 = 𝐵𝐻 − (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝑑 − (𝑚𝐻 + ]𝐻) 𝑆𝐻 + 𝛿𝐻𝜀𝐻𝐸𝐻 + 𝛼𝐻𝑅𝐻,𝑑𝐸𝐻𝑑𝑡 = (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝑑 − ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻,𝑑𝐼𝐻𝑑𝑡 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻,𝑑𝑅𝐻𝑑𝑡 = ]𝐻𝑆𝐻 + 𝜌𝐻𝐸𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻, 𝑆𝐷 > 0, 𝐸𝐷 ≥ 0, 𝐼𝐷 ≥ 0, 𝑅𝐷 ≥ 0, 𝑆𝐻 > 0, 𝐸𝐻 ≥ 0, 𝐼𝐻 ≥ 0, 𝑅𝐻 ≥ 0.

(52)

From (51) the quantities 𝐴1 and 𝐴2 denote the weight
constants of the exposed classes and𝐴3 and𝐴4 are the weight
of the infectious classes, respectively. 𝐵1, 𝐵2, 𝐵3, 𝐵4 are the
weight constants for the dog and human controls. 𝐵1]2𝐷,𝐵2𝜌2𝐷, 𝐵3]2𝐻, 𝐵4𝜌2𝐻 describe the cost associated with rabies
vaccination and treatment.The square of the control variables
shows the severity of the side effects of the vaccination and
treatment. Employing Pontryagin’s maximum principle, we
form the Hamiltonian equation with state variables 𝑆𝐷 = 𝑆∗𝐷,

𝐸𝐷 = 𝐸∗𝐷, 𝐼𝐷 = 𝐼∗𝐷, 𝑅∗𝐷 and 𝑆𝐻 = 𝑆∗𝐻, 𝐸𝐻 = 𝐸∗𝐻, 𝐼𝐻 =𝐼∗𝐻, 𝑅∗𝐻 as
𝐻 = 𝐴1𝐸∗𝐷 + 𝐴2𝐸∗𝐻 + 𝐴3𝐼∗𝐷 + 𝐴4𝐼∗𝐻 + 𝐵12 ]2𝐷 + 𝐵22

⋅ 𝜌2𝐷 + 𝐵32 ]2𝐻 + 𝐵42 𝜌2𝐻 + 𝜆1 [𝐴𝐷− (1 − ]𝐷) 𝛽𝐷𝐷𝑆∗𝐷𝐼∗𝐷 − (𝑚𝐷 + ]𝐷) 𝑆∗𝐷 + 𝛿𝜀𝐸∗𝐷
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+ 𝛼𝐷𝑅∗𝐷] + 𝜆2 [(1 − ]𝐷) 𝛽𝐷𝐷𝑆∗𝐷𝐼∗𝐷− ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸∗𝐷]+ 𝜆3 [(1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸∗𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼∗𝐷]+ 𝜆4 []𝐷𝑆∗𝐷 + 𝜌𝐷𝐸∗𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅∗𝐷] + 𝜆5 [𝐵𝐻− (1 − ]𝐻) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷 − (𝑚𝐻 + ]𝐻) 𝑆∗𝐻 + 𝛿𝐻𝜀𝐻𝐸∗𝐻+ 𝛼𝐻𝑅∗𝐻] + 𝜆6 [(1 − ]𝐻) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷− ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸∗𝐻]+ 𝜆7 [(1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸∗𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼∗𝐻]+ 𝜆8 []𝐻𝑆∗𝐻 + 𝜌𝐻𝐸∗𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅∗𝐻] .
(53)

Considering the existence of adjoint functions 𝜆𝑖, 𝑖 =1, 2, . . . , 8, satisfying𝑑𝜆1𝑑𝑡 = − 𝜕𝐻𝜕𝑆∗𝐷= 𝜆1 ((1 − ]𝐷) 𝛽𝐷𝐷𝐼∗𝐷 + 𝑚𝐷 + ]𝐷)− 𝜆2 (1 − ]𝐷) 𝛽𝐷𝐷𝐼∗𝐷 − 𝜆4]𝐷,𝑑𝜆2𝑑𝑡 = − 𝜕𝐻𝜕𝐸∗𝐷= 𝜆2 ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)− 𝜆1𝛿𝜀𝐷 − 𝜆3 (1 − 𝜌𝐷) 𝛿𝛾𝐷 − 𝜆4𝜌𝐷 − 𝐴1,𝑑𝜆3𝑑𝑡 = − 𝜕𝐻𝜕𝐼∗𝐷= 𝜆3 (𝑚𝐷 + 𝜇𝐷) + 𝜆1 (1 − ]𝐷) 𝛽𝐷𝐷𝑆∗𝐷+ 𝜆5 (1 − ]𝐻) 𝛽𝐷𝐻𝑆∗𝐻 − 𝜆2 (1 − ]𝐷) 𝛽𝐷𝑆∗𝐷− 𝜆6 (1 − ]𝐻) 𝛽𝐷𝐻𝑆∗𝐻 − 𝐴3,𝑑𝜆4𝑑𝑡 = − 𝜕𝐻𝜕𝑅∗𝐷 = 𝜆4 (𝑚𝐷 + 𝛼𝐷) − 𝜆1𝛼𝐷,𝑑𝜆5𝑑𝑡 = − 𝜕𝐻𝜕𝑆∗𝐻= 𝜆5 ((1 − ]𝐻) 𝛽𝑑𝐻𝐼∗𝐷 + 𝑚𝐻 + ]𝐻)− 𝜆6 (1 − ]𝐻) 𝛽𝐷𝐻𝐼∗𝐷 − 𝜆8]𝐻,𝑑𝜆6𝑑𝑡 = − 𝜕𝐻𝜕𝐸∗𝐻= 𝜆6 ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻)− 𝜆5𝛿𝐻𝜀𝐻 − 𝜆7 (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 − 𝜆8𝜌𝐻 − 𝐴2,

𝑑𝜆7𝑑𝑡 = − 𝜕𝐻𝜕𝐼∗𝐻 = 𝜆7 (𝑚𝐻 + 𝜇𝐻) − 𝐴4,
𝑑𝜆8𝑑𝑡 = − 𝜕𝐻𝜕𝑅∗𝐻 = 𝜆8 (𝑚𝐻 + 𝛼𝐻) − 𝜆5𝛼𝐻,

(54)

with transversality condition 𝜆𝑖(𝑡𝑓) = 0 for 𝑖 = 1, . . . , 8 for
the control set 𝑢𝑖, hence we have

𝜕𝐻𝜕𝑢𝑖 = 0, where 𝑖 = 1, 2, 3, 4,
𝜕𝐻𝜕]𝐷 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨]𝐷=]∗𝐷 fl 𝐵1]∗𝐷 − 𝜆1𝑆∗𝐷 + 𝜆4𝑆∗𝐷 + 𝜆1𝛽𝐷𝐷𝑆∗𝐷𝐼∗𝐷

− 𝜆2𝛽𝐷𝑆∗𝐷𝐼∗𝐷 = 0,
]∗𝐷 = (𝜆1𝑆∗𝐷 − 𝜆4𝑆∗𝐷) + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ,

𝜕𝐻𝜕𝜌𝐷 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌𝐷=𝜌∗𝐷 fl 𝐵2𝜌∗𝐷 − 𝜆1𝐸∗𝐷 + 𝜆4𝐸∗𝐷 + 𝜆2𝐸𝐷𝛿𝛾𝐷𝐸∗𝐷
− 𝜆3𝛿𝛾𝐷𝐸∗𝐷 = 0,

𝜌∗𝐷 = (𝜆2𝐸∗𝐷 − 𝜆4𝐸∗𝐷) + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ,
𝜕𝐻𝜕]𝐻 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨]𝐻=]∗𝐻 fl 𝐵3]∗𝐻 − 𝜆5𝑆𝐻 + 𝜆8𝑆𝐻 + 𝜆5𝛽𝐷𝐻𝑆𝐻𝐼𝐷

− 𝜆6𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷 = 0,
]∗𝐻 = (𝜆5𝑆∗𝐻 − 𝜆8𝑆∗𝐻) + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ,

𝜕𝐻𝜕𝜌𝐻 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌𝐻=𝜌∗𝐻 fl 𝐵4𝜌∗ − 𝜆6𝐸∗𝐻 + 𝜆8𝐸∗𝐻 + 𝜆6𝛿𝐻𝛾𝐻𝐸∗𝐻
− 𝜆7𝛿𝐻𝛾𝐻𝐸∗𝐻 = 0,

𝜌∗𝐻 = (𝜆6𝐸∗𝐻 − 𝜆8𝐸∗𝐻) + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 .

(55)

Now, using an appropriate variation argument and taking
the bounds into account, the optimal control strategies are
given as

]∗𝐷 = min{max(0, (𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) ,
]𝐷max} , (56)

𝜌∗𝐷 = min{max(0, (𝜆2 − 𝜆4) 𝐸∗𝐷 + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ) ,
𝜌𝐷max} , (57)
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]∗𝐻 = min{max(0, (𝜆5 − 𝜆8) 𝑆∗𝐻 + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ) ,
]𝐻max} , (58)

𝜌∗𝐻 = min{max(0, (𝜆6 − 𝜆8) 𝐸∗𝐻 + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 ) ,
𝜌𝐻max} . (59)

Optimality System. Substituting the representation of the opti-
mal vaccination and treatment control with corresponding
adjoint function, we have the optimality system as

𝑑𝑆𝐷𝑑𝑡 = 𝐴𝐷 − (1 −min{max(0,
(𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) , ]𝐷max})
⋅ 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − 𝑚𝐷𝑆𝐷 −min{max(0,
(𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) , ]𝐷max}𝑆𝐷
+ 𝛿𝜀𝐷𝐸𝐷 + 𝛼𝐷𝑅𝐷,𝑑𝐸𝐷𝑑𝑡 = (1 −min{max(0,
(𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) , ]𝐷max})
⋅ 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − ((1
−min{max(0, (𝜆2 − 𝜆4) 𝐸∗𝐷 + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ) ,
𝜌max})𝛿𝛾𝐷 + 𝑚𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)𝐸𝐷 −min{max(0,
(𝜆2 − 𝜆4) 𝐸∗𝐷 + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ) , 𝜌𝐷max}𝐸𝐷,

𝑑𝐼𝐷𝑑𝑡 = 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷,
𝑑𝑅𝐷𝑑𝑡 = min{max(0,
(𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) , ]𝐷max}𝑆𝐷
− (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷 +min{max(0,
(𝜆2 − 𝜆4) 𝐸∗𝐷 + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ) , 𝜌𝐷max}𝐸𝐷,

𝑑𝑆𝐻𝑑𝑡 = 𝐵𝐻 − (1 −min{max(0,
(𝜆5 − 𝜆8) 𝑆∗𝐻 + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ) , ]𝐻max})
⋅ 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − 𝑚𝐻𝑆𝐻 −min{max(0,
(𝜆5 − 𝜆8) 𝑆∗𝐻 + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ) , ]𝐻max}𝑆𝐻
+ 𝛿𝐻𝜀𝐻𝐸𝐻 + 𝛼𝐻𝑅𝐻,𝑑𝐸𝐻𝑑𝑡 = (1 −min{max(0,
(𝜆6 − 𝜆8) 𝐸∗𝐻 + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 ) , 𝜌𝐻max})
⋅ 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − (𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻
−min{max(0,
(𝜆6 − 𝜆8) 𝐸∗𝐻 + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 ) , 𝜌𝐻max}𝐸𝐻,

𝑑𝐼𝐻𝑑𝑡 = 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻,
𝑑𝑅𝐻𝑑𝑡 = min{max(0,
(𝜆5 − 𝜆8) 𝑆∗𝐻 + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ) , ]𝐻max}𝑆𝐻
− (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻 +min{max(0,
(𝜆6 − 𝜆8) 𝐸∗𝐻 + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 ) , 𝜌𝐻max}𝐸𝐻,

𝑑𝜆1𝑑𝑡 , 𝑑𝜆2𝑑𝑡 , 𝑑𝜆3𝑑𝑡 , 𝑑𝜆4𝑑𝑡 , 𝑑𝜆5𝑑𝑡 , 𝑑𝜆6𝑑𝑡 , 𝑑𝜆7𝑑𝑡 , 𝑑𝜆8𝑑𝑡 ,
with, 𝜆𝑖 (𝑡𝑓) = 0, 𝑖 = 1, 2, 3, 4, 5, 6, 7, 8.

(60)

5.1. Numerical Simulations of the Optimality System. To
determine the control strategies ]𝐷, 𝜌𝐷, ]𝐻, and 𝜌𝐻, as given
in the objective functional, we began an iteration of themodel
until convergence is achieved. The results of the simulation
of the control strategies are displayed below. We consider
equal weights of (𝐴1 = 1, 𝐴2 = 1, 𝐴3 = 1, 𝐴4 = 1) for both
exposed and infected classes. We varied the cost associated
with the objective functional, which indicate that, with low
cost of vaccination, the rate at which individuals will seek for
vaccination of their susceptible dogs will increase, and this
could result in low transmission of rabies in a heterogeneous
population. We consider the various cost of preexposure
prophylaxis and postexposure prophylaxis to be (𝐵1 = 1,
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Figure 5: The trajectories of the model with and without pre- and postexposure prophylaxis on exposed humans and that of the exposed
dogs.

𝐵2 = 4, 𝐵3 = 1, 𝐵4 = 4). We found that the optimal time
in controlling the infection using preexposure prophylaxis in
dogs is much better than using postexposure prophylaxis in
dogs, as shown by the trajectories of the red line and blue line
in Figure 4, respectively. The blue line in Figure 4 indicates
that applying postexposure prophylaxiswill considerably take
a longer time in controlling of rabies in dogs. The green line
in Figure 4 signifies that preexposure prophylaxis in humans

increases the immunity levels of humans and hence reduces
the rate at which individuals move to the infected stage. Fig-
ures 5 and 6 show the effect of using only one control strategy
on themodel.Therefore, Figure 5(a) shows that applying only
postexposure prophylaxis (treatment or quarantine) of dogs
has a low positive impact on the model. Figure 5(b) shows
that sticking to the use of pre- and postexposure prophylaxis
in human without administering pre- and postexposure
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Figure 6: The trajectories of the model with and without pre- and postexposure prophylaxis on infected humans and that of the infected
dogs.

prophylaxis in the dog population will result in a high of the
rabies infection in the human population. Figure 6(a) also
shows that combining pre- and postexposure prophylaxis
(vaccination and treatment/quarantine) in the dog com-
partment will reduce the spread of the rabies virus, thereby
reducing the using of pre- and postexposure prophylaxis
(vaccination and treatment) in humans. Figure 6(b) indicates
that a rapid use of pre- and postexposure prophylaxis in the
human population will reduce the number of rabies deaths in
the human population. Figure 7 shows the simulation effects
of applying both controls on the model. Figure 7(a) shows
that, with the use of the optimal control strategies, the rate of
the infection in the susceptible dogs will reduce significantly.
Figures 7(b) and 7(c) show that there is a proportional
decrease in the number of exposed and infected dogs when
the control measures are applied. Similarly, Figures 7(e) and
7(f) show a significant decrease in the number of infected
and exposed humans when the control measures are applied.
Figure 7(d) shows that there is a proportional increase in the
number of recovered dogs when the control measures are
applied. Finally, Figures 8(a)–8(h) show the simulation effect
of corresponding adjoint functions.

6. Discussion

The numerical simulations of the resulting optimality system
show that, during the case where it is more expensive to
vaccinate than treatment, more resources should be invested
in treating affected individuals until the disease prevalence
begins to fall. This option, however, does not reduce the
number of individuals expose to the disease quickly enough,
thus resulting in an overall increase in the infected human
population. On the other hand, if it is more expensive to

treat than to vaccinate, then more susceptible dogs should
be vaccinated, so as to lower the rate at which newborn dogs
get infected. Nevertheless, in the case where both measures
are equally expensive, the simulation shows that the optimal
way to drive the epidemic towards eradication within any
specified period is to use more preexposure prophylaxis in
both compartments.

7. Conclusion

We studied an optimal control model of rabies transmission
dynamics in dogs and the best way of reducing death rate
of rabies in humans. The stability analysis shows that the
disease-free equilibrium is locally and globally asymptotically
stable. We also obtained an optimal control solution for the
model which predicts that the optimal way of eliminating
deaths from canine rabies as projected by the global alliance
for rabies control [30] is using more of preexposure pro-
phylaxis in both dogs and humans and public education;
however, the results show that the effective and optimal
consideration of preexposure prophylaxis and postexposure
prophylaxis in humans without an optimal use of vaccination
in the dog population is not beneficial if total elimination of
the disease is desirable in Africa and Asia. Any combination
strategy which involves vaccination in the dogs’ population
gives a better result and hence it may be beneficial in
eliminating the disease in Asia, Africa, and Latin America.
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Figure 7: The trajectories of the model with and without optimal control on individual compartments.
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Figure 8: The trajectories of the model with and without optimal control on individual compartments and corresponding adjoint function.
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We consider the so-called mean-variance portfolio selection problem in continuous time under the constraint that the short-
selling of stocks is prohibited where all themarket coefficients are random processes. In this situation the Hamilton-Jacobi-Bellman
(HJB) equation of the value function of the auxiliary problem becomes a coupled system of backward stochastic partial differential
equation. In fact, the value function 𝑉 often does not have the smoothness properties needed to interpret it as a solution to the
dynamic programming partial differential equation in the usual (classical) sense; however, in such cases 𝑉 can be interpreted as
a viscosity solution. Here we show the unicity of the viscosity solution and we see that the optimal and the value functions are
piecewise linear functions based on some Riccati differential equations. In particular we solve the open problem posed by Li and
Zhou and Zhou and Yin.

1. Introduction

The mean-variance approach proposed in 1952 by the Nobel
prize winning economist Markowitz [1] has become the
foundation ofmodern finance by discovering the staticmean-
variance portfolio selection formulation in amarket in which
shorting is not allowed. This theory has inspired numerous
extensions and applications. For instance, Li and Ng [2] and
Zhou and Li [3] successfully extended the unconstrained
mean-variance portfolio selection formulation to the multi-
period setting. Zhou and Yin [4] consider the mean-variance
portfolio selection problem in continuous time where the
market parameters including the bank interest rate and the
appreciation and volatility rates of the stocks depend on the
market mode that switches among a finite number of states
where random regime switching is assumed to be indepen-
dent of the underlying Brownian motion. This essentially
renders the underlying market incomplete. A Markov chain
modulated diffusion formulation is employed to model the
problem and Zhou and Yin [4] use the techniques of stochas-
tic linear quadratic (LQ) control to derive mean-variance
efficient portfolios and efficient frontier based on solutions
of two systems of linear ordinary differential equations.

After Li and Ng published [2], Markowitz suggested
that one of them extends the results to the dynamic mean-
variance formulation with no-shorting constraint and pro-
posed a conjecture of a piecewise quadratic value function
for such a situation. Influenced by Markowitz’s comments, Li
et al. [5] formulated the LQ control problem by constraining
the control portfolio to take nonnegative values due to the
no-shorting restriction on the market mode (not random
processes). They derived the optimal portfolio policy for
the continuous-time mean-variance model with no-shorting
constraint using the duality method [6].

However, there are several interesting problems that
deserve further investigation; for instance, Li et al. [5] open
a problem by stating in their conclusion that “an immediate
open problem is to extend the results in this paper to the case
where all the market coefficients are random processes.” In
this paper we solve this problem.

By making use of the techniques of LQ control, we
see that, in an attempt to pursue the method of dynamic
programming in the auxiliary problem, the value function
which is a generalized solution to the Hamilton-Jacobi equa-
tion coupled is not smooth enough to satisfy the dynamic
programming equations in the classical or usual sense.

5
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A difficulty with the concept of generalized solution is that
the dynamic programming together with the boundary data
typically has many generalized solutions. Among them, there
is one provided by Crandall and Lions [7], called the viscosity
solution, which is the natural generalized solution. This
unique viscosity solution turns out to coincide with the value
function 𝑉 [8]. The central component of our solution to
the problem of Li et al. [5] is the proof of the unicity of
the viscosity solution of the value function of the auxiliary
problem, which we establish by adapting the techniques of
[9]. By making use of the duality method, we also derive
a solution for efficient portfolio. The value function of the
auxiliary problem depends on a set of Riccati differential
equations and we use the Magnus approach to provide
the solution. A work is in progress to develop numerical
implementation. This will be subject of a future publication.

2. Viscosity Solutions for Weakly Coupled
Systems of Second-Order Hamilton-Jacobi-
Bellman Equation

2.1. Notation. Wemake use of the following notations:

(i) (Ω,F, 𝑃): a fixed probability space on which we
defined standard 𝑛-dimensional Brownian motion
𝑊(𝑡) ≡ (𝑊1(𝑡), . . . ,𝑊𝑛(𝑡))

󸀠 and continuous-time
stationary Markov chain 𝛼(𝑡) taking value in a finite
state spaceM = {1, 2, . . . , 𝑚} such that𝑊(𝑡) and 𝛼(𝑡)
are independent of each other. The Markov chain has
a generator 𝑄 = (𝑞𝑖𝑗)𝑚×𝑚 and stationary transition
probabilities:

𝑝𝑖𝑗 (𝑡) = 𝑝 (𝛼 (𝑡) = 𝑗 | 𝛼 (0) = 𝑖) ,

𝑡 ≥ 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(1)

(ii) DefineF𝑡 = 𝜎{(𝑊(𝑠), 𝛼(𝑠)) : 0 ≤ 𝑠 ≤ 𝑡}.
(iii) B(Σ) = 𝜎-algebra of Borel sets of Σ.
(iv) Consider the following:

𝐸𝑡𝑥Φ (𝑥 (𝑠)) = ∫
Σ
Φ(𝑦) 𝑃̂ (𝑡, 𝑥, 𝑠, 𝑑𝑦) , 𝑡 < 𝑠.

𝑃̂ (𝑡, 𝑥, 𝑠, 𝐵) = 𝑃 (𝑥 (𝑠) ∈ 𝐵 | 𝑥 (𝑡) = 𝑥) ,

∀𝐵 ∈ B (Σ) .

(2)

(v) Hilbert space H with the norm ‖ ⋅ ‖H: define the
Banach space

𝐿
2
F (0, 𝑇;H) = {𝜑 (⋅) | 𝜑 (⋅) is an F𝑡-adapted,

H-valued measurable process on [𝑎, 𝑏] ,

𝐸∫

𝑏

𝑎

󵄩󵄩󵄩󵄩𝜑 (𝑡, 𝜔)
󵄩󵄩󵄩󵄩H

𝑑𝑡 < ∞} ,

(3)

with norm

󵄩󵄩󵄩󵄩𝜑 (⋅)
󵄩󵄩󵄩󵄩F,2 = 𝐸∫

𝑏

𝑎

󵄩󵄩󵄩󵄩𝜑 (𝑡, 𝜔)
󵄩󵄩󵄩󵄩H

𝑑𝑡 < ∞. (4)

(vi) 𝑀󸀠: the transpose of any vector or matrix.
(vii) 𝑀𝑗: the 𝑗th component of any vector𝑀;

we will use indifferently this notation 𝑀(𝑡, 𝑥, 𝑢, 𝑖) ≡

𝑀𝑖(𝑡, 𝑥, 𝑢).
(viii) 𝐶([0, 𝑇]; 𝑋): the Banach space of 𝑋-valued continu-

ous functions on [0, 𝑇].
(ix) 𝐶2([0, 𝑇] × R𝑛): the space of all twice continuously

differentiable functions on [0, 𝑇] ×R𝑛.
(x) Consider 𝐷𝑥 = 𝜕(⋅)/𝜕𝑥, 𝐷2𝑥 = 𝜕

2
(⋅)/𝜕𝑥

2
, 𝐷

𝛼
(⋅) =

𝜕
|𝛼|
(⋅)/𝜕𝑥

𝛼1
1 ⋅ ⋅ ⋅ 𝜕𝑥

𝛼𝑛
𝑛 , and 𝑓̇(𝑡) = (𝑑/𝑑𝑡)𝑓(𝑡), 𝜕𝑡 = 𝜕/𝜕𝑡.

(xi) Consider

Q = [0, 𝑇] ×D, D ⊂ R. (5)

(xii) Kronecker delta symbol:

𝛿𝑖𝑗 (𝑡) =
{

{

{

0 if 𝑖 ̸= 𝑗

1 if 𝑖 = 𝑗.

(6)

(xiii) [𝐴, 𝐵] ≡ 𝐴𝐵 − 𝐵𝐴 (Lie bracket), 𝐴, 𝐵 matrices with
appropriate dimension.

(xiv) Consider𝑊𝑘,𝑝(Ω) = {𝑢 ∈ 𝐿
𝑝
(Ω) : 𝐷

𝛼
𝑢 ∈ 𝐿

𝑝
(Ω), 1 ≤

𝑝 ≤ ∞, ∀|𝛼| ≤ 𝑘}.

(xv) 𝐶𝑏(Σ) is bounded function in Σ.
(xvi) If 𝐹 is a real-valued function on a set 𝑈 which has a

minimum on 𝑈, then
argmin

V∈𝑈
𝐹 (V) = {V∗ ∈ 𝑈 : 𝐹 (V∗) ≤ 𝐹 (V) , ∀V ∈ 𝑈} . (7)

3. Notion of Viscosity Solution

We consider the following coupled system of backward PDEs:

𝜕𝑡𝑉𝑖 (𝑡, 𝑥)

+ inf
𝑢≥0

{
1

2
𝑔𝑖 (𝑡, 𝑥 (𝑡) , 𝑢) 𝑔𝑖 (𝑡, 𝑥 (𝑡) , 𝑢)

󸀠
𝐷
2
𝑥𝑉𝑖 (𝑡, 𝑥)

+ 𝑓𝑖 (𝑡, 𝑥 (𝑡) , 𝑢)𝐷𝑥𝑉𝑖 (𝑡, 𝑥)} −∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 [𝑉𝑖 (𝑡, 𝑥)

− 𝑉𝑗 (𝑡, 𝑥)] = 0,

𝑉𝑖 (𝑇, 𝑥) = 𝑔 (𝑥)

(𝑡, 𝑥) ∈ Q where 𝑢 (𝑡) = (𝑢1 (𝑡) , . . . , 𝑢𝑚 (𝑡))
󸀠
,

(8)

and the conditions on matrix (𝑞𝑖𝑗)1≤𝑖,𝑗≤𝑛 are

𝑞𝑘𝑙 > 0, for 𝑘 ̸= 𝑙, 𝑞𝑘𝑘 < 0,

𝑚

∑

𝑙=1

𝑞𝑘𝑙 = 0 for 𝑘 = 1, . . . , 𝑚.

(9)
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We suppose

𝑓𝑖 (𝑡, 𝑥 (𝑡) ; 𝑢) , 𝑔𝑖 (𝑡, 𝑥 (𝑡) , 𝑢) ∈ 𝑊
2,∞

(Q) . (10)

Under appropriate regularity assumptions on 𝜕Q and the
coefficients, we define and prove existence and uniqueness
results of the viscosity solutions to (8).

3.1. Viscosity Solution Definition. It is well known that (8)
does not in general have classical smooth solutions.We define
a generalized concept of solution called a viscosity solution
[7].

Definition 1 (𝑤 ∈ (𝐶
2
𝑏(Q))

𝑚). 𝑤 is a viscosity subsolution
(supersolution) of system (8), if, for all 𝜙𝑖 ∈ 𝐶

2
(Q),

𝜕𝑡𝜙𝑖 (𝑡0, 𝑥0)

+ inf
𝑢≥0

{
1

2
𝑔𝑖 (𝑡0, 𝑥0, 𝑢) 𝑔𝑖 (𝑡0, 𝑥0, 𝑢)

󸀠
𝐷
2
𝑥𝜙𝑖 (𝑡0, 𝑥0)

+ 𝑓𝑖 (𝑡0, 𝑥0, 𝑢)𝐷𝑥𝜙𝑖 (𝑡0, 𝑥0)} −∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 [𝑤𝑖 (𝑡0, 𝑥0)

− 𝑤𝑗 (𝑡0, 𝑥0)] ≥ 0,

(11)

𝜕𝑡𝜙𝑖 (𝑡0, 𝑥0)

+ inf
𝑢≥0

{
1

2
𝑔𝑖 (𝑡0, 𝑥0, 𝑢) 𝑔𝑖 (𝑡0, 𝑥0, 𝑢)

󸀠
𝐷
2
𝑥𝜙𝑖 (𝑡0, 𝑥0)

+ 𝑓𝑖 (𝑡0, 𝑥0, 𝑢)𝐷𝑥𝜙𝑖 (𝑡0, 𝑥0)} −∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 [𝑤𝑖 (𝑡0, 𝑥0)

− 𝑤𝑗 (𝑡0, 𝑥0)] ≤ 0,

(12)

respectively, whenever 𝑤𝑖 − 𝜙𝑖 has a local maximum (mini-
mum) at (𝑡0, 𝑥0) ∈ Q; 𝑤 is a viscosity solution if it is both a
viscosity subsolution and supersolution.

3.2. Uniqueness Result. Next, we can let

(i)

H𝑖 (𝑡, 𝑥, 𝑝, 𝐴)

= inf
𝑢≥0

{
1

2
𝑔𝑖 (𝑡, 𝑥, 𝑢) 𝑔𝑖 (𝑡, 𝑥, 𝑢)

󸀠
𝐴 + 𝑓𝑖 (𝑡, 𝑥, 𝑢) 𝑝}

= −sup
𝑢≥0

{−
1

2
𝑔𝑖 (𝑡, 𝑥, 𝑢) 𝑔𝑖 (𝑡, 𝑥, 𝑢)

󸀠
𝐴 − 𝑓𝑖 (𝑡, 𝑥, 𝑢) 𝑝} ,

(13)

and we assume

(ii)

(a) |(𝑓𝑖)𝑡| + |(𝑓𝑖)𝑥| ≤ 𝐶, |(𝑔𝑖)𝑡| + |(𝑔𝑖)𝑥| ≤ 𝐶;
(b) |𝑓𝑖(𝑡, 𝑥, 𝑢)| ≤ 𝐶(1 + |𝑥| + |𝑢|);
(c) |𝑔𝑖(𝑡, 𝑥, 𝑢)| ≤ 𝐶(1 + |𝑥| + |𝑢|).

Lemma 2 (see [8], letH𝑖 be as in (13)). Assume ((ii)(a)–(c)).
Then, there exists a continuous function 𝜔 : [0,∞) →

[0,∞) that satisfies 𝜔(0) = 0 such that

H𝑖 (𝑡, 𝑦, 𝛽 (𝑥 − 𝑦) , 𝐵) −H𝑖 (𝑡, 𝑥, 𝛽 (𝑥 − 𝑦) , 𝐴)

≤ 𝜔 (𝛽
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) ,

(14)

for every (𝑡, 𝑥), (𝑡, 𝑦) ∈ Q, 𝛽 > 0, and symmetric matrices 𝐴,
𝐵 satisfying

−3𝛽(

𝐼 0

0 𝐼
) ≤ (

𝐴 0

0 −𝐵
) ≤ 3𝛽(

𝐼 −𝐼

−𝐼 𝐼
) , (15)

where 𝐼 is the identity matrix with appropriate dimension.

Proposition 3. Suppose assumptions (9) and (10) hold and𝑤𝑘
is a viscosity subsolution of (8) and V𝑘 is a supersolution of (8).

If 𝑤𝑘(𝑡, 𝑥) ≤ V𝑘(𝑡, 𝑥) on 𝜕Q, 𝑘 = 1, . . . , 𝑚, then
𝑤𝑘(𝑡, 𝑥) ≤ V𝑘(𝑡, 𝑥) on Q, 𝑘 = 1, . . . , 𝑚.

Proof. Suppose that there does not exist an index, 𝑠 and
(𝑙, 𝑧) ∈ Q, such that

(𝑤𝑠 − V𝑠) (𝑙, 𝑧) = max
𝑥,𝑡,𝑘

{(𝑤𝑘 − V𝑘) (𝑡, 𝑥)} > 0. (16)

(i) If (𝑙, 𝑧) ∈ 𝜕Q, we are done.
(ii) Assume (𝑙, 𝑧) ∈ Q; let

𝜙
𝜀
𝑟 (𝑡, 𝑥, 𝑦) = 𝑤𝑘 (𝑡, 𝑥) − V𝑘 (𝑡, 𝑦) −

1

𝜀2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2

− 𝜀 |𝑡 − 𝑙|
2
.

(17)

There exists an index 𝑟 and (𝑡0, 𝑥0, 𝑦0) = (𝑡
𝜀
0, 𝑥
𝜀
0, 𝑦
𝜀
0)

such that
𝜙
𝜀
𝑟 (𝑡0, 𝑥0, 𝑦0) = max

𝑥,𝑡,𝑦,𝑘
{𝜙
𝜀
𝑘 (𝑡, 𝑥, 𝑦)} . (18)

We now show

𝑤𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑦0) ≥ 0. (19)

But

𝜙
𝜀
𝑠 (𝑙, 𝑧, 𝑧) = 𝑤𝑠 (𝑙, 𝑧) − V𝑠 (𝑙, 𝑧) ≤ 𝜙

𝜀
𝑟 (𝑡0, 𝑥0, 𝑦0) (20)

implies

1

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+ 𝜀

󵄨󵄨󵄨󵄨𝑡0 − 𝑙
󵄨󵄨󵄨󵄨

2

≤ 𝑤𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑦0) − (𝑤𝑠 (𝑙, 𝑧) − V𝑠 (𝑙, 𝑧)) .
(21)

Since 𝑤𝑠(𝑙, 𝑧) − V𝑠(𝑙, 𝑧) > 0,

0 ≤
1

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+ 𝜀

󵄨󵄨󵄨󵄨𝑡0 − 𝑙
󵄨󵄨󵄨󵄨

2

≤ 𝑤𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑦0) − (𝑤𝑠 (𝑙, 𝑧) − V𝑠 (𝑙, 𝑧))

≤ 𝑤𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑦0) .

(22)
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(i) Since 𝑤 is a viscosity subsolution of (8) and the
function

Ψ
𝜀
𝑟,1 : (𝑥, 𝑡) 󳨃󳨀→ 𝜙

𝜀
𝑟 (𝑡, 𝑥, 𝑦0) (23)

has a maximum at (𝑡0, 𝑥0), set

𝜑
𝜀
𝑟,1 (𝑡, 𝑥) = V𝑟 (𝑡, 𝑦0) +

1

𝜀2

󵄨󵄨󵄨󵄨𝑥 − 𝑦0
󵄨󵄨󵄨󵄨

2
+ 𝜀 |𝑡 − 𝑙|

2
, (24)

then𝑤𝑟(𝑡, 𝑥)−𝜑
𝜀
𝑟,1(𝑡, 𝑥), has amaximum at (𝑡0, 𝑥0), and hence

𝜕 (𝑤𝑟 − 𝜑
𝜀
𝑟,1)

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

=

𝜕 (𝑤𝑟 − 𝜑
𝜀
𝑟,1)

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

= 0 󳨐⇒

𝜕𝜑
𝜀
𝑟,1

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

=
𝜕𝑤𝑟

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

,

𝜕𝜑
𝜀
𝑟,1

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

=
𝜕𝑤𝑟

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

,

𝜕Ψ
𝜀
𝑟,1

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

= 0 ⇐⇒

𝜕𝑤𝑟

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

−
2

𝜀2
(𝑥0 − 𝑦0) = 0,

𝜕Ψ
𝜀
𝑟,1

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

= 0 ⇐⇒

𝜕𝑤𝑟

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

−
𝜕V𝑟 (𝑡0, 𝑥0)

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

− 2𝜀 (𝑡0 − 𝑙) = 0,

(25)

0

≤
𝜕𝜑
𝜀
𝑟,1 (𝑡0, 𝑥0)

𝜕𝑡

−H𝑟 (𝑡0, 𝑥0,
2

𝜀2
(𝑥0 − 𝑦0) , 𝐷

2
𝑥𝜑
𝜀
𝑟,1 (𝑡0, 𝑥0))

− ∑

𝑘 ̸=𝑟

𝑞𝑟𝑘 [𝑤𝑟 (𝑡0, 𝑥0) − 𝑤𝑘 (𝑡0, 𝑥0)] .

(26)

(ii) Since V is a viscosity supersolution of (8) and the
function

Ψ
𝜀
𝑟,2 : (𝑥, 𝑡) 󳨃󳨀→ −𝜙

𝜀
𝑟 (𝑡, 𝑥0, 𝑦) (27)

has a minimum at (𝑡0, 𝑦0), set

𝜑
𝜀
𝑟,2 (𝑡, 𝑦) = 𝑤𝑟 (𝑡, 𝑥0) −

1

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦
󵄨󵄨󵄨󵄨

2
− 𝜀 |𝑡 − 𝑙|

2 (28)

then 𝜑𝜀𝑟,2(𝑡, 𝑥)−V𝑟(𝑡, 𝑥), has a maximum at (𝑡0, 𝑥0), and hence

𝜕 (𝜑
𝜀
𝑟,2 − V𝑟)
𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑦0)

=

𝜕 (𝜑
𝜀
𝑟,2 − V𝑟)
𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑦0)

= 0 󳨐⇒

𝜕𝜑𝑟,2𝜀

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑦0)

=
𝜕V𝑟
𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑦0)

,

𝜕𝜑
𝜀
𝑟,2

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑦0)

=
𝜕V𝑟
𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑦0)

,

𝜕Ψ
𝜀
𝑟,2

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑦0)

= 0 ⇐⇒

+
𝜕V𝑟
𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑦0)

−
2

𝜀2
(𝑥0 − 𝑦0) = 0,

𝜕Ψ
𝜀
𝑟,2

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

= 0 ⇐⇒

−
𝜕𝑤𝑟

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

+
𝜕V𝑟 (𝑡0, 𝑥0)

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑡0 ,𝑥0)

+ 2𝜀 (𝑡0 − 𝑙) = 0,

(29)

𝜕𝜑
𝜀
𝑟,2 (𝑡0, 𝑦0)

𝜕𝑡

−H𝑟 (𝑡0, 𝑥0,
2

𝜀2
(𝑥0 − 𝑦0) , 𝐷

2
𝑦𝜑
𝜀
𝑟,2 (𝑡0, 𝑦0))

− ∑

𝑘 ̸=𝑟

𝑞𝑟𝑘 [V𝑟 (𝑡0, 𝑦0) − V𝑘 (𝑡0, 𝑦0)] ≤ 0.

(30)

By combining (26) and (30),

0 ≤
𝜕𝑤𝑟 (𝑡0, 𝑥0)

𝜕𝑡
−
𝜕V𝑟 (𝑡0, 𝑦0)

𝜕𝑡

+H𝑟 (𝑡0, 𝑦0,
2

𝜀2
(𝑥0 − 𝑦0) , 𝐷

2
𝑦𝜑
𝜀
𝑟,2 (𝑡0, 𝑦0))

−H𝑟 (𝑡0, 𝑥0,
2

𝜀2
(𝑥0 − 𝑦0) , 𝐷

2
𝑥𝜑
𝜀
𝑟,1 (𝑡0, 𝑥0))

− ∑

𝑘 ̸=𝑟

𝑞𝑟𝑘 [𝑤𝑟 (𝑡0, 𝑥0) − 𝑤𝑘 (𝑡0, 𝑥0)]

+ ∑

𝑘 ̸=𝑟

𝑞𝑟𝑘 [V𝑟 (𝑡0, 𝑦0) − V𝑘 (𝑡0, 𝑦0)] ,

(31)

and by Lemma 2

0 ≤ 2𝜀
󵄨󵄨󵄨󵄨𝑡0 − 𝑙

󵄨󵄨󵄨󵄨 + 𝜔 (
2

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑥0 − 𝑦0

󵄨󵄨󵄨󵄨)

− ∑

𝑘 ̸=𝑟

𝑞𝑟𝑘 [𝑤𝑟 (𝑡0, 𝑥0) − 𝑤𝑘 (𝑡0, 𝑥0)]

+ ∑

𝑘 ̸=𝑟

𝑞𝑟𝑘 [V𝑟 (𝑡0, 𝑦0) − V𝑘 (𝑡0, 𝑦0)] ,

(32)
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we obtain

0 ≤ 2𝜀 (𝑡0 − 𝑙) + 𝜔(
2

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑥0 − 𝑦0

󵄨󵄨󵄨󵄨)

− ∑

𝑘 ̸=𝑟

𝑞𝑟𝑘 [𝑤𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑦0)]

+ ∑

𝑘 ̸=𝑟

𝑞𝑟𝑘 [𝑤𝑘 (𝑡0, 𝑥0) − V𝑘 (𝑡0, 𝑦0)] .

(33)

We have −𝑞𝑟𝑘 < 0 and 𝑤𝑟(𝑡0, 𝑥0) − V𝑟(𝑡0, 𝑦0) > 0 (19) and
hence

0 ≤ 2𝜀 (𝑡0 − 𝑙) + 𝜔(
2

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑥0 − 𝑦0

󵄨󵄨󵄨󵄨)

+ ∑

𝑘 ̸=𝑟

𝑞𝑟𝑘 [𝑤𝑘 (𝑡0, 𝑥0) − V𝑘 (𝑡0, 𝑦0)] .
(34)

Since 𝑤𝑘(𝑡0, 𝑥0) − V𝑘(𝑡0, 𝑦0) ≤ 𝑤𝑟(𝑡0, 𝑥0) − V𝑟(𝑡0, 𝑦0) and
∑𝑘 ̸=𝑟 𝑞𝑟𝑘 = −𝑞𝑘𝑘, we obtain

0 ≤ 2𝜀 (𝑡0 − 𝑙) + 𝜔(
2

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑥0 − 𝑦0

󵄨󵄨󵄨󵄨)

− 𝑞𝑘𝑘 [𝑤𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑦0)] .
(35)

Thus,

𝑤𝑠 (𝑙, 𝑧) − V𝑠 (𝑙, 𝑧) ≤ 𝜙
𝜀
𝑟 (𝑡0, 𝑥0, 𝑦0)

≤ 𝑤𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑦0)

≤
1

𝑞𝑘𝑘

2𝜀
󵄨󵄨󵄨󵄨𝑡0 − 𝑙

󵄨󵄨󵄨󵄨

+
1

𝑞𝑘𝑘

𝜔(
2

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑥0 − 𝑦0

󵄨󵄨󵄨󵄨) .

(36)

To finish the proof, we need to show

𝜔(
2

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑥0 − 𝑦0

󵄨󵄨󵄨󵄨) 󳨀→ 0, as 𝜀 󳨀→ 0. (37)

Let

ℎ (𝑞) = Sup {󵄨󵄨󵄨󵄨V𝑟 (𝑡, 𝑥) − V𝑟 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 : 𝑡 ∈ [0, 𝑇] , (𝑥, 𝑦)

∈ Q
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

2
≤ 𝑞} ,

(38)

so that for any (𝑡, 𝑥) and (𝑡, 𝑦) ∈ Q

󵄨󵄨󵄨󵄨V𝑟 (𝑡, 𝑥) − V𝑟 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ ℎ (

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
) . (39)

Since (𝑥0, 𝑡0, 𝑦0, 𝑟)maximizes 𝜙𝜀𝑟 over Q,

𝑤𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑦0) −
1

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
− 𝜀

󵄨󵄨󵄨󵄨𝑡0 − 𝑙
󵄨󵄨󵄨󵄨

2

≥ 𝑤𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑥0) −
1

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑥0
󵄨󵄨󵄨󵄨

2

− 𝜀
󵄨󵄨󵄨󵄨𝑡0 − 𝑙

󵄨󵄨󵄨󵄨

2
.

(40)

We obtain
1

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
≤ V𝑟 (𝑡0, 𝑥0) − V𝑟 (𝑡0, 𝑦0)

≤ ℎ (
󵄨󵄨󵄨󵄨𝑥0 − 𝑦0

󵄨󵄨󵄨󵄨

2
) .

(41)

Since ℎ is bounded by some constant 𝐾, this implies that

2

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
≤ 𝐾. (42)

The definition of ℎ yields

2

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑥0 − 𝑦0

󵄨󵄨󵄨󵄨 ≤ ℎ(
𝐾𝜀
2

2
) + 𝜀√

𝐾

2
, (43)

and we obtain

𝜔(
2

𝜀2

󵄨󵄨󵄨󵄨𝑥0 − 𝑦0
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑥0 − 𝑦0

󵄨󵄨󵄨󵄨)

≤ 𝜔(ℎ(
𝐾𝜀
2

2
) + 𝜀√

𝐾

2
) ,

(44)

and we obtain

𝑤𝑠 (𝑙, 𝑧) − V𝑠 (𝑙, 𝑧) ≤ 0 as 𝜀 󳨀→ 0, (45)

which is a contradiction to (16).

Corollary 4. The viscosity solution satisfying the boundary
condition is unique.

Proof. If V1𝑘 and V2𝑘 are 2 viscosity solutions such that V1𝑘 = V2𝑘
on 𝜕Q, then

(i) V1𝑘 ≤ V2𝑘 on 𝜕Q ⇒ V1𝑘 ≤ V2𝑘 on Q accordingly
(Proposition 3);

(ii) V1𝑘 ≥ V2𝑘 on 𝜕Q ⇒ V1𝑘 ≥ V2𝑘 on Q accordingly
(Proposition 3).

Hence V1𝑘 = V2𝑘 on Q.

4. Application in Finance: Continuous-Time
Mean-Variance Model without Shorting
where the Market Parameters Are Random

We now briefly recall the results of the continuous-time
mean-variance model without shorting [5] and the mean-
variance portfolio selection problem in continuous time
where the market parameters are random processes [4].

We study the intersection of the both cases [4, 5], that
is, continuous-time mean-variance model without shorting
where the market parameters are random.

Consider a market in which 𝑛 + 1 assets are traded
continuously on a finite time horizon [0, 𝑇]. One of the assets
is a bank account whose price𝑃0(𝑡) is subject to the stochastic
ODE (ordinary differential equation)

𝑑𝑃0 (𝑡) = 𝑟 (𝑡, 𝛼 (𝑡)) 𝑃0 (𝑡) 𝑑𝑡, 𝑡 ∈ [0, 𝑇]

𝑃0 (0) = 𝑝0 > 0, 𝑡 ∈ [0, 𝑇] , 𝛼 (𝑡) = 𝑖 ∈ N,
(46)
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where 𝑟(𝑡, 𝑖) ≥ 0, 𝑖 = 1, 2, . . . , 𝑚, are given as interest
rate processes corresponding to different market modes. The
other 𝑛 assets are stocks whose price processes 𝑃𝑚(𝑡) 𝑚 =

1, 2, . . . , 𝑛 satisfy the system of SDE (system of differential
equation)

𝑑𝑃𝑚 (𝑡) = 𝑃𝑚 (𝑡)

⋅ {𝑏𝑚 (𝑡, 𝛼 (𝑡)) 𝑑𝑡 +

𝑛

∑

𝑝=1

𝜎𝑚𝑝 (𝑡, 𝛼 (𝑡)) 𝑑𝑊𝑝 (𝑡)} ,

𝑡 ∈ [0, 𝑇]

𝑃𝑚 (0) = 𝑝𝑚 > 0, 𝑡 ∈ [0, 𝑇] , 𝛼 (𝑡) = 𝑖 ∈ N,

(47)

where for each 𝑖 = 1, 2, . . . , 𝑛 𝑏𝑚(𝑡, 𝑖) is the appreciation rate
process and 𝜎𝑚(𝑡, 𝑖) = (𝜎𝑚1(𝑡, 𝑖), . . . , 𝜎𝑚𝑛(𝑡, 𝑖)) is the volatility
or the dispersion rate process of the𝑚th stock, corresponding
to 𝛼(𝑡) = 𝑖.

Define the volatility matrix

𝜎 (𝑡, 𝑖) ≡ (𝜎𝑚𝑝 (𝑡, 𝑖))𝑛×𝑛
for each 𝑖 = 1, . . . , 𝑛. (48)

We assume

𝜎 (𝑡, 𝑖) 𝜎 (𝑡, 𝑖)
󸀠
≥ 𝛿𝐼 ∀𝑡 ∈ [0, 𝑇] , 𝛿 > 0 (49)

and 𝑟(𝑡, 𝑖), 𝑏𝑚(𝑡, 𝑖), 𝜎𝑚𝑛(𝑡, 𝑖) are measurable and uniformly
bounded in 𝑡.

Denote by 𝑦(𝑡) the total wealth of the agent with 𝑦(0) =
𝑦0 > 0 being his initial wealth; 𝑦(𝑡) satisfies

𝑑𝑦 (𝑡) = [𝑟 (𝑡, 𝑖) 𝑦 (𝑡) + 𝐵 (𝑡, 𝑖) 𝑢 (𝑡)

+

𝑛

∑

𝑚=1

[𝑏𝑚 (𝑡, 𝑖) − 𝑟 (𝑡, 𝑖)]] 𝑢𝑚 (𝑡) 𝑑𝑡

+

𝑛

∑

𝑝=1

𝑛

∑

𝑚=1

𝜎𝑚𝑝 (𝑡, 𝑖) 𝑢𝑚 (𝑡) 𝑑𝑊𝑝 (𝑡) , 𝑡 ∈ [𝑠, 𝑇]

𝑦 (0) = 𝑦0 > 0, 𝛼 (0) = 𝑖0, the initial market mode,

(50)

where 𝑢𝑚(𝑡) is the total market value of the agent’s wealth in
the𝑚th asset and𝑚 = 0, 1, . . . , 𝑛 at time 𝑡.

𝑢(⋅) = (𝑢1(⋅), . . . , 𝑢𝑛(⋅))
󸀠 is called a portfolio of the agent.

𝑢0(⋅), the asset in the bank account, is completely specified
since 𝑢0(𝑡) = 𝑦(𝑡) −∑

𝑛
𝑖=1 𝑢𝑖(𝑡).Thus, in our analysis to follow,

only 𝑢(⋅) is considered.
Setting

𝐵 (𝑡, 𝑖) = (𝑏1 (𝑡, 𝑖) − 𝑟 (𝑡, 𝑖) , . . . , 𝑏𝑛 (𝑡, 𝑖) − 𝑟 (𝑡, 𝑖)) ,

𝑖 ∈ M,

(51)

wealth equation (50) satisfies

𝑑𝑦 (𝑡) = [𝑟 (𝑡, 𝑖) 𝑦 (𝑡) + 𝐵 (𝑡, 𝑖) 𝑢 (𝑡)] 𝑑𝑡

+ 𝑢 (𝑡)
󸀠
𝜎 (𝑡, 𝑖) 𝑑𝑊 (𝑡) , 𝑡 ∈ [𝑠, 𝑇]

𝑦 (0) = 𝑦0 > 0, 𝛼 (0) = 𝑖0.

(52)

The objective of the agent is to find an admissible portfolio
𝑢(⋅) ≥ 0, whose expected terminal wealth is 𝐸𝑡𝑦𝑦(𝑇) = 𝑑 for
a given 𝑑 ∈ R, so that the risk is measured by the variance of
the terminal wealth. Namely, the goal of the agent is to solve
the following constrained stochastic optimization problem,
parameterized by 𝑑 ∈ R:

minimize 𝐽MV (𝑦0, 𝑖0, 𝑢 (⋅)) = 𝐸𝑡𝑦 [𝑦 (𝑇) − 𝑑]
2
,

subject to 𝐸𝑡𝑦𝑦 (𝑇) = 𝑑,

(𝑦 (⋅) , 𝑢 (⋅)) admissible,

(53)

called mean-variance portfolio.
Formula (53) is a convex optimization problem; by using

a Lagrange multiplier 𝜇 ∈ R, we can attach the equality
constraint 𝐸𝑡𝑦𝑦(𝑇) = 𝑑 to the first equation of (53). In this
way, the portfolio problem can be solved via the following
optimal stochastic control problem:

𝑃(𝑑):

minimize 𝐸𝑡𝑦 {[𝑦 (𝑇) − 𝑑]
2
+ 2𝜇 [𝐸𝑡𝑦𝑦 (𝑇) − 𝑑]} ,

subject to 𝐸𝑡𝑦𝑦 (𝑇) = 𝑑,

(𝑦 (⋅) , 𝑢 (⋅)) admissible,

(54)

where factor 2 in front of the multiplier 𝜇 is introduced in the
objective function just for convenience.

This problem is equivalent to the following:
(𝐴(𝜇)):

minimize 𝐸𝑡𝑦 [
1

2
[𝑦 (𝑇) − (𝑑 − 𝜇)]

2
] ,

subject to 𝑢 (⋅) ∈ 𝐿
2
F (0, 𝑇;R

𝑚
+ )

(𝑦 (⋅) , 𝑢 (⋅)) admissible,

(55)

in the sense that two problems have exactly the same optimal
control [5].

Next, we let 𝑥(𝑡) = 𝑦(𝑡) − (𝑑 − 𝜇).
Consider (𝐴(𝜇)):

minimize 𝐸𝑡𝑥 [
1

2
[𝑥 (𝑇)]

2
] ,

subject to 𝑢 (⋅) ∈ 𝐿
2
F (0, 𝑇;R

𝑚
+ )

(𝑥 (⋅) , 𝑢 (⋅)) admissible,

(56)

and (52) is equivalent to

𝑑𝑥 (𝑡)

= [𝐴 (𝑡, 𝑖) 𝑥 (𝑡) + 𝐵 (𝑡, 𝑖) 𝑢 (𝑡) + 𝐴 (𝑡, 𝑖) (𝑑 − 𝜇)] 𝑑𝑡

+

𝑛

∑

𝑝=1

𝐺𝑝 (𝑡, 𝑖) 𝑢 (𝑡) 𝑑𝑊𝑝 (𝑡) , 𝑡 ∈ [𝑠, 𝑇]

𝑥 (𝑠) = 𝑦 (𝑠) − (𝑑 − 𝜇) ∈ R

where 𝐺𝑝 (𝑡, 𝑖) = (𝜎1𝑝 (𝑡, 𝑖) , . . . , 𝜎𝑛𝑝 (𝑡, 𝑖))

𝐴 (𝑡, 𝑖) ∈ R.

(57)
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Problem𝐴(𝜇) is a stochastic optimal linear quadratic coupled
(LQC) control problem, and we can get the solution of (𝐴(𝜇))
by guessing the solution as a quadratic function. By making
use of the duality relationship between (𝑃(𝑑)) and (𝐴(𝜇)), see
Appendix A.2; we obtain the solution of the original problem
(𝑃(𝑑)).

4.1. A General Constrained Stochastic Linear Quadratic Prob-
lem. Consider controlled linear stochastic differential equa-
tion (57).

We assume that the matrix ∑𝑛𝑝=1 𝐺𝑝(𝑡, 𝑖)
󸀠
𝐺𝑝(𝑡, 𝑖) is non-

singular. Our objective is to find an optimal control 𝑢(⋅) that
minimizes the quadratic terminal cost function. Set

U [𝑠, 𝑇] = 𝐿
2
F (𝑠, 𝑇;R

𝑚
+ ) . (58)

Given 𝑢(⋅) ∈ U[𝑠, 𝑇], the pair (𝑥(⋅), 𝑢(⋅)) is admissible if 𝑥(⋅) ∈
𝐿
2
F(𝑠, 𝑇;R) is a solution of (57). Let

𝐽𝑖 (𝑠, 𝑥; 𝑢 (⋅)) = 𝐸𝑡𝑥 {
1

2
𝑥 (𝑇)

2
} . (59)

The value function associated with LQC problem (57) and
(59) is defined by

𝑉𝑖 (𝑠, 𝑥) = inf
𝑢(⋅)∈U[𝑠,𝑇]

𝐽𝑖 (𝑠, 𝑥; 𝑢 (⋅)) . (60)

In Appendix A.3, and also [8], value function (60) satisfies
(8). Next, we will provide an explicit viscosity solution of (8).

Definition 5.

(i) A portfolio 𝑢(⋅) is said to be admissible if 𝑢(⋅) ∈

𝐿
2
F(0, 𝑇;R

𝑛
+) and the SDE (57) has a unique solution

𝑥(⋅) corresponding to 𝑢(⋅). In this case, we refer to
(𝑥(⋅), 𝑢(⋅)) as an admissible (wealth, portfolio) pair.

(ii) The problem is called feasible if there is at least one
portfolio satisfying all the constraints.

(iii) The problem is called finite if it is feasible and the
infimum of 𝐽MV(𝑥0, 𝑖0, 𝑢(⋅)) is finite.

(iv) An optimal portfolio to the above problem, if it ever
exists, is called an efficient portfolio corresponding to
𝑑, and the corresponding (Var𝑥(𝑇), 𝑑) ∈ R2

and (𝜎𝑥(𝑇), 𝑑) ∈ R2) are interchangeably called an efficient
point, and the set of all the efficient points is called the
efficient frontier.

Next, we let

𝑓𝑖 (𝑡, 𝑥; 𝑢) = 𝐴 (𝑡, 𝑖) 𝑥 (𝑡) + 𝐵 (𝑡, 𝑖) 𝑢 + 𝑓 (𝑡, 𝑖) ,

𝑔𝑖 (𝑡, 𝑥; 𝑢) = 𝐺 (𝑡, 𝑖) 𝑢,

where 𝑓 (𝑡, 𝑖) = 𝐴 (𝑡, 𝑖) (𝑑 − 𝜇) .

(61)

4.2. Viscosity Solution of the Coupled System. By guessing the
value function of (8) as

𝑉𝑖 (𝑡, 𝑥) =
1

2
𝑃 (𝑡, 𝑖) 𝑥

2
+𝑀(𝑡, 𝑖) 𝑥 + 𝑅 (𝑡, 𝑖) (62)

we will see that the coefficients of (8) satisfy the following
Riccati equation.

Definition 6. We define the system of Riccati equations as
follows
𝑑𝑃̂ (𝑡, 𝑖)

𝑑𝑡

= [−2𝐴 (𝑡, 𝑖) −
󵄩󵄩󵄩󵄩󵄩
𝜉 (𝑡, 𝑖)

󵄩󵄩󵄩󵄩󵄩

2
− 2𝐵𝑖 (𝑡) 𝐺

−1
(𝑡, 𝑖) 𝜉 (𝑡, 𝑖)]

⋅ 𝑃̂ (𝑡, 𝑖) +

𝑛

∑

𝑗 ̸=𝑖

𝑞𝑖,𝑗 [𝑃̂ (𝑡, 𝑖) − 𝑃̂ (𝑡, 𝑗)] ,

𝑃̂ (𝑇, 𝑘) = 1,

(63)

𝑑𝑀̂ (𝑡, 𝑖)

𝑑𝑡

= [−𝐴 (𝑡, 𝑖) −
󵄩󵄩󵄩󵄩󵄩
𝜉 (𝑡, 𝑖)

󵄩󵄩󵄩󵄩󵄩

2
− 2𝐵 (𝑡, 𝑖) 𝐺

−1
(𝑡, 𝑖) 𝜉 (𝑡, 𝑖)]

⋅ 𝑀̂ (𝑡, 𝑖) − 𝑃̂ (𝑡, 𝑖) 𝑓 (𝑡, 𝑖)

+

𝑛

∑

𝑗 ̸=𝑖

𝑞𝑖,𝑗 [𝑀̂ (𝑡, 𝑖) − 𝑀̂ (𝑡, 𝑗)] ,

𝑀̂ (𝑇, 𝑘) = 0,

(64)

𝑑𝑅̂ (𝑡, 𝑖)

𝑑𝑡
= −𝑀̂ (𝑡, 𝑖) 𝑓 (𝑡, 𝑖) − 𝐵 (𝑡, 𝑖) 𝐺

−1
(𝑡, 𝑖) 𝜉 (𝑡, 𝑖)

⋅ 𝑀̂
2
(𝑡, 𝑖) 𝑃̂ (𝑡, 𝑖)

−1
−
1

2

󵄩󵄩󵄩󵄩󵄩
𝜉 (𝑡, 𝑖)

󵄩󵄩󵄩󵄩󵄩

2
𝑀̂
2
(𝑡, 𝑖) 𝑃̂ (𝑡, 𝑖)

−1

+

𝑛

∑

𝑗 ̸=𝑖

𝑞𝑖,𝑗 [𝑅̂ (𝑡, 𝑖) − 𝑅̂ (𝑡, 𝑗)] ,

𝑅̂ (𝑇, 𝑘) = 0,

(65)

𝑑𝑃̃ (𝑡, 𝑖)

𝑑𝑡
= −2𝐴 (𝑡, 𝑖) 𝑃̃ (𝑡, 𝑖)

+

𝑛

∑

𝑗 ̸=𝑖

𝑞𝑖,𝑗 [𝑃̂ (𝑡, 𝑖) − 𝑃̂ (𝑡, 𝑗)] ,

𝑃̂ (𝑇, 𝑘) = 1,

(66)

𝑑𝑀̃ (𝑡, 𝑖)

𝑑𝑡
= −𝐴 (𝑡, 𝑖) 𝑀̃ (𝑡, 𝑖) + 𝑃̃ (𝑡, 𝑖) 𝑓 (𝑡, 𝑖)

+

𝑛

∑

𝑗 ̸=𝑖

𝑞𝑖,𝑗 [𝑀̃ (𝑡, 𝑖) − 𝑀̃ (𝑡, 𝑗)] ,

𝑀̂ (𝑇, 𝑘) = 0,

(67)

75Viscosity Solution of Mean-Variance Portfolio Selection of a Jump Markov Process with No-Shorting Constraints

__________________________ WORLD TECHNOLOGIES __________________________



WT

𝑑𝑅̃ (𝑡, 𝑖)

𝑑𝑡
= −𝑀̃ (𝑡, 𝑖) 𝑓 (𝑡, 𝑖)

+

𝑛

∑

𝑗 ̸=𝑖

𝑞𝑖,𝑗 [𝑅̃ (𝑡, 𝑖) − 𝑅̃ (𝑡, 𝑗)] ,

𝑅̂ (𝑇, 𝑘) = 0,

(68)

where 𝜉(𝑡, 𝑖) is as in Lemma A.1

Remark 7. By letting

𝛼̃ (𝑡, 𝑖) = −2𝐴 (𝑡, 𝑖) −
󵄩󵄩󵄩󵄩󵄩
𝜉 (𝑡, 𝑖)

󵄩󵄩󵄩󵄩󵄩

2

− 2𝐵 (𝑡, 𝑖) 𝐺
−1
(𝑡, 𝑖) 𝜉 (𝑡, 𝑖) ,

𝛽̃ (𝑡, 𝑖) = −2𝐴 (𝑡, 𝑖) −
󵄩󵄩󵄩󵄩󵄩
𝜉 (𝑡, 𝑖)

󵄩󵄩󵄩󵄩󵄩

2

− 2𝐵 (𝑡, 𝑖) 𝐺
−1
(𝑡, 𝑖) 𝜉 (𝑡, 𝑖) ,

𝛾̃ (𝑡, 𝑖) = −𝑀̂ (𝑡, 𝑖) 𝑓 (𝑡, 𝑖)

− 𝐵 (𝑡, 𝑖) 𝐺
−1
(𝑡, 𝑖) 𝜉 (𝑡, 𝑖) 𝑀̂

2
(𝑡, 𝑖) 𝑃̂ (𝑡, 𝑖)

−
1

2

󵄩󵄩󵄩󵄩󵄩
𝜉 (𝑡, 𝑖)

󵄩󵄩󵄩󵄩󵄩

2
𝑀̂
2
(𝑡, 𝑖) 𝑃̂ (𝑡, 𝑖) .

(69)

We see that (63) is equivalent to

𝑑𝑃̂ (𝑡)

𝑑𝑡
= 𝑀 (𝑡) 𝑃̂ (𝑡) ,

𝑀 (𝑡) = [𝛼̃ (𝑡, 𝑖) 𝛿𝑖𝑗 + 𝑞𝑖𝑗]1≤𝑖,𝑗≤𝑛
,

𝑃̂ (𝑇) = 1,

where 𝑃̂ (𝑡) = (𝑃̂ (𝑡, 𝑖))
1≤𝑖≤𝑚

;

(70)

(64) is equivalent to

𝑑𝑀̂ (𝑡)

𝑑𝑡
= 𝑁 (𝑡) 𝑀̂ (𝑡) + 𝐺 (𝑡) ,

𝑁 (𝑡) = [𝛽̃ (𝑡, 𝑖) 𝛿𝑖𝑗 + 𝑞𝑖𝑗]1≤𝑖,𝑗≤𝑛
,

𝐺 (𝑡) = (𝑃̂1𝑓1 (𝑡) ⋅ ⋅ ⋅ 𝑃̂𝑛𝑓𝑛 (𝑡)) ,

𝑀̂ (𝑇) = 0,

where 𝑀̂ (𝑡) = (𝑀̂ (𝑡, 𝑖))
1≤𝑖≤𝑚

;

(71)

(65) is equivalent to

𝑑𝑅̂ (𝑡)

𝑑𝑡
= 𝑄 (𝑡) 𝑅̂ (𝑡) + 𝛾̃ (𝑡) ,

𝑄 (𝑡) = [𝑞𝑖𝑗]1≤𝑖,𝑗≤𝑛
,

𝑅̂ (𝑇) = 0,

where 𝑅̂ (𝑡) = (𝑅̂ (𝑡, 𝑖))
1≤𝑖≤𝑚

;

(72)

(66) is equivalent to

𝑑𝑃̃ (𝑡)

𝑑𝑡
= 𝐻 (𝑡) 𝑃̃ (𝑡) ,

𝐻 (𝑡) = [−2𝐴 𝑖 (𝑡) 𝛿𝑖𝑗 + 𝑞𝑖𝑗]1≤𝑖,𝑗≤𝑛
,

𝑃̃ (𝑇) = 0,

where 𝑃̃ (𝑡) = (𝑃̃ (𝑡, 𝑖))
1≤𝑖≤𝑚

;

(73)

(67) is equivalent to

𝑑𝑀̃ (𝑡)

𝑑𝑡
= 𝐿 (𝑡) 𝑀̃ (𝑡) + 𝐾 (𝑡) ,

𝐿 (𝑡) = [−𝐴 𝑖 (𝑡) 𝛿𝑖𝑗 + 𝑞𝑖𝑗]1≤𝑖,𝑗≤𝑛
,

𝐾 (𝑡) = (𝑃̃1𝑓1 (𝑡) ⋅ ⋅ ⋅ 𝑃̃𝑛𝑓𝑛 (𝑡)) ,

𝑃̃ (𝑇) = 0,

where 𝑀̃ (𝑡) = (𝑀̃ (𝑡, 𝑖))
1≤𝑖≤𝑚

;

(74)

(68) is equivalent to

𝑑𝑅̃ (𝑡)

𝑑𝑡
= 𝑄 (𝑡) 𝑅̃ (𝑡) + 𝑂 (𝑡) ,

𝑄 (𝑡) = [𝑞𝑖𝑗]1≤𝑖,𝑗≤𝑛
,

𝑂 (𝑡) = (𝑀̃1𝑓1 (𝑡) ⋅ ⋅ ⋅ 𝑀̃𝑛𝑓𝑛 (𝑡)) ,

𝑅̃ (𝑡) = 0,

where 𝑅̃ (𝑡) = (𝑅̃ (𝑡, 𝑖))
1≤𝑖≤𝑚

.

(75)

4.3. Riccati EquationMagnus Approach. Wewill show how to
provide the solutions of (70)–(75) by making use of Magnus
method.

Proposition 8 (see [10]). Given the 𝑛 × 𝑛 coefficient matrix
𝐴(𝑡),

𝑑𝑌 (𝑡)

𝑑𝑡
= 𝐴 (𝑡) 𝑌 (𝑡) ,

𝑌 (𝑡0) = 𝑌0

𝑤ℎ𝑒𝑟𝑒 𝑌 (𝑡) = (𝑌 (𝑡, 𝑖))1≤𝑖≤𝑚

(76)

and then 𝑌(𝑡) = exp((Ω(𝑡, 𝑡0))𝑌0) which is subsequently
constructed as a series expansion

Ω(𝑡, 𝑡0) =

∞

∑

𝑘=1

Ω𝑘 (𝑡, 𝑡0) 𝑤ℎ𝑒𝑟𝑒 Ω1 = ∫

𝑡

𝑡0

𝐴 (𝜏) 𝑑𝜏

Ω𝑛 (𝑡, 𝑡0) =

𝑛−1

∑

𝑗=1

𝐵𝑗

𝑗!
∫

𝑡

𝑡0

𝑆
(𝑗)
𝑛 (𝜏) 𝑑𝜏, 𝑛 ≥ 2,

(77)
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where 𝑆𝑗𝑛 is defined recursively by

𝑆
(𝑗)
𝑛 =

𝑛−𝑗

∑

𝑚=1

[Ω𝑚, 𝑆
(𝑗−1)
𝑛−𝑚 ] , 2 ≤ 𝑗 ≤ 𝑛 − 1,

𝑆
(1)
𝑛 = [Ω𝑛−1, 𝐴] ,

𝑆
(𝑛−1)
𝑛 = 𝑎𝑑

𝑛−1
Ω1

(𝐴) ,

(78)

𝑎𝑑
𝑘
Ω iterated commutator

𝑎𝑑Ω𝐴 = [Ω,𝐴] ,

𝑎𝑑
𝑘+1
Ω 𝐴 = [Ω, 𝑎𝑑

𝑘
Ω𝐴] ,

𝑎𝑑
0
Ω𝐴 = 𝐴,

𝑘 ∈ N,

(79)

and 𝐵𝑗 is the Bernoulli numbers.

Proposition 9 (see [11]).

𝑑𝑌 (𝑡)

𝑑𝑡
= 𝑀 (𝑡) 𝑌 (𝑡) + 𝑌 (𝑡)𝑁 (𝑡) + 𝐹 (𝑡) ,

𝑌 (𝑡0) = 𝑌0

𝑡 ∈ [𝑡0, 𝑇] ,

(80)

where 𝑌(𝑡), 𝐹(𝑡) ∈ C𝑝×𝑞, 𝑀(𝑡) ∈ C𝑝×𝑝, and𝑁(𝑡) ∈ C𝑞×𝑞. The
solution of (80) is given by

𝑌 (𝑡) = Φ𝑀 (𝑡, 𝑡0) 𝑌0Φ
∗
𝑁 (𝑡, 𝑡0) + Ψ (𝑡, 𝑡0) (81)

with

Ψ (𝑡, 𝑡0) = ∫

𝑡

𝑡0

Ψ𝑀 (𝑡, 𝑠) 𝐹 (𝑠)Φ
∗
𝑁 (𝑡, 𝑠) 𝑑𝑠, (82)

where Φ𝑚(𝑡, 𝑡0) and Φ
∗
𝑁(𝑡, 𝑡0) are the fundamental solution

matrices of the associated homogeneous equations

Φ
󸀠
𝑀 (𝑡, 𝑡0) = 𝑀 (𝑡)Φ𝑀 (𝑡, 𝑡0) ,

Φ𝑀 (𝑡0, 𝑡0) = 𝐼𝑝,

Φ
∗󸀠
(𝑡, 𝑡0) = Φ

∗
(𝑡, 𝑡0)𝑁 (𝑡) ,

Φ𝑁 (𝑡0, 𝑡0) = 𝐼𝑞.

(83)

Remark 10. By making use of Proposition 8 we get (70) and
(71)–(75) are special case of Proposition 9 when𝑁 = [0𝑖𝑗]𝑛×𝑛.

Theorem 11. The value function of (60) is given by

𝑉𝑖 (𝑡, 𝑥) =

{{

{{

{

𝑉𝑖 (𝑡, 𝑥) =
1

2
𝑃̂ (𝑡, 𝑖) 𝑥

2
+ 𝑀̂ (𝑡, 𝑖) 𝑥 + 𝑅̂ (𝑡, 𝑖) , 𝑖𝑓 𝑥 + 𝜂 (𝑡, 𝑖) ≤ 0,

𝑉̃𝑖 (𝑡, 𝑥) =
1

2
𝑃̃ (𝑡, 𝑖) 𝑥

2
+ 𝑀̃ (𝑡, 𝑖) 𝑥 + 𝑅̃ (𝑡, 𝑖) , 𝑖𝑓 𝑥 + 𝜂 (𝑡, 𝑖) > 0

(84)

and the optimal control is given by

𝑢
∗

=

{{

{{

{

−(𝐺 (𝑡, 𝑖)
󸀠
)
−1
𝜉 (𝑡, 𝑖) [𝑥 + 𝜂 (𝑡, 𝑖)] , 𝑖𝑓 𝑥 + 𝜂 (𝑡, 𝑖) ≤ 0,

0, 𝑖𝑓 𝑥 + 𝜂 (𝑡, 𝑖) > 0,

(85)

where

𝜂 (𝑡, 𝑖) =
𝑀̂ (𝑡, 𝑖)

𝑅̂ (𝑡, 𝑖)

. (86)

Proof. Let

Γ
𝑖
1 = {(𝑡, 𝑥, 𝑖) ∈ [0, 𝑇] ×R × N | 𝑥 + 𝜂 (𝑡, 𝑖) ≤ 0} ,

Γ
𝑖
2 = {(𝑡, 𝑥, 𝑖) ∈ [0, 𝑇] ×R | 𝑥 + 𝜂 (𝑡, 𝑖) > 0} .

(87)

(i) In Γ𝑖1, 𝑉 as given by (62) is well defined, with

𝜕𝑉𝑖 (𝑡, 𝑥)

𝜕𝑡
=
1

2

̇̂
𝑃 (𝑡, 𝑖) 𝑥

2
+

̇̂
𝑀 (𝑡, 𝑖) 𝑥 +

̇̂
𝑅 (𝑡, 𝑖) ,

𝜕𝑉𝑖 (𝑡, 𝑥)

𝜕𝑥
= 𝑃̂ (𝑡, 𝑖) 𝑥 + 𝑀̂ (𝑡, 𝑖) ,

𝜕
2
𝑉𝑖 (𝑡, 𝑥)

𝜕𝑥2
= 𝑃̂ (𝑡, 𝑖) .

(88)

Substituting them into the left-hand side (LHS) of (8),
we obtain

LHS = (
1

2

̇̂
𝑃 (𝑡, 𝑖) + 𝑃̂ (𝑡, 𝑖) 𝐴 (𝑡) +

1

2

⋅ ∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 (𝑃̂ (𝑡, 𝑖) − 𝑃̂ (𝑡, 𝑗)))𝑥
2
(

̇̂
𝑀 (𝑡, 𝑖) + 𝑃̂ (𝑡, 𝑖)

⋅ 𝑓 (𝑡, 𝑖) + 𝑀̂ (𝑡, 𝑖) 𝐴 𝑖 (𝑡)
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+∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 (𝑅̂ (𝑡, 𝑖) − 𝑅̂ (𝑡, 𝑖)))𝑥 + (
̇̂
𝑅 (𝑡, 𝑖) + 𝑀̂ (𝑡, 𝑖)

⋅ 𝑓 (𝑡, 𝑖) + ∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 (𝑅̂ (𝑡, 𝑖) − 𝑅̂ (𝑡, 𝑖)))

⋅ inf
𝑢≥0

[
1

2
𝑢
󸀠
𝐺 (𝑡, 𝑖)

󸀠
𝐺 (𝑡, 𝑖) 𝑢

+ 𝐵 (𝑡, 𝑖) (𝑥 +
𝑀̂ (𝑡, 𝑖)

𝑃̂ (𝑡, 𝑖)

) 𝑢] .

(89)

Let 𝜂(𝑡, 𝑖) = 𝑀̂(𝑡, 𝑖)/𝑃̂(𝑡, 𝑖) and, by using
Lemma A.1 𝛼 = −[𝑥 + 𝜂(𝑡, 𝑖)] > 0, it follows
that the minimizer of (89) is achieved by

𝑢
∗
= − (𝐺 (𝑡, 𝑖)

󸀠
)
−1
𝜉 (𝑡, 𝑖) [𝑥 + 𝜂 (𝑡, 𝑖)] . (90)

Substituting 𝑢∗(𝑡, 𝑥) back into (8) and noting (63)–
(65), it immediately follows that LHS = 0.

Now, we will show that 𝑉 is a viscosity subsolution.
Let 𝜑𝑖 ∈ 𝐶

2
(Q) and choose (𝑡, 𝑥) ∈ argmax{(𝑉𝑖 −

𝜑𝑖)(𝑡, 𝑥) | (𝑡, 𝑥) ∈ Q} ∩ Q; then,

𝜕𝜑𝑖 (𝑡, 𝑥)

𝜕𝑡
=
𝜕𝑉𝑖 (𝑡, 𝑥)

𝜕𝑡
,

𝜕𝜑𝑖 (𝑡, 𝑥)

𝜕𝑥
=
𝜕𝑉𝑖 (𝑡, 𝑥)

𝜕𝑥
,

𝜕
2
(𝑉𝑖 − 𝜑𝑖)

𝜕𝑥2
(𝑡, 𝑥) ≤ 0 󳨐⇒

𝑃𝑖 =
𝜕
2
𝑉𝑖 (𝑡, 𝑥)

𝜕𝑥2
≤
𝜕
2
𝜑𝑖 (𝑡, 𝑥)

𝜕𝑥2

(91)

and we obtain

0 = 𝜕𝑡𝑉𝑖 (𝑡, 𝑥)

+ inf
𝑢≥0

{
1

2
𝑔𝑖 (𝑡, 𝑥, 𝑢) 𝑔𝑖 (𝑡, 𝑥, 𝑢)

󸀠
𝐷
2
𝑥𝑉𝑖 (𝑡, 𝑥)

+ 𝑓𝑖 (𝑡, 𝑥, 𝑢)𝐷𝑥𝑉𝑖 (𝑡, 𝑥)} −∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 [𝑉𝑖 (𝑡, 𝑥)

− 𝑉𝑗 (𝑡, 𝑥)] ≤ 𝜕𝑡𝜑𝑖 (𝑡, 𝑥)

+ inf
𝑢≥0

{
1

2
𝑔𝑖 (𝑡, 𝑥, 𝑢) 𝑔𝑖 (𝑡, 𝑥, 𝑢)

󸀠
𝐷
2
𝑥𝜑𝑖 (𝑡, 𝑥)

+ 𝑓𝑖 (𝑡, 𝑥, 𝑢) 𝜑𝑖 (𝑡, 𝑥)} −∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 [𝑉𝑖 (𝑡, 𝑥)

− 𝑉𝑗 (𝑡, 𝑥)] .

(92)

Hence, 𝑉𝑖 is a viscosity subsolution.

(ii) In Γ𝑖2, we proceed similarly with

𝜕𝑉𝑖 (𝑡, 𝑥)

𝜕𝑡
=
1

2

̇̃
𝑃 (𝑡, 𝑖) 𝑥

2
+

̇̃
𝑀 (𝑡, 𝑖) 𝑥 +

̇̃
𝑅 (𝑡, 𝑖) ,

𝜕𝑉𝑖 (𝑡, 𝑥)

𝜕𝑥
= 𝑃̃ (𝑡, 𝑖) 𝑥 + 𝑀̃ (𝑡, 𝑖) ,

𝜕
2
𝑉𝑖 (𝑡, 𝑥)

𝜕𝑥2
= 𝑃̃ (𝑡, 𝑖) .

(93)

Substituting them into the left-hand side (LHS) of (8),
we obtain

LHS = (
1

2

̇̃
𝑃 (𝑡, 𝑖) +

̇̃
𝑃 (𝑡, 𝑖) 𝐴 (𝑡, 𝑖) +

1

2

⋅ ∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 (
̇̃
𝑃 (𝑡, 𝑖) −

̇̃
𝑃 (𝑡, 𝑗)))𝑥

2
(

̇̃
𝑀 (𝑡, 𝑖) + 𝑃̃ (𝑡, 𝑖)

⋅ 𝑓𝑖 (𝑡) + 𝑀̃ (𝑡, 𝑖) 𝐴 (𝑡, 𝑖)

+ ∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 (𝑅̃ (𝑡, 𝑖) − 𝑅̃ (𝑡, 𝑗)))𝑥 + (
̇̃
𝑅 (𝑡, 𝑖) +

̇̃
𝑀 (𝑡, 𝑖)

⋅ 𝑓 (𝑡, 𝑖) + ∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 (𝑅̃ (𝑡, 𝑖) − 𝑅̃ (𝑡, 𝑗)))

⋅ inf
𝑢≥0

[
1

2
𝑢
󸀠
𝐺 (𝑡, 𝑖)

󸀠
𝐺𝑖 (𝑡) 𝑢

+ 𝐵 (𝑡, 𝑖) (𝑥 +
𝑀̃ (𝑡, 𝑖)

𝑃̃ (𝑡, 𝑖)

) 𝑢] .

(94)

Since 𝛼 = −[𝑥 + 𝜂(𝑡, 𝑖)] > 0, the minimizer of (94) is

𝑢
∗
𝑖 = 0. (95)

Substituting 𝑢
∗ into (8), it is easy to show that 𝑉̃

satisfies HJBC equation (8) in Γ𝑖2.

Now, we will show that 𝑉̃ is a viscosity subsolution.

Let 𝜙𝑖 ∈ 𝐶
2
(Q) and choose (̃𝑡, 𝑥̃) ∈ argmin{(𝑉̃𝑖 −

𝜑𝑖)(𝑡, 𝑥) | (𝑡, 𝑥) ∈ Q} ∩ Q; then,

𝜕𝜙𝑖 (̃𝑡, 𝑥̃)

𝜕𝑡
=
𝜕𝑉̃𝑖 (̃𝑡, 𝑥̃)

𝜕𝑡
,

𝜕𝜙𝑖 (̃𝑡, 𝑥̃)

𝜕𝑥
=
𝜕𝑉̃𝑖 (̃𝑡, 𝑥̃)

𝜕𝑥
,
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𝜕
2
(𝑉̃𝑖 − 𝜙𝑖)

𝜕𝑥2
(̃𝑡, 𝑥̃) ≥ 0 󳨐⇒

𝑃̃𝑖 =
𝜕
2
𝑉̃𝑖 (̃𝑡, 𝑥̃)

𝜕𝑥2
≥
𝜕
2
𝜙𝑖 (̃𝑡, 𝑥̃)

𝜕𝑥2

(96)

and we obtain

0 = 𝜕𝑡𝑉̃𝑖 (̃𝑡, 𝑥̃)

+ inf
𝑢≥0

{
1

2
𝑔𝑖 (̃𝑡, 𝑥̃, 𝑢) 𝑔𝑖 (̃𝑡, 𝑥̃, 𝑢)

󸀠
𝐷
2
𝑥𝑉̃𝑖 (̃𝑡, 𝑥̃)

+ 𝑓𝑖 (̃𝑡, 𝑥̃, 𝑢)𝐷𝑥𝑉̃𝑖 (̃𝑡, 𝑥̃)} −∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 [𝑉̃𝑖 (̃𝑡, 𝑥̃)

− 𝑉̃𝑗 (̃𝑡, 𝑥̃)] ≥ 𝜕𝑡𝜙𝑖 (̃𝑡, 𝑥̃)

+ inf
𝑢≥0

{
1

2
𝑔𝑖 (̃𝑡, 𝑥̃, 𝑢) 𝑔𝑖 (̃𝑡, 𝑥̃, 𝑢)

󸀠
𝐷
2
𝑥𝜙𝑖 (̃𝑡, 𝑥̃)

+ 𝑓𝑖 (̃𝑡, 𝑥̃, 𝑢) 𝜙𝑖 (̃𝑡, 𝑥̃)} −∑

𝑗 ̸=𝑖

𝑞𝑖𝑗 [𝑉̃𝑖 (̃𝑡, 𝑥̃)

− 𝑉̃𝑗 (̃𝑡, 𝑥̃)] .

(97)

Hence, 𝑉̃𝑖 is a viscosity supersolution.

We see that the value function 𝑉 is a viscosity solution.

Remark 12. we see clearly that 𝜕2𝑉(𝑡, 𝑥, 𝑖)/𝜕𝑥2 does not exist
in Q, since 𝑃̃(𝑡, 𝑖) ̸= 𝑃̂(𝑡, 𝑖). For this reason, we are required to
work within the framework of viscosity solutions.

5. Efficient Strategies

Consider 𝑥(𝑡) = 𝑦(𝑡)−(𝑑−𝜇).The problem𝐴(𝜇) is equivalent
to the following problem:

min 𝐸𝑡𝑥 [
1

2
𝑥 (𝑇)]

𝑑𝑥 (𝑡)

= [𝐴 (𝑡, 𝑖) 𝑥 (𝑡) + 𝐵 (𝑡, 𝑖) 𝑢 + 𝑓 (𝑡, 𝑖)] 𝑑𝑡

+ 𝐺 (𝑡, 𝑖) 𝑢𝑑𝑊 (𝑡) , 𝑡 ∈ [𝑠, 𝑇]

𝑥 (0) = 𝑦0 − (𝑑 − 𝜇) ,

(98)

where 𝑢(⋅) ∈ 𝐿2F(0, 𝑇;R
𝑚
+ ) and

𝐴 (𝑡, 𝑖) = 𝑟 (𝑡, 𝑖) ,

𝐵 (𝑡, 𝑖) = (𝑏1 (𝑡, 𝑖) − 𝑟 (𝑡, 𝑖) , . . . , 𝑏𝑛 (𝑡, 𝑖) − 𝑟 (𝑡, 𝑖)) ,

𝑓 (𝑡, 𝑖) = (𝑑 − 𝜇) 𝑟 (𝑡, 𝑖) ,

𝐺 (𝑡, 𝑖) = (𝜎𝑖1 (𝑡, 𝑖) , . . . , 𝜎𝑖𝑛 (𝑡, 𝑖)) .

(99)

Now, corresponding to (A.3), set

𝜋𝑖 (𝑡) = argmin
𝜋(𝑡,𝑖)∈[0,∞)𝑚

1

2

󵄩󵄩󵄩󵄩󵄩
𝜎 (𝑡, 𝑖)

−1
𝜋 (𝑡, 𝑖)

+ 𝜎 (𝑡, 𝑖)
−1
(𝑏 (𝑡, 𝑖) − 𝑟 (𝑡, 𝑖) 1)󵄩󵄩󵄩󵄩󵄩

2
,

𝜃𝑖 (𝑡) = 𝜎𝑖 (𝑡)
−1
𝜋 (𝑡, 𝑖) + 𝜎𝑖 (𝑡)

−1
(𝑏 (𝑡, 𝑖) − 𝑟 (𝑡, 𝑖) 1) .

(100)

5.1. An Optimal Strategy. We present the optimal investment
strategy for the problem 𝐴(𝜇). The optimal control obtained
in (85) translates into the following strategy:

𝑢
∗
≡ (𝑢

∗
1 , . . . , 𝑢

∗
𝑚)
󸀠
,

𝑢
∗
=

{

{

{

−(𝜎 (𝑡, 𝑖)
󸀠
)
−1
𝜃 (𝑡, 𝑖) [𝑦 + (𝑑 − 𝜇) + 𝜂 (𝑡, 𝑖)] , if 𝑦 + (𝑑 − 𝜇) + 𝜂 (𝑡, 𝑖) ≤ 0,

0, if 𝑦 + (𝑑 − 𝜇) + 𝜂 (𝑡, 𝑖) > 0.

(101)

Theorem 13. The optimal investment strategy to the problem
𝐴(𝜇) is given by (101).

6. Efficient Frontier

Since 𝑥(𝑡) = 𝑦(𝑡) − (𝑑 − 𝜇), we obtain the solution of the
original problem 𝑃(𝐷). Hence, for every fixed 𝜇, we have

min
𝑢(⋅)∈U[0,𝑇]

𝐸𝑡𝑦 {
1

2
[𝑦 (𝑇) − 𝑑]

2
} + 𝜇 [𝐸𝑡𝑦𝑦 (𝑇) − 𝑑]

= min
𝑢(⋅)∈U[0,𝑇]

𝐸𝑡𝑥 {
1

2
𝑥 (𝑇)

2
} −

1

2
𝜇
2

= 𝑉𝑖0
(0, 𝑥) −

1

2
𝜇
2
.

(102)

Hence, the value function of 𝑃(𝐷) is given:

𝑉𝑖0
(0, 𝑥) −

1

2
𝜇
2
= (

1

2
𝑃̂ (0, 𝑖0) [𝑦0 − (𝑑 − 𝜇)]

2

+ 𝑀̂ (0, 𝑖0) [𝑦0 − (𝑑 − 𝜇)] + 𝑅̂ (0, 𝑖0) −
1

2
𝜇
2
)

⋅ 1𝑦+(𝑑−𝜇)+𝜂(𝑡,𝑖)≤0 + (
1

2
𝑃̃ (0, 𝑖0) [𝑦0 − (𝑑 − 𝜇)]

2
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+ 𝑀̃ (0, 𝑖0) [𝑦0 − (𝑑 − 𝜇)] + 𝑅̃ (0, 𝑖0) −
1

2
𝜇
2
)

⋅ 1𝑦+(𝑑−𝜇)+𝜂(𝑡,𝑖)>0.

(103)

Note that the above value still depends on the Lagrange
multiplier 𝜇. To obtain the optimal value function, one needs
to maximize the value of 𝜇 in (103).

Proposition 14. The efficient strategy of portfolio selection
problem (50) corresponding to the expected terminal wealth
𝐸𝑡𝑦𝑦(𝑇) = 𝑑, as a function of time 𝑡 and wealth 𝑦, is

𝑢
∗
=

{

{

{

−(𝜎 (𝑡, 𝑖)
󸀠
)
−1
𝜃 (𝑡, 𝑖) [𝑦 + (𝑑 − 𝜇

∗
) + 𝜂 (𝑡, 𝑖)] , 𝑖𝑓 𝑦 + (𝑑 − 𝜇

∗
) + 𝜂 (𝑡, 𝑖) ≤ 0,

0, 𝑖𝑓 𝑦 + (𝑑 − 𝜇
∗
) + 𝜂 (𝑡, 𝑖) > 0.

(104)

Moreover if

𝜇
∗
= argmax

𝜇
((

1

2
𝑃̂ (0, 𝑖0) [𝑦0 − (𝑑 − 𝜇)]

2

+ 𝑀̂ (0, 𝑖0) [𝑦0 − (𝑑 − 𝜇)] + 𝑅̂ (0, 𝑖0) −
1

2
𝜇
2
)

⋅ 1𝑦+(𝑑−𝜇)+𝜂(𝑡,𝑖)≤0 + (
1

2
𝑃̃ (0, 𝑖0) [𝑦0 − (𝑑 − 𝜇)]

2

+ 𝑀̃ (0, 𝑖0) [𝑦0 − (𝑑 − 𝜇)] + 𝑅̃ (0, 𝑖0) −
1

2
𝜇
2
)

⋅ 1𝑦+(𝑑−𝜇)+𝜂(𝑡,𝑖)>0)

(105)

exists, the efficient frontier is given by

Var𝑦 (𝑇) = 𝑉 (0, 𝑥, 𝑖0) −
1

2
𝜇
∗2
. (106)

7. Concluding Remarks

We analyzed mean-variance optimal portfolio selection for
a market with regime switching. The formulation allows
the market to have random switching with no-shorting
constraint. Using techniques of stochastic linear quadratic
control and the notion of viscosity solution, mean-variance
efficient portfolio and efficient frontiers are derived explicitly
in closed forms in terms of some systems of Riccati equation
for which the solutions are provided by making use of the
Magnus approach. The numerical application is in progress
and it will be the subject of a new research paper.

Appendix

A. Useful Formulas

A.1. Convex Analysis

Lemma A.1 (see [5]). Let ℎ be a continuous, strictly convex
quadratic function

ℎ (𝑧 (𝑡, 𝑖)) =
1

2
𝑧 (𝑡, 𝑖)

󸀠
D (𝑡, 𝑖)

󸀠
D (𝑡, 𝑖) 𝑧 (𝑡, 𝑖)

− 𝛼B𝑧 (𝑡, 𝑖)

(A.1)

over 𝑧(𝑡, 𝑖) ∈ [0,∞)
𝑚, where B󸀠 ∈ R𝑚+ , D𝑖 ∈ R𝑚×𝑚 and

D󸀠(𝑡, 𝑖)D(𝑡, 𝑖) > 0.
For every 𝛼 ≥ 0, ℎ has the unique minimizer

𝛼D(𝑡, 𝑖)
−1
𝜉(𝑡, 𝑖) ∈ [0,∞)

𝑚, where

𝜉 (𝑡, 𝑖) = (D (𝑡, 𝑖)
󸀠
)
−1
𝑧 (𝑡, 𝑖) + (D (𝑡, 𝑖)

󸀠
)
−1
B
󸀠
, (A.2)

where

𝑧 (𝑡, 𝑖) = argmin
𝑧(𝑡,𝑖)∈[0,∞)𝑚

1

2

󵄩󵄩󵄩󵄩󵄩󵄩
((D (𝑡, 𝑖))

󸀠
)
−1
𝑧 (𝑡, 𝑖)

+ ((D (𝑡, 𝑖))
󸀠
)
−1
𝐵 (𝑡, 𝑖)

󸀠󵄩󵄩󵄩󵄩󵄩󵄩
.

(A.3)

A.2. Duality Method

Lemma A.2 (see [12]). The strong duality relationship holds
between (𝑃(𝑑)) and (A(𝜇)) in the following sense,

V (𝑃 (𝑑)) = max
𝜇∈R

{2V (A (𝜇)) − 𝜇
2
} , (A.4)

whereV(⋅) denotes the optimal value of problem (⋅).

A.3. Dynamic Programming and Random Evolution with
Markov Chain Parameters. Here we sketch a proof of
equation (8); for more details please see [8].

Let 𝛼(𝑡) be a finite state Markov chain, with state space a
finite set M. we regard 𝛼(𝑡) as a parameter process. On any
interval where 𝛼(𝑡) = 𝛼 is constant, 𝑥(𝑡) satisfies the ordinary
differential equation

𝑑𝑥 = 𝜇 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝛼 (𝑡)) 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝛼 (𝑡)) 𝑑𝑤 (𝑡)

(A.5)

and we assume that 𝜇(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝛼(𝑡)) and 𝜎(𝑡, 𝑥(𝑡), 𝑢(𝑡),

𝛼(𝑡)) satisfy the conditions

(i) |𝜇𝑡(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝛼(𝑡))| + |𝜇𝑥(𝑡, 𝑥(𝑡), 𝛼(𝑡))| ≤ 𝐶,
|𝜎𝑡(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝛼(𝑡))| + |𝜎𝑥(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝛼(𝑡))| ≤ 𝐶;

(ii) |𝜇(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝛼(𝑡))| ≤ 𝐶(1 + |𝑥| + |𝑢|);
(iii) |𝜎(𝑡, 𝑥, 𝑢(𝑡), 𝛼(𝑡))| ≤ 𝐶(1 + |𝑥| + |𝑢|),

80 Applied Mathematics: Principles and Techniques

__________________________ WORLD TECHNOLOGIES __________________________



WT

for each 𝛼 ∈ M. Let 𝑠 ≤ 𝑡 ≤ 𝑇, and let 𝜏1 < 𝜏2 < ⋅ ⋅ ⋅ < 𝜏𝑚

denote the successive jump times of the parameter process
𝛼(𝑡) during [𝑠, 𝑇]. We let 𝜏0 = 𝑡, 𝜏𝑚+1 = 𝑇, and define 𝑥(𝑡) by

𝑑𝑥 = 𝜇 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝛼 (𝜏
+
𝑖 )) 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝛼 (𝜏𝑖+1)) 𝑑𝑤 (𝑡)

𝜏𝑖 ≤ 𝑡 < 𝜏𝑖+1, 𝑖 = 0, . . . , 𝑚, . . . 𝑥 (𝑠) = 𝑥,

(A.6)

with the requirement that 𝑥(⋅) is continuous at each jump
time 𝜏𝑖. The process 𝑥(𝑠) is not Markov. However, (𝑥(𝑡), 𝛼(𝑡))
is a Markov process, with state space Σ = R × M. For each
Φ(𝑡, 𝑥(𝑡), 𝛼(𝑡)) such that Φ(⋅, ⋅, 𝛼) ∈ 𝐶2(Q), we have

𝐴
𝑢
Φ (𝑡, 𝑥, 𝑖)

= lim
𝑥→0

ℎ
−1
[𝐸𝑡𝑥Φ (𝑡 + ℎ, 𝑥 (𝑡 + ℎ) , 𝑖) − Φ (𝑡, 𝑥, 𝑖)]

= Φ𝑡 (𝑡, 𝑥, 𝑖) +
1

2
𝜎 (𝑡, 𝑥, 𝑢, 𝑖) 𝐷

2
𝑥Φ (𝑡, 𝑥, 𝑖)

+ 𝜇 (𝑡, 𝑥, 𝑢, 𝑖) 𝐷𝑥Φ (𝑡, 𝑥, 𝑖)

+ ∑

𝑗 ̸=𝑖

𝜌 (𝑡, 𝑖, 𝑗) [Φ (𝑡, 𝑥, 𝑗) − Φ (𝑡, 𝑥, 𝑖)] .

(A.7)

Dynkin formula is

𝐸𝑡𝑥Φ (𝑡, 𝑥, 𝑖) − Φ (𝑡, 𝑥, 𝑖)

= 𝐸𝑡𝑥 ∫

𝑡1

𝑡
𝐴
𝑢(𝑠)

Φ (𝑠, 𝑥 (𝑠) , 𝛼 (𝑠)) 𝑑𝑠,

(A.8)

where 𝜌(𝑡, 𝑥, 𝑦) represents an infinitesimal rate at which 𝑥(𝑡)
jumps from 𝑥 to 𝑦:

𝜌 (𝑡, 𝑖, 𝑗) = lim
ℎ→0

ℎ
−1
𝑃 [𝑥 (𝑡 + ℎ) = 𝑗 | 𝑥 (𝑡) = 𝑖]

= 𝑞𝑖𝑗 (𝑡) .

(A.9)

Criterion to BeOptimized.Thecontrol problemof a finite time
interval 𝑡 ≤ 𝑠 ≤ 𝑇 is to minimize

𝐽 = 𝐸𝑡𝑥 {∫

𝑇

𝑡
𝐿 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠 + 𝜓𝑥 (𝑇)} (A.10)

in our case the Lagrangian 𝐿(𝑡, 𝑥, 𝑢) ≡ 0, that is, the Mayer
form.

The value function

𝑉𝑖 (𝑡, 𝑥) = inf
𝐶
𝐽 (𝑡, 𝑥, 𝑖; control) . (A.11)

Bellman’s Principe of Dynamic Programming. This states that
for 𝑡 ≤ 𝑡 + ℎ ≤ 𝑇

𝑉𝑖 (𝑡, 𝑥) = inf
𝐶
𝐸𝑡𝑥𝑉 (𝑡 + ℎ, 𝑥 (𝑡 + ℎ) , 𝑖) . (A.12)

If we take constant control 𝑢(𝑠) = V for 𝑡 ≤ 𝑠 ≤ 𝑡 + ℎ,

𝑉𝑖 (𝑡, 𝑥) ≤ 𝐸𝑡𝑥𝑉 (𝑡 + ℎ, 𝑥 (𝑡 + ℎ) , 𝑖) , (A.13)

we substract 𝑉(𝑡, 𝑥, 𝑖) from both sides, divided by ℎ, and let
ℎ → 0:

lim
𝑥→0+

ℎ
−1
[E𝑡𝑥𝑉 (𝑡 + ℎ, 𝑥 (𝑡 + ℎ) , 𝑖) − 𝑉 (𝑡, 𝑥, 𝑖)]

= lim
𝑥→0+

ℎ
−1
E𝑡𝑥 ∫

𝑡+ℎ

𝑡
𝐴

V
𝑉 (𝑠, 𝑥 (𝑠) , 𝑖) 𝑑𝑠

= 𝐴
V
𝑉 (𝑡, 𝑥, 𝑖) .

(A.14)

Hence, for all V ∈ 𝑈,

0 ≤ 𝐴
V
𝑉 (𝑡, 𝑥, 𝑖) . (A.15)

On the other hand, if 𝑢∗ is an optimal Markov control policy,
we should have

𝑉𝑖 (𝑡, 𝑥) = 𝐸𝑡𝑥𝑉 (𝑡 + ℎ, 𝑥
∗
(𝑡 + ℎ) , 𝑖) , (A.16)

where 𝑥
∗
(𝑠) is the Markov process generated by 𝐴

𝑢∗ . A
similar argument gives, under sufficiently strong assumption
(including continuity of 𝑢∗ at (𝑡, 𝑥)),

0 = 𝐴
𝑢∗
𝑉 (𝑡, 𝑥, 𝑖) . (A.17)

Inequatlities (A.15) and (A.17) are equivalent to the dynamic
programming equation

0 = min
V∈𝑈

𝐴
V
𝑉 (𝑡, 𝑥, 𝑖) . (A.18)
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We provide a theoretical framework to study how criminal behaviors can be treated as an infectious phenomenon. There are two
infectious diseases like models that mimic the role of convicted criminals in contaminating individuals not yet engaged in the
criminal career. Equilibrium analyses of each model are studied in detail. The models proposed in this work include the social,
economic, personal, and pressure from peers aspects that can, theoretically, determine the probability with which a susceptible
individual with criminal propensity engages in a criminal career.These crime-inducing parameters are treated mathematically and
their inclusion in the model aims to help policy-makers design crime control strategies. We propose, to the best of our knowledge
by the first time in quantitative criminology, the existence of thresholds for the stability of crime-endemic equilibriumwhich are the
equivalent to the “basic reproduction number” widely used in themathematical epidemiology literature. Bothmodels presented the
phenomena of backward bifurcation and breaking-point when the contact rates are chosen as bifurcation parameters.The finding of
backward bifurcation in bothmodels implies that there is an endemic equilibriumof criminality evenwhen the threshold parameter
for contagion is below unit, which, in turn, implies that control strategies aremore difficult to achieve considerable impact on crime
control.

1. Introduction

There is now substantial support in the specialized literature
on economics, sociology, criminology, and social psychology
to the attempts to explain how and why an individual’s
propensity to engage in criminal behavior is influenced
by his/her social context [1]. One interesting metaphor is
the one that states that criminal behavior is contagious or
that individuals can be susceptible to what economists call
endogenous effects [2]. According to this effect, the social
milieu in which individuals live may change the individual’s
propensity to engage in that same criminal behavior as their
peers [3, 4]. In addition, the individual’s criminal behavior
can be affected by other attributes of his/her neighbors,
like in the “role model” theory [5] or the peer pressure
to maintain local order [6]. Moreover, the institutional
or other characteristics of neighborhoods, including crime

prevalence, may induce criminal behavior in susceptible
individuals [7].

However, in spite of the large theoretical literature on
whether or not crime is contagious, the empirical support
for this hypothesis is still limited. Some authors (see [8, 9])
reported an excess in the variation in crime rates across areas
which cannot be explained only by the variation in standard
sociodemographic determinants of criminal behavior. This
suggests that social interactions are more important for less
serious than more serious crimes. In a famous study, Crane
(1991) (see [10]) showed that in the presence of endogenous
residential sorting such reports may be biased by the causal
effects of environmental and some individual or family
characteristics on the selection of the neighborhood. As
pointed out by Kling and Ludwig (see [1]), however, even in
the absence of the biased selection problem, it would be very
difficult to determine which of the theoretical perspectives
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above are responsible for any observed neighborhood effects
on criminal behavior.

The influence of others’ behavior on criminal offences
of susceptible individuals is called “behavioral contagion”
[11, 12]. Behavioral contagion has been defined as the spread
of any attitude or behavior from one individual or group
of individuals to another individual or group of individuals
throughout a social network of varying structures [11].

Social contagion arises among people interacting in social
structures of diverse nature [13–15]. In such interactions
information, behavioral innovation, belief, or meme is trans-
mitted in a similar way to infectious diseases spread in groups
of susceptible individuals [16]. Contagion occurs when sus-
ceptible individuals interact with contagious people in such a
way that this interaction results in a new case [17]. In social
networks, contact is defined by the communication and/or
imitation of influential processes that make transmission
potentially effective (see [13] pp. 1288-1289).

The social contagion theory of violence describes the
spread of criminal behavior as similar to the spread of
infectious diseases [18]. In such a context, the contagious
nature of criminal behavior can be understood, described,
and analyzed with the tools developed for studying infectious
diseases spreading, in particular the use of mathematical
models [19]. However, in contrast with directly transmitted
diseases, the infectivity of violence does not require direct
contact between susceptible and infected individuals.

In this paper, we provide a different approach to the con-
tagious effect of criminal behavior in susceptible individuals.
Rather than considering direct contagious effect by the social
environment, we consider a contagious effect by criminals
already convicted and who control criminal activities from
inside prison, a common effect of some countries like Brazil.

The advent of organized crime in Brazilian prisons,
especially in the state of São Paulo, and its role in the
contagion of criminality to susceptible individuals outside the
prisons constitute the object of this article. The gang leaders
the Capital’s First Command (PCC, Primeiro Comando da
Capital) (see [20]) unleashed a series of attacks in May 2006,
resulting in deaths, brought cities to a halt, and cornered
authorities in charge preventing them from applying law
and order and these are the starting as well as reference
points taken. In addition, the gang leaders were sustained
by an organization maintained by a hierarchical structure
of disciplined and obedient employees capable of executing
orders without questioning them. Operating from a base
of support networks disseminated in distinct mobile points
throughout the state, they revealed that they had an able and
agile communication system among leaders, followers, and
those who took orders, through protected channels barely
permeated by external interference by means of cell phones,
telephone exchanges, and carrier pigeons [21].

Criminal contagion from inside the prison system of
Brazil to outside susceptible individuals with criminal
propensity will be considered as an infectious event in a
dynamical system context.Themodels proposed in this work
include the social, economic, personal, and pressure from
peers aspects that can, theoretically, determine the probability
with which a susceptible individual with criminal propensity

engage in a criminal career.These crime-inducing parameters
are treated mathematically and their inclusion in the model
aims to help policy-makers design crime control strategies.

2. The Models

Themodels presented here are based on the criminal activity
within a population in an effort to understand how the
criminal careers change and evolve over time. We assume
a population-based approach, similar to those models of
the spreading of infections that confer temporary/permanent
immunity. By introducing the key epidemiological concept
of a threshold from mass action law [22, 23], we illustrate
the fundamental relationship between incarceration and
recidivism within a population and use it to show how the
criminal activity could be controlled to reduce the likelihood
of an individual to engage in a criminal career. We compute
and analyze this threshold considering the spread of the
crime and the dynamics of incarceration and recidivism.
Keeping in mind both the threshold and the perspective of
criminal dynamics, it is possible to evaluate what programs
of rehabilitation or prevention contribute to the reduction of
the recidivism and the number of contacts among individuals
susceptible to crime, offenders, and ex-offenders.

In epidemiology theory, the core groups are conceptual-
ized as being the individuals in a population who will infect
more than one person over the duration of infection. Core
groups are recognized as playing a central role in sustaining
the infection in a population and interventions targeting
these groups are central to an effective prevention response.
Building on this, we extend the concept of core groups to the
inmate population.

Especially in inmate population, most criminality is
found among core groups and the criminality will only
become more generalized if the contact spreads throughout
other networks. Hence, it is very likely that incarcerated
individuals will contact those susceptible individuals who
have never been incarcerated but have an intrinsic criminal
propensity.The basic problem is to find out when this contact
occurs, who regulates contact, what types of contact are
feasible and desirable, and what are the effects of contact (or
lack thereof) on susceptible individuals.

In this way, the total population size, denoted by 𝑁(𝑡),
is then characterized by three classes: susceptible (𝑆), incar-
cerated (𝐶), and desisting (𝐷) individuals. We specify first-
time (i = 1) and multiple-time (i = 2, 3,. . .,n) incarceration by
adding subscripts to model variables and parameters.

2.1. The Partially Contagious Criminality Model (PCCM)
Formulation. Let the susceptible in core group population
be divided into two categories: 𝑆0, those individuals who
have a criminal propensity but have never been incarcerated,
not criminally active but susceptible to crime, and 𝑆𝑖, those
individuals susceptible to criminal activities who were once
incarcerated (𝑆1) and those susceptible who were multiple-
time incarcerated (𝑆𝑖, 𝑖 = 2, 3, . . . , 𝑛) and became criminally
active again. Similarly, let the incarcerated population be
divided into two categories: 𝐶1, those who are first-time
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incarcerated, and 𝐶𝑖 (i = 2,3,. . .,n), those who were multiple-
time incarcerated at a given time. Finally,𝐷0 represents those
individuals who have a criminal propensity but desisted from
criminal life either by their own or as a result of early inter-
ventions when discharged out of prison (desisting offend-
ers/criminal desisters), and 𝐷𝑖 (i = 1,2,3,. . .,n) represents
those individuals who were either first-time or multiple-time
incarcerated but desisted from criminal behavior (desisting
offenders/criminal desisters) due to variety of reasons.

It is assumed that individuals susceptible to the crime𝑆0 move to either incarcerated (𝐶1) or desisting (𝐷0) class.
The rate of initial participation in crime (𝛿0) at which
individuals move from state 𝑆0 (not criminally active) to𝐶1 (criminally active and incarcerated) is proportional to
intrinsic criminal propensity of individuals. It is also assumed
that special intervention programmes (𝛾1) may change their
basic propensity traits and affect the decisions to engage in
crime [24]. As a consequence, we should expect that certain
interventions discourage participation in crime, resulting in
desistance from criminal activity and reintegration back into
society. Primary prevention is an attempt to reduce the risk
of behaviors that potentially lead to incarceration. This point
is one of the great interests here.

The average length of the primary incarceration term is
given by 1/𝜏1; that is, the rate at which inmates move from
state𝐶1 to 𝑆1 (formerly incarcerated but not criminally active,
i.e., ex-offenders) is 𝜏1. In the same way, the average length of
the multiple incarceration term is given by 1/𝜏2, with 1/𝜏2 >1/𝜏1.

It is worth mentioning that the representation of the
cycles of criminal dynamics, with a focus on modeling the
recidivism process (criminal careers), could be extended
including 𝑆𝑖, 𝐶𝑖, and 𝐷𝑖 (i = 2,3,. . .,n). However, we do not
intend to develop complex models that account for these
cycles and we will explore two cycles only (i = 1,2).

In addition, it is assumed that the recidivism prevention
takes place during incarceration and after release back into
society. Its purpose is to reduce the risk of an individual
reoffending and eventually returning to the prison system.
However, some individuals may resume criminal activity
very soon after being released from prisons depending on
having contact with those individuals still incarcerated and
criminally active. It should be mentioned that Walsh and
Graig (see [25]) indicated that recidivism is also called falling
back into a previous criminal behavior.

We also define 𝛽𝑖 (i=1,2) as the rate of imprisonment,
which captures the return to criminal activity of the indi-
viduals released from prison, such that 𝛽1 and 𝛽2 describe
the rates with which individuals engage into criminal activity,
depending on having had any contagious contact with those
incarcerated criminals. They are analogous to the effective
contact rate in infectious diseases models.

Finally, 𝜇 is the natural mortality rate and 𝑎𝑖 (i=1,2) is the
incarceration-related additional deaths rate (inmate mortal-
ity rate can be caused by illness, such asAIDS-related, suicide,
accidental self-injury, execution, or any other unspecified
cause). Moreover, since the model monitors human popu-
lations, all parameters are assumed as nonnegative. We also
assumed homogeneous populationwithout any differences in
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Figure 1: The flow diagram for the low-high criminality model (1).

age or in crime type occurrences. In addition, we used the
number of incarcerations as a proxy for reoffending.

The flow diagram of the PCCM for two stages is depicted
in Figure 1. The variables and parameters are described in
Tables 1 and 2, respectively.

Combining the above derivations and assumptions, it fol-
lows that the model for transmission dynamics of criminality
for two stages is given by the following nonlinear system of
differential equations:

𝑑𝑆0𝑑𝑡 = Λ − (𝛿0 + 𝛾0 + 𝜇) 𝑆0
𝑑𝐷0𝑑𝑡 = 𝛾0𝑆0 − 𝜇𝐷0
𝑑𝐶1𝑑𝑡 = 𝛿0𝑆0 − (𝜏1 + 𝜇 + 𝑎1) 𝐶1
𝑑𝑆1𝑑𝑡 = 𝜏1𝐶1 − (𝛾1 + 𝜇) 𝑆1 − 𝛽1𝐶2𝑆1
𝑑𝐷1𝑑𝑡 = 𝛾1𝑆1 − 𝜇𝐷1
𝑑𝐶2𝑑𝑡 = (𝛽1𝑆1 + 𝛽2𝑆2) 𝐶2 − (𝜏2 + 𝜇 + 𝑎2) 𝐶2
𝑑𝑆2𝑑𝑡 = 𝜏2𝐶2 − 𝛽2𝐶2𝑆2 − (𝛾2 + 𝜇) 𝑆2
𝑑𝐷2𝑑𝑡 = 𝛾2𝑆2 − 𝜇𝐷2

(1)

with generic initial conditions 𝑆0(0) ≥ 0, 𝐷0(0) ≥ 0, 𝐶1(0) ≥0, 𝑆1(0) ≥ 0, 𝐷1(0) ≥ 0, 𝐶2(0) ≥ 0, 𝑆2(0) ≥ 0, and 𝐷2(0) ≥ 0.
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Table 1: Models variables and their biological meaning.

Variables Description
𝑆
0

Individuals not criminally active but susceptible to crime (core group)𝐶1 First-time incarcerated individuals𝑆1 First-time ex-offenders individuals who are again susceptible to crime𝐷𝑖 Individuals who desist from criminal behavior (i = 0,1,2) (desisting offenders/criminal desisters)𝐶2 Individuals who were two or multiple times incarcerated (recidivists, reoffenders)𝑆2 Second-time ex-offenders individuals and susceptible to crime (at least two incarcerations)

Table 2: Models parameters and their biological meaning.

Parameters Description
Λ Rate of recruitment of individuals into the core group𝛿0 Basic flow to the criminality (𝑡𝑖𝑚𝑒−1) (criminal propensity)𝛽1 Rate of cooptation of first-time ex-offenders (contact rate between 𝐶2 and 𝑆1)𝛽
2

Rate of cooptation of second-time ex-offenders (contact rate between 𝐶
2
and 𝑆

2
)𝛾0 Rate of early desistance from crime𝛾1 Rate of desistance from crime when in the first cycle𝛾2 Rate of desistance from crime when in at least the second cycle𝜇 Natural inmate mortality rate𝑎1 Additional inmate mortality rate when in 𝐶1𝑎2 Additional inmate mortality rate when in 𝐶2𝜏1 Release rate from incarceration of first-time offenders𝜏2 Release rate from incarceration of at least second-time offenders

By summing up the above equations, the total population size𝑁(𝑡) is variable with
𝑑𝑁𝑑𝑡 = Λ − 𝜇𝑁 − 𝑎1𝐶1 − 𝑎2𝐶2 (2)

Thus, in the absence of additional inmate mortalities, that is,𝑎1 = 𝑎2 = 0, the population size evolves as an immigration
model with natural mortality, that is, according to 𝑑𝑁/𝑑𝑡 =Λ − 𝜇𝑁. This equation has a single equilibrium𝑁 = 𝑁(0) =Λ/𝜇 for any initial value of 𝑁(0). Thus, in the long run, the
population size settles to this constant value. It follows from
(2) that lim𝑡󳨀→∞𝑁(𝑡) ≤ Λ/𝜇 = 𝑁(0).

The differential equation for 𝑁 implies that solutions of
(1), starting in the positive orthantR8

+
, either approach, enter,

or remain in the subset R8
+
defined by

Ω = {(𝑆0, 𝐷0, 𝐶1, 𝑆1, 𝐷1, 𝐶2, 𝑆2, 𝐷2) ∈ R
8

+
: 𝑆0 + 𝐷0

+ 𝐶1 + 𝑆1 + 𝐷1 + 𝐶2 + 𝑆2 + 𝐷2 ≤ 𝑁 (0)} . (3)

Thus it suffices to consider solutions in the regionΩ. Solu-
tions of the initial value problem starting in Ω and defined
by (1) exist and are unique on a maximal interval [26]. Since
solutions remain bounded in the positively invariant regionΩ, the initial value problem is then both mathematically and
epidemiologically well posed [27]. Hence, it is sufficient to
consider the dynamics of the flow generated by model (1) inΩ.

2.2. Analysis of the PCCM Model. In this section, system
(1) is qualitatively analyzed to investigate the existence of
its equilibria [28] and the control strategies of its dynamical
behavior.

From system (1), with the right-hand size equal to zero, it
can be seen from the first five equations that the coordinates
of the equilibrium point are given, respectively, by

𝑆0 = Λ(𝛿0 + 𝛾0 + 𝜇) ,
𝐷0 = 𝛾0𝜇 𝑆0,
𝐶1 = 𝛿0(𝜏1 + 𝜇 + 𝑎1)𝑆0,
𝑆1 = 𝜏1𝛿0(𝜏1 + 𝜇 + 𝑎1) (𝜇 + 𝛾1 + 𝛽1𝐶2)𝑆0,
𝐷1 = 𝛾1𝜇 𝑆1.

(4)

Moreover, from seventh and eighth equations of system
(1), we obtain

𝑆2 = 𝜏2𝐶2𝜇 + 𝛾2 + 𝛽2𝐶2 ,
𝐷2 = 𝛾2𝜇 𝑆2.

(5)
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From the sixth equation of system (1), one gets

(i) 𝐶2 = 0,
(ii) 𝐶2 ̸= 0, which implies 𝛽1𝑆1 + 𝛽2𝑆2 − (𝜏2 + 𝜇 + 𝑎2) = 0.
If 𝐶2 = 0, model (1) has a low-criminality equilibrium𝑃𝑙 = (𝑆0, 𝐷0, 𝐶1, 𝑆1, 𝐷1, 0, 0, 0) which indicates the existence

of offenders who are incarcerated only once in life (𝐶1), given
by

𝑆0 = Λ(𝛿0 + 𝛾0 + 𝜇) ,
𝐷0 = 𝛾0𝜇 𝑆0,
𝐶1 = 𝛿0(𝜏1 + 𝜇 + 𝑎1)𝑆0,
𝑆1 = 𝜏1𝛿0(𝜏1 + 𝜇 + 𝑎1) (𝜇 + 𝛾1)𝑆0,
𝐷1 = 𝛾1𝜇 𝑆1.

(6)

To determine the stability of this equilibrium, the Jaco-
bian of system (1) is computed and evaluated at 𝑃𝑙. Hence, the
low-criminality equilibrium 𝑃𝑙 = (𝑆0, 𝐷0, 𝐶1, 𝑆1, 𝐷1, 0, 0, 0) is
locally asymptotically stable if 𝑅∗

1
< 1, where 𝑅∗

1
, defined as

Criminality Reproduction Number (CRN), is given by

𝑅∗
1
= 𝛽1𝛽∗
1

(7)

with

𝛽∗
1
= (𝜏1 + 𝜇 + 𝑎1) (𝜇 + 𝛾1) (𝜏2 + 𝜇 + 𝑎2)𝜏1𝛿0𝑆0 . (8)

Note that, in analogy to the spread of infectious diseases
models [29], the CRN, 𝑅∗

1
, represents the “average expected

number of new offenders originated by a single persisting
offender 𝐶∗

2
, whilst in a criminal career.” In other words,

one person 𝐶∗
2
who was incarcerated two times gets into

contact with 𝑆1 susceptible individuals, just released from
first imprisonment, successfully and induces 𝑅∗

1
persons to

commit crime. In other words, 𝑅∗
1
is the average number of

individuals who commit crime influenced by one inmate 𝐶∗
2
.

For 𝐶2 ̸= 0, that is, for 𝛽1𝑆1 + 𝛽2𝑆2 − (𝜏2 + 𝜇 + 𝑎2) = 0,
replacing both expressions for 𝑆1 given by (4) and 𝑆2 given by
(5), an expression for 𝐶2 = 𝐶∗2 > 0 is obtained as

𝑏2 (𝐶∗2 )2 + 𝑏1𝐶∗2 + 𝑏0 = 0, (9)

where
𝑏2 = 𝛽1𝛽2 (𝜇 + 𝑎2) .
𝑏1 = (𝜇 + 𝛾1) (𝜏2 + 𝜇 + 𝑎2)
⋅ 𝛽2 {[𝛽1 (𝜇 + 𝛾2)𝛽2 (𝜇 + 𝛾1) +

(𝜇 + 𝑎2)(𝜏2 + 𝜇 + 𝑎2)] − 𝑅
∗

1
} ,

𝑏0 = (𝜇 + 𝛾1) (𝜇 + 𝛾2) (𝜏2 + 𝜇 + 𝑎2) (1 − 𝑅∗1 ) ,

(10)

Let us now determine the conditions under which the
quadratic equation (9) has positive real roots; that is, we
search for the existence of multiple equilibria of system (1).
However, the expression for the discriminant of the quadratic
equation (9) is very complex, so we will analyze the signs of
its coefficients to ensure the existence of real solutions. Thus,
the conditions under which this equation has either one or
two positive real roots can be determined, and these results
translated into nontrivial equilibrium of system (1) which is
biologically feasible (i.e., positive).

Hence, substituting the positive real solutions of the
quadratic equation (9) (i.e., positive values of 𝐶∗

2
) into the

expressions in (5), model (1) has a high-criminality equilib-
rium, 𝑃ℎ = (𝑆0, 𝐷0, 𝐶1, 𝑆∗1 , 𝐷∗1 , 𝐶∗2 , 𝑆∗2 , 𝐷∗2 ), where there is
coexistence of both offenders 𝐶1 and 𝐶∗2 , given by

𝑆∗
1
= 𝜏1𝛿0(𝜏1 + 𝜇 + 𝑎1) + (𝜇 + 𝛾1) + 𝛽1𝐶∗2 𝑆0

𝐷∗
1
= 𝛾1𝜇 𝑆∗1

𝑆∗
2
= 𝜏2𝐶∗2(𝜇 + 𝛾2) + 𝛽2𝐶∗2

𝐷∗
2
= 𝛾2𝜇 𝑆∗2 ,

(11)

with 𝑆0,𝐷0, and 𝐶1 given by (6). Thus, the following result is
then established.

Theorem 1. Model (1) has

(i) a unique positive equilibrium 𝑃ℎ if 𝑏0 < 0 ⇐⇒ 𝑅∗
1
>1;

(ii) a unique positive equilibrium 𝑃ℎ if 𝑏0 = 0 and 𝑏1 < 0;
(iii) two positive equilibria, 𝑃ℎ, if 𝑏0 > 0 and 𝑏1 < 0 and𝑏2
1
− 4𝑏2𝑏0 > 0;

(iv) no positive equilibrium, otherwise.

Since all model parameters are assumed as nonnegative,
it follows from (10) that the coefficient 𝑏2 is always positive,𝑏0 < 0 for 𝑅∗1 > 1 and 𝑏0 > 0 for 𝑅∗1 < 1. Thus, it is clear from
Theorem 1 that model (1) has a unique positive equilibrium,𝑃ℎ, when 𝑏0 < 0, that is, when 𝑅∗1 > 1 (case (i)).

Now, for 𝑏0 > 0 and𝑅∗1 < 1, the quadratic equation (9) has
two positive solutions if 𝑏1 < 0 and 𝑏21 − 4𝑏2𝑏0 > 0 (case (iii)).
Hence, assuming that (9) has two positive real solutions, let𝐶−
2
and𝐶+

2
be the smaller and higher value of𝐶∗

2
, respectively.

Translating it into equilibrium of system (1), the question is to
address what means the positive high-criminality equilibria𝑃ℎ for 𝑅∗1 < 1. It is important to note that, in this case, system
(1) can have two equilibria, which are biologically feasible,
even though𝑅∗

1
< 1.This idea is exploredmore deeply below.

It is instructive at this point to explore some qualitative
features for 𝑅∗

1
= 1 and 𝑅∗

1
> 1. Firstly, for 𝑅∗

1
= 1, it follows

that 𝑏0 = 0; the quadratic equation (9) has either a unique
positive root (if 𝑏1 < 0) or no positive root (if 𝑏1 > 0). In
other words, for 𝑅∗

1
= 1 and 𝑏1 < 0, model (1) has a unique

positive high-criminality equilibrium given by 𝑃ℎ (case (ii)).
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Moreover, note that when 𝛽2 = 0, we have 𝑏2 = 0 and𝑏1 = (𝜇 + 𝛾2)(𝜏2 + 𝜇 + 𝑎2)𝛽1. Thus, if 𝑅∗
1
> 1, then

𝐶∗
2
(𝛽2 = 0) = (𝜇 + 𝛾1)𝛽1 (𝑅∗

1
− 1) , (12)

and model (1) has a unique positive high-criminality equilib-
rium, 𝑃ℎ, for 𝛽2 = 0.

For 𝛽2 󳨀→ ∞, we have 𝑏1 = (𝜇 + 𝛾1)(𝜏2 + 𝜇 + 𝑎2)𝛽2[(𝜇 +𝑎2)/(𝜏2 + 𝜇 + 𝑎2) − 𝑅∗1 ] and 𝑏2 = 𝛽1𝛽2(𝜇 + 𝑎2) with 𝑏0 ≪ |𝑏1|
and 𝑏0 ≪ 𝑏2 such that

𝐶∗
2
(𝛽2 󳨀→ ∞)
= (𝜇 + 𝛾1) (𝜏2 + 𝜇 + 𝑎2)𝛽1 (𝜇 + 𝑎2) [𝑅∗

1
− (𝜇 + 𝑎2)(𝜏2 + 𝜇 + 𝑎2)] ,

(13)

and 𝐶∗
2
> 0 if only if 𝑅∗

1
> (𝜇 + 𝑎2)/(𝜏2 + 𝜇 + 𝑎2). Thus, model

(1) has a unique high-criminality equilibrium 𝑃ℎ if 𝛽2 󳨀→ ∞.
Unfortunately, this high-criminality equilibrium cannot

be studied from its closed form, so we carried out its local
stability using numerical methods. The results are provided
next.

Finally, if (i), (ii), and (iii) do not occur, then there are no
endemic equilibria for system (1).

In what follows, model (1) admits two realistic scenarios:
the best-case scenario, where offenders were incarcerated
once and it is still possible to fight crime and recidi-
vism is given by the low-criminality equilibrium 𝑃𝑙 =(𝑆0, 𝐷0, 𝐶1, 𝑆1, 𝐷1, 0, 0, 0), and the worst-case scenario, where
the offenders were incarcerated at least once (recidivism),
which can potentially lead to increased criminal activ-
ities, given by the high-criminality equilibrium 𝑃ℎ =(𝑆0, 𝐷0, 𝐶1, 𝑆∗1 , 𝐷∗1 , 𝐶∗2 , 𝑆∗2 , 𝐷∗2 ).

Having found the scenarios in which there exist the
equilibria for system (1), it is instructive to analyze whether
or not these equilibria are stable under any of these scenarios.
Moreover, together with the CRN, 𝑅∗

1
(see (7)), and the

parameter 𝛽2, we see that each scenario can be used as a
check for the existence and the stability of the equilibria.
Another crucial question is which of the two incidence rates𝛽1 and 𝛽2 is more likely to affect the criminal dynamics in
general and criminal contacts in particular. These points are
of great interest here and we then explore how our model
behaves under control strategies when 𝑅∗

1
< 1. We fix 𝛽2

and explore the system behavior by varying 𝛽1. We also
explore what happens whenwe fix𝛽1 while𝛽2 is varied.These
control measures are designed to fight recidivism. In both
cases, the recidivism will depend upon the initial sizes of the
subpopulation 𝐶2 and indicate the possibility of backward
bifurcation.

Firstly, it is worth remembering that the quantity 𝛽1
measures the average number of new contacts generated
by a typical incarcerated individual 𝐶2 with those suscep-
tible individuals 𝑆1 who are ex-offenders and can become
susceptible to the crime again. 𝛽2, in turn, measures the
average number of new contacts generated by 𝐶2 with those
individuals 𝑆2 who were reoffenders (recidivist behavior) and
are susceptible to the crime once again.

In this way, there are two groups of offenders: those
who are under much lower risk, most of whom will go to
prison once and not come back (ex-offenders), and thosewho
repeatedly do crimes and come back multiple times to the
prison (reoffenders). The strong implication of the findings
is that individuals who are incarcerated are extremely likely
to reoffend once they are free.

Note that when system (1) has a small influx of reoffenders
(𝐶2), it does not generate high criminality rates and, for𝑅∗
1
< 1, it is still possible to minimize the spreading of

crime (best-case scenario). We will see that, in this case,
the corresponding low-criminality equilibrium 𝑃𝑙 could be
locally asymptotically stable.On the other hand, the criminal-
ity will persist and increase if 𝑅∗

1
> 1 (worst-case scenario).

In this case, the corresponding high-criminality equilibrium𝑃ℎ could be locally asymptotically stable. This phenomenon,
where the possibility of fighting the spread of the crime is lost
and the criminality is potentially active, that is, where 𝑃𝑙 loses
its stability and a unique 𝑃ℎ appears as 𝑅∗1 increases through
one, is known as forward bifurcation in epidemiology.

For models that exhibit this type of bifurcation, the
requirement 𝑅∗

1
< 1 is necessary and sufficient for the high-

criminality elimination. In contrast, other models undergo
another type of bifurcation, known as “backward bifurcation”
in epidemiology, where two equilibria𝑃+

ℎ
and𝑃−
ℎ
coexist with

the low-criminality equilibrium, 𝑃𝑙; that is, there are three
steady states when 𝑅∗

1
is immediately less than one. Thus, the

requirement 𝑅∗
1
< 1 is necessary but is not sufficient to fight

the spread of crime.

2.2.1. Analytic Strategy: 𝛽2 Fixed with 𝛽1 Increasing. The
physical implication of backward bifurcation is that the 𝐶2
population can engage in a high criminality level even when𝑅∗
1
crosses unity downwards. In other words, in the presence

of recidivism, decreasing 𝑅∗
1
below one is not a sufficient

condition to make the criminality level decrease. This has
very important consequence for crime control, as will be
discussed later in this paper.

To check the possibility of backward bifurcation inmodel
(1), it is necessary to know other subthreshold, and we will
refer to this limit point, as expressed on the 𝑅∗

1
scale, as 𝑅𝑡ℎ𝑟

1
.

Hence, for 𝑅∗
1
< 𝑅𝑡ℎ𝑟
1
, system (1) will present only the locally

asymptotically stable low-criminality equilibrium 𝑃𝑙. For𝑅∗
𝑡ℎ𝑟

< 𝑅∗
1
< 1, system (1) will present the locally asymptot-

ically stable low-criminality equilibrium 𝑃𝑙 plus two positive
high-criminality equilibria,𝑃+

ℎ
and𝑃−
ℎ
, whichwill correspond

to the solutions of (9): 𝐶+
2
, the higher solution, which

corresponds to the stable equilibrium, and 𝐶−
2
, the smaller

solution, which corresponds to the unstable equilibrium.
Although the critical value of the bifurcation could not

be found analytically due to the high dimension of system
(1), this task can be performed numerically. In this way, our
simulations show that there exists a critical value 𝑅∗

𝑡ℎ𝑟
< 𝑅∗
1
=1, where model (1) undergoes backward bifurcation.

A schematic diagram of the backward and the forward
bifurcations for system (1) is given in Figure 2, where 𝛽1
is chosen as a bifurcation parameter; that is, we fixed 𝛽2,
whereas 𝛽1 increases.
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Figure 2: Backward and forward bifurcations diagram for proportion of reoffenders (𝐶∗
2
) for model (1), where 𝛽1 is chosen as a bifurcation

parameter (𝛽
2
fixed and 𝛽

1
increasing). The higher solution corresponds to the stable equilibrium (solid curve); the smaller solution

corresponds to the unstable equilibrium (dashed curve). Backward bifurcation for (a) 𝛽2 = 1000, 𝛽1 = 5.371, and 𝑅𝑡ℎ𝑟1 = 0.347; (b) 𝛽2 = 500,𝛽1 = 5.845, and 𝑅𝑡ℎ𝑟1 = 0.378; and (c) 𝛽2 = 50, 𝛽1 = 11, and 𝑅𝑡ℎ𝑟1 = 0.712. Forward bifurcation for (a) 𝛽2 = 17.7, 𝛽1 = 15.45, and 𝑅𝑡ℎ𝑟1 = 𝑅∗
1
= 1

and (b) 𝛽2 = 10.0, 𝛽1 = 15.45, and 𝑅𝑡ℎ𝑟1 < 𝑅∗
1
= 1. Parameters’ values used are as given in Table 3.

Figure 2 shows the profile of the proportion of
both reoffenders 𝐶+

2
(solid curve) and 𝐶−

2
(dashed

curve) as a function of 𝑅∗
1

with decreasing values of𝛽2 = 1000; 500; 50; 17.7; 10 (𝑦𝑒𝑎𝑟−1) as 𝑅∗
1
increases

(i.e., as 𝛽1 increases). The solid curve stands for the stable
high-criminality equilibrium, 𝐶+

2
, and the dashed curve

stands for the unstable high-criminality equilibrium, 𝐶−
2
. For𝛽2 = 1000 and 𝛽1 = 5.371, one has 𝑅𝑡ℎ𝑟

1
= 0.347. Thus, for0.347 < 𝑅∗

1
< 1, model (1) has two positive high-criminality

equilibria, while for 𝑅∗
1
> 1, model (1) has one positive

high-criminality equilibrium. Similarly, for 𝛽2 = 500 and𝛽1 = 5.845, one gets 𝑅𝑡ℎ𝑟1 = 0.378. Thus, for 0.378 < 𝑅∗
1
< 1,

model (1) has two positive high-criminality equilibria, while
for 𝑅∗
1
> 1, model (1) has one positive high-criminality

equilibrium. For 𝛽2 = 50 and 𝛽1 = 11, one gets 𝑅𝑡ℎ𝑟1 = 0.712.
Thus, for 0.712 < 𝑅∗

1
< 1, model (1) has two positive

high-criminality equilibria, while for 𝑅∗
1
> 1, model (1)

has one positive high-criminality equilibrium. Finally, for𝛽2 = 17.7 and 𝛽1 = 15.45 and for 𝛽2 = 10.0 and 𝛽1 = 15.45,
we have 𝑅𝑡ℎ𝑟

1
≤ 𝑅∗
1
= 1, and the model has one positive

high-criminality equilibrium for 𝑅∗
1
> 1 and no positive

equilibrium for 𝑅∗
1
< 1. Consequently, model (1) exhibits the

forward bifurcation at 𝑅∗
1
= 1. As it should be expected, it

Table 3: Baseline values for model (1).

Variable Description
Λ 0.015 (𝑦𝑒𝑎𝑟𝑠−1)𝛿0 0.02 (𝑦𝑒𝑎𝑟𝑠−1)𝛽1 V𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑦𝑒𝑎𝑟𝑠−1)𝛽2 V𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑦𝑒𝑎𝑟𝑠−1)𝛾0 0.2 (𝑦𝑒𝑎𝑟𝑠−1)𝛾1 0.1 (𝑦𝑒𝑎𝑟𝑠−1)𝛾2 0.08 (𝑦𝑒𝑎𝑟𝑠−1)𝜇0 0.015 (𝑦𝑒𝑎𝑟𝑠−1)𝑎1 0.03 (𝑦𝑒𝑎𝑟𝑠−1)𝑎
2

0.025 (𝑦𝑒𝑎𝑟𝑠−1)𝜏1 0.2 (𝑦𝑒𝑎𝑟𝑠−1)𝜏2 0.1 (𝑦𝑒𝑎𝑟𝑠−1)

can be seen in Figure 2 that 𝑅𝑡ℎ𝑟
1

increases with increasing 𝛽1
and a greater reduction in recidivism prevalence is recorded
for decreasing values of 𝛽2.

As stated earlier, the physical significance of the phe-
nomenonof backward bifurcation is that the classical require-
ment of 𝑅∗

1
< 1 is no longer sufficient for avoiding the
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Figure 3: For 𝛽1 = 11, 𝛽2 = 50, and 𝑅𝑡ℎ𝑟1 < 𝑅∗
1
< 1. The other parameters’ values are given in Table 3. Profile of the population of reoffenders

(𝐶2). (a) If the recidivism is low (or 𝐶2(0) small), then the equilibrium point 𝑃𝑙 is locally asymptotically stable; (b) if the recidivism is higher
(or 𝐶2(0) large), then the equilibrium point 𝑃ℎ is locally asymptotically stable.

recidivism prevalence, as it is for the forward bifurcation. In
such a scenario, the recidivism would depend on the initial
sizes of the subpopulation 𝐶2 of the model. That is, the
presence of backward bifurcation in model (1) suggests that
the possibility of avoiding the recidivism event when 𝑅∗

1
< 1

could be dependent on the initial sizes of the subpopulation𝐶2. This scenario is illustrated numerically in Figure 3. Thus,
if the recidivism is low, then 𝐶2(0) is small, such that the
low-criminality equilibrium 𝑃𝑙 is stable (Figure 3(a)). In
contrast, if the recidivism is higher, then 𝐶2(0) is large, so
the high-criminality equilibrium 𝑃ℎ is stable (Figure 3(b)).
Therefore, the stability of these equilibrium points depends
on the initial condition of system (1). This clearly indicates
the coexistence of two locally asymptotically stable equilibria
when 𝑅∗

1
< 1, confirming that model (1) undergoes the

phenomenon of backward bifurcation with one stable high-
criminality equilibrium 𝑃+

ℎ
(higher, solid curve in Figure 2),

one unstable high-criminality equilibrium 𝑃−
ℎ
(lowest dashed

curve in Figure 2), and one low-criminality equilibrium 𝑃𝑙.
2.2.2. Analytic Strategy: 𝛽1 Fixed with 𝛽2 Increasing. Alterna-
tively, from now onwe explore the implications of the param-
eter 𝛽2 on the criminal dynamics. It is worthmentioning that,
from expression (10), it is easy to verify that 𝑏1 < 0 if and only
if

𝛽2 > 𝛽1 (𝜇 + 𝛾2)(𝜇 + 𝛾1) [𝑅∗1 − (𝜇 + 𝑎2) / (𝜏2 + 𝜇 + 𝑎2)] > 0, (14)

and thus, in such case, system (1) has two positive high-
criminality equilibria (case (iii), see Theorem 1.) for 𝑏0 > 0,𝑏2
1
− 4𝑏2𝑏0 > 0, and 𝑅∗1 > (𝜇 + 𝑎2)/(𝜏2 + 𝜇 + 𝑎2).
A schematic diagram of this bifurcation phenomenon

for system (1) is given in Figure 4, where 𝛽2 is chosen
as a bifurcation parameter. As mentioned previously, this
bifurcation phenomenon of model (1) is only illustrated
numerically.

Figure 4 shows the profile of the proportion of
both reoffenders 𝐶+

2
(solid curve) and 𝐶−

2
(dashed

curve) as a function of 𝛽2 with decreasing values of𝛽1 = 30; 15.449; 11; 7.5; 5.845 (𝑦𝑒𝑎𝑟−1) as 𝛽2 increases.
The solid curve stands for the stable equilibrium and the
dashed curve stands for the unstable equilibrium. Note that,
for 𝛽1 = 30 and 𝑅∗

1
> 1, 𝛽2 = 0 such that system (1) has a

unique positive high-criminality equilibrium (see case (i) of
Theorem 1 and (12)).

It should be also noticed in Figure 4 that 𝑅∗
1
increases

with decreasing 𝛽2, such that greater reduction in recidivism
prevalence is recorded for decreasing values of 𝛽1. One aspect
to differentiate both parameters 𝛽1 and 𝛽2 is the way that they
account for the transition to criminal activity.
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Figure 4: Breaking point and forward bifurcation diagrams for proportion of reoffenders (𝐶∗
2
) for model (1), where 𝛽2 is chosen as a

bifurcation parameter (𝛽1 fixed with 𝛽2 increasing). The higher solution corresponds to the stable equilibrium (solid curve); the smaller
solution corresponds to the unstable equilibrium (dashed curve). The phenomenon of the breaking point for (a) 𝛽1 = 11, 𝑅∗

1
= 0.71, and𝛽𝑡ℎ𝑟

2
= 50; (b) 𝛽

1
= 7.5, 𝑅∗

1
= 0.486, and 𝛽𝑡ℎ𝑟

2
= 146.8; and (c) 𝛽

1
= 5.845, 𝑅∗

1
= 0.378, and 𝛽𝑡ℎ𝑟

2
= 499; forward bifurcation for 𝛽

1
= 15.449,𝑅∗

1
= 1, and 𝛽𝑡ℎ𝑟

2
= 17.7. For 𝛽1 = 30 and 𝑅∗

1
= 1.94, 𝛽2 = 0 such that system (1) has a unique positive high-criminality equilibrium 𝑃ℎ.

Parameters’ values used are as given in Table 3.

In the low-criminality scenario, the only way someone
becomes criminally active is onhis/her own,without interact-
ing with another personwho is already criminally active.This
restriction is necessary in order to illustrate the dynamics of
a system which would lead to low-criminality equilibrium. If
new criminal could only emerge on his/her own, then reduc-
ing the number of individuals who are not criminally active
(core group) through either intervention or spontaneous
desistance could lead to the lowest criminal scenario. For
this, we calculated the threshold between the low-criminality
equilibrium and the high-criminality equilibrium.Therefore,
for 𝑅∗
1
< 𝑅𝑡ℎ𝑟
1
, system (1) presented the locally asymptotically

stable low-criminality equilibrium𝑃𝑙. Although not a realistic
possibility, understanding the intrinsic criminal propensity
that leads to such kind of deviant behavior is a necessary
step for understanding the high-criminality prevalence in the
model, which will be presented in the next section.

In addition, in the high-criminality scenario, the way
someone can become criminally active is to interact with
another person who is already criminally active. Thus, if
new reoffenders could only emerge by interaction between
reoffenders (𝐶∗

2
) and those second-time offenders susceptible

to the crime (𝑆∗
2
) at a rate 𝛽2, then reducing the number of

contacts between𝐶∗
2
and 𝑆1, that is, reducing𝛽1, could lead to

the low-criminality scenario if the proportion of reoffenders𝐶∗
2
is small (see Figure 3). Hence, to reach the low-criminality

equilibrium, a community needs to reduce 𝛽1. However, if 𝛽1
is large, then the proportion of reoffenders 𝐶∗

2
, as well as 𝑆∗

2
,

increases, which leads to higher crime prevalence, such that
the high-criminality scenario emerges.

Figure 5(a) shows the long-term behavior of ln𝛽𝑡ℎ𝑟
2

plot-
ted versus 𝛽1. The threshold 𝛽𝑡ℎ𝑟

2
is expressed as a minimum

value where system (1) has two positive equilibrium points.
Thus, for each fixed 𝛽1, there is a corresponding unique
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Figure 5: (a)The long-term behavior of ln𝛽𝑡ℎ𝑟
2

plotted versus 𝛽1. (b)
For 𝛽1 = 11, 𝑅∗1 = 0.71, and ln𝛽2 = 3.91, system (1) has two positive
equilibrium points.The solid curve stands for the stable equilibrium
and the dashed curve stands for the unstable equilibrium.The other
parameters’ values are given in Table 3.

threshold 𝛽𝑡ℎ𝑟
2
. For one such example (see Figure 5(b)), 𝛽1 =11, 𝑅∗

1
= 0.71, and 𝛽𝑡ℎ𝑟

2
= 50 (or ln 50 = 3.91) are the

minimum values where system (1) has two positive value.
For 𝛽2 > 𝛽𝑡ℎ𝑟

2
, we have 𝐶+

2
> 0 and 𝐶−

2
> 0. In this case,

system (1) has a stable equilibrium point, 𝐶+
2
(the solid curve

in Figure 5(b)), and an unstable equilibrium point, 𝐶−
2
(the

dashed curve in Figure 5(b)). On the other hand, for 𝛽2 <𝛽𝑡ℎ𝑟
2
, we have 𝐶+

2
= 𝐶−
2
= 0, which means that there are

no positive equilibrium points for system (1). Moreover, for𝛽𝑡ℎ𝑟
1

= 15.4492917, we have 𝑅∗
1
= 1 and 𝛽𝑡ℎ𝑟

2
= 17.867 (or

ln 17.867 = 2.883) such that, for 𝛽2 < 𝛽𝑡ℎ𝑟2 , one has 𝐶+
2
= 0

and 𝐶−
2
< 0. Otherwise, for 𝛽2 > 𝛽𝑡ℎ𝑟

2
, one has 𝐶+

2
> 0 and𝐶−

2
= 0 (see Figure 6).

2.3.The Full Contagion CriminalModel (FCCM) Formulation.
In this section, we relax the assumption made in the PCCM
model (1) that the susceptible individuals (𝑆0) can enter to
crime only on their own, so we make 𝛿0 = 0. Hence, in the
modifiedmodel, the flowof the susceptible individuals 𝑆0 into
the criminal activity depends only on the contact with those
individuals who are incarcerated, 𝐶1. We also define 𝛽𝑖 (i =
0,1,2) as the rate of imprisonment; it captures the return to
criminal activity of those released from prison, such that 𝛽0,𝛽1, and 𝛽2 are the flows into criminal activity which depend
on having had contact with those first-time and second-time

incarcerated individuals (𝐶1 and 𝐶2), respectively. Following
the idea of the previous model (1), here 𝛽𝑖 (i = 0,1,2) is analo-
gous to the effective contact rate in infectious diseases model.
This derivation adopts a standard incidence formulation,
where the contact rate is assumed to be constant, unlike the
case of the mass action formulation, where the contact rate
depends on the size of the total population (see, e.g., [27, 30],
for detailed derivation of these incidences’ functions).

The flow diagram of the FCCM is depicted in Figure 7.
The variables and parameters’ values are given in Table 3,
except for 𝛽0 that is the contact rate between 𝐶1 and 𝑆0
(cooptation rate).

The model is represented by the following nonlinear
system of differential equations:

𝑑𝑆0𝑑𝑡 = Λ − 𝛽0𝐶1𝑆0 − (𝛾0 + 𝜇) 𝑆0
𝑑𝐷0𝑑𝑡 = 𝛾0𝑆0 − 𝜇𝐷0
𝑑𝐶1𝑑𝑡 = 𝛽0𝐶1𝑆0 − (𝜏1 + 𝜇 + 𝑎1) 𝐶1
𝑑𝑆1𝑑𝑡 = 𝜏1𝐶1 − (𝛾1 + 𝜇) 𝑆1 − 𝛽1𝐶2𝑆1
𝑑𝐷1𝑑𝑡 = 𝛾1𝑆1 − 𝜇𝐷1
𝑑𝐶2𝑑𝑡 = (𝛽1𝑆1 + 𝛽2𝑆2) 𝐶2 − (𝜏2 + 𝜇 + 𝑎2) 𝐶2
𝑑𝑆2𝑑𝑡 = 𝜏2𝐶2 − 𝛽2𝐶2𝑆2 − (𝛾2 + 𝜇) 𝑆2
𝑑𝐷2𝑑𝑡 = 𝛾2𝑆2 − 𝜇𝐷2

(15)

2.4. The Existence and Local Stability of Equilibria

2.4.1. Crime-Free Equilibrium. In the absence of crime, that
is, for 𝐶1 = 𝐶2 = 0, model (15) has a crime-free equilibrium𝑃0 = (𝑆0

0
, 𝐷0
0
, 0, 0, 0, 0, 0, 0) which is obtained by setting the

right-hand sides of system (15) to zero, where

𝑆0
0
= Λ(𝜇 + 𝛾0) ,

𝐷0 = 𝛾0𝜇 𝑆00.
(16)

To analyze the local stability of this equilibrium, the
Jacobian of system (15) is computed and evaluated at 𝑃0,
which is locally asymptotically stable if the real parts of the
eigenvalues of the Jacobian matrix are all negative.

Thus, the local stability of the crime-free equilibrium 𝑃0
is governed by the Jacobian matrix

𝑀𝑃0 = [𝐴𝑃0 0
0 𝐵𝑃0] , (17)
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Figure 6: Long-term physical outcome 𝐶∗
2
plotted versus ln𝛽2. For 𝛽𝑡ℎ𝑟1 = 15.449, 𝑅∗

1
= 1, and 𝛽2 > 𝛽𝑡ℎ𝑟

2
, system (1) has one positive

equilibrium point. The solid curve stands for the stable equilibrium and the dashed curve stands for the unstable equilibrium. The other
parameters’ values are given in Table 3.

where

𝐴𝑃0 = [− (𝜇 + 𝛾0) −𝛽0𝑆00
0 𝛽0𝑆00 − (𝜏1 + 𝜇 + 𝑎1)] , (18)

𝐵𝑃0 = [[[
[

− (𝜇 + 𝛾1) 0 0
0 − (𝜏2 + 𝜇 + 𝑎2) 0
0 𝜏2 − (𝜇 + 𝛾2)

]]]
]
. (19)

It is easy to verify that the three eigenvalues of matrix (19)
are always negative. In the same way, it is also straightforward
to verify that one of the eigenvalues of matrix (18) is always
negative, while the other is negative whenever

𝑅0 = 𝛽0(𝜏1 + 𝜇 + 𝑎1)𝑆
0

0
< 1. (20)

Hence, all the eigenvalues of matrix (17) are negative or
have negative real parts if and only if 𝑅0 < 1. In summary, the
crime-free equilibrium 𝑃0 of system (15) is locally asymptot-
ically stable if the Basic Criminality Reproduction Number𝑅0 < 1. Therefore, we have established the following result.

Lemma 2. The crime-free equilibrium 𝑃0 of system (15) is
locally asymptotically stable if 𝑅0 < 1 and is unstable if 𝑅0 > 1.

2.4.2. Low-Criminality Equilibrium. In the absence of the
reoffenders, that is, for 𝐶2 = 0, model (15) has a low-
criminality equilibrium 𝑃∗

𝑙
= (𝑆0, 𝐷0, 𝐶1, 𝑆1, 𝐷1, 0, 0, 0),

where

𝑆0 = (𝜏1 + 𝜇 + 𝑎1)𝛽0
𝐷0 = 𝛾0𝜇 𝑆0
𝐶1 = Λ𝛽0 − (𝜇 + 𝛾0) (𝜏1 + 𝜇 + 𝑎1)(𝜏1 + 𝜇 + 𝑎1) 𝛽0

= (𝜇 + 𝛾0)𝛽0 (𝑅0 − 1)
𝑆1 = 𝜏1𝐶1(𝜇 + 𝛾1)
𝐷1 = 𝛾1𝜇 𝑆1.

(21)

Note that 𝑃∗
𝑙

exists if 𝐶1 > 0, that is, if 𝑅0 > 1.
Now consider the resulting model (15). The local stability

93Contagious Criminal Career Models Showing Backward Bifurcations: Implications for Crime Control Policies

__________________________ WORLD TECHNOLOGIES __________________________



WT

Λ

�휇

S0

S1

S2

C1

C2

�휇 + a1

�휇 + a2

�훾0

�훾1

�훾2

�휏1

�휏2

DS0

DS2

�휇 �휇

�휇

�휇�휇

DS1

�훽1C2S1

�훽0C1S0

�훽2C2S2

Figure 7:The flow diagram for the free-low-high criminality model
(15).

of the low-criminality equilibrium 𝑃𝑙, which is examined by
linearizing system (15) around 𝑃𝑙, is governed by the Jacobian
matrix

𝑀𝑃𝑙 =
[[[[[[[[
[

𝑀11 −𝛽0𝑆0 0 0 0
𝛽0𝐶1 𝑀22 0 0 0
0 𝜏1 𝑀33 −𝛽1𝑆1 0
0 0 0 𝑀44 0
0 0 0 𝜏2 𝑀55

]]]]]]]]
]
, (22)

with𝑀11 = −𝛽0𝐶1 − (𝜇 + 𝛾0);𝑀22 = 𝛽0𝑆0 − (𝜏1 + 𝜇 + 𝑎1);𝑀33 = −(𝜇+𝛾1);𝑀44 = 𝛽1𝑆1−(𝜏2+𝜇+𝑎2); and𝑀55 = −(𝜇+𝛾2).
The eigenvalues of matrix (22) are 𝜆1 = 𝑀55, 𝜆2 = 𝑀44,𝜆3 = 𝑀33, and the roots of

𝜙2 + 𝑧1𝜙 + 𝑧0 = 0, (23)

with 𝑧1 = Λ𝛽0/(𝜏1 + 𝜇 + 𝑎1) > 0 and 𝑧0 = Λ𝛽0 − (𝜇 + 𝛾0)(𝜏1 +𝜇 + 𝑎1) > 0(⇐⇒ 𝑅0 > 1).
The eigenvalues 𝜆1 and 𝜆3 are real negative from defi-

nition of the parameters 𝜇, 𝛾1, and 𝛾2. The eigenvalue 𝜆2 is
negative if

𝛽1 < (𝜏2 + 𝜇 + 𝑎2)𝑆1 = 𝛽0 (𝜏2 + 𝜇 + 𝑎2) (𝜇 + 𝛾1)𝜏1 (𝜇 + 𝛾0) (𝑅0 − 1) (24)

or, equivalently, if

𝑅1 = 𝛽1𝜏1 (𝜇 + 𝛾0) (𝑅0 − 1)(𝜏2 + 𝜇 + 𝑎2) (𝜇 + 𝛾1) 𝛽0 < 1 (25)

Finally, the eigenvalues 𝜆4 and 𝜆5 are real negative if 𝑧0 >0 and 𝑧1 > 0 by applying the Routh-Hurwitz criteria [31, 32]
on polynomial (23). In this sense, 𝑧0 > 0 and 𝑧1 > 0 if and
only if 𝑅0 > 1.

Thus, we have established the following result.

Lemma 3. The low-criminality equilibrium 𝑃∗
𝑙
of system (15)

exists and it is locally asymptotically stable if 𝑅0 > 1 and 𝑅1 <1. Otherwise, 𝑃∗
𝑙
is unstable.

It should be mentioned that the consequence of the
above result is that when 𝑃∗

𝑙
becomes unstable, two scenarios

emerge: one for the case where the criminality is eliminated
from population and 𝑃0 is stable and the other where
new criminals could emerge and there is high-criminality
prevalence in the population such that model (15) has a high-
criminality equilibrium with coexistence of both offenders:𝐶1 ̸= 0 and 𝐶2 ̸= 0. In this way, it is instructive to determine
the possible interventions on 𝛽0 and 𝛽1 in order to reduce𝑅0 and 𝑅1 below one, that is, to guarantee the conditions
under which the criminality is eliminated, or at least having
its incidence reduced.

2.4.3. High-Criminality Equilibrium. In what follows, if 𝑅1 >1, such that the low-criminality equilibrium 𝑃∗
𝑙
is unstable,

system (15) has the positive high-criminality equilibrium,𝑃∗
ℎ
= (𝑆0, 𝐷0, 𝐶1, 𝑆∗1 , 𝐷∗1 , 𝐶∗2 , 𝑆∗2 , 𝐷∗2 ), where

𝑆∗
1
= 𝜏1𝐶1𝜇 + 𝛾1 + 𝛽1𝐶∗2 ,

𝑆∗
2
= 𝜏2𝐶∗2𝜇 + 𝛾2 + 𝛽2𝐶∗2 ,

𝐷∗
1
= 𝛾1𝜇 𝑆∗1 ,

𝐷∗
2
= 𝛾2𝜇 𝑆∗2 .

(26)

Remembering from (21) that 𝐶1 > 0 ⇐⇒ 𝑅0 > 1,
so 𝑃∗
ℎ

exists if and only if 𝑅0 > 1. Now replacing the
expressions for 𝑆∗

1
and 𝑆∗
2
in the sixth equation of system (15),

the positive high-criminality equilibrium, which cannot be
expressed cleanly in closed form, can then be obtained by
solving for 𝐶∗

2
the following expression:

𝜂2 (𝐶∗2 )2 + 𝜂1𝐶∗2 + 𝜂0 = 0, (27)

where

𝜂2 = 𝛽1𝛽2 (𝜇 + 𝑎2) ,
𝜂1 = (𝜇 + 𝛾1) (𝜏2 + 𝜇 + 𝑎2)
⋅ 𝛽2 {[𝛽1 (𝜇 + 𝛾2)𝛽2 (𝜇 + 𝛾1) +

(𝜇 + 𝑎2)(𝜏2 + 𝜇 + 𝑎2)] − 𝑅1}
𝜂0 = (𝜇 + 𝛾1) (𝜇 + 𝛾2) (𝜇 + 𝛾2 + 𝑎2) (1 − 𝑅1) .

(28)

Since all the model’s parameters are nonnegative, it
follows from (28) that the coefficient 𝜂2 is always positive and𝜂0 < 0 for𝑅1 > 1.Thus, it is clear that model (15) has a unique
positive equilibrium 𝑃+

ℎ
when 𝑅1 > 1 and 𝑅0 > 1. For 𝜂0 = 0

and 𝜂1 < 0, model (15) also has a unique positive equilibrium
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Figure 8: The phenomena of backward bifurcation and breaking point, when 𝛽1 and 𝛽2 are chosen as a bifurcation parameter. (a) Backward
bifurcation for 𝛽2 = 5 with 𝛽0 and 𝛽1 increasing. (b) Breaking point for 𝛽0 = 𝛽1 = 5 with 𝛽2 increasing, where 𝛽𝑡ℎ𝑟2 = 121.2 and 𝑅0 = 1.139
and 𝑅1 = 0.464. The higher solution corresponds to the stable equilibrium (solid curve); the smaller solution corresponds to the unstable
equilibrium (dashed curve). Parameters’ values used are as given in Table 3.
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Figure 9: For 𝛽
1
= 2.0, 𝛽

2
= 4.4 (𝛽

2
> 𝛽𝑡ℎ𝑟
2
), 𝑅
0
= 2.39, and 𝑅

1
= 0.89. The other parameters’ values are given in Table 3. Profile of population

of reoffenders (𝐶2). (a) If the recidivism is low (or 𝐶2(0) small), then the equilibrium point 𝑃∗
𝑙
is locally asymptotically stable. (b) If the

recidivism is higher (or 𝐶2(0) large), then the equilibrium point 𝑃+
ℎ
is locally asymptotically stable.
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Figure 10: The phenomenon of forward bifurcation when 𝛽0 is chosen as a bifurcation parameter. The crime-free equilibrium 𝑃0 of system
(15) is locally asymptotically stable if 𝑅0 < 1 and is unstable if 𝑅0 > 1. Parameters’ values used are as given in Table 3.

𝑃+
ℎ
. Moreover, whenever 𝑅0 > 1, if 𝑅1 = 1, then 𝜂0 = 0 and𝜂1 < 0 if only if

𝛽2 > (𝜏2 + 𝜇 + 𝑎2) (𝜇 + 𝛾2) 𝛽1𝜏2 (𝜇 + 𝛾1) , (29)

such that model (15) also has a unique positive equilibrium𝑃∗
ℎ
. Finally, for 𝜂0 > 0, 𝜂1 < 0, and 𝜂21 − 4𝜂2𝜂0 > 0, that is, for𝑅0 > 1 and 𝑅1 < 1, model (15) has two positive equilibria 𝑃+

ℎ

and 𝑃−
ℎ
. Note that these equilibrium points cannot be studied

in its closed form, so we carried out its local stability using
numerical methods.

Thus, the following result is then established.

Theorem 4. Model (15) has

(i) a unique positive equilibrium 𝑃+
ℎ
if 𝜂0 < 0 ⇐⇒ 𝑅1 >1;

(ii) a unique positive equilibrium 𝑃+
ℎ
if 𝜂0 = 0 and 𝜂1 < 0;

(iii) two positive equilibria, 𝑃+
ℎ
and 𝑃−
ℎ
, if 𝜂0 > 0 and 𝜂1 < 0

and 𝜂2
1
− 4𝜂2𝜂0 > 0;

(iv) no positive equilibrium, otherwise.

As explored in model (1), model (15) also exhibits the
phenomenon of backward bifurcation (Figure 8(a)) and
breaking point (Figure 8(b)) when 𝛽1 and 𝛽2 are chosen as
bifurcation parameters.

Figure 8(a) shows the backward bifurcation for 𝛽2 = 5
and 𝛽0 = 8.4 (𝑅0 = 2.39) with 𝛽1 increasing. Figure 8(b)
shows the phenomenon of breaking point for 𝛽1 = 𝛽0 = 5,
with 𝛽2 increasing, where 𝛽∗2 = 121.2 and 𝑅0 = 1.139
and 𝑅1 = 0.464. As it should be expected, Figures 8(a)
and 8(b) present the same results shown in Figures 2 and
4. In summary, if 𝑅0 > 1 and 𝑅1 > 1, model (15) has the
locally asymptotically stable high-criminality equilibrium𝑃+

ℎ
.

Finally, if 𝑅0 > 1 and 𝑅1 < 1 and 𝛽2 > 𝛽𝑡ℎ𝑟
2
, then there

is coexistence of two locally asymptotically stable equilibria,𝑃∗
𝑙
and 𝑃+
ℎ
, such that the stability of these equilibrium points

depends on the initial condition of system (15) (see Figure 9).
In contrast to model (1), when 𝛽0 is chosen as a bifur-

cation parameter, model (15) has the crime-free equilibrium𝑃0 given by (16), which indicates the possibility of the
forward bifurcation (Figure 10). If 𝑅0 < 1, then the crime-
free equilibrium 𝑃0 of system (15) is locally asymptotically
stable; if 𝑅0 > 1, 𝑃0 becomes unstable and 𝑃∗

𝑙
is locally

asymptotically stable if 𝑅1 < 1. Thus, the substitution of the
assumption that the susceptible individuals (𝑆0) can enter to
crime only on their own (i.e., 𝛿0) by the standard incidence
(i.e., 𝛽1𝐶1𝑆0) in model (1) includes the forward bifurcation
phenomenon to model (15).

3. Results

To illustrate the theoretical results contained in this paper,
models (1) and (15) are simulated using baseline parame-
ters values/ranges summarized in Table 3 (unless otherwise
stated). The parameters are chosen for simulations purposes
only, so we could illustrate our qualitative results. Moreover,
it is worth mentioning that if the assumption made in the
PCCMmodel (1), that is, susceptible individuals can enter to
crime only on their own (i.e., 𝛿0 ̸= 0), and the assumptions
made in FCCMmodel (15), that is, susceptible individuals get
into criminal behavior depending only on the contact with
those individuals who are incarcerated,𝐶1 (i.e.,𝛽0𝐶1𝑆0), were
considered in a single model, this new model would be more
realistic. However, the analytical results and the phenomena
of backward bifurcation and breaking point of this newmodel
would be similar to model (1), except for the fact that 𝑅0
would no longer exist. For this reason, we did not study this
more realistic mixed model.
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4. Discussion

In this paper, we attempt to present theoretical models
of criminal careers using the dynamical system approach
traditionally used in the study of infectious diseases spreading
in a homogeneous population. The models consider crime
dynamics as contagious phenomena in which a susceptible
cohort of individuals with criminal propensity is “infected”
by criminal individuals who have been convicted for their
crimes and are arrested in a prison. The contagion occurs by
severalways, in particular through the sending ofmessages by
mobile phones (a very widespread habit in Brazilian prisons)
and through “carrier pigeons” represented by relatives and
lawyers.

We propose, to the best of our knowledge by the first
time in quantitative criminology, the existence of thresholds
for the stability of crime-endemic equilibrium which are the
equivalent to the “basic reproduction number” widely used
in the mathematical epidemiology literature [22], as shown
in Lemmas 2 and 3. Both model (1) and model (15), however,
exhibit the phenomena of backward bifurcation and breaking
point when the contact rates 𝛽1 and 𝛽2 are chosen as bifurca-
tion parameters. Since data strongly suggests that standard
incidence formulation is more suited for modeling human
diseases [22, 23, 27] and we adopted this formulation in the
current study, the above results show that the phenomena of
the backward bifurcation and the breaking point could be
important properties of the criminality model.

As in other criminal career models, our models seek to
provide a theoretical framework to analyse the longitudinal
behavior of individuals who commit criminal offenses [33].
In addition, we centrered our analysis, although in an implicit
way, in the parameter considered to be the most important
for the analysis of criminal career, namely, the rate at which
offenders commit crime, denoted in the specialized literature
by the Greek letter 𝜆, coincidently, the same symbol used to
denote the force-of-infection in epidemiology of transmissi-
ble diseases.

Other dynamical system models proposed the analysis of
criminal dynamics including differential equations, like the
works by Farrington synthesized in Refs. [16, 34]. However,
these models are either linear (the former) or related to other
kinds of infectious contagion (the latter).

Finally, it is noteworthy that the models proposed in the
paper are intended only to provide a theoretical framework
upon which other works can provide empirical support for
the assumptions and values for the parameters determinant
of the dynamical behavior of the systems here studied. The
present work, therefore, is intended to provide the first
step in the study of criminal careers as determined by
contagious events like the ones related to the phenomenon of
incarcerated criminals influencing the behavior of susceptible
juveniles outside prisons with a criminal propensity. The
finding of backward bifurcation in both models, however,
implies that there is an endemic equilibrium of criminality
even when the threshold parameter for contagion is below
unit which, in turn, implies that control strategies are more
difficult to achieve any considerable impact on crime control
in situations similar to the ones here analyzed.
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We investigate an efficient numerical method for solving a class of nonlinear Volterra integro-differential equations, which is a
combination of the parametric iteration method and the spectral collocation method.The implementation of the modified method
is demonstrated by solving several nonlinear Volterra integro-differential equations. The results reveal that the developed method
is easy to implement and avoids the additional computational work. Furthermore, the method is a promising approximate tool to
solve this class of nonlinear equations and provides us with a convenient way to control and modify the convergence rate of the
solution.

1. Introduction

Many physical phenomena in different fields of sciences and
engineering have been formulated using integro-differential
equations. The nonlinear integro-differential equations play
a crucial role to describe many process like fluid dynamics,
biological models and chemical kinetics, population, poten-
tial theory, polymer theology, and drop wise condensation
(see [1–4] and the references cited therein). In fact analytical
solutions of integro-differential equations either do not exist
or they are hard to compute. Eventually an exact solution is
computable, the required calculations may be tedious, or the
resulting solution may be difficult to interpret. Due to this,
it is required to obtain an efficient numerical solution. In
literature there exist several numerical methods for solving
integro-differential equations such as successive approxima-
tion method, meshless method [5], Taylor polynomial [6],
Tau method [4], wavelet-Galerkin method [7], Adomain
decomposition method [8], Homotopy perturbation method
[9], Homotopy analysis method [10], Sinc collocation [11],
Legendre polynomials [12], and Taylor collocation method
[13]. The monograph by Bruner [14] includes a wealth of
material on the theory and numerical methods for Volterra
integro-differential equations.

The parametric iteration method (PIM) is an analytic
approximate method that provides the solution of linear and

nonlinear problem as a sequence of iterations. In fact, the
PIM as a fixed- point iteration method is a reconstruction of
variational iteration method [15]. The PIM, however, suffers
from a number of restrictive measures, such as the resulting
integrals in its iterative relation which may not be performed
analytically. Also, the implementation of the PIM generally
leads to calculation of unneeded terms, in which more time
is consumed in repeated calculations for series solutions.

In order to overcome these shortcomings, a useful
improvement of the PIM was proposed in [16]. Therefore,
the strategy that will be pursued in this work rests mainly on
establishing a simple algorithm, requiring no tedious compu-
tational work, based on the improved PIM and the spectral
collocation technique for obtaining an accurate solution for
the following nonlinearVolterra integro-differential equation
(VIDE):

𝑢󸀠 (𝑡) = 𝑓 (𝑡) + ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 (𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇]

𝑢 (0) = 𝑢0,
(1)

where the kernels 𝑘(𝑡, 𝑠), 𝑓(𝑡) and 𝐺(𝑢(𝑠)) are smooth func-
tions.The existence and uniqueness of the solution for (1) are
presented in [17].

To demonstrate the utility of the proposed method,
some examples of the nonlinear VIDEs are given, which are
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solved using the established method. The obtained results
are compared with the numerical solutions. In all cases, the
present algorithm performed excellently.

2. The Basic Idea of the PIM

The PIM gives a rapidly convergent approach by using
successive approximations of the exact solution if such a
solution exists; otherwise the approximations can be used for
numerical purposes. The idea of the PIM is very simple and
straightforward. To explain the PIM, consider (1) as below:

𝐿 [𝑢 (𝑡)] + 𝑁 [𝑢 (𝑡)] = 𝑓 (𝑡) , (2)

where 𝐿 with the property 𝐿V ≡ 0 when V ≡ 0 and it denotes
the auxiliary linear operator with respect to 𝑢. In (2) 𝑁 is a
nonlinear continuous operator with respect to 𝑢 and 𝑓(𝑡) is
the source term.

According to [15, 16], we construct the following family of
the explicit PIM for (2) as

𝐿 [𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)] = ℎ𝐻 (𝑡) 𝐴 [𝑢𝑘 (𝑡)] , (3)

where

𝐴 [𝑢𝑘 (𝑡)] = 𝐿 [𝑢𝑘 (𝑡)] + 𝑁 [𝑢𝑘 (𝑡)] − 𝑓 (𝑡)
= 𝑢󸀠𝑘 (𝑡) − ∫𝑡

0
𝑘 (𝑡, 𝑠) 𝐺 (𝑢𝑘 (𝑠)) 𝑑𝑠 − 𝑓 (𝑡) , (4)

with the initial condition

𝑢𝑘+1 (0) = 𝑢0. (5)

Also we can construct a family of the implicit PIM for (2)
as follows:

𝐿 [𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)]
= ℎ𝐻 (𝑡) {𝐿 [𝑢𝑘 (𝑡)] + 𝑁 [𝑢𝑘+1 (𝑡)] − 𝑓 (𝑡)} , (6)

with the above initial condition.𝑢0(𝑡) is the initial guess which can be freely found from
solving its corresponding linear equation (𝐿[𝑢0(𝑡)] = 0
or 𝐿[𝑢0(𝑡)] = 𝑓(𝑡)) and the subscript 𝑘 denotes the 𝑘th
iteration. Accordingly the approximations of 𝑢𝑘(𝑡), 𝑘 ≥ 0
for the PIM iterative relation will be obtained readily in the
auxiliary parameter ℎ. Consequently, the exact solution can
be obtained by using

𝑢 (𝑡) = lim
𝑘󳨀→∞

𝑢𝑘 (𝑡) . (7)

The parametric iteration formula (3) makes a recurrence
sequence 𝑢𝑘(𝑡). Obviously, the limit of the sequence will
be the solution of (1) if the sequence is convergent. In the
following, we give a proof of convergence of the PIM.Here we
assume that for every 𝑘, 𝑢𝑘 ∈ 𝐶1[0, 𝑇] and {𝑢󸀠𝑘} is uniformly
convergent.

Theorem 1. If the sequence 𝑢𝑘(𝑡) converges, where 𝑢𝑘(𝑡) is
produced by the parametric iteration formulation of (3), then it
must be the exact solution of (1).

Proof. If the sequence {𝑢𝑘(𝑡)} converges, we define
𝑈 (𝑡) = lim

𝑘󳨀→∞
𝑢𝑘 (𝑡) , (8)

and it holds
𝑈 (𝑡) = lim

𝑘󳨀→∞
𝑢𝑘+1 (𝑡) . (9)

From (16) and (9) and the definition of 𝐿, we can easily
acquire

lim
𝑘󳨀→∞

𝐿 [𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)] = 𝐿 lim
𝑘󳨀→∞

[𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)]
= 0. (10)

From (10) and according to (3), we obtain

ℎ𝐻 (𝑡) lim
𝑘󳨀→∞

𝐴 [𝑢𝑘 (𝑡)] = 𝐿 lim
𝑘󳨀→∞

[𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)] = 0. (11)

Since ℎ ̸= 0 and also𝐻(𝑡) ̸= 0 for all 𝑡, the relation (11) gives
us

lim
𝑘󳨀→∞

𝐴 [𝑢𝑘 (𝑡)] = 0. (12)

From (12) and the continuity property of the operator 𝐺, it
follows that

lim
𝑘󳨀→∞

𝐴 [𝑢𝑘 (𝑡)]
= lim
𝑘󳨀→∞

(𝑢󸀠𝑘 (𝑡) − ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 (𝑢𝑘 (𝑠)) 𝑑𝑠 − 𝑓 (𝑡))

= ( lim
𝑘󳨀→∞

𝑢𝑘 (𝑡))󸀠 − ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 ( lim

𝑘󳨀→∞
𝑢𝑘 (𝑠)) 𝑑𝑠

− 𝑓 (𝑡) = 𝑈󸀠 (𝑡) − ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 (𝑈 (𝑠)) 𝑑𝑠 − 𝑓 (𝑡) .

(13)

From (12) and (13), we get

𝑈󸀠 (𝑡) − ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 (𝑈 (𝑠)) 𝑑𝑠 − 𝑓 (𝑡) = 0,

0 ≤ 𝑠, 𝑡 ≤ 𝑇.
(14)

On the other hand, in view of the initial condition of the (𝑘 +1)th order PIM and (9), it holds that

𝑈 (0) = lim
𝑘󳨀→∞

𝑢𝑘+1 (0) = 𝑢 (0) = 𝑢0. (15)

Hence, according to the expressions (14) and (15), 𝑈(𝑡) must
be the exact solution of (1) and this ends the proof.

It is obvious that the convergence of the sequence (16)
depends upon the initial guess 𝑢0(𝑡), the auxiliary linear
operator 𝐿, the auxiliary parameter ℎ, and the auxiliary
function𝐻(𝑡). Fortunately, the PIMprovides uswith the great
freedom of choosing these items. Thus, as long as 𝑢0(𝑡), 𝐿,ℎ, and 𝐻(𝑡) are property chosen so that the sequence (16)
converges in a region 0 ≤ 𝑡 ≤ 𝑇, it should converge to the
exact solution in this region. Therefore, the combination of
the convergence theorem and the freedom of the choice of
the above factors establishes the cornerstone of the validity
and flexibility of the PIM.
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Remark 2. In the case of failure of convergence of the PIM,
the presence of the parameter ℎ in (3) or (6) could play a
very important role in the frame of the PIM. Althoughwe can
find a valid region of ℎ for every physical problem by plotting
the solution or its derivatives versus the parameter ℎ in some
points, an approximate optimal value of the convergence
accelerating parameter ℎ can be determined at the order of
approximation by the residual error [15]

𝑅𝑒𝑠 (ℎ)
= ∫𝑇
0
{𝐿 [𝑢𝑘 (𝑡; ℎ)] + 𝑁 [𝑢𝑘 (𝑡; ℎ)] − 𝑓 (𝑡)}2 𝑑𝑥. (16)

One can minimize (16) by imposing the requirement𝑑𝑅𝑒𝑠(ℎ)/𝑑ℎ = 0.
3. A Spectral Collocation PIM

In general, the application of the PIM to solve the nonlinear
VIDEs leads to the calculation of unneeded and repeated
terms. The unneeded and repeated calculations may or may
not lead to faster convergence. Also, since the PIM provides
the solution as a sequence of iterates, its successive iterations
may be very complex so that the resulting integrals in its
iterative relation may not be performed analytically. In this
section, we will overcome this shortcoming of the original
PIM for solving (1) by suggesting a spectral collocation PIM.
As will be shown in this paper later, the proposedmethodwill
be very simple to implement and save time and calculations.

Consider the basis functions 𝜙𝑗 which are polynomials of
degree𝑁−1 satisfying 𝜙𝑗(𝑡𝑘) = 𝛿𝑗,𝑘 for the shifted Chebyshev
nodes (note that 𝑡1 = 𝑇 and 𝑡𝑁 = 0)

𝑡𝑘 = 𝑇2 [cos((𝑘 − 1) 𝜋𝑁 − 1 ) + 1] , 𝑘 = 1, . . . , 𝑁. (17)

The unknown function 𝑢(𝑡) is approximated as a truncated
series of polynomials. The polynomial

𝑝 (𝑡) ≅ 𝑢 (𝑡) = 𝑁∑
𝑗=1

𝑢𝑗𝜙𝑗 (𝑡) , (18)

interpolates the points (𝑡𝑗, 𝑢𝑗), 𝑗 = 1, . . . , 𝑁; that is, 𝑝(t) = u,
where t = (𝑡1, . . . , 𝑡𝑁) and u = (𝑢1, . . . , 𝑢𝑁). The values of
the interpolating polynomial’s first derivative at the nodes are𝑝󸀠(t) = 𝐷(1)u, and the value of integral at the nodes is defined
by ∫𝑡
0
𝑘(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑉 ⋅u, where𝑉 is the Volterra integration

matrix [18, 19].
Generally, in order to solve problem (1) using a spectral

collocation scheme, the interpolating polynomial 𝑝(𝑡) is
required to satisfy the equation at the interior nodes. The
values of the interpolating polynomial at the interior nodes𝑡2, . . . , 𝑡𝑁 are 𝑝(t𝑚) = (u)𝑚 = 𝐼𝑚,:u (𝑚 = 1 : 𝑁 − 1) and
the derivative value is 𝑝󸀠(t𝑚) = 𝐷(1)𝑚,:u. The initial condition
that involves the interpolating polynomial can be handled by
using the formula 𝑝(t𝑁) = (u)𝑁 = 𝐼𝑁,:u, where 𝐼𝑁,: denotes
the last row of the (𝑁 × 𝑁) identity matrix.

For the interpolating polynomial to satisfy the nonlinear
VIDE of (1) at each interior node, the collocation equation

𝑝󸀠 (t𝑚) = 𝑓 (t𝑚) + ∫t

0
𝑘 (t, 𝑠) 𝐺 (𝑝 (𝑠)) 𝑑𝑠,

𝑝 (t𝑁) = 𝑢0,
(19)

should be satisfied. Substituting the differentiation and inte-
gration matrix relations into equation (19), we get

[𝐷(1)𝑚,:𝐼𝑁,: ] u = [f𝑚𝑢0] + [
𝐼𝑚,: (𝑉 ⋅ 𝐺 (u))

0 ] , (20)

where f𝑚 = {𝑓(𝑡1), . . . , 𝑓(𝑡𝑁−1)}. Now, in view of (3) and
the definitions of 𝐿 and 𝐴, by substituting the differentiation
and integration matrix relations, we will have the following
explicit PIM for solving (1) which is called the spectral PIM
(SPIM):

u𝑘+1 = u𝑘 + ℎ[𝐷
(1)
𝑚,:𝐼𝑁,: ]
−1

⋅ ([𝐷(1)𝑚,:𝐼𝑁,: ] u𝑘 − [f𝑚𝑢0] − [
𝐼𝑚,: (𝑉 ⋅ 𝐺 (u𝑘))0 ]) ,

(21)

where for simplicity we chose 𝐻(𝑡) ≡ 1. If we define L =[𝐷1𝑚,:, 𝐼𝑁,:]𝑇, f = [f𝑚, 𝑢0]𝑇, and Nu𝑘 = [𝐼𝑚,: (𝑉 ⋅ 𝐺(u𝑘)), 0]𝑇,
then we will have the following explicit iterative relation for
finding the solution vector u𝑘+1:

u𝑘+1 = u𝑘 + ℎL−1 (Lu𝑘 − f − Nu𝑘) . (22)

Here the vector u𝑘+1 is defined as

u𝑘+1 = {𝑢𝑘+1 (𝑡1) , . . . , 𝑢𝑘+1 (𝑡𝑁−1)} . (23)

In using the SPIM algorithm above, we begin by choosing
the best possible initial approximation that satisfies the
initial condition. To this end, we may determine the initial
approximation by solving Lu0 = 0 or Lu0 = f . Thus,
starting from the initial approximation u0(𝑡), we can use the
recurrence formula (22) to successively obtain directlyu𝑘+1(𝑡)
for 𝑘 ≥ 0.
4. Test Problems

In this section, we demonstrate the effectiveness of the SPIM
by applying the method to three nonlinear NVIDs. All of the
numerical computations have been performed in MATLAB
R2014a and terminatedwhen the current iterate satisfies ‖u𝑘−
u𝑘−1‖ ≤ 10−16, where u𝑘 is the solution vector of the 𝑘th SPIM
iteration.

Example 1. Consider the following nonlinear VIDE [20]:

𝑢󸀠 (𝑡) = 1𝜀 (𝑢 − 𝑢2 − 𝑢∫
𝑡

0
𝑢 (𝑠) 𝑑𝑠) , 𝑡 ∈ [0, 1] (24)
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Figure 1: The valid region of ℎ for the explicit spectral PIM when𝑁 = 15 for Example 1.

with the initial condition 𝑢(0) = 0.1. Here we aim to solve the
above Volterra population equation for the value 𝜀 = 1/10.
To use the proposed method in this paper, i.e., (22), we could
choose

𝐿 [𝑢 (𝑡)] = 𝑢󸀠 (𝑡) ,
𝑁 [𝑢 (𝑡)] = 1𝜀 (𝑢 − 𝑢2 − 𝑢∫

𝑡

0
𝑢 (𝑠) 𝑑𝑠) ,

𝑔 (𝑡) ≡ 0.
(25)

To investigate the valid region ℎ of the solution obtained
via the explicit spectral PIM algorithm (22) for𝑁 = 15 of (24)
with 𝜀 = 1/10, we try to plot the curve of 𝑢󸀠󸀠(0) with respect
to ℎ, as shown in Figure 1. According to this curve, it is easy
to discover the valid region of ℎ. It is usually convenient to
investigate the valid region of ℎ for the PIM bymeans of such
kinds of the curves.

According to Figure 1, it could be seen that the explicit
spectral PIM for ℎ = −1 and 𝑁 = 15 (even for large 𝑁)
is not a convergent approach for solving (24). The presence
of the auxiliary parameter ℎ in the framework of the explicit
spectral PIM could play a very important role. As mentioned
above, we can find an approximate optimal value for ℎ from
(16) by estimating the residual error 𝑅𝑒𝑠(ℎ) in a sequence of
values ℎ, as the value of ℎ with the lowest residual will be
the approximate optimal ℎ. Figure 2 shows the approximate
optimal value of ℎ for the explicit spectral PIM for 𝑁 = 15,
i.e., ℎ = −1.47 with two decimal digits.

Figure 3(b) shows the absolute error of the explicit
spectral PIM for 𝑁 = 15 and ℎ = −1.47. Also the behavior
of the numerical and explicit spectral PIM solutions of this
example for𝑁 = 15 and ℎ = −1.47 is presented in Figure 3(a).
Example 2. Consider the following nonlinear VIDE:

𝑢󸀠 (𝑡) = 1 − 12𝑡 + 12𝑒−𝑡
2 + ∫𝑡
0
𝑡𝑠𝑒−𝑢2(𝑠)𝑑𝑠, (26)

with initial condition 𝑢(0) = 0 and the exact solution 𝑢(𝑡) = 𝑡,
[21].
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Figure 2: The approximate optimal ℎ (ℎ = −1.47) for 𝑁 = 15 for
Example 1.

To investigate the valid region ℎ for the solution obtained
via the explicit spectral PIM algorithm (22) for 𝑁 = 10 of
(26), here we plot the curve of 𝑢󸀠󸀠(0) with respect to ℎ, as
shown in Figure 4.

Figure 5 shows the approximate optimal value of ℎ of the
explicit spectral PIM when 𝑁 = 10, i.e., ℎ = −1.1 with one
decimal digit.

Figure 6 shows the absolute error of the explicit spectral
PIM for𝑁 = 10 and ℎ = −1.1.
Example 3. Consider the following nonlinear VIDE [22]:

𝑢󸀠 (𝑡) = 𝑓 (𝑡) + ∫𝑡
0
(𝑡 − 𝑠) ln (1 + 𝑢 (𝑠)) 𝑑𝑠, (27)

where

𝑓 (𝑡) = 124 (8 + 9𝑡2 + 12√1 + 𝑡 − 8√1 + 𝑡
− 4𝑡 (−6 + 5√1 + 𝑡) − 12𝑡2 ln (1 + √1 + 𝑡))

(28)

with the initial condition 𝑢(0) = 1 and the corresponding
exact solution is given by 𝑢(𝑡) = √1 + 𝑡.

To investigate the valid region ℎ of the solution obtained
via the explicit spectral PIM algorithm (22) for 𝑁 = 10 of
(27), here we plot the curve of 𝑢󸀠󸀠(0) with respect to ℎ, as
shown in Figure 7.

Figure 8 shows the approximate optimal value of ℎ for the
explicit spectral PIM when 𝑁 = 10, i.e., ℎ = −0.8 with one
decimal digit.

Figure 9 shows the absolute error of the explicit spectral
PIM for𝑁 = 10 and ℎ = −0.8.
5. Conclusion

In this paper, we presented a new application of the spectral
parametric iterationmethod (PIM) for solving a class of non-
linear Volterra integro-differential equations (VIDEs).This
new method is easy to implement and is accurate when
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Figure 3: (a) Approximate solution of the explicit spectral PIM for𝑁 = 15. (b) Absolute error of the explicit spectral PIM for 𝑁 = 15 andℎ = −1.47 for Example 1.
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Figure 9: Absolute error of the explicit spectral PIM for𝑁 = 10 andℎ = −0.8 for Example 3.

applied to the nonlinear VIDEs. The numerical results of the
spectral PIM were compared with the exact solutions and
excellent agreement was obtained. This could confirm the
validity of the proposed spectral PIM as a suitable method
for solving this class of the nonlinear VIDEs.
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Exponentially fitted and trigonometrically fitted explicit modified Runge-Kutta type (MRKT) methods for solving 𝑦󸀠󸀠󸀠(𝑥) =𝑓(𝑥, 𝑦, 𝑦󸀠) are derived in this paper. These methods are constructed which exactly integrate initial value problems whose solutions
are linear combinations of the set functions 𝑒𝜔𝑥 and 𝑒−𝜔𝑥 for exponentially fitted and sin(𝜔𝑥) and cos(𝜔𝑥) for trigonometrically
fitted with 𝜔 ∈ 𝑅 being the principal frequency of the problem and the frequency will be used to raise the accuracy of the methods.
The new four-stage fifth-order exponentially fitted and trigonometrically fitted explicit MRKT methods are called EFMRKT5 and
TFMRKT5, respectively, for solving initial value problems whose solutions involve exponential or trigonometric functions. The
numerical results indicate that the new exponentially fitted and trigonometrically fitted explicitmodifiedRunge-Kutta typemethods
are more efficient than existing methods in the literature.

1. Introduction

This work deals with exponentially fitted and trigonometri-
cally fitted modified Runge-Kutta type methods for solving
third-order ordinary differential equations (ODEs)

𝑦󸀠󸀠󸀠 (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥) , 𝑦󸀠 (𝑥)) ,
𝑦 (𝑥0) = 𝑦0,
𝑦󸀠 (𝑥0) = 𝑦󸀠0,
𝑦󸀠󸀠 (𝑥0) = 𝑦󸀠󸀠0 ,

𝑥 ≥ 𝑥0.

(1)

This sort of problems is often found in numerous physical
problems like thin film flow, gravity-driven flows, electro-
magnetic waves, and so on. In the past and recent years many
researchers constructed exponentially fitted and trigono-
metrically fitted explicit Runge-Kutta methods for solving
first-order and second-order ordinary differential equations.

Paternoster [1] developedRunge-Kutta-Nyströmmethods for
ODEs with periodic solutions based on trigonometric poly-
nomials. VandenBerghe et al. [2] developed exponentially fit-
ted Runge-Kutta methods. Simos [3] extended exponentially
fitted Runge-Kutta methods for the numerical solution of the
Schrodinger equation and related problems. Kalogiratou et
al. [[4, 5]] constructed trigonometrically and exponentially
fitted Runge-Kutta-Nyströmmethods for the numerical solu-
tion of the Schrodinger equation and related problems which
is eighth algebraic order. Next Simos et al. [6] constructed
exponentially fitted Runge-Kutta-Nyström method for the
numerical solution of initial value problems with oscillating
solutions. Sakas et al. [7] developed a fifth algebraic order
trigonometrically fitted modified Runge-Kutta Zonneveld
method for the numerical solution of orbital problems. Van
de Vyver [8] in 2005 constructed Runge-Kutta-Nyström
pair for the numerical integration of perturbed oscillators.
Then Yang et al. [9] constructed trigonometrically fitted
adapted Runge-Kutta-Nyström methods for perturbed oscil-
lators. Recently, Demba et al. [10] constructed an explicit
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trigonometrically fitted Runge-Kutta-Nyströmmethod using
Simos technique.

In this paper we construct explicit exponentially fit-
ted and trigonometrically fitted modified Runge-Kutta type
methods with four-stage fifth-order, called EFMRKT5 and
TFMRKT5, respectively. Section 2 discussed the oscillatory
and nonoscillatory properties of the third-order linear dif-
ferential equation. In Section 3, the necessary conditions and
the derivation for exponentially fitted and trigonometrically
fitted modified Runge-Kutta type methods for solving third-
order ODEs are given. The error analysis of the new EFM-
RKT5 and TFMRKT5 methods was discussed in Section 4,
respectively. The effectiveness of the new methods when
compared with existing methods is given in Section 5. The
thin film flow problem is discussed in Section 6.

2. Third-Order Linear Differential
Equation with Oscillating
and Nonoscillating Solutions

This section discusses the oscillatory and nonoscillatory
properties of the third-order linear differential equation

𝑦󸀠󸀠󸀠 (𝑥) + 𝑝 (𝑥) 𝑦󸀠 + 𝑞 (𝑥) 𝑦 = 0. (2)

A solution of (2) will be said to be oscillatory if it changes
signs for arbitrarily large values of 𝑥. The other solutions will
be said to be nonoscillatory.

If 𝑝(𝑥) < 0 and 𝑞(𝑥) < 0 are constants, then it is easy to
show that if (2) has an oscillatory solution, then there are two
linearly independent oscillatory solutions of (2) whose zeroes
separate and such that any oscillatory solution of (2) is a linear
combination of them.Assuming that𝑝(𝑥), 𝑝󸀠(𝑥), and 𝑞(𝑥) are
continuous on [0, +∞) the following will be established (see
[11–14]).

Definition 1. A solution of (2) will be called oscillatory iff it
has an infinity of zeroes in(0, +∞) and nonoscillatory iff it
has but a finite number of zeroes in this interval. Equation
(2) is said to be oscillatory iff it has at least one (nontrivial)
oscillatory solution andnonoscillatory iff all of its (nontrivial)
solutions are nonoscillatory.

Particularly, this paper deals with two cases based on (2)
when 𝑞(𝑥) = 0, as follows:

(i) 𝑦󸀠󸀠󸀠(𝑥) = 𝑝𝑦󸀠, (𝑝 > 0); it is clear that the characteristic
roots equations are real and one of them is zero; then
solutions will consist of exponential functions.

(ii) 𝑦󸀠󸀠󸀠(𝑥) = −𝑝𝑦󸀠, (𝑝 > 0); one of the characteristic roots
equations is zero and another two are conjugate roots
and the solutions are in oscillatory form,
where 𝑝 is constant.

3. Exponentially Fitted and Trigonometrically
Fitted MRKT Methods

In this section, we will determine the conditions and develop
exponentially fitted and trigonometrically fitted MRKT

Table 1: The Butcher tableau MRKT method.

𝑐 𝛾 𝛾 𝐴 𝐴𝑏 𝑏󸀠 𝑏󸀠󸀠

methods. In order to construct the exponentially fitted and
trigonometrically fitted MRKT methods, the extra 𝛾𝑖 and 𝛾𝑖
are absolutely necessary to insert at each stage and theMRKT
methods is given as follows:

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦󸀠𝑛 + ℎ22 𝑦󸀠󸀠𝑛 + ℎ3 𝑠∑
𝑖=1

𝑏𝑖𝑘𝑖, (3)

𝑦󸀠𝑛+1 = 𝑦󸀠𝑛 + ℎ𝑦󸀠󸀠𝑛 + ℎ2 𝑠∑
𝑖=1

𝑏󸀠𝑖 𝑘𝑖, (4)

𝑦󸀠󸀠𝑛+1 = 𝑦󸀠󸀠𝑛 + ℎ 𝑠∑
𝑖=1

𝑏󸀠󸀠𝑖 𝑘𝑖, (5)

where

𝑘1 = 𝑓 (𝑥𝑛, 𝑦𝑛, 𝑦󸀠𝑛) , (6)

𝑘𝑖 = 𝑓(𝑥𝑛 + 𝑐𝑖ℎ, 𝛾𝑖𝑦𝑛 + ℎ𝑐𝑖𝑦󸀠𝑛 + ℎ22 𝑐2𝑖 𝑦󸀠󸀠𝑛
+ ℎ3 𝑠∑
𝑗=1

𝑎𝑖𝑗𝑘𝑗, 𝑦󸀠𝑛 + 𝛾𝑖ℎ𝑐𝑖𝑦󸀠󸀠𝑛 + ℎ2 𝑠∑
𝑗=1

𝑎𝑖𝑗𝑘𝑗)
(7)

for 𝑖 = 2, 3, . . . , 𝑠.
The parameters of the MRKT methods are 𝑐𝑖, 𝑎𝑖𝑗, 𝑎𝑖𝑗, 𝑏𝑖,𝑏󸀠𝑖 , 𝑏󸀠󸀠𝑖 ,𝛾𝑖 and 𝛾𝑖 for 𝑖 = 1, 2, . . . , 𝑠 and 𝑗 = 1, 2, . . . , 𝑠 are

assumed to be real. If 𝑎𝑖𝑗 = 0 and 𝑎𝑖𝑗 = 0 for 𝑖 ⩽ 𝑗, it is an
explicit method and otherwise implicit method.

TheMRKTmethod can be expressed in Butcher notation
using the table of coefficients as follows (see Table 1).

3.1. Exponentially Fitted MRKT Method. To construct the
exponentially fitted Runge-Kutta type four-stage fifth-order
method the functions 𝑒𝜔𝑥 and 𝑒−𝜔𝑥 need to integrate exactly
at each stage; therefore the following four equations are
obtained:

𝑒±𝑐𝑖V = 𝛾𝑖 ± 𝑐𝑖V + 12𝑐2𝑖 V2 ± V3
𝑠∑
𝑗=1

𝑎𝑖𝑗𝑒±𝑐𝑗V, (8)

𝑒±𝑐𝑖V = 1 ± 𝛾𝑖𝑐𝑖V ± V2
𝑠∑
𝑗=1

𝑎𝑖𝑗𝑒±𝑐𝑗V, (9)

and six more equations corresponding to 𝑦, 𝑦󸀠, and 𝑦󸀠󸀠:
𝑒±V = 1 ± V + 12V2 ± V3

𝑠∑
𝑖=1

𝑏𝑖𝑒±𝑐𝑖V, (10)

𝑒±V = 1 ± V + V2
𝑠∑
𝑖=1

𝑏󸀠𝑖 𝑒±𝑐𝑖V, (11)
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𝑒±V = 1 ± V
𝑠∑
𝑖=1

𝑏󸀠󸀠𝑖 𝑒±𝑐𝑖V, (12)

where V = 𝜔ℎ, 𝜔 ∈ R.The relations cosh(V) = (𝑒V +𝑒−V)/2 and
sinh(V) = (𝑒V − 𝑒−V)/2 will be used in the derivation process.
The following order conditions are obtained:

cosh (V𝑐𝑖) = 𝛾𝑖 + 12V2𝑐2𝑖 + V3
𝑖−1∑
𝑗=1

𝑎𝑖𝑗 sinh (V𝑐𝑗) , (13)

sinh (V𝑐𝑖) = V𝑐𝑖 + V3
𝑖−1∑
𝑗=1

𝑎𝑖𝑗 cosh (V𝑐𝑗) , (14)

cosh (V𝑐𝑖) = 1 + V2
𝑖−1∑
𝑗=1

𝑎𝑖𝑗 cosh (V𝑐𝑗) , (15)

sinh (V𝑐𝑖) = 𝛾𝑖𝑐𝑖V + V2
𝑖−1∑
𝑗=1

𝑎𝑖𝑗 sinh (V𝑐𝑗) , (16)

and six equations corresponding to 𝑦, 𝑦󸀠, and 𝑦󸀠󸀠:
cosh (V) = 1 + 12V2 + V3

𝑠∑
𝑖=1

𝑏𝑖 sinh (V𝑐𝑖) , (17)

sinh (V) = V + V3
𝑠∑
𝑖=1

𝑏𝑖 cosh (V𝑐𝑖) , (18)

cosh (V) = 1 + V2
𝑠∑
𝑖=1

𝑏󸀠𝑖 cosh (V𝑐𝑖) , (19)

sinh (V) = V + V2
𝑠∑
𝑖=1

𝑏󸀠𝑖 sinh (V𝑐𝑖) , (20)

cosh (V) = 1 + V
𝑠∑
𝑖=1

𝑏󸀠󸀠𝑖 sinh (V𝑐𝑖) , (21)

sinh (V) = V
𝑠∑
𝑖=1

𝑏󸀠󸀠𝑖 cosh (V𝑐𝑖) . (22)

Solving (13) to (16), we find 𝑎𝑖,𝑖−1, 𝑎𝑖,𝑖−1,𝛾𝑖, and 𝛾𝑖.
𝛾𝑖 = cosh (V𝑐𝑖) − 12V2𝑐𝑖2 − V3

𝑖−1∑
𝑗=1

𝑎𝑖,𝑗 sinh (V𝑐𝑗) , (23)

𝑎𝑖,𝑖−1 = sinh (V𝑐𝑖) − V𝑐𝑖 − V3∑𝑖−2𝑗=1 𝑎𝑖,𝑗 cosh (V𝑐𝑗)
V3 cosh (V𝑐𝑖−1) , (24)

𝑎𝑖,𝑖−1 = cosh (V𝑐𝑖) − 1 − V2∑𝑖−2𝑗=1 𝑎𝑖,𝑗 cosh (V𝑐𝑗)
V2 cosh (V𝑐𝑖−1) , (25)

𝛾𝑖 = sinh (V𝑐𝑖) − V2∑𝑖−2𝑗=1 𝑎𝑖,𝑗 sinh (V𝑐𝑗)
V𝑐𝑖 ,

𝑖 = 2, . . . , 𝑠.
(26)

Referring to the following fifth-order four-stage method
developed by Fawzi et al. [15]:

𝑐1 = 0,
𝑐2 = 15 ,
𝑐3 = 23 ,
𝑐4 = 1,

𝑎21 = 0,
𝑎31 = − 494860 ,
𝑎41 = 750 ,
𝑎42 = − 150 ,
𝑎31 = − 127 ,
𝑎41 = 310 ,
𝑎42 = − 235 ,
𝑏3 = 3112 ,
𝑏4 = 0,
𝑏󸀠3 = 956 ,
𝑏󸀠4 = 0,
𝑏󸀠󸀠3 = 756 ,
𝑏󸀠4 = 548 ,

(27)

we solve (23) to (26) and let 𝑎21, 𝑎32, 𝑎43, 𝑎32, 𝑎43, 𝛾2, 𝛾3, 𝛾4,𝛾2, 𝛾3, and 𝛾4 be free parameters and yields.

𝑎21 = cosh (V/5) − 1
V2

,
𝑎32 = cosh (2V/3) − 1 + (1/27) V2

V2 cosh (V/5) ,
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𝑎43 = cosh (V) − 1 − V2 (3/10 − (2/35) cosh (V/5))
V2 cosh (2V/3) ,

𝑎32 = sinh (2V/3) − 2V/3 + (49/4860) V3
V3 cosh (𝑐2V) ,

𝑎43 = sinh (V) − V − (7/50) V3 + (1/50) V3 cosh (V/5)
V3 cosh (2V/3) ,

𝛾2 = cosh( V5) − V250 ,
𝛾3 = cosh(2V3 ) − 2V29 − 301V34860 sinh( V5) ,
𝛾4 = cosh (V) − V22 − V3 (− 150 sinh( V5) + 125 sinh(2V3 )) ,
𝛾2 = 5

V
sinh( V5) ,

𝛾3 = 23V sinh(2V3 ) − 2 (cosh (2V/3) − 1 + V2/27) sinh (V/5)
3 cosh (V/5) V2 ,

𝛾4 = 1
V
sinh (V) + 2V35 sinh(V5) − (cosh (V) − 1 − (3V2/10 − (2V2/35) cosh (V/5))) sinh (2V/3)

V cosh (2V/3) .
(28)

Next, we solve (17) to (22) and use the above coefficients to
find 𝑏1, 𝑏2, 𝑏󸀠1, 𝑏󸀠2, 𝑏󸀠󸀠1 , and 𝑏󸀠󸀠2 .
𝑏1 = 3112 cosh (V/5) sinh (2V/3) − cosh (2V/3) sinh (V/5)

sinh (V/5) + −2 cosh (V/5) cosh (V) + 2 cosh (V/5) + cosh (V/5) V2 + 2 sinh (V) sinh (V/5) − 2V sinh (V/5)2V3 sinh (V/5) ,
𝑏2 = − 3112 sinh (2V/3)

sinh (V/5) − −2 cosh (V) + 2 + V22V3 sinh (V/5) ,
𝑏󸀠1 = 956 cosh (V/5) sinh (2V/3) − cosh (2V/3) sinh (V/5)

sinh (V/5) − cosh (V/5) sinh (V) − cosh (V/5) V − cosh (V) sinh (V/5) + sinh (V/5)
V2 sinh (V/5) ,

𝑏󸀠2 = − 956 sinh (2V/3)
sinh (V/5) + sinh (V) − V

V2 sinh (V/5) ,
𝑏󸀠󸀠2 = −1 + (27/56) V sinh (2V/3) + (5/48) V sinh (V) − cosh (V)

V sinh (V/5) ,
𝑏󸀠󸀠1
= ((27/56) cosh (V/5) V sinh (2V/3) + (5/48) cosh (V/5) V sinh (V) − cosh (V/5) cosh (V) + cosh (V/5) − (27/56) V cosh (2V/3) sinh (V/5) − (5/48) V cosh (V) sinh (V/5) + sinh (V) sinh (V/5))(V sinh (V/5)) .

(29)

These lead to our new exponentially fitted Runge-Kutta
type four-stage fifth-order explicit MRKTmethod denoted as
EFMRKT5.The corresponding Taylor series expansion of the
solution is given by

𝑏1 = 148 + 12160V2 + 101136080000V4
− 5713183708000000V6
− 1133033981841914000000000V8

− 57722879134057055132000000000V10 + ⋅ ⋅ ⋅ ,
𝑏2 = 542 − 12160V2 − 2921136080000V4

− 136145927000000V6
+ 5429358740920957000000000V8
+ 6964030429670285275660000000000V10 + ⋅ ⋅ ⋅ ,
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𝑏󸀠1 = 124 − 17283500V4 − 149218700000V6
− 1055069341007975000000V8
− 230256892538959377500000000V10 + ⋅ ⋅ ⋅ ,

𝑏󸀠2 = 2584 + 2412268000V4 + 228716123600000V6
+ 1127781372728063800000000V8
+ 1359935168355857106305000000000V10 + ⋅ ⋅ ⋅ ,

𝑏󸀠󸀠1 = 124 + 121600V4 + 16758320000V6
+ 52838916533720000000V8
+ 9673435845851000000000V10 + ⋅ ⋅ ⋅

𝑏󸀠󸀠2 = 125336 − 121600V4 − 2867408240000V6
− 302210916533720000000V8
− 1457821730731375000000V10 + ⋅ ⋅ ⋅ ,

𝑎21 = 150 + 115000V2 + 111250000V4
+ 115750000000V6 + 135437500000000V8
+ 1116943750000000000V10 + ⋅ ⋅ ⋅ ,

𝑎32 = 727 + 3712150V2 + 2876561000V4
− 68827516678750000V6
+ 70974171674039150000000V8
− 39720321233621487034437500000000V10 + ⋅ ⋅ ⋅ ,

𝑎43 = 935 − 433000V2 + 33231350000V4 − 111136579255150000000V6
+ 26973882539344452500000000V8
− 72136159838800151151196250000000000V10 + ⋅ ⋅ ⋅ ,

𝑎32 = 2894860 − 67729000V2 + 261412755620000V4
− 467154139858075000000V6

+ 22160081031104865839000000000V8
− 15664491766661484759886861250000000000V10 + ⋅ ⋅ ⋅ ,

𝑎43 = 7150 − 221135000V2 + 114463637875000V4
− 101047288934445250000000V6
+ 22257681969742625996875000000V8
− 8431888341871633389770349418750000000000V10 + ⋅ ⋅ ⋅ ,

𝛾2 = 1 + 115000V4 + 111250000V6 + 115750000000V8
+ 135437500000000V10 + ⋅ ⋅ ⋅ ,

𝛾3 = 1 − 59225V2 − 95691215000V4 − 74831911250000V6
+ 2610442911481750000000V8
− 49593722925833937500000000V10 + ⋅ ⋅ ⋅

𝛾4 = 1 − V2 + 191000V4 + 22674050000V6
− 4858267255150000000V8
+ 65060629344452500000000V10 + ⋅ ⋅ ⋅ ,

𝛾2 = 1 + 1150V2 + 175000V4 + 178750000V6
+ 1141750000000V8
+ 1389812500000000V10 + ⋅ ⋅ ⋅ ,

𝛾3 = 1 − 1270V2 + 1360750V4 − 2032717609375V6
+ 1361092906317968750V8
− 27268073596568486328125V10 + ⋅ ⋅ ⋅ ,

𝛾4 = 1 + 1150V2 + 7915000V4 − 21619512126250000V6
+ 78384961425250000000V8
− 5664933289891170503987500000000V10 + ⋅ ⋅ ⋅

(30)

where 𝛾1 = 1, 𝛾1 = 1.
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This results in the new method called EFMRKT5. As
V 󳨀→ 0, the coefficients 𝑏1, 𝑏2, 𝑏󸀠1, 𝑏󸀠2, 𝑏󸀠󸀠2 , 𝑏󸀠󸀠2 , 𝑎32, 𝑎42, 𝑎21,𝑎32, 𝑎43, 𝛾2, 𝛾3, 𝛾4, 𝛾2, 𝛾3, and 𝛾4 of the newmethod EFMRKT5
reduce to the coefficients of the original method RKT5. That
is to say, 𝑏1(0), 𝑏2(0), 𝑏󸀠1(0), 𝑏󸀠2(0), 𝑏󸀠󸀠2 (0), 𝑏󸀠󸀠2 (0), 𝑎32(0), 𝑎42(0),𝑎21(0), 𝑎32(0), 𝑎43(0), 𝛾2(0), 𝛾3(0), 𝛾4(0), 𝛾2(0), 𝛾3(0), and 𝛾4(0)
are identical to 𝑏1, 𝑏2, 𝑏󸀠1, 𝑏󸀠2, 𝑏󸀠󸀠2 , 𝑏󸀠󸀠2 , 𝑎32, 𝑎42, 𝑎21, 𝑎32, 𝑎43, 𝛾2, 𝛾3,𝛾4, 𝛾2, 𝛾3, and 𝛾4 of RKT5 method. Other than that, V 󳨀→ 0,
as EFMRKT5 method will have the same error constant as
RKT5 method.

3.2. Trigonometrically Fitted MRKT Method. Exponentially
fitted method leads to trigonometrically fitted method when
replacing V = 𝑤ℎ with 𝑖V and solving (8) to (9) to find 𝑎𝑖,𝑖−1,𝑎𝑖,𝑖−1,𝛾𝑖, and 𝛾𝑖.

𝛾𝑖 = cos (V𝑐𝑖) − 12V2𝑐𝑖2 − V3
𝑖−1∑
𝑗=1

𝑎𝑖,𝑗 sin (V𝑐𝑗) , (31)

𝑎𝑖,𝑖−1 = 1 − cos (V𝑐𝑖) − V2∑𝑖−2𝑗=1 𝑎𝑖,𝑗 cos (V𝑐𝑗)
V2 cos (V𝑐𝑖−1) , (32)

𝑎𝑖,𝑖−1 = − sin (V𝑐𝑖) + V ⋅ 𝑐𝑖 − V3∑𝑖−2𝑗=1 𝑎𝑖,𝑗 cos (V𝑐𝑗)
V3 cos (V𝑐𝑖−1) , (33)

𝛾𝑖 = sin (V𝑐𝑖) + V2∑𝑖−2𝑗=1 𝑎𝑖,𝑗 sin (V𝑐𝑗)
V𝑐𝑖 , 𝑖 = 2, . . . , 𝑠. (34)

Consider the same coefficients of fifth-order four-stage
method developed by Fawzi et al.[15] as in Section 3.1. Solving

the (31) to (34) and letting 𝑎21, 𝑎32, 𝑎43, 𝑎32, 𝑎43, 𝛾2, 𝛾3, 𝛾4, 𝛾2,𝛾3, and 𝛾4 be free parameters will give

𝑎21 = 1 − cos (V/5)
V2

,
𝑎32 = 1 − cos (2V/3) + (1/27) V2

V2cos (V/5) ,
𝑎43 = 1 − cos (V) − V2 (3/10 − (2/35) cos (V/5))

V2cos (2V/3) ,
𝑎32 = −sin (2V/3) + 2V/3 + (49/4860) V3

V3cos (V/5) ,
𝑎43 = V − sin (V) − V3 (7/50 − (1/50) cos (V/5))

V3cos (2V/3) ,
𝛾2 = cos( V5) − V250 ,
𝛾3 = cos(2V3 ) − 2V29 − 301V34860 sin( V5) ,
𝛾4 = cos (V) − V22 − V3 (− 150 sin( V5) + 125 sin(2V3 )) ,
𝛾2 = 5

V
sin( V5) ,

𝛾3 = 23V sin(2V3 ) + 2 (1 − cos (2V/3) + V2/27) sin (V/5)
3V2cos (V/35) ,

𝛾4 = sin (V)
V

− 2V35 sin(V5)
+ (1 − cos (V) − (3V2/10 − (2V2/5) cos (V/5))) sin (2V/3)

V cos (2V/3) .

(35)

Next, solving (10) to (12), and using the above Fawzi
coefficients to find 𝑏1, 𝑏2,𝑏󸀠1, 𝑏󸀠2, 𝑏󸀠󸀠1 , and 𝑏󸀠󸀠2 ,

𝑏1 = 3 cos (V/5) sin (2V/3) − 3 cos (2V/3) sin (V/5)112 sin (V/5) − 2 cos (V/5) cos (V) − 2 cos (V/5) + cos (V/5) V2 + 2 sin (V) sin (V/5) − 2V sin (V/5)2V3 sin (V/5) ,
𝑏2 = − 3112 sin (2V/3)

sin (V/5) + 2 cos (V) − 2 + V22V3 sin (V/5) ,
𝑏󸀠1 = 9 cos (V/5) sin (2V/3) − 9 cos (2V/3) sin (V/5)56 sin (V/5) + cos (V/5) sin (V) − V cos (V/5) − cos (V) sin (V/5) + sin (V/5)

V2 sin (V/5) ,
𝑏󸀠󸀠1 = −(25V/243) sin (V) + (80/81) cos (V) − 80/81 + (23V/48) sin (2V/3)(80V/81) sin (V/5) − (V/125) sin (2V/3) ,
𝑏󸀠󸀠2 = −1 + (27/56) V sin (2V/3) + (5/48) V sin (V) + cos (V)

V sin (V/5) ,
𝑏󸀠2
= −((27/56) cos (V/5) V sin (2V/3) + (5/48) cos (V/5) V sin (V) + cos (V/5) cos (V) − cos (V/5) − (27/56) V cos (2V/3) sin (V/5) − (5/48) V cos (V) sin (V/5) + sin (V) sin (V/5))

V sin (V/5)

(36)

These lead to our new explicit trigonometrically fitted
MRKT which is called TFMRKT5 method. The correspond-
ing Taylor series expansion of the solution is given by

𝑏1 = 148 − 12160V2 + 101136080000V4
+ 5713183708000000V6

− 1133033981841914000000000V8
+ 57722879134057055132000000000V10 + ⋅ ⋅ ⋅ ,

𝑏2 = 542 + 12160V2 − 2921136080000V4
+ 136145927000000V6
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+ 5429358740920957000000000V8
− 6964030429670285275660000000000V10 + ⋅ ⋅ ⋅ ,

𝑏󸀠1 = 124 − 17283500V4 + 149218700000V6
− 1055069341007975000000V8
+ 230256892538959377500000000V10 + ⋅ ⋅ ⋅ ,

𝑏󸀠2 = 2584 + 2412268000V4 − 228716123600000V6
+ 1127781372728063800000000V8
− 1359935168355857106305000000000V10 + ⋅ ⋅ ⋅ ,

𝑏󸀠󸀠1 = 124 + 121600V4 − 16758320000V6
+ 52838916533720000000V8
− 9673435845851000000000V10 + ⋅ ⋅ ⋅ ,

𝑏󸀠󸀠2 = 125336 − 121600V4 + 2867408240000V6
− 302210916533720000000V8
+ 1457821730731375000000V10 + ⋅ ⋅ ⋅ ,

𝑎21 = 150 − 115000V2 + 111250000V4
− 115750000000V6 + 135437500000000V8
− 1116943750000000000V10 + ⋅ ⋅ ⋅ ,

𝑎32 = 727 − 3712150V2 + 2876561000V4
+ 68827516678750000V6
+ 70974171674039150000000V8
+ 39720321233621487034437500000000V10 + ⋅ ⋅ ⋅ ,

𝑎43 = 935 + 433000V2 + 33231350000V4 + 111136579255150000000V6
+ 26973882539344452500000000V8

+ 72136159838800151151196250000000000V10 + ⋅ ⋅ ⋅ ,
𝑎32 = 2894860 + 67729000V2 + 261412755620000V4

+ 467154139858075000000V6
+ 22160081031104865839000000000V8
+ 15664491766661484759886861250000000000V10 + ⋅ ⋅ ⋅ ,

𝑎43 = 7150 + 221135000V2 + 114463637875000V4
+ 101047288934445250000000V6
+ 22257681969742625996875000000V8
+ 8431888341871633389770349418750000000000V10 + ⋅ ⋅ ⋅ ,

𝛾2 = 1 − 125V2 + 115000V4 − 111250000V6
+ 115750000000V8 − 135437500000000V10
+ ⋅ ⋅ ⋅ ,

𝛾3 = 1 − 59225V2 − 95691215000V4 − 74831911250000V6
+ 2610442911481750000000V8
− 49593722925833937500000000V10 + ⋅ ⋅ ⋅ ,

𝛾4 = 1 − V2 + 191000V4 + 22674050000V6
− 4858267255150000000V8
+ 65060629344452500000000V10 + ⋅ ⋅ ⋅ ,

𝛾2 = 1 − 1150V2 + 175000V4 − 178750000V6
+ 1141750000000V8
− 1389812500000000V10 + ⋅ ⋅ ⋅ ,

𝛾3 = 1 + 1270V2 + 1360750V4 + 2032717609375V6
+ 1361092906317968750V8
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+ 27268073596568486328125V10 + ⋅ ⋅ ⋅ ,
𝛾4 = 1 − 1150V2 + 7915000V4 + 21619512126250000V6

+ 78384961425250000000V8
+ 5664933289891170503987500000000V10 + ⋅ ⋅ ⋅ ,

(37)

where 𝛾1 = 1, 𝛾1 = 1.
This results in the new method called TFMRKT5. As

V 󳨀→ 0, the coefficients 𝑏1, 𝑏2, 𝑏󸀠1, 𝑏󸀠2, 𝑏󸀠󸀠2 , 𝑏󸀠󸀠2 , 𝑎32, 𝑎42, 𝑎21, 𝑎32,𝑎43, 𝛾2, 𝛾3, 𝛾4, 𝛾2, 𝛾3, and 𝛾4 of the new method TFMRKT5
reduce to the coefficients of the original method RKT5. That
is to say, 𝑏1(0), 𝑏2(0), 𝑏󸀠1(0), 𝑏󸀠2(0), 𝑏󸀠󸀠2 (0), 𝑏󸀠󸀠2 (0), 𝑎32(0), 𝑎42(0),𝑎21(0), 𝑎32(0), 𝑎43(0), 𝛾2(0), 𝛾3(0), 𝛾4(0), 𝛾2(0), 𝛾3(0), and 𝛾4(0)
are identical to 𝑏1, 𝑏2, 𝑏󸀠1, 𝑏󸀠2, 𝑏󸀠󸀠2 , 𝑏󸀠󸀠2 , 𝑎32, 𝑎42, 𝑎21, 𝑎32, 𝑎43, 𝛾2, 𝛾3,𝛾4, 𝛾2, 𝛾3, and 𝛾4 of RKT5 method. Other than that, V 󳨀→ 0,
as TFMRKT5 method will have the same error constant as
RKT5 method.

4. Error Analysis

In this section, we will find the principal local truncation
errors for 𝑦, 𝑦󸀠, and 𝑦󸀠󸀠 (i.e., 𝜏𝑛+1, 𝜏󸀠𝑛+1, 𝜏󸀠󸀠𝑛+1) of the new expo-
nentially fitted and trigonometrically fitted explicit modified
Runge-Kutta type methods, respectively. We first find the
Taylor series expansion of the actual solution 𝑦(𝑥𝑛 + ℎ), the
first derivative of the actual solution𝑦󸀠(𝑥𝑛+ℎ), and the second
derivative of the actual solution 𝑦󸀠󸀠(𝑥𝑛 + ℎ), the approximate
solution 𝑦𝑛+1, the first derivative of the approximate solution𝑦󸀠𝑛+1, and the second derivative of the approximate solution𝑦󸀠󸀠𝑛+1. The local truncation errors of 𝑦, 𝑦󸀠, and 𝑦󸀠󸀠 are given as

𝜏𝑛+1 = 𝑦𝑛+1 − 𝑦 (𝑥𝑛 + ℎ) ,
𝜏󸀠𝑛+1 = 𝑦󸀠𝑛+1 − 𝑦󸀠 (𝑥𝑛 + ℎ) ,
𝜏󸀠󸀠𝑛+1 = 𝑦󸀠󸀠𝑛+1 − 𝑦󸀠󸀠 (𝑥𝑛 + ℎ)

(38)

The 𝜏𝑛+1, 𝜏󸀠𝑛+1, and 𝜏󸀠󸀠𝑛+1 of the methods are given in the
Appendix.

Notes: from 𝜏𝑛+1, 𝜏󸀠𝑛+1, and 𝜏󸀠󸀠𝑛+1, we can see that the order
of TFMRKT5 is order 5 because all of the coefficients up to ℎ5
vanished.

5. Problems Tested and Numerical Results

In this section, we will apply the new explicit exponentially
fitted modified Runge-Kutta type method to some 𝑦󸀠󸀠󸀠 =𝑓(𝑥, 𝑦, 𝑦󸀠) ODEs for problems (1)-(4) which consist of
exponential solutions and the new trigonometrically fitted
modified Runge-Kutta type method to some ODEs problems
(5)-(8) with trigonometric functions solutions. The numeri-
cal results are compared with the results obtained when the
same set of problems are reduced to a system of first-order

equations and is solved using the existing Runge-Kutta of the
same order.

(i) ℎ: step sizes.

(ii) TFMRKT5: the four-stage fifth-order trigonometri-
cally fitted RK type method derived in this paper.

(iii) EFMRKT5: the four-stage fifth-order exponentially
fitted RK type method derived in this paper.

(iv) RKT5: the four-stage fifth-order RK type method
given by Fawzi et al. [15].

(v) RK5B: the six-stage fifth-order RK method given in
Butcher [16].

(vi) RKF5: the six-stage fifth-order RK method given in
Lambert [17].

(vii) TFRK: the six-stage fifth-order trigonometrically fit-
ted RK method given in Anastassi et al. [18].

Problem 2 (homogeneous linear problem).

𝑦󸀠󸀠󸀠 (𝑥) = 2𝑦󸀠 (𝑥) ,
𝑦 (0) = 0, 𝑦󸀠 (0) = 1, 𝑦󸀠󸀠 (0) = 0, (39)

exact solution is

𝑦 (𝑥) = √2𝑒√2𝑥4 − √2𝑒−√2𝑥4 . (40)

Estimated frequency 𝜔 = √2.
Problem 3 ( homogeneous linear system).

𝑦󸀠󸀠󸀠1 (𝑥) = 8𝑦󸀠3 (𝑥) ,
𝑦1 (0) = 2, 𝑦󸀠1 (0) = 4, 𝑦󸀠󸀠1 (0) = 8,

𝑦󸀠󸀠󸀠2 (𝑥) = 8𝑦󸀠1 (𝑥) ,
𝑦2 (0) = 4, 𝑦󸀠2 (0) = 8, 𝑦󸀠󸀠2 (0) = 16,

𝑦󸀠󸀠󸀠3 (𝑥) = 𝑦󸀠2 (𝑥) ,
𝑦3 (0) = 1, 𝑦󸀠3 (0) = 2, 𝑦󸀠󸀠3 (0) = 4,

(41)

exact solutions are

𝑦1 (𝑥) = 2𝑒2𝑥,
𝑦2 (𝑥) = 4𝑒2𝑥,
𝑦3 (𝑥) = 𝑒2𝑥.

(42)

Estimated frequency 𝜔 = 2.
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Problem 4 ( inhomogeneous linear system ).

𝑦󸀠󸀠󸀠1 (𝑥) = 𝑦󸀠3 (𝑥) + 1,
𝑦1 (0) = 2, 𝑦󸀠1 (0) = 3, 𝑦󸀠󸀠1 (0) = 5,

𝑦󸀠󸀠󸀠2 (𝑥) = 𝑦󸀠1 (𝑥) + 2,
𝑦2 (0) = 1, 𝑦󸀠2 (0) = 2, 𝑦󸀠󸀠2 (0) = 5,

𝑦󸀠󸀠󸀠3 (𝑥) = 𝑦󸀠2 (𝑥) + 3,
𝑦3 (0) = 0, 𝑦󸀠3 (0) = 4, 𝑦󸀠󸀠3 (0) = 5,

(43)

exact solutions are

𝑦1 (𝑥) = 5𝑒𝑥 − 2𝑥 − 3,
𝑦2 (𝑥) = 5𝑒𝑥 − 3𝑥 − 4,
𝑦3 (𝑥) = 5𝑒𝑥 − 𝑥 − 5.

(44)

Estimated frequency 𝜔 = 1.
Problem 5 (inhomogeneous linear problem).

𝑦󸀠󸀠󸀠 (𝑥) = 5𝑦󸀠 (𝑥) + sinh (𝑥) ,
𝑦 (0) = −14 , 𝑦󸀠 (0) = 0, 𝑦󸀠󸀠 (0) = −14 ,

(45)

exact solution is

𝑦 (𝑥) = −𝑒𝑥8 − 𝑒−𝑥8 . (46)

Estimated frequency 𝜔 = 1.
Problem 6 (homogeneous linear problem).

𝑦󸀠󸀠󸀠 (𝑥) = −25𝑦󸀠 (𝑥) ,
𝑦 (0) = 0, 𝑦󸀠 (0) = 0, 𝑦󸀠󸀠 (0) = 1, (47)

exact solution is

𝑦 (𝑥) = 125 − 125 cos (5𝑥) . (48)

Estimated frequency 𝜔 = 5.
Problem 7 (inhomogeneous linear problem).

𝑦󸀠󸀠󸀠 (𝑥) = −27𝑦󸀠 (𝑥) + sin (𝑥) ,
𝑦 (0) = 1, 𝑦󸀠 (0) = −1, 𝑦󸀠󸀠 (0) = 0, (49)

exact solution is

𝑦 (𝑥) = √3702 cos (3√3𝑥) − √39 sin (3√3𝑥)
− 126 cos (𝑥) + 2827 .

(50)

Estimated frequency 𝜔 = 3√3.

Problem 8 (inhomogeneous linear system).

𝑦󸀠󸀠󸀠1 (𝑥) = −27𝑦󸀠1 (𝑥) ,
𝑦1 (0) = 0, 𝑦󸀠1 (0) = −1, 𝑦󸀠1 (0) = 0,

𝑦󸀠󸀠󸀠2 (𝑥) = −27𝑦󸀠2 (𝑥) + cos (𝑥) ,
𝑦2 (0) = 1, 𝑦󸀠2 (0) = −1, 𝑦󸀠󸀠2 (0) = 0,

𝑦󸀠󸀠󸀠3 (𝑥) = −27𝑦󸀠3 (𝑥) ,
𝑦3 (0) = 1, 𝑦󸀠3 (0) = 0, 𝑦󸀠󸀠3 (0) = −1,

(51)

exact solutions are

𝑦1 (𝑥) = −√39 sin (3√3𝑥) ,
𝑦2 (𝑥) = 1 − 3√326 sin (3√3𝑥) + 126 sin (𝑥) ,
𝑦3 (𝑥) = 2627 + 127 cos (3√3𝑥) .

(52)

Estimated frequency 𝜔 = 3√3.
Problem 9 (inhomogeneous linear system).

𝑦󸀠󸀠󸀠1 (𝑥) = −7𝑦󸀠2 (𝑥) − cos (𝑥) ,
𝑦1 (0) = 17 , 𝑦󸀠1 (0) = 0, 𝑦󸀠󸀠1 (0) = −1,

𝑦󸀠󸀠󸀠2 (𝑥) = −7𝑦󸀠1 (𝑥) − cos (𝑥) ,
𝑦2 (0) = 1, 𝑦󸀠2 (0) = 0, 𝑦󸀠󸀠2 (0) = −1,

𝑦󸀠󸀠󸀠3 (𝑥) = −7𝑦󸀠3 (𝑥) − cos (𝑥) ,
𝑦3 (0) = 0, 𝑦󸀠3 (0) = 1, 𝑦󸀠󸀠3 (0) = 0,

(53)

exact solutions are

𝑦1 (𝑥) = −16 sin (𝑥) + √742 sin (√7𝑥) + 17 cos (√7𝑥) ,
𝑦2 (𝑥) = −16 sin (𝑥) + √742 sin (𝑥)√7 + 67

+ 17 cos (√7𝑥) ,
𝑦3 (𝑥) = √76 sin (√7𝑥) − 16 sin (𝑥) .

(54)

Estimated frequency 𝜔 = 1.
6. An Application to a Problem in
Thin Film Flow

Here, we will use the suggested method to a famous problem
in engineering and physics based on the thin film flow
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of a liquid. Many researchers in the literature explain this
problem more. Momoniat and Mahomed[19] constructed
symmetry reduction and numerical solution of a third-order
ODE from thin film flow. Tuck and Schwartz [20] discussed
the movement of a thin film of viscous fluid over a solid
surface and taken into account tension and gravity, as well as
viscosity. The problem was evaluated and solved using third-
order ODE as follows:

𝑑3𝑦𝑑𝑥3 = 𝑓 (𝑦) . (55)

Many forms of the function were studied by [20] for the
drainage dry surface; it has the form of 𝑓(𝑦) which can be
stated as

𝑑3𝑦𝑑𝑥3 = −1 + 1𝑦2 . (56)

When the surface is prewetted by a thin film with thickness𝛿 > 0 (where 𝛿 > 0 is very small), the function 𝑓 is given by

𝑓 (𝑦) = −1 + 1 + 𝛿 + 𝛿2𝑦2 − 𝛿 + 𝛿2𝑦3 (57)

Problems concerning the flow of thin films of viscous fluid
with a free surface in which surface tension effects play a role
typically lead to third-order ODEs governing the shape of the
free surface of the fluid,𝑦 = 𝑦(𝑥). As indicated by [20], one
such equation is

𝑦󸀠󸀠󸀠 (𝑥) = 𝑦−𝑘, 𝑥 ≥ 𝑥0 (58)

with initial conditions 𝑦 (𝑥0) = 𝑦0,
𝑦󸀠 (𝑥0) = 𝑦󸀠0,
𝑦󸀠󸀠 (𝑥0) = 𝑦󸀠󸀠0 ,

(59)

where 𝑦0, 𝑦󸀠0, and 𝑦󸀠󸀠0 are constants, which is of specific
significance since it portrays the dynamic balance amongst
surface and gooey strengths in a thin fluid layer in disregard
of gravity. For compare and contrast, we utilized Runge-
Kutta methods which are fifth-order (RKT5, RK5B, RKF5,
and TFRKT) strategies, individually. To utilize Runge-Kutta
techniques we write (1) as a system of three first-order
equations. Biazar et al. [21] we can write (58) as the following
system:

𝑑𝑦1𝑑𝑥 = 𝑦2 (𝑥) ,
𝑑𝑦2𝑑𝑥 = 𝑦3 (𝑥) ,
𝑑𝑦2𝑑𝑥 = 𝑦−𝑘1 ,

(60)

where 𝑦1 (0) = 1,
𝑦2 (0) = 1,
𝑦3 (0) = 1.

(61)
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Figure 1: The efficiency curve for EFMRKT5, RKT5, RK5B, and
RKF5 for Problem 2 with 𝑥𝑒𝑛𝑑 = 5 and ℎ = 0.1, 0.25, 0.5, 0.75.

We have taken 𝑥0 = 0 and 𝑦0 = 𝑦󸀠0 = 𝑦󸀠󸀠0 = 1. Unfortunately,
for general 𝑘, (58) cannot be solved analytically. However, we
can use these reductions to determine an efficientway to solve
(1) numerically. Here, we are focusing on the cases 𝑘 = 2 and𝑘 = 3 (see Mechee et al.[22]).

7. Discussion and Conclusion

In this research, we have derived exponentially fitted and
trigonometrically fitted explicit modified Runge-Kutta type
methods for solving 𝑦󸀠󸀠󸀠(𝑥) = 𝑓(𝑥, 𝑦, 𝑦󸀠) with application
to thin film flow problem. Consequently, the new four-stage
fifth-order exponentially-fitted and trigonometrically-fitted
methods which are denoted as EFMRKT5 and TFMRKT5,
respectively, were constructed and we used in numerical
comparison the criteria based on computing the maximum
error in the solution (max(|𝑦(𝑡𝑛) − 𝑦𝑛|)) which is equal to the
maximumbetween absolute errors of the actual solutions and
computed solutions. The numerical outcomes are plotted in
Figures 1–8. Figures 1–8 demonstrate that the newTFMRKT5
and EFMRKT5 methods require less capacity assessments
than the RKT5, RK5B, RKF5, and TFRK methods. The
figures showed the efficiency of the new methods where the
common logarithm of themaximum global error throughout
the integration versus computational cost was measured by
the number of function evaluations. The numerical results
obtained showed clearly that the global error for a short
period of integration for the new exponentially fitted method
and for a large period of integration for the new trigono-
metrically fitted explicit modified Runge-Kutta type method
is smaller than that of the other existing methods. The new
EFMRKT5 and TFMRKT5 methods are much more efficient
than the other existing methods when solving third-order
ODEs of the form 𝑦󸀠󸀠󸀠 = 𝑓(𝑥, 𝑦, 𝑦󸀠) straightforwardly.
For Tables 2 and 3 we observed that the numerical results
using TFMRKT5 and EFMRKT5 methods are correct to five
decimal places. Applying RK5B, RKF5, TFRK, and RKT5 to
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Table 2: Numerical results for problem inThin Film Flow (58) taking ℎ = 0.1 and 𝑘 = 2.
𝑥 Exact Solution RK5B RKF5 RKT5 EMFRKT5 TFRK TFMRKT5
0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
0.2 1.221211030 1.2212100068 1.2212100097 1.2212100039 1.2212100052 1.2212100218 1.2212100052
0.4 1.488834893 1.4888347851 1.4888347895 1.4888347797 1.4888347885 1.4888348090 1.4888347885
0.6 1.807361404 1.8073614063 1.8073614114 1.8073613988 1.8073614237 1.8073614357 1.8073614237
0.8 2.179819234 2.1798192463 2.1798192513 2.1798192371 2.1798192873 2.1798192788 2.1798192873
1.0 2.608275822 2.6082748841 2.6082748883 2.6082748735 2.6082749587 2.6082749176 2.6082749587

Table 3: Numerical results for problem in thin film flow (58) taking ℎ = 0.01 and 𝑘 = 2.
𝑥 Exact Solution RK5B RKF5 RKT5 EFMRKT5 TFRK TFMRKT5
0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
0.2 1.221211030 1.2212100045 1.2212100045 1.2212100045 1.2212100045 1.2212100045 1.2212100045
0.4 1.488834893 1.4888347799 1.4888347799 1.4888347799 1.4888347799 1.4888347799 1.4888347799
0.6 1.807361404 1.8073613977 1.8073613977 1.8073613977 1.8073613977 1.8073613977 1.8073613977
0.8 2.179819234 2.1798192339 2.1798192339 2.1798192339 2.1798192340 2.1798192339 2.1798192340
1.0 2.608275822 2.6082748676 2.6082748676 2.6082748676 2.6082748677 2.6082748676 2.6082748677

(58) for 𝑘 = 2 also yields five-decimal place accuracy. Tables
4 and 5 show the numerical results for the case 𝑘 = 3 withℎ = 0.1 and ℎ = 0.01 since for 𝑘 = 3, Problem (58) cannot
be solved analytically. Table 4 shows that TFMRKT5 and
EFMRKT5 manage to achieve the numerical results which
agree to seven decimal places when compared to RK5B,
RKF5, TFRK, and RKT5 for ℎ = 0.1. In Table 5 the numerical
results for TFMRKT5 and EFMRKT5 agree to nine decimal
places when compared to RK5B, RKF5, TFRK, and RKT5
for ℎ = 0.01. For Table 7 we observe that RK5B, RKF5,
RKT5, TFRK, TFMRKT5, and EFMRKT5 have similar order
of accuracy. In Table 6 values of the error are different.
Therefore it is consistent with results displayed in Tables 2
and 3. Figures 9 and 10 show that the new EFMRKT5 and
TFMRKT5 methods require less function evaluations than
the RK5B, RKF5, TFRK, and RKT5 methods. This is because
when problem (58) is solved using RK5B, RKF5, TFRK, and
RKT5 methods, it needs to be reduced to a system of first-
order equations which is three times the dimension.

Appendix

The principal local truncation errors for 𝑦, 𝑦󸀠, and 𝑦󸀠󸀠 (i.e.,𝜏𝑛+1, 𝜏󸀠𝑛+1, 𝜏󸀠󸀠𝑛+1) for EFMRKT5 are as follows:

𝜏𝑛+1 = (− 13600𝑦𝑥𝑥2𝐹𝑦𝑧 − 110800𝑦𝑥3𝐹𝑦𝑦𝑦
− 13600𝑦𝑥𝐹𝑦𝑦𝑦𝑥𝑥 + 527162000𝑦𝑥𝐹𝑦𝑧𝐹
+ 527162000𝐹𝑧𝑧𝑦𝑥x𝐹 − 11800𝑦𝑥𝐹𝑥𝑦𝑧𝑦𝑥𝑥
− 13600𝑦𝑥2𝐹𝑧𝑦𝑦𝑦𝑥𝑥 − 13600𝑦𝑥𝑦𝑥𝑥2𝐹𝑧𝑦𝑧
+ 971907200𝐹𝑧𝐹𝑦𝑦𝑥 − 110800𝐹𝑥𝑥𝑥 + 110800𝑤2𝐹𝑥
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Figure 2: The efficiency curve for EFMRKT5, RKT5, RK5B, and
RKF5 for Problem 3 with 𝑥𝑒𝑛𝑑 = 2 and ℎ = 0.1, 0.25, 0.5, 0.75.

− 13600𝑦𝑥𝑥𝐹𝑥𝑦 − 1144𝐹𝑦𝐹 − 13600𝑦𝑥𝐹𝑦𝑥𝑥
− 13600𝐹𝑥𝑧𝑧𝑦𝑥𝑥2 + 527162000𝐹𝑥𝑧𝐹
− 110800𝑦𝑥𝑥3𝐹𝑧𝑧𝑧 + 971907200𝐹𝑧𝐹𝑥
+ 971907200𝐹𝑧2𝑦𝑥𝑥 − 13600𝑦𝑥2𝐹𝑥𝑦𝑦
+ 110800𝑤2𝐹𝑧𝑦𝑥𝑥 − 13600𝐹𝑧𝑥𝑥𝑦𝑥𝑥
+ 110800𝑤2𝐹𝑦𝑦𝑥) ℎ6 + 𝑂 (ℎ7)

(A.1)
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Table 4: Numerical results for problem in thin film flow (58) taking ℎ = 0.1 and 𝑘 = 3.
𝑥 RK5B RKF5 RKT5 EMFRKT5 TFRK TFMRKT5
0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
0.2 1.2211551491 1.2211551546 1.2211551394 1.2211551412 1.2211551831 1.2211551412
0.4 1.4881052974 1.4881053065 1.4881052807 1.4881052926 1.4881053519 1.4881052926
0.6 1.8042625677 1.8042625794 1.8042625459 1.8042625786 1.8042626364 1.8042625786
0.8 2.1715228242 2.1715228376 2.1715227987 2.1715228633 2.1715229031 2.1715228633
1.0 2.5909582923 2.5909583063 2.5909582638 2.5909583715 2.5909583783 2.5909583715

Table 5: Numerical results for problem in thin film flow (58) taking ℎ = 0.01 and 𝑘 = 3.
𝑥 RK5B RKF5 RKT5 EMFRKT5 TFRK TFMRKT5
0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
0.2 1.2211551424 1.2211551424 1.2211551424 1.2211551424 1.2211551424 1.2211551424
0.4 1.4881052842 1.4881052842 1.4881052842 1.4881052842 1.4881052842 1.4881052842
0.6 1.8042625481 1.8042625481 1.8042625481 1.8042625482 1.8042625481 1.8042625482
0.8 2.1715227981 2.1715227981 2.1715227981 2.1715227982 2.1715227981 2.1715227982
1.0 2.5909582591 2.5909582591 2.5909582591 2.5909582592 2.5909582591 2.5909582592
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Figure 3: The efficiency curve for EFMRKT5, RKT5, RK5B, and
RKF5 for Problem 4 with 𝑥𝑒𝑛𝑑 = 6 and ℎ = 0.1, 0.25, 0.5, 0.75.

𝜏󸀠𝑛+1 = ( 121600𝐹𝑥𝑥𝑥𝑥 + 1811756000𝐹𝑧𝑦𝑥𝐹𝑥𝑦
+ 1063162000𝑦𝑥𝑥2𝐹𝑧𝑧𝑧𝐹 + 971226800𝐹𝑦𝑦𝑥𝐹𝑥𝑧
+ 248534536000𝐹𝑧𝑦𝑥𝑥2𝐹𝑧𝑧 + 151432268000𝐹𝑧𝑦𝑥𝑥𝐹𝑥𝑧
+ 13600𝑦𝑥2𝑦𝑥𝑥2𝐹𝑧𝑧𝑦𝑦 + 18111512000𝐹𝑧𝑦𝑥2𝐹𝑦𝑦
+ 971226800𝐹𝑧𝑧𝑦𝑥𝑥𝐹𝑥 + 971226800𝑦𝑥𝐹𝑦𝑧𝐹𝑥
− 2087162000𝑦𝑥𝑥𝐹𝑦𝑧𝐹 + 11800𝑦𝑥𝑦𝑥𝑥𝐹𝑥𝑥𝑦𝑧
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Figure 4: The efficiency curve for EFMRKT5, RKT5, RK5B, and
RKF5 Problem 5 with 𝑥𝑒𝑛𝑑 = 4 and ℎ = 0.1, 0.25, 0.5, 0.75.

+ 11800𝑦𝑥𝑦𝑥𝑥2𝐹𝑥𝑦𝑧𝑧 + 11800𝑦𝑥2𝑦𝑥𝑥𝐹𝑥𝑦𝑦𝑧
+ 15400𝑦𝑥3𝐹𝑧𝑦𝑦𝑦𝑦𝑥𝑥 + 15400𝑦𝑥𝑦𝑥𝑥3𝐹𝑧𝑧𝑧𝑦
+ 971226800𝐹𝑦𝑦𝑥2𝐹𝑦𝑧 + 106381000𝑦𝑥𝐹𝑥𝑦𝑧𝐹
+ 1063162000𝑦𝑥2𝐹𝑧𝑦𝑦𝐹 + 13600𝑦𝑥2𝐹𝑦𝑦𝑦𝑦𝑥𝑥
− 86891512000𝐹𝑧𝐹𝑦𝑦𝑥𝑥 + 11800𝑦𝑥𝐹𝑥𝑦𝑦𝑦𝑥𝑥
+ 106381000𝐹𝑥𝑧𝑧𝑦𝑥𝑥𝐹 + 31722680000𝐹𝑧𝐹𝑤2
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Table 6: Comparison of error for problem in thin film flow (58) taking ℎ = 0.1 and 𝑘 = 2.
𝑥 RK5B RKF5 RKT5 EFMRKT5 TFRK TFMRKT5
0.0 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
0.2 1.0230 (-6) 1.0200(-6) 1.2600(-6) 1.0250(-6) 1.0080(-6) 1.0250(-6)
0.4 1.0800(-7) 1.0300(-7) 1.1300(-7) 1.0500(-7) 8.4100(-7) 1.0500(-7)
0.6 2.0000(-9) 7.0000(-9) 5.0000(-8) 2.0000(-8) 3.2000(-8) 2.0000(-8)
0.8 1.2000(-8) 1.7000(-8) 3.0000(-9) 5.300(-8) 4.5000(-8) 5.3000(-8)
1.0 9.3800(-7) 9.3400(-7) 9.4800 (-7) 8.6300 (-7) 9.0400(-7) 8.6300(-7)

Table 7: Comparison of error for problem in thin film flow (58) taking ℎ = 0.01 and 𝑘 = 2.
𝑥 RK5B RKF5 RKT5 EFMRKT5 TFRK TFMRKT5
0.0 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
0.2 1.0260(-6) 1.0260(-6) 1.0260(-6) 1.0260(-6) 1.0260(-6) 1.0260(-6)
0.4 6.0000(-7) 6.0000(-7) 6.0000(-7) 6.0000(-7) 6.0000(-7) 6.0000(-7)
0.6 9.0000(-9) 9.0000(-9) 9.0000(-9) 9.0000(-9) 9.0000(-9) 9.0000(-9)
0.8 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
1.0 9.5400(-7) 9.5400(-7) 9.5400(-7) 9.5400(-7) 9.5400(-7) 9.5400(-7)

5.8 6 6.2 6.4 6.6 6.8 75.6
ＦＩＡ10(Number of function evaluations)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

ＦＩ
Ａ
10

(M
ax

 g
lo

ba
l e

rr
or

)

TFMRKT5
RKT5
RK5B

RKF5
TFRK

Figure 5: The efficiency curve for TFMRKT5, RKT5, RK5B,
RKF5, and TFRK for Problem 6 with 𝑥𝑒𝑛𝑑 = 10000 and ℎ =0.025, 0.05, 0.075, 0.1.

+ 11800𝑦𝑥𝐹𝑧𝑦𝑦𝑦𝑥𝑥2 − 7360𝑦𝑥𝐹𝑦𝑦𝐹
+ 15400𝑦𝑥𝐹𝑥𝑦𝑥𝑥 + 121600𝑦𝑥4𝐹𝑦𝑦𝑦𝑦
+ 13600𝑦𝑥𝑥𝐹𝑦𝑥𝑥 + 3121122680000𝐹𝑧2𝐹
+ 1063162000𝐹𝑧𝑥𝑥𝐹 − 7360𝐹𝐹𝑥𝑦 + 15400𝑦𝑥3𝐹𝑥𝑦𝑦𝑦
− 1144𝐹𝑦𝐹𝑥 + 15400𝑦𝑥𝑥3𝐹𝑥𝑧𝑧𝑧
+ 121600𝑦𝑥𝑥4𝐹𝑧𝑧𝑧𝑧 + 971226800𝐹𝑥𝐹𝑥𝑧
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Figure 6: The efficiency curve for TFMRKT5, RKT5, RK5B,
RKF5, and TFRK for Problem 7 with 𝑥𝑒𝑛𝑑 = 10000 and ℎ =0.025, 0.05, 0.075, 0.1.

+ 18111512000𝐹𝑧𝐹𝑥𝑥 + 13600𝑦𝑥𝑥2𝐹𝑥𝑥𝑧𝑧
+ 13600𝑦𝑥2𝐹𝑥𝑦𝑥𝑦 + 17200𝑦𝑥𝑥2𝐹𝑦𝑦
+ 5788914580000𝐹𝑧𝑧𝐹2 + 11800𝑦𝑥𝑥2𝐹𝑥𝑦𝑧
+ 13600𝑦𝑥𝑥3𝐹𝑧𝑦𝑧 − 1144𝐹𝑦2𝑦𝑥 + 15400𝐹𝑥𝑥𝑥𝑧𝑦𝑥𝑥
− 121600𝑤4𝐹 + 106381000𝑦𝑥𝑦𝑥𝑥𝐹𝑧𝑦𝑧𝐹
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Figure 7: The efficiency curve for TFMRKT5, RKT5, RK5B,
RKF5, and TFRK for Problem 8 with 𝑥𝑒𝑛𝑑 = 10000 and ℎ =0.025, 0.05, 0.075, 0.1.
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Figure 8: The efficiency curve for TFMRKT5, RKT5, RK5B,
RKF5, and TFRK for Problem 9 with 𝑥𝑒𝑛𝑑 = 10000 and ℎ =0.025, 0.05, 0.075, 0.1.

+ 971226800𝐹𝑦𝑦𝑥𝐹𝑧𝑧𝑦𝑥𝑥 + 151432268000𝐹𝑧𝑦𝑥𝐹𝑦𝑧𝑦𝑥𝑥)
⋅ ℎ6 + 𝑂 (ℎ7)

(A.2)

𝜏󸀠󸀠𝑛+1 = (− 7589907200𝐹𝑦𝑦𝑥𝑥𝐹𝑥𝑧 − 13777907200𝑦𝑥𝑥𝐹𝑦𝑧𝐹𝑥
+ 5011302400𝑦𝑥𝐹𝑧𝑧𝑦𝑥𝑥2𝐹𝑦𝑧 + 119340500𝑦𝑥𝑥𝐹𝑥𝑥𝑧𝑧𝐹
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Figure 9: Plot of graph for function evaluations against step size ℎ
for Problem (58) taking 𝑥𝑒𝑛𝑑 = 1,ℎ = 0.1, 0.01, 0.001, 0.0001, and𝑘 = 2.
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Figure 10: Plot of graph for function evaluations against step sizeℎ for Problem (58) taking 𝑥𝑒𝑛𝑑 = 1,ℎ = 0.1, 0.01, 0.001, 0.0001 and𝑘 = 2.

+ 327037673061800000𝐹𝑧𝐹𝐹𝑥𝑧 + 35513189375𝐹𝑧𝑦𝑥3𝐹𝑦𝑦𝑦
− 15400𝑦𝑥3𝐹𝑥𝑦𝑦𝑦𝑧𝑦𝑥𝑥 − 110800𝑦𝑥𝑥2𝐹𝑥𝑥𝑥𝑧𝑧
+ 27694114580000𝑦𝑥𝑥𝐹𝑧𝑧𝑧𝐹2 + 10163907200𝑦𝑥2𝐹𝑧𝑦𝑦𝐹𝑥
+ 10163453600𝐹𝑥𝐹𝑥𝑧𝑧𝑦𝑥𝑥 − 11800𝑦𝑥𝑦𝑥𝑥2𝐹𝑥𝑦𝑦𝑧
− 13600𝑦𝑥𝑦𝑥𝑥3𝐹𝑧𝑧𝑦𝑦 + 15117560000𝐹𝑤2𝐹𝑦𝑧𝑦𝑥
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− 19720𝑦𝑥𝐹𝑦𝑦𝐹𝑥 − 39205917010000𝐹𝑧𝑦𝑥𝐹𝑦𝑦𝑦𝑥𝑥
+ 5011907200𝑦𝑥2𝐹𝑦𝑦𝐹𝑧𝑧𝑦𝑥𝑥
+ 98948968040000𝐹𝑧𝑦𝑥2𝐹𝑧𝑦𝑦𝑦𝑥𝑥
+ 5011226800𝑦𝑥𝐹𝑥𝑧𝐹𝑦𝑧𝑦𝑥𝑥 + 10163453600𝐹𝑦𝑦𝑥𝐹𝑥𝑧𝑧𝑦𝑥𝑥
+ 5011453600𝑦𝑥𝐹𝑥𝑦𝐹𝑧𝑧𝑦𝑥𝑥
+ 98948934020000𝐹𝑧𝑦𝑥𝐹𝑥𝑦𝑧𝑦𝑥𝑥
+ 10163453600𝑦𝑥𝐹𝑥𝐹𝑧𝑦𝑧𝑦𝑥𝑥
+ 10163453600𝐹𝑦𝑦𝑥2𝐹𝑧𝑦𝑧𝑦𝑥𝑥
+ 87585734020000𝑦𝑥𝑦𝑥𝑥2𝐹𝑧𝑦𝑧𝐹𝑧
− 110800𝑦𝑥2𝑦𝑥𝑥3𝐹𝑧𝑧𝑧𝑦𝑦 − 121600𝑦𝑥𝑦𝑥𝑥4𝐹𝑧𝑧𝑧𝑧𝑦
− 13600𝑦𝑥2𝐹𝑥𝑥𝑦𝑦𝑧𝑦𝑥𝑥 + 35511063125𝐹𝑧𝑦𝑥2𝐹𝑥𝑦𝑦
+ 2513939204120000𝑦𝑥𝑥3𝐹𝑧𝑧𝑧𝐹𝑧
− 39205917010000𝐹𝑧𝑦𝑥𝑥𝐹𝑥𝑦 + 5011302400𝐹𝑥𝑧𝑦𝑥𝑥2𝐹𝑧𝑧
+ 5011907200𝑦𝑥𝐹𝑦𝑧𝐹𝑥𝑥 + 87585734020000𝐹𝑧𝑦𝑥𝑥2𝐹𝑥𝑧𝑧
+ 10163907200𝐹𝑦𝑦𝑥𝑦𝑥𝑥2𝐹𝑧𝑧𝑧 + 1193121500𝑦𝑥3𝐹𝑧𝑦𝑦𝑦𝐹
− 13600𝑦𝑥2𝑦𝑥𝑥2𝐹𝑥𝑦𝑦𝑧𝑧 + 119340500𝑦𝑥𝐹𝐹𝑥𝑥𝑦𝑧
− 110800𝑦𝑥3𝐹𝑦𝑦𝑦𝑦𝑦𝑥𝑥 + 119340500𝑦𝑥2𝐹𝐹𝑥𝑦𝑦𝑧
+ 416934020000𝐹𝑧𝑤2𝐹𝑥 − 110800𝑦𝑥2𝐹𝑥𝑥𝑥𝑦𝑦
+ 5011907200𝐹𝑧𝑧2𝑦𝑥𝑥3 − 121600𝑦𝑥4𝐹𝑧𝑦𝑦𝑦𝑦𝑦𝑥𝑥
+ 5011453600𝑦𝑥2𝐹𝑦𝑧2𝑦𝑥𝑥 − 43310125𝑦𝑥𝑥𝐹𝑥𝑦𝑧𝐹
− 110800𝑦𝑥3𝐹𝑥𝑥𝑦𝑦𝑦 + 5011907200𝐹𝑥𝑧𝐹𝑥𝑥
− 1108000𝑦𝑥𝑥5𝐹𝑧𝑧𝑧𝑧𝑧 + 15117560000𝐹𝑤2𝐹𝑥𝑧
− 13360𝑦𝑥𝑥𝐹𝑦𝑦𝐹 − 13600𝑦𝑥𝐹𝑥𝑦𝑥𝑦𝑦𝑥𝑥

− 13600𝑦𝑥𝑥2𝐹𝑥𝑥𝑦𝑧 − 13600𝑦𝑥𝑥3𝐹𝑥𝑦𝑧𝑧
− 179567000𝐹𝑧𝐹𝑦𝐹 − 121600𝑦𝑥4𝐹𝑥𝑦𝑦𝑦𝑦
− 15400𝑦𝑥𝐹𝑥𝑥𝑥𝑦𝑧𝑦𝑥𝑥 + 98948968040000𝐹𝑧𝑥𝑥𝐹𝑧𝑦𝑥𝑥
+ 214491632960𝐹𝑧𝑧𝐹𝐹𝑥 + 4657734992000𝐹𝑧2𝐹𝑦𝑦𝑥
− 13600𝑦𝑥2𝐹𝑥𝑦𝑦𝑦𝑦𝑥𝑥 + 35511063125𝐹𝑧𝑦𝑥𝐹𝑦𝑥𝑥
+ 10163907200𝐹𝑦𝑦𝑥𝐹𝑧𝑥𝑥 + 27694114580000𝑦𝑥𝐹2𝐹𝑧𝑦𝑧
− 1289907200𝐹𝑦𝑦𝑥𝑥2𝐹𝑧𝑧 − 110800𝑦𝑥𝑥3𝐹𝑥𝑥𝑧𝑧𝑧
+ 10163453600𝐹𝑦𝑦𝑥2𝐹𝑥𝑦𝑧 + 1108000𝑤4𝐹𝑧𝑦𝑥𝑥
+ 5011453600𝑦𝑥𝐹𝑥𝑧𝐹𝑥𝑦 + 10163453600𝑦𝑥𝐹𝑥𝐹𝑥𝑦𝑧
+ 119340500𝑦𝑥𝑥2𝐹𝑥𝑧𝑧𝑧𝐹 + 1193121500𝑦𝑥𝑥3𝐹𝑧𝑧𝑧𝑧𝐹
− 118750400𝐹𝑦𝑦𝑥𝐹𝑦𝑧𝑦𝑥𝑥 + 10163907200𝐹𝑥𝐹𝑧𝑥𝑥
− 121600𝑦𝑥𝐹𝑥𝑥𝑥𝑥𝑦 + 27694114580000𝐹𝑥𝑧𝑧𝐹2
− 17200𝑦𝑥𝑥2𝐹𝑥𝑦𝑦 − 80601168040000𝐹𝑧𝑦𝑥𝑥2𝐹𝑦𝑧
− 13360𝑦𝑥2𝐹𝑦𝑦𝑦𝐹 − 13180𝑦𝑥𝐹𝑥𝑦𝑦𝐹
− 17200𝑦𝑥𝐹𝑦𝑦𝑦𝑦𝑥𝑥2 − 15400𝑦𝑥𝑦𝑥𝑥3𝐹𝑥𝑦𝑧𝑧𝑧
+ 327037673061800000𝐹𝑧𝑦𝑥𝐹𝑦𝑧𝐹
+ 416934020000𝐹𝑧𝑤2𝐹𝑦𝑦𝑥 + 214491632960𝐹𝑦𝑦𝑥𝐹𝑧𝑧𝐹
+ 1108000𝑤4𝐹𝑥 + 5011907200𝑦𝑥3𝐹𝑦𝑦𝐹𝑦𝑧
− 110800𝑦𝑥3𝑦𝑥𝑥2𝐹𝑧𝑧𝑦𝑦𝑦 − 29720𝐹𝑦𝑦𝑥𝐹𝑥𝑦
− 53981000𝑦𝑥𝑥2𝐹𝑧𝑦𝑧𝐹 − 19720𝐹𝑥𝐹𝑥𝑦
− 121600𝑦𝑥𝑥4𝐹𝑥𝑧𝑧𝑧𝑧 − 43310125𝑦𝑥𝐹𝑧𝑦𝑦𝑦𝑥𝑥𝐹
− 1108000𝐹𝑥𝑥𝑥𝑥𝑥 + 119340500𝑦𝑥𝑦𝑥𝑥2𝐹𝑧𝑧𝑧𝑦𝐹
− 1144𝐹𝑦𝐹𝑥𝑥 + 119340500𝑦𝑥2𝑦𝑥𝑥𝐹𝑧𝑧𝑦𝑦𝐹
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+ 119320250𝑦𝑥𝑦𝑥𝑥𝐹𝑥𝑦𝑧𝑧𝐹 + 15117560000𝐹𝑤2𝐹𝑧𝑧𝑦𝑥𝑥
+ 364603211530900000𝐹𝑧𝑦𝑥𝑥𝐹𝑧𝑧𝐹 + 5011907200𝐹𝑧𝑧𝑦𝑥𝑥𝐹𝑥𝑥
+ 4657734992000𝐹𝑧2𝐹𝑥 + 4657734992000𝐹𝑧3𝑦𝑥𝑥
− 110800𝐹2𝐹𝑦𝑧 − 13600𝑦𝑥𝑦𝑥𝑥2𝐹𝑥𝑥𝑦𝑧𝑧
+ 5011453600𝑦𝑥2𝐹𝑦𝑧𝐹𝑥𝑦 − 110800𝑦𝑥𝑥𝐹𝑥𝑦𝑥𝑥
− 13360𝐹𝐹𝑦𝑥𝑥 − 1108000𝑦𝑥5𝐹𝑦𝑦𝑦𝑦𝑦
− 1144𝐹𝑦2𝑦𝑥𝑥 + 1193121500𝐹𝑥𝑥𝑥𝑧𝐹
− 121600𝐹𝑥𝑥𝑥𝑥𝑧𝑦𝑥𝑥 − 17200𝑦𝑥𝑥3𝐹𝑧𝑦𝑦
+ 1108000𝑤4𝐹𝑦𝑦𝑥 + 10163907200𝐹𝑦𝑦𝑥3𝐹𝑧𝑦𝑦
− 130𝑦𝑥2𝐹𝑦𝑦𝐹𝑦 − 110800𝑦𝑥𝑥4𝐹𝑧𝑧𝑧𝑦
+ 416934020000𝐹𝑧2𝑤2𝑦𝑥𝑥 + 5011453600𝐹𝑥𝑧2𝑦𝑥𝑥
− 13600𝑦𝑥2𝐹𝑧𝑦𝑦𝑦𝑦𝑥𝑥2 + 5011907200𝑦𝑥2𝐹𝑦𝑦𝐹𝑥𝑧
+ 10163907200𝑦𝑥𝑥2𝐹𝑧𝑧𝑧𝐹𝑥 + 35513189375𝐹𝑧𝐹𝑥𝑥𝑥) ℎ6
+ 𝑂 (ℎ7)

(A.3)

Theprincipal local truncation errors for𝑦, 𝑦󸀠, and𝑦󸀠󸀠 (i.e.,𝜏𝑛+1, 𝜏󸀠𝑛+1, 𝜏󸀠󸀠𝑛+1) for TFMRKT5 are as follows:

𝜏𝑛+1 = (− 110800𝑦𝑥3𝐹𝑦𝑦𝑦 − 13600𝐹𝑧𝑥𝑥𝑦𝑥𝑥
− 13600𝑦𝑥𝐹𝑦𝑦𝑦𝑥𝑥 − 13600𝑦𝑥𝑥2𝐹𝑦𝑧
+ 527162000𝐹𝑧𝑧𝑦𝑥𝑥𝐹 − 11800𝑦𝑥𝐹𝑥𝑦𝑧𝑦𝑥𝑥
− 13600𝑦𝑥2𝐹𝑧𝑦𝑦𝑦𝑥𝑥 + 527162000𝑦𝑥𝐹𝑦𝑧𝐹
+ 971907200𝐹𝑧𝐹𝑦𝑦𝑥 − 13600𝐹𝑥𝑧𝑧𝑦𝑥𝑥2
− 13600𝑦𝑥2𝐹𝑥𝑦𝑦 − 110800𝑦𝑥𝑥3𝐹𝑧𝑧𝑧
+ 971907200𝐹𝑧𝐹𝑥 + 971907200𝐹𝑧2𝑦𝑥𝑥
+ 527162000𝐹𝑥𝑧𝐹 − 1144𝐹𝑦𝐹 − 13600𝑦𝑥𝑦𝑥𝑥2𝐹𝑧𝑦𝑧

− 13600𝑦𝑥𝑥𝐹𝑥𝑦 − 110800𝑤2𝐹𝑧𝑦𝑥𝑥 − 110800𝐹𝑥𝑥𝑥
− 13600𝑦𝑥𝐹𝑦𝑥𝑥 − 110800𝑤2𝐹𝑦𝑦𝑥
− 110800𝑤2𝐹𝑥) ℎ6 + 𝑂 (ℎ7)

(A.4)

𝜏󸀠𝑛+1 = (− 2087162000𝑦𝑥𝑥𝐹𝑦𝑧𝐹 + 1063162000𝑦𝑥2𝐹𝑧𝑦𝑦𝐹
− 86891512000𝐹𝑧𝐹𝑦𝑦𝑥𝑥 + 971226800𝐹𝑦𝑦𝑥𝐹𝑥𝑧
+ 1811756000𝐹𝑧𝑦𝑥𝐹𝑥𝑦 + 11800𝑦𝑥2𝑦𝑥𝑥𝐹𝑥𝑦𝑦𝑧
+ 13600𝑦𝑥2𝑦𝑥𝑥2𝐹𝑧𝑧𝑦𝑦 + 11800𝑦𝑥𝑦𝑥𝑥𝐹𝑥𝑥𝑦𝑧
+ 11800𝑦𝑥𝑦𝑥𝑥2𝐹𝑥𝑦𝑧𝑧 + 151432268000𝐹𝑧𝑦𝑥𝑥𝐹𝑥𝑧
+ 248534536000𝐹𝑧𝑦𝑥𝑥2𝐹𝑧𝑧 + 971226800𝑦𝑥𝐹𝑦𝑧𝐹𝑥
+ 971226800𝐹𝑧𝑧𝑦𝑥𝑥𝐹𝑥 + 15400𝑦𝑥𝑦𝑥𝑥3𝐹𝑧𝑧𝑧𝑦
+ 15400𝑦𝑥3𝐹𝑧𝑦𝑦𝑦𝑦𝑥𝑥 + 11800𝑦𝑥𝐹𝑧𝑦𝑦𝑦𝑥𝑥2
+ 971226800𝐹𝑦𝑦𝑥2𝐹𝑦𝑧 + 18111512000𝐹𝑧𝑦𝑥2𝐹𝑦𝑦
− 31722680000𝐹𝑧𝐹𝑤2 + 13600𝑦𝑥2𝐹𝑦𝑦𝑦𝑦𝑥𝑥
+ 106381000𝐹𝑥𝑧𝑧𝑦𝑥𝑥𝐹 + 106381000𝑦𝑥𝐹𝑥𝑦𝑧𝐹
+ 11800𝑦𝑥𝐹𝑥𝑦𝑦𝑦𝑥𝑥 + 1063162000𝑦𝑥𝑥2𝐹𝑧𝑧𝑧𝐹
− 7360𝑦𝑥𝐹𝑦𝑦𝐹 + 106381000𝑦𝑥𝑦𝑥𝑥𝐹𝑧𝑦𝑧𝐹
+ 971226800𝐹𝑦𝑦𝑥𝐹𝑧𝑧𝑦𝑥𝑥 + 151432268000𝐹𝑧𝑦𝑥𝐹𝑦𝑧𝑦𝑥𝑥
+ 121600𝐹𝑥𝑥𝑥𝑥 − 121600𝑤4𝐹 + 15400𝐹𝑥𝑥𝑥𝑧𝑦𝑥𝑥
+ 13600𝑦𝑥𝑥𝐹𝑦𝑥𝑥 + 11800𝑦𝑥𝑥2𝐹𝑥𝑦𝑧
+ 17200𝑦𝑥𝑥2𝐹𝑦𝑦 + 5788914580000𝐹𝑧𝑧𝐹2
+ 13600𝑦𝑥𝑥3𝐹𝑧𝑦𝑧 + 121600𝑦𝑥4𝐹𝑦𝑦𝑦𝑦
+ 15400𝑦𝑥𝑥3𝐹𝑥𝑧𝑧𝑧 + 121600𝑦𝑥𝑥4𝐹𝑧𝑧𝑧𝑧
+ 15400𝑦𝑥3𝐹𝑥𝑦𝑦𝑦 − 1144𝐹𝑦𝐹𝑥 + 15400𝑦𝑥𝐹𝑥𝑦𝑥𝑥
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+ 13600𝑦𝑥𝑥2𝐹𝑥𝑥𝑧𝑧 + 13600𝑦𝑥2𝐹𝑥𝑦𝑥𝑦
+ 971226800𝐹𝑥𝑧𝐹𝑥 + 18111512000𝐹𝑧𝐹𝑥𝑥 − 1144𝐹𝑦2𝑦𝑥
+ 3121122680000𝐹𝑧2𝐹 + 1063162000𝐹𝑧𝑥𝑥𝐹
− 7360𝐹𝐹𝑥𝑦) ℎ6 + 𝑂 (ℎ7)

(A.5)

𝜏󸀠󸀠𝑛+1 = ( 10373453600𝐹𝑦𝑦𝑥𝑦𝑥𝑥𝐹𝑥𝑧𝑧
+ 10373907200𝐹𝑦𝑦𝑥𝑦𝑥𝑥2𝐹𝑧𝑧𝑧 + 171775600𝑦𝑥𝐹𝑦𝑧𝑦𝑥𝑥𝐹𝑥𝑧
+ 10373453600𝑦𝑥𝑦𝑥𝑥𝐹𝑧𝑦𝑧𝐹𝑥
+ 29836911340000𝑦𝑥𝑦𝑥𝑥2𝐹𝑧𝑦𝑧𝐹𝑧
+ 1717151200𝑦𝑥𝐹𝑧𝑧𝑦𝑥𝑥𝐹𝑥𝑦
+ 1717100800𝑦𝑥𝐹𝑧𝑧𝑦𝑥𝑥2𝐹𝑦𝑧 + 78115832000𝐹𝑧2𝐹𝑦𝑦𝑥
− 27487648000𝑦𝑥𝑥𝐹𝑥𝑦𝑧𝐹 − 677560000𝐹𝑧𝑤2𝐹𝑥
− 677560000𝐹𝑧2𝑤2𝑦𝑥𝑥 − 13360𝑦𝑥2𝐹𝑦𝑦𝑦𝐹
− 13180𝑦𝑥𝐹𝑥𝑦𝑦𝐹 − 13360𝑦𝑥𝑥𝐹𝑦𝑦𝐹
− 4087648000𝑦𝑥𝑥2𝐹𝑧𝑦𝑧𝐹 − 61378000𝐹𝑧𝐹𝑦𝐹
− 2483302400𝐹𝑦𝑦𝑥𝑥𝐹𝑥𝑧 − 1301035670000𝐹𝑧𝑦𝑥𝑥𝐹𝑥𝑦
+ 19313648000𝑦𝑥2𝐹𝐹𝑥𝑦𝑦𝑧 + 1717302400𝑦𝑥3𝐹𝑦𝑦𝐹𝑦𝑧
+ 97618505000𝐹𝑧𝑦𝑥3𝐹𝑦𝑦𝑦 − 130𝐹𝑦𝑦𝑥2𝐹𝑦𝑦
+ 10373907200𝑦𝑥3𝐹𝑧𝑦𝑦𝐹𝑦 − 13600𝑦𝑥2𝐹𝑥𝑦𝑦𝑦𝑦𝑥𝑥
+ 19313648000𝑦𝑥𝐹𝐹𝑥𝑥𝑦𝑧 + 109595891020600000𝐹𝑧𝐹𝐹𝑥𝑧
− 13567907200𝑦𝑥𝑥𝐹𝑦𝑧𝐹𝑥 + 33751125515000𝐹𝑧𝑧𝐹𝐹𝑥
+ 193131944000𝑦𝑥3𝐹𝑧𝑦𝑦𝑦𝐹 − 110800𝑦𝑥3𝐹𝑦𝑦𝑦𝑦𝑦𝑥𝑥
+ 19313648000𝑦𝑥𝑥2𝐹𝑥𝑧𝑧𝑧𝐹 + 193131944000𝑦𝑥𝑥3𝐹𝑧𝑧𝑧𝑧𝐹
+ 19313648000𝑦𝑥𝑥𝐹𝑥𝑥𝑧𝑧𝐹 − 13600𝑦𝑥𝐹𝑥𝑦𝑥𝑦𝑦𝑥𝑥

+ 1717302400𝑦𝑥2𝐹𝑦𝑦𝐹𝑥𝑧 + 1108000𝑤4𝐹𝑧𝑦𝑥𝑥
+ 1108000𝑤4𝐹𝑦𝑦𝑥 + 97612835000𝐹𝑧𝑦𝑥2𝐹𝑥𝑦𝑦
− 29720𝐹𝑦𝑦𝑥𝐹𝑥𝑦 + 10373453600𝑦𝑥𝐹𝑥𝑦𝑧𝐹𝑥
+ 10373453600𝐹𝑥𝑧𝑧𝑦𝑥𝑥𝐹𝑥 + 29836911340000𝐹𝑥𝑧𝑧𝑦𝑥𝑥2𝐹𝑧
+ 10373907200𝑦𝑥𝑥2𝐹𝑧𝑧𝑧𝐹𝑥 + 85606368040000𝑦𝑥𝑥3𝐹𝑧𝑧𝑧𝐹𝑧
− 19720𝑦𝑥𝐹𝑦𝑦𝐹𝑥 + 10373907200𝑦𝑥2𝐹𝑧𝑦𝑦𝐹𝑥
+ 1717151200𝑦𝑥𝐹𝑥𝑧𝐹𝑥𝑦 + 10373907200𝐹𝑦𝑦𝑥𝐹𝑧𝑥𝑥
+ 97612835000𝐹𝑧𝑦𝑥𝐹𝑦𝑥𝑥 − 13600𝑦𝑥2𝑦𝑥𝑥𝐹𝑥𝑥𝑦𝑦𝑧
− 13600𝑦𝑥2𝑦𝑥𝑥2𝐹𝑥𝑦𝑦𝑧𝑧 − 110800𝑦𝑥2𝑦𝑥𝑥3𝐹𝑧𝑧𝑧𝑦𝑦
− 15400𝑦𝑥𝑦𝑥𝑥𝐹𝑥𝑥𝑥𝑦𝑧 − 13600𝑦𝑥𝑦𝑥𝑥2𝐹𝑥𝑥𝑦𝑧𝑧
− 15400𝑦𝑥𝑦𝑥𝑥3𝐹𝑥𝑦𝑧𝑧𝑧 + 1717100800𝐹𝑥𝑧𝑦𝑥𝑥2𝐹𝑧𝑧
+ 1124717560000𝐹𝑧𝑦𝑥𝑥𝐹𝑧𝑥𝑥 + 1717302400𝑦𝑥𝐹𝑦𝑧𝐹𝑥𝑥
+ 1717302400𝐹𝑧𝑧𝑦𝑥𝑥𝐹𝑥𝑥 − 121600𝑦𝑥𝑦𝑥𝑥4𝐹𝑧𝑧𝑧𝑧𝑦
− 15400𝑦𝑥3𝑦𝑥𝑥𝐹𝑥𝑦𝑦𝑦𝑧 − 110800𝑦𝑥3𝑦𝑥𝑥2𝐹𝑧𝑧𝑦𝑦𝑦
+ 1717151200𝑦𝑥2𝐹𝑦𝑧𝐹𝑥𝑦 + 1717151200𝑦𝑥2𝐹𝑦𝑧2𝑦𝑥𝑥
+ 10373453600𝐹𝑦𝑦𝑥2𝐹𝑥𝑦𝑧 − 121600𝑦𝑥4𝐹𝑧𝑦𝑦𝑦𝑦𝑦𝑥𝑥
− 17200𝑦𝑥𝐹𝑦𝑦𝑦𝑦𝑥𝑥2 + 111437958320000𝑦𝑥𝑥𝐹𝑧𝑧𝑧𝐹2
− 11800𝑦𝑥𝑦𝑥𝑥2𝐹𝑥𝑦𝑦𝑧 − 13600𝑦𝑥𝑦𝑥𝑥3𝐹𝑧𝑧𝑦𝑦
− 13600𝑦𝑥2𝐹𝑧𝑦𝑦𝑦𝑦𝑥𝑥2 + 111437958320000𝑦𝑥𝐹2𝐹𝑧𝑦𝑧
− 383302400𝐹𝑦𝑦𝑥𝑥2𝐹𝑧𝑧 − 870297560000𝐹𝑧𝑦𝑥𝑥2𝐹𝑦𝑧
− 1108000𝐹𝑥𝑥𝑥𝑥𝑥 + 1108000𝑤4𝐹𝑥
− 1108000𝑦𝑥5𝐹𝑦𝑦𝑦𝑦𝑦 + 111437958320000𝐹𝑥𝑧𝑧𝐹2
− 17200𝑦𝑥𝑥2𝐹𝑥𝑦𝑦 + 1143200𝐹2𝐹𝑦𝑧
− 13600𝑦𝑥𝑥2𝐹𝑥𝑥𝑦𝑧 − 13600𝑦𝑥𝑥3𝐹𝑥𝑦𝑧𝑧
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− 110800𝑦𝑥𝑥4𝐹𝑧𝑧𝑧𝑦 − 17200𝑦𝑥𝑥3𝐹𝑧𝑦𝑦
− 13360𝐹𝐹𝑦𝑥𝑥 − 121600𝐹𝑥𝑥𝑥𝑥𝑧𝑦𝑥𝑥
− 110800𝑦𝑥𝑥𝐹𝑥𝑦𝑥𝑥 − 1144𝐹𝑦2𝑦𝑥𝑥
+ 1717151200𝐹𝑥𝑧2𝑦𝑥𝑥 + 1717302400𝐹𝑧𝑧2𝑦𝑥𝑥3
− 121600𝑦𝑥4𝐹𝑥𝑦𝑦𝑦𝑦 − 121600𝑦𝑥𝑥4𝐹𝑥𝑧𝑧𝑧𝑧
− 1108000𝑦𝑥𝑥5𝐹𝑧𝑧𝑧𝑧𝑧 − 19720𝐹𝑥𝐹𝑥𝑦
− 1144𝐹𝑦𝐹𝑥𝑥 + 1717302400𝐹𝑥𝑥𝐹𝑥𝑧
+ 97618505000𝐹𝑧𝐹𝑥𝑥𝑥 + 78115832000𝐹𝑧2𝐹𝑥
+ 78115832000𝐹𝑧3𝑦𝑥𝑥 − 110800𝑦𝑥𝑥3𝐹𝑥𝑥𝑧𝑧𝑧
− 110800𝑦𝑥3𝐹𝑥𝑥𝑦𝑦𝑦 − 121600𝑦𝑥𝐹𝑥𝑥𝑥𝑥𝑦
− 110800𝑦𝑥𝑥2𝐹𝑥𝑥𝑥𝑧𝑧 − 110800𝑦𝑥2𝐹𝑥𝑥𝑥𝑦𝑦
+ 10373907200𝐹𝑥𝐹𝑧𝑥𝑥 + 193131944000𝐹𝑥𝑥𝑥𝑧𝐹
− 133145360000𝐹𝑥𝑧𝐹𝑤2 + 1124713780000𝐹𝑧𝑦𝑥𝑦𝑥𝑥𝐹𝑥𝑦𝑧
+ 1717302400𝑦𝑥2𝐹𝑦𝑦𝐹𝑧𝑧𝑦𝑥𝑥
+ 1124717560000𝐹𝑧𝑦𝑥2𝐹𝑧𝑦𝑦𝑦𝑥𝑥
+ 10373453600𝐹𝑦𝑦𝑥2𝐹𝑧𝑦𝑧𝑦𝑥𝑥 − 27487648000𝑦𝑥𝐹𝑧𝑦𝑦𝐹𝑦𝑥𝑥
+ 19313648000𝑦𝑥2𝑦𝑥𝑥𝐹𝑧𝑧𝑦𝑦𝐹
+ 19313324000𝑦𝑥𝑦𝑥𝑥𝐹𝑥𝑦𝑧𝑧𝐹 + 90592737800000𝐹𝑧𝑦𝑥𝑥𝐹𝑧𝑧𝐹
+ 19313648000𝑦𝑥𝑦𝑥𝑥2𝐹𝑧𝑧𝑧𝑦𝐹 + 33751125515000𝐹𝑦𝑦𝑥𝐹𝑧𝑧𝐹
+ 109595891020600000𝐹𝑧𝑦𝑥𝐹𝑦𝑧𝐹 − 2627113400𝐹𝑦𝑦𝑥𝐹𝑦𝑧𝑦𝑥𝑥
− 1301035670000𝐹𝑧𝑦𝑥𝐹𝑦𝑦𝑦𝑥𝑥 − 133145360000𝑦𝑥𝑥𝐹𝑧𝑧𝐹𝑤2
− 133145360000𝑦𝑥𝐹𝑦𝑧𝐹𝑤2 − 677560000𝐹𝑧𝑤2𝐹𝑦𝑦𝑥)
⋅ ℎ6 + 𝑂 (ℎ7)

(A.6)
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equations,”Matematický časopis, vol. 25, no. 3, pp. 231–244, 1975.

[13] A. C. Lazer, “The behavior of solutions of the differential
equation y

󸀠󸀠󸀠

+ p(x)y
󸀠

+q(x)y = 0,” Pacific Journal ofMathematics,
vol. 17, pp. 435–466, 1966.

[14] G. D. Jones, “Properties of solutions of a class of third-order
differential equations,” Journal of Mathematical Analysis and
Applications, vol. 48, pp. 165–169, 1974.

[15] F. A. Fawzi, N. Senu, F. Ismail, and Z. A. Majid, “An efficient
of direct integrator of Runge-Kutta Type Method for Solving
y”’=f(x, y, y’) with Application to Thin Film Flow Problem,”

123Exponentially Fitted and Trigonometrically Fitted Explicit Modified Runge-Kutta Type Methods for Solving...

__________________________ WORLD TECHNOLOGIES __________________________



WT

International Journal of Pure and Applied Mathematics, vol. 117,
no. 4, accepted.

[16] J. C. Butcher, Numerical Methods for Ordinary Differential
Equations, JohnWiley& Sons, NewYork,NY,USA, 2nd edition,
2008.

[17] J. D. Lambert, Numerical Methods for Ordinary Differential
Systems. The Initial Value Problem, John Wiley & Sons, New
York, NY, USA, 1993.

[18] Z. A. Anastassi and T. E. Simos, “Trigonometrically fit-
ted Runge-Kutta methods for the numerical solution of the
Schrödinger equation,” Journal of Mathematical Chemistry, vol.
37, no. 3, pp. 281–293, 2005.

[19] E. Momoniat and F. M. Mahomed, “Symmetry reduction and
numerical solution of a third-order ODE from thin film flow,”
Mathematical & Computational Applications, vol. 15, no. 4, pp.
709–719, 2010.

[20] E. O. Tuck and L. W. Schwartz, “A numerical and asymptotic
study of some third-order ordinary differential equations rele-
vant to draining and coating flows,” SIAMReview. A Publication
of the Society for Industrial and AppliedMathematics, vol. 32, no.
3, pp. 453–469, 1990.

[21] J. Biazar, E. Babolian, and R. Islam, “Solution of the system
of ordinary differential equations by Adomian decomposition
method,” Applied Mathematics and Computation, vol. 147, no. 3,
pp. 713–719, 2004.

[22] M. Mechee, N. Senu, F. Ismail, B. Nikouravan, and Z. Siri, “A
three-stage fifth-order Runge-Kutta method for directly solving
special third-order differential equationwith application to thin
film flow problem,”Mathematical Problems in Engineering, vol.
2013, Article ID 795397, 7 pages, 2013.

124 Applied Mathematics: Principles and Techniques

__________________________ WORLD TECHNOLOGIES __________________________



WT
Infinitely Many Trees with Maximum Number 
of Holes Zero, One, and Two

Srinivasa Rao Kola , Balakrishna Gudla, and P. K. Niranjan

Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, India

Correspondence should be addressed to Srinivasa Rao Kola; srinu.iitkgp@gmail.com

Academic Editor: Ali R. Ashrafi

An 𝐿(2, 1)-coloring of a simple connected graph𝐺 is an assignment 𝑓 of nonnegative integers to the vertices of 𝐺 such that |𝑓(𝑢) −
𝑓(V)| ⩾ 2 if 𝑑(𝑢, V) = 1 and |𝑓(𝑢) − 𝑓(V)| ⩾ 1 if 𝑑(𝑢, V) = 2 for all 𝑢, V ∈ 𝑉(𝐺), where 𝑑(𝑢, V) denotes the distance between 𝑢 and V
in 𝐺. The span of 𝑓 is the maximum color assigned by 𝑓. The span of a graph 𝐺, denoted by 𝜆(𝐺), is the minimum of span over all
𝐿(2, 1)-colorings on 𝐺. An 𝐿(2, 1)-coloring of 𝐺 with span 𝜆(𝐺) is called a span coloring of 𝐺. An 𝐿(2, 1)-coloring 𝑓 is said to be
irreducible if there exists no 𝐿(2, 1)-coloring g such that 𝑔(𝑢) ⩽ 𝑓(𝑢) for all 𝑢 ∈ 𝑉(𝐺) and 𝑔(V) < 𝑓(V) for some V ∈ 𝑉(𝐺). If 𝑓 is an
𝐿(2, 1)-coloring with span 𝑘, then ℎ ∈ {0, 1, 2, . . . , 𝑘} is a hole if there is no V ∈ 𝑉(𝐺) such that 𝑓(V) = ℎ. The maximum number of
holes over all irreducible span colorings of 𝐺 is denoted by𝐻𝜆(𝐺). A tree 𝑇 with maximum degree Δ having span Δ + 1 is referred
to as Type-I tree; otherwise it is Type-II. In this paper, we give a method to construct infinitely many trees with at least one hole
from a one-hole tree and infinitely many two-hole trees from a two-hole tree. Also, using the method, we construct infinitely many
Type-II trees with maximumnumber of holes one and two. Further, we give a sufficient condition for a Type-II tree with maximum
number of holes zero.

1. Introduction

The channel assignment problem is the problem of assigning
frequencies to transmitters in some optimal manner. In 1992,
Griggs and Yeh [1] have introduced the concept of 𝐿(2, 1)-
coloring as a variation of channel assignment problem. The
distance between two vertices 𝑢 and V in a graph 𝐺, denoted
by𝑑(𝑢, V), is defined as the length of a shortest path between 𝑢
and V in 𝐺. An 𝐿(2, 1)-coloring of a graph 𝐺 is an assignment
𝑓:𝑉(𝐺) 󳨀→ {0, 1, 2, . . . , 𝑘} such that, for every 𝑢, V in 𝑉(𝐺),
|𝑓(𝑢)−𝑓(V)| ⩾ 2 if 𝑢 and V are adjacent and |𝑓(𝑢)−𝑓(V)| ⩾ 1
if 𝑢 and V are at distance 2.The nonnegative integers assigned
to the vertices are also called colors. The span of 𝑓, denoted
by 𝑠𝑝𝑎𝑛 𝑓, is max{𝑓(V): V ∈ 𝑉(𝐺)}. The span of 𝐺, denoted
by 𝜆(𝐺), is min{𝑠𝑝𝑎𝑛 𝑓:𝑓 is an 𝐿(2, 1)-coloring of 𝐺}. An
𝐿(2, 1)-coloring with span 𝜆(𝐺) is called a span coloring. A
tree is a connected acyclic graph. In the introductory paper,
Griggs and Yeh [1] proved that 𝜆(𝑃𝑛) = 4 for 𝑛 ⩾ 5; 𝜆(𝑇) is
either Δ + 1 or Δ + 2 for any tree 𝑇 with maximum degree
Δ. We refer to a tree as Type-I if 𝜆(𝑇) = Δ + 1; otherwise it
is Type-II. In a graph 𝐺 with maximum degree Δ, we refer to

a vertex V as a major vertex if its degree is Δ; otherwise V is
a minor vertex. Wang [2] has proved that a tree with no pair
of major vertices at distances 1, 2, and 4 is Type-I. Zhai et al.
[3] have improved the above condition as a tree with no pair
of major vertices at distances 2 and 4 is Type-I. Mandal and
Panigrahi [4] have proved that 𝜆(𝑇) = Δ + 1 if 𝑇 has at most
one pair ofmajor vertices at distance either 2 or 4 and all other
pairs are at distance at least 7. Wood and Jacob [5] have given
a complete characterization of the 𝐿(2, 1)-span of trees up to
twenty vertices.

Fishburn and Roberts [6] have introduced the concept
of no-hole 𝐿(2, 1)-coloring of a graph. If 𝑓 is an 𝐿(2, 1)-
coloring of a graph 𝐺 with span 𝑘, then an integer ℎ ∈
{0, 1, 2, . . . , 𝑘} is called a hole in 𝑓 if there is no vertex V
in 𝐺 such that 𝑓(V) = ℎ. An 𝐿(2, 1)-coloring with no hole
is called a no-hole coloring of 𝐺. Fishburn et al. [7] have
introduced the concept of irreducibility of 𝐿(2, 1)-coloring.
An 𝐿(2, 1)-coloring of a graph 𝐺 is reducible if there exists
another 𝐿(2, 1)-coloring 𝑔 of 𝐺 such that 𝑔(𝑢) ⩽ 𝑓(𝑢) for
all vertices 𝑢 in 𝐺 and there exists a vertex V in 𝐺 such that
𝑔(V) < 𝑓(V). If 𝑓 is not reducible then it is called irreducible.
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An irreducible no-hole coloring is referred to as inh-coloring.
A graph is inh-colorable if there exists an inh-coloring. For
an inh-colorable graph 𝐺, the lower inh-span or simply inh-
span of 𝐺, denoted by 𝜆𝑖𝑛ℎ(𝐺), is defined as 𝜆𝑖𝑛ℎ(𝐺) =
min{span 𝑓 : 𝑓 is an inh-coloring of 𝐺}. Fishburn et al. [7]
have proved that paths, cycles, and trees are inh-colorable
except 𝐶3, 𝐶4, and stars. In addition to that, they showed
that Δ + 1 ⩽ 𝜆𝑖𝑛ℎ(𝑇) ⩽ Δ + 2 where 𝑇 is any nonstar tree.
Laskar et al. [8] have proved that any nonstar tree 𝑇 is inh-
colorable and 𝜆𝑖𝑛ℎ(𝑇) = 𝜆(𝑇). The maximum number of
holes over all irreducible span colorings of 𝐺 is denoted by
𝐻𝜆(𝐺). Laskar andEyabi [9] have determined the exact values
for maximum number of holes for paths, cycles, stars, and
complete bipartite graphs as 2, 2, 1, and 1, respectively, and
conjectured that, for any tree 𝑇, 𝐻𝜆(𝑇) = 2 if and only if 𝑇
is a path 𝑃𝑛, 𝑛 > 4. S. R. Kola et al. [10] have disproved the
conjecture by giving a two-hole irreducible span coloring for
a Type-II tree other than path.

In this article, we give a method of construction of
infinitely many two-hole trees from a two-hole tree and
infinitely many trees with at least one hole from a one-
hole tree. Also, we find maximum number of holes for
some Type-II trees given by Wood and Jacob [5] and obtain
infinitely many Type-II trees of holes one and two by applying
the method of construction. Further, we give a sufficient
condition for a zero-hole Type-II tree.

2. Construction of Trees with Maximum
Number of Holes One and Two

We start this section with a lemma which gives the possible
colors to the major vertices in a two-hole span coloring of a
Type-II tree.

Lemma 1. In any two-hole span coloring of a Type-II tree 𝑇
with Δ ⩾ 3, all major vertices receive either the same color or
the colors from any one of the sets {0, 2}, {0, Δ+2}, or {Δ, Δ+2}.

Proof. Let 𝑓 be a two-hole span coloring of a Type-II tree 𝑇.
Suppose that V1 and V2 are major vertices such that 𝑓(V1) ̸=
𝑓(V2). First, we prove that {𝑓(V1), 𝑓(V2)} = {0, 2} or {0, Δ + 2}
or {Δ, Δ + 2}. Let 𝑓(V1) = 𝑙 and 𝑓(V2) = 𝑙

󸀠. Without loss of
generality, we assume that 0 ⩽ 𝑙 < 𝑙󸀠 ⩽ Δ+2. If 𝑙 = 0, then the
color 1 must be one of the two holes in 𝑓. If 𝑙󸀠 ̸= Δ + 2, then
𝑙󸀠 −1 and 𝑙󸀠 +1 are the holes. Since 𝑙󸀠 +1 cannot be 1, 𝑙󸀠 −1 is 1
which implies 𝑙󸀠 = 2. If 𝑙 ̸= 0, then 𝑙 − 1 and 𝑙 + 1 are the holes
in 𝑓. If 𝑙󸀠 ̸= Δ+ 2, then 𝑙󸀠 −1 and 𝑙󸀠 +1 are the holes which are
not possible as 𝑙 ̸= 𝑙󸀠. If 𝑙󸀠 = Δ + 2, then Δ + 1must be one of
the holes in 𝑓. Since 𝑙 − 1 cannot be Δ+ 1, 𝑙 + 1 is Δ+ 1 which
implies 𝑙 = Δ.

If {𝑓(V1), 𝑓(V2)} = {0, 2}, then 1 and 3 are the holes. If
any major vertex V receives a color 𝑙 other than 0 and 2, then
the neighbors of V cannot get the colors 1 and 3 and at least
one of 𝑙 − 1 and 𝑙 + 1 (if 𝑙 = Δ + 2, then 𝑙 − 1). This is
not possible as we need Δ + 1 number of colors to color a
major vertex and its neighbors. Similarly, other cases can be
proved.

The following lemma is a direct implication of Lemma 1.

Lemma 2. If 𝑓 is a two-hole span coloring of a Type-II tree 𝑇
having two major vertices at distance less than or equal to two,
then the set of holes in 𝑓 is {1, 3}, {1, Δ + 1}, or {Δ − 1, Δ + 1}.

When we say connecting two trees, we mean adding an
edge between them. Corresponding to the possibilities of
holes given in Lemma 2, we give a list of trees which can
be connected to a two-hole tree having two major vertices at
distance less than or equal to two, to obtain infinitely many
two-hole trees. Later, we give a list of trees which can be
connected to a one-hole tree to get infinitely many one-hole
trees.

Theorem 3. If 𝑇 is a tree with maximum number of holes two
and having at least two major vertices at distance at most two,
then there are infinitely many trees with maximum number of
holes two and with maximum degree Δ same as that of 𝑇.

Proof. Let 𝑓 be an irreducible span coloring of 𝑇 with two
holes. Then by Lemma 2, the set of holes in 𝑓 is {1, 3} or
{1, Δ+1} or {Δ−1, Δ+1}. Now, we give amethod to construct
trees from 𝑇 using the coloring 𝑓 and holes in 𝑓. For all the
three possibilities of holes, we give a list of trees which can be
connected to𝑇 to get a bigger tree with maximum number of
holes two. Suppose 1 and 3 are the holes in 𝑓. We use Table 1
for construction.

Let 𝑢 be a vertex of the tree 𝑇 and 𝑐 be the color received
by 𝑢. Now depending on the colors of the neighbors of 𝑢, to
preserve 𝐿(2, 1)-coloring, we connect the trees (one at a time)
given in Table 1 by adding an edge between 𝑢 of 𝑇 and the
vertex colored 𝑘 of tree in the table. Note that 0 ⩽ 𝑘 ⩽ Δ + 2
and the color 𝑘 is not equal to any of the colors 𝑐 − 1, 𝑐, 𝑐 + 1,
1, and 3 and not assigned to any neighbor of 𝑢. To maintain
irreducibility, we use the condition given in the last column
of the table. It is easy to see that, after every step, we get a
tree 𝑇󸀠 with maximum degree same as that of 𝑇 and a two-
hole irreducible span coloring of 𝑇󸀠. Also, it is clear that 𝑇 is
a subtree of 𝑇󸀠. Since connecting a tree to any pendant vertex
is always possible, we get infinitely many trees.

Suppose 1 and Δ + 1 are the holes in 𝑓. Construction is
similar to the previous case using trees in Table 2.

Suppose Δ − 1 and Δ + 1 are the holes in 𝑓. We use trees
in Table 3 for construction.

Theorem 4. If T is a tree with 𝐻𝜆(𝑇) = 1, then there exist
infinitely many trees containing𝑇 and with maximum number
of holes at least 1.

Proof. Here, we start with a one-hole irreducible 𝐿(2, 1)-
span coloring of 𝑇 having hole ℎ. The construction of
infinitely many trees is similar to that inTheorem 3 and using
Table 4. Since after every step we get a tree 𝑇󸀠 with one-hole
irreducible span coloring, 𝐻𝜆(𝑇

󸀠) ⩾ 1.

Theorem 5. If 𝑇 is a tree with 𝐻𝜆(𝑇) = 1 and 𝑇 has no two-
hole span coloring, then there exist infinitely many trees with
maximum number of holes one and containing 𝑇.

Proof. Since 𝑇 has no two-hole span coloring, any tree
containing 𝑇 having same maximum degree as that of 𝑇
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Table 1: Trees connectable to a vertex 𝑢 colored 𝑐 in a two-hole tree with 1 and 3 as holes.

Color of vertex Connectable trees Condition

𝑐 = 0

k 𝑘 = 2

2 0k 𝑘 > 3 and all colors greater than 3 less than 𝑘 adjacent to 𝑐.

k−1

k 2

5

4

0

1 : 𝑘 > 4

5

k−2

k

2 0

4 02

02

02

2 : 𝑘 > 5

k −1

0

0

0

0

0

4 0

2 0

2

2

2

2

25

k

2

0

2

k

−2

k

+2

k

+3

3 :

k


3 < 𝑘󸀠 < 𝑘 − 1

k−1

0

0

0

0

0

4 0

2 0

2

2

2

2

2

25

k+1

k+2

k

0

2

4 :

k

−2

k


3 < 𝑘 < 𝑘󸀠 − 1

𝑐 = 2

k 𝑘 ̸= 1, 2, 3 and all colors less than 𝑘 adjacent to 𝑐.

0k 3 < 𝑘 ⩽ Δ and all colors less than 𝑘 adjacent to 𝑐.

02

02

02

02

k

k−2

4

6

5

𝑘 > 5
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Table 1: Continued.

Color of vertex Connectable trees Condition

k−1

0

0

0

0

0

4 0

2 0

2

2

2

2

2

25

k+1

k+2

k

0

k


k

−2

3 < 𝑘 < 𝑘󸀠 − 1

k−1

0

0

0

0

0

4 0

2 0

2

2

2

2

25

k

2

0

k

−2

k

+2

k

+3

k


3 < 𝑘󸀠 < 𝑘 − 1

5

4 02

02

02k−2

k 0 𝑘 > 5

c−1

c+1

c+2

k−2

0

0

0

0

0

2

2

2

2

k

2

0

4 2 0

5

𝑘 > 𝑐 + 1

c> 3
k

𝑘 = 0

2 0k
𝑘 > 3 and all colors greater than 3 less than 𝑘 adjacent to 𝑐.
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Table 1: Continued.

Color of vertex Connectable trees Condition

c−1

k−2

c+1

c+2

k

0

0

0

0

5 2 0

4 2 0

2 0

2

2

2

2

𝑘 > 𝑐 + 1

5

4 02

02

02k−2

k 0

2

0

𝑘 > 5

T1 𝑘 > 4

T2 5 < 𝑘 < 𝑐 − 1

T3 3 < 𝑘󸀠 < 𝑘 − 1 and 𝑐 ̸= 𝑘󸀠

T4 3 < 𝑘 < 𝑘󸀠 − 1 and 𝑐 ̸= 𝑘󸀠

cannot have a two-hole span coloring. Therefore, every tree
obtained from 𝑇 using Theorem 4 has maximum number of
holes one.

Corollary 6. If 𝑇 is a Type-I tree and 𝐻𝜆(𝑇) = 1, then there
exist infinitely many trees with maximum number of holes one
and containing 𝑇.

3. Maximum Number of Holes in Some
Type-II Trees

Recall that, in a graph 𝐺 with maximum degree Δ, we refer a
vertex V as a major vertex if its degree is Δ. Otherwise V is a
minor vertex. Wood and Jacob [5] have given some sufficient
conditions for a tree to be Type-II. We consider some of their
sufficient conditions as below.

Theorem 7 (see [5]). A tree containing any of the following
subtrees is Type-II provided the maximum degrees of the
subtree and the tree are the same Δ.

(I) 𝑇1: a tree with an induced 𝑃3 consisting of three major
vertices.

(II) 𝑇2: a tree with a minor vertex 𝑤 and at least 3 major
vertices adjacent to 𝑤.

(III) 𝑇3: a tree with amajor vertex𝑤 and at leastΔ−1major
vertices at distance two from 𝑤, and 𝑇2 is not a subtree
of the tree.

(IV) 𝑇4: a tree with a vertex 𝑤 adjacent to Δ − 2 vertices
𝑤1, 𝑤2, . . . , 𝑤Δ−2 and two neighbors V𝑖, V

󸀠

𝑖 of each 𝑤𝑖,
1 ⩽ 𝑖 ⩽ Δ − 2 are major.

Since the above trees can be as small as possible, we consider
the degrees of minor vertices as minimum as possible. Now,
we find themaximum number of holes for the trees𝑇1, 𝑇2, 𝑇3,
and 𝑇4. For any tree 𝑇 with maximum degree Δ, it is clear
that 𝐻𝜆(𝑇) ⩽ 2. First, we show that 𝐻𝜆(𝑇𝑖) ⩽ 1, 𝑖 = 1, 2, 4.
Also, 𝐻𝜆(𝑇2) = 0 if 𝑇2 has a vertex adjacent to at least four
major vertices. Further, we give a two-hole 𝐿(2, 1)-irreducible
span coloring of 𝑇3 if it has exactly Δ − 1 major vertices at
distance two from a major vertex and we show that𝐻𝜆(𝑇3) ⩽
1, if 𝑇3 has exactly Δ major vertices at distance two from a
major vertex. Later, we show that these upper bounds are
the exact values by defining 𝐿(2, 1)-irreducible span colorings
with appropriate holes. Now onwards, unless we mention,
tree refers to Type-II tree. In figures, we use symbol 󳵳 to
denote a major vertex.

Theorem 8. For the trees 𝑇𝑖, 𝑖 = 1, 2, 4,𝐻𝜆(𝑇𝑖) ⩽ 1.

Proof. Let V1, V2, and V3 be the major vertices of 𝑇1. Since
V1, V2, and V3 receive three different colors in any 𝐿(2, 1)-
coloring, by Lemma 1, 𝑇1 cannot have a two-hole irreducible
span coloring. Similarly, we can prove that𝐻𝜆(𝑇2) ⩽ 1.

Now, we consider 𝑇4 with labelling as in Figure 1.
Suppose that 𝑓 is a two-hole irreducible span coloring of

𝑇4. Then by Lemma 1, all major vertices of 𝑇4 receive colors
from {0, 2} or {0, Δ + 2} or {Δ, Δ + 2}. Suppose the major
vertices receive 0 and 2. Then 1 and 3 are holes. Without loss
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Table 2: Trees connectable to a vertex 𝑢 colored 𝑐 in a two-hole tree with 1 and Δ + 1 as holes.

Color of vertex Connectable trees Condition

𝑐 = 0

k 1 < 𝑘 ⩽ Δ and all colors less than 𝑘 adjacent to 𝑐.

2 0k 𝑘 > 3 and all colors greater than 3 less than 𝑘 adjacent to 𝑐.
2

k−1

k+1

k+2

0

0

0

0

k

0

3 0

k


k

−2

2 < 𝑘 < 𝑘󸀠 − 1 < Δ or 2 < 𝑘 ⩽ Δ and 𝑘󸀠 = Δ + 2

2

k−1

0

0

0

0

k

0

3 0

k

−2

k

+3

k

+2

k
 3 < 𝑘󸀠 < 𝑘 − 1 < Δ or 𝑘 = Δ + 2 and 𝑘󸀠 = Δ

k−1

k 2

5
4
0

1 : 3 < 𝑘 ⩽ Δ

k−2

k

3

02

0

0

2 : 3 < 𝑘 ⩽ Δ or 𝑘 = Δ + 2

1 < 𝑐 ⩽ Δ

k 𝑘 = 0

0k 2 ⩽ 𝑘 ⩽ Δ and all colors less than 𝑘 adjacent to 𝑐

2 0k 𝑘 > 3 and all colors greater than 3 less than 𝑘 adjacent to 𝑐.
T1 𝑘 > 3 and 𝑐 ̸= 2

T2 5 ⩽ 𝑘 < 𝑐 − 1

k−1
k 0

2

3
3 : 2 < 𝑘 ⩽ Δ or 𝑘 = Δ + 2

c−1

c+1

c+2

k−2

k

2 0

3 0

0

0

0

0

4 : 𝑐 + 1 < 𝑘 ⩽ Δ or 𝑘 = Δ + 2
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Table 2: Continued.

Color of vertex Connectable trees Condition
2

k−1

k+1

k+2

0

0

0

0

k

0

3 0

0

5 :
k


k

−2

𝑐 ̸= 𝑘󸀠 and 1 < 𝑘 < 𝑘󸀠 − 1 < Δ

2

k−1

0

0

0

0

k

0

3 0

0

k

−2

k

+2

k

+3

6 :
k
 𝑐 ̸= 𝑘󸀠 and 1 < 𝑘󸀠 < 𝑘 − 1 < Δ

𝑐 = Δ + 2

k 𝑘 = 0

0k 2 ⩽ 𝑘 ⩽ Δ and all colors less than 𝑘 adjacent to 𝑐

2 0k 𝑘 > 3 and all colors greater than 3 less than 𝑘 adjacent to 𝑐.

T1 5 ⩽ 𝑘 ⩽ Δ

T2 5 ⩽ 𝑘 ⩽ Δ

T3 2 < 𝑘 ⩽ Δ

T5 1 < 𝑘󸀠 < 𝑘 − 1 < Δ

T6 1 < 𝑘 < 𝑘󸀠 − 1 < Δ

w1 w2 wΔ−3 wΔ−2

1 2 Δ−3 Δ−2

w

４
4
:




1



2



Δ−3



Δ−2

Figure 1: The tree 𝑇4 as in Theorem 7.

of generality, we assume that 𝑓(V𝑖) = 0 and 𝑓(V
󸀠

𝑖 ) = 2. Now,
one of the pendant vertices adjacent to V𝑖must receive a color
grater than 3 which reduces to 3 giving a contradiction to the
fact that𝑓 is irreducible. Similarly, we can prove the other two
cases. Therefore,𝐻𝜆(𝑇4) ⩽ 1.

Theorem 9. If at least four major vertices are adjacent to 𝑤 in
𝑇2, then𝐻𝜆(𝑇2) = 0.

Proof. Recall that 𝑇2 is a tree with a vertex 𝑤 adjacent to at
least three major vertices. Let V1, V2, V3, and V4 be four major
vertices adjacent to 𝑤 in 𝑇2. Suppose that it has a one-hole
irreducible 𝐿(2, 1)-span coloring 𝑓. Let 𝑙1, 𝑙2, 𝑙3, and 𝑙4 be the
colors received by V1, V2, V3, and V4, respectively. Without loss

of generality, we assume that 0 ⩽ 𝑙1 < 𝑙2 < 𝑙3 < 𝑙4 ⩽ Δ + 2.
If 𝑙1 ̸= 0, then except 𝑙1 − 1 and 𝑙1 + 1 all other colors are
used to the neighbors of V1. Also, except 𝑙3 − 1 and 𝑙3 + 1, all
other colors are used to the neighbors of V3. Since 𝑙1 − 1, 𝑙1 +
1, 𝑙3 − 1, and 𝑙3 + 1 are four different colors, 𝑓 cannot have a
hole which is a contradiction. So, 𝑙1 = 0. Since 𝑓 is one-hole
coloring, the colors 𝑙2 − 1, 𝑙2 + 1, 𝑙3 − 1, and 𝑙3 + 1 cannot be
four different colors and hence 𝑙2 +1 = 𝑙3 −1 is the hole. Now,
a pendant neighbor of V1 receives 𝑙3 which reduces to the hole
𝑙3 − 1 giving a contradiction to the fact that 𝑓 is irreducible.

S. R. Kola et al. [10] have disproved the conjecture given
by Laskar and Eyabi [9] by giving two-hole irreducible span
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Table 3: Trees connectable to a vertex 𝑢 colored 𝑐 in a two-hole tree with Δ − 1 and Δ + 1 as holes.

Color of vertex Connectable trees Condition

0 ⩽ 𝑐 < Δ − 1

k 0 ⩽ 𝑘 < Δ − 1 and all colors less than 𝑘 adjacent to 𝑐.

k −2

1

0

k

1 : 2 ⩽ 𝑘 < 𝑐 − 1

1

0

k

k −1

2 :
k

−2

k

+2

k

+3k



𝑐 ̸= 𝑘󸀠 and 0 ⩽ 𝑘󸀠 < 𝑘 − 1 < Δ − 2 or 𝑘 = 𝑘󸀠 + 2 = Δ + 2 or Δ

1

0

k

k− 1
k+ 1
k+ 2

k

−2

3 :
k


𝑐 ̸= 𝑘󸀠 and 0 ⩽ 𝑘 < 𝑘󸀠 − 1 < Δ − 2 or 0 ⩽ 𝑘 ⩽ Δ − 2 and 𝑘󸀠 = Δ

1

0

k

k −2

c+ 2
c+ 1
c− 1

𝑐 + 1 < 𝑘 ⩽ Δ − 2 or 𝑘 = Δ

c+ 2

Δ−2

1

0

c− 1
c+ 1k

Δ+2

𝑘 = Δ

Δ−2

Δ−2

c+ 2

1

0

c− 1
c+ 1

1

0

Δ−4
Δ

k
𝑘 = Δ + 2

𝑐 = Δ

k 𝑘 ̸= Δ, Δ ± 1 and all colors less than 𝑘 adjacent to 𝑐.

Δ−2

1

0

k 𝑘 = Δ + 2

T1 2 ⩽ 𝑘 < Δ − 1

T2 0 ⩽ 𝑘󸀠 < 𝑘 − 1 < Δ − 3

T3 0 ⩽ 𝑘 < 𝑘󸀠 − 1 < Δ − 2

𝑐 = Δ + 2

k 0 ⩽ 𝑘 < Δ − 1 and all colors less than 𝑘 adjacent to 𝑐.
T1 2 ⩽ 𝑘 < Δ − 1 or 𝑘 = Δ
T2 𝑐 ̸= 𝑘󸀠 and 0 ⩽ 𝑘󸀠 < 𝑘 − 1 < Δ − 2 or 𝑘 = 𝑘󸀠 + 2 = Δ
T3 𝑐 ̸= 𝑘󸀠 and 0 ⩽ 𝑘 < 𝑘󸀠 − 1 < Δ − 2 or 0 ⩽ 𝑘 ⩽ Δ − 2 and 𝑘󸀠 = Δ
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Table 4: Trees connectable for a vertex colored 𝑐 in a one-hole tree with hole ℎ.

Color of vertex Connectable trees Condition

0 ⩽ 𝑐 < ℎ

k
0 ⩽ 𝑘 < ℎ and all colors less than 𝑘 adjacent to 𝑐.

For 𝑐 = ℎ − 1, ℎ < 𝑘 ⩽ 𝜆(𝑇) and all colors less than 𝑘 adjacent
to 𝑐.

1

0

k

k −2

c+ 2
c+ 1
c− 1

𝑐 + 1 < 𝑘 < ℎ or 𝑘 = ℎ + 1

c+ 2
c+ 1
c− 1

1

0

h −1

k

𝑘 > ℎ and all colors greater than ℎ less than 𝑘 adjacent to 𝑐.

k −2

1

0

k

1 : 2 ⩽ 𝑘 < 𝑐 − 1

1

0

k

k− 1
k+ 1
k+ 2

k

−2

2 :
k


𝑘󸀠 ̸= 𝑐 and 0 < 𝑘 < 𝑘󸀠 − 1 < ℎ − 1 or 0 < 𝑘 < ℎ and 𝑘󸀠 = ℎ + 1

1

0

k

k −1

k

+2

k

+3

k

−2

3 :
k


𝑘󸀠 ̸= 𝑐 and 0 ⩽ 𝑘󸀠 < 𝑘 − 1 < ℎ − 1

h+1

h+2

h−1

h−1

h−1
k−2

0

1

0

1

k

0
1

4 : 𝑘 > ℎ

0
1

k h−1

h−3

5 : 𝑐 ̸= ℎ − 1, 𝑘 > ℎ and all colors greater than ℎ less than 𝑘
adjacent to 𝑐.

0
1

k
h−1

h+1

6 : 𝑘 > ℎ and all colors greater than ℎ less than 𝑘 adjacent to 𝑐.

ℎ ⩽ 𝑐 ⩽ 𝜆(𝑇)

k
0 ⩽ 𝑘 < ℎ and all colors less than 𝑘 adjacent to 𝑐.

For 𝑐 = ℎ + 1, ℎ < 𝑘 ⩽ 𝜆(𝑇) and all colors less than 𝑘 adjacent
to 𝑐.

1

0

k
h−1

𝑘 > ℎ and all colors greater than ℎ less than 𝑘 adjacent to 𝑐
and 𝑐 > ℎ.
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Table 4: Continued.

Color of vertex Connectable trees Condition

c+1

0
1

h−1

0
1

h−1

h+2

0
1

h−1c−1

0
1

h−1

0
1

h−1

0
1

h−1k−2

c+2

h+1

k ℎ < 𝑐 < 𝑘 − 1

T1 2 ⩽ 𝑘 < ℎ or 𝑘 = ℎ + 1
T2 0 < 𝑘 < 𝑘󸀠 − 1 < ℎ − 1 or 0 < 𝑘 < ℎ and 𝑘󸀠 = ℎ + 1
T3 0 ⩽ 𝑘󸀠 < 𝑘 − 1 < ℎ − 1

T4 ℎ + 2 < 𝑘 < 𝑐 − 1

T5 𝑘 > ℎ and all colors greater than ℎ less than 𝑘 adjacent to 𝑐.

T6
𝑐 ̸= ℎ + 1, 𝑘 > ℎ and all colors greater than ℎ less than 𝑘

adjacent to 𝑐.

w
2u

0

5

5 6 0 Δ+2Δ+20

2

0 Δ+2 0 Δ+1

2 22

4

∆+1

Δ+2

4 7 4 5 4 5 ΔΔ

w2

w1

wΔ−2 wΔ−1

6

４


3
:

Figure 2: Irreducible 𝐿(2, 1)-span coloring of 𝑇3 with 1 and 3 as holes.

colorings for Type-II trees of maximum degrees three and
four. Following theorem gives a two-hole irreducible span
coloring for a tree with maximum degree Δ which is also a
counterexample for the conjecture.

Theorem 10. If exactly Δ−1major vertices are at distance two
from the major vertex 𝑤 in 𝑇3, then𝐻𝜆(𝑇3) = 2.

Proof. Let 𝑇󸀠3 be the tree 𝑇3 with exactly Δ − 1major vertices
at distance two to 𝑤. It is easy to see that the 𝐿(2, 1)-span
coloring of the tree 𝑇󸀠3 given in Figure 2 is irreducible with
1 and 3 as holes.

Theorem 11. If 𝑇󸀠󸀠3 is the tree 𝑇3 with exactly Δmajor vertices
at distance two to 𝑤, then𝐻𝜆(𝑇

󸀠󸀠
3 ) ⩽ 1.

Proof. We consider 𝑇󸀠󸀠3 with labelling as in Figure 3.
Suppose that 𝑇󸀠󸀠3 has an 𝐿(2, 1)-span coloring 𝑓 with two

holes. Then by Lemma 1, all major vertices of 𝑇󸀠󸀠3 receive
colors from {0, 2} or {0, Δ + 2} or {Δ, Δ + 2}. Suppose that 𝑓
assigns 0 and 2 to the major vertices. Since {𝑓(𝑤), 𝑓(V𝑖)} =

{0, 2}, 1 ⩽ 𝑖 ⩽ Δ, it is not possible to color all 𝑤𝑖 s as the
four colors 0, 1, 2, and 3 cannot be assigned. Therefore, in this
case, two-hole span coloring is not possible for 𝑇󸀠󸀠3 . Similarly,
we can prove the other two cases. Hence,𝐻𝜆(𝑇

󸀠󸀠

3
) ⩽ 1.

Let 𝑇󸀠2 be the tree 𝑇2 with exactly three major vertices are
adjacent to a vertex.

Theorem 12. For the trees 𝑇1, 𝑇
󸀠
2, 𝑇
󸀠󸀠
3 , and 𝑇4, the maximum

number of holes is one.

Proof. It is easy to see that the colorings of 𝑇1, 𝑇
󸀠

2, 𝑇
󸀠󸀠

3 , and
𝑇4 given in Figures 4, 5, 6, and 7, respectively, are irreducible
𝐿(2, 1)-span colorings with hole Δ.

4. Infinitely Many Trees with Holes 0, 1, and 2

Recall that 𝑇󸀠2 is the tree 𝑇2 with exactly three major vertices
adjacent to a vertex and 𝑇󸀠󸀠3 is the tree 𝑇3 with exactly Δmajor
vertices at distance two from a major vertex. Let 𝑇󸀠󸀠2 be the
tree 𝑇2 with exactly four major vertices adjacent to the vertex
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w1 w2 wΔ−1 wΔ

1 2 Δ−1 Δ

w

４


3
:

Figure 3: The tree 𝑇3 with exactly Δmajor vertices at distance two to 𝑤.

0∆+2

2

1

∆+1

∆−2 ∆−132

1

2

∆−2

∆−1

∆−2

∆−1

４
1
:

Figure 4: Irreducible 𝐿(2, 1)-span coloring of 𝑇1 with one hole.

0

∆−1

2

1

1 ∆+2∆+1∆−32

2

1

∆−2

∆−1

∆−2

∆−1

∆+1∆+2

４


2
:

Figure 5: Irreducible 𝐿(2, 1)-span coloring of 𝑇󸀠
2
with one hole.

w

000 ∆−1∆−1

0

2 3 321

∆+1 ∆+1

1

∆+1

1

∆+2

∆−2

∆−1

∆−1 ∆−3∆−3∆−4 ∆−41

∆+1

∆−2

w2w1 wΔ

wΔ−1４


3
:

Figure 6: Irreducible 𝐿(2, 1)-span coloring of 𝑇󸀠󸀠
3
with one hole.

0 1

∆−1

∆+1 ∆+2∆+2∆+1 ∆+2

∆−3

w

1 2 3 2 3 2 3 ∆−1∆−1∆−1 1 2 3 ∆−1 00

∆+1

∆−1∆−4 00 ∆−4 ∆−2 ∆−1

w2
w1 wΔ−2

４
4
:

11 ∆−2

Figure 7: Irreducible 𝐿(2, 1)-span coloring of 𝑇4 with one hole.
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∆+1 ∆+2

∆−1

∆−3 ∆+1 ∆+2

∆+1∆−1 ∆−1 ∆+2

∆−2

∆−1

∆−1

∆−3

∆−4∆−4

∆−3

∆−1

∆−2

2

0 1 3 4 5

0

1

3

4

5

0u

43 5

0

1

3

4

5

1

0

1

0

４


2
:

Figure 8: Irreducible 𝐿(2, 1)-span coloring of 𝑇󸀠󸀠󸀠
2

with Δ as hole.

𝑤. In this section, we give a sufficient condition for a Type-
II tree to be a zero-hole tree. Also, we construct infinitely
many trees with maximum number of holes 1 from each of
the trees 𝑇1, 𝑇

󸀠
2, 𝑇
󸀠󸀠
2 , 𝑇
󸀠󸀠
3 , and 𝑇4 and infinitely many two-hole

trees containing 𝑇󸀠3.

Theorem 13. If the tree 𝑇2 with at least five major vertices is
a subtree of a tree 𝑇 with maximum degree same as that of 𝑇2,
then𝐻𝜆(𝑇) = 0.

Proof. Let V1, V2, V3, V4, and V5 be five major vertices adjacent
to𝑤 and receive the colors 𝑙1, 𝑙2, 𝑙3, 𝑙4, and 𝑙5, respectively, by a
one-hole span coloring 𝑓 of 𝑇2. Without loss of generality, we
assume that 0 ⩽ 𝑙1 < 𝑙2 < 𝑙3 < 𝑙4 < 𝑙5 ⩽ Δ + 2. As in the proof
ofTheorem 9, we get 𝑙1 = 0 and 𝑙2+1 = 𝑙3−1 is the hole. Since
𝑙4 < 𝑙5 ⩽ Δ + 2, we have 𝑙4 ̸= Δ + 2. Since 𝑙4 > 𝑙3, 𝑙3 − 1must
be used to a neighbor of V4 which is a contradiction. So, any
𝐿(2, 1)-span coloring of 𝑇2 with at least five major vertices is
a no-hole coloring. Therefore, if a tree 𝑇 contains 𝑇2 with at
least five major vertices and with maximum degree same as
that of 𝑇2, then𝐻𝜆(𝑇) = 0.

Theorem 14. There are infinitely many trees with maximum
number of holes one and containing each of the trees 𝑇1, 𝑇

󸀠
2,

𝑇󸀠󸀠2 , 𝑇
󸀠󸀠

3 , and 𝑇4.

Proof. First, we prove that 𝑇1, 𝑇
󸀠

2
, 𝑇󸀠󸀠
2
, 𝑇󸀠󸀠
3
, and 𝑇4 cannot have

two-hole span coloring. From Theorems 8 and 11, it is clear
that 𝑇1, 𝑇

󸀠

2, 𝑇
󸀠󸀠

2 , and 𝑇
󸀠󸀠

3 cannot have two-hole span colorings.
Next, we prove that 𝑇4 cannot have a two-hole span

coloring. We consider 𝑇4 with the labelling as inTheorem 12.
Suppose that𝑇4 has an𝐿(2, 1)-span coloring𝑓with twoholes.
By Lemma 1, any major vertex of 𝑇4 receives the color from
{0, 2}, {0, Δ + 2}, or {Δ, Δ + 2}. Suppose 𝑓 assigns 0 and 2 to
major vertices. Then 1 and 3 are holes, {𝑓(V𝑖), 𝑓(V

󸀠

𝑖 )} = {0, 2},
and 𝑤𝑖 cannot receive the colors 0, 1, 2, and 3. Therefore 𝑤𝑖s

receive Δ−2 different colors among 4, 5, 6, . . . , Δ+2 (Δ−1 in
number) and so, one of these colors is not used, say 𝑐. Since
either 𝑐−1 or 𝑐+1 (if 𝑐 = Δ+2 then 𝑐−1) is used to color one
of the𝑤𝑖s, 𝑐 cannot be used to𝑤. Since 1 and 3 are holes, there
is no color for 𝑤. Similarly, we can prove the other cases.

Now, to use Theorem 4, we need one-hole irreducible
span coloring of𝑇1 ,𝑇

󸀠

2,𝑇
󸀠󸀠

2 ,𝑇
󸀠󸀠

3 , and𝑇4. Since𝐻𝜆(𝑇
󸀠󸀠

2 ) is 0, first
we construct a tree 𝑇󸀠󸀠󸀠2 from 𝑇󸀠󸀠2 such that 𝐻𝜆(𝑇

󸀠󸀠󸀠
2 ) = 1. We

define a one-hole span coloring for 𝑇󸀠󸀠2 as in Figure 8 (𝑇󸀠󸀠2 is a
subtree of𝑇󸀠󸀠󸀠2 ). Since the colorsΔ+1 andΔ+2 received by the
vertices adjacent to the vertex 𝑢 are reducible and there is no
other color reducible, we connect star𝐾1,Δ−2 to the vertices to
make the colors Δ+1 and Δ+2 irreducible. The tree obtained
is 𝑇󸀠󸀠󸀠2 .

Now, using Table 5 obtained from Table 4 corresponding
to the hole ℎ = Δ and using irreducible one-hole span
colorings of 𝑇1, 𝑇

󸀠

2, 𝑇
󸀠󸀠

3 , and 𝑇4 given in Theorem 12, we
construct infinitely many one-hole trees containing each of
the trees 𝑇1, 𝑇

󸀠
2, 𝑇
󸀠󸀠
3 , and 𝑇4, respectively. We get infinitely

many trees containing 𝑇󸀠󸀠2 by using irreducible one-hole
coloring of 𝑇󸀠󸀠󸀠2 given in Figure 8 and using Table 5.

Example 15. In Figure 9, we illustrate the construction of one-
hole tree as in Theorem 14 for the tree 𝑇1 with maximum
degreeΔ = 7.The vertex 𝑏1 in𝑇1 has color 4 and its neighbor’s
color is 8. In Table 5, among the trees corresponding to the
color 𝑐 = 4, the pendant vertex colored 0 is connected first.
Later, pendant vertices colored 1 and 2 are connected, respec-
tively. Similarly, some trees are connected to the vertices 𝑏2,
𝑏3, and 𝑑𝑖, 1 ⩽ 𝑖 ⩽ 3.

Theorem 16. There are infinitelymany trees containing𝑇󸀠3 and
with maximum number of holes two.

Proof. The construction of trees is similar to the construc-
tion described in Theorem 3. For the construction, we use

136 Applied Mathematics: Principles and Techniques

__________________________ WORLD TECHNOLOGIES __________________________



WT

Table 5: Trees connectable for a vertex colored 𝑐 in a one-hole tree with Δ as the hole.

Color of vertex Connectable trees Condition

0 ⩽ 𝑐 < Δ

k
0 ⩽ 𝑘 < Δ and all colors less than 𝑘 adjacent to 𝑐.

For 𝑐 = Δ − 1, Δ < 𝑘 ⩽ Δ + 2 and all colors less than 𝑘
adjacent to 𝑐.

k −2

1

0

k
1 : 2 ⩽ 𝑘 < 𝑐 − 1

1

0

k

k− 1
k+ 1
k+ 2

2 :
k


k

−2

𝑘󸀠 ̸= 𝑐 and 0 < 𝑘 < 𝑘󸀠 − 1 < Δ − 1 or 0 < 𝑘 < Δ and 𝑘󸀠 = Δ + 1

Δ−1
Δ−3

1

0

k

𝑘 = Δ + 1

𝑘 = Δ + 2 and Δ + 1 is adjacent to 𝑐.

1

0

k

k −1

k

−2

k

+2

k

+3

3 :
k


𝑘󸀠 ̸= 𝑐 and 0 ⩽ 𝑘󸀠 < 𝑘 − 1 < Δ − 1 or 𝑘 = Δ + 1 and 𝑘󸀠 = Δ − 1

Δ−1

1

0

k

c−1

c+1

c+2

𝑘 = Δ + 1

𝑘 = Δ + 2 and Δ + 1 is adjacent to 𝑐.

1

0

k

k −2

c+2

c+1

c−1

𝑐 + 1 < 𝑘 < Δ or 𝑘 = Δ + 1

𝑐 = Δ + 1, Δ + 2

k 0 ⩽ 𝑘 < Δ and all colors less than 𝑘 adjacent to 𝑐.
T1 2 ⩽ 𝑘 < Δ

T2 0 < 𝑘 < 𝑘󸀠 − 1 < Δ − 1 or 0 < 𝑘 < Δ and 𝑘󸀠 = Δ + 1
T3 0 ⩽ 𝑘󸀠 < 𝑘 − 1 < Δ − 1

9 8

1

2

4

5

1
2

2

6

3

3

3

8

0

2

1

3

4

2
3

2
1

5

6

6
0

4

4 6

0

566 5

1
03

2

0

2
1

b1

b2

b3 d1

d2

d3

Figure 9: A tree with maximum number of holes one constructed from 𝑇1.
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two-hole irreducible span coloring of𝑇󸀠3 given in Figure 2 and
Table 3.
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The intention of the present paper is to establish an approximationmethod to the limiting power functions of tests conducted based
on Kolmogorov-Smirnov and Cramér-von Mises functionals of set-indexed partial sums of multivariate regression residuals. The
limiting powers appear as vectorial boundary crossing probabilities. Their upper and lower bounds are derived by extending some
existing results for shifted univariate Gaussian process documented in the literatures. The application of multivariate Cameron-
Martin translation formula on the space of high dimensional set-indexed continuous functions is demonstrated. The rate of decay
of the power function to a presigned value 𝛼 is also studied. Our consideration is mainly for the trend plus signal model including
multivariate set-indexedBrownian sheet and pillow.The simulation shows that the approach is useful for analyzing the performance
of the test.

1. Introduction

Investigating the partial sums of least squares residuals has
been shown to be reasonable and powerful tool for testing the
adequacy of an assumed multivariate regression model; see
Somayasa and et al. [1–4]. The development of the technique
wasmotivated by the works proposed mainly for the purpose
of detecting change in parameter as well as for detecting
the existence of boundaries in univariate spatial regression;
see [5–8] for references. The rejection region is constructed
based on either Kolmogorov-Smirnov (KS) or Cramér-von
Mises (CvM) functionals of the processes. It was shown in
the literatures cited above that the limiting power function of
the test appeared as a type of boundary crossing probability
which has been involving shifted multidimensional Gaussian
process.

To understand the objective considered in this paper
in more detail we present below brief review how such a
kind of probability appears. Let Z𝑝 fl (𝑍(𝑖))𝑝𝑖=1 be the𝑝−dimensional set-indexed Brownian sheet defined on a
probability space (Ω,B(Ω),P), say with sample paths in
C𝑝(B(G)) fl ×𝑝𝑖=1C(B(G)) and the control measure 𝑃0,
where 𝑃0 is a probability measure on (G,B(G)), G flΠ𝑑𝑘=1[𝑎𝑘, 𝑏𝑘], and 𝑎𝑘 < 𝑏𝑘, for 𝑘 = 1, . . . , 𝑑. We refer the

reader to [9, 10] for well documented notion ofC(B(G)). In
the literature of Gaussian process Z𝑝 is frequently called 𝑝−
dimensional Gaussian white noise having 𝑃0 as the control
measure, cf. [11], p. 13-14. LetW fl [𝑓1, . . . , 𝑓𝑚] andWHZ𝑝

fl×𝑝𝑖=1[𝑆𝑓1 , . . . , 𝑆𝑓𝑚], where for any 𝑔 ∈ 𝐿2(𝑃0,G), 𝑆𝑔 is defined
as 𝑆𝑔(𝐴) fl ∫

𝐴
𝑔𝑑𝑃0. Under mild condition, [1–3] showed

after a suitable localization given to the regression function
that the sequence of the partial sums of the least squares
residuals obtained from the multivariate regression model

Y (t) = g (t) + E (t) , t fl (𝑡1, . . . , 𝑡𝑑) ∈ G (1)

converges, when g ∉ W𝑝 fl ×𝑝𝑖=1W, to a 𝑝−dimensional
signal plus noise model defined by

Y fl Σ−1/2𝑝𝑟W⊥
HZ𝑝
𝑆g + 𝑝𝑟∗W⊥

HZ𝑝
Z𝑝, Σ > 0, (2)

where Σ > 0 means that Σ is positive definite, and for 𝐴 ∈
B(G),(𝑝𝑟W⊥

HZ𝑝
𝑆g) (𝐴)

fl 𝑆g (𝐴) − 𝑚∑
𝑗=1

(⟨𝑓𝑗, 𝑔𝑖⟩𝐿2(𝑃0,G))𝑝𝑖=1 𝑆𝑓𝑗 (𝐴) ,
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(𝑝𝑟∗W⊥
HZ𝑝

Z𝑝) (𝐴)
fl Z𝑝 (𝐴) − 𝑚∑

𝑗=1

(∫
G
𝑓𝑗 (t) 𝑑𝑍(𝑖) (t))𝑝

𝑖=1
𝑆𝑓𝑗 (𝐴) ,

(3)

provided that {𝑓1, . . . , 𝑓𝑚} builds an ONB ofW in 𝐿2(𝑃0,G)∩𝐵𝑉𝐻(G). Thereby 𝑆g fl (𝑆𝑔𝑖)𝑝𝑖=1 and 𝐵𝑉𝐻(G) is the space
of functions on G with bounded variation in the sense of
Hardy. It is worth mentioning that the notion of 𝐵𝑉𝐻(G)
is a direct extension of the definition of 𝐵𝑉𝐻([𝑎1, 𝑏1] ×[𝑎2, 𝑏2]) formulated in [12] to higher dimensional space.
Here the notation 𝑍(𝑖)(t) stands for 𝑍(𝑖)(Π𝑑𝑘=1[𝑎𝑘, 𝑡𝑘]), cf.
[8]. Throughout the paper Σ−1/2𝑝𝑟W⊥

HZ𝑝
𝑆g will be denoted

by 𝜑g and 𝑝𝑟∗W⊥
HZ𝑝

Z𝑝 by Wf ,𝑃0 , for the sake of brevity. It

was established in [1–3] that Wf ,𝑃0 is a projection of Z𝑝
onto the orthogonal complement of WHZ𝑝

which is a finite
dimensional subspace of the so-called reproducing kernel
Hilbert Space (RKHS) of Z𝑝, denoted byHZ𝑃 , given by

HZ𝑃 fl {h | ∃ℓ = (ℓ𝑖)𝑝𝑖=1 ∈ 𝐿𝑝2 (𝑃0,G) , h (𝐴)
= ∫
𝐴
ℓ (t) 𝑃0 (𝑑t)} , (4)

with 𝐿𝑝2(𝑃0,G) fl ×𝑝𝑖=1𝐿2(𝑃0,G). In the literatures men-
tioned above the process Wf ,𝑃0 is called the 𝑝-dimensional
set-indexed residual partial sums limit process with the
control measure 𝑃0. Hence, the process Z𝑝 itself and the𝑝−dimensional set-indexed Brownian pillow Z0𝑝 = (𝑍0𝑖 )𝑝𝑖=1,
with Z0𝑝(𝐴) fl 𝑍0𝑖 (𝐴)−𝑃0(𝐴)𝑍0𝑖 (G), are special cases ofWf ,𝑃0
that correspond toW = [𝑓0] andW = [𝑓1], respectively, with𝑓0 ≡ 0 and 𝑓1 ≡ 1. The control measure 𝑃0 appears in the
process determines the design under which the experiment
was constructed; see [4] for detail.

It was shown by using the well-known continuous map-
ping theorem that the limiting power functions of size 𝛼 KS
and CvM type tests for testing the hypothesis

𝐻0 : g ∈W𝑝 against𝐻1 : g ∉W𝑝 (5)

are given, respectively, by the following complicated formu-
las:

ΨWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g)
fl P{ sup

𝐴∈B(G)

󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) +Wf ,𝑃0 (𝐴)󵄩󵄩󵄩󵄩󵄩R𝑝 ≥ 𝑡̃Wf,𝑃0
}

ΥWf,𝑃0
(𝑞Wf,𝑃0

, 𝜑g)
fl P {∫

G

󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) +Wf ,𝑃0 (𝐴)󵄩󵄩󵄩󵄩󵄩2R𝑝 𝑑𝐴 ≥ 𝑞Wf,𝑃0
} ,

(6)

where ‖ ⋅ ‖2R𝑝 stands for the Euclidean norm, whereas 𝑡̃Wf,𝑃0

and 𝑞Wf,𝑃0
are constants that satisfy ΨWf,𝑃0

(𝑡̃Wf,𝑃0
, 0) =ΥWf,𝑃0

(𝑞Wf,𝑃0
, 0) = 𝛼. By the difficulty of the computation

of 𝑡̃Wf,𝑃0
as well as 𝑞Wf,𝑃0

and the power of the test as the
dimension of the experimental region and 𝑝 get large, the
implementation of the test in practice becomes restricted.
Approximation by Monte Carlo simulation has been pro-
posed in [1–3]. Some attempts of establishing concrete com-
putation procedure by generalizing the principal component
approach proposed, e.g., by MacNeill [5, 6] and Stute [13] for
some univariate Gaussian processes on a line, have led us to
incorrect result.

Since analytical computation of ΨWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g) andΥWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g) is impossible, it is the purpose of the present
paper to establish approximation procedure for that func-
tions. As suggested in [14], p. 315, and [15], p. 423-424,
studying the power function is of importance to be able to
evaluate the performance of the test especially their rate of
decay to 𝛼. Therefore in this paper we investigate the upper
and lower bounds for (6) by considering the result for the
univariate Brownian sheet and Brownian pillow presented in
Janssen [17] and Hashorva [18, 19]. Upper and lower bound
for the power function of goodness-of-fit test involving
multiparameter Brownian process have been studied by Bass
[20].TheRKHSofWf ,𝑃0 is crucial for our results. ByTheorem
4.1 in [11] (factorization theorem) if there exists a family{m𝐴 fl (𝑚(𝑖)𝐴 )𝑝𝑖=1 ∈ 𝐿𝑝2(𝑃0,G) : A ∈ B(G)}, such that the
covariance function ofWf ,𝑃0 admits the representation

Cov (Wf ,𝑃0 (𝐴1) ,Wf ,𝑃0 (𝐴2))= ∫
G
m⊤𝐴1 (t)m𝐴2 (t) 𝑃0 (𝑑t) = ⟨m𝐴1 ,m𝐴2⟩𝐿𝑝2(𝑃0,G) , (7)

then the corresponding RKHS is given by

HWf,𝑃0
fl {h | ∃ℓ = (ℓ𝑖)𝑝𝑖=1 , h (𝐴)

= ∫
G
(𝑚(𝑖)𝐴 (t) ℓ𝑖 (t))𝑝𝑖=1 𝑃0 (𝑑t)} . (8)

Furthermore, the inner product and the corresponding norm
on HWf,𝑃0

are denoted, respectively, by ⟨⋅, ⋅⟩HWf,𝑃0
and ‖ ⋅‖2HWf,𝑃0

. For examples, the RKHS of Z0𝑝 is given by

HZ𝑜𝑃 fl {h | ∃ℓ ∈ 𝐿𝑝2 (𝑃0,G) , h (𝐴)
= ∫
𝐴
ℓ (t) 𝑃0 (𝑑t) , s.t. h (G) = h (0) = 0} , (9)

with ⟨h1, h2⟩HZ0𝑝
= ⟨ℓ1, ℓ2⟩𝐿𝑝2(𝑃0,G) ,‖h‖HZ0𝑝
= ‖ℓ‖HZ0𝑝

, (10)

such that h𝑗(𝐴) = ∫𝐴 ℓ𝑗(t)𝑃0(t), 𝑗 = 1, 2.
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The rest of the present paper is organized as follows. In
Section 2wederive the upper and lower bounds for the power
functions of 𝐾𝑆 and 𝐶V𝑀 tests by applying the Cameron-
Martin translation formula of the multivariate processWf ,𝑃0 .
The rate of decay of the power to 𝛼 is also discussed.
Alternative method of obtaining the bounds of the power
function is proposed in Section 3. In Section 4 we propose
Neyman-Pearson test which is a most powerful test. The
comparison of the rate of decay of the obtained power to𝛼 with those of the KS and CvM tests is also investigated.
Justification of the result is also studied in Section 5 by
simulation. The paper is closed with a concluding remark in
Section 6.

2. Rate of Decay of the Power of Tests

Our final goal in this section is to obtain an expression for the
rate of decay of both ΨWf,𝑃0

(𝑡̃Wf,𝑃0
, 𝜑g) and ΥWf,𝑃0

(𝑞Wf,𝑃0
, 𝜑g)

to the preassigned number 𝛼 ∈ (0, 1) representing the size
of the test. First we derive their upper and lower bounds by
generalizing the method proposed in [21] concerning bounds
for the probability of shifted event; see also Theorem 7.3. in
[11] for comparison. Second, we apply the technique studied
in [17] to get the result. As reported in [17] and the references
cited therein, they studied the upper and lower bounds for the
power of signal detection test by applying Cameron-Martin
density formula for a shifted measure. The rate of decay was
obtained by means of mean value theorem.

Throughout this work let P be the probability distri-
butions of Wf ,𝑃0 and let Ph be a probability measure on
C𝑝(B(G)), defined by

Ph (B) fl P (B − h) , ∀B ∈ C
𝑝 (B (G)) . (11)

Then the Cameron-Martin density of Ph with respect to P for
any h ∈HWf,𝑃0

is given by

𝑑Ph𝑑P (x) = exp {L (h, x) − 12 ‖h‖2HWf,𝑃0
} ,

for almost all x ∈ C
𝑝 (B (G)) , (12)

where L is a bilinear form, such that

Cov (L (h1,Wf ,𝑃0) , L (h2,Wf ,𝑃0)) = ⟨h1, h2⟩HWf,𝑃0
,

∀h1, h2 ∈HWf,𝑃0
. (13)

This general formula can be obtained by extending the
formula for the univariate model presented either in [20],
Theorem 5.1 of [11], and [17] or [22] to higher dimensional
set-indexed Gaussian processes.

The following theorem is already well known in the
literatures mentioned above; however the proof is given only
for the case of Gaussian random vector in R𝑛 with zero
mean and identity covariance matrix (canonical Gaussian
Euclidean random vector); see [21] and [11], p. 53. In this

paper we present again the theorem especially for the process
Wf ,𝑃0 onC

𝑝(B(G)). Although the result forWf ,𝑃0 is straight-
forward based on that of [11, 21], to give information on how
the inequality for higher dimensional set-indexed Gaussian
process was derived, we insist to present the proof of the
theorem; see the appendix of this work.

Theorem 1 (Li and Kuelbs [21] and Lifshits [11]). Let E be any
subset of C𝑝(B(G)) and 𝑟(E) ∈ R be any constant, such that𝑟(E) = Φ−1(P(E)). Then for any h ∈HWf,𝑃0

, it holds true that

Φ(𝑟 (E) − L (h,h)‖h‖HWf,𝑃0

) ≤ P (E − h)
≤ Φ(𝑟 (E) + L (h, h)‖h‖HWf,𝑃0

) , (14)

whereΦ is the cumulative distribution function of the standard
normal distribution.

The following corollary which gives an expression regard-
ing the rate of decay of P(E − h) to P(E), for any E ⊂
C𝑝(B(G)) and h ∈ HHWf,𝑃0

, is an immediate implication
of Theorem 1. Rate of decay describes how fast the distance
between P(E − h) and P(E) vanishes, cf. [17–19].
Corollary 2. Let E be an arbitrary subset of C𝑝(B(G)) and𝑟(E) ∈ R be any constant, such that 𝑟(E) = Φ−1(P(E)). Then
under the assumption 0 < L(h,h), we have, for anyh ∈HWf,𝑃0

,

|P (E − h) − P (E)| ≤ 1√2𝜋 L (h,h)‖h‖HWf,𝑃0

. (15)

Proof. We apply the technique of proving Lemma 5 of [17]. By
(14) presented inTheorem 1 and by using the symmetry ofΦ,
it holds that

P (E − h) − P (E) ≤ Φ(𝑟 (E) + L (h, h)‖h‖HWf,𝑃0

)
− Φ (𝑟 (E)) = L (h,h)‖h‖HWf,𝑃0

𝜙 (𝜂) (16)

for some mean value 𝜂 ∈ (𝑟(E), 𝑟(E) + L(h,h)/‖h‖HWf,𝑃0
),

where 𝜙 is the probability density function of 𝑁(0, 1). Since
max {𝜙(𝑡) : −∞ < 𝑡 < ∞} = 1/√2𝜋, then we have

P (E − h) − P (E) ≤ L (h, h)‖h‖HWf,𝑃0

𝜙 (𝜂) ≤ 1√2𝜋 L (h,h)‖h‖HWf,𝑃0

. (17)
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Conversely, by the inequality Φ(𝑟(E) − L(h,h)/‖h‖HWf,𝑃0
) ≤

P(E − h) of (14), we can derive the following result:

Φ(𝑟 (E) − L (h, h)‖h‖HWf,𝑃0

) − P (E) ≤ P (E − h) − P (E) ⇐⇒
Φ(𝑟 (E) − L (h, h)‖h‖HWf,𝑃0

) − Φ (𝑟 (E))
≤ P (E − h) − P (E) ⇐⇒

− L (h,h)‖h‖HWf,𝑃0

𝜙 (𝜅) ≤ P (E − h) − P (E) ,
(18)

for some mean value 𝜅 ∈ (𝑟(E) − L(h,h)/‖h‖HWf,𝑃0
, 𝑟(E)).

Since L(h,h) > 0, by the preceding result, we get
P (E − h) − P (E) ≥ − L (h,h)‖h‖HWf,𝑃0

𝜙 (𝜅)
≥ − 1√2𝜋 L (h,h)‖h‖HWf,𝑃0

, (19)

which establises the proof.

When the model is either h1 + Z𝑝, with h1 ∈ HZ𝑝 , or
h2 + Z0𝑝, with h2 ∈ HZ0𝑝 , such that h𝑗(𝐴) = ∫𝐴 ℓ𝑗(u)𝑃0(𝑑u),
for 𝐴 ∈B(G) and 𝑗 = 1, 2, then

L (h1,h1) = ∫
G
ℓ⊤1 (u) ℓ1 (u) 𝑃0 (𝑑u) = ⟨h1, h1⟩HZ𝑝= 󵄩󵄩󵄩󵄩h1󵄩󵄩󵄩󵄩2HZ𝑝

> 0
L (h2,h2) = ∫

G
ℓ⊤2 (u) ℓ2 (u) 𝑃0 (𝑑u) = ⟨h2, h2⟩HZ𝑝= 󵄩󵄩󵄩󵄩h2󵄩󵄩󵄩󵄩2HZ0𝑝

> 0.
(20)

Hence, when we are dealing with the 𝑝-dimensional set-
indexed Brownian sheet and 𝑝-dimensional set-indexed
Brownian pillow, Inequality (14), respectively, becomes

Φ(𝑟 (E) − 󵄩󵄩󵄩󵄩h1󵄩󵄩󵄩󵄩HZ𝑝
) ≤ P (E − h1)
≤ Φ(𝑟 (E) + 󵄩󵄩󵄩󵄩h1󵄩󵄩󵄩󵄩HZ𝑝

) ,
Φ(𝑟 (E) − 󵄩󵄩󵄩󵄩h2󵄩󵄩󵄩󵄩HZ0𝑝

) ≤ P (E − h2)
≤ Φ(𝑟 (E) + 󵄩󵄩󵄩󵄩h2󵄩󵄩󵄩󵄩HZ0𝑝

) .
(21)

The corresponding rate of decays can be obtained respectively
as follows:

󵄨󵄨󵄨󵄨P (E − h1) − P (E)󵄨󵄨󵄨󵄨 ≤ 1√2𝜋 󵄩󵄩󵄩󵄩h1󵄩󵄩󵄩󵄩HZ𝑝
,

󵄨󵄨󵄨󵄨P (E − h1) − P (E)󵄨󵄨󵄨󵄨 ≤ 1√2𝜋 󵄩󵄩󵄩󵄩h1󵄩󵄩󵄩󵄩HZ0𝑝
. (22)

In light of the preceding results, we can state the upper
and lower bounds as well as the rate of decays for the powerΨWf,𝑃0

(𝑡̃Wf,𝑃0
, 𝜑g) andΥWf,𝑃0

(𝑡̃Wf,𝑃0
, 𝜑g), whenWf ,𝑃0 is given by

either Z𝑝 or Z0𝑝. Let E be a subset ofC𝑝(B(G)), defined by

E fl {x ∈ C
𝑝 (B (G)) : sup

𝐴∈B(G)
‖x (𝐴)‖R𝑝 ≥ 𝑡̃Wf,𝑃0

} ; (23)

then for 𝜑g ∈HWf,𝑃0
⊂ C𝑝(B(G)), we get

E − 𝜑g = {x − 𝜑g : x ∈ E} = {x
− 𝜑g : sup

𝐴∈B(G)
‖x (𝐴)‖R𝑝 ≥ 𝑡̃Wf,𝑃0

} = {x
∈ C
𝑝 (B (G)) : sup

𝐴∈B(G)

󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) + x (𝐴)󵄩󵄩󵄩󵄩󵄩R𝑝
≥ 𝑡̃Wf,𝑃0

} .
(24)

Since P is the distribution of Wf ,𝑃0 , then ΨWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g) is
equivalent to

P (E − 𝜑g) = P{x
∈ C
𝑝 (B (G)) : sup

𝐴∈B(G)

󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) + x (𝐴)󵄩󵄩󵄩󵄩󵄩R𝑝
≥ 𝑡̃Wf,𝑃0

} .
(25)

Analogously, let

F fl {x ∈ C
𝑝 (B (G)) : ∫

G
‖x (𝐴)‖2R𝑝 𝑑𝐴 ≥ 𝑞Wf,𝑃0

} . (26)

ThenΥWf,𝑃0
(𝑞Wf,𝑃0

, 𝜑g) = P(F−𝜑g).Thus by considering these
two representations we have on the basis of Theorem 1 and
Corollary 2 the following summary concerns the bounds for
the power of the KS and CvM type tests.
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Corollary 3. Suppose that 𝜑g ∈HWf,𝑃0
; then, for 𝛼 ∈ (0, 1), it

holds thatΦ(Φ−1 (𝛼) − 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩HWf,𝑃0

) ≤ ΨWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g)
≤ Φ(Φ−1 (𝛼) + 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩HWf,𝑃0

)
Φ(Φ−1 (𝛼) − 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩HWf,𝑃0

) ≤ ΥWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g)
≤ Φ(Φ−1 (𝛼) + 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩HWf,𝑃0

) .
(27)

Furthermore, we have simple formulas for the rate of decay ofΨWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g) and ΥWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g) to 𝛼󵄨󵄨󵄨󵄨󵄨󵄨ΨWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1√2𝜋 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩HWf,𝑃0󵄨󵄨󵄨󵄨󵄨󵄨ΥWf,𝑃0
(𝑡̃Wf,𝑃0

, 𝜑g) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1√2𝜋 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩HWf,𝑃0

, (28)

where in the context of model check, the norm of 𝜑g related to
the process Z𝑝 and Z0𝑝 is given by󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HWf,𝑃0

= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Σ−1/2𝑝𝑟W⊥HZ𝑝
𝑆g󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2HZ𝑝= 󵄩󵄩󵄩󵄩󵄩𝑝𝑟W𝑝⊥Σ−1/2g󵄩󵄩󵄩󵄩󵄩2𝐿𝑝2(𝑃0,G)

= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Σ−1/2g − Σ−1/2
𝑚∑
𝑗=1

(⟨𝑓𝑗, 𝑔𝑖⟩𝐿2(𝑃0 ,G))𝑝𝑖=1 𝑓𝑗󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐿
𝑝

2(𝑃0,G)

.
(29)

Corollary 3 says that the rate of decay or convergence of
the power function to𝛼 in the case ofZ𝑝 aswell asZ0𝑝 depends
on the norm of the trend. A Model with small norm trend
leads to faster decay. Conversely, a model with large norm
trend results in slower decay. For both models, the norm can
be concretely calculated. It is clear that both tests achieve their
sizes as the trends vanish. Indeed the work of Samorodnitsky
[23] can be incorporated in the estimation of ΨWf,𝑃0

(𝜆, 𝜑g),
for any large real number 𝜆. In Section 5 we demonstrate by
simulation the behavior of the power functions of the KS
and CvM tests as summarized in Corollary Corollary 3 to
give empirical study regarding the rate of decay of the power
functions.

3. Alternative Approaches

In this section other formulas for the upper and lower
bounds of the power of KS and CvM tests involving the 𝑝-
dimensional set-indexed Brownian sheet and pillow models
are derived. Our results are obtained by generalizing the
approach proposed in that studied in [18, 19] who con-
fined the investigation to one-dimensional Kolmogorov type
boundary noncrossing probability involving the so-called
univariate ordinary Brownian sheet and pillow.

To simplify the notation we restrict the attention to the
case of two-dimensional experimental region G = [𝑎1, 𝑏1] ×[𝑎2, 𝑏2] ⊂ R2.

Theorem 4. Let the ONB {𝑓1, . . . , 𝑓𝑚} ofW be in 𝐿2(𝑃0,G) ∩𝐵𝑉𝐻(G) and let 𝜑g = Σ−1/2𝑝𝑟W⊥
HZ𝑝
𝑆g, such that 𝑝𝑟W⊥Σ−1/2g

are constant on the boundary of G. Then for the Z𝑝 model it
holds that

1 − (1 − 𝛼)LZ𝑝 ≤ ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g)
≤ 1 − (1 − ΨZ𝑝 (12 𝑡̃Z𝑝 , 0))UZ𝑝

(30)

where

LZ𝑝 fl exp{2𝑡̃Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
}

UZ𝑝 fl exp{−2𝑡̃Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
} , (31)

where ΔG𝑊𝑖 fl𝑊𝑖(𝑏1, 𝑏2) −𝑊𝑖(𝑏1, 𝑎2) −𝑊𝑖(𝑎1, 𝑏2) +𝑊𝑖(𝑎1, 𝑎2)
and𝑊𝑖 is the 𝑖th component of 𝑝𝑟W𝑝⊥Σ−1/2g, which is given by

𝑊𝑖 fl 𝑝∑
𝑘=1

𝜎∗𝑖𝑘𝑔𝑘 − 𝑚∑
𝑗=1

(⟨𝑓𝑗, 𝑝∑
𝑘=1

𝜎∗𝑖𝑘𝑔𝑘⟩
𝐿2(𝑃0 ,G)

)𝑝
𝑖=1

𝑓𝑗
∈ 𝐵𝑉𝐻 (G)

(32)

with 𝜎∗𝑖𝑘 denoting the (𝑖, 𝑘)th element of Σ−1/2, say, for 𝑖, 𝑘 =1, . . . , 𝑝. Furthermore, for the Z0𝑝 model, we have

1 − (1 − 𝛼)LZ0𝑝 ≤ ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g)
≤ 1 − (1 − ΨZ0𝑝 (12 𝑡̃Z0𝑝 , 0))UZ0𝑝 , (33)

where

LZ0𝑝 fl exp{−12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

} š UZ0𝑝 . (34)

Proof. By using a rule for the probability of complement, we
get for the Z𝑝 model

ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g) = 1 − P{x
∈ C
𝑝 (B (G)) : sup

𝐴∈B(G)

󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) + x (𝐴)󵄩󵄩󵄩󵄩󵄩R𝑝 < 𝑡̃Z𝑝}
= 1 − P {x ∈ C

𝑝 (B (G)) : 󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) + x (𝐴)󵄩󵄩󵄩󵄩󵄩R𝑝< 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)} ,
(35)
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where by using transformation of variables, it can be further
expressed as

P {x ∈ C
𝑝 (B (G)) : 󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) + x (𝐴)󵄩󵄩󵄩󵄩󵄩R𝑝 < 𝑡̃Z𝑝 , ∀𝐴

∈B (G)} = ∫
C𝑝(B(G))

1 {󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) + x (𝐴)󵄩󵄩󵄩󵄩󵄩R𝑝
< 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)}P (𝑑x)
= ∫

C𝑝(B(G))
1 {󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩R𝑝 < 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)}

⋅ P𝜑g (𝑑y) .
(36)

Next, Cameron-Martin formula (12) for the 𝑝-dimensional
set-indexed Brownian sheet implicates

∫
C𝑝(B(G))

1 {󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩R𝑝 < 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)}P𝜑g (𝑑y)
= ∫

C𝑝(B(G))
1 {󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩R𝑝 < 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)}

× exp {∫
G
(𝑝𝑟W𝑝⊥Σ−1/2g)⊤ (t) 𝑑y (t) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2Z𝑝}⋅ P (𝑑y)

= ∫
C𝑝(B(G))

1 {󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩R𝑝 < 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)}
× exp{ 𝑝∑

𝑖=1

∫
G
𝑊𝑖 (t) 𝑑𝑦𝑖 (t) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2Z𝑝}P (𝑑y) .

(37)

Since ‖y(𝐴)‖R𝑝 < 𝑡̃Z𝑝 means −𝑡̃Z𝑝 < 𝑦𝑖(𝐴) < 𝑡̃Z𝑝 , then under
the indicator 1{‖y(𝐴)‖R𝑝 < 𝑡̃Z0𝑝 , ∀𝐴 ∈ B(G)} we get by
recalling integration by parts formula on G, cf. [24, 25] and
the assumption that𝑊𝑖 is constant throughout the boundary
of G; for the Z𝑝 model we get

∫
C𝑝(B(G))

1 {󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩R𝑝 < 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)}
× exp{ 𝑝∑

𝑖=1

∫
G
𝑊𝑖 (t) 𝑑𝑦𝑖 (t) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝

}P (𝑑y)
≤ exp{2𝑡̃Z𝑝 𝑝∑

𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
}

⋅ P{ sup
𝐴∈B(G)

󵄩󵄩󵄩󵄩󵄩Z𝑝󵄩󵄩󵄩󵄩󵄩HR𝑝
< 𝑡̃Z𝑝}

= exp{2𝑡̃Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
}

⋅ (1 − ΨZ𝑝 (𝑡̃Z𝑝 , 0)) .

(38)

Thus, the lower bound in (30) is established. To prove the
upper bound, we start with the following inequality:

ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g) ≤ 1
− P {󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) + Z𝑝 (𝐴)󵄩󵄩󵄩󵄩󵄩R𝑝 ≤ 12 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)} . (39)

By applying the similar technique as that used in deriving the
preceding result and the implication󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩R𝑝 ≤ 12 𝑡̃Z𝑝 󳨐⇒ −𝑡̃Z𝑝 ≤ 𝑦𝑖 (𝐴) ≤ 𝑡̃Z𝑝∀𝑖 = 1, . . . , 𝑝, (40)

under the indicator 1{‖y(𝐴)‖ ≤ (1/2)𝑡̃Z𝑝 , ∀𝐴 ∈ B(G)} we
have, by the integration by parts, the following inequality:

P {󵄩󵄩󵄩󵄩󵄩𝜑g (𝐴) + Z𝑝 (𝐴)󵄩󵄩󵄩󵄩󵄩R𝑝 ≤ 12 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)}
= ∫

C𝑝(B(G))
1{󵄩󵄩󵄩󵄩y (A)󵄩󵄩󵄩󵄩 ≤ 12 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)}

× exp{ 𝑝∑
𝑖=1

∫
G
𝑊𝑖 (t) 𝑑𝑦𝑖 (t) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝

}P (𝑑y)
≥ ∫

C𝑝(B(G))
1{󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩 ≤ 12 𝑡̃Z𝑝 , ∀𝐴 ∈B (G)}

× exp{−2𝑡̃Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
}P (𝑑y)

= exp{−2𝑡̃Z𝑝 𝑝∑
𝑖=1

𝑊𝑖 (𝑏1, 𝑏2) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
}

⋅ (1 − ΨZ𝑝 (12 𝑡̃Z𝑝 , 0)) ,

(41)

completing the proof for the Z𝑝 model. To prove the lower
and upper bounds (33) for the Z0𝑝 model, we start with the
equality

1 − ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g)
= ∫

C𝑝(B(G))
1 {󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩R𝑝 < 𝑡̃Z0𝑝 , ∀𝐴 ∈B (G)}

× exp{ 𝑝∑
𝑖=1

∫
G
𝑊𝑖 (t) 𝑑𝑦𝑖 (t) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

}P (𝑑y) .
(42)

Next by the integration by parts and the assumption that𝜑g ∈ HZ0𝑝 and 𝑊𝑖 are constant on the boundary of G, we
have under 1{‖y(𝐴)‖R𝑝 < 𝑡̃Z0𝑝 , ∀𝐴 ∈ B(G)} and the fact𝑦𝑖(𝑏1, 𝑏2) = 𝑦𝑖(𝑏1, 𝑎2) = 𝑦𝑖(𝑎1, 𝑏2) = 𝑦𝑖(𝑎1, 𝑎2) = 0 that

∫
G
𝑊𝑖 (t) 𝑑𝑦𝑖 (t) < 𝑡̃Z0𝑝 ∫G 𝑑𝑊𝑖 (𝑡, 𝑠) = 0. (43)
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Hence, 1 − ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) ≤ exp{−(1/2)‖𝜑g‖2HZ0𝑝
}(1 − 𝛼), estab-

lishing the lower bound in (33). The similar argument as that
used in the case of Z𝑝 model can be applied in deriving the
upper bound of ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) as follows:
1 − ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g)
= ∫

C𝑝(B(G))
1 {󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩R𝑝 < 𝑡̃Z0𝑝 , ∀𝐴 ∈B (G)}

× exp{ 𝑝∑
𝑖=1

∫
G
𝑊𝑖 (t) 𝑑𝑦𝑖 (t) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

}P (𝑑y)
≥ ∫

C𝑝(B(G))
1{󵄩󵄩󵄩󵄩y (𝐴)󵄩󵄩󵄩󵄩R𝑝 ≤ 12 𝑡̃Z0𝑝 , ∀𝐴 ∈B (G)}

× exp{ 𝑝∑
𝑖=1

∫
G
𝑊𝑖 (t) 𝑑𝑦𝑖 (t) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

}P (𝑑y)
≥ exp{−12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

}(1 − ΨZ0𝑝 (12 𝑡̃Z0𝑝 , 𝜑g)) ,

(44)

establishing the proof.

Now we can derive other formulas for the rate of decay
of ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g) and ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) to 𝛼 by applying the similar
method as that utilized in deriving the formula inCorollary 3.
However by Theorem 4 we lead to computationally more
complicated results.

Corollary 5. Under the condition of Theorem 7, it holds true
that

− 𝑒𝜌(2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
)

≤ ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g) − 𝛼
≤ 𝑒𝜁(2𝑡Z𝑝 𝑝∑

𝑖=1

ΔG𝑊𝑖 + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
) ,

(45)

for some mean values

𝜁 ∈ (−2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝

+ ln (1 − ΨZ𝑝 (12 𝑡̃Z𝑝 , 0)) ; ln (1 − 𝛼)) ,
𝜌 ∈ (ln (1 − 𝛼) ; 2𝑡Z𝑝 𝑝∑

𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

+ ln (1 − 𝛼)) .
(46)

In particular, if the mean values 𝜌 and 𝜁 are taken to be the
same, then 󵄨󵄨󵄨󵄨󵄨󵄨ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑒𝜁 (2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
) . (47)

Proof. From Inequality (30), we have, by applying the mean
value theorem,ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g) − 𝛼 ≤ exp {ln (1 − 𝛼)}

− exp{−2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝

+ ln(1 − ΨZ𝑝 (12 𝑡̃Z𝑝 , 0))}
= 𝑒𝜁(ln( 1 − 𝛼1 − ΨZ𝑝 ((1/2) 𝑡̃Z𝑝 , 0))
+ 2𝑡Z𝑝 𝑝∑

𝑖=1

ΔG𝑊𝑖 + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
)

≤ 𝑒𝜁 (2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
) ,

(48)

for some mean value 𝜁 laid in the interval

(−2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝

+ ln(1 − ΨZ𝑝 (12 𝑡̃Z𝑝 , 0)) ; ln (1 − 𝛼)) .
(49)

Conversely, based on the lower bound formula (30), we get

ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g) − 𝛼 ≥ exp {ln (1 − 𝛼)}
− exp{2𝑡Z𝑝 𝑝∑

𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
+ ln (1 − 𝛼)}

= −(exp{2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝

+ ln (1 − 𝛼)} − exp {ln (1 − 𝛼)})
= −𝑒𝜌(2𝑡Z𝑝 𝑝∑

𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2Z𝑝)
≥ −𝑒𝜌(2𝑡Z𝑝 𝑝∑

𝑖=1

ΔG𝑊𝑖 + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
)

(50)
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for some mean value 𝜌 within the interval

(ln (1 − 𝛼) ; 2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

+ ln (1 − 𝛼)) . (51)

Thus it can be concluded that ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g) − 𝛼 is laid in the
following closed interval:

[−𝑒𝜌(2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
) ;

𝑒𝜁 (2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
)] . (52)

In particular, if the mean values 𝜌 and 𝜁 are taken to be the
same, then 󵄨󵄨󵄨󵄨󵄨󵄨ΨZ𝑝 (𝑡̃Z𝑝 , 𝜑g) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑒𝜁(2𝑡Z𝑝 𝑝∑
𝑖=1

ΔG𝑊𝑖 + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ𝑝
) , (53)

establishing the proof.

Analogously, from (33), we getΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) − 𝛼≤ exp {ln (1 − 𝛼)}
− exp{ln (1 − ΨZ0𝑝 (12 𝑡̃Z0𝑝 , 0)) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

}
= 𝑒𝜏 [[ln( 1 − 𝛼1 − ΨZ0𝑝 ((1/2) 𝑡̃Z0𝑝 , 0)) + 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

]]
≤ 𝑒𝜏 exp{12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

} ,

(54)

for some 𝜏 ∈ (ln(1 − ΨZ0𝑝 ((1/2)𝑡̃Z0𝑝 , 0)) − (1/2)‖𝜑g‖2HZ0𝑝
; ln(1 −𝛼)). Conversely,ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) − 𝛼 ≥ exp {ln (1 − 𝛼)}

− exp{ln (1 − 𝛼) − 12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

}
= 𝑒𝜄 exp{12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

} ,
(55)

for some 𝜄 ∈ (ln(1−𝛼)−(1/2)‖𝜑g‖2HZ0𝑝
, ln(1−𝛼)). Particularly,

for 𝜄 = 𝜏, we get󵄨󵄨󵄨󵄨󵄨󵄨ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑒𝜏 exp{12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

} . (56)

Thus, we proved the following corollary.

Corollary 6. Under the condition of Theorem 7, we have

𝑒𝜄 exp{12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

} ≤ ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) − 𝛼
≤ 𝑒𝜏 exp{12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

} , (57)

for some 𝜏 and 𝜄 specified above. If 𝜄 and 𝜏 are chosen to be the
same, then󵄨󵄨󵄨󵄨󵄨󵄨ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑒𝜏 exp{12 󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩2HZ0𝑝

} . (58)

4. Comparison to Neyman-Pearson Test

Our aim in this section is to establish nonrandomized
Neyman-Pearson test for the hypothesis defined in the
preceding section. It is well known in the literatures of test
theory that Neyman-Pearson test constitutes a most powerful
(MP) test for simple hypotheses; see, e.g., Theorem 3.2.1 in
[15]. If some criterion is satisfied, the test can be extended
to a uniformly most powerful (UMP) test for composite
hypotheses. In this section the behavior of the power function
including the rate of decay to 𝛼 will be investigated and
compared to those of KS and CvM type tests studied in the
preceding section.

Let V be a linear subspace generated by a set of known
and orthonormal regression functions {𝑓1, . . . , 𝑓𝑚, 𝑓𝑚+1,. . . , 𝑓𝑞} ⊂ 𝐿2(𝑃0,G)∩𝐵𝑉𝐻(G) includingW = [𝑓1, . . . , 𝑓𝑚]. In
this section we consider the hypothesis 𝐻0 : g ∈ W𝑝 against𝐻1 : g ∈ V𝑝 instead of𝐻0 : g ∈W𝑝 against𝐻1 : g ∉W𝑝. The
former is actually the common frame work of model check
for multivariate regression in which one is testing whether or
not g ∈ W𝑝 while observing g ∈ V𝑝; see [26] for reference.
Suppose there exist g1 ∈ W𝑝 and g2 ∈ V𝑝 ∩W𝑝⊥, such that
g = g1 ⊕ g2. It is enough to consider the simple hypotheses𝐻0 : g2 ≡ 0 V𝑠. 𝐻1 : g2 ≡ f0,

for some f0 ∈ V𝑝 ∩W𝑝⊥. (59)

Hence the 𝑝-dimensional set-indexed partial sums process
of the residuals is given by Y = Wf ,P0

, when 𝐻0 is true;
otherwiseY = Σ−1/2𝑝𝑟W⊥

HZ𝑝
𝑆f0 +Wf ,P0

.
The following theorem presents an MP test of size 𝛼

for testing (59). Here we exhibit again the application of
Cameron-Marin density formula of the shifted measure P𝜑f0
with respect to P, for 𝜑f0 = Σ−1/2𝑝𝑟W⊥

HZ𝑝
𝑆f0 . Recently,

[4] investigated the asymptotic optimality of a test for the
mean vector in multivariate regression bymeans of Neyman-
Pearson test.

Theorem 7. Suppose 𝜑f0 ∈ HWf,P0
. Neyman-Pearson test of

size 𝛼 for testing (59) will reject𝐻0, if and only if
L (𝜑f0 ,Y) ≥ Φ−1 (1 − 𝛼) 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

. (60)
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Furthermore, suppose ΓWf,P0
: V𝑝 󳨀→ (0, 1) is the correspond-

ing power function of the test. Then the value of the power,
evaluated at any f ∈ V𝑝, is given by

ΓWf,P0
(f) = Φ( L (𝜑f0 , 𝜑f)󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

− Φ−1 (1 − 𝛼)) ,
f ∈ V𝑝 ∩W𝑝⊥,

(61)

and otherwise, ΓWf,P0
(f) = 𝛼.

Proof. Let 𝜒0(Y) and 𝜒1(Y) be the density of P𝜑f0 with
respect to P under𝐻0 and𝐻1, respectively. ByTheorem 3.2.1
in [15], an MP test of size 𝛼 for testing (59) will reject 𝐻0, if
and only if 𝜒0(Y)/𝜒1(Y) ≤ 𝑘, for a constant 𝑘 such that

P{𝜔 ∈ Ω : 𝜒0 (Y (𝜔))𝜒1 (Y (𝜔)) ≤ 𝑘 󵄨󵄨󵄨󵄨𝐻0} = 𝛼. (62)

Since 𝜒0(Y) = 1 and 𝜒1(Y) = exp{L(𝜑f0 ,Y) −(1/2)‖𝜑f0‖2HWf,P0
}, then by recalling the fact L(𝜑f0 ,Wf ,P0

) ∼𝑁(0, ‖𝜑f0‖2HWf,P0
), we get

P{𝜔 ∈ Ω : 𝜒0 (Y (𝜔))𝜒1 (Y (𝜔)) ≤ 𝑘 󵄨󵄨󵄨󵄨𝐻0} = 𝛼 ⇐⇒
P{exp{−L (𝜑f0 ,Y) + 12 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩2HWf,P0

} ≤ 𝑘 󵄨󵄨󵄨󵄨𝐻0} = 𝛼 ⇐⇒
P{L (𝜑f0 ,Y) ≥ − ln (𝑘) + 12 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩2HWf,P0

󵄨󵄨󵄨󵄨𝐻0} = 𝛼 ⇐⇒
P{L (𝜑f0 ,Wf ,P0

) ≥ − ln (𝑘) + 12 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩2HWf,P0

} = 𝛼 ⇐⇒
P
{{{{{{{𝑁(0, 1) ≥ − ln (𝑘) + (1/2) 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩2HWf,P0󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

}}}}}}} = 𝛼 ⇐⇒
− ln (𝑘) + 12 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩2HWf,P0

= Φ−1 (1 − 𝛼) 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

,

(63)

establishing the rejection region of the test. Next, we compute
the power function for any f ∈ V𝑝 ∩W𝑝⊥. By the definition
of ΓWf,P0

and by the symmetry ofΦ, we have
ΓWf,P0

(f) = P{L (𝜑f0 ,Y)
≥ Φ−1 (1 − 𝛼) 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

󵄨󵄨󵄨󵄨g2 ≡ f}
= P{L (𝜑f0 , 𝜑f +Wf ,P0

)

≥ Φ−1 (1 − 𝛼) 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

} = P{L (𝜑f0 ,Wf ,P0
)

≥ Φ−1 (1 − 𝛼) 󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

− L (𝜑f0 , 𝜑f)} = 1
− Φ(Φ−1 (1 − 𝛼) − L (𝜑f0 , 𝜑f)󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

)
= Φ( L (𝜑f0 , 𝜑f)󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

− Φ−1 (1 − 𝛼)) .
(64)

The last formula results in ΓWf,P0
(f) = 𝛼, when f vanishes. The

proof of the theorem is complete.

The test presented inTheorem 7 depends on the choice of
f specified under𝐻1 . For example, if we consider𝐻1 : g2 ≡ f1,
for some f1 ∈ V𝑝 ∩W𝑝⊥, then𝐻0 is rejected at level 𝛼, if

L (𝜑f1 ,Y) ≥ Φ−1 (1 − 𝛼) 󵄩󵄩󵄩󵄩󵄩𝜑f1󵄩󵄩󵄩󵄩󵄩HWf,P0

. (65)

This means that the test cannot be extended as a uniformly
most powerful (UMP) test for the composite alternative 𝐻1 :
g2 ∈ V𝑝 ∩W𝑝⊥. It is also not a UMP test for more specific
one-sided alternatives 𝐻1 : g2 > 0 or𝐻1 : g2 < 0.

As discussed in the preceding section, we are also inter-
ested in investigating the rate of decay of ΓWf,P0

(f) to 𝛼 =ΓWf,P0
(0). Toward this topic the result of Theorem 7 leads us

to the following important corollary. The proof is left since it
can be handled by using the similar technique as in the proof
of Corollary 3.

Corollary 8. Let f be an element ofV𝑝 ∩W𝑝⊥, such that 𝜑f ∈
HWf,𝑃0

and L(𝜑f0 , 𝜑f ) > 0. Then for every presigned 𝛼 ∈ (0, 1),
it holds that

󵄨󵄨󵄨󵄨󵄨󵄨ΓWf,P0
(f) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1√2𝜋 L (𝜑f0 , 𝜑f)󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

. (66)

In the case L(𝜑f0 , 𝜑f) < 0, we have
󵄨󵄨󵄨󵄨󵄨󵄨ΓWf,P0

(f) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1√2𝜋 L− (𝜑f0 , 𝜑f)󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HWf,P0

, (67)

where L−(𝜑f0 , 𝜑f) fl −L(𝜑f0 , 𝜑f) > 0.
Corollary 8 states that how fast the power functionΓWf,P0
(f) decays to 𝛼 depends on some value determined by

L(𝜑f0 , 𝜑f) whose structure is influenced by the type ofWf ,P0
.

For comparison study suppose that the simple hypothesis (59)
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is tested using the KS or CvM type test. Then by virtue of
Corollary 2, we have󵄨󵄨󵄨󵄨󵄨󵄨ΨWf,𝑃0

(𝑡̃Wf,𝑃0
, 𝜑f) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1√2𝜋 L (𝜑f , 𝜑f)󵄩󵄩󵄩󵄩𝜑f󵄩󵄩󵄩󵄩HWf,𝑃0󵄨󵄨󵄨󵄨󵄨󵄨ΥWf,𝑃0

(𝑡̃Wf ,𝑃0
, 𝜑f) − 𝛼󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1√2𝜋 L (𝜑f , 𝜑f)󵄩󵄩󵄩󵄩𝜑f󵄩󵄩󵄩󵄩HWf,𝑃0

. (68)

Thus, in contrast to Corollary 8, the rate of decay of the
KS and CvM type tests does not depend on f0 at all.
Consequently, compared to Neyman-Pearson test, KS and
CvM test cannot detect whether to take f larger or less than
f0 in order to have faster or slower decay.

The result presented throughout this section will become
more visible when we look at the model involving 𝑝-
dimensional set-indexed Brownian sheet or pillow. For exam-
ple suppose we observe the modelY = Σ−1/2𝑝𝑟W⊥

HZ𝑝
𝑆g2 +Z0𝑝,

for testing (59). Then𝐻0 is rejected at level 𝛼, if
L (𝜑f0 ,Y) ≥ Φ−1 (1 − 𝛼) 󵄩󵄩󵄩󵄩󵄩Σ−1/2𝑝𝑟W𝑝⊥f0󵄩󵄩󵄩󵄩󵄩𝐿𝑝2(𝑃0,G) , (69)

where for the 𝑝-dimensional set-indexed Brownian pillow;
we have

L (𝜑f0 ,Y) = 󵄩󵄩󵄩󵄩󵄩Σ−1/2𝑝𝑟W𝑝⊥ f0󵄩󵄩󵄩󵄩󵄩2𝐿𝑝2(𝑃0,G)+ ∫
G
(Σ−1/2𝑝𝑟W𝑝⊥ f0)⊤ 𝑑Z0𝑝, (70)

Furthermore, we get, for fixed f0 ∈ V𝑝 ∩W𝑝⊥,

L (𝜑f0 , 𝜑f)󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HZ0𝑝

= ⟨𝜑f0 , 𝜑f⟩HZ0𝑝󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HZ0𝑝

= ⟨Σ
−1/2𝑝𝑟W⊥

HZ𝑝
𝑆f0 ,Σ−1/2𝑝𝑟W⊥HZ𝑝

𝑆f⟩
HZ0𝑝󵄩󵄩󵄩󵄩󵄩𝜑f0󵄩󵄩󵄩󵄩󵄩HZ0𝑝

= ⟨𝑝𝑟W𝑝⊥Σ−1/2f0, 𝑝𝑟W𝑝⊥Σ−1/2f⟩𝐿𝑝2(𝑃0,G)󵄩󵄩󵄩󵄩󵄩𝑝𝑟W𝑝⊥Σ−1/2f0󵄩󵄩󵄩󵄩󵄩𝐿2(𝑃0,G)
≤ 󵄩󵄩󵄩󵄩󵄩𝑝𝑟W𝑝⊥Σ−1/2f0󵄩󵄩󵄩󵄩󵄩𝐿𝑝2(𝑃0,G) 󵄩󵄩󵄩󵄩󵄩𝑝𝑟W𝑝⊥Σ−1/2f󵄩󵄩󵄩󵄩󵄩𝐿𝑝2(𝑃0,G)󵄩󵄩󵄩󵄩󵄩𝑝𝑟W𝑝⊥Σ−1/2f0󵄩󵄩󵄩󵄩󵄩𝐿𝑝2(𝑃0 ,G)≤ 󵄩󵄩󵄩󵄩󵄩Σ−1/2󵄩󵄩󵄩󵄩󵄩R𝑝 󵄩󵄩󵄩󵄩𝑝𝑟W𝑝⊥󵄩󵄩󵄩󵄩R𝑝 ‖f‖𝐿𝑝2(𝑃0,G) ,

(71)

where the first inequality appears by Holder’s inequality,
whereas the second follows by the fact that Σ−1/2 and 𝑝𝑟W𝑝⊥
represent continuous linear transformations on 𝐿𝑝2(𝑃0,G);
therefore they are uniformly bounded, cf. [27], p. 26-27. Since‖ ⋅ ‖𝐿𝑝2(𝑃0 ,G) is continuous on the closed subset V𝑝 ∩ W𝑝⊥,

then ‖ ⋅ ‖𝐿𝑝2(𝑃0 ,G) is bounded on V𝑝 ∩W𝑝⊥. Thus there exists𝑀 > 0, such that𝑀 is the uniform upper bound for |ΓZ0𝑝 (f) −𝛼|. It is clear that 𝑀 is also the uniform upper bounds of|ΨZ0𝑝(𝑡̃Z0𝑝 , 𝜑f) − 𝛼| as well as |ΥZ0𝑝(𝑡̃Z0𝑝 , 𝜑f ) − 𝛼|.
5. Simulation Study

In this section we investigate the behavior ofΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑f) andΥZ0𝑝 (𝑞Z0𝑝 , 𝜑f ) with respect to their lower and upper bounds
derived in Corollary 3. The simulated model is represented
by the trend plus noise process𝜑g (𝐴) + Z02 (𝐴) , 𝐴 ∈B ([0, 1] × [0, 1]) (72)

where Z02 is the two-dimensional Brownian pillow and

𝜑g (𝐴) = Σ−1/2 ∫
𝐴
𝜌 (𝑡 + 𝑠, 0)⊤ 𝜆2 (𝑑𝑡, 𝑑𝑠) ,

𝐴 ∈B ([0, 1] × [0, 1]) , 𝜌 ∈ R. (73)

Such a model appears as the limit process of the two-
dimensional set-indexed partial sums processes of the resid-
uals of two variate regression model(𝑌1, 𝑌2)⊤ = (𝑔1, 𝑔2)⊤ + (𝜀1, 𝜀2)⊤ (74)

for testing whether or not a constant model holds true. That
is, we test the hypothesis that𝐻0 : (𝑔1, 𝑔2)⊤ ∈W2 V𝑠. 𝐻1 : (𝑔1, 𝑔2)⊤ ∉W2, (75)

where W = [𝑓1], with 𝑓1(𝑡, 𝑠) = 1, for (𝑡, 𝑠) ∈ G fl [0, 1] ×[0, 1]. For fixed 𝑛 ≥ 1, the 𝑛 × 𝑛 × 2 arrays of observation are
generated from the model

(𝑌ℓ𝑘1𝑌ℓ𝑘2) = (2 +
𝜌ℓ𝑛 + 𝜌𝑘𝑛3 + 0ℓ𝑛 + 0𝑘𝑛 ) + (𝜀ℓ𝑘1𝜀ℓ𝑘2) ,

1 ≤ ℓ, 𝑘 ≤ 𝑛,
(76)

according to an experimental design given by a regular lattice
with 𝑛 × 𝑛 points on G. Let 𝑓2(𝑡, 𝑠) = 𝑡 and 𝑓3(𝑡, 𝑠) = 𝑠, for(𝑡, 𝑠) ∈ G; then we equivalently have

(𝑌ℓ𝑘1𝑌ℓ𝑘2)
= (2𝑓1 (ℓ𝑛, 𝑘𝑛) + 𝜌𝑓2 (ℓ𝑛, 𝑘𝑛) + 𝜌𝑓3 (ℓ𝑛 , 𝑘𝑛)3𝑓1 (ℓ𝑛 , 𝑘𝑛) + 0𝑓2 (ℓ𝑛, 𝑘𝑛) + 0𝑓3 (ℓ𝑛 , 𝑘𝑛))
+ (𝜀ℓ𝑘1𝜀ℓ𝑘2) ,

(77)

for 1 ≤ ℓ, 𝑘 ≤ 𝑛. Hence, if 𝜌 = 0, then the observations are
from the model assumed under𝐻0. Otherwise, they support
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Table 1: The numerical upper and lower bounds for ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) and ΥZ0𝑝 (𝑞Z0𝑝 , 𝜑g). The size of the test is 𝛼 = 0.05.
𝜌 L ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) ΥZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) U

0 0.04990 0.06100 0.05500 0.04990
1 0.01886 0.04900 0.05100 0.11280
2 0.00602 0.05600 0.06500 0.21809
3 0.00162 0.05700 0.07100 0.36483
4 0.00037 0.07400 0.07600 0.53486
5 6.9e-05 0.07500 0.09700 0.69867
6 1.1e-05 0.10600 0.13000 0.82988
7 1.5e-06 0.12600 0.14600 0.91724
8 1.6e-07 0.15700 0.21000 0.96561
9 1.5e-08 0.14700 0.19600 0.98787
10 1.2e-09 0.20300 0.27200 0.99639
11 7.3e-11 0.21000 0.28300 0.99909
12 3.9e-12 0.27500 0.35000 0.99981
13 1.7e-13 0.29600 0.39900 0.99997
14 6.4e-15 0.32800 0.45500 0.99999

𝐻1. In this simulation, the random vector (𝜀ℓ𝑘1, 𝜀ℓ𝑘2)⊤ is
generated independently from the two-dimensional centered
normal distribution with the covariance matrix given by

Σ = ( 6.26 −0.50−0.50 6.26 ) (78)

so that we have after some computations

Σ
−1 = (0.16077 0.012840.01284 0.16077) ,
Σ
−1/2 = (0.40064 0.016030.01603 0.40064) .

(79)

Now, the norm of 𝜑g for the matrix Σ can be computed
concretely as

󵄩󵄩󵄩󵄩󵄩𝜑g󵄩󵄩󵄩󵄩󵄩HZ0
2

= √∫
[0,1]×[0,1]

𝜌2 (𝑡 + 𝑠, 0)Σ−1 (𝑡 + 𝑠, 0) 𝑑𝑡𝑑𝑠
= 𝜌0.16077√∫

[0,1]×[0,1]
(𝑡2 + 2𝑡𝑠 + 𝑠2) 𝑑𝑡𝑑𝑠

= 0.43309𝜌.
(80)

The simulation results using a sample of size 50 × 50 with1000 runs are exhibited in Table 1 and Figure 1 for 𝛼 = 0.05.
The figures presented in Table 1 represent the values of the
power functions of the KS and CvM tests together with the
associated values of the lower (L) and upper (U) bounds
evaluated at each given value of 𝜌 utilizing the formulas given
in Corollary 3, where in this case

L = Φ (Φ−1 (𝛼) − 0.43309𝜌) ,
U = Φ (Φ−1 (𝛼) + 0.43309𝜌) . (81)
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Figure 1: Upper (dotted line) and lower (dashed line) bounds forΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑f ) (solid line), with 𝛼 = 0.05.
It is shown that the values of L are never exceeding the
corresponding powers. Likewise, the values of U are also
never preceding those of the corresponding power functions
as suggested by the theory. Figure 1 presents the graphs ofL
(dotdash line),U (dotted line), ΨZ0𝑝 (𝑡̃Z0𝑝 , 𝜑g) (smoothed line),
andΥZ0𝑝 (𝑞Z0𝑝 , 𝜑g) (dashed line) scattered together in one panel.
It can be seen that the curves of the power functions are laid
within a band formed by the paired curve ofL andU as they
should be.

6. Concluding Remark

We have established the upper and lower bounds for the
boundary crossing probability involving multivariate trend
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plus noise model. Our results give important contributions
not only in the area of statistics, but also in other disciplines
such as in finance mathematics and in statistical physics,
where such probability model is also frequently encountered.
It is important to note that the Cameron-Martin translation
formula is valid if the trend function laid in the RKHS
of the corresponding Gaussian process. In practice this is
not always the case. Therefore further research must be
conducted to be able to handle the problem appears in such
situation.

Appendix

Proof of Theorem 1 . Let Ξ fl {x ∈ C𝑝(B(G)) : L(h, x) <𝑟(E)‖h‖HWf,𝑃0
}, for a fixed h ∈ HWf,𝑃0

. Then by recalling

L(h,Wf ,𝑃0) ∼ 𝑁(0, ‖h‖2HWf,𝑃0
), we have

P (Ξ)
= P {x ∈ C

𝑝 (B (G)) : L (h, x) < 𝑟 (E) ‖h‖HWf,𝑃0
}

= P {𝜔 ∈ Ω : L (h,Wf ,𝑃0 (𝜔)) < 𝑟 (E) ‖h‖HWf,𝑃0
}

= P {𝜔 : 𝑁 (0, 1) (𝜔) < 𝑟 (E)} = Φ (𝑟 (E))= P (E) .
(A.1)

The last equality implicates

P (E \ Ξ) = P (E) − P (E ∩ Ξ) = P (Ξ) − P (E ∩ Ξ)= P (Ξ \ E) (A.2)

We will show that P(E − h) ≥ P(Ξ − h). For this purpose we
use the Cameron-Martin formula (12), the fact that L(h, x) ≥𝑟(E)‖h‖HWf,𝑃0

, whenever x ∈ E \ Ξ, and (A.2). Hence, we get

P (E − h) = Ph (E) = Ph (E \ Ξ) + Ph (E ∩ Ξ)
= ∫

E\Ξ
exp {L (h, x) − 12 ‖h‖2HWf,𝑃0

}P (𝑑x)
+ ∫

E∩Ξ
exp {L (h, x) − 12 ‖h‖2HWf,𝑃0

}P (𝑑x)
≥ ∫

E\Ξ
exp {𝑟 (E) ‖h‖HWf,𝑃0

− 12 ‖h‖2HWf,𝑃0
}P (𝑑x)

+ ∫
E∩Ξ

exp {L (h, x) − 12 ‖h‖2HWf,𝑃0
}P (𝑑x)

= ∫
Ξ\E

exp {𝑟 (E) ‖h‖HWf,𝑃0
− 12 ‖h‖2HWf,𝑃0

}P (𝑑x)
+ ∫

E∩Ξ
exp {L (h, x) − 12 ‖h‖2HWf,𝑃0

}P (𝑑x) .

(A.3)

Next by the definition of Ξ, the term on the right-hand side
of the last inequality is greater than the following one:

∫
Ξ\E

exp {L (h, x) − 12 ‖h‖2HWf,𝑃0
}P (𝑑x)

+ ∫
E∩Ξ

exp {L (h, x) − 12 ‖h‖2HWf,𝑃0
}P (𝑑x) (A.4)

which is exactly the samewithP(Ξ−h), establishingP(E−h) ≥
P(Ξ − h), where by the definition

P (Ξ − h) = P {x − h : x ∈ Ξ} = P{x
∈ C
𝑝 (B (G)) : L (h, x) < 𝑟 (E) ‖h‖HWf,𝑃0− L (h,h)} = P {𝜔 ∈ Ω : L (h,Wf ,𝑃0 (𝜔))

< 𝑟 (E) ‖h‖HWf,𝑃0
− L (h,h)} = P

{{{𝜔
∈ Ω : 𝑁 (0, 1) (𝜔) < 𝑟 (E) − L (h,h)‖h‖HWf,𝑃0

}}}
= Φ(𝑟 (E) − L (h, h)‖h‖HWf,𝑃0

) .

(A.5)

We notice that the lower bound

P (E − h) ≥ Φ(𝑟 (E) − L (h,h)‖h‖HWf,𝑃0

) (A.6)

holds for any E ⊂ C𝑝(B(G)) and any constant 𝑟(E) =Φ−1(P(E)). Hence it holds as well for the complement E𝐶.
That is,

P (E𝐶 − h) ≥ Φ(𝑟 (E𝐶) − L (h, h)‖h‖HWf,𝑃0

) , (A.7)

with 𝑟(E𝐶) = Φ−1(P(E𝐶)). Since P(E𝐶−h) = 1−P(E−h) and1 −Φ(𝑡) = Φ(−𝑡), for any 𝑡 ∈ R (by the symmetry ofΦ), then
we get the following:

P (E𝐶 − h) ≥ Φ(𝑟 (E𝐶) − L (h, h)‖h‖HWf,𝑃0

) ⇐⇒
P (E − h) ≤ Φ(−𝑟 (E𝐶) + L (h,h)‖h‖HWf,𝑃0

) . (A.8)
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On the other hand by the equality 𝑟(E𝐶) = Φ−1(P(E𝐶)) and
by the symmetry of Φ, it holds thatΦ(𝑟 (E𝐶)) = 1 − P (E) ⇐⇒1 − Φ (𝑟 (E𝐶)) = P (E) ⇐⇒

Φ(−𝑟 (E𝐶)) = P (E) ⇐⇒
−𝑟 (E𝐶) = Φ−1 (P (E)) = 𝑟 (E) .

(A.9)

Thus, we get the upper bound

P (E − h) ≤ Φ(𝑟 (E) + L (h, h)‖h‖HWf,𝑃0

) , (A.10)

which establishes the proof.
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The numerical solutions of linear integrodifferential equations of Volterra type have been considered. Power series is used as the
basis polynomial to approximate the solution of the problem. Furthermore, standard and Chebyshev-Gauss-Lobatto collocation
points were, respectively, chosen to collocate the approximate solution. Numerical experiments are performed on some sample
problems already solved by homotopy analysis method and finite difference methods. Comparison of the absolute error is obtained
from the present method and those from aforementioned methods. It is also observed that the absolute errors obtained are very
low establishing convergence and computational efficiency.

1. Introduction

Integrodifferential equation is a hybrid of integral and differ-
ential equations which have found extensive applications in
sciences and engineering since it was established by Volterra
[1]. A special class of these equations are the Volterra type
which have been used to model heat and mass diffusion pro-
cesses, biological species coexisting together with increasing
and decreasing rate of growth, electromagnetic theory, and
ocean circulations, among others [2].

First-order integrodifferential equation (IDE) of the
Volterra type is generally of the form

𝑦󸀠 = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡)) 𝑦 (𝑡0) = 𝑦0, (1)

where

𝑧 (𝑡) = ∫𝑡
𝑡
0

𝐾(𝑡, 𝑠, 𝑦 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼. (2)

In solving (1), we seek the unknown function 𝑦(𝑡) given the
kernel 𝐾, a nonsingular function defined on 𝑆 × R with 𝑆 fl{(𝑡, 𝑠), 𝑡0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇}. This kernel determines the nature
of the solutions of integral equation (2) depending on its type

[3]. In this paper, only separable or degenerate kernels have
been considered.

The theory and application of integrodifferential equa-
tions are important subjects in appliedmathematics.The exis-
tence and uniqueness of the solutions of integrodifferential
equations, usually discussed in terms of their kernel, had been
established already in Linz [1]. Generally, methods for solving
integrodifferential equations combine methods of solving
both integral and differential equations. Also, since closed
form solutions may not be tractable for most applications,
numerical methods are employed to obtain approximations
to the exact solutions.

Some numerical approaches in literature include iterative
methods [4], successive approximation methods [5], and
standard integral collocation approximation methods [6].
Other methods such as power series methods, where Cheby-
shev and Legendre’s polynomials are used as basis functions,
have been applied to obtain solutions of some higher order
IDE of linear type. Akyaz and Sezer [7], for instance,
presented Chebyshev collocation method for solving linear
integrodifferential equations by truncated Chebyshev series.
Recently, Gegele et al. [8] used power and Chebyshev series
approximation methods to find numerical solution to higher
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order linear Fredholm integrodifferential equations using
collocation methods. The result presented showed that the
methods can give accurate results when compared with
the exact solution. These methods proved efficient in the
respective applications from the results provided but they
seem yet to be applied to integrodifferential equations of
Volterra type.

It is our aim here to extend the approach in Gegele et
al. [8] to obtain approximate solutions for integrodifferential
equations of Volterra type.

In the next section, we shall discuss the derivation of
our methods; then the implementation using some sample
problems is presented in Section 3. Finally, in Section 4 we
shall present the results and draw our conclusions.

2. Methodology

In the sequel, the combination of the power series approxi-
mation and collocation method is employed for the solution
of IDE of Volterra type.

To proceed, (1) is reduced to the form

𝑦󸀠 (𝑥) = 𝐹 (𝑥) + ∫𝑥
𝑎
𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡, (3a)

𝑦(𝑗) (0) = 𝑎𝑗, 𝑗 = 0, 1, (3b)

where 𝑦(𝑗) = 𝑑𝑗𝑦/𝑑𝑥𝑗 and 𝑦(0) = 𝑦. The initial conditions
(3b) are required in order to find particular solutions of (3a).

Now, let the solution 𝑦(𝑥) of Volterra type IDE, (3a) and
(3b), be analytic and therefore possess the power series

𝑦 (𝑥) = 𝑁∑
𝑖=0

𝑎𝑖𝑥𝑖, 𝑖 ≥ 0, (4)

where 𝑥𝑖s are monomial bases and 𝑎𝑖s are real coefficients to
be determined.

Substituting equation (4) into both sides of (3a) gives

𝑁∑
𝑖=0

𝑖𝑎𝑖𝑥(𝑖−1) = 𝐹 (𝑥) + 𝑁∑
𝑖=0

𝑎𝑖 ∫𝑥
𝑎
𝑡𝑖𝐾 (𝑥, 𝑡) 𝑑𝑡. (5)

Hence,

𝐹 (𝑥) = 𝑁∑
𝑖=0

𝑎𝑖 (𝑖𝑥(𝑖−1) − ∫𝑥
𝑎
𝑡𝑖𝐾 (𝑥, 𝑡) 𝑑𝑡) , (6)

where 𝐹(𝑥) and𝐾(𝑥, 𝑡) are known functions.
For an arbitrary choice of 𝑁, (6) is obtained as a linear

algebraic equation in𝑁 + 1 unknowns as follows:
𝑎0 + 𝑎1𝜏1 (𝑥) + 𝑎2𝜏2 (𝑥) + ⋅ ⋅ ⋅ + 𝑎𝑁−1𝜏𝑁−1 (𝑥)

+ 𝑎𝑁𝜏𝑁 (𝑥1) = 𝐹 (𝑥) . (7)

We note that 𝑎0 is given by the initial condition (3b) while
the remaining 𝑎𝑖, 𝑖 = 1, . . . , 𝑁, are to be determined by
collocation method.

To generate the collocation points, we shall consider
two methods, namely, the standard and Chebyshev-Gauss-
Lobatto Collocation Methods, respectively.

2.1. Standard Collocation Method (SCM). This method is
used to determine the desired collocation points within an
interval, say, [𝜗, 𝜎], and is given by

𝑥𝑝 = 𝜗 + (𝜎 − 𝜗)
𝑁 𝑝, 𝑝 = 1, 2, 3, . . . , 𝑁. (8)

2.2. Chebyshev-Gauss-Lobatto Collocation Method (CGLCM).
The collocation points are obtained as follows:

𝑥𝑝 = cos(𝜋𝑝𝑁 ) 𝑝 = 1, 2, 3, . . . , 𝑁. (9)

Interestingly, Chebyshev-Gauss-Lobatto points have also
been used as collocation and interpolation points in the
solutions of optimal control problems governed by Volterra
integrodifferential equations [9, 10].

Using either of the two collocation points to collocate (7)
together with the initial conditions given in (3b) will result
in a system of 𝑁 + 1 linear algebraic equations in 𝑁 + 1
unknowns. Hence, the resultant matrix problem is as follows:

[[[[[[[[[[[[
[

1 0 0 ⋅ ⋅ ⋅ 0 0
0 𝜏1 (𝑥1) 𝜏2 (𝑥1) ⋅ ⋅ ⋅ 𝜏𝑁−1 (𝑥1) 𝜏𝑁 (𝑥1)
0 𝜏1 (𝑥2) 𝜏2 (𝑥2) ⋅ ⋅ ⋅ 𝜏𝑁−1 (𝑥2) 𝜏𝑁 (𝑥2)

... ... ...
0 𝜏1 (𝑥𝑁−1) 𝜏2 (𝑥𝑁−1) ⋅ ⋅ ⋅ 𝜏𝑁−1 (𝑥𝑁−1) 𝜏𝑁 (𝑥𝑁−1)
0 𝜏1 (𝑥𝑁) 𝜏2 (𝑥𝑁) ⋅ ⋅ ⋅ 𝜏𝑁−1 (𝑥𝑁) 𝜏𝑁 (𝑥𝑁)

]]]]]]]]]]]]
]

[[[[[[[[[[[[
[

𝑎0
𝑎1
𝑎2
...

𝑎𝑁−1
𝑎𝑁

]]]]]]]]]]]]
]

=

[[[[[[[[[[[[
[

𝐹 (𝑥0)
𝐹 (𝑥1)
𝐹 (𝑥2)

...
𝐹 (𝑥𝑁−1)
𝐹 (𝑥𝑁)

]]]]]]]]]]]]
]

, (10)

where 𝜏𝑗(𝑥𝑝), 𝑗 = 1, 2, 3, . . . , 𝑁, are polynomials evaluated
at each collocation point 𝑥𝑝. The values of the unknowns can
be obtained using any convenient method of solving matrix
equations of the form 𝐴𝑋 = 𝐵, where 𝐴 is invertible.

Substituting the values of the 𝑎𝑖, 𝑖 = 0, 1, 2, . . . , 𝑁,
obtained from (4) yields the approximate solution. We note
that the accuracy level desired for the approximate solution is
determined by the degree of the approximating polynomial.
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3. Results

In this section, standard and Chebyshev-Gauss-Lobatto col-
location points have been employed, respectively, to solve
sample problems as described in Section 2. The numerical
solutions obtained using the present method had been
compared with the exact solutions of the sample problems.
Similarly, absolute errors of results from this present method
have been compared with those obtained in Behrouz [11]
by homotopy analysis method (HAM) and finite difference
method (FDM) for the same problems.

The absolute error of computation is defined in all cases
as follows:

󵄨󵄨󵄨󵄨𝑦 (𝑥𝑖) − 𝑌 (𝑥𝑖)󵄨󵄨󵄨󵄨 𝜗 ≤ 𝑥𝑖 ≤ 𝜎, 𝑖 = 1, 2, 3, . . . . (11)

Problem 1.

𝑦󸀠 (𝑥) + 𝑦 (𝑥) = (𝑥2 + 2𝑥 + 1) 𝑒−𝑥 + 5𝑥2 + 8
− ∫𝑥
0
𝑡𝑦 (𝑡) 𝑑𝑡, 𝑦 (0) = 10. (12)

Exact solution: 𝑦(𝑥) = 10 − 𝑥𝑒−𝑥.
Using SCM, we obtained the following approximate

solutions:

𝑦 (𝑥) = 10 − 0.999955𝑥 + 0.999606𝑥2 − 0.498312𝑥3
+ 0.162656𝑥4 − 0.0362999𝑥5
+ 0.00442505𝑥6.

(13)

Similarly using CGLCM, we obtained the approximate solu-
tion as follows:

𝑦 (𝑥) = 10 − 𝑥 + 1.00115𝑥2 − 0.499641𝑥3
+ 0.163495𝑥4 − 0.0434569𝑥5 + 0.0107202𝑥6. (14)

The solutions obtained from the implementation of the
method for Problem 1 using SCM and CGLCM are compared
with the exact solution in Table 1. Also absolute errors
obtained are compared with absolute errors obtained from
HAM and FDM in Table 2.

Problem 2.

𝑦󸀠 (𝑥) + 𝑦 (𝑥) = ∫𝑥
0
𝑒𝑡−𝑥𝑦 (𝑡) 𝑑𝑡, 𝑦 (0) = 1. (15)

Exact solution: 𝑦(𝑥) = 𝑒−𝑥 cosh𝑥.
Using SCM, we obtained the following approximate

solutions:

𝑦 (𝑥) = 1 − 0.999759𝑥 + 0.997930𝑥2 − 0.658238𝑥3
+ 0.314202𝑥4 − 0.107608𝑥5 + 0.0235161𝑥6
− 0.00237066𝑥7.

(16)

Table 1: Comparison of exact solution with numerical solutions for
Problem 1.

𝑥𝑖 Exact SCM CGLCM
0.0000 0.0000 0.0000 0.0000
0.0714 9.933495516 9.933497240 9.933501428
0.1429 9.876160300 9.876162226 9.876183411
0.2143 9.827046197 9.827047975 9.827095298
0.2857 9.785292202 9.785293839 9.785371414
0.3571 9.750116951 9.750118464 9.750223918
0.4286 9.720811832 9.720813173 9.720936698
0.5000 9.696734670 9.696735770 9.696860288
0.5714 9.677303930 9.677304767 9.677407809
0.6429 9.661993413 9.661994038 9.662051938
0.7143 9.650327386 9.650327889 9.650322899
0.7857 9.641876128 9.641876560 9.641807476
0.8571 9.636251847 9.636252142 9.636149063
0.9286 9.633104936 9.633104922 9.633048727
1.0000 9.632120559 9.632120150 9.632267300

Similarly, using CGLCM we obtained the approximate solu-
tion as follows:

𝑦 (𝑥) = 1 − 0.99941𝑥 + 0.999958𝑥2 − 0.671295𝑥3
+ 0.331381𝑥4 − 0.123419𝑥5 + 0.0496174𝑥6
− 0.0193272𝑥7.

(17)

The solutions obtained from the implementation of the
method for Problem 2 using SCMandCGLCMare compared
with the exact solution in Table 3. Also absolute errors
obtained are compared with absolute errors obtained from
HAM and FDM in Table 4.

4. Conclusion

In this paper, numerical solution of Volterra type integrod-
ifferential equation of first order with degenerate kernels is
obtained by power series collocation method based on two
collocating points methods, namely, Standard Collocation
Method (SCM) and Chebyshev-Gauss-Lobatto Collocation
Method (CGLCM), presented.

The two methods for selecting collocation points yielded
different schemes from which approximate solutions were
obtained, respectively, and compared with the exact solutions
as shown inTables 1 and 3. From the results presented, the two
methods gave good results for first-order integrodifferential
equations of Volterra type.

The comparison of absolute errors of the results obtained
by the present method with those by homotopy analysis
method and finite difference method for the same problems
revealed that themethod is efficient and cheap for the numer-
ical solutions of first-order integrodifferential equation of
Volterra type as illustrated in Tables 2 and 4.The performance
of the present method against homotopy analysis method is
expected as the latter is a semianalytic method.
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Table 2: Comparison of absolute errors for Problem 1

𝑥𝑖 SCM CGLCM FDM HPM
0.0000 0.0000 0.0000 0.0000 0.0000
0.0714 1.72431𝐸 − 06 5.91262𝐸 − 06 2.85397𝐸 − 04 5.15735𝐸 − 07
0.1429 1.92637𝐸 − 06 2.31105𝐸 − 05 2.98284𝐸 − 04 3.00036𝐸 − 07
0.2143 1.77825𝐸 − 06 4.91013𝐸 − 05 5.43393𝐸 − 04 2.80293𝐸 − 06
0.2857 1.63695𝐸 − 06 7.92123𝐸 − 05 5.11413𝐸 − 04 1.47980𝐸 − 05
0.3571 1.51288𝐸 − 06 1.06967𝐸 − 04 7.15638𝐸 − 04 4.60491𝐸 − 05
0.4286 1.34028𝐸 − 06 1.24865𝐸 − 04 6.54200𝐸 − 04 1.11168𝐸 − 04
0.5000 1.09939𝐸 − 06 1.25617𝐸 − 04 8.18261𝐸 − 04 2.40330𝐸 − 04
0.5714 8.36590𝐸 − 07 1.03879𝐸 − 04 7.38321𝐸 − 04 4.73070𝐸 − 04
0.6429 6.24770𝐸 − 07 5.85256𝐸 − 05 8.64022𝐸 − 04 8.52587𝐸 − 04
0.7143 5.03018𝐸 − 07 4.48751𝐸 − 06 7.73248𝐸 − 04 1.45361𝐸 − 03
0.7857 4.31615𝐸 − 07 6.86526𝐸 − 05 8.63249𝐸 − 04 2.36487𝐸 − 03
0.8571 2.95402𝐸 − 07 1.02783𝐸 − 04 7.66939𝐸 − 04 3.71115𝐸 − 03
0.9286 1.39661𝐸 − 08 5.62088𝐸 − 05 8.24573𝐸 − 04 5.63206𝐸 − 04
1.0000 4.08829𝐸 − 07 1.46741𝐸 − 04 7.26353𝐸 − 04 8.32344𝐸 − 04

Table 3: Comparison of exact solution with numerical solution for Problem 2.

𝑥𝑖 Exact SCM CGLCM
0.0000 0.0000 0.0000 0.0000
0.0833 0.9232408624 0.9232506225 0.923287006
0.1667 0.8582656553 0.8582754765 0.858341248
0.2500 0.8032653299 0.8032737684 0.803340755
0.3333 0.7567085595 0.7567163057 0.756749451
0.4167 0.7172991043 0.7173066673 0.717278486
0.5000 0.6839397206 0.6839470433 0.683851372
0.5833 0.6557016120 0.6557084119 0.655570212
0.6667 0.6317985691 0.6318047191 0.631680300
0.7500 0.6115650801 0.6115707282 0.611530371
0.8333 0.5944378014 0.5944432050 0.594525790
0.9167 0.5799398730 0.5799451069 0.580071957
1.0000 0.5676676416 0.5676724400 0.567505200

Table 4: Comparison of absolute errors for Problem 2.

𝑥𝑖 SCM CGLC FDM HPM
0.0000 0.0000 0.0000 0.0000 0.0000
0.0833 9.76008𝐸 − 06 4.61438𝐸 − 05 1.77203𝐸 − 02 1.85469𝐸 − 09
0.1667 9.82124𝐸 − 06 7.55931𝐸 − 05 2.16887𝐸 − 03 3.13105𝐸 − 10
0.2500 8.43856𝐸 − 06 7.54254𝐸 − 05 1.89273𝐸 − 03 1.14368𝐸 − 09
0.3333 7.74622𝐸 − 06 4.08918𝐸 − 05 4.52374𝐸 − 03 8.37039𝐸 − 11
0.4167 7.56304𝐸 − 06 2.06182𝐸 − 05 2.06181𝐸 − 02 2.65354𝐸 − 09
0.5000 7.32270𝐸 − 06 8.83487𝐸 − 05 7.13624𝐸 − 03 3.14279𝐸 − 10
0.5833 6.79994𝐸 − 06 1.31400𝐸 − 05 1.10585𝐸 − 02 1.24270𝐸 − 09
0.6667 6.15006𝐸 − 06 1.18269𝐸 − 05 8.20866𝐸 − 03 5.57863𝐸 − 10
0.7500 5.64809𝐸 − 06 3.47095𝐸 − 05 3.41335𝐸 − 03 1.32579𝐸 − 09
0.8333 5.40361𝐸 − 06 8.79889𝐸 − 05 8.16328𝐸 − 03 6.81219𝐸 − 10
0.9167 5.23390𝐸 − 06 1.32084𝐸 − 05 2.89396𝐸 − 03 5.16015𝐸 − 09
1.0000 4.79838𝐸 − 06 1.62442𝐸 − 05 3.27168𝐸 − 03 9.48169𝐸 − 09
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We consider an insurance company whose reserves dynamics follow a diffusion-perturbed risk model. To reduce its risk,
the company chooses to reinsure using proportional or excess-of-loss reinsurance. Using the Hamilton-Jacobi-Bellman (HJB)
approach, we derive a second-order Volterra integrodifferential equation (VIDE) which we transform into a linear Volterra integral
equation (VIE) of the second kind. We then proceed to solve this linear VIE numerically using the block-by-block method for
the optimal reinsurance policy that minimizes the ultimate ruin probability for the chosen parameters. Numerical examples with
both light- and heavy-tailed distributions are given. The results show that proportional reinsurance increases the survival of the
company in both light- and heavy-tailed distributions for the Cramér-Lundberg and diffusion-perturbed models.

1. Introduction

When the surplus process of an insurance company falls
below zero, the company is said to have experienced ruin.
Insurance companies customarily take precautions to avoid
ruin. These precautions are referred to as control variables
and include investments, capital injections or refinancing,
portfolio selection, and reinsurance arrangements, to men-
tion but a few. This study focuses on reinsurance as a control
measure. Reinsurance, sometimes referred to as “insurance
for insurers,” is the transfer of risk from a direct insurer
(the cedent) to a second insurance carrier (the reinsurer).
With reinsurance, the cedent passes on some of its premium
income to a reinsurer who, in turn, covers a certain pro-
portion of the claims that occur. It has been argued in the
literature that reinsurance plays an important role in risk
reduction for cedents in that it offers additional underwriting
capacity for them and reduces the probability of a direct
insurer’s ruin. Apart from helping the cedent to manage
financial risk, increase capacity, and achieve marketing goals,
reinsurance also benefits policyholders by ensuring availabil-
ity and affordability of necessary coverage.

Of interest in this paper are those studies which investi-
gate more directly the effect of reinsurance on the ultimate
ruin probability. The minimization of the probability of ruin
for a company whose claim process evolves according to
a Brownian motion with drift and is allowed to invest in
a risky asset and to purchase quota-share reinsurance was
considered in [1]. In this study, an analytical expression
for the minimum ruin probability and the corresponding
optimal controls were obtained. Kasozi et al. [2] studied the
problem of controlling ultimate ruin probability by quota-
share (QS) reinsurance arrangements. Under the assumption
that the insurer could invest part of the surplus in a risk-
free and risky asset, [2] found that quota-share reinsurance
does reduce the probability of ruin and that for chosen
parameter values the optimal QS retention 𝑏∗ ∈ (0.2, 0.4).
This study also concluded that investment helps insurance
companies to reduce their ruin probabilities but that the
ruin probabilities increase when stock prices become more
volatile. However, while Kasozi et al. [2] considered only
quota-share reinsurance, this paper seeks to combine quota-
share and excess-of-loss (XL) reinsurance for one and the
same insurance portfolio, but in the absence of investment.
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Liu and Yang [3] reconsidered themodel in [4] and incor-
porated a risk-free interest rate. Since closed-form solutions
could not be obtained in this case, they provided numerical
results for optimal strategies for maximizing the survival
probability under different claim-size distribution assump-
tions. Also using the results in [4], the problem of choosing
a combination of investments and optimal dynamic propor-
tional reinsurance tominimize ruin probabilities for an insur-
ance company was investigated in [5] based on a controlled
surplus process satisfying the stochastic differential equation𝑑𝑋𝐴𝑏𝑡 = (𝑐 − 𝑐(𝑏𝑡) + 𝜇𝐴 𝑡)𝑑𝑡 + 𝜎𝐴 𝑡𝑑𝑊𝑡 − 𝑏𝑡𝑑𝑆𝑡, where 𝑏𝑡 ∈[0, 1] is a proportional reinsurance retention at time 𝑡, 𝑐(𝑏𝑡) is
the dynamic reinsurance premium rate, {𝐴 𝑡} is the amount
invested in a risky asset at time 𝑡, and 𝑆𝑡 is the aggregate
claims process. But while [5] uses proportional reinsurance
in minimizing ruin probabilities in the Cramér-Lundberg
model, this paper considers proportional and excess-of-loss
reinsurance in the diffusion-perturbed model.

More recently, taking ruin probability as a risk measure
for the insurer, [6] investigated a dynamic optimal reinsur-
ance problem with both fixed and proportional transaction
costs for an insurer whose surplus process is modelled by a
Brownian motion with positive drift. Under the assumption
that the insurer takes noncheap proportional reinsurance,
they formulated the problem as a mixed regular control and
optimal stopping problem and established that the optimal
reinsurance strategy was to never take reinsurance if propor-
tional costs were high and to wait to take the reinsurance
when the surplus hits a level. Additionally, they obtained
an explicit expression for the survival probability under the
optimal reinsurance strategy and found it to be larger than
that with the aforementioned strategies. Hu and Zhang [7]
introduced a general risk model involving dependence struc-
ture with common Poisson shocks. Under a combined quota-
share and excess-of-loss reinsurance arrangements, they
studied the optimal reinsurance strategy for maximizing the
insurer’s adjustment coefficient and established that excess-
of-loss reinsurance was optimal from the insurer’s point of
view. Zhang and Liang [8] studied the optimal retentions for
an insurance company that intends to transfer risk by means
of a layer reinsurance treaty. Under the criterion of maxi-
mizing the adjustment coefficient, they obtained the closed-
form expressions of the optimal results for the Brownian
motion as well as the compound Poisson risk models and
concluded that under the expected value principle excess-of-
loss reinsurance is better than any other layer reinsurance
strategies while under the variance premium principle pure
excess-of-loss reinsurance is no longer the optimal layer
reinsurance strategy. Both of these studies, however, used
the criterion of maximizing the adjustment coefficient rather
than minimizing the insurer’s ruin probability.

This paper aims at combining proportional and excess-
of-loss reinsurance for one and the same insurance portfolio.
In proportional or “pro rata” reinsurance, the reinsurer
indemnifies the cedent for a predetermined portion of the
claims or losses, while in excess-of-loss (XL) reinsurance,
which is nonproportional, the reinsurer indemnifies the
cedent for all claims or losses or for a specified portion of

them, but only if the claim sizes fall within a prespecified
band. Excess-of-loss reinsurance has been defined in [9] as
“a form of nonproportional reinsurance contract in which
an insurer pays insurance claims up to a prefixed retention
level and the rest are paid by a reinsurer.” Mathematically,
given retention level 𝑎, a claim of size 𝑋 is divided into the
cedent’s payment 𝑋 ∧ 𝑎 and the reinsurer’s payment 𝑋 −𝑋 ∧ 𝑎. The combination of proportional and excess-of-loss
reinsurance has been in fact widely used in the construction
of reinsurance models (see, e.g., [10]).

The models in this paper result in Volterra integral
equations (VIEs) of the second kind which are solved using
the block-by-block method, generally considered as the best
of the higher order methods for solving Volterra integral
equations of the second kind. The block-by-block methods
are essentially extrapolation procedures which produce a
block of values at a time.These methods can be of high order
and still be self-starting. They do not require special starting
procedures, are simple to use, and allow for easy switching of
step-size [11].

The rest of the paper is organized as follows. Section 2
presents the formulation of the model and assumptions,
followed, in Section 3, by a derivation of the HJB, integrod-
ifferential, and integral equations. In Section 4, we present
numerical results for some ruin probabilitymodels with rein-
surance, using the exponential distribution for small˜claims
and the Pareto distribution for large ones. Some conclusions
and possible extensions of this study are given in Section 5.

2. Model Formulation

Let (Ω,F, {F𝑡}𝑡∈R+ ,P) be a filtered probability space con-
taining all stochastic objects encountered in this paper and
satisfying the usual conditions; that is, {F𝑡}𝑡∈R+ is right-
continuous and P-complete. In the absence of reinsurance,
the surplus of an insurance company is governed by the
diffusion-perturbed classical risk process:

𝑈𝑡 = 𝑢 + 𝑐𝑡 + 𝜎𝑊𝑡 −
𝑁𝑡∑
𝑖=1

𝑋𝑖, 𝑡 ≥ 0, (1)

where 𝑢 = 𝑈0 ≥ 0 is the initial reserve, 𝑐 = (1 + 𝜃)𝜆𝜇 >0 is the premium rate, 𝜃 is the safety loading, {𝑁𝑡} is a
homogeneous Poisson process with intensity 𝜆 > 0, and {𝑋𝑖}
is an i.i.d. sequence of strictly positive random variables with
distribution function 𝐹. 𝑆𝑡 = ∑𝑁𝑡𝑖=1𝑋𝑖 is a compound Poisson
process representing the cumulative amount of claims paid
in the time interval [0, 𝑡]. The claim arrival process {𝑁𝑡} and
claim sizes {𝑋𝑖} are assumed to be independent. Here {𝑊𝑡} is a
standard one-dimensional Brownian motion independent of
the compound Poisson process 𝑆𝑡. We assume that E[𝑋𝑖] =𝜇 < ∞ and 𝐹(0) = 0. The diffusion term 𝜎𝑊𝑡 denotes
the fluctuations associated with the surplus of the insurance
company at time 𝑡.Without volatility in the surplus and claim
amounts, (1) becomes the well-known Cramér-Lundberg
model or the classical risk process.

We proceed as in [12] where the insurer took a com-
bination of quota-share and excess-of-loss reinsurance
arrangements. Most of the actuarial literature dealing with
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reinsurance as a risk control mechanism only considers pure
quota-share or excess-of-loss reinsurance. However, in reality
the insurer has the choice of a combination of the two
and hence the use of a combination of quota-share and XL
reinsurance in this paper. We assume that the reinsurance
is cheap, meaning that the reinsurer uses the same safety
loading as the insurer. Let the quota-share retention level
be 𝑘 ∈ [0, 1]. Then the insurer’s aggregate claims, net of
quota-share reinsurance, are 𝑘𝑋. If the company also buys
excess-of-loss reinsurance with a retention level 𝑎 ∈ [0,∞),
then the insurer’s aggregate claims, net of quota-share and
excess-of-loss reinsurance, are given by 𝑘𝑋 ∧ 𝑎. Given that 𝑅
is a reinsurance strategy combining quota-share and excess-
of-loss reinsurance, the insurer’s controlled surplus process
becomes

𝑈𝑅𝑡 = 𝑢 + 𝑐𝑅𝑡 + 𝜎𝑊𝑡 −
𝑁𝑡∑
𝑖=1

𝑘𝑋𝑖 ∧ 𝑎, (2)

where the insurance premium 𝑐𝑅 = 𝑐− (1+𝜃)𝜆E[(𝑘𝑋𝑖 −𝑎)+].
The controlled surplus process (2) has dynamics

𝑑𝑈𝑅𝑡 = 𝑐𝑅𝑑𝑡 + 𝜎𝑑𝑊𝑡 − 𝑑(𝑁𝑡∑
𝑖=1

𝑘𝑋𝑖 ∧ 𝑎) . (3)

The time of ruin is defined as 𝜏𝑅 = inf{𝑡 ≥ 0 | 𝑈𝑅𝑡 < 0} and
the probability of ultimate ruin is defined as 𝜓𝑅 = P(𝑈𝑅𝑡 <0 for some 𝑡 > 0). A reinsurance strategy 𝑅 is said to be
admissible if 𝑘 ∈ [0, 1] and 𝑎 ∈ [0,∞). The objective is to
find the quota-share level 𝑘 and the excess-of-loss retention
limit 𝑎 to minimize the insurer’s risk or to maximize the
insurer’s survival probability. It should be noted that when the
retention limit 𝑎 of the excess-of-loss reinsurance is infinite,
then the treaty becomes a pure quota-share reinsurance, while
when the quota-share level 𝑘 = 1, it becomes a pure excess-of-
loss reinsurance treaty.The premium income of the insurance
company is nonnegative if 𝑐 ≥ (1+𝜃)𝜆E[(𝑘𝑋−𝑎)+].Therefore,
we will let 𝑎 be the XL retention level at which equality 𝑐 =(1 + 𝜃)𝜆E[(𝑘𝑋 − 𝑎)+] holds.

Define the value function of this problem as

𝜓𝑅 (𝑢) = P (𝑈𝑡 ≤ 0 for some 𝑡 ≥ 0 | 𝑈𝑅0 = 𝑢)
= P (𝜏𝑅 < ∞ | 𝑈𝑅0 = 𝑢) , (4)

where 𝜓𝑅(𝑢) is the probability of ultimate ruin under the
policy 𝑅 when the initial surplus is 𝑢. Then the objective is
to find the optimal value function, that is, the minimal ruin
probability

𝜓 (𝑢) = inf
(𝑘,𝑎)∈R

𝜓𝑅 (𝑢) (5)

and optimal policy (𝑅)∗ = (𝑘∗, 𝑎∗) s.t. 𝜓𝑅∗(𝑢) = 𝜓(𝑢). Alter-
natively, we can find the values of 𝑘∗ and 𝑎∗ which maximize

the probability of ultimate survival 𝜙(𝑢) = 1 − 𝜓(𝑢), so that
the optimal value function becomes

𝜙 (𝑢) = sup
(𝑘,𝑎)∈R

𝜙𝑅 (𝑢) , (6)

whereR is the set of all reinsurance policies.

3. HJB, Integrodifferential,
and Integral Equations

Lemma 1. Assume that the survival probability 𝜙(𝑢) defined
by (6) is twice continuously differentiable on (0,∞). Then 𝜙(𝑢)
satisfies the HJB equation

sup
(𝑘,𝑎)∈R

{12𝜎2𝜙󸀠󸀠 (𝑢) + 𝑐𝑅𝜙󸀠 (𝑢)
+ 𝜆∫𝑢
0
[𝜙 (𝑢 − 𝑘𝑥 ∧ 𝑎) − 𝜙 (𝑢)] 𝑑𝐹 (𝑥)} = 0,

𝑢 > 0,
(7)

whereR is the set of all reinsurance policies.

Proof. See [13].

We now present the verification theorem which is essen-
tial for solving the associated stochastic control problem.

Theorem 2. Suppose Φ ∈ 𝐶2 is an increasing strictly concave
function satisfying HJB equation (7) subject to the boundary
conditions

Φ (𝑢) = 0 on 𝑢 < 0
Φ (0) = 0 if 𝜎2 > 0

lim
𝑢→∞

Φ (𝑢) = 1
(8)

for 0 ≤ 𝑢 < ∞. Then the maximal survival probability 𝜙(𝑢)
given by (6) coincides with Φ. Furthermore, if (𝑅)∗ = (𝑘∗, 𝑎∗)
satisfies

12𝜎2Φ󸀠󸀠 (𝑢) + 𝑐𝑅∗Φ󸀠 (𝑢)
+ 𝜆∫𝑢
0
[Φ (𝑢 − 𝑘∗𝑥 ∧ 𝑎∗) − Φ (𝑢)] 𝑑𝐹 (𝑥) = 0

𝑤ℎ𝑒𝑛 0 ≤ 𝑢 < ∞
(9)

then the policy (𝑅)∗ is an optimal policy; that is,Φ(𝑢) = 𝜙(𝑢) =
𝜙𝑅∗(𝑢).
Proof. Let𝑅 be an arbitrary reinsurance strategy and let𝑈∗ be
the surplus process when 𝑅 = 𝑅∗. Choose 𝑛 > 𝑢 and define
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𝑇 = T𝑛 = inf{𝑡 | 𝑈𝑡 ∉ [0, 𝑛]}. Note that 𝑈𝑇∧𝑡 ∈ (−∞, 𝑛]
because the jumps are downwards. The process

𝑀1𝑡 =
𝑁𝑇∧𝑡∑
𝑖=1

[Φ (𝑈𝑇𝑖) − Φ (𝑈𝑇
𝑖
−
)]

− 𝜆∫𝑇∧𝑡
0

[∫𝑈𝑠
0

Φ(𝑈𝑠 − 𝑘𝑥 ∧ 𝑎) 𝑑𝐹 (𝑥)
− Φ (𝑈𝑠)] 𝑑𝑠

(10)

is a martingale. We write

Φ(𝑈𝑇∧𝑡) = Φ (𝑢) + Φ (𝑈𝑇∧𝑡) − Φ(𝑈𝑇𝑁𝑇∧𝑡)
+ 𝑁𝑇∧𝑡∑
𝑖=1

[Φ (𝑈𝑇
𝑖
−
) − Φ (𝑈𝑇𝑖−1)] +𝑀1𝑡

+ 𝜆∫𝑇∧𝑡
0

[∫𝑈𝑠
0

Φ(𝑈𝑠 − 𝑘𝑥 ∧ 𝑎) 𝑑𝐹 (𝑥)
− Φ (𝑈𝑠)] 𝑑𝑠.

(11)

By Itô’s formula,

Φ(𝑈𝑇
𝑖
−
) − Φ (𝑈𝑇𝑖−1)

= ∫𝑇𝑖
𝑇𝑖−1

[12𝜎2Φ󸀠󸀠 (𝑈𝑠) + 𝑐𝑅Φ󸀠 (𝑈𝑠)] 𝑑𝑠
+ ∫𝑇𝑖
𝑇𝑖−1

𝜎Φ󸀠 (𝑈𝑠) 𝑑𝑊𝑠.
(12)

The corresponding result holds forΦ(𝑈𝑇∧𝑡)−Φ(𝑈𝑇𝑁𝑇∧𝑡 ).Thus,

Φ(𝑈𝑇∧𝑡) = Φ (𝑢) + ∫𝑇∧𝑡
0

[12𝜎2Φ󸀠󸀠 (𝑈𝑠) + 𝑐𝑅Φ󸀠 (𝑈𝑠)
+ 𝜆(∫𝑈𝑠

0
Φ(𝑈𝑠 − 𝑘𝑥 ∧ 𝑎) 𝑑𝐹 (𝑥) − Φ (𝑈𝑠))] 𝑑𝑠

+ ∫𝑇∧𝑡
0

𝜎Φ󸀠 (𝑈𝑠) 𝑑𝑊𝑠 +𝑀1𝑡 .
(13)

Using HJB equation (7), we find that

Φ(𝑈𝑇∧𝑡) ≤ Φ (𝑢) + ∫𝑇∧𝑡
0

𝜎Φ󸀠 (𝑈𝑠) 𝑑𝑊𝑠 +𝑀1𝑡 (14)

and equality holds for𝑈∗. Let {S𝑚} be a localization sequence
of the stochastic integral, and set T𝑚𝑛 = T𝑛 ∧ S𝑚. Taking
expectations yields

E [Φ (𝑈T𝑚
𝑛
∧𝑡)] ≤ Φ (𝑢) . (15)

By bounded convergence, letting 𝑚 → ∞ and then 𝑡 → ∞,
we have E[Φ(𝑈T𝑛

)] ≤ Φ(𝑢). It turns out that, for Φ(0) = 0,
P (𝜏 < T𝑛, 𝑈𝜏 = 0) + Φ (𝑛)P (T𝑛 < 𝜏)

= E [Φ (𝑈T𝑛
)] ≤ Φ (𝑢) . (16)

Note thatP(T𝑛 < 𝜏) ≥ 𝜙𝑅(𝑢). Because there is a strategywith
𝜙𝑅(𝑢) > 0, it follows that Φ(𝑢) is bounded. We therefore let𝑛 → ∞, yielding E[Φ(𝑈𝜏)] ≤ Φ(𝑢). In particular, we obtain

𝜙𝑅 (𝑢)Φ (∞) ≤ 𝜙𝑅 (𝑢)Φ (∞) + P (𝜏 < ∞,𝑈𝜏 = 0)
≤ Φ (𝑢) (17)

which simplifies to

𝜙𝑅 (𝑢) ≤ 𝜙𝑅 (𝑢) + P (𝜏 < ∞,𝑈𝜏 = 0) ≤ Φ (𝑢) (18)

since Φ(∞) = 1. For 𝑈∗ we obtain an equality. In particular,{Φ(𝑈∗𝑡 )} is a martingale. It remains to show that P(𝑈∗𝜏 ̸=0) = 1. Note first from HJB equation (7) that 𝐹(𝑥) must
be continuous; if not, the integral in (7) is not continuous.
Choose 𝜀 > 0 and consider the strategy 𝑅 = 𝑅∗1𝑢≥𝜀. Let𝑇𝜀 = inf{𝑡 | 𝑈∗𝑡 < 𝜀}. By the martingale property, Φ(𝑢) =Φ(∞)P(𝑇𝜀 = ∞) + E[Φ(𝑇𝜀), 𝑇𝜀 < 𝜏 < ∞] which reduces to

Φ (𝑢) = P (𝑇𝜀 = ∞) + E [Φ (𝑇𝜀) , 𝑇𝜀 < 𝜏 < ∞] (19)

the last term of which is bounded by Φ(𝜀)P(𝑇𝜀 < 𝜏 <∞). Since 𝐹(𝑥) is continuous, it must converge to zero as𝜀 → 0. Because P(𝑇𝜀 = ∞) → 𝜙∗(𝑢), it follows thatΦ(𝑢) = 𝜙∗(𝑢)Φ(∞) or Φ(𝑢) = 𝜙∗(𝑢) = 𝜙(𝑢). That is, Φ(𝑢)
is the optimal value function and 𝑅∗ = (𝑅)∗ is an optimal
policy.

The integrodifferential equation corresponding to opti-
mization problem (6) immediately follows from Theorem 2
as

12𝜎2𝜙󸀠󸀠 (𝑢) + 𝑐𝑅𝜙󸀠 (𝑢)
+ 𝜆∫𝑢
0
[𝜙 (𝑢 − 𝑘𝑥 ∧ 𝑎) − 𝜙 (𝑢)] 𝑑𝐹 (𝑥) = 0

for 0 ≤ 𝑢 < ∞.
(20)

This is an integrodifferential equation of Volterra type
(VIDE). Solution of this equation will require that it is trans-
formed into a Volterra integral equation (VIE) of the second
kind using successive integration by parts. Hence the follow-
ing theorem is obtained.

Theorem 3. Integrodifferential equation (20) can be repre-
sented as a Volterra integral equation of the second kind:

𝜙 (𝑢) + ∫𝑢
0
𝐾 (𝑢, 𝑥) 𝜙 (𝑥) 𝑑𝑥 = ℎ (𝑢) , (21)

where

(1) If 𝑢 ≤ 𝑎 < 𝑎, one has
𝐾 (𝑢, 𝑥) = −𝜆𝐹 (𝑢 − 𝑘𝑥)

𝑐𝑅
ℎ (𝑢) = 𝜙 (0)

(22)
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with 𝐹(𝑥) = 1 − 𝐹(𝑥), when there is no diffusion (i.e.,
when 𝜎2 = 0), and

𝐾 (𝑢, 𝑥) = 2 (𝑐𝑅 + 𝜆𝐺 (𝑢 − 𝑘𝑥) − 𝜆 (𝑢 − 𝑘𝑥))
𝜎2

ℎ (𝑢) = 𝑢𝜙󸀠 (0) if 𝜎2 > 0
(23)

when there is diffusion.
(2) If 𝑎 < 𝑎 < 𝑢, one has

𝐾 (𝑢, 𝑥) = −𝜆𝐻1 (𝑥, 𝑢)𝑐𝑅
ℎ (𝑢) = 𝜙 (0)

(24)

with

𝐻1 (𝑥, 𝑢) = {{{
𝐹 (𝑢 − 𝑘𝑥) 𝑘𝑥 < 𝑎
1 − (𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)) 𝑘𝑥 ≥ 𝑎 (25)

when there is no diffusion, and

𝐾 (𝑢, 𝑥) = 2 (𝑐𝑅 + 𝜆𝐻2 (𝑥, 𝑢) − 𝜆 (𝑢 − 𝑘𝑥))
𝜎2

ℎ (𝑢) = 𝑢𝜙󸀠 (0) if 𝜎2 > 0
(26)

with

𝐻2 (𝑥, 𝑢) = {{{
𝐺 (𝑢 − 𝑘𝑥) 𝑘𝑥 < 𝑎
(𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)) (𝑢 − 𝑘𝑥) 𝑘𝑥 ≥ 𝑎 (27)

and 𝐺(𝑥) = ∫𝑥
0
𝐹(V)𝑑V when there is diffusion.

Proof. The proof for the case 𝑢 ≤ 𝑎 < 𝑎 is similar to the proof
ofTheorem 2.2 in [14] but with 𝑟 = 𝜎2𝑅 = 0, 𝑘 = 1, and 𝑝 = 𝑐𝑅.
Here, we present the proof for the case 𝑎 < 𝑎 < 𝑢.

Integrating (20) on [0, 𝑧] with respect to 𝑢 gives

0 = 12𝜎2 [𝜙󸀠 (𝑧) − 𝜙󸀠 (0)] + 𝑐𝑅 [𝜙 (𝑧) − 𝜙 (0)]
− 𝜆∫𝑧
0
𝜙 (𝑢) 𝑑𝑢

+ 𝜆∫𝑧
0
∫𝑢
0
𝜙 (𝑢 − 𝑘𝑥 ∧ 𝑎) 𝑓 (𝑥) 𝑑𝑥 𝑑𝑢.

(28)

To simplify the double integral in (28), we again use inte-
gration by parts and Fubini’s Theorem (see [13]) to switch
the order of integration and change the properties of the
convolution integral. Thus,

∫𝑧
0
∫𝑢
0
𝜙 (𝑢 − 𝑘𝑥 ∧ 𝑎) 𝑓 (𝑥) 𝑑𝑥 𝑑𝑢

= ∫𝑎
0
𝐹 (𝑧 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

+ ∫𝑧
𝑎
𝜙 (]) [𝐹 (] + 𝑎) − 𝐹 (𝑎)] 𝑑],

(29)

where ] = 𝑢 − 𝑘𝑥. Substituting into (28) gives
12𝜎2𝜙󸀠 (𝑧) − 12𝜎2𝜙󸀠 (0) + 𝑐𝑅𝜙 (𝑧) − 𝑐𝑅𝜙 (0)

− 𝜆∫𝑧
0
𝜙 (𝑢) 𝑑𝑢 + 𝜆 [∫𝑎

0
𝐹 (𝑧 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

+ ∫𝑧
𝑎
𝜙 (]) [𝐹 (] + 𝑎) − 𝐹 (𝑎)] 𝑑]] = 0.

(30)

Replacing 𝑧with 𝑢, ] and 𝑢with 𝑥, and𝐹(]+𝑎)with𝐹(𝑘𝑥+𝑎)
gives

12𝜎2𝜙󸀠 (𝑢) − 12𝜎2𝜙󸀠 (0) + 𝑐𝑅𝜙 (𝑢) − 𝑐𝑅𝜙 (0)
− 𝜆∫𝑢
0
𝜙 (𝑥) 𝑑𝑥 + 𝜆∫𝑎

0
𝐹 (𝑢 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

+ 𝜆∫𝑢
𝑎
[𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)] 𝜙 (𝑥) 𝑑𝑥 = 0.

(31)

Setting 𝜎2 = 0 in (31) yields the case without diffusion

𝜙 (𝑢) − 𝜆
𝑐𝑅 ∫
𝑎

0
𝐹 (𝑢 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

− 𝜆
𝑐𝑅 ∫
𝑢

𝑎
[1 − (𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎))] 𝜙 (𝑥) 𝑑𝑥

= 𝜙 (0)
(32)

from which the kernel is clearly 𝐾(𝑢, 𝑥) = −𝜆𝐻1(𝑥, 𝑢)/𝑐𝑅
with

𝐻1 (𝑥, 𝑢) = {{{
𝐹 (𝑢 − 𝑘𝑥) 𝑘𝑥 < 𝑎
1 − (𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)) 𝑘𝑥 ≥ 𝑎 (33)

and the forcing function is ℎ(𝑢) = 𝜙(0) as given by (24).
For the case with diffusion, repeated integration by parts

of (30) on [0, 𝑢] with respect to 𝑧 yields the desired result.

𝜙 (𝑢) + 2𝜎2 ∫
𝑢

0
(𝑐𝑅 − 𝜆 (𝑢 − 𝑘𝑥)) 𝜙 (𝑥) 𝑑𝑥

+ 2𝜆𝜎2 [∫
𝑎

0
𝐺 (𝑢 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

+ ∫𝑢
𝑎
[𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)] (𝑢 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥]

= 𝜎2 (𝜙 (0) + 𝑢𝜙󸀠 (0)) + 2𝑐𝑅𝑢𝜙 (0)
𝜎2

(34)
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Figure 1: Ultimate ruin probabilities at different proportional retention levels in the Cramér-Lundberg model: 𝜆 = 2, 𝑐 = 6.

which is a linear VIE of the second kindwith𝐾(𝑢, 𝑥) and ℎ(𝑢)
as given in (26).

4. Numerical Results

We solved (21) using the fourth-order block-by-block
method, a full description of which can be found in [11, 14, 15].
Exp(𝛽) refers to the exponential density 𝑓(𝑥) = 𝛽𝑒−𝛽𝑥, so
that the distribution function for the exponential distribution
is 𝐹(𝑥) = 1 − 𝑒−𝛽𝑥 and its tail distribution is 𝐹(𝑥) = 1 −𝐹(𝑥) = 𝑒−𝛽𝑥. The mean excess function for the exponential
distribution is 𝑒𝐹(𝑥) = 1/𝛽 and 𝐺(𝑥) = 𝑥 − (1/𝛽)𝐹(𝑥). The
Pareto(𝛼, 𝜅) distribution, which is a special case of the three-
parameter Burr(𝛼, 𝜅, 𝜏) distribution, has density 𝑓(𝑥) =𝛼𝜅𝛼/(𝜅+𝑥)𝛼+1 for𝛼 > 0 and 𝜅 = 𝛼−1 > 0, and its distribution
function is 𝐹(𝑥) = 1−(𝜅/(𝜅+𝑥))𝛼.The tail distribution of the
Pareto distribution is 𝐹(𝑥) = (𝜅/(𝜅+𝑥))𝛼 and its mean excess
function is 𝑒𝐹(𝑥) = 1+𝑥/𝜅, so that𝐺(𝑥) = 𝑥− (1 +𝑥/𝜅)𝐹(𝑥).
A grid size of ℎ = 0.01 was used throughout. The data
simulations were performed using a Samsung Series 3 PC
with an Intel Celeron 847 processor at 1.10 GHz and 6.0GB
RAM. To reduce computing time, the numerical method was
implemented using the FORTRAN programming language,
taking advantage of its DOUBLE PRECISION feature which
gives a high degree of accuracy. The figures were constructed
using MATLAB R2016a.

4.1. Ultimate Ruin Probability in the Cramér-Lundberg Model
Compounded by Proportional Reinsurance. Here, the surplus
process takes the form

𝑈𝑅𝑡 = 𝑢 + 𝑘𝑐𝑡 − 𝑁𝑡∑
𝑖=1

𝑘𝑋𝑖. (35)

So, the survival probability 𝜙(𝑢) satisfies (21) and (22) with
𝑎 = ∞ and 𝑐𝑅 = 𝑘𝑐; that is, it satisfies a VIE of the second
kind with kernel and forcing function given by

𝐾 (𝑢, 𝑥) = −𝜆𝐹 (𝑢 − 𝑘𝑥)𝑘𝑐
ℎ (𝑢) = 𝜙 (0) .

(36)

Figure 1 shows the ultimate ruin probabilities in the
Cramér-Lundberg model for different proportional reinsur-
ance retention levels 𝑘 and provides validity for the assertion
that reinsurance does in fact reduce the ruin probability, thus
increasing the insurance company’s chances of survival. The
results for the case 𝑘 = 1 (no reinsurance) are the same as
those obtained in [14].

4.2. Ultimate Ruin Probability in the Cramér-Lundberg Model
Compounded by Excess-of-Loss Reinsurance. This is the case
of 𝑘 = 1 and 𝜎 = 0, so the surplus process is

𝑈𝑅𝑡 = 𝑢 + 𝑐𝑅𝑡 − 𝑁𝑡∑
𝑖=1

𝑋𝑖 ∧ 𝑎, (37)

where 𝑐𝑅 = 𝑐 − (1 + 𝜃)𝜆E[(𝑋𝑖 − 𝑎)+]. Here, for the case 𝑎 <𝑎 < 𝑢, the kernel and forcing function are given by

𝐾 (𝑢, 𝑥) = −𝜆𝐻 (𝑥, 𝑢)
𝑐𝑅

ℎ (𝑢) = 𝜙 (0)
(38)
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Table 1: Ruin probabilities for XL reins. in CLM: Exp(0.5) claims (𝜆 = 2, 𝑐 = 6).
𝑢 𝜓∞(𝑢) 𝜓35(𝑢) 𝜓30(𝑢) 𝜓25(𝑢) 𝜓20(𝑢)
0 0.6667 0.6667 0.6667 0.6667 0.6667
2 0.4777 0.4777 0.4777 0.4777 0.4777
4 0.3423 0.3423 0.3423 0.3423 0.3422
6 0.2453 0.2453 0.2453 0.2453 0.2453
8 0.1757 0.1757 0.1757 0.1757 0.1757
10 0.1259 0.1259 0.1259 0.1259 0.1258
12 0.0902 0.0902 0.0902 0.0902 0.0901
14 0.0646 0.0646 0.0646 0.0646 0.0646
16 0.0463 0.0463 0.0463 0.0463 0.0462
18 0.0332 0.0332 0.0332 0.0332 0.0331
20 0.0238 0.0238 0.0238 0.0238 0.0237

Table 2: Ruin probabilities for XL reins. in CLM: Par(3, 2) claims (𝜆 = 2, 𝑐 = 6).
𝑢 𝜓∞(𝑢) 𝜓35(𝑢) 𝜓30(𝑢) 𝜓25(𝑢) 𝜓20(𝑢)
0 0.6667 0.6667 0.6667 0.6667 0.6667
2 0.5634 0.5636 0.5637 0.5639 0.5641
4 0.5331 0.5335 0.5336 0.5338 0.5341
6 0.5198 0.5202 0.5204 0.5206 0.5210
8 0.5130 0.5134 0.5135 0.5138 0.5142
10 0.5090 0.5095 0.5096 0.5099 0.5103
12 0.5066 0.5070 0.5072 0.5074 0.5079
14 0.5050 0.5054 0.5056 0.5058 0.5063
16 0.5039 0.5043 0.5045 0.5048 0.5052
18 0.5031 0.5036 0.5037 0.5040 0.5044
20 0.5025 0.5030 0.5032 0.5034 0.5039

with

𝐻(𝑥, 𝑢) = {{{
𝐹 (𝑢 − 𝑥) 𝑥 < 𝑎
1 − (𝐹 (𝑥 + 𝑎) − 𝐹 (𝑎)) 𝑥 ≥ 𝑎. (39)

This is simply (22) and (24) with 𝑘 = 1 and 𝑐𝑅 = 𝑐 − (1 +𝜃)𝜆E[(𝑋𝑖 − 𝑎)+].
Ruin probabilities for the Cramér-Lundberg model com-

pounded by excess-of-loss (XL) reinsurance are given in
Table 1 for different values of the XL retention level 𝑎 ranging
from 20 to infinity. Clearly, for Exp(0.5) claims, the ruin
probabilities for the different retention levels reduce only very
slightly as the retention level reduces. For Pareto(3, 2) claims,
the ruin probabilities increase slightly as the retention level
reduces (as shown in Table 2), meaning that it is optimal not
to reinsure. But comparing these probabilities with Figure 1
leads to the conclusion that proportional reinsurance results
in much lower ruin probabilities for the CLM as well as the
perturbed model.

4.3. Ultimate Ruin Probability in the Perturbed Classical
Risk Process Compounded by Proportional Reinsurance. The

survival probability 𝜙(𝑢) satisfies (21) and (26) with 𝑎 = ∞;
that is,

𝜙 (𝑢)
+ 2𝜎2 ∫

𝑢

0
[𝑘𝑐 − 𝜆 (𝑢 − 𝑘𝑥) + 𝜆𝐺 (𝑢 − 𝑘𝑥)] 𝜙 (𝑥) 𝑑𝑥

= 𝜎2 (𝜙 (0) + 𝑢𝜙󸀠 (0)) − 2𝑘𝑐𝑢𝜙 (0)
𝜎2

(40)

which is a VIE of the second kind with kernel and forcing
function given, respectively, by

𝐾 (𝑢, 𝑥) = 2 [𝑘𝑐 − 𝜆 (𝑢 − 𝑘𝑥) + 𝜆𝐺 (𝑢 − 𝑘𝑥)]𝜎2
ℎ (𝑢) = 𝑢𝜙󸀠 (0) if 𝜎2 > 0.

(41)

Figure 2 depicts the ruin probabilities for the diffusion-
perturbed model compounded by proportional reinsurance
for different retention levels ranging from 𝑘 = 1 (no
reinsurance) to 𝑘 = 0.2 (80% reinsurance). In the case
of both Exp(0.5) claims and Pareto(3, 2) claims, applying
proportional reinsurance significantly reduces the ultimate
ruin probability of an insurance company.
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(b) Pareto(3, 2) claims

Figure 2: Ultimate ruin probabilities at different proportional retention levels in the diffusion-perturbed model: 𝜆 = 2, 𝑐 = 6, 𝜎 = 0.02.

Table 3: Ruin probabilities for XL reins. in DPM: Exp(0.5) claims (𝜆 = 2, 𝑐 = 6, 𝜎 = 0.02).
𝑢 𝜓∞(𝑢) 𝜓35(𝑢) 𝜓30(𝑢) 𝜓25(𝑢) 𝜓20(𝑢)
0 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.5159 0.5159 0.5159 0.5155 0.5109
4 0.3467 0.3467 0.3466 0.3461 0.3399
6 0.2458 0.2458 0.2457 0.2451 0.2380
8 0.1759 0.1759 0.1758 0.1752 0.1674
10 0.1257 0.1258 0.1257 0.1250 0.1167
12 0.0901 0.0901 0.0901 0.0893 0.0807
14 0.0646 0.0646 0.0645 0.0638 0.0550
16 0.0463 0.0463 0.0463 0.0455 0.0365
18 0.0333 0.0333 0.0332 0.0324 0.0233
20 0.0240 0.0241 0.0240 0.0232 0.0140

4.4. Ultimate Ruin Probability in the Perturbed Classical
Risk Process Compounded by Excess-of-Loss Reinsurance. The
survival probability 𝜙(𝑢) satisfies a VIE of the second kind
with kernel 𝐾(𝑢, 𝑥) as given in (23) (for the case 𝑢 ≤ 𝑎 < 𝑎)
and (26) (for the case 𝑎 < 𝑎 < 𝑢), with 𝑘 = 1, and forcing
function ℎ(𝑢) = 𝑢𝜙󸀠(0) in both cases. That is,

for𝑢 ≤ 𝑎 < 𝑎,𝐾(𝑢, 𝑥) = 2[𝑐𝑅+𝜆𝐺(𝑢−𝑥)−𝜆(𝑢−𝑥)]/𝜎2;
for 𝑎 < 𝑎 < 𝑢,𝐾(𝑢, 𝑥) = 2[𝑐𝑅+𝜆𝐻2(𝑥, 𝑢)−𝜆(𝑢−𝑥)]/𝜎2

with

𝐻2 (𝑥, 𝑢) = {{{
𝐺 (𝑢 − 𝑥) 𝑥 < 𝑎
(𝐹 (𝑥 + 𝑎) − 𝐹 (𝑎)) (𝑢 − 𝑥) 𝑥 ≥ 𝑎. (42)

The impact of XL reinsurance on the ruin probabilities in
a diffusion-perturbed model is evident from Table 3 which
shows a reduction in the ruin probabilities for XL retentions
not exceeding 𝑎 = 30 for small claims. However, as can be
seen from Table 4, the ruin probabilities for large claims are
higher for values of 𝑎 exceeding 150 but reduce significantly
for values of 𝑎 below 150. But again, if we compare these
results with Figure 2 we see that the ruin probabilities are
much lower for proportional reinsurance.

4.5. Optimal Reinsurance Strategy: Asymptotic Ruin Proba-
bilities. It is known that the optimal quota-share retention𝑘∗ tends to the asymptotically optimal 𝑘𝜌 that maximizes
the adjustment coefficient 𝜌 [13]. Therefore, since it was not
possible to determine the optimal retention 𝑘∗ from the
results discussed in Sections 4.1–4.4, we will use asymptotic
ruin probabilities. For illustrative purposes, we will now find
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Table 4: Ruin probabilities for XL reins. in DPM: Par(3, 2) claims (𝜆 = 2, 𝑐 = 6, 𝜎 = 0.02).
𝑢 𝜓∞(𝑢) 𝜓200(𝑢) 𝜓150(𝑢) 𝜓100(𝑢) 𝜓50(𝑢)
0 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.2026 0.2029 0.2027 0.2022 0.1973
4 0.0744 0.0747 0.0745 0.0740 0.0683
6 0.0401 0.0405 0.0403 0.0397 0.0338
8 0.0257 0.0260 0.0258 0.0252 0.0192
10 0.0171 0.0174 0.0172 0.0167 0.0106
12 0.0124 0.0127 0.0125 0.0119 0.0058
14 0.0093 0.0096 0.0094 0.0088 0.0027
16 0.0072 0.0075 0.0073 0.0067 0.0006
18 0.0058 0.0061 0.0059 0.0054 0.0008
20 0.0050 0.0054 0.0052 0.0042 0.0015

Table 5: Asympt. ruin prob. for CLM with proportional reins. (Pareto claims) (𝑐 = 6, 𝜆 = 2, 𝜃 = 𝜂 = 1).
𝑢 𝜓1(𝑢) 𝜓0.6(𝑢) 𝜓0.2(𝑢) 𝜓0.05(𝑢) 𝜓0.0125(𝑢) 𝜓0.003125(𝑢)
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.3333 0.2308 0.0909 0.0244 0.0062 0.0016
4 0.2000 0.1304 0.0476 0.0123 0.0031 0.0008
6 0.1429 0.0909 0.0323 0.0083 0.0021 0.0005
8 0.1111 0.0698 0.0244 0.0062 0.0016 0.0004
10 0.0909 0.0566 0.0196 0.0050 0.0012 0.0003
12 0.0769 0.0476 0.0164 0.0041 0.0010 0.0003
14 0.0667 0.0411 0.0141 0.0036 0.0009 0.0002
16 0.0588 0.0361 0.0123 0.0031 0.0008 0.0002
18 0.0526 0.0323 0.0110 0.0028 0.0007 0.0002
20 0.0476 0.0291 0.0099 0.0025 0.0006 0.0002

the optimal strategies only in the CLM for both the small and
large claim cases.

4.5.1. Exponential Claims. We note, as in [13], that for
exponential claims the optimal choice of the quota-share
retention 𝑘 that maximizes the adjustment coefficient 𝜌(𝑘) is
given by

𝑘𝜌 = min{(1 − 𝜂𝜃)(1 + 1√1 + 𝜃) , 1} , (43)

where 𝜃 and 𝜂 are, respectively, the safety loadings of the
reinsurer and insurer. Because maximizing the adjustment
coefficient yields the asymptotically best strategy, we expect
that the optimal retention 𝑘∗ will tend to 𝑘𝜌. Since this study
assumes cheap reinsurance (i.e., 𝜃 = 𝜂), we have the fact
that 𝑘𝜌 = 0. That is, it is optimal for the insurance company
to reinsure the entire portfolio or to take full proportional
reinsurance.

4.5.2. Pareto Claims. For a given initial surplus 𝑢 and a
retention level 𝑘 ∈ [0, 1], let the calculated ruin probability be

given by 𝜓𝑘(𝑢). Then, for large claims, the asymptotic values
of the ruin probability are given by

𝜓𝑘 (𝑢) = 1𝑘𝜃 − (𝜃 − 𝜂) 𝑘1 + 𝑢/𝑘 . (44)

This ruin probability is minimized when 𝑘𝜌 = 2(𝜃−𝜂)𝑢/(𝜃𝑢−(𝜃 − 𝜂)). Thus, for Pareto-distributed claims, assuming 𝜃 =𝜂 = 1, we find that 𝜓𝑘(𝑢) = 𝑘/(𝑘 + 𝑢) and that 𝑘𝜌 = 0 as well.
The insurance company should reinsure the entire portfolio
of risks. The results for different values of 𝑘 are summarized
in Table 5 and shown in Figure 3.

It is clear from Figure 3 that the ruin probabilities become
smaller as 𝑘 → 0, meaning that the asymptotically optimal
retention must be 𝑘𝜌 = 0. This confirms the results shown
in Figure 1. And since the optimal retention 𝑘∗ tends to the
asymptotically optimal 𝑘𝜌 that maximizes the adjustment
coefficient, it follows that 𝑘∗ = 0. This means that the
insurance company must cede the entire portfolio of risks
to a reinsurer. We can therefore conclude that the optimal
combinational quota-share and XL reinsurance strategy is(𝑘∗, 𝑎∗) = (0,∞).
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Figure 3: Asymptotic ruin probabilities for large claims in the CLM
with proportional reinsurance (𝑐 = 6, 𝜆 = 2, 𝜃 = 𝜂 = 1).

5. Conclusion

While the results presented in the previous section show that
proportional and XL reinsurance both result in a reduction in
the ruin probabilities, the reduction is more drastic for Pareto
than for exponential claims in both the Cramér-Lundberg
and diffusion-perturbed models. On the one hand, a com-
parison of the figures presented in the foregoing shows that
proportional reinsurance results in lower ruin probabilities
than XL reinsurance and is therefore optimal. The optimal
quota-share retention was found as 𝑘∗ = 0, meaning that
in both the small and large claim cases in the Cramér-
Lundberg model, it is optimal for the insurance company
to reinsure the whole portfolio using proportional reinsur-
ance. Going by the results in Figure 3, the same conclusion
can be drawn about the diffusion-perturbed model. Thus,
the optimal combinational quota-share and XL reinsurance
strategy is a pure quota-share reinsurance with 𝑘∗ = 0; that
is, (𝑘∗, 𝑎∗) = (0,∞). It should be noted that full reinsur-
ance is not ideal from the reinsurer’s standpoint and this
provides a strong argument for the use of noncheap reinsur-
ance.

On the other hand, the literature shows that the optimal
reinsurance strategy is a pure XL, that is, (1, 𝑎∗) (see, e.g.,
[7, 8, 16]). Possible extensions to the work are the inclusion
of investments and dividend payouts as well as considering
noncheap reinsurance, whereby, for a given risk, the reinsurer
requires more premium and therefore uses a higher safety
loading, than the insurer.
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Some novel traveling waves and special solutions to the 1D nonlinear dynamic equations of rod and beam of power-law materials
are found in closed forms. The traveling solutions represent waves of high elevation that propagates without change of forms
in time. These waves resemble the usual kink waves except that they do not possess bounded elevations. The special solutions
satisfying certain boundary and initial conditions are presented to demonstrate the nonlinear behavior of the materials. This note
demonstrates the apparent distinctions between linear elastic and nonlinear plastic waves.

1. Introduction

Free vibrations of rods and beams of power-law materials are
considered. Analytic traveling wave solutions to the wave
equations for power-law materials (see [1, 2]) are obtained
which represent kink waves of single elevation that prop-
agates without change of forms in time. It is shown that,
unlike the wave equations for linear materials, the nonlinear
wave equations do not allow arbitrary traveling wave forms
in an infinite rod or beam. The results demonstrate that the
traveling fronts of the waves may sharpen or flatten as the
wave speeds increase depending upon the power-law index𝑛 and the bulk modulus. For 𝑛 > 1, the wave fronts sharpen,
whereas for 0 < 𝑛 < 1, the fronts flatten as the wave speeds
increase. The solutions also demonstrate that the speeds of
the nonlinear travelingwaves dependnot only on thematerial
properties but also on the initial energy-level. It is well known
that the speeds of waves for the linear elastic materials (𝑛 =1, Hooke’s law) depend only on the material properties in
contrast to that of the waves in nonlinear materials. As far
as we know these solutions are not available in literature,
even though there are numerous research papers and books
devoted to the discovery and study of traveling waves in
elastic and plastic solids (see [3–7] for details). In the case of
rods and beams of finite length, we also present some special
solutions satisfying certain boundary and initial conditions.
The closed formula solutions are expressed in terms of non-
Euclidean sine functions (cf. [8]), which differ from the

Euclidean sine functions corresponding to the waves in rods
and beams of linear elastic materials.

The note is organized as follows. In Section 2, the power-
law constitutive stress-strain equation is introduced. In
Section 3, the potential energy and derivations of the wave
equations of power-law materials are outlined. In Sections
4 and 5, closed-form solutions are derived. And, finally the
results are summarized in Section 6.

2. Hollomon’s Equation

It is well known that, in uniaxial state, the following power-
law stress and strain relation is used for certain elastoplastic
materials: 𝜎 = 𝐾 |𝜀|𝑛−1 𝜀, 0 < 𝑛 < ∞, (1)

where 𝜎 is the axial stress, 𝜀 is the axial strain, and 𝐾 and𝑛 are engineering constants with values depending on the
specific material. The materials satisfying (1) sometimes are
also referred to as Ludwick or as Hollomon’s materials in
literature (cf. [1, 2]).Manyheat-treatedmetals arewell-known
power-law materials. For a given annealed metal or alloy, 𝐾
and 𝑛 depend on the heat treatment received by the metal
or alloy. The values of 𝑛 are typically between 0 and 1 for
such metals. For a comprehensive list of experimental values
of 𝐾 and 𝑛 of common annealed industrial metals, see, for
example, [9]. For some geological materials, such as certain
rocks or ice, however, the values of 𝑛 are greater than 1. In
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some biological tissues, experiments also indicate that the
power-law index 𝑛 satisfies 0 < 𝑛 < 1 for bones such as
tibia and femur, while 𝑛 > 1 for cartilages such as common
carotid artery and abdominal aorta (see, e.g., [10, 11]). For a
given value of 0 < 𝑛 < 1, the stress-strain curve defined
by (1) can result in a rapid increase in the yield stress for
small strains or strain hardening. However, it can be the
opposite for values of 𝑛 > 1, for which large strains produce
small stress or softening. For these reasons, 𝑛 is called the
strain-hardening or strain-softening exponent. Study of the
mechanical properties of these heat-treated metals is very
important in industries (see, e.g., [12], for stress analysis of
beam columnsmade of Ludwickmaterials). If we allow 𝑛 = 1,
then (1) reduces to Hooke’s law for linear elastic material
and the constant 𝐾, also called the bulk modulus, equals
the corresponding Young’s modulus 𝐸. Power-law materials
are a special case of a more general class of materials called
Hencky plastics [13]. Physically, the constitutive equation (1)
describes the hardening or softening of materials showing
an elastic-plastic transition. In the following, bold letters are
used to denote vectors or matrices. A vector is considered
as a single row matrix. The transpose of a matrix A is
denoted by A𝜏, and the inner product of two vectors u and
v by uk𝜏. The time derivative 𝜕u/𝜕𝑡 is denoted by u̇. Let
u(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢(𝑥, 𝑦, 𝑧, 𝑡), V(𝑥, 𝑦, 𝑧, 𝑡), 𝑤(𝑥, 𝑦, 𝑧, 𝑡)) denote
the displacement vector,𝜀𝑥 = 𝜕𝑢𝜕𝑥 ,𝜀𝑦 = 𝜕V𝜕𝑦 ,𝜀𝑧 = 𝜕𝑤𝜕𝑧 ,𝛾𝑥𝑦 = 12 (𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥) ,𝛾𝑦𝑧 = 12 (𝜕V𝜕𝑧 + 𝜕𝑤𝜕𝑦 ) ,𝛾𝑧𝑥 = 12 (𝜕𝑤𝜕𝑥 + 𝜕𝑢𝜕𝑧)

(2)

the strain components, and 𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧, and 𝜏𝑧𝑥 the
corresponding stress components. The following generalized
power law can be derived from the Hencky total deformation
theory [13]:{{{{{{{{{{{{{{{

𝜎𝑥𝜎𝑦𝜎𝑧𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥

}}}}}}}}}}}}}}}
= 𝐾‖𝐷 (u)‖𝑛−1(1 + ]) (1 − 2])

⋅((((((
(

1− ] ] ] 0 0 0
] 1 − ] ] 0 0 0
] ] 1 − ] 0 0 00 0 0 1 − 2]2 0 00 0 0 0 1 − 2]2 00 0 0 0 0 1 − 2]2

))))))
)

{{{{{{{{{{{{{{{

𝜀𝑥𝜀𝑦𝜀𝑧𝛾𝑥𝑦𝛾𝑦𝑧𝛾𝑧𝑥

}}}}}}}}}}}}}}}
,

(3)

where ‖𝐷(u)‖ = √𝜀2𝑥 + 𝜀2𝑦 + +𝜀2𝑧 + 2𝛾2𝑥𝑦 + 2𝛾2𝑦𝑧 + 2𝛾2𝑧𝑥, where𝑛, 𝐾, and ] are the material constants; see also Wei [14].
Note that (3) is the three-dimensional version of (1). In the
following two sections, wave equations of bars and beams
made of the power-law elastoplastic materials are derived
by (3) and the assumption of the Euler-Bernoulli beam
theory. There are similar versions of generalized power-
law stress-strain relations for strain-hardening or strain-
softeningmaterial in the literature and similarwave equations
can be derived (see, e.g., [15–20]).

3. The Nonlinear Wave Equations

The potential energy for a power-law elastoplastic body
occupying a three-dimension body 𝑉 can by defined by

𝑈 = 1𝑛 + 1 ∫𝑉 𝜎𝜀𝜏𝑑𝑉, (4)

where 𝜀 = (𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦, 𝛾𝑥𝑧, 𝛾𝑦𝑧) and 𝜎 = (𝜎x, 𝜎y, 𝜎z, 𝜏xy,𝜏xz, 𝜏yz). The Lagrangian energy functional 𝐼(u) equals the
kinetic energy 𝑇 minus the elastoplastic potential energy 𝑈
plus the work𝑊 done by external force. It can be written as

𝐼 (u) = 12 ∫𝑉 𝜌u̇u̇𝜏𝑑𝑉 − 1𝑛 + 1 ∫𝑉 𝜎𝜀𝜏𝑑𝑉 + ∫𝑉 fu𝜏𝑑𝑉+ ∫
𝜕𝑉

tu𝜏𝑑𝑆, (5)

where 𝜌 is the density, u̇ = (𝑢̇, V̇, 𝑤̇) the velocity, f =(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) the body force, and t = (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) the surface
force. See, for example, [21], for a standard definition of 𝐼(u).
For a uniaxial bar of infinite length with cross-sectional area𝐴(𝑥), subject to axial force and zero surface force, we have
𝜎 = (𝜎𝑥, 0, 0, 0, 0, 0), u = (𝑢(𝑥, 𝑡), 0, 0), 𝜎𝑥 = 𝐾|𝜀𝑥|𝑛−1𝜀𝑥,
f = (𝑓(𝑥, 𝑡), 0, 0), and t = (0, 0, 0). For an Euler beam
of infinite length, it is assumed that the components of the
displacement satisfy 𝑢(𝑥, 𝑦, 𝑡) = −𝑦(𝜕V/𝜕𝑥), V = V(𝑥, 𝑡),𝑤 = 0, f = (0, 𝑟(𝑥, 𝑡), 0), and t = (0, 0, 0). Therefore 𝜀𝑥 =𝜕𝑢/𝜕𝑥 = −𝑦(𝜕2V/𝜕𝑥2), 𝜀𝑥𝑦 = (1/2)(𝜕𝑢/𝜕𝑦 + 𝜕V/𝜕𝑥) = 0, and𝜀𝑦 = 𝜀𝑥𝑧 = 𝜀𝑦𝑧 = 𝜀𝑧 = 0.The potential energies for the bar
and the beam are given by

𝑈 = 1𝑛 + 1 ∫+∞−∞ 𝐾𝐴 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝑢𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛+1 𝑑𝑥, (6)

𝑈 = 1𝑛 + 1 ∫+∞−∞ 𝐾𝐼𝑛 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕2V𝜕𝑥2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛+1 𝑑𝑥, (7)

respectively, where 𝐼𝑛 = ∫𝐴 |𝑦|𝑛+1𝑑𝑦𝑑𝑧 is the generalized
second moment of inertia of the beam. The 𝑥-axis is taken
to be the axial direction of the bar and the beam. For rods
and beams of finite length 𝐿, the corresponding Lagrangian
functions are given by replacing−∞ and+∞ in (6) and (7) by0 and 𝐿, respectively. Note that the assumptions made in this
section on the elastoplastic bars and the beams are standard
assumptions frequently made for elastic bars and beams (see,
e.g., [22, 23], for details). The corresponding linear wave
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equations of elastic bars and beams corresponding to 𝑛 = 1
have been studied extensively.

For completeness, the derivation of the wave equations of
the power-lawmaterials given in [14] is outlined here. It is well
known that Hamilton’s principle seeks an equilibrium state in
time dependent mechanical systems (see, e.g., [21]).

Specifically, Hamilton’s principle requires that we seek a
displacement u so that, for any time interval [𝑡1, 𝑡2], u(𝑡1) =
u(𝑡2) and u̇(𝑡1) = u̇(𝑡2), and for all displacement of the form
u + 𝜏k, where 𝜏 is any real number, the first variation of the
energy functional 𝐼 satisfies

𝛿𝐼 = ∫𝑡2
𝑡
1

𝑑𝑑𝜏 [𝐼 (u (𝑡) + 𝜏k (𝑡))]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=0 𝑑𝑡 = 0 (8)

for all k satisfying k(𝑡1) = k(𝑡2) = 0 and k̇(𝑡1) = k̇(𝑡2) = 0.
The combination u(𝑡) + 𝜏k(𝑡) is referred to as an admissible
displacement for the mechanical system since it is required
to satisfy some boundary conditions. It can be shown that if
the displacement u satisfies (8) of Hamilton’s principle, then
it must also satisfy a differential wave equation under certain
conditions. In particular, suppose that the cross-sectional
area, denoted by 𝐴, is a nonzero constant, and then for the
rod, we have

𝜌𝜕2𝑢𝜕𝑡2 = 𝐾 𝜕𝜕𝑥 (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝑢𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛−1 𝜕𝑢𝜕𝑥) + 𝑓, 𝑥 ∈ R, 𝑡 ∈ R+ (9)

and for the corresponding Euler beam

𝜌𝐴𝜕2V𝜕𝑡2 = − 𝜕2𝜕𝑥2 (𝐾𝐼𝑛 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕2V𝜕𝑥2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛−1 𝜕2V𝜕𝑥2) + 𝐴𝑟,𝑥 ∈ R, 𝑡 ∈ R+. (10)
When 𝑛 = 1, (9) reduces to the standard wave equation for
the elastic bar

𝜌𝜕2𝑢𝜕𝑡2 = 𝐾𝜕2𝑢𝜕𝑥2 + 𝑓, 𝑥 ∈ R, 𝑡 ∈ R+ (11)

and (10) to the standard wave equation for the elastic Euler
beam

𝜌𝐴𝜕2V𝜕𝑡2 = − 𝜕2𝜕𝑥2 (𝐾𝐼 𝜕2V𝜕𝑥2) + 𝐴𝑟, 𝑥 ∈ R, 𝑡 ∈ R+. (12)

The quantity 𝐼𝑛 reduces to the second moment of inertia,𝐼𝑛 = ∫𝐴 |𝑦|𝑛+1𝑑𝐴 reduces to 𝐼 when 𝑛 = 1 in the elastic
beam theory, and the material constant 𝐾 becomes Young’s
modulus 𝐸 for linear elastic materials. In deriving the wave
equations (9) and (10), we have made the assumption that
the solutions 𝑢 and V are continuously differentiable and their
appropriate lower order derivatives are bounded or vanishing
when |𝑥| → ∞. By (8), we get

∫𝑡2
𝑡
1

∫+∞
−∞
(𝜌𝐴𝑢̇V̇ − 𝐾𝐴 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝑢𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛−1 𝜕𝑢𝜕𝑥 𝜕V𝜕𝑥 + 𝐴𝑓V)𝑑𝑥𝑑𝑡= 0. (13)

Using integration by parts and interchange of the order
of integration, with V(𝑡1) = V(𝑡2) = 0, and assuming
that lim𝑥→±∞|𝜕𝑢(𝑥, 𝑡)/𝜕𝑥|𝑛−1(𝜕𝑢(𝑥, 𝑡)/𝜕𝑥) is bounded by a
constant independent of 𝑡 and lim𝑥→±∞V(𝑥, 𝑡) = 0 uniformly
in 𝑡, we get the following:
∫𝑡2
𝑡
1

∫+∞
−∞
(−𝜌𝐴𝑢̈ + 𝜕𝜕𝑥 (𝐾𝐴 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝑢𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛−1 𝜕𝑢𝜕𝑥) + 𝐴𝑓)⋅ V 𝑑𝑥 𝑑𝑡 = 0 (14)

from (13). Since V, 𝑡1, and 𝑡2 are arbitrary and 𝐴 ̸= 0, we then
get (9) from (14). The corresponding beam equation (10) can
be derived similarly which was reported in [14].

4. Traveling Waves in Rods and Beams of
Arbitrary Length

In the following we will derive some traveling wave solutions
to (9) and (10) for 0 < 𝑛 < ∞ and 𝑛 ̸= 1. As far as we know,
these solutions are not available in literature, even though
there are numerous research papers and books devoted to the
discovery and study of traveling waves in elastic and plastic
solids. For the study of traveling waves in nonlinear beam
equations based on Hooke’s law (𝑛 = 1) for elastic materials,
see, for example, [3–5]. Also, see [6, 7, 24, 25], formore results
of traveling waves in solids. Assuming that 𝑓 = 𝑟 = 0 in (9)
and (10), we have𝜕2𝑢𝜕𝑡2 = 𝑐2 𝜕𝜕𝑥 (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝑢𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛−1 𝜕𝑢𝜕𝑥) , 𝑥 ∈ R, 𝑡 ∈ R+ (15)

for the bar and𝜕2V𝜕𝑡2 = 𝑐2 𝜕2𝜕𝑥2 (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕2V𝜕𝑥2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛−1 𝜕2V𝜕𝑥2) , 𝑥 ∈ R, 𝑡 ∈ R+ (16)

for the beam, where 𝑐2 = 𝐾/𝜌 and 𝑐2 = −𝐾𝐼𝑛/𝜌𝐴,
respectively. We look for traveling wave solutions of the form𝑔(𝑥 − 𝜆𝑡) for both (15) and (16), where 𝜆 denotes a constant
and 𝑔 is a function to be determined. Let 𝜙(𝑡) = |𝑡|𝑛−1𝑡,
where 𝑛 is the index in power-law (3). The inverse of 𝜙 is𝜙−1(𝑡) = |𝑡|(1−𝑛)/𝑛𝑡 since

(𝜙 ∘ 𝜙−1) (𝑡) = 󵄨󵄨󵄨󵄨󵄨|𝑡|(1−𝑛)/𝑛 𝑡󵄨󵄨󵄨󵄨󵄨𝑛−1 |𝑡|(1−𝑛)/𝑛 𝑡= |𝑡|(𝑛−1)/𝑛 |𝑡|(1−𝑛)/𝑛 𝑡 = 𝑡. (17)

First, let 𝜉 = 𝑥 − 𝜆𝑡 and substitute 𝑢(𝑥, 𝑡) = 𝑔(𝜉) into
(15), so 𝜆2𝑔󸀠󸀠 = 𝑐2(𝜙(𝑔󸀠))󸀠. After integration we get 𝜆2𝑔󸀠 =𝑐2𝜙(𝑔󸀠) + 𝑐1, where 𝑐1 is an arbitrary constant. Suppose that
lim𝑥→∞(𝜕𝑢/𝜕𝑥)(𝑥, 0) = 𝐴. Since 𝑢(𝑥, 0) = 𝑔(𝑥) and 𝑔󸀠(𝑥) =(𝜕𝑢/𝜕𝑥)(𝑥, 0), we have 𝑐1 = 𝜆2𝐴 − 𝑐2𝜙(𝐴). Looking for
nontrivial solutions for 𝑛 ̸= 1 and assuming that 𝐴 =(𝑐/𝜆)2/(1−𝑛), we get 𝑐1 = 0 and 𝑔󸀠 = ±(𝑐/𝜆)2/(1−𝑛) which gives
the following traveling wave solutions:

𝑢 (𝑥, 𝑡) = ± ( 𝑐𝜆)2/(1−𝑛) (𝑥 − 𝜆𝑡) + 𝑐2 (18)
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for the bar equation (15). Note that solution (18) includes
some physically meaningful solutions. For example, let us
consider a semi-infinite bar with initial displacement

𝑢 (𝑥, 0) = {{{(
𝑐𝜆)2/(1−𝑛) 𝑥 if 0 < 𝑥 < +∞0 if −∞ < 𝑥 ≤ 0, (19)

and initial velocity

𝑢̇ (𝑥, 0) = {{{−𝜆(
𝑐𝜆)2/(1−𝑛) if 0 < 𝑥 < +∞0 if −∞ < 𝑥 ≤ 0 (20)

and boundary condition lim𝑥→+∞(𝜕𝑢/𝜕𝑥)(𝑥, 𝑡)=(𝑐/𝜆)2/(1−𝑛).
A particular solution satisfying these conditions is given by𝑢 (𝑥, 𝑡)
= {{{(
𝑐𝜆)2/(1−𝑛) (𝑥 − 𝜆𝑡) if 0 < 𝑥 − 𝜆𝑡 < +∞0 if −∞ < 𝑥 − 𝜆𝑡 ≤ 0 (21)

which is obtained from (18). The physical interpretation of
the initial condition (19) is that half of the bar is initially
subject to a constant stress and the other half is free of
stress and fixed in position, and the second initial condition
(20) means that the bar is initially moving at a constant
speed and half of it is instantaneously stopped. Solution (21)
explains that if a prestressed semi-infinite axial power-law
rod subject to initial conditions 𝜎(𝑥, 0) = 𝐾(𝑐/𝜆)2𝑛/(1−𝑛)
and 𝑢̇(𝑥, 0) > 0 and boundary conditions 𝑢(0, 𝑡) = 0 for𝑥 = 0 and lower order derivatives are bounded or vanishing
when |𝑥| → ∞, then the displacement in the interval [0, 𝑥]
will be zero at time 𝑡 = [𝑥1+𝑛|𝑢̇(𝑥, 0)|1−𝑛/𝑐2]1/(1+𝑛) = 𝑥/𝜆
and the restoration of the deformed bar in interval [0, 𝑥(𝑡)]
to its undeformed configuration has a moving boundary𝑥(𝑡) which is expanding like a kink wave at a velocity 𝜆 =𝑐(𝐾/𝜎(𝑥, 0))(1−𝑛)/2𝑛.

In themore general situation, for any value of 𝑐1, the equa-
tion 𝑃(𝑡) = 𝜆2𝑡 − 𝑐2𝜙(𝑡) − 𝑐1 has at least one solution since it
is continuous, lim𝑡→+∞𝑃(𝑡) = +∞ and lim𝑡→−∞𝑃(𝑡) = −∞.
Let 𝑃(𝜀0) = 0, and then 𝑔󸀠 = 𝜀0 satisfies 𝜆2𝑔󸀠 = 𝑐2𝜙(𝑔󸀠) + 𝑐1.
We have the following similar solutions:

𝑢 (𝑥, 𝑡) = {{{
𝜀0 (𝑥 − 𝜆𝑡) if 0 < 𝑥 − 𝜆𝑡 < +∞0 if −∞ < 𝑥 − 𝜆𝑡 ≤ 0 (22)

satisfying the initial and boundary conditions

𝑢 (𝑥, 0) = {{{
𝜀0𝑥 if 0 < 𝑥 < +∞0 if −∞ < 𝑥 ≤ 0,

𝑢̇ (𝑥, 0) = {{{
−𝜆𝜀0 if 0 < 𝑥 < +∞0 if −∞ < 𝑥 ≤ 0

(23)

for lim𝑥→+∞(𝜕𝑢/𝜕𝑥)(𝑥, 𝑡) = 𝜀0 and 𝜆𝜀20 = 𝑐2𝜙(𝜀0) + 𝑐1.

For the linear elastic bar, 𝑛 = 1, 𝜙(𝑔󸀠) = 𝑔󸀠, and if 𝑐1 = 0,
the equation 𝜆2𝑔󸀠 = 𝑐2𝜙(𝑔󸀠) is satisfied for any 𝑔󸀠 and also
makes 𝜆 = 𝑐. This shows that the linear elastic bar equation
allows arbitrary traveling wave forms 𝑔 in 𝑢(𝑥, 𝑡) = 𝑔(𝑥−𝜆𝑡),
and however thewave can travel only at a fixed velocity𝜆 = 𝐶.
If 𝑐1 ̸= 0, then equation 𝜆2𝑔󸀠 = 𝑐2𝜙(𝑔󸀠) + 𝑐1 gives 𝑔󸀠 = 𝜀0 =(𝜆2 − 𝑐2)/𝑐1 and the corresponding solution is (22), which is
similar to the solutions for 𝑛 ̸= 1.

The above shows that the difference between the nonlin-
ear solution (𝑛 ̸= 1) and the linear case (𝑛 = 1) is that all
the nonlinear traveling waves have the same shape and the
traveling velocity depends not only on the material property
but also on the initial stress-level while the linear traveling
waves can take any form while keeping a fixed traveling
velocity 𝑐 that depends only on the material property.

Similarly, by substituting V(𝑥, 𝑡) = 𝑔(𝑥−𝜆𝑡) into the beam
equation (16), we get 𝜆2𝑔󸀠󸀠 = 𝑐2(𝜙(𝑔󸀠󸀠))󸀠󸀠. After integration
twice, we get 𝜆2𝑔 = 𝑐2𝜙(𝑔󸀠󸀠) + 𝑐1𝜉 + 𝑐2, which gives 𝜆2𝑔 =𝑐2𝜙(𝑔󸀠󸀠) by setting 𝑐1 = 𝑐2 = 0. Let𝑤 = 𝑔󸀠; we get𝑤(𝑑𝑤/𝑑𝑔) =𝑔󸀠󸀠 and 𝜆2𝑔 = 𝑐2𝜙(𝑤(𝑑𝑤/𝑑𝑔)). From the last equation, we get

𝑤𝑑𝑤 = −𝜙−1 (𝜆2𝑔|𝑐|2 )𝑑𝑔 = − 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝑐 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2/𝑛 󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨(1−𝑛)/𝑛 𝑔𝑑𝑔 (24)

which gives (𝑔󸀠)2 = 𝐶 − (2𝑛/(1 + 𝑛))|𝜆/𝑐|2/𝑛|𝑔|(1+𝑛)/𝑛, where𝐶 is the integration constant.
We assume 𝑔󸀠(0) = 0 and 𝑔(0) > 0. So, the traveling wave

solutions for the corresponding elastoplastic Euler beam are
given implicitly𝑥 − 𝜆𝑡
= ±∫𝑔(𝑥−𝜆𝑡)
0

𝑑𝑠√2 |𝜆/𝑐|2/𝑛 (𝑛/ (𝑛 + 1)) (󵄨󵄨󵄨󵄨𝑔 (0)󵄨󵄨󵄨󵄨1/𝑛 𝑔 (0) − |𝑠|1/𝑛 𝑠) (25)

which results in the following formula in terms of generalized
trigonometric function defined in [26]𝑔 (𝑥 − 𝜆𝑡) = 𝑔 (0) sin2,1+1/𝑛 (𝐵 (𝑥 − 𝜆𝑡)) , (26)

where 𝐵 = |𝑐|1/𝑛/|𝑔(0)|(𝑛+1)/2𝑛𝑔(0)|𝜆|1/𝑛√2𝑛/(𝑛 + 1). Notice
that for 𝑛 = 1 we obtain the well-known Euclidean sine
traveling wave solution for the elastic Euler beam equation.
We observe that the amplitude of the wave is determined
by the initial condition V(0, 0). The traveling waves for
elastoplastic beams can be applied to study piezoelectric
robots; see [27].

5. Special Waves in Rods and Beams of
Finite Length

Let us consider some special waves in rods and beams of
finite length 𝐿 with fixed ends. Equations (15) and (16) are
solved for 𝑥 ∈ (0, 𝐿) and 𝑡 ∈ 𝑅+ with homogeneous Dirichlet
boundary conditions 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 and special initial
conditions. We present some special solutions by using the
generalized trigonometric functions developed by Drábek
and Manásevich [26]. By using the separation of variables
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Figure 1: Vibrating power-law strings: 𝑛 = 0.2 (a) and 𝑛 = 0.5 (b) at 𝑡 = 0, 0.2, 0.4, 0.5, 0.7, 0.8.
𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) in (15) and using boundary conditions𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, we have

(󵄨󵄨󵄨󵄨󵄨𝑋󸀠󵄨󵄨󵄨󵄨󵄨𝑛−1𝑋󸀠)󸀠 = 𝜆𝑋,𝑇̈ − 𝜆𝑐2 |𝑇|𝑛−1 𝑇 = 0. (27)

From the first equation and the boundary conditions, we get

(󵄨󵄨󵄨󵄨󵄨𝑋󸀠󵄨󵄨󵄨󵄨󵄨𝑛−1𝑋󸀠)󸀠 = 𝜆𝑋,𝑋 (0) = 𝑋 (𝐿) = 0. (28)

By Thm 3.1 in [26], a sequence of solutions to the nonlinear
eigenvalue problem (28) are given by𝑋𝑘 = sin𝑛+1,2(𝑘(𝑥𝜋𝑛+1,2/𝐿)), where𝜆𝑘 = −((𝑘+1)𝑘/2)(𝜋𝑛+1,2/𝐿)𝑛+1 and𝜋𝑛+1,2 = ∫10 (1−𝑡2)−1/(𝑛+1)𝑑𝑡 = 𝐵(1−1/(𝑛+1), 1/2). Let us consider the initial
conditions 𝑢(𝑥, 0) = 𝑋1(𝑥) and 𝑢𝑡(𝑥, 0) = 0. In this case we
have 𝑇(0) = 1 and we can solve the second equation in (27).
A special solution of this initial value problem is given by

𝑢 (𝑥, 𝑡) = sin𝑛+1,2 (𝑥𝜋𝑛+1,2𝐿 )
⋅ sin2,𝑛+1 (−√2𝑐 (𝜋𝑛+1,2𝐿 )(𝑛+1)/2 𝑡 + 𝜋2,𝑛+12 ) . (29)

The time evolution of the special solutions for 𝑐 = 1, 𝐿 = 1,𝑛 = 0.2, and 𝑛 = 0.5 is presented in Figure 1, respectively.
Similarly, by using the separation of variables 𝑢(𝑥, 𝑡) =𝑋(𝑥)𝑇(𝑡) in (16), we have

(󵄨󵄨󵄨󵄨󵄨𝑋󸀠󸀠󵄨󵄨󵄨󵄨󵄨𝑛−1𝑋󸀠󸀠)󸀠󸀠 = 𝜆𝑋,𝑇̈ − 𝜆𝑐2 |𝑇|𝑛−1 𝑇 = 0. (30)

From the first equation and the boundary condition, we get

(󵄨󵄨󵄨󵄨󵄨𝑋󸀠󸀠󵄨󵄨󵄨󵄨󵄨𝑛−1𝑋󸀠󸀠)󸀠󸀠 = 𝜆𝑋,𝑋 (0) = 𝑋󸀠 (0) = 𝑋 (𝐿) = 𝑋󸀠 (𝐿) = 0. (31)

An analytic solution to (31) is not available and is an open
problem. This is a nonlinear and nonhomogeneous eigen-
value problem which belongs to an active area of research
beyond the scope of this paper, and we post it here as
an open problem. Since superposition principle can not be
applied to nonlinear problems, the solutions to (15) and (16)
with general initial and boundary conditions require further
investigations.

6. Conclusions

Two nonlinear wave equations are derived: one is for the
longitudinal vibrations of a power-law bar and the other is
for vertical vibrations of the power-law Euler beam. Analytic
traveling wave solutions are found for these two equations
for free vibrations in terms of generalized sine functions
of two parameters. We recovered the linear elastic waves
as special cases of our solutions. The traditional ways of
determining the vibrations of a structure made of untreated
metals do not apply to the structures of heat-treated metals
with hardening and softening mechanical properties. The
obtained results can be useful in engineering applications
of the power-law materials, such as heat-treated metals and
polyimide plastics. Further study of wave propagation and
vibrations in structuresmade of the power-lawnonlinear bars
and beams seems necessary.
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Factor analysis models with continuous and ordinal responses are a useful tool for assessing relations between the latent
variables and mixed observed responses. These models have been successfully applied to many different fields, including
behavioral, educational, and social-psychological sciences. However, within the Bayesian analysis framework, most developments
are constrained within parametric families, of which the particular distributions are specified for the parameters of interest. This
leads to difficulty in dealing with outliers and/or distribution deviations. In this paper, we propose a Bayesian semiparametric
modeling for factor analysis model with continuous and ordinal variables. A truncated stick-breaking prior is used to model
the distributions of the intercept and/or covariance structural parameters. Bayesian posterior analysis is carried out through
the simulation-based method. Blocked Gibbs sampler is implemented to draw observations from the complicated posterior. For
model selection, the logarithm of pseudomarginal likelihood is developed to compare the competing models. Empirical results are
presented to illustrate the application of the methodology.

1. Introduction

Owing to its wide applications in behavioral and social
science researches, analysis of factor analysis models with
mixed data structure has received a lot of attention; see [1–
6]. However, most of these methods are mainly developed
within particular parametric distribution families such as
the exponential family or normal scale mixture family,
which have a limited role in dealing with the distributional
deviations, in particular heterogeneity or multimodality of
the data. Though some robust methods are developed to
downweight the influence of the outliers [7–12], most of them
are still confined to dealing with unimodality and are less
effective for the asymmetric and/or multimodal problems.

Recently, some authors focused on the Bayesian semi-
parametric modeling for latent variables model. For multi-
variate categorical data analysis, Kottas et al. [13] extended
the traditional multivariate probit model [14–16] to a flexible
underlying prior probability model. The usual single mul-
tivariate normal model for the latent variables is replaced
by a mixture of normal priors with infinite number of

components. And, for the latent variable model with fixed
covariates and continuous responses, Lee et al. [17] estab-
lished the semiparametric Bayesian hierarchal model for the
structural equation models (SEMs) by relaxing the common
normal distribution of exogenous factors to follow a finite-
dimensional Dirichlet process [18]. Song et al. [19] developed
a semiparametric Bayesian procedure for analyzing the latent
variable model with unordered categorical data. For some
recent advances in semiparametric analysis for factor analysis
model, see [20–23] among others.

In this paper, we developed a Bayesian semiparametric
approach for analyzing factor analysis model with mixed
continuous and ordinal responses. The methods are twofold.
Firstly, we extended Kottas, Müller, and Quintana’s model
to a more general multivariate model which contains factor
variables. This extension aims to interpret the relationships
between measurements and latent variables and explore cor-
relations among the multiple manifest variables. Moreover,
we treat the threshold parameters as unknown and estimate
them simultaneously with other model parameters, thus
providing a more flexible approach to fit the data. Secondly,
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we introduce the truncated Dirichlet process prior as the
prior of the mean vector and variance-covariance parameters
of unique errors and latent variables.This facilitates the inter-
pretation of heterogeneity in the mean and/or covariance
structure across the subjects.

This paper is organized as follows. We first introduce
the Bayesian semiparametric modeling framework for factor
analysis model with continuous and ordinal variables. We
then present the Markov chain Monte Carlo procedure
for parameters estimation and model selection. Simulation
studies and a real example are provided to illustrate the
performance of the proposed procedure. We close with some
remarks and concluding comments.

2. Model Description

2.1. Factor Analysis Model with Continuous and Ordinal
Responses. Suppose that a 𝑝-dimensional mixed observed
vector 𝑦𝑖 = (𝑥

𝑇
𝑖 , 𝑧
𝑇
𝑖 )
𝑇 contains 𝑟 continuous variables 𝑥𝑖 =

(𝑥𝑖1, . . . , 𝑥𝑖𝑟)
𝑇 and 𝑠 = 𝑝 − 𝑟 ordinal variables 𝑧𝑖 = (𝑧𝑖1,

. . . , 𝑧𝑖𝑠)
𝑇 with 𝑧𝑖𝑗 taking an integral value in S𝑗 = {0, 1, . . . , 𝑏𝑗}

for 𝑗 = 1, . . . , 𝑠, 𝑖 = 1, . . . , 𝑛. We assume that the observed
ordinal vector 𝑧𝑖 is related to the unobserved continuous
vector 𝑢𝑖 = (𝑢𝑖1, . . . , 𝑢𝑖𝑠)

𝑇 through

𝑧𝑖𝑗 = 𝑙 if 𝜏𝑗𝑙 < 𝑢𝑖𝑗 ≤ 𝜏𝑗,𝑙+1, 𝑙 ∈ S𝑗, (1)

where {𝜏𝑗𝑙 : 𝑙 = 0, . . . , 𝑏𝑗, 𝑗 = 1, . . . , 𝑠} is a set of unknown
threshold parameters that define the categories: −∞ = 𝜏𝑗0 <

𝜏𝑗1 < ⋅ ⋅ ⋅ < 𝜏𝑗𝑏𝑗
< 𝜏𝑗,𝑏𝑗+1

= ∞. Hence, for the 𝑗th variable 𝑧𝑖𝑗,
there are 𝑏𝑗 + 1 categories.

Let 𝑦∗𝑖 = (𝑥
𝑇
𝑖 , 𝑢
𝑇
𝑖 )
𝑇 denote the vector of continuous

observed measurements and unobserved variables. For sub-
ject 𝑖, we formulate the dependence among 𝑦∗𝑖𝑗 ’s through the
following measurement model:

𝑦
∗
𝑖 = 𝜇 + Λ𝜔𝑖 + 𝜖𝑖, (2)

where 𝜇 is a 𝑝 × 1 intercept vector, Λ is a 𝑝 × 𝑚 factor
loading matrix, 𝜔𝑖 is an 𝑚 × 1 vector of latent variables,
and 𝜖𝑖 is a 𝑝 × 1 vector of measurement errors which is
independent of𝜔𝑖. Inmany applications,𝜔𝑖may represent the
hypothesized factors underlying manifest responses and/or
unobserved heterogeneity not explained by covariates.

The latent variable model with mixed continuous and
ordinal responses defined by (1) and (2) faces two sources of
identification problems. The first one is associated with the
determinacy of latent variables 𝑦∗ in modeling of categorical
variables, and the second one is related to the uniqueness of
the factor loadings matrix. To solve the first problem, we use
the common method [24] to fix endpoints 𝜏𝑗1 and 𝜏𝑗𝑏𝑗 (𝑗 =

1, . . . , 𝑠) at preassigned values. For the second problem, we
follow the usual practice in structural equation modeling to
identify the covariance matrix of 𝑦∗𝑖 by fixing appropriate
elements in Λ at preassigned values.

Let 𝜃 be the parametric vector formed by the unknown
parameters contained in {𝜇, Ψ𝜖, Φ} and let 𝜗 denote the
free parameters contained in factor loading matrices Λ and

𝜏 = (𝜏
𝑇
1 , . . . , 𝜏

𝑇
𝑠 )
𝑇 with 𝜏𝑗 = (𝜏𝑗1, . . . , 𝜏𝑗𝑏𝑗

)
𝑇. Based on

the assumptions of (2), the conditional distribution of 𝑦∗𝑖
given (𝜃, 𝜗) is a normal distribution with mean vector 𝜇 and
covariance matrix Σ(𝜃, 𝜗) = ΛΦΛ

𝑇
+ Ψ𝜖.

Note that the latent factors here play an important role
in characterizing the associations between the observed
variables. It can be seen clearly that 𝑧𝑖 and 𝑥𝑖 are dependent
when 𝜔𝑖 is integrated out. The marginal density of 𝑦𝑖 is given
by

𝑝 (𝑦𝑖 | 𝜗, 𝜃)

= ∫𝑝 (𝑥𝑖 | 𝜔𝑖, 𝜗, 𝜃) 𝑝 (𝑧𝑖 | 𝜔𝑖, 𝜗, 𝜃) 𝑝 (𝜔𝑖 | 𝜗, 𝜃) 𝑑𝜔𝑖

(3)

with

𝑝 (𝑧𝑖 | 𝜔𝑖, 𝜗, 𝜃) =

𝑠

∏

𝑗=1

[

[

Φ𝑐(

𝜏𝑗𝑧𝑖𝑗+1
− 𝜇𝑟+𝑗 − Λ

𝑇
𝑟+𝑗𝜔𝑖

𝜓𝜖𝑟+𝑗

)

− Φ𝑐(

𝜏𝑗𝑧𝑖𝑗
− 𝜇𝑟+𝑗 − Λ

𝑇
𝑟+𝑗𝜔𝑖

𝜓𝜖𝑟+𝑗

)]

]

,

(4)

inwhichΦ𝑐(⋅) is the standard normal cumulative distribution
function.

2.2. Bayesian Semiparametric Hierarchical Modeling. Let
𝑝(𝑦
∗
𝑖 | 𝜃, 𝜗) be the conditional density of 𝑦

∗
𝑖 given (𝜃, 𝜗) and

denote by 𝐹 a prior distribution function of 𝜃. Suppose that 𝐹
is proper; we define the following mixture density:

𝑝 (𝑦
∗
𝑖 | 𝐹, 𝜗) = ∫𝑝 (𝑦

∗
𝑖 | 𝜃, 𝜗) 𝐹 (𝑑𝜃) , (5)

in which𝐹(𝑑𝜃) is the conditional distribution of 𝜃 given𝐹. By
taking a prior for 𝜗 and restricting𝐹 to be a parametric family
of distributions indexed by 𝜃, we complete the Bayesian para-
metric model specification. However, this restriction severely
constrains the estimation of 𝜃 and produces estimators that
shrink data values toward the same points. A more flexible
modeling for 𝑦∗𝑖 is to treat 𝐹 as random and assign a prior
for it. For this end, we introduce a latent variable vector 𝜃𝑖 =
{𝜇𝑖, Ψ𝜖𝑖, Φ𝑖} and assume that, given 𝜃𝑖, 𝑦

∗
𝑖 ’s are conditionally

independent and drawn from 𝑝(𝑦
∗
𝑖 | 𝜃𝑖, 𝜗). Furthermore, we

suppose that 𝜃𝑖’s are independent and identically distributed
(i.i.d.) according to 𝐹 with a prior P on it. As a result, we
break the mixture model 𝑝(𝑦∗𝑖 | 𝐹, 𝜗) into

[𝑦
∗
𝑖 | 𝜃𝑖, 𝜗]

ind
∼ 𝑝 (𝑦

∗
𝑖 | 𝜃𝑖, 𝜗) ,

[𝜃1, . . . , 𝜃𝑛 | 𝐹]
iid
∼ 𝐹, 𝐹 ∼ P,

(6)

where “ind” means “independent” andP is a prior of 𝐹.
We consider the following truncated version of Dirichlet

process for 𝐹:

P (⋅) = P𝐺 (⋅) =
𝐺

∑

𝑘=1

𝜋𝑘𝛿𝜃∗
𝑘
(⋅) , (7)
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in which 𝛿𝜃∗
𝑘
(⋅) denotes a discrete probability measure con-

centrated on atom 𝜃
∗
𝑘 and 𝜋𝑘 (𝑘 = 1, . . . , 𝐺), independent

of 𝜃∗𝑘 , are random weights constructed through the following
stick-breaking procedure:

𝜋1 = 𝑉1,

𝜋𝑘 = (1 − 𝑉1) ⋅ ⋅ ⋅ (1 − 𝑉𝑘−1) 𝑉𝑘, 𝑘 = 2, . . . , 𝐺 − 1,

𝜋𝐺 = (1 − 𝑉1) ⋅ ⋅ ⋅ (1 − 𝑉𝐺−1) ,

(8)

with 𝑉𝑘

i.i.d.
∼ Beta(1, 𝛼); 𝜃∗𝑘 ’s are i.i.d with common distribu-

tion 𝐹0.
Truncated Dirichlet process prior (7) can be considered

as a truncation version of Dirichlet process [25–30] in the
nonparametric Bayesian analysis. It can be shown that, under
(7) and (8), for any Borel set 𝐴 in R𝑝,

E𝐹 (𝐴) = 𝐹0 (𝐴) ,

Var (𝐹 (𝐴)) =
𝐹0 (𝐴) (1 − 𝐹0 (𝐴))

𝛼 + 1
(1 +

𝛼

𝐺
) .

(9)

This indicates that 𝐹0 can be served as the starting point or
guess of 𝐹 and 𝛼 determines the concentration of the prior
around 𝐹0. In practice, the value of 𝐺 is either set to a large,
predetermined value (e.g., 𝐺 ≥ 100) or chosen empirically.
For instance, Ishwaran and Zarepour [31] suggested that
the adequacy of the truncation level, 𝐺, can be assessed by
evaluating moments of the tail probability. Our simulation
results have shown that 𝐺 = 100 is more than adequate for
the model considered in the present context.

Now, we specify the distribution 𝐹0. Recalling that by
convention 𝜃

∗
𝑘 is the collection of {𝜇∗𝑘 , Ψ

∗
𝜖𝑘, Φ
∗
𝑘 }, hence, we

assume that
𝐹0 (𝜇
∗
𝑘 , Ψ
∗
𝜖𝑘, Φ
∗
𝑘 | ], Σ], 𝑅)

= 𝑁 (𝜇
∗
𝑘 | ], Σ]) ⋅

𝑚

∏

𝑗=1

Gamma−1 (𝜓∗𝜖𝑘𝑗 | 𝛼𝜖0𝑗, 𝛽𝜖0𝑗)

⋅Wishart−1 (Φ∗𝑘 | 𝜌0, 𝑅
−1
) ,

(10)

where ], Σ], and 𝑅 are hyperparameters, Σ] = diag{𝜎]1, . . . ,
𝜎]𝑝} is a diagonal matrix with the 𝑘th diagonal ele-
ment 𝜎]𝑘, and 𝑅 is an 𝑚2 × 𝑚2 positive definite matrix;
Gamma−1(𝛼𝜖0𝑗, 𝛽𝜖0𝑗) refers to the inverse gamma distribution
with shaper parameters 𝛼𝜖0𝑗 and scale parameters 𝛽𝜖0𝑗,
respectively, and Wishart−1 denotes the inverse Wishart
distribution [32].

Modeling 𝐹 in (7) into the random probability measure
and incorporating the latent variable 𝜔𝑖 into (5) generate the
following hierarchical model: for 𝑖 = 1, . . . , 𝑛,

(𝑦
∗
𝑖 | 𝜔𝑖, 𝜃𝑖, 𝜗)

ind
∼ 𝑁 (𝜇𝑖 + Λ𝜔𝑖, Ψ𝜖𝑖) ,

(𝜔𝑖 | 𝜃𝑖)
ind
∼ 𝑁 (0,Φ𝑖) ,

(𝜃𝑖 | 𝐹)
iid
∼ 𝐹, 𝐹 ∼ P𝐺 (⋅) ,

(11)

whereP𝐺 is given by (7) and (8).

3. Parameters Estimation and Model Selection

3.1. Prior Specifications and Estimation via Blocked Gibbs
Sampler. Let Θ∗ = {𝜃

∗
𝑘 : 𝑘 = 1, . . . , 𝐺}. To implement

Bayesian analysis, blocked Gibbs sampler is used to simulate
observations from the posterior. The key for blocked Gibbs
sampler is to recast model (11) completely by introducing
the cluster variables 𝐿 = (𝐿1, . . . , 𝐿𝑛)

𝑇 such that 𝜃𝑖 = 𝜃
∗
𝐿 𝑖
.

Consequently, the semiparametric hierarchical model (11)
can be reformulated as the following framework:

(𝑦
∗
𝑖 | 𝜔𝑖, 𝜃𝑖, 𝜗)

ind
∼ 𝑁 (𝜇𝑖 + Λ𝜔𝑖, Ψ𝜖𝑖) ,

(𝜔𝑖 | 𝜃𝑖)
ind
∼ 𝑁 (0,Φ𝑖) ,

(𝐿 𝑖 = ⋅ | 𝜋)
iid
∼

𝐺

∑

𝑘=1

𝜋𝑘𝛿𝑘 (⋅) ,

(𝜋, Θ
∗
) ∼ 𝑝 (𝜋) 𝑝 (Θ

∗
) ,

𝜗 ∼ 𝑝 (𝜗) ,

𝜏 ∼ 𝑝 (𝜏) ,

(12)

where 𝑝(𝜗) is a prior of 𝜗, 𝑝(𝜋) is the stick-breaking prior
given by (8) with [𝑉𝑖 | 𝛼]

iid
∼ Beta(1, 𝛼), and 𝑝(Θ∗) is the joint

distribution of Θ∗ given by

𝑝 (Θ
∗
| ], Σ], 𝑅) =

𝐺

∏

𝑘=1

𝑝 (𝜃
∗
𝑘 | ], Σ], 𝑅)

=

𝐺

∏

𝑘=1

𝑝 (𝜇
∗
𝑘 , Ψ
∗
𝜖𝑘, Φ
∗
𝑘 | ], Σ], 𝑅) ,

[𝜇
∗
𝑘 , Ψ
∗
𝜖𝑘, Φ
∗
𝑘 | ], Σ], 𝑅]

iid
∼ 𝐹0

(13)

in which 𝐹0(⋅ | ], Σ], 𝑅) is given in (10).
For the Bayesian analysis, we need to specify priors for the

parameters involved in the model.The whole parameters can
be divided into two parts: parametric component part {𝜗, 𝜏}
and nonparametric component part {], Σ], 𝑅, 𝛼}. For the
parametric components, we assume that 𝑝(𝜗, 𝜏) = 𝑝(𝜗)𝑝(𝜏)

with

𝑝 (Λ 𝑘)
𝐷
= 𝑁 (Λ 0𝑘, 𝐻𝜖0𝑘) ,

𝑝 (𝜏) =

𝑠

∏

𝑗=1

𝑝 (𝜏𝑗) =

𝑠

∏

𝑗=1

𝑝 (𝜏𝑗,2, . . . , 𝜏𝑗,𝑏𝑗−1
)

∝

𝑠

∏

𝑗=1

𝐼 {𝜏𝑗,2 < ⋅ ⋅ ⋅ < 𝜏𝑗,𝑏𝑗−1
} ,

(14)

where Λ 𝑘 is a 𝑝 × 1 column vector that contains unknown
parameters in the 𝑘th row of Λ.
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For the hyperparameter 𝛽 = {], Σ], 𝑅, 𝛼}, we consider the
following conjugate priors:

] ∼ 𝑁 (𝜇0, Σ0) ,

𝑅 ∼ Wishart−1 (𝜌𝜙0 , 𝑅
𝜙
0) ,

𝜎]𝑘 ∼ Gamma−1 (𝜅1, 𝜅2) ,

𝛼 ∼ Gamma (𝜏1, 𝜏2) .

(15)

The hyperparameters 𝜇0, Σ0, Λ 0𝑘, 𝐻𝜖0𝑘, 𝑅
𝜙
0 , 𝛼𝜖0𝑗, 𝛽𝜖0𝑗, 𝜌0, 𝜌

𝜙
0 ,

𝜅1, 𝜅2, 𝜏1, and 𝜏2 in (10), (14), and (15) are treated as known.
Let 𝑌(𝑛 × 𝑝) = (𝑦1, . . . , 𝑦𝑛)

𝑇, Ω = (𝜔1, . . . , 𝜔𝑛)
𝑇,

and 𝑌
∗

= (𝑦
∗
1 , . . . , 𝑦

∗
𝑛 )
𝑇. Posterior analysis in relation to

the complex 𝑝(𝜗, 𝛽 | 𝑌) is carried out through the data
augmentation technique [33]. Specifically, we treat the latent
quantities {Ω, 𝑌

∗
, 𝜋, Θ
∗
, 𝐿} as missing data and augment

them with the observed data. A sequence of random obser-
vations is generated from the joint posterior distribution
𝑝(Ω, 𝑌

∗
, 𝜗, 𝜋, Θ

∗
, 𝐿, 𝛽 | 𝑌) by the blocked Gibbs sampler [31,

34], coupledwith theMetropolis-Hastings algorithm [35, 36]:
given {Ω(𝑙), 𝑌∗(𝑙), 𝜋(𝑙), Θ∗(𝑙), 𝐿(𝑙)} at the 𝑙th iteration

draw Ω
(𝑙+1) from 𝑝(Ω | 𝑌

∗(𝑙), 𝜗(𝑙), 𝜋(𝑙), Θ∗(𝑙), 𝐿(𝑙), 𝛽(𝑙),
𝑌),

draw (𝜗
(𝑙+1)

, 𝑌
∗(𝑙+1)

) from 𝑝(𝜗, 𝑌
∗
| Ω
(𝑙+1), 𝜋(𝑙), Θ∗(𝑙),

𝐿
(𝑙), 𝛽(𝑙), 𝑌),

draw (𝜋
(𝑙+1)

, Θ
∗(𝑙+1)

) from 𝑝(𝜋,Θ
∗
| Ω
(𝑙+1), 𝑌∗(𝑙+1),

𝜗
(𝑙+1), 𝐿(𝑙), 𝛽(𝑙), 𝑌),

draw 𝐿
(𝑙+1) from 𝑝(𝐿 | Ω

(𝑙+1), 𝑌∗(𝑙+1), 𝜗(𝑙+1), 𝜋(𝑙+1),
Θ
∗(𝑙+1), 𝛽(𝑙), 𝑌),

draw 𝛽
(𝑙+1) from 𝑝(𝛽 | Ω

(𝑙+1), 𝑌∗(𝑙+1), 𝜗(𝑙+1), 𝜋(𝑙+1),
Θ
∗(𝑙+1), 𝐿(𝑙+1), 𝑌),

and form {Ω
(𝑙+1)

, 𝑌
∗(𝑙+1)

, 𝜋
(𝑙+1)

, Θ
∗(𝑙+1)

, 𝐿
(𝑙+1)

}. It can
be shown that as 𝑙 tends to infinity, the empirical
distribution of {Ω

(𝑙)
, 𝑌
∗(𝑙)

, 𝜋
(𝑙)
, Θ
∗(𝑙)

, 𝐿
(𝑙)
} converges to

𝑝(Ω, 𝑌
∗
, 𝜗, 𝜋, Θ

∗
, 𝐿, 𝛽 | 𝑌) at any geometrical rate. The full

conditional distributions and the implementation of the
above algorithm are given in the Appendix.

3.2. Model Selection. Model selection is an important issue in
Bayesian semiparametric modeling for latent variable model
since it is of practical interest to compare different modelings
for factor analytic models. Formal Bayesian model selection
is accomplished by comparing the marginal predictive dis-
tribution of data across models. Consider the problem of
comparing competing models 𝑀1 and 𝑀2. Let 𝑝(𝑌 | 𝑀1)

and 𝑝(𝑌 | 𝑀2) denote the marginal density of data 𝑌

under𝑀1 and𝑀2, respectively. A popular choice for selecting
models is achieved via Bayes factor (BF) (e.g., [37–39]).
However, in view of the fact that computing BF involves the
high-dimensional density which is hard to estimate well, we

prefer comparing the following logarithm of pseudomarginal
likelihood (LPML) [40, 41]:

LPML (𝑌) =
𝑛

∑

𝑖=1

log (CPO𝑖) , (16)

where CPO𝑖 is known as the conditional predictive ordinate
(CPO) defined as

CPO𝑖 = 𝑝 (𝑦𝑖 | 𝑌(𝑖)) = [∫
1

𝑝 (𝑦𝑖 | 𝑌(𝑖), 𝜗, Θ
∗, 𝜋)

𝑝 (𝜗,

Θ
∗
, 𝜋 | 𝑌) 𝑑𝜗 𝑑Θ

∗
𝑑𝜋]

−1

= [∫
1

𝑝 (𝑦𝑖 | 𝜗, Θ
∗, 𝜋)

𝑝 (𝜗, Θ
∗
, 𝜋 |

𝑌) 𝑑𝜗 𝑑Θ
∗
𝑑𝜋]

−1

.

(17)

Here, 𝑌(𝑖) is the data set 𝑌 with 𝑦𝑖 removed. Obviously, from
(17), we can see that CPO𝑖 is themarginal posterior predictive
density of 𝑦𝑖 given 𝑌(𝑖) and can be interpreted as the height of
this marginal density at 𝑦𝑖. Thus, small values of LPML imply
that 𝑌 does not support the model.

Based on MCMC sample {(Θ∗(𝑡), 𝜋(𝑡), 𝐿(𝑡), 𝜗(𝑡), 𝛽(𝑡)) : 𝑡 =
1, . . . , 𝑇} already available in the estimation, a consistent
estimate for LPML can be obtained via ergodic average given
by

L̂PML (𝑌) = −

𝑛

∑

𝑖=1

log[ 1
𝑇

𝑇

∑

𝑡=1

1

𝑝 (𝑦𝑖 | 𝜗
(𝑡), Θ∗(𝑡), 𝜋(𝑡))

] . (18)

It is noted that, under our proposed model,

𝑝 (𝑦𝑖 | 𝜗, Θ
∗
, 𝜋) = ∫𝑝 (𝑦𝑖 | 𝜔𝑖, 𝐿 𝑖, 𝜗, Θ

∗
)

⋅ 𝑝 (𝜔𝑖 | 𝐿 𝑖, 𝜗, Θ
∗
) 𝑝 (𝐿 𝑖 | 𝜋) 𝑑𝜔𝑖𝑑𝐿 𝑖

(19)

which is complicated due to the existence of Ω and 𝐿. This
can be solved by Monte Carlo approximation. Specifically,
given the current values {𝜗(𝑙), Θ∗(𝑙), 𝜋(𝑙)} at the 𝑙th iteration,
we draw (i) 𝐿𝑙,ℎ𝑖 from 𝑝(𝐿 𝑖 | 𝜋

(𝑙)
) and (ii) 𝜔𝑙,ℎ𝑖 from 𝑝(𝜔𝑖 |

𝐿
𝑙,ℎ
𝑖 , 𝜗
(𝑙)
, Θ
∗(𝑙)

) for ℎ = 1, . . . , 𝐻 and then evaluate 𝑝(𝑦𝑖 |
𝜗
(𝑙)
, Θ
∗(𝑙)

, 𝜋
(𝑙)
) at the observation 𝑦𝑖 through

𝑝̂ (𝑦𝑖 | 𝜗
(𝑙)
, Θ
∗(𝑙)

, 𝜋
(𝑙)
)

≈
1

𝐻

𝐻

∑

ℎ=1

𝑝 (𝑦𝑖 | 𝜔
𝑙,ℎ
𝑖 , 𝐿
𝑙,ℎ
𝑖 , 𝜗
(𝑙)
, Θ
∗(𝑙)

) .

(20)

Obviously, the distributions involved in (i) and (ii) are
standard and sampling is rather straightforward and fast.

4. A Simulation Study

In this section, a simulation study to evaluate the per-
formance of the proposed procedure is conducted. The
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goal is to assess the accuracy of estimates under para-
metric, partly exchangeable, and semiparametric modelings
when data take on the multimodality or heterogeneity.
We consider the situation in which each observed vector
consists of three-dimensional continuous vector and three-
dimensional ordinal vector with threshold values 𝜏𝑗 =

(−1.0
∗
, −0.6, 0.3, 1.0

∗
)
𝑇
(𝑗 = 1, 2, 3). We generate 𝑌 by first

generating 𝑌∗ with 𝑦∗𝑖 = (𝑥
𝑇
𝑖 , 𝑢
𝑇
𝑖 )
𝑇 from the mixture of two

factor analytic models with weights 0.45 and 0.55 and then
transforming 𝑢𝑖 into 𝑧𝑖 (𝑠 = 3) via (1) to create the ordinal
observations, where 𝑥𝑖 represents a 6×1 observed continuous
random vector and 𝑢𝑖 is a 3 × 1 latent continuous random
vector. Each component in the mixture model is specified
through the following measurement model: for𝑚 = 1, 2,

𝑦
∗
𝑖 = 𝜇
(𝑚)

+ Λ𝜔
(𝑚)
𝑖 + 𝜖

(𝑚)
𝑖 , 𝜖

(𝑚)
𝑖 ∼ 𝑁(0, Ψ

(𝑚)
𝜖 ) . (21)

Theparameters involved in the components ofmixturemodel
are taken as 𝜇(1) = −1.5 × 16, 𝜇

(2)
= 1.0 × 16, Ψ

(1)
𝜖 = 0.36𝐼6,

Ψ
(2)
𝜖 = 𝐼6,

Λ
𝑇
= [

1
∗
0.8 0.8 0

∗
0
∗

0
∗

0
∗

0
∗

0
∗

1
∗
0.8 0.8

] ,

Φ
(1)

= (

1 −0.3

−0.3 1.0
) ,

Φ
(2)

= (

1 0.6

0.6 1.0
) ,

(22)

in which 16 is a 6 × 1 vector with all elements equal
to one and 𝐼6 is a 6 × 6 identity matrix. The elements
with asterisks involved in loading matrix Λ and threshold
parameters {𝜏𝑗}

3
𝑗=1 are treated as fixed for identifying model

(see Section 2.1). Based on these settings, random samplewith
size 500 is generated and 100 replications are completed for
each combination.

Prior inputs in the prior distributions involved in the
parametric components (see (14)) are as follows: 𝐻𝜖0𝑘 and
𝐻𝜁0 are diagonal matrices with the diagonal elements 1.0, and
elements in {Λ 0𝑘, Π0} are equal to the true values, while prior
inputs in the prior distribution of superparameter 𝛽 (see (15))
are 𝜇0 = 09, Σ0 = 100𝐼9, 𝜅1 = 𝜅2 = 0.001, 𝑅𝜙0 = 0.01𝐼2,
𝜌0 = 𝜌

𝜙
0 = 10, 𝛼𝜖0𝑘 = 𝛽𝜖0𝑘 = 2.0, and 𝜏1 = 𝜏2 = 2.0. Note that

these values ensure approaching noninformative priors.
A few test runs are conducted to explore the effect of

truncated levels on the estimates of unknown parameters
and the convergence of the blocked Gibbs sampler. We take
𝐺 = 50, 60, 70, 80, 90, 100, 200, and 300 and calculate
the total sum of the root mean square (RMS) of estimates
(see below for details).The resulting values are 1.9830, 1.7382,
1.6582, 1.5548, 1.4194, 1.4128, 1.4108, and 1.4101, respectively.
It can be seen that the total sum of the root mean square
(RMS) becomes rather stable when 𝐺 ≥ 80. In the following
analysis, we set 𝐺 = 100 in our data analysis. For the
threshold parameters {𝜏𝑗𝑘 : 𝑗 = 1, 2, 3, 𝑘 = 2, 3}, we choose
𝜎
2
MH𝑗𝑘 = 0.002 (see Appendix) in MH algorithm to produce
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Figure 1: Plot of the values of EPSR of unknown parameters against
the number of iterations under different starting values for the
simulated data.

the acceptance rate about 0.40. Figure 1 gives the plots of
EPSR (estimated potential scale reduction [42]) values of
unknown free parameters in Λ, 𝜏, and 𝛼 against iterations
for three groups of different starting values. It can be seen
that the estimates converge in less than 1000 iterations. To
be conservative, in the following analysis, we collect 3000
observations after 2000 “burn-in”s deleted to take posterior
analysis. We first consider the performance of the proposed
LMPL in model comparison. We compare the proposed
model with the parametric model (denoted by PARA) and
the partly exchangeable model (denoted by PAEX), which
approximately correspond to 𝛼 = +∞ and 𝛼 = 0 under our
proposal, respectively. The parametric model is defined by

(𝑦
∗
𝑖 | 𝜔𝑖, 𝜃)

ind
∼ 𝑁 (𝜇 + Λ𝜔𝑖, Ψ𝜖) ,

(𝜔𝑖 | Φ)
iid
∼ 𝑁 (0,Φ) .

(23)

The priors of the parameters are given by 𝑝(𝜇) 𝐷= 𝑁(𝜇0, Σ0),
𝑝(Λ,Ψ𝜖)

𝐷
= ∏
9
𝑘=1𝑁(Λ 0𝑘, 𝐻0𝑘) ⋅Gamma−1(𝛼𝜖0𝑘, 𝛽𝜖0𝑘), andΦ ∼

Wishart−1(10, 7.0𝐼2).
The partly exchangeable model is given by

(𝑦
∗
𝑖 | 𝜔𝑖, 𝜃𝑖, 𝜗)

ind
∼ 𝑁 (𝜇𝑖 + Λ𝜔𝑖, Ψ𝜖𝑖) ,

(𝜔𝑖 | 𝜃𝑖)
ind
∼ 𝑁 (0,Φ𝑖) ,

(24)

where 𝜃𝑖 = {𝜇𝑖, Ψ𝜖𝑖, Φ𝑖} are i.i.d. with distribution 𝐹0(⋅ |

], Σ], 𝑅) given in (5); the priors for the unknown parameter
vector Λ and hyperparametric vector {], Σ], 𝑅} are, respec-
tively, given in (14) and (15).

Under the foregoing settings for the hyperparameters,
observations obtained through the blockedGibbs sampler are
used to compute the values of LPML for each scenario across
100 replications. For the parametric and partly exchangeable
model, computing values of LPML is very straightforward
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and standard. For the semiparametric model, we draw 50
observations for approximating 𝑝(𝑦𝑖 | 𝜗, Θ, 𝜋). The values
of LPML under parametric model, semiparametric model,
and partly exchangeable model are, respectively, −6684.740,
−6255.553, and −8487.259 with standard deviations 62.509,
151.480, and 147.742. Based on the LPML criteria, semipara-
metricmodel is selected, which is consistent with the fact that
the truemodel takes on themultimodes.Moreover, according
to our empirical results, the correct rates of LPML selecting
the true model across 100 replications are about 0.93.

Table 1 gives the biases (BIAS), root mean squares (RMS),
and standard deviations (SD) of estimates of unknown
parameters across 100 replications under semiparametric
models and parametric and partly exchangeable model,
respectively. The measures BIAS, RMS, and SD are given as

BIAS (𝜗̂𝑗) = (𝜗𝑗 − 𝜗𝑗0) , 𝜗𝑗 =
1

𝑆

𝑆

∑

𝑟=1

𝜗̂
(𝑟)

𝑗 ,

RMS (𝜗̂𝑗) = √
1

𝑆

𝑆

∑

𝑟=1

(𝜗̂
(𝑟)

𝑗 − 𝜗𝑗0)

2

,

SE (𝜗̂𝑗) = √
1

𝑆

𝑆

∑

𝑟=1

(𝜗̂
(𝑟)

𝑗 − 𝜗𝑗)

2

,

(25)

where 𝑆 is the number of replications. It can be seen
that estimates obtained through the proposed approach are
reasonably accurate. The values of 𝜆̂𝑗𝑘 under our approach
are smaller than those under parametric and exchangeable
modelings in terms of the absolute values of BIAS and RMS.
The results show that ignoring heterogeneity among the data
may lead to biased estimates and incorrect interpretation of
the analyzed phenomena. This also reflects that the factor
loadings 𝜆𝑗𝑘 are not robust against the distributional devia-
tions of inceptor, variance of unique errors, and covariances
of latent factors.

Further simulation study is conducted to assess the
performance of the proposed model and parametric model
as well as the partly exchangeable model when data are
generated from a single normal distribution. The population
values of parameters are taken as 𝜇 = 06, Ψ𝜖 = 𝐼6, and

Φ = (

1 0.3

0.3 1.0
) . (26)

The values of factor loadings and threshold points are the
same as those in previous mixture model. As usual, we take
𝐺 = 100 for truncated levels. The sample size is set to
62 which is analogous to the real example. The inputs for
superparameters involved in priors are set the same as that
in mixture model. The results based on 100 replications are
summarized in Table 2.

Based on Table 2, it can be found that the results obtained
from our proposal are rather reasonable when compared
to normal model, while partly exchangeable model gives
serious biases. Moreover, we consider different inputs of
superparameters in priors and find that the estimates are
rather robust.

5. A Real Example

To illustrate the proposed procedure with a real example, a
political-economic risk data set [43] was analyzed, which is
adopted from Henisz’s [44] political constraint index data
set (POLCON), Marshall et al. [45] state failure problem sets
(PITF), and Alvarez et al.’s [46] ACLP Political and Economic
Database (ACLP).Thedata set is formed by the two economic
indicators and three political variables from 62 countries.The
first index is the log black market premium (BMP). This is a
continuous variablewhich is usually used as a proxy for illegal
economic activity.The second index is log real gross domestic
product (GDP). It is used to measure the productivity of a
country. The third variable is a measure of independence of
the national judiciary.This is a binary variable: it takes 1 if the
judiciary is judged to be independent and 0 otherwise. The
next measurement, measuring the level of lack of expropria-
tion risk threat (LE), is an ordered categorical variable coded
with 0, 1, 2, 3, 4, and 5.The last variable is an expert judgment
of measuring lack of corruption (LC). It is also an ordered
categorical variable scaled with 0 to 5. The total sample size
is 62 and the frequencies of each category occurring are
equal to {34, 28}, {2, 6, 7, 19, 14, 14}, and {5, 11, 18, 11, 8, 9},
respectively. To unify scales of the continuous variables, the
corresponding raw data were standardized.

Let 𝑦𝑇 = (log BMP, logGDP, IJ, LE, LC) be the vector of
the observed variables. Based on the objective of this example,
it is natural to group (i) {log BMP, logGDP} to an endogenous
latent variable that can be interpreted as “economic factor, 𝜉”
and (ii) {IJ, LE, LC} to an exogenous genotype latent variable
that can be interpreted as “political factor, 𝜂.” Hence, the
following loading matrix Λ in the measurement equation
with 𝜔𝑖 = (𝜂𝑖, 𝜉𝑖)

𝑇 is considered:

Λ
𝑇
= [

0
∗

0
∗

1
∗
𝜆41 𝜆51

1
∗
𝜆22 0

∗
0
∗

0
∗
] (27)

in which the ones and zeros are treated as known. Although
other structures of Λ could be used, here we consider a
nonoverlapped structure for clear interpretations of the latent
variables: 𝜆𝑗𝑘 measures the effect of 𝜔𝑘 on the observed
variable 𝑦𝑗. Since the third variable is binary and the last
two variables are measured on a six-point scale with each
involving six thresholds, formodel identification, we fix𝜓𝜖3 =
1 and endpoints of thresholds 𝜏31, 𝜏35, 𝜏41, and 𝜏45 at −1.8486,
0.7527,−1.4007, and 1.0574, respectively.These fixed threshold
values were chosen via 𝜏𝑗𝑘 = Φ

−1
(𝑝̂𝑗𝑘), where 𝑝̂𝑗𝑘 are

observed marginal proportions of the categories with 𝑧𝑗 < 𝑘.
By primary data analysis, we find that the skewness and

kurtosis of the first two variables are {−0.1340, −0.4319} and
{2.0892, 2.0958}, respectively. We also evaluate the predictive
density function for continuous variables. Figure 2 gives
the contours of posterior predictive density of pair (𝑦1, 𝑦2)
under parametric model and semiparametric model𝑀𝜖 (see
below) based on 60 × 60 grids. It can be seen that the data
for pair (𝑦1, 𝑦2) are heavy-tailed and the predictive density
under semiparametric model captures the high frequency
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Table 1: Summary of the estimates under the parametric, partly exchangeable, and semiparametric approaches in analyzing simulated data:
mixture data.

Para. PARA PAEX SEMI
BIAS RMS SD BIAS RMS SD BIAS RMS SD

𝜆21 0.130 0.136 0.043 0.216 0.171 0.047 −0.022 0.066 0.070
𝜆31 0.131 0.138 0.043 0.212 0.181 0.047 −0.026 0.080 0.070
𝜆52 0.140 0.147 0.046 0.263 0.164 0.072 −0.015 0.093 0.092
𝜆62 0.144 0.150 0.046 0.266 0.152 0.071 −0.012 0.098 0.092
𝜏12 0.060 0.091 0.040 −0.110 0.014 0.052 0.007 0.062 0.038
𝜏13 0.070 0.085 0.033 −0.216 0.050 0.060 0.007 0.067 0.040
𝜏22 0.070 0.098 0.040 −0.113 0.016 0.051 0.008 0.056 0.038
𝜏23 0.077 0.095 0.032 −0.186 0.038 0.059 0.013 0.062 0.042
𝜏32 0.062 0.092 0.040 −0.118 0.016 0.051 0.013 0.069 0.038
𝜏33 0.083 0.098 0.032 −0.184 0.037 0.059 0.018 0.070 0.042

Table 2: Summary of the estimates under the parametric, partly exchangeable, and semiparametric approaches in analyzing simulated data:
normal data.

Para. PARA PAEX SEMI
BIAS RMS SD BIAS RMS SD BIAS RMS SD

𝜆21 0.109 0.103 0.068 0.216 0.201 0.147 0.152 0.125 0.130
𝜆31 −0.114 0.108 0.066 0.212 0.201 0.207 0.138 0.137 0.120
𝜆52 −0.122 0.116 0.101 0.253 0.134 0.172 0.146 0.139 0.141
𝜆62 −0.123 0.114 0.102 0.366 0.136 0.271 0.144 0.118 0.176
𝜏12 −0.012 0.004 0.052 −0.151 0.036 0.126 0.005 0.002 0.052
𝜏13 −0.018 0.002 0.056 −0.153 0.041 0.126 −0.013 0.003 0.060
𝜏22 −0.001 0.003 0.046 −0.110 0.014 0.052 −0.035 0.004 0.045
𝜏23 0.016 0.003 0.051 −0.216 0.050 0.060 −0.022 0.004 0.055
𝜏32 −0.001 0.003 0.046 −0.113 0.016 0.051 −0.001 0.002 0.048
𝜏33 −0.018 0.002 0.051 −0.186 0.038 0.059 −0.012 0.003 0.058

region successfully while parametric model fails. For model
comparison, we consider the following competing models:

𝑀
𝜇: 𝑦∗𝑖 = 𝜇𝑖 + Λ𝜔𝑖 + 𝜖𝑖,

𝜖𝑖 ∼ 𝑁 (0, Ψ𝜖) , 𝜔𝑖 ∼ 𝑁 (0, 𝜙) ;

𝑀
𝜖: 𝑦∗𝑖 = 𝜇 + Λ𝜔𝑖 + 𝜖𝑖,

𝜖𝑖 ∼ 𝑁 (0, Ψ𝜖𝑖) , 𝜔𝑖 ∼ 𝑁 (0, 𝜙) ;

𝑀
𝜇𝜖: 𝑦∗𝑖 = 𝜇𝑖 + Λ𝜔𝑖 + 𝜖𝑖,

𝜖𝑖 ∼ 𝑁 (0, Ψ𝜖𝑖) , 𝜔𝑖 ∼ 𝑁 (0, 𝜙) ;

𝑀
𝜇𝜙: 𝑦∗𝑖 = 𝜇𝑖 + Λ𝜔𝑖 + 𝜖𝑖,

𝜖𝑖 ∼ 𝑁 (0, Ψ𝜖) , 𝜔𝑖 ∼ 𝑁 (0, 𝜙𝑖) ;

𝑀
𝜖𝜙: 𝑦∗𝑖 = 𝜇 + Λ𝜔𝑖 + 𝜖𝑖,

𝜖𝑖 ∼ 𝑁 (0, Ψ𝜖𝑖) , 𝜔𝑖 ∼ 𝑁 (0, 𝜙𝑖) ;

𝑀
𝜇𝜖𝜙: 𝑦∗𝑖 = 𝜇𝑖 + Λ𝜔𝑖 + 𝜖𝑖,

𝜖𝑖 ∼ 𝑁 (0, Ψ𝜖𝑖) , 𝜔𝑖 ∼ 𝑁 (0, 𝜙𝑖) .

(28)

The following two types of prior inputs are, respectively,
used for the hyperparameters involved in the parametric
components and semiparametric components: (I) Λ 𝜖0𝑘 =

Λ̃𝜖𝑘, 𝐻𝜖0𝑘 = 𝐼2, 𝛾0 = 𝛾̃, 𝐻𝜁0 = 1, 𝜇0 = 𝜇̃, Σ0 = diag{𝑆},
𝛼𝜖0𝑘 = 9.0,𝛽𝜖0𝑘 = (𝛼𝜖0𝑘−1)𝜓̃𝜖𝑘,𝜌0 = 𝜌

𝜙
0 = 20,𝑅𝜙−10 = (𝜌0−2)𝜙̃,

𝜅1 = 𝜅2 = 8.0, and 𝜏1 = 𝜏2 = 8.0, where 𝜃̃ denotes
the maximum likelihood estimates of 𝜃 under parametric
model from analysis of a “control-group” sample and 𝑆 is
the polychoric correlation matrix obtained on the basis of
single confirmatory factor analysis model; (II) 𝜆𝜖0𝑗𝑘 = 0,
𝐻𝜖0𝑘 = 0.01𝐼2, 𝛾0 = 0, 𝐻𝜁0 = 0.01, 𝜇0 = 05×1, Σ0 = 0.01𝐼5,
𝛼𝜖0𝑘 = 𝛽𝜖0𝑘 = 2.0, 𝜌0 = 𝜌

𝜙
0 = 10, 𝑅−10 = 𝜌0 − 2, 𝜅1 = 𝜅2 = 0.01,

and 𝜏1 = 𝜏2 = 0.01.Note that prior (I) givesmore information
than prior (II) since it partly takes advantage of information
from sample.

The proposed Bayesian semiparametric approach with
𝐺 = 50 was applied to calculate the values of CPO and
LPML. We draw 100,000 effective observations from the
corresponding posteriors via the blocked Gibbs sampler and
divide them into 100 batches equally. Table 3 gives the means
and standard deviations of LPML under priors (I) and (II).
The following facts can be found. (i) The values of LPML
under prior (I) are larger than those under prior (II). This
indicates that the LPML tends to choose the model with
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Figure 2: Plot of contours of posterior predictive density of pair (𝑦1, 𝑦2) under parametric model and semiparametric model 𝑀𝜖: (a)
corresponds to parametric model and (b) corresponds to semiparametric model with 𝐺 = 50.

Table 3:Mean and standard deviation (SD) of LPML in the political
and economic risk data.

Model
LPML

BAY I BAY II
Mean SD Mean SD

𝑀
𝜇

−253.0577 60.7693 −274.9704 14.7176
𝑀
𝜖

−176.5289 110.0227 −188.8361 175.3741
𝑀
𝜇𝜖

−193.2270 81.3209 −209.0063 77.0664
𝑀
𝜇𝜙

−235.7465 15.3588 −235.7465 11.6911
𝑀
𝜖𝜙

−267.4536 10.2084 −271.2875 10.4206
𝑀
𝜇𝜖𝜙

−255.2335 27.2208 −258.7124 15.8416

informative prior. (ii) 𝑀𝜖 give the largest value. Among the
posited models, 𝑀𝜖 is selected. We also compute the values
of LPML for parametric model. They are −287.4262 and
−288.6033 under priors (I) and (II) with standard deviations
6.287 and 5.065, respectively. Therefore, the data support the
semiparametric model instead of parametric model.

Table 4 presents the estimates of factor loading 𝜆𝑗𝑘

as well as their standard deviations with semiparametric
and parametric model under prior (I). The factor loading
estimates 𝜆̂𝑘𝑗 in themeasurement equation can be interpreted
according to a standard confirmatory factor analysis model.
The difference between the two approaches is obvious: the
estimates of 𝜆41 and 𝜆51 under parametric model are only
half of those under semiparametric model. Moreover, the
standard deviations of estimates with parametric method are
uniformly larger than that of semiparametric model. Since
we identify illegal economic activity log PCR with economic
factor 𝜉 (𝜆∗12 = 1) and independent of judiciary with political
factor 𝜂 (𝜆∗31 = 1), respectively, the level of economic factor
has a negative effect on real gross domestic product, while
the level of political factor has positive effect on lack of
expropriation risk threat and lack of corruption.The estimate
𝜆̂22 = −0.123 indicates that a one-unit increase in the level of
economic factor leads to 0.123-unit decrease in themagnitude
of gross domestic product.The interpretation of 𝜆̂41 and 𝜆̂51 is
similar. The differences of estimates between parametric and
semiparametric methods illustrate the effects of heavy tails of
the data on the estimates.

6. Concluding Remarks

Parametric modeling for latent variable model with mixed
data structure has long dominated Bayesian inference work,

Table 4: Estimates and standard errors estimates of the parameters
in analysis of political and economic risk data.

Parameter Parametric model 𝑀
𝜖 model

Est. SD Est. SD
𝜆22 −0.155 0.083 −0.123 0.077
𝜆41 0.418 0.104 0.846 0.088
𝜆51 0.367 0.090 0.754 0.066
𝜏42 −1.336 0.157 −1.340 0.055
𝜏43 −0.905 0.167 −0.898 0.061
𝜏44 −0.008 0.149 0.004 0.055
𝜏52 −0.794 0.142 −0.787 0.046
𝜏53 0.001 0.155 0.002 0.053
𝜏54 0.566 0.136 0.567 0.035

typically developed within the standard exponential family.
Such modeling is often confused with handling the mul-
timodal and unknown heterogeneous problems. In dealing
with multimodality or increased heterogeneity in data, one
naturally resorts to the finite mixture model [47, 48] which
is more flexible and feasible to implement due to advances in
simulation-based model fitting.

Rather than handling the large number of parameters
resulting from the finite mixture models with a large num-
ber of components, we consider, in this paper, the finite-
dimensional Dirichlet process mixture model for latent
variable model with continuous and ordinal responses. The
core of our proposal is to model the mean vector and/or
variance-covariance parameters of unique errors and latent
variables into the finite-dimensional stick-breaking priors.
This will help to reveal the local dependence structure such
as classification groups and clustering among the data. The
blocked Gibbs sampler developed by Ishwaran and Zarepour
[31], which takes advantage of the block updating and
accelerates mixing in Gibbs sampling, is adapted here to cope
with the posterior inference.

The proposed methodologies in this paper can be applied
to more general latent variable models that include the
multilevel SEMs [49] and longitudinal latent trait models [5]
with discrete variables.

Appendix

Full Conditional Distributions

(1) Full Conditional Distribution 𝑝(𝜗, 𝑌
∗
| Ω, 𝜋, Θ∗, 𝐿, 𝛽,

𝑌). To draw (𝜗, 𝑌
∗
) from 𝑝(𝜗, 𝑌

∗
| Ω, 𝜋, Θ∗, 𝐿, 𝛽, 𝑌),
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we implement it by (i) drawing (𝜏, 𝑌
∗
) from 𝑝(𝜏, 𝑌

∗
| Ω,

Λ, 𝜋, Θ∗, 𝐿, 𝛽, 𝑌) and (ii) drawing Λ from 𝑝(Λ | Ω, 𝜏,
𝑌
∗
𝜋, Θ∗, 𝐿, 𝛽, 𝑌). The underlying reason is that drawing

(𝜏, 𝑌
∗
) from the joint conditional distribution as proposed

here is more efficient than drawing 𝜏 and 𝑌∗ separately from
the corresponding marginal conditional distribution (see Liu
[50], Nandram and Chen [51], and Song and Lee [6]).

It can be shown that 𝑝(𝜏, 𝑌∗ | Ω, Λ, 𝜋, Θ∗, 𝐿, 𝛽, 𝑌), not
involving 𝜋 and 𝛽, is given by

𝑝 (𝜏, 𝑌
∗
| Ω, Λ, Θ

∗
, 𝐿, 𝑌) = 𝑝 (𝜏 | Ω, Λ,Θ

∗
, 𝐿, 𝑌)

⋅ 𝑝 (𝑌
∗
| 𝜏, Ω, Λ,Θ

∗
, 𝐿, 𝑌)

=

𝑠

∏

𝑗=1

𝑝 (𝜏𝑗 | Ω, Λ, Θ(𝑗), 𝑌(𝑗))

⋅ 𝑝 (𝑌
∗
(𝑗) | 𝜏𝑗, Ω, Λ,Θ(𝑗), 𝑌(𝑗)) ,

(A.1)

where 𝑌∗(𝑗) = {𝑦
∗
𝑖𝑗 : 𝑖 = 1, . . . , 𝑛}, Θ(𝑗) = {𝜃𝑖𝑗 : 𝑖 = 1, . . . , 𝑛}, and

𝑌(𝑗) = {𝑦𝑖𝑗 : 𝑖 = 1, . . . , 𝑛}. Further,

𝑝 (𝜏𝑗 | Ω, Λ, Θ(𝑗), 𝑌(𝑗))

∝

𝑏𝑗−1

∏

𝑘=1

∏

{𝑖:𝑦𝑖𝑗=𝑘}

{Φ (𝜓
−1/2
𝜖𝑖𝑗 (𝜏𝑗,𝑘+1 − 𝜇𝑖𝑗 − Λ

𝑇
𝑗𝜔𝑖))

− Φ (𝜓
−1/2
𝜖𝑖𝑗 (𝜏𝑗,𝑘 − 𝜇𝑖𝑗 − Λ

𝑇
𝑗𝜔𝑖))} 𝐼 {𝜏𝑗,𝑘 < 𝜏𝑗,𝑘+1} ,

𝑝 (𝑌
∗
(𝑗) | 𝜏𝑗, Ω, Λ,Θ(𝑗), 𝑌(𝑗)) ∝

𝑛

∏

𝑖=1

𝑁(𝑦
∗
𝑖𝑗 | 𝜇𝑖𝑗

+ Λ
𝑇
𝑗𝜔𝑖, 𝜓𝜖𝑖𝑗) 𝐼 {𝜏𝑗,𝑦𝑖𝑗

< 𝑦
∗
𝑖𝑗 ≤ 𝜏𝑗,𝑦𝑖𝑗+1

} ,

(A.2)

whereΦ(⋅) is the cumulative distribution function of𝑁(0, 1).
It is difficult to sample 𝜏𝑗 from 𝑝(𝜏𝑗 | Ω, Λ, Θ(𝑗), 𝑌(𝑗))

since this target distribution is nonstandard. We follow
Cowles’ routines [52] anduseMetropolis-Hasting (MH) algo-
rithm to sample observations from this complex conditional
distribution. Specifically, given the current values 𝜏

(𝑙)
𝑗 =

(𝜏
(𝑙)
𝑗,2, . . . , 𝜏

(𝑙)
𝑗,𝑏𝑗−1

)
𝑇 at the 𝑙th iteration, generate a candidate

vector 𝜏∗𝑗 = (𝜏
∗
𝑗,2, . . . , 𝜏

∗
𝑗,𝑏𝑗−1

)
𝑇 from the following truncated

normal distribution:

𝜏
∗
𝑗,𝑘 ∼ 𝑁(𝜏

(𝑙)
𝑗,𝑘, 𝜎
2
MH𝑗𝑘) 𝐼 {(𝜏

∗
𝑗,𝑘−1, 𝜏

(𝑙)
𝑗,𝑘+1]} ,

for 𝑘 = 2, . . . , 𝑏𝑗 − 1.

(A.3)

Accept this candidate 𝜏
∗
𝑗 as 𝜏

(𝑙+1)
𝑗 with the probability

min{1, 𝑅𝑗}, where

𝑅𝑗 =

𝑏𝑗−1

∏

𝑘=2

Φ(𝜎
−1
MH𝑗𝑘 [𝜏

(𝑙)
𝑗,𝑘+1

− 𝜏
(𝑙)
𝑗,𝑘
]) − Φ(𝜎

−1
MH𝑗𝑘 [𝜏

∗
𝑗,𝑘−1 − 𝜏

(𝑙)
𝑗,𝑘
])

Φ(𝜎
−1
MH𝑗𝑘 [𝜏

∗
𝑗,𝑘+1

− 𝜏
∗
𝑗,𝑘
]) − Φ(𝜎

−1
MH𝑗𝑘 [𝜏

(𝑙)
𝑗,𝑘−1

− 𝜏
∗
𝑗,𝑘
])

×

𝑛

∏

𝑖=1

Φ(𝜓
−1/2
𝜖𝑖𝑗 (𝜏

∗
𝑗,𝑦𝑖𝑗+1

− 𝜇𝑖𝑗 − Λ
𝑇
𝑗𝜔𝑖)) − Φ(𝜓

−1/2
𝜖𝑖𝑗 (𝜏

∗
𝑗,𝑦𝑖𝑗

− 𝜇𝑖𝑗 − Λ
𝑇
𝑗𝜔𝑖))

Φ(𝜓
−1/2
𝜖𝑖𝑗 (𝜏

(𝑙)
𝑗,𝑦𝑖𝑗+1

− 𝜇𝑖𝑗 − Λ
𝑇
𝑗𝜔𝑖)) − Φ(𝜓

−1/2
𝜖𝑖𝑗 (𝜏

(𝑙)
𝑗,𝑦𝑖𝑗

− 𝜇𝑖𝑗 − Λ
𝑇
𝑗𝜔𝑖))

.

(A.4)

As pointed out by Cowles (1996) [52], the quantities 𝜎2MH𝑗𝑘
should be chosen carefully such that the average acceptance
probability is about 0.30 or more.

For 𝑝(Λ,Π | Ω, 𝜏, 𝑌
∗
, 𝜋, Θ
∗
, 𝐿, 𝛽, 𝑌), without loss of

generality, we assume that the elements in Λ are all free. Let
𝑦
∗∗
𝑖𝑗 = 𝑦

∗
𝑖𝑗 −𝜇𝑗. Under the prior distributions given in (14), we

have

𝑝 (Λ | Ω, 𝑌
∗
, Θ
∗
, 𝐿)
𝐷
=

𝑝

∏

𝑘=1

𝑁(𝑚𝜖𝑘, Σ𝜖𝑘) , (A.5)

in which

𝑚𝜖𝑘 = Σ𝜖𝑘(𝐻
−1
𝜖0𝑘Λ 0𝑘 +

𝑛

∑

𝑖=1

𝜔𝑖𝑦
∗∗
𝑖𝑘

𝜓𝜖𝑖𝑘

) ,

Σ𝜖𝑘 = (

𝑛

∑

𝑖=1

𝜓
−1
𝜖𝑖𝑘𝜔𝑖𝜔

𝑇
𝑖 + 𝐻

−1
𝜖0𝑘)

−1

.

(A.6)

(2) Full Conditional Distribution 𝑝(Ω | 𝜏, 𝑌∗, 𝜃, 𝜋, Θ∗, 𝐿, 𝛽,
𝑌). It can be shown that the conditional distribution of Ω is
given by

𝑝 (Ω | 𝜏, 𝑌
∗
, 𝜃, 𝜋, Θ

∗
, 𝐿, 𝛽, 𝑌)

=

𝑛

∏

𝑖=1

𝑝 (𝜔𝑖 | 𝜃, 𝜃𝑖, 𝑦
∗
𝑖 ) ,

[𝜔𝑖 | 𝜃, 𝜃𝑖, 𝑦
∗
𝑖 ]
𝐷
= 𝑁(Σ𝜔𝑖Λ

𝑇
Ψ
−1
𝜖𝑖 (𝑦
∗
𝑖 − 𝜇𝑖) , Σ𝜔𝑖) ,

(A.7)

where Σ𝜔𝑖 = (Λ
𝑇
Ψ
−1
𝜖𝑖 Λ + Φ

−1
𝑖 )
−1.

(3)The Full Conditional Distribution 𝑝(𝜋,Θ∗ | Ω, 𝑌∗, 𝜗, 𝐿, 𝛽,
𝑌). It is clear that

𝑝 (𝜋,Θ
∗
| Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽, 𝑌)

= 𝑝 (𝜋 | Θ
∗
, Ω, 𝑌
∗
, 𝜗, 𝐿, 𝛽, 𝑌)

⋅ 𝑝 (Θ
∗
| 𝜋, Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽, 𝑌) .

(A.8)
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Let 𝑚𝑘 = #{𝑖 : 𝐿 𝑖 = 𝑘} be the number of 𝐿 𝑖 equal
to 𝑘, for 𝑘 = 1, . . . , 𝐺 − 1. It can be shown that 𝑝(𝜋 |

Θ
∗
, Ω, 𝑌
∗
, 𝜗, 𝐿, 𝛽, 𝑌) = 𝑝(𝜋 | 𝐿, 𝛼) is a generalized Dirichlet

distribution, GD(𝑎
∗
1 , 𝑏
∗
1 , . . . , 𝑎

∗
𝐺−1, 𝑏
∗
𝐺−1) with 𝑎

∗
𝑘 = 1 + 𝑚𝑘,

𝑏
∗
𝑘 = 𝛼 + ∑

𝐺
𝑗=𝑘+1𝑚𝑗 (𝑘 = 1, . . . , 𝐺 − 1), which is constructed

by

𝜋1 = 𝑉
∗
1 ,

𝜋𝑘 = 𝑉
∗
𝑘

𝑘−1

∏

𝑗=1

(1 − 𝑉
∗
𝑗 ) (𝑘 = 2, . . . , 𝐺 − 1) ,

(A.9)

where 𝑉∗𝑗
ind
∼ Beta(𝑎∗𝑗 , 𝑏

∗
𝑗 ).

For 𝑝(Θ∗ | 𝜋, Ω, 𝑌∗, 𝜗, 𝐿, 𝛽, 𝑌) = 𝑝(Θ
∗
| Ω, 𝑌∗, 𝜗,

𝐿, 𝛽), let 𝐿∗ = {𝐿
∗
1, . . . , 𝐿

∗
𝑚} be the unique set of 𝐿, Θ

∗
𝐿∗ =

{𝜃
∗
𝐿∗1
, . . . , 𝜃

∗
𝐿∗𝑚
}, andΘ∗(−𝐿∗) corresponding to those values inΘ

∗

with Θ∗𝐿∗ excluded. Then,

𝑝 (Θ
∗
| Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽) = 𝑝 (Θ

∗
(−𝐿∗) | Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽)

⋅ 𝑝 (Θ
∗
𝐿∗ | Θ

∗
(−𝐿∗), Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽)

= 𝑝 (Θ
∗
(−𝐿∗) | 𝛽) 𝑝 (Θ

∗
𝐿∗ | Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽) .

(A.10)

Let 𝜇∗ = {𝜇
∗
𝑗 : 𝑗 = 1, . . . , 𝐺}, Ψ∗𝜖 = {Ψ

∗
𝜖𝑗 : 𝑗 = 1, . . . , 𝐺}, and

Φ
∗
= {Φ
∗
𝑗 : 𝑗 = 1, . . . , 𝐺}, and note that Θ∗ = {𝜇

∗
, Ψ
∗
𝜖 , Φ
∗
}.

The components of {𝜇∗(−𝐿∗), Ψ
∗
𝜖(−𝐿∗), Φ

∗
(−𝐿∗)} are easy to sample

based on (14). Further,

𝑝 (Θ
∗
𝐿∗ | Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽)

=

𝑚

∏

𝑗=1

𝑝 (𝜃
∗
𝐿∗
𝑗
| Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽)

(A.11)

which can be implemented by drawing: for 𝑙 ∈ 𝐿∗

𝑝 (𝜇
∗
𝑙 | Ψ
∗
𝜖𝑙 , Ψ
∗
𝜁𝑙, Φ
∗
𝑙 , Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽) ∼ 𝑁 (𝜇

∗
𝑙 , Σ
∗
𝑙 ) ,

𝑝 (Ψ
∗−1
𝜖𝑙 | 𝜇

∗
𝑙 , Ψ
∗
𝜁𝑙, Φ
∗
𝑙 , Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽)

∼

𝑝

∏

𝑘=1

Gamma (𝛼∗𝜖𝑙𝑘, 𝛽
∗
𝜖𝑙𝑘) ,

𝑝 (Φ
∗−1
𝑙 | 𝜇

∗
𝑙 , Ψ
∗
𝜖𝑙 , Ψ
∗
𝜁𝑙, Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽)

∼ Wishart (𝜌∗𝑙0, 𝑅
∗
𝑙0)

(A.12)

in which

𝜇
∗
𝑙 = Σ

∗
𝑙 (Σ
−1
] ] + (Ψ∗−1𝜖𝑙 ∑

{𝑖:𝐿 𝑖=𝑙}

(𝑦
∗
𝑖 − Λ𝜔𝑖))) ,

Σ
∗
𝑙 = [Σ

−1
] + 𝑚𝑙Ψ

∗−1
𝜖𝑙 ]
−1
,

𝛼
∗
𝜖𝑙𝑘 = 𝛼𝜖0𝑘 + 𝑚𝑙,

𝛽
∗
𝜖𝑙𝑘 = 𝛽𝜖0𝑘 + 2

−1
∑

{𝑖:𝐿 𝑖=𝑙}

(𝑦
∗
𝑖𝑘 − 𝜇
∗
𝑙𝑘 − Λ

𝑇
𝑘𝜔𝑖)
2
,

𝜌
∗
𝑙0 = 𝜌

𝜙
0 + 𝑚𝑙,

𝑅
∗
𝑙0 = (𝑅

𝜙−1
+ ∑

{𝑖:𝐿 𝑖=𝑙}

𝜔𝑖𝜔
𝑇
𝑖 )

−1

.

(A.13)

(4) Full Conditional Distribution 𝑝(𝐿 | Ω, 𝜏, 𝑌∗, 𝜗, 𝜋, 𝑍, 𝑌).
It can be shown that

𝑝 (𝐿 | Ω, 𝑌
∗
, 𝜗, 𝜋, Θ

∗
, 𝑌)

=

𝑛

∏

𝑖=1

𝑝 (𝐿 𝑖 | Ω, 𝑌
∗
, 𝜗, 𝜋, Θ

∗
, 𝑌) ,

[𝐿 𝑖 = ⋅ | Ω, 𝜏, 𝑌
∗
, 𝜗, 𝜋, Θ

∗
, 𝑌]

iid
∼

𝐺

∑

𝑘=1

𝜋
∗
𝑖𝑘𝛿𝑘 (⋅) ,

(A.14)

where 𝜋
∗
𝑖𝑘 = 𝑐𝑖𝜋𝑘𝑝(𝑦

∗
𝑖 | 𝜔𝑖, 𝜃

∗
𝑘 , 𝜗)𝑝(𝜔𝑖 | 𝜃

∗
𝑘 ) and 𝑐𝑖 is a

normalized constant such that ∑𝐺𝑘=1 𝜋
∗
𝑖𝑘 = 1.0.

(5) Full Conditional Distribution 𝑝(𝛽 | Ω, 𝜏, 𝑌∗, 𝜗, 𝜋, 𝑍,
𝐿, 𝑌). Based on the priors given in (15), the full conditional
distributions for components of hyperparameters 𝛽 are given
as follows:

[] | Θ∗, Σ]] ∼ 𝑁 (𝑚], 𝐴]) ,

[Σ]], Θ
∗
] ∼

𝑝

∏

𝑗=1

Gamma−1(𝜅1 + 0.5𝐺, 𝜅2

+ 0.5

𝐺

∑

𝑘=1

(𝜇
∗
𝑘𝑗 − 𝜇𝑗)

2
) ,

[𝑅
−1
| Θ
∗
] ∼ Wishart(𝐺𝜌0 + 𝜌

𝜙
0 ,

(

𝐺

∑

𝑘=1

Φ
∗−1
𝑘 + 𝑅

𝜙
0)

−1

) ,

[𝛼 | 𝜋] ∼ Gamma (𝜏1 + 𝐺 − 1, 𝜏2 − log𝜋𝐺) ,

(A.15)

where 𝑚] = 𝐴]{Σ
−1
0 𝜇0 + Σ

−1
] ∑
𝐺
𝑘=1 𝜇
∗
𝑘 } and 𝐴] = (𝐺Σ

−1
] +

Σ
−1
0 )
−1
.
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This paper presents a control problem for the optimization of the production and setup activities of an industrial system operating
in an uncertain environment. This system is subject to random disturbances (breakdowns and repairs). These disturbances can
engender stock shortages. The considered industrial system represents a well-known production context in industry and consists
of a machine producing two types of products. In order to switch production from one product type to another, a time factor and
a reconfiguration cost for the machine are associated with the setup activities. The parts production rates and the setup strategies
are the decision variables which influence the inventory and the capacity of the system. The objective of the study is to find the
production and setup policies whichminimize the setup and inventory costs, as well as those associated with shortages. Amodeling
approach based on stochastic optimal control theory and a numerical algorithm used to solve the obtained optimality conditions
are presented. The contribution of the paper, for industrial systems not studied in the literature, is illustrated through a numerical
example and a comparative study.

1. Introduction

The production and setup planning problem surfaces in
manufacturing systems when significant cost and time are
required to set up the production unit for the processing of
multiple part types. The setup scheduling problem involves
deciding which part type has to be processed next and when
the production unit has to stop its current operations and
make a setup change to begin the processing of that part type.
The time required to switch from producing one part type
to another and the associated cost are significant. Given that
it is not realistic (or advantageous) to devote one machine
to a single part type, different part types must share the
same machine, and capacity is lost due to each setup change.
In addition, the considered machine is subject to random
breakdowns and repairs. It is therefore essential to jointly
investigate setup scheduling and production policies in order

to optimize the system performance measure of the failure-
prone manufacturing system under study.

For the class of completely flexible machines (based on a
crucial assumption that no setup time and cost are required
when production is switched from one part type to another),
an explicit formulation of the optimal control problem for
an unreliable flexible machine which produces multiple part
types is provided in [1]. In addition, Gharbi and Kenné
[2] provided a suboptimal control policy for the multiple
parts, multiple-machines problem. The considered planning
problem falls under an important class of stochastic manu-
facturing systems involving nonflexible machines, given that
the setup time and costs are considered when production
is switched from one product type to another. This class of
systems is a subset of manufacturing systems for which the
problem of determining the optimal production policies has
been considered by many authors. A significant portion of
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the research by the latter is based on a feedback formulation
of the control problem in a dynamic manufacturing environ-
ment. It is shown in [3] that the optimal control policy has
a special structure called the Hedging Point Policy (HPP)
in the case of a single-machine, single product system. For
such a policy, a nonnegative production surplus of parts,
corresponding to optimal inventory levels, is maintained
during times of excess capacity in order to hedge against
future capacity shortages caused by machine failures for the
case of a single-machine, two-product manufacturing system
with setup (see [4]). Various researchers have considered the
problems of setup scheduling in production using advanced
optimization approaches in the context of multiple-product
manufacturing systems. As recently stated in [5], the prob-
lems of sequence-dependent setup times have been attracting
increasing interest [6]. Previous sequence-dependent setup
times are studied using objective functions such asmakespan,
total completion time, and their combinations, with an
emphasis on the learning aspects of the sorting algorithms. In
the same context, Feng et al. [7] optimized various scheduling
policies and then analyzed them from the point of view
of their robustness to uncertainties and system parameter
variations. The obtained setup policy had a cyclic policy
structure resilient to parameter variations.

The stochastic optimal control problem of a manufactur-
ing system with setup costs and time was formally presented
in [4] following the series of papers published in the same
domain by Sethi and Zhang [8], Yan and Zhang [9], Boukas
and Kenné [10] and Hajji et al. [11]. The proposed models
led to the optimality conditions described by the Hamilton
Jacobi Bellman equations (HJB). Such equations are difficult
to resolve analytically formore general cases. An explicit solu-
tion for such equations was obtained by Akella and Kumar
[12] for a one-machine, one-product manufacturing system.
Numerical methods based on the Kushner approach (see
Kushner and Dupuis [13]) were used by Yan and Zhang [9]
and Boukas and Kenné [10] for a one-machine, two-product
manufacturing system. They were able to develop near-
optimal control policies for production and setup scheduling
in the case of a homogeneous and machine age-dependent
Markovian process.

For the one-machine, two products’ case, Yan and Zhang
[9] provide a characterization of the optimal production
and setup policy by four exclusive regions as a main result,
while Bai and Elhafsi [14] focused their contribution on
providing a suitable production and setup policy structure
and obtained the so-called Hedging Corridor Policy (HCP).
Following these studies, Gharbi et al. [4] developed a pro-
duction and setup policy for unreliable multiple-machine,
multiple part type manufacturing system, for which the
production and setup policy are known across the sample
space. They obtained a control policy called the Modified
Hedging Corridor Policy (MHCP), qualified as more realistic
and useful in the context of the production planning of
manufacturing systems with setup.

The main contribution of this paper is to develop a
production and setup policy for a more realistic unreliable
one-machine, one-part type manufacturing system under
appropriate assumptions in different industrial situations,

called here industrial scenarios. The resultant control policy
is more realistic and useful in the context of the production
planning of manufacturing systems with setup. This paper’s
contribution is further illustrated through the fact that the
proposed control policy guarantees a system performance
for systems that have not yet been studied in the relevant
literature. Our proposal is an extension of the works of Bai
and Elhafsi [14], Boukas and Kenné [10], and Hajji et al. [11].

This paper is organized as follows: Section 2 presents
the notations and main assumptions of the proposed model.
Section 3 presents the statement of the optimal production
and setup scheduling problem. The optimality conditions
and numerical approach are presented in Section 4. Section 5
describes the numerical examplewith results analysis, and the
paper is concluded in Section 6.

2. Model Assumptions and Hypotheses

This section presents the notations and assumptions used
throughout this paper.

2.1. Notations

𝑃𝑖: part type 𝑖 (𝑖 ∈ 𝐼 = {1, 2}),
𝜃𝑖𝑗: setup time to go from 𝑃𝑖 to 𝑃𝑗,
𝐾𝑖𝑗: setup cost to go from 𝑃𝑖 to 𝑃𝑗,
𝑑𝑖: rate of 𝑃𝑖 product request,
𝑥(𝑡): vector inventory levels/shortage, product type 𝑖,
𝑝𝑖: product processing time, type 𝑖,
𝑢𝑖(𝑡): production rate, product type 𝑖,
𝑈
+
𝑖 : maximum production rate, product type 𝑖,
𝑧𝑖: optimal inventory level, product type 𝑖,
𝛼(𝑡): stochastic process describing the dynamics of
the machine,
𝑆𝑖𝑗: setup policy from product part type 𝑖 to 𝑗,
𝑞𝛼𝛽: transition rate, mode 𝛼𝛽,

𝑐
−
𝑖 : shortage cost, product type 𝑖,
𝑐
+
𝑖 : inventory cost, product type 𝑖,
𝜌: cost discount rate,
𝑔(⋅): cost function,
𝑅(⋅): total cost function during setup,
𝐽(⋅): total cost function,
V(⋅): value function.

2.2. Context and Assumptions. The following is a summary of
the general context and main assumptions considered in this
paper:

(1) The model is time-continuous.
(2) Rawmaterials for the production of each product part

type are always available and unlimited.
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Total cost to be minimized = [cost of setup + inventory cost + shortage cost]

Figure 1: Manufacturing system studied.

(3) Customer demand of finished products for each part
type is known and represented by a constant rate over
time.

(4) The maximal production rate of each part type is
known.

(5) All failures are instantly detected and repaired. A
corrective maintenance action renews the production
system to its initial state (as good as new condition).

(6) The machine shares the production of different prod-
uct part types with significant setup time and cost.

(7) The shortage cost depends on the shortage quantity
and time (average value ($/product/unit of time)).

(8) The holding cost depends on themean inventory level
(average value ($/product/unit of time)).

(9) For each product part type, once the production starts
at a given rate, no adjustment of the rate will be
allowed until either the machine is down (failure
mode) or the current unit is completed.

We complete the assumptions by two hypotheses that help
us to study different industrial contexts (or production
scenarios) with setup.

Hypothesis 1. Thesetup operation is performedonlywhen the
machine is in operational mode and cannot be interrupted by
anymachine failure such that it has to be started all over again.

Hypothesis 2. The setup operation is only allowed if the
machine is in operational mode, and the setup process is
interrupted by failure such that it can be continued after a
repair.

In this paper, we show how the hypotheses affect the
optimality conditions of the associated stochastic optimal
control problem. We then develop appropriate optimality
conditions consisting of a modified form of the traditional

HJB equations. We finally compare the results obtained for
the two hypotheses (or contexts of production) in order to
provide more realistic production and setup policies.

3. Problem Formulation

The production system presented in Figure 1 consists of one
machine capable of producing two different part types. The
machine is not completely flexible in the sense that the setup
activities between the two part types involve both time and
cost to switch from the production of one part type to another.
The system under study is dynamic and the associated costs
to be minimized are illustrated in Figure 1.

Let 𝜃𝑖𝑗 and 𝐾𝑖𝑗 be the duration and the cost incurred for
switching the production from𝑃𝑖 to𝑃𝑗with 𝑖 ̸= 𝑗, respectively.
Note that, for 𝑖, 𝑗 = 1, 2 and 𝑖 ̸= 𝑗, 𝜃𝑖𝑗 ≥ 0 and𝐾𝑖𝑗 ≥ 0.

The 𝑖-type product requires an average production time
denoted as 𝑝𝑖 > 0 (𝑖 = 1, 2) and ordered with a constant
demand rate 𝑑𝑖.

Let𝑥𝑖(𝑡), 𝑢𝑖(𝑡) be the stock level and the rate of production
of two part types of products 𝑃𝑖, 𝑖 = 1, 2, respectively.

Let x, u, and d denote the vectors (𝑥1, 𝑥2)
𝑡, (𝑢1, 𝑢2)

𝑡, and
(𝑑1, 𝑑2)

𝑡, respectively, knowing that the notation 𝐴𝑡 denotes
the transpose of 𝐴.

At a given moment, we can describe the system by a
hybrid state that consists of a continuous portion (stock
dynamics) and a discrete portion (modes of the machine).
A stochastic process 𝜉(𝑡) is used to describe the mode of the
machine as follows:

𝜉 (𝑡) =

{

{

{

1 if the machine is operational

2 if the machine is under repair.
(1)

The machine uptimes and downtimes are assumed to be
exponentially distributed with rates 𝑝 and 𝑞, respectively.
Hence, the machine state evolves according to a continuous-
timeMarkov processwithmodes 𝜉(𝑡) ∈ 𝑀 = {1, 2}.The states
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Figure 2: States transition diagram of the system studied.

transition diagram of the Markov chain associated with the
machine dynamics is shown in Figure 2.

The evolution of machine states in the interval (𝑡, 𝑡 + 𝛿𝑡)
can be expressed by

prob (𝜉 (𝑡 + 𝛿𝑡) = 1 | 𝜉 (𝑡) = 2) = 𝑞12𝛿𝑡 + 0 (𝛿𝑡) ,

prob (𝜉 (𝑡 + 𝛿𝑡) = 1 | 𝜉 (𝑡) = 1) = 1 + 𝑞12𝛿𝑡 + 0 (𝛿𝑡) ,

prob (𝜉 (𝑡 + 𝛿𝑡) = 2 | 𝜉 (𝑡) = 1) = 𝑞21𝛿𝑡 + 0 (𝛿𝑡) ,

prob (𝜉 (𝑡 + 𝛿𝑡) = 2 | 𝜉 (𝑡) = 2) = 1 + 𝑞21𝛿𝑡 + 0 (𝛿𝑡) .

(2)

The process 𝜉(𝑡) can be described by a transition rate matrix
𝑄 = {𝑞𝛼𝛽}, defined by 𝑞𝛼𝛽 ≥ 0 si 𝛼 ̸= 𝛽 and 𝑞𝛼𝛼 = −∑𝛼 ̸=𝛽 𝑞𝛼𝛽,
knowing that 𝛼, 𝛽 ∈ 𝑀.

The transition rate from a state 𝛼 ∈ 𝑀 to a state 𝛽 ∈ 𝑀 at
time 𝑡 is defined by

𝑞𝛼𝛽 = lim
𝛿𝑡→0

[prob
(𝜉 (𝑡 + 𝛿𝑡) = 𝛽 | 𝜉 (𝑡) = 𝛼)

𝛿𝑡
] ,

𝛼 ̸= 𝛽 knowing that lim
𝛿𝑡→0

0 (𝛿𝑡)

𝛿𝑡
= 0.

(3)

The corresponding matrix of transition rates 𝑒 is given in the
following:

𝑄 = (

−𝑞12 𝑞12

𝑞21 −𝑞21

) . (4)

The differential equation representing the dynamics of the
finished products stocks is

𝑥̇ (𝑡) =
𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑢 (𝑡) − 𝑑,

𝑥 (0) = 𝑥0,

(5)

where 𝑥0 is the initial stock level.
The production rates satisfy the system capacity con-

straint given by the following equation:

0 ≤ 𝑢𝑖 (⋅) ≤ 𝑈̀
+

𝑖 , 𝑖 = 1, 2,
(6)

where 𝑈̀
+

𝑖 denotes the maximal production rate of product
𝑖 on the machine. The set of feasible production rates of the
machine for a product 𝑖 is given by

Γ (𝛼) = {𝑢 : 𝑢 = (𝑢1, 𝑢2) , 0 ≤ 𝑢𝑖 (⋅) ≤ 𝑈̀
+

𝑖 , 𝑖 = 1, 2} . (7)

The decision variables of the optimal control problem under
study are production rates 𝑢 = (𝑢1, 𝑢2) and a sequence of
setups denoted byΩ = {(𝜏0, 𝑖0𝑖1), (𝜏1, 𝑖1𝑖2), . . .}. A setup (𝜏, 𝑖𝑗)
is defined by the time 𝜏 at which it begins and a pair 𝑖𝑗,
denoting that the system was already set up to produce part
𝑖, and is being switched to be able to produce part 𝑗. Let 𝐴
denote the set of admissible decisions (Ω, 𝑢1, 𝑢2).

The instantaneous cost function depends on the state of
the system (stock level, mode of the machine) and is given by

𝑔 (𝑥, 𝛼) = (𝑐
+
1 𝑥
+
1 + 𝑐
−
1 𝑥
−
1 + 𝑐
+
2 𝑥
+
2 + 𝑐
−
2 𝑥
−
2 ) + 𝑐

𝛼
, (8)

where 𝑐𝛼 is the cost incurred at mode 𝛼 of the machine
(assuming that 𝑐1 = 0 and 𝑐2 ̸= 0). Note that 𝑥+𝑖 = max(0, 𝑥𝑖)
and 𝑥−𝑖 = max(−𝑥𝑖, 0); 𝑐

+
𝑖 and 𝑐

−
𝑖 are inventory and backlog

costs for part type 𝑖 per unit of product per unit of time,
respectively.

Given that the setup cost is consumed at the beginning
of the operation, the instantaneous cost as a function of the
setups denoted as 𝑅(⋅) is therefore expressed by the following
expression:

𝑅𝑖𝑗 (𝑥, 𝑠) = 𝐾𝑖𝑗 Ind {𝑠 = Θ𝑖𝑗} + ∫
𝑠

0
𝑒
−𝜌𝑡
𝑔 (𝑥 − 𝑑) 𝑑𝑡,

𝑠 ∈ [0, Θ𝑖𝑗] , 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗,

(9)

where 𝜌 is the discount rate. The first part of (9) expresses
the setup cost at the beginning of the operation. The second
part evaluates the penalty incurred for an inventory during
the setup, depending on the time remaining in the setup
operation, denoted as 𝑠, with

Ind (𝑠 = Θ𝑖𝑗) =
{

{

{

1 if 𝑠 = Θ𝑖𝑗
0 otherwise.

(10)

We can deduce the instantaneous cost function of the
setup as follows:

𝑅12 (𝑥, Θ12) = 𝐾12

+ ∫

Θ12

0
𝑒
−𝜌𝑡
𝑔 (𝑥1 − 𝑑1𝑡; 𝑥2 − 𝑑2𝑡) 𝑑𝑡,

𝑅21 (𝑥, Θ21) = 𝐾21

+ ∫

Θ21

0
𝑒
−𝜌𝑡
𝑔 (𝑥1 − 𝑑1𝑡; 𝑥2 − 𝑑2𝑡) 𝑑𝑡.

(11)

The total discounted cost over an infinite horizon can then be
defined by the following expression:

𝐽 (𝑖, 𝑥, 𝛼, 𝑠, Ω, 𝑢 (⋅))

= ∫

𝑠

0
𝑒
−𝜌𝑡
𝑔 (𝑥 (𝑡)) 𝑑𝑡

+ 𝐸𝑖,𝑥−𝑑𝑠,𝛼𝑠
[∫

∞

𝑠
𝑒
−𝜌𝑡
𝑔 (𝑥 (𝑡)) 𝑑𝑡 +

∞

∑

𝑖=0

𝑒
−𝜌𝜏𝑖𝐾𝑖1𝑖1+1

] .

(12)
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The production planning problem is to find an admissible
decision or control policy (Ω, 𝑢(⋅)) that minimizes 𝐽(⋅), given
by (12). For the production of part type 𝑖, the value function
can be given by the following:

V𝑖 (𝑥, 𝛼, 𝑠) = min
(Ω,𝑢)∈𝐴

𝐽 (𝑖, 𝑥, 𝛼, 𝑠, Ω, 𝑢)

∀𝑥 ∈ 𝑅
𝑛
, 𝛼 ∈ 𝑀.

(13)

In the next section, we present the optimality conditions and
the corresponding discrete form obtained by the application

of the numerical methods inspired from the Kushner
approach (see [11] for more details).

4. Optimality Conditions and
Numerical Approach

In this section, we present themodifiedHJB equations related
to Hypotheses 1 and 2. We then compare the results obtained
for those hypotheses to the results given by the application of
the traditional form used in Yan and Zhang [9], Bourkas and
Kenné [10], and Hajji et al. [11].

The value function V𝑖(𝑥, 𝛼) that satisfies theHJB equations
in mode 1 for Hypothesis 1 is

min{ min
𝑢∈Γ𝑖(𝛼)

[(𝑢 − 𝑑) (V𝑖)𝑥 (𝑥, 𝛼) + 𝑔 (𝑥) + 𝑄V𝑖 (𝑥, ⋅) (𝛼)]

− 𝜌V𝑖 (𝑥, 𝛼) ;min
𝑗 ̸=𝑖
[𝑅𝑖𝑗 (𝑥, Θ𝑖𝑗) + (𝑃𝑖𝑗) 𝑒

−𝜌Θ𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑Θ𝑖𝑗, 1) + (1 − 𝑃𝑖𝑗) 𝑒
−𝜌Θ𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑𝜏𝑖𝑗, 1)] − V𝑖 (𝑥, 𝛼)} = 0.

(14)

The value function V𝑖(𝑥, 𝛼) that satisfies HJB equations in
mode 1 for Hypothesis 2 is

min{ min
𝑢∈Γ𝑖(𝛼)

[(𝑢 − 𝑑) (V𝑖)𝑥 (𝑥, 𝛼) + 𝑔 (𝑥) + 𝑄V𝑖 (𝑥, ⋅) (𝛼)]

− 𝜌V𝑖 (𝑥, 𝛼) ;

min
𝑗 ̸=𝑖
[𝑅𝑖𝑗 (𝑥, Θ̂𝑖𝑗) + 𝑒

−𝜌Θ̂𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑Θ̂𝑖𝑗, 1)]} = 0,

(15)

where (V𝑖)𝑥(⋅) is the gradient of V𝑖(⋅) related to 𝑥. Moreover,

𝑄V𝑖 (𝑥, ⋅) (𝛼) = ∑
𝛼 ̸=𝛽

𝑞𝛼𝛽 (V𝑖 (𝑥, 𝛽) − V𝑖 (𝑥, 𝛼)) . (16)

Let 𝑆𝑖(𝛼) be the machine configuration changes (setup)
defined by the following:

(a) for Hypothesis 1,

𝑆𝑖 (𝛼) = {𝑥 : min
𝑗 ̸=𝑖
[𝑅𝑖𝑗 (𝑥, Θ𝑖𝑗) + (𝑃𝑖𝑗) 𝑒

−𝜌Θ𝑖𝑗

⋅ V𝑗 (𝑥 − 𝑑Θ𝑖𝑗, 1) + (1 − 𝑃𝑖𝑗) 𝑒
−𝜌Θ𝑖𝑗

⋅ V𝑗 (𝑥 − 𝑑𝜏𝑖𝑗, 1)] = V𝑖 (𝑥, 𝛼)} ;

(17)

(b) for Hypothesis 2,

𝑆𝑖 (𝛼)

= {𝑥 : min
𝑗 ̸=𝑖
[𝑅𝑖𝑗 (𝑥, Θ̂𝑖𝑗) + 𝑒

−𝜌Θ̂𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑Θ̂𝑖𝑗, 1)]

= V𝑖 (𝑥, 𝛼)} .

(18)

Let us use the Kushner approach method (Kushner and
Dupuis [13]), as in [16], to develop the numerical form of
HJB equations. The basic idea behind it consists in using an
approximation scheme for the gradient of the value function.
Let ℎ𝑗, 𝑗 = 1, 2, denote the length of the finite difference
interval of the variable 𝑥𝑗. Using the finite difference approx-
imation, V(𝑥, 𝛼) could be given by V𝑖

ℎ
(𝑥, 𝛼) and (V𝑖)𝑥𝑗(𝑥, 𝛼) by

(V𝑖)𝑥𝑗 (𝑥, 𝛼) =

{{{{

{{{{

{

1

ℎ𝑗

(V𝑖
ℎ
(𝑥1, . . . , 𝑥𝑗 + ℎ𝑗, . . . , 𝑥2) − V𝑖

ℎ
(𝑥1, . . . , 𝑥𝑗, . . . , 𝑥2)) if 𝑢𝑗 − 𝑑𝑗 ≥ 0

1

ℎ𝑗

(V𝑖
ℎ
(𝑥1, . . . , 𝑥𝑗, . . . , 𝑥2) − V𝑖

ℎ
(𝑥1, . . . , 𝑥𝑗 − ℎ𝑗, . . . , 𝑥2)) if 𝑢𝑗 − 𝑑𝑗 < 0.

(19)
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The following expression can be deduced:

(𝑢𝑗 − 𝑑𝑗) (V𝑖)𝑥𝑗 (𝑥, 𝛼) =
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 − 𝑑𝑗

󵄨󵄨󵄨󵄨󵄨

ℎ𝑗

⋅ V𝑖
ℎ
(𝑥1, . . . , 𝑥𝑗 + ℎ𝑗, . . . , 𝑥2) Ind {𝑢𝑗 − 𝑑𝑗 ≥ 0}

+

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 − 𝑑𝑗

󵄨󵄨󵄨󵄨󵄨

ℎ𝑗

V𝑖
ℎ
(𝑥1, . . . , 𝑥𝑗 − ℎ𝑗, . . . , 𝑥2)

⋅ Ind {𝑢𝑗 − 𝑑𝑗 < 0} −
󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 − 𝑑𝑗

󵄨󵄨󵄨󵄨󵄨

ℎ𝑗

⋅ V𝑖
ℎ
(𝑥1, . . . , 𝑥𝑗, . . . , 𝑥2) .

(20)

Following the previous approximation, we can express (14)
and (15) in terms of V𝑖

ℎ
(𝑥, 𝛼) as follows:

(a) for Hypothesis 1,

V𝑖
ℎ
(𝑥, 𝛼)

= min
{

{

{

min
𝑢∈Γ𝑖(𝛼)

{

{

{

(𝜌 +
󵄨󵄨󵄨󵄨𝑞𝛼𝛼
󵄨󵄨󵄨󵄨 +

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 − 𝑑𝑗

󵄨󵄨󵄨󵄨󵄨

ℎ𝑗

)

−1

[

[

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 − 𝑑𝑗

󵄨󵄨󵄨󵄨󵄨

ℎ𝑗

V𝑖
ℎ
(𝑥 (ℎ𝑗, +) Ind (𝑢𝑗 − 𝑑𝑗 ≥ 0) + V𝑖

ℎ
(𝑥 (ℎ𝑗, −)) Ind (𝑢𝑗 − 𝑑𝑗 < 0)) + 𝑔 (𝑥) + ∑

𝛽 ̸=𝛼

𝑞𝛼𝛽 ∗ V𝑖
ℎ
(𝑥, 𝛽)]

]

}

}

}

;

min
𝑗 ̸=𝑖
[𝑅𝑖𝑗 (𝑥, Θ𝑖𝑗) + (𝑃𝑖𝑗) 𝑒

−𝜌Θ𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑Θ𝑖𝑗, 1) + (1 − 𝑃𝑖𝑗) 𝑒
−𝜌Θ𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑𝜏𝑖𝑗, 1)]

}

}

}

;

(21)

(b) for Hypothesis 2,

V𝑖
ℎ
(𝑥, 𝛼)

= min
{

{

{

min
𝑢∈Γ𝑖(𝛼)

{

{

{

(𝜌 +
󵄨󵄨󵄨󵄨𝑞𝛼𝛼
󵄨󵄨󵄨󵄨 +

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 − 𝑑𝑗

󵄨󵄨󵄨󵄨󵄨

ℎ𝑗

)

−1

[

[

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 − 𝑑𝑗

󵄨󵄨󵄨󵄨󵄨

ℎ𝑗

V𝑖
ℎ
(𝑥 (ℎ𝑗, +) Ind (𝑢𝑗 − 𝑑𝑗 ≥ 0) + V𝑖

ℎ
(𝑥 (ℎ𝑗, −)) Ind (𝑢𝑗 − 𝑑𝑗 < 0)) + 𝑔 (𝑥) + ∑

𝛽 ̸=𝛼

𝑞𝛼𝛽 ∗ V𝑖
ℎ
(𝑥, 𝛽)]

]

}

}

}

;

min
𝑗 ̸=𝑖
[𝑅𝑖𝑗 (𝑥, Θ̂𝑖𝑗) + 𝑒

−𝜌Θ̂𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑Θ̂𝑖𝑗, 1)]
}

}

}

(22)

with

V𝑖
ℎ
(𝑥 (ℎ𝑗, +)) = V𝑖

ℎ
(𝑥1, . . . , 𝑥𝑗 + ℎ, . . . , 𝑥2) ,

V𝑖
ℎ
(𝑥 (ℎ𝑗, −)) = V𝑖

ℎ
(𝑥1, . . . , 𝑥𝑗 − ℎ, . . . , 𝑥2) .

(23)

For all 𝛼 ∈ 𝑀, let us define the following expressions:

𝑄ℎ
𝛼
(𝑥, 𝑢) =

󵄨󵄨󵄨󵄨𝑞𝛼𝛼
󵄨󵄨󵄨󵄨 +

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 − 𝑑𝑗

󵄨󵄨󵄨󵄨󵄨

ℎ𝑗

,

𝑃ℎ
𝛼
(𝑥, 𝑥 ± ℎ𝑗, 𝑢) =

󵄨󵄨󵄨󵄨󵄨
𝑢𝑗 − 𝑑𝑗

󵄨󵄨󵄨󵄨󵄨

ℎ𝑗𝑄ℎ
𝛼
(𝑥, 𝑢)

,

𝑃̃ℎ

𝛼
(𝑥, 𝛼, 𝛽, 𝑢) =

𝑞𝛼𝛽

𝑄ℎ
𝛼
(𝑥, 𝑢)

.

(24)

Substituting these expressions in (21) and (22), we obtain the
following two equations:

(a) for Hypothesis 1,

V𝑖
ℎ
(𝑥, 𝛼)

= min
{

{

{

min
𝑢∈Γ𝑖(𝛼)

{

{

{

𝑄ℎ
𝛼
(𝑥, 𝑢)

𝜌 + 𝑄ℎ
𝛼
(𝑥, 𝑢)

⟨

2

∑

𝑗=1

𝑃ℎ
𝛼
(𝑥, 𝑥 ± ℎ𝑗, 𝑢) V𝑖

ℎ
(𝑥, 𝛼) + ∑

𝛽 ̸=𝛼

𝑃̃ℎ

𝛼
(𝑥, 𝛼, 𝛽, 𝑢) ⋅ V𝑖

ℎ
(𝑥, 𝛽)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
𝛼
(𝑥, 𝑢)

}

}

}

⋅min
𝑗 ̸=𝑖
[𝑅𝑖𝑗 (𝑥, Θ𝑖𝑗) + (𝑃𝑖𝑗) 𝑒

−𝜌Θ𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑Θ𝑖𝑗, 1) + (1 − 𝑃𝑖𝑗) 𝑒
−𝜌Θ𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑𝜏𝑖𝑗, 1)]

}

}

}

;

(25)
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(b) for Hypothesis 2,

V𝑖
ℎ
(𝑥, 𝛼)

= min
{

{

{

min
𝑢∈Γ𝑖(𝛼)

{

{

{

𝑄ℎ
𝛼
(𝑥, 𝑢)

𝜌 + 𝑄ℎ
𝛼
(𝑥, 𝑢)

⟨

2

∑

𝑗=1

𝑃ℎ
𝛼
(𝑥, 𝑥 ± ℎ𝑗, 𝑢) V𝑖

ℎ
(𝑥, 𝛼) + ∑

𝛽 ̸=𝛼

𝑃̃ℎ

𝛼
(𝑥, 𝛼, 𝛽, 𝑢) ⋅ V𝑖

ℎ
(𝑥, 𝛽)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
𝛼
(𝑥, 𝑢)

}

}

}

⋅min
𝑗 ̸=𝑖
[𝑅𝑖𝑗 (𝑥, Θ̂𝑖𝑗) + 𝑒

−𝜌Θ̂𝑖𝑗 ⋅ V𝑗 (𝑥 − 𝑑Θ̂𝑖𝑗, 1)]
}

}

}

.

(26)

Let us specify the terms of the previous equations, the
discretization domain, and the limit conditions and illustrate
the algorithm used to solve the modified numerical version
of the HJB equations obtained. In addition, (25) and (26)
correspond to four equations, expressing the optimality
conditions concerning the production system under study,
involving two products and a machine with two modes.

(i) Hypothesis 1. Let us denote by 𝑃12 the probability that the
machine is in failure mode at the end of a setup from 𝑃1 to 𝑃2,
if it was operational when the setup started, and by 𝜏12 the
corresponding failure time. Similarly, 𝑃21 is the probability
that the machine is in failure mode at the end of a setup from
𝑃2 to 𝑃1, if it was operational when the setup started, with
𝜏21 denoting the corresponding failure time. According to the
random machine failure process,

𝑃12 = 𝑒
−𝑞12Θ12 . (27)

In order to calculate 𝜏12 we evaluate the conditional expecta-
tion 𝐸{𝑡 | 𝑡 < Θ12} and obtain

𝜏12 =
1

𝑞12

(1 − 𝑒
−𝑞12Θ12 (1 + 𝑞12Θ12)) . (28)

For the setup from product 2 to product 1, we have 𝑃12 =
𝑒
−𝑞12Θ21 and

𝜏21 =
1

𝑞12

(1 − 𝑒
−𝑞12Θ21 (1 + 𝑞12Θ21)) . (29)

We then have

V1
ℎ
(𝑥, 1) = min

{

{

{

min
𝑢1∈Γ1(1)

{

{

{

𝑄ℎ
1
(𝑥, 𝑢)

𝜌 + 𝑄ℎ
1
(𝑥, 𝑢)

⟨

2

∑

𝑗=1

𝑃ℎ
1
(𝑥, 𝑥 ± ℎ𝑗, 𝑢) V1

ℎ
(𝑥, 1) + 𝑃̃ℎ

1
(𝑥, 1, 2, 𝑢) ⋅ V1

ℎ
(𝑥, 2)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
1
(𝑥, 𝑢)

}

}

}

⋅ [𝑅12 (𝑥, Θ12) + (𝑃12) 𝑒
−𝜌Θ12 ⋅ V2

ℎ
(𝑥1 − 𝑑1Θ12, 1, 𝑥2 − 𝑑2Θ12, 1) + (1 − 𝑃12) [𝑒

−𝜌𝜏12 ⋅ V1
ℎ
(𝑥1 − 𝑑1𝜏12, 1, 𝑥2 − 𝑑2𝜏12, 1)]]

}

}

}

,

V2
ℎ
(𝑥, 1) = min

{

{

{

min
𝑢2∈Γ2(1)

{

{

{

𝑄ℎ
1
(𝑥, 𝑢)

𝜌 + 𝑄ℎ
1
(𝑥, 𝑢)

⟨

2

∑

𝑗=1

𝑃ℎ
1
(𝑥, 𝑥 ± ℎ𝑗, 𝑢) V2

ℎ
(𝑥, 1) + 𝑃̃ℎ

1
(𝑥, 1, 2, 𝑢) ⋅ V2

ℎ
(𝑥, 2)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
1
(𝑥, 𝑢)

}

}

}

⋅ [𝑅21 (𝑥, Θ21) + (𝑃12) 𝑒
−𝜌Θ21 ⋅ V1

ℎ
(𝑥1 − 𝑑1Θ21, 1, 𝑥2 − 𝑑2Θ21, 1) + (1 − 𝑃12) [𝑒

−𝜌𝜏21 ⋅ V2
ℎ
(𝑥1 − 𝑑1𝜏21, 1, 𝑥2 − 𝑑2𝜏21, 1)]]

}

}

}

,

V1
ℎ
(𝑥, 2) = min

{

{

{

𝑄ℎ
2
(𝑥, 0)

𝜌 + 𝑄ℎ
2
(𝑥, 0)

⟨

2

∑

𝑗=1

𝑃ℎ
2
(𝑥, 𝑥 ± ℎ𝑗, 0) V1

ℎ
(𝑥, 2) + 𝑃̃ℎ

1
(𝑥, 2, 1, 0) ⋅ V1

ℎ
(𝑥, 1)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
2
(𝑥, 0)

}

}

}

,

V2
ℎ
(𝑥, 2) = min

{

{

{

𝑄ℎ
2
(𝑥, 0)

𝜌 + 𝑄ℎ
2
(𝑥, 0)

⟨

2

∑

𝑗=1

𝑃ℎ
2
(𝑥, 𝑥 ± ℎ𝑗, 0) V2

ℎ
(𝑥, 2) + 𝑃̃ℎ

1
(𝑥, 2, 1, 0) ⋅ V2

ℎ
(𝑥, 1)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
2
(𝑥, 0)

}

}

}

.

(30)
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Wenotice that the setup expression no longer appears in both
failure mode equations and that the first two operational
mode equations are different from the equivalent equations
for the reference hypothesis of the literature.

(ii) Hypothesis 2. Using a known formula = Θ12/MTTF,
we get the terms of the corrections due to repairs 𝑟12 =
(Θ12 ∗ MTTR)/MTTF and 𝑟21 = (Θ21 ∗ MTTR)/MTTF
(here MTTF = 1/𝑞12). Finally, the modified setup time is
calculated:

Θ̂12 = Θ12 +
Θ12 ∗MTTR

MTTF
,

Θ̂21 = Θ21 +
Θ21 ∗MTTR

MTTF
,

V1
ℎ
(𝑥, 1)

= min
{

{

{

min
𝑢1∈Γ1(1)

{

{

{

𝑄ℎ
1
(𝑥, 𝑢)

𝜌 + 𝑄ℎ
1
(𝑥, 𝑢)

⟨

2

∑

𝑗=1

𝑃ℎ
1
(𝑥, 𝑥 ± ℎ𝑗, 𝑢) V1

ℎ
(𝑥, 1) + 𝑃̃ℎ

1
(𝑥, 1, 2, 𝑢) ⋅ V1

ℎ
(𝑥, 2)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
1
(𝑥, 𝑢)

}

}

}

⋅ [𝑅12 (𝑥, Θ̂12) + 𝑒
−𝜌Θ̂12 ⋅ V2

ℎ
(𝑥1 − 𝑑1Θ̂12, 1, 𝑥2 − 𝑑2Θ̂12, 1)]

}

}

}

,

V2
ℎ
(𝑥, 1)

= min
{

{

{

min
𝑢1∈Γ1(1)

{

{

{

𝑄ℎ
1
(𝑥, 𝑢)

𝜌 + 𝑄ℎ
1
(𝑥, 𝑢)

⟨

2

∑

𝑗=1

𝑃ℎ
1
(𝑥, 𝑥 ± ℎ𝑗, 𝑢) V2

ℎ
(𝑥, 1) + 𝑃̃ℎ

1
(𝑥, 1, 2, 𝑢) ⋅ V2

ℎ
(𝑥, 2)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
1
(𝑥, 𝑢)

}

}

}

⋅ [𝑅21 (𝑥, Θ̂21) + 𝑒
−𝜌Θ̂21 ⋅ V1

ℎ
(𝑥1 − 𝑑1Θ̂21, 1, 𝑥2 − 𝑑2Θ̂21, 1)]

}

}

}

,

V1
ℎ
(𝑥, 2) = min

{

{

{

𝑄ℎ
2
(𝑥, 0)

𝜌 + 𝑄ℎ
2
(𝑥, 0)

⟨

2

∑

𝑗=1

𝑃ℎ
2
(𝑥, 𝑥 ± ℎ𝑗, 0) V1

ℎ
(𝑥, 2) + 𝑃̃ℎ

1
(𝑥, 2, 1, 0) ⋅ V1

ℎ
(𝑥, 1)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
2
(𝑥, 0)

}

}

}

,

V2
ℎ
(𝑥, 2) = min

{

{

{

𝑄ℎ
2
(𝑥, 0)

𝜌 + 𝑄ℎ
2
(𝑥, 0)

⟨

2

∑

𝑗=1

𝑃ℎ
2
(𝑥, 𝑥 ± ℎ𝑗, 0) V2

ℎ
(𝑥, 2) + 𝑃̃ℎ

1
(𝑥, 2, 1, 0) ⋅ V2

ℎ
(𝑥, 1)⟩ +

𝑔 (𝑥)

𝜌 + 𝑄ℎ
2
(𝑥, 0)

}

}

}

.

(31)

We also notice that the setup expression no longer appears
in both of the failure mode equations and that the first
two operational mode equations are similar to those of the
reference hypothesis (with the setup times modified), but
different from equations related to the case ofHypothesis 1. In
the next section, we present a numerical example and analyze
the results obtained in different situations.

5. Numerical Example and Results Analysis

In order to characterize the production and setup policies and
to show the influence of the interactions between the setup
procedure and the random machine failure process, for two
new hypotheses in comparisonwith the reference hypothesis,
we present three different cases in three data groups. The
first two groups had identical economic parameters, and only
technical parameters such as the setup duration were varied
according to the groups. In the third group, both products

had different economic parameters. Table 1 shows the con-
stant parameters for the numerical examples considered, with

𝑐
−
1 = 𝑐
−
2 ;

𝑐
+
1 = 𝑐
+
2 ;

𝐾12 = 𝐾21;

𝑑1 = 𝑑2;

𝑈
+
1 = 𝑈

+
2

(32)

for the two first groups.
In addition,
(i) group 1 represents the case Θ12 = Θ21 = 1.25;
(ii) group 2 represents the case Θ12 = Θ21 = 1.75;
(iii) group 3 is the case of two nonidentical productsΘ12 =

Θ21 = 1.25 and 𝐶
+
1 = 𝐶

+
2 = 1; 𝐶

−
1 = 20; 𝐶

−
2 = 40.

192 Applied Mathematics: Principles and Techniques

__________________________ WORLD TECHNOLOGIES __________________________



WT

Table 1: Data parameters.

𝑐
−
1 𝑐

+
1 𝐾12 𝑈

+
1 𝑑1 𝑥

+
1 𝑥

−
1 𝑞12 𝑞21 𝜌 ℎ𝑥+

1

20 1 0.5 5 1.5 20 −5 0.1 0.8 0.1 0.2

Table 2: Setup times for machine tools (Boothroyd et al. [15]).

Some nonproductive times for common machine tools
Machine tool Time to engage tool and so forth (s) Basic setup time (h) Additional setup per tool (h)
Horizontal band saw — 0.17 —
Manual turret lathe 9 0.15 0.2
NC turret lathe 1.5 0.5 0.15
Milling machine 30 1.5 —
Drilling machine 9 1 —
Horizontal-boring machine 30 1.3 —
Broaching machine 13 0.6 —
Gear hobbling machine 39 0.9 —
Grinding machine 19 0.6 —
Internal grinding machine 24 0.6 —
Machining center 8 0.7 0.05

The setup times are given by the table of themachine tools
setup times (see Table 2).

With these data, the system is capable of producing
with setup at the request of both products if the following
feasibility condition is satisfied:

𝑈
𝑖
max

𝑞21

𝑞12 + 𝑞21

𝑒
−𝑞12𝜃12 > 𝑑1, 𝑑2 (𝑖 = 1, 2) . (33)

We present six figures for every case (three figures for
each product). Each figure contains the production or setup
policies for the two new hypotheses and for the reference
hypothesis. For group 1, Figures 3 and 6, respectively, illus-
trate the production policy of 𝑃1 and 𝑃2 for three hypotheses.
Then, also for group 1, Figures 4 and 7 illustrate the setup
policies for 𝑃1 to 𝑃2 and for 𝑃2 to 𝑃1, respectively. Finally, for
group 1, Figures 5 and 8, respectively, illustrate the association
of both policies (production and setup) for 𝑃1 and the
association of both policies (production and setup) for 𝑃2.
In the next section, analyses of sensibility will be provided
to study the effects of variation of the various costs on the
control policies.

Group 1 (product type 1) Θ12 = Θ21 = 1.25 (see
Figures 3–5).
Group 1 (product type 2) Θ12 = Θ21 = 1.25 (see
Figures 6–8).
Group 2 (product type 1) Θ12 = Θ21 = 1.75 (see
Figures 9–11).
Group 2 (product type 2) Θ12 = Θ21 = 1.75 (see
Figures 12–14).
Group 3 (product type 1) Θ12 = Θ21 = 1.25 and 𝐶

+
1 =

1; 𝐶−1 = 20 (see Figures 15–17).
Group 3 (product type 2) Θ12 = Θ21 = 1.25 and 𝐶

+
1 =

1; 𝐶−1 = 20 (see Figures 18–20).
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Figure 3: Production policy for 𝑃1.

Let us now interpret the results obtained and illustrated
by Figures 3–20. This analysis will allow us to present
the structure of the production and setup policies for the
two product part types and with regard to the formulated
hypotheses.
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Figure 4: Setup policy (product 1 to product 2).
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Figure 5: Production policy for 𝑃1 and setup policy (𝑃1 to 𝑃2).
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Figure 6: Production policy for 𝑃2.
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Figure 7: Setup policy (product 2 to product 1).
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Figure 8: Production policy for 𝑃2 and setup policy (𝑃2 to 𝑃1).
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Figure 9: Production policy for 𝑃1.
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Figure 10: Setup policy (product 1 to product 2).
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Figure 11: Production policy for 𝑃1 and setup policy (product 1 to
product 2).

195Production Planning of a Failure-Prone Manufacturing System under Different Setup Scenarios

__________________________ WORLD TECHNOLOGIES __________________________



WT

Group 2

I

−5 0 5 10 15 20
−5

0

5

10

15

20

Hypothesis 2
Hypothesis 1

Reference hypothesis (from literature)

X1

X
2

Figure 12: Production policy for 𝑃2.
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Figure 13: Setup policy (product 2 to product 1).
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Figure 14: Production policy for 𝑃2 and setup policy (product 2 to
product 1).
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Figure 15: Production policy for 𝑃1.
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Figure 16: Setup policy (product 1 to product 2).
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Figure 17: Production policy for 𝑃1 and setup policy (product 1 to
product 2).
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Figure 18: Production policy for 𝑃2.
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Figure 19: Setup policy (product 2 to product 1).
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Figure 20: Production policy for 𝑃2 and setup policy (product 2 to
product 1).

5.1. Optimal Production Policy. An analysis of three cases
shows that we have to produce at themaximum rate in region
I when the machine is configured for the same product. In
region II, the machine is configured (according to the setup
policy) for the production of the other type of product. In
region III, the production policy recommends stopping the
machine and producing nothing by setting the production
rate to zero. It is interesting to note that, in Hypothesis 1, the
optimal inventory level is very big, contrary to Hypothesis 2
and to the reference hypothesis, as seen in Bai and Elhafsi
[14], Boukas and Kenné [10], and Hajji et al. [11]. This
increase in the inventory level is understandable given that
if a breakdown occurs during the setup operation, we have
to stop the setup until the machine repair is completed.
This breakdown cancels all the data relative to the setup
activities started before the failure. In this case, the operator
has to resume the setup operation, which increases the overall
setup time and leads to a loss of availability of the machine.
According to Hypothesis 2, the optimal inventory level is
slightly bigger than that of the reference hypothesis. This
light increase in the inventory level is understandable, given
that the setup operation must be stopped when a breakdown
occurs.This breakdown does not cancel all the data relative to
the setup activities (contrary to Hypothesis 1). The operator
pursues the setup activities after the repair of the machine.
The global setup time of Hypothesis 2 is then higher than
that of the reference hypothesis. In fact, we have a loss of
availability of the machine, but to a smaller extent than in
the case of Hypothesis 1. The optimal production policy is

Table 3: Comparative study of optimal threshold inventory levels.

Group Hypothesis 1 Hypothesis 2 Literature hypothesis

1 𝑍1 = 14 𝑍1 = 9.8 𝑍1 = 9

𝑍2 = 14 𝑍2 = 9.8 𝑍2 = 9

2 𝑍1 = 17.6 𝑍1 = 12.4 𝑍1 = 11.8

𝑍2 = 17.6 𝑍2 = 12.4 𝑍2 = 11.8

3 𝑍1 = 14 𝑍1 = 9.8 𝑍1 = 9

𝑍2 = 15.2 𝑍2 = 11 𝑍2 = 10.4

then of hedging policy structure and can be expressed by the
following two equations (for product 1 and product 2):

𝑢1 (𝑥1, 𝑥2) =
{

{

{

𝑈
+
1 if 𝑥1 < 𝑍1 (𝑥2)

0 if 𝑥1 > 𝑍1 (𝑥2) ,

𝑢2 (𝑥1, 𝑥2) =
{

{

{

𝑈
+
2 if 𝑥2 < 𝑍1 (𝑥1)

0 if 𝑥2 > 𝑍1 (𝑥1) .

(34)

5.2. Optimal Setup Policy. By analyzing Figures 4 and 5 in
region II (zone in which a setup from 𝑃1 to 𝑃2 or from 𝑃2

to 𝑃1 is allowed), we can observe that the setup policies of
Hypotheses 1 and 2 give a margin bigger than that of the
reference hypothesis. This trend reduces region III and so
allows the system the possibility of performing the setup
without any shortage risk for the other product. The setup
policies are given in this case by the following expressions:

𝑆12 =

{{{

{{{

{

1 if
{

{

{

𝑥1 ≥ 𝑎1,

𝑥2 ≤ 0

or
{

{

{

𝑥1 < 0,

𝑥2 ≤ −𝑏1

0 otherwise,

𝑆21 =

{{{

{{{

{

1 if
{

{

{

𝑥1 ≤ 𝑐2𝑥2 + 𝑏2,

𝑥1 ≥ 0, 𝑥2 ≥ 0

or
{

{

{

𝑥2 ≥ 𝑎2,

𝑥1 ≤ 0

0 otherwise

(35)

with
0 ≤ 𝑎1 ≤ 𝑍1,

𝑏1 ≤ 0,

0 ≤ 𝑎2 ≤ 𝑍2,

0 ≤ 𝑐2𝑎2 + 𝑏2≤ 𝑍1.

(36)

To conclude this section, we recapitulate the results obtained
according to the critical thresholds 𝑍1 and 𝑍2, which char-
acterize the production and setup policies presented by (34)
and (35). The values of the optimal threshold inventory
levels obtained numerically for the three groups of data are
presented in Table 3.

These results show our contribution, given that all the
previous works in the literature did not handle the case of
industrial systems subjected to Hypotheses 1 and 2. In this
paper, we determined the production structures and setup
policies for these industrial systems.
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6. Conclusion

This research clearly defines the production planning prob-
lem and the setup strategies for industrial systems subjected
to specific hypotheses. In this paper, we considered two
hypotheses that hold that a breakdown can occur during a
setup activity.This breakdown can cancel (or may not cancel)
the setup activities undertaken before the breakdown occurs.
Hence, we propose new optimality conditions integrating the
probability of breakdowns during the setup. A numerical
approach is used to solve the optimality conditions obtained.
Anumerical example and a comparative analysis of the results
for three groups of data allow us to determine the production
structures and setup policies for manufacturing systems that
have previously never been studied in the literature.Thiswork
can be extended to the cases of industrial systems allowing
setup activities in all modes of the machine (operational or
failure modes).
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Spectral Collocation Method, 99
Stochastic Partial Differential, 69
Structural Equation Models, 173, 183

T
Taylor Polynomial, 99, 104
Thin Film Flow, 106-107, 115-118, 123-124
Transmission Dynamics, 46, 68
Trigonometric Functions, 106

Truncation Error, 28

U
Univariate Gaussian Process, 139

V
Viscosity Solution, 69-70, 73
Volterra Population Equation, 102
Volterra-fredholm-type Inequalities, 1
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