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Preface

Over the recent decade, advancements and applications have progressed exponentially. This has led to the 
increased interest in this field and projects are being conducted to enhance knowledge. The main objective of 
this book is to present some of the critical challenges and provide insights into possible solutions. This book 
will answer the varied questions that arise in the field and also provide an increased scope for furthering 
studies. 

Mathematical analysis is a domain of mathematics that deals with limits and other related theories such 
as, measure, infinite series, differentiation, integration, and analytical functions. All of these theories are 
often studied in the context of real and complex numbers along with their functions. The main branches 
of mathematical analysis include real analysis, complex analysis and functional analysis. The fundamental 
concepts of this field are metric spaces and sequences and limits. Mathematical analysis has evolved from 
calculus that includes elementary techniques and concepts of analysis. It can be applied to any space of those 
mathematical objects that have a topological space or a metric space. This book contains some path-breaking 
studies in the field of mathematical analysis. It studies and analyzes various principles of mathematical 
analysis. It is appropriate for students seeking detailed information in this area as well as for experts.

I hope that this book, with its visionary approach, will be a valuable addition and will promote interest among 
readers. Each of the authors has provided their extraordinary competence in their specific fields by providing 
different perspectives as they come from diverse nations and regions. I thank them for their contributions.

Editor
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Compact Operators on the Bergman Spaces 
with Variable Exponents on the Unit Disc of C

Dieudonne Agbor

Department of Mathematics, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon

Correspondence should be addressed to Dieudonne Agbor; dieu agb@yahoo.co.uk

Academic Editor: Nageswari Shanmugalingam

We study the compactness of some classes of bounded operators on the Bergman space with variable exponent. We show that
via extrapolation, some results on boundedness of the Toeplitz operators with general 𝐿1 symbols and compactness of bounded
operators on the Bergman spaces with constant exponents can readily be extended to the variable exponent setting. In particular,
if 𝑆 is a finite sum of finite products of Toeplitz operators with symbols from class 𝐵𝑇, then 𝑆 is compact if and only if the Berezin
transform of 𝑆 vanishes on the boundary of the unit disc.

1. Introduction and Statement of Results

Variable Lebesgue spaces are a generalization of the Lebesgue
spaces that allow the exponents to be a measurable function
and thus the exponent may vary. These spaces have many
properties similar to the normal Lebesgue spaces, but they
also differ in surprising and subtle ways. For this reason, the
variable Lebesgue spaces have an intrinsic interest, but they
are also very important in applications to partial differential
equations and variational integrals with nonstandard growth
conditions. See [1] for more details on the variable Lebesgue
spaces.

Let Δ denote the unit disc in C and 𝑑𝐴 the normalized
Lebesgue measure on Δ. For 1 ≤ 𝑝 < ∞, the Bergman space𝐴𝑝 = 𝐴𝑝(Δ, 𝑑𝐴) is the space of all analytic functions, 𝑓, on Δ
such that 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝

𝑝 = ∫
Δ

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝑑𝐴 (𝑧) < ∞. (1)

Let 𝑃 be the Bergman projection from 𝐿2 onto 𝐴2. Then 𝑃 is
an integral operator given by

𝑃 (𝑓) (𝑧) = ∫
Δ

𝑓 (𝑤)(1 − 𝑧𝑤)2 𝑑𝐴 (𝑤) , (2)

for each 𝑧 ∈ Δ and 𝑓 ∈ 𝐿2. Here, the function 𝐾(𝑧, 𝑤) =𝐾𝑤(𝑧) = 1/(1 − 𝑧𝑤)2 is the reproducing kernel for 𝐴2. For

𝑓 ∈ 𝐿∞, the Toeplitz operator with symbol 𝑓 is defined on𝐴𝑝 by

𝑇𝑓𝑔 = 𝑃 (𝑓𝑔) , 𝑔 ∈ 𝐴𝑝. (3)

Toeplitz operators are amongst the most widely studied
classes of concrete operators and have attracted a lot of
interest in recent years. The behaviour of these operators
on the Hardy spaces, Bergman spaces, and Fock spaces has
been studied widely and a lot of results are available in
the literature. The characterization of compactness has been
studied in [2–8] just to cite a few.

Given Ω ⊂ R𝑛, a measurable function 𝑝 : Ω → [1,∞)
will be called a variable exponent. If 𝑝 is a variable exponent
then we denote 𝑝+ = 𝑝+

Ω fl ess sup
𝑥∈Ω

𝑝 (𝑥) ,
𝑝− = 𝑝−

Ω fl ess inf
𝑥∈Ω

𝑝 (𝑥) . (4)

Let P(Ω) denote the set of all variable exponents for which𝑝+ < ∞.
For a complex-valued measurable function 𝜙 : Ω → C,

we define the modular 𝜌𝑝(⋅) by

𝜌𝑝(⋅) (𝜙) fl ∫
Ω

󵄨󵄨󵄨󵄨𝜙 (𝑥)󵄨󵄨󵄨󵄨𝑝(𝑥) 𝑑𝑥 (5)

1
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and the norm

󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩𝑝(⋅) fl inf {𝜆 > 0 : 𝜌𝑝(⋅) (𝜙𝜆) ≤ 1} . (6)

Let 𝑝(⋅) ∈ P(Ω). Then the Lebesgue variable exponent space𝐿𝑝(⋅) is the set of all complex-valued measurable functions 𝜙 :Ω → C for which 𝜌𝑝(⋅)(𝜙) < ∞. If we equip 𝐿𝑝(⋅) with the
norm given in (6), then 𝐿𝑝(⋅) becomes a Banach space. We
note here that the condition 𝜌𝑝(⋅)(𝜙) < ∞ is not enough in
general to define the variable exponent Lebesgue space (e.g.,
see chapter 2 of [1]).

It is known (e.g., see chapter 2 of [1]) that the dual of𝐿𝑝(⋅) is 𝐿𝑝󸀠(⋅), where 1/𝑝(⋅) + 1/𝑝󸀠(⋅) = 1. A straightforward
computation shows that

(𝑝󸀠 (⋅))
+
= (𝑝−)󸀠 ,

(𝑝󸀠 (⋅))
−
= (𝑝+)󸀠 . (7)

For simplicity, we will omit one set of parenthesis and write
the left-hand side of each equality as 𝑝󸀠(⋅)+ and 𝑝󸀠(⋅)−.
Throughout this work, we shall use 𝑝󸀠(⋅) as the conjugate
exponent of 𝑝(⋅) and if 𝑝 is a constant in (1,∞) we shall use𝑝󸀠 as the conjugate exponent of 𝑝. In other words, to study
these spaces, some regularity conditions are imposed on the
exponents. A function 𝑝 : Ω → C is said to be log-Hölder
continuous on Ω if there exists a positive constant 𝐶log such
that

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐶log

log (1/ 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨) , (8)

for all 𝑥, 𝑦 ∈ Ω with |𝑥 − 𝑦| < 1/2. It follows that
󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑦)󵄨󵄨󵄨󵄨 ≤ 2𝑙𝐶log

log (2𝑙/ 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨) , (9)

for all 𝑥, 𝑦 ∈ Ω with |𝑥 − 𝑦| < 𝑙. We denote by Plog(Ω) the
exponents inP(Ω) that are log-Hölder continuous onΩ. For𝑝(⋅) ∈ Plog(Ω) and a given measurable function, 𝑓, define

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩∗

𝑝(⋅) = sup {󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω
𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 : 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑝(⋅) ≤ 1} . (10)

Theorem 2.34 of [1] shows that there exist constants 𝐶1 and𝐶2, depending on 𝑝(⋅), such that

𝐶1
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝(⋅) ≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩∗

𝑝(⋅) ≤ 𝐶2
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝(⋅) . (11)

The next result which establishes a relationship between the
Lebesgue spaces with exponents 𝑝−, 𝑝+, and 𝑝(⋅) will be very
useful in the rest of the work. It is Corollary 2.50 of [1].
Lemma 1. Suppose 𝑝(⋅) ∈ P𝑙𝑜𝑔(Ω) and |Ω| < ∞. Then there
exist constants 𝑐1 and 𝑐2 such that𝑐1 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝−

≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝(⋅) ≤ 𝑐2 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝+
. (12)

The study of variable exponent Bergman space, 𝐴𝑝(⋅),
which is the space of analytic functions in 𝐿𝑝(⋅), has been
introduced in [9]. There it was shown, amongst other things,
that the Bergmanprojector𝑃 is bounded from𝐿𝑝(⋅) onto𝐴𝑝(⋅).
Also in [10], the authors studied Carleson measures in such
spaces.

In this paper, we will extend the results in [3, 7] on
boundedness and compactness of operators for the Bergman
spaces with constant exponents to the Bergman spaces with
variable exponents.

For 𝑧 ∈ Δ, let 𝜑𝑧 be the analytic map of Δ onto Δ given by𝜑𝑧(𝑤) = (𝑧 − 𝑤)/(1 − 𝑧𝑤). We define the operator 𝑈𝑧 on 𝐴2

by

𝑈𝑧𝑓 = (𝑓 ∘ 𝜑𝑧) 𝜑󸀠
𝑧, 𝑧 ∈ Δ. (13)

Then 𝑈𝑧 is a unitary operator on 𝐴2. We shall show later that𝑈𝑧 is bounded on 𝐴𝑝(⋅). For 𝑆, a bounded operator on 𝐴𝑝(⋅),
we define 𝑆𝑧 by 𝑆𝑧 = 𝑈𝑧𝑆𝑈𝑧.

If 𝑆 is a bounded operator on 𝐴𝑝(⋅), then the Berezin
transform of 𝑆 is the function 𝑆 on Δ defined by

𝑆 (𝑧) = ⟨𝑆𝑘𝑧, 𝑘𝑧⟩ , (14)

where 𝑘𝑧(𝑤) = (1−|𝑧|2)𝐾𝑧 is the normalized Bergman kernel
which also belongs to𝐴𝑝(⋅) and ⟨ , ⟩ is the inner product of𝐴2.
We let

𝑓 (𝑧) fl 𝑇𝑓 (𝑧) = ⟨𝑓𝑘𝑧, 𝑘𝑧⟩
= ∫

Δ
𝑓 (𝑤) 󵄨󵄨󵄨󵄨𝑘𝑧 (𝑤)󵄨󵄨󵄨󵄨2 𝑑𝐴 (𝑤) (15)

and set

𝐵𝑇 fl {𝑓 ∈ 𝐿1 : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵𝑇 = sup
𝑧∈Δ

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨 (𝑧) < ∞} . (16)

Our first result gives some conditions for the boundedness of
Toeplitz operators with 𝐿1 symbols on the variable Bergman
spaces.

Theorem 2. Suppose 𝑝(⋅) ∈ P𝑙𝑜𝑔(Δ), 1 < 𝑝0 ≤ 𝑝− ≤ 𝑝+ < ∞,
and 𝑝1 = min(𝑝0, 𝑝󸀠

0). Suppose 𝑓 ∈ 𝐿1 is such that

𝐶1 = sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑃 (𝑓 ∘ 𝜑𝑧)󵄩󵄩󵄩󵄩𝑞 < ∞,
𝐶2 = sup

𝑧∈Δ

󵄩󵄩󵄩󵄩󵄩𝑃 (𝑓 ∘ 𝜑𝑧)󵄩󵄩󵄩󵄩󵄩𝑞
< ∞ (17)

for all 𝑞 > (𝑝1 + 1)/(𝑝1 − 1). Then 𝑇𝑓 is bounded on 𝐴𝑝(⋅).

We note here that this result was proved in [3] in the
Bergman spaces 𝐴𝑝, where 𝑝 is a constant. We also have the
following result on compactness.

2 Applied Principles of Mathematical Analysis
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Theorem 3. Suppose 𝑝(⋅) ∈ P𝑙𝑜𝑔(Δ), 1 < 𝑝0 ≤ 𝑝− ≤ 𝑝+ < ∞,
and 𝑝1 = min(𝑝0, 𝑝󸀠

0). If 𝑆 is a bounded operator on 𝐴𝑝(⋅) such
that 𝐶1 = sup

𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑞 < ∞,
𝐶2 = sup

𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆∗
𝑧1󵄩󵄩󵄩󵄩𝑞 < ∞ (18)

for some 𝑞 > (𝑝1+1)/(𝑝1−1), then the following are equivalent:
(1) 𝑆 is compact on 𝐴𝑝(⋅),
(2) 𝑆(𝑧) → 0 as 𝑧 → 𝜕Δ,
(3) for every 𝑠 ∈ [1, 𝑞), ‖𝑆𝑧1‖𝑠 → 0 as 𝑧 → 𝜕Δ,
(4) ‖𝑆𝑧1‖1 → 0 as 𝑧 → 𝜕Δ.
This theorem is well known in the Bergman spaces with

constant exponents; for example, see [3, 7]. However, the
techniques here are different from those used in either of the
papers for both the proof of boundedness and compactness.
This is because their proofs depend on the use of Schur’s test
which does not hold in the variable Lebesgue space. However,
using theMuckenhouptweightswewere able to develop some
Schur-like tests from where we obtain the theory that builds
upon the Rubio de Francia theory of extrapolation from the
theory of weighted norm inequalities. The advantage of this
approach is that it quickly yields to sufficient conditions for
these operators to be bounded on variable Lebesgue spaces.
Through such techniques, we are also able to obtain some
norm estimates for bounded operators on the space 𝐴𝑝(⋅).

Similar to the work of Miao and Zheng [7], we consider
the case of the algebra of Toeplitz operators generated by
symbols in the class 𝐵𝑇. To be precise, we have the following.
Theorem 4. Suppose 𝑝(⋅) ∈ P𝑙𝑜𝑔(Δ) and 𝑆 is a finite sum of
finite products of Toeplitz operators with symbols in the class𝐵𝑇. Then 𝑆 is compact on 𝐴𝑝(⋅) if and only if 𝑆(𝑧) → 0 as 𝑧 →𝜕Δ.

This paper is organized as follows: in Section 2, we will
study some basic concepts on the Muckenhoupt weights.
Section 3 deals with the variable Bergman spaces and the
proof of Theorem 2. In Section 4, we study some norm
estimates on these spaces and in Section 5 we give the proof
of the compactness results.

2. Muckenhoupt Weights 𝐴1

Definition 5. Let Ω be a set. Then the function 𝑑 : Ω × Ω →
R+ is said to be a pseudodistance on Ω if it satisfies the
following:

(1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
(3) there exists a positive constant 𝐾 ≥ 1, such that, for

all 𝑥, 𝑦, 𝑧 ∈ Ω,
𝑑 (𝑥, 𝑦) ≤ 𝐾 (𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)) . (19)

For 𝑥 ∈ Ω and 𝑟 > 0, the set 𝐵(𝑥, 𝑟) = {𝑦 ∈ Ω :𝑑(𝑥, 𝑦) < 𝑟} is called a pseudoball with centre 𝑥 and radius𝑟. If 𝜇 is a measure on Ω, then the triple (Ω, 𝑑, 𝜇) is called
a homogeneous space if Ω is endowed with the topology
generated by the collection {𝐵(𝑥, 𝑟) : 𝑥 ∈ Ω, 𝑟 > 0} (that
is, the topology generated by the pseudoballs) and 𝜇 satisfies
the doubling property; there exists a constant 𝛿 such that, for
all 𝑥 ∈ Ω and 𝑟 > 0, we have0 < 𝜇 (𝐵 (𝑥, 2𝑟)) ≤ 𝛿𝜇 (𝐵 (𝑥, 𝑟)) < ∞. (20)

We now turn our attention to the case whenΩ = Δ. By lemma
2.2 of [11], it is shown that the distance function 𝑑 given on Δ
by

𝑑 (𝑧, 𝑤) = {{{
||𝑧| − |𝑤|| + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 − 𝑧𝑤|𝑧| |𝑤| 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 if 𝑧, 𝑤 ∈ Δ∗,|𝑧| + |𝑤| otherwise

(21)

is a pseudodistance on Δ, where Δ∗ = Δ \ {0}. It is known
(see [12]) that, at the boundary of Δ, 𝑑 becomes the Koranyi
distance. Also by Lemma 2 of [12], we have that for any
pseudoball 𝐵(𝑤, 𝑟), 𝑤 ̸= 0, and 𝑟 ∈ (0, 2) we have that|𝐵 (𝑤, 𝑟)| ≈ 𝑟2, (22)

where |𝐵| denotes the Lebesgue area measure of set 𝐵. Also
observe that the pseudoball 𝐵(0, 1) = Δ. It is known that (see
[12]) (Δ, 𝑑, 𝑑𝐴) is a homogeneous space.

Let 𝑓 be a locally integrable function in Δ. Then the
Hardy-Littlewood maximal function relative to the pseu-
dodistance 𝑑 is given by

Mf (𝑧) = sup
𝐵

1|𝐵| ∫𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑤)󵄨󵄨󵄨󵄨 𝑑𝐴 (𝑤) , (23)

where the supremum is taken over all pseudoballs containing𝑧.
Suppose 0 < 𝜔(𝑧) < ∞ almost everywhere on Δ. Then

we say that 𝜔 is in the Muckenhoupt weight 𝐴1 if

[𝜔]𝐴1 = ess sup
𝑧∈Δ

𝑀𝜔(𝑧)𝜔 (𝑧) < ∞. (24)

There are two equivalent definitions which are useful in
practice. First, 𝜔 ∈ 𝐴1, if for almost every 𝑧 ∈ Δ,𝑀𝜔(𝑧) ≤ [𝜔]𝐴1 𝜔 (𝑧) . (25)

It follows that if 𝜔 ∈ 𝐴1 then[𝜔]𝐴1 𝜔 (𝑧) ≥ 𝑀𝜔 (𝑧) ≥ 𝜔 (Δ) , (26)

and thus

1 ≤ [𝜔]𝐴1 𝜔 (𝑧)𝜔 (Δ) . (27)

Alternatively, 𝑤 ∈ 𝐴1 if for every pseudoball 𝐵 we have that1|𝐵| ∫𝐵
𝜔 (𝑧) 𝑑𝐴 (𝑧) ≤ [𝜔]𝐴1 ess inf𝑢∈𝐵

𝜔 (𝑢) . (28)

For more details on the Muckenhoupt weights, see chapter 9
of [13] or chapter 4 of [1].

Wewill need some results on extrapolation.The following
proposition is Theorem 5.24 of [1].
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Proposition 6. Let Ω ∈ R𝑛 and suppose there is some 𝑝0 ≥ 1
and the familyF such that for all 𝜔 ∈ 𝐴1,

∫
Ω
𝐹 (𝑥)𝑝0 𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶0 ∫

Ω
𝐺 (𝑥)𝑝0 𝜔 (𝑥) 𝑑𝑥,

(𝐹, 𝐺) ∈ F. (29)

Given 𝑝(⋅) ∈ P𝑙𝑜𝑔(Ω), if 1 ≤ 𝑝0 ≤ 𝑝− ≤ 𝑝+ < ∞ and the
maximal operator is bounded on 𝐿(𝑝(⋅)/𝑝0)

󸀠(Ω), then‖𝐹‖𝑝(⋅) ≤ 𝐶𝑝(⋅) ‖𝐺‖𝑝(⋅) , (𝐹, 𝐺) ∈ F, (30)

where 𝐶𝑝(⋅) = 𝐶𝐶0 and 𝐶 is some positive constant depending
on the dimension of Ω.

The following is Theorem 3.16 of [1].
Proposition 7. Let 𝑝 ∈ P𝑙𝑜𝑔(Ω). Then the Hardy-Littlewood
maximal operator function is bounded in 𝐿𝑝(⋅)(Ω) and we have󵄩󵄩󵄩󵄩𝑀𝑓󵄩󵄩󵄩󵄩𝑝(⋅) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝(⋅) . (31)

3. Variable Exponent Bergman Spaces

Given 𝑝(⋅) ∈ Plog(Δ), we define the variable exponent
Bergman space 𝐴𝑝(⋅) as the space of all analytic functions
on Δ that belong to the variable exponent Lebesgue space𝐿𝑝(⋅) with respect to the area measure 𝑑𝐴 on the unit disc.
With this definition 𝐴𝑝(⋅) is a closed subspace of 𝐿𝑝(⋅). By
Theorem 4.4 of [9], the Bergman projection, 𝑃, given by (2)
is bounded from 𝐿𝑝(⋅) onto 𝐴𝑝(⋅) for any 𝑝(⋅) ∈ Plog(Δ). It is,
thus, necessary to study the behaviour of Toeplitz operators
on such spaces. Similar to the definition of Toeplitz operators
on the Bergman spaces with constant exponent, we define the
Toeplitz operator with symbol 𝑓 ∈ 𝐿∞ on 𝐴𝑝(⋅) by

𝑇𝑓𝑔 = 𝑃 (𝑓𝑔) , 𝑔 ∈ 𝐴𝑝(⋅). (32)

Lemma 8. The operator 𝑈𝑧 is bounded on 𝐴𝑝(⋅) for 𝑝(⋅) > 1.
Proof. Let 1 < 𝑝0 ≤ 𝑝− ≤ 𝑝+ < ∞ and 𝜔 ∈ 𝐴1. Then

∫
Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 𝜔 (𝜉) 𝑑𝐴 (𝜉)
≤ ∫

Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0𝑀𝜔(𝜉) 𝑑𝐴 (𝜉) (33)

since 𝜔(𝜉) ≤ 𝑀𝜔(𝜉) for almost every 𝜉 ∈ Δ. Now, for 0 < 𝜖 <𝜔(Δ) there is a pseudoball 𝐵 containing 𝜉 such that

𝑀𝜔(𝜉) ≤ 𝜔 (𝐵)|𝐵| + 𝜖 ≤ 𝜔 (Δ)|𝐵| + 𝜔 (Δ) . (34)

It follows that

∫
Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0𝑀𝜔(𝜉) 𝑑𝐴 (𝜉)
≤ (𝜔 (Δ)|𝐵| + 𝜔 (Δ))∫

Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 𝑑𝐴 (𝜉) . (35)

Also

∫
Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 𝑑𝐴 (𝜉) = ∫
Δ

󵄨󵄨󵄨󵄨󵄨𝑓 ∘ 𝜑𝑧 (𝜉) 𝜑󸀠
𝑧 (𝜉)󵄨󵄨󵄨󵄨󵄨𝑝0 𝑑𝐴 (𝜉)

= ∫
Δ

󵄨󵄨󵄨󵄨󵄨𝑓 (𝜉) 𝜑󸀠
𝑧 (𝜑𝑧 (𝜉))󵄨󵄨󵄨󵄨󵄨𝑝0 󵄨󵄨󵄨󵄨󵄨𝜑󸀠

𝑧 (𝜉)󵄨󵄨󵄨󵄨󵄨2 𝑑𝐴 (𝜉)
= ∫

Δ

󵄨󵄨󵄨󵄨𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 󵄨󵄨󵄨󵄨󵄨𝜑󸀠
𝑧 (𝜑𝑧 (𝜉))󵄨󵄨󵄨󵄨󵄨𝑝0−2 𝑑𝐴 (𝜉)

≤ 2𝑝0

(1 − |𝑧|2)𝑝0−2
∫

Δ

󵄨󵄨󵄨󵄨𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 𝑑𝐴 (𝜉)
≤ [𝜔]𝐴1 2𝑝0

𝜔 (Δ) (1 − |𝑧|2)𝑝0−2
∫

Δ

󵄨󵄨󵄨󵄨𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 𝜔 (𝜉) 𝑑𝐴 (𝜉) ,

(36)

where the last inequality comes from (27). This shows that

∫
Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 𝜔 (𝜉) 𝑑𝐴 (𝜉)
≤ (|𝐵| + 1) [𝜔]𝐴1 2𝑝0

|𝐵| (1 − |𝑧|2)𝑝0−2
∫

Δ

󵄨󵄨󵄨󵄨𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 𝜔 (𝜉) 𝑑𝐴 (𝜉) . (37)

It follows that the family {(|𝑈𝑧𝑓|, |𝑓|) : 𝑓 ∈ 𝐿𝑝0} satisfies
inequality (29). Also, by Proposition 7 the maximal function
Mf belongs to 𝐿(𝑝(⋅)/𝑝0)

󸀠

.Thus by Proposition 6 𝑈𝑧 is bounded
on 𝐴𝑝(⋅).

Remark 9. We just want to give an alternative argument to
obtain the estimate (35), and this argument has different
effects and may be useful in applications.

We recall that if 𝜔 is locally integrable in Δ, then
lim
𝑟→0

1|𝐵 (𝑧, 𝑟)| ∫𝐵(𝑧,𝑟)

󵄨󵄨󵄨󵄨𝜔 (𝑧) − 𝜔 (𝜉)󵄨󵄨󵄨󵄨 𝑑𝐴 (𝜉) = 0. (38)

The proof of this statement can easily be adapted from that of
Theorem 1.3 of [14]. We use this statement as follows:

Let 𝜔 ∈ 𝐴1 and 𝑝0 > 1. Then for any 𝜖 > 0, we can find𝑅 > 0 such that

1|𝐵 (𝑧, 𝑟)| ∫𝐵(𝑧,𝑟)

󵄨󵄨󵄨󵄨𝜔 (𝑧) − 𝜔 (𝜉)󵄨󵄨󵄨󵄨 𝑑𝐴 (𝜉) < 𝜖𝜔 (Δ) , (39)

for all 𝑟 ∈ (0, 𝑅). Now, if we fix such 𝑅 then for 0 < 𝑟 < 𝑅 we
have

∫
Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 𝜔 (𝜉) 𝑑𝐴 (𝜉) = ∫
Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 (𝜔 (𝜉)
− 1󵄨󵄨󵄨󵄨𝐵 (𝜉, 𝑟)󵄨󵄨󵄨󵄨 ∫𝐵(𝜉,𝑟)

𝜔 (𝜁) 𝑑𝐴 (𝜁)
+ 1𝐵 (𝜉, 𝑟) ∫𝐵(𝜉,𝑟)

𝜔 (𝜁) 𝑑𝐴 (𝜁)) 𝑑𝐴 (𝜉)
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≤ ∫
Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 1󵄨󵄨󵄨󵄨𝐵 (𝜉, 𝑟)󵄨󵄨󵄨󵄨
⋅ ∫

𝐵(𝜉,𝑟)

󵄨󵄨󵄨󵄨𝜔 (𝜉) − 𝜔 (𝜁)󵄨󵄨󵄨󵄨 𝑑𝐴 (𝜁) 𝑑𝐴 (𝜉)
+ ∫

Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 1󵄨󵄨󵄨󵄨𝐵 (𝜉, 𝑟)󵄨󵄨󵄨󵄨 ∫𝐵(𝜉,𝑟)
𝜔 (𝜁) 𝑑𝐴 (𝜁) 𝑑𝐴 (𝜉)

≤ 𝜔 (Δ) (𝜖 + 𝐶𝑟) ∫
Δ

󵄨󵄨󵄨󵄨𝑈𝑧𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝0 𝑑𝐴 (𝜉) ,
(40)

where the constant 𝐶𝑟 does not depend on 𝜔 ∈ 𝐴1, and thus
(35) holds.Wemay also use this same argument in some parts
of the proofs of Theorem 2 and Proposition 17 by replacing
similar statements that give rise to the estimates (34) in the
proof of Lemma 8.

Let

𝑇𝑓 (𝑧) = ∫
Δ
𝑓 (𝑤)𝐾 (𝑧, 𝑤) 𝑑𝐴 (𝑤) , 𝑧 ∈ Δ, (41)

where 𝐾 : Δ × Δ → C is a kernel function. We give a Schur-
type lemma that will be useful in our work.

Lemma 10. Let 𝜔 ∈ 𝐴1, 𝑝 > 1, and 1/𝑝 + 1/𝑝󸀠 = 1. If there
exist positive constants 𝐶1 and 𝐶2 that depends on [𝜔]𝐴1 and
not 𝜔, and a nonnegative measurable function, ℎ, such that

∫
Δ

󵄨󵄨󵄨󵄨𝐾 (𝜉, 𝑧)󵄨󵄨󵄨󵄨 ℎ (𝑧)𝑝󸀠 𝑑𝐴 (𝑧) ≤ 𝐶1ℎ (𝜉)𝑝󸀠 (42)

for almost every 𝜉 ∈ Δ and

𝜔 (Δ)−1 ∫
Δ

󵄨󵄨󵄨󵄨𝐾 (𝜉, 𝑧)󵄨󵄨󵄨󵄨 ℎ (𝜉)𝑝 𝜔 (𝜉) 𝑑𝐴 (𝑧) ≤ 𝐶2ℎ (𝑧)𝑝 (43)

for almost every 𝑧 ∈ Δ, then
∫

Δ

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧)
≤ 𝐶1𝐶2 ∫

Δ

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧) . (44)

Proof. Using Hölder’s inequality, we have

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑧)󵄨󵄨󵄨󵄨 ≤ ∫
Δ

󵄨󵄨󵄨󵄨𝐾 (𝜉, 𝑧)󵄨󵄨󵄨󵄨 ℎ (𝜉) ℎ (𝜉)−1 󵄨󵄨󵄨󵄨𝑓 (𝜉)󵄨󵄨󵄨󵄨 𝑑𝐴 (𝜉)
≤ 𝐶󸀠

1ℎ (𝑧) {∫
Δ

󵄨󵄨󵄨󵄨𝐾 (𝜉, 𝑧)󵄨󵄨󵄨󵄨 ℎ (𝜉)−𝑝 󵄨󵄨󵄨󵄨𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝 𝑑𝐴 (𝜉)}1/𝑝

≤ 𝐶󸀠
1ℎ (𝑧) {∫

Δ

󵄨󵄨󵄨󵄨𝐾 (𝜉, 𝑧)󵄨󵄨󵄨󵄨 ℎ (𝜉)−𝑝 󵄨󵄨󵄨󵄨𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝
⋅ [𝜔]𝐴1 𝜔 (𝜉)𝜔 (Δ) 𝑑𝐴 (𝜉)}1/𝑝 ,

(45)

where the second inequality comes from (42) and the third
inequality is from (27). Also, Fubini’s theorem gives

∫
Δ

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧)
≤ 𝐶1 ∫

Δ

[𝜔]𝐴1 ℎ (𝑧)𝑝𝜔 (Δ) {∫
Δ

󵄨󵄨󵄨󵄨𝐾 (𝜉, 𝑧)󵄨󵄨󵄨󵄨 ℎ (𝜉)−𝑝 󵄨󵄨󵄨󵄨𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝
⋅ 𝜔 (𝜉) 𝑑𝐴 (𝜉)} 𝜔 (𝑧) 𝑑𝐴 (𝑧)
= 𝐶1 [𝜔]𝐴1 ∫

Δ

󵄨󵄨󵄨󵄨𝑓 (𝜉)󵄨󵄨󵄨󵄨𝑝 ℎ (𝜉)−𝑝 ∫
Δ

󵄨󵄨󵄨󵄨𝐾 (𝜉, 𝑧)󵄨󵄨󵄨󵄨 ℎ (𝑧)𝑝
⋅ 𝜔 (𝑧)𝜔 (Δ)𝑑𝐴 (𝑧) 𝜔 (𝜉) 𝑑𝐴 (𝑤) ≤ 𝐶1𝐶2 [𝜔]𝐴1
⋅ ∫

Δ

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧) ,

(46)

where we have used (43) to get the last inequality.

Proposition 11. Let 𝑝(⋅) ∈ P𝑙𝑜𝑔(Δ), 𝑝 ∈ (1,∞) be such that1 < 𝑝 ≤ 𝑝− ≤ 𝑝+ < ∞. Suppose the function 𝐾 : Δ × Δ → C

satisfies the hypothesis of Lemma 10.Then there is a constant𝐶
such that 󵄩󵄩󵄩󵄩𝑇𝑓󵄩󵄩󵄩󵄩𝑝(⋅) ≤ 𝐶𝐶1𝐶2

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝(⋅) , (47)

for all 𝑓 ∈ 𝐿𝑝(⋅).

Proof. Let 𝜔 ∈ 𝐴1. Then by Lemma 10, we obtain (29) for the
family {(|𝑇𝑓|, |𝑓|) : 𝑓 ∈ 𝐿𝑝0(Δ)}, where 1 < 𝑝0 ≤ 𝑝− ≤ 𝑝+ <∞. Also by Proposition 7, the maximal function Mf belongs
to 𝐿(𝑝(⋅)/𝑝0)

󸀠(Δ) and thus by Proposition 6 we get the required
estimates.

In the application of Lemma 10, we may assume that
ess inf𝑧∈Δ𝜔(𝑧) ≥ 1 for𝜔 ∈ 𝐴1, as the following lemma shows.

Lemma 12. Let 𝜔 ∈ 𝐴1 be such that ess inf𝑧∈Δ𝜔(𝑧) < 1
and 𝜇 = 𝛿𝜔 for any 𝛿 > 1 such that ess inf𝑧∈Δ𝜇(𝑧) ≥ 1. If
the hypothesis of Lemma 10 holds for the weight 𝜇, then the
conclusion of Lemma 10 holds for the weight 𝜔.
Proof. By (27), we have that 1 ≤ ([𝜇]𝐴1/𝜇(Δ))𝜇(𝑧) for almost
every 𝑧 ∈ Δ. Now by Proposition 9.1.5 of [13], we have that[𝜇]𝐴1 = [𝛿𝜔]𝐴1 = [𝜔]𝐴1 . It follows that 1 ≤ ([𝜔]𝐴1/𝜇(Δ))𝜇(𝑧)
for almost every 𝑧 ∈ Δ. Thus we have that the constants 𝐶1 =[𝜔]𝐴1 and 𝐶2 are independent of 𝜇 and, hence, independent
of 𝜔. Now since the hypothesis of Lemma 10 holds for the
weight 𝜇, we have that

∫
Δ

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜇 (𝑧) 𝑑𝐴 (𝑧) ≤ 𝐶1𝐶2

󵄩󵄩󵄩󵄩󵄩𝑓𝜇1/𝑝󵄩󵄩󵄩󵄩󵄩𝑝

𝑝
. (48)

Thus,

𝛿∫
Δ

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧) ≤ 𝛿𝐶1𝐶2

󵄩󵄩󵄩󵄩󵄩𝑓𝜔1/𝑝󵄩󵄩󵄩󵄩󵄩𝑝

𝑝
. (49)
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It follows that∫
Δ

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧) ≤ 𝐶1𝐶2

󵄩󵄩󵄩󵄩󵄩𝑓𝜔1/𝑝󵄩󵄩󵄩󵄩󵄩𝑝

𝑝
, (50)

which gives the result.

The next lemma will be used frequently and is well
known; see, for example, Lemma 3.10 of [15] for the proof.
Lemma 13. Suppose 𝑎 < 1 and 𝑎 + 𝑏 < 2. Then

sup
𝑧∈Δ

∫
Δ

𝑑𝐴 (𝑤)(1 − |𝑤|2)𝑎 |1 − 𝑧𝑤|𝑏 < ∞. (51)

Proof of Theorem 2. Let 𝑔 ∈ 𝐴𝑝(⋅). Then𝑇𝑓𝑔 (𝑧) = ⟨𝑇𝑓𝑔,𝐾𝑧⟩ = ⟨𝑔, 𝑇𝑓𝐾𝑧⟩
= ∫

Δ
𝑔 (𝜉) 𝑇𝑓𝐾𝑧 (𝜉) 𝑑𝐴 (𝜉) . (52)

Now, let ℎ(𝑧) = (1 − |𝑧|2)−𝜖 for

max( 2𝑞𝑝0

, 2𝑞𝑝󸀠
0

) < 𝜖 < min( 1𝑞󸀠𝑝󸀠
0

, 1𝑞󸀠𝑝0

) . (53)

Then using the identity𝑇𝑓𝐾𝑧 (𝜉) = 𝑃 (𝑓 ∘ 𝜑𝑧) (𝜑𝑧 (𝜉))𝐾𝑧 (𝑤) , 𝑧, 𝜉 ∈ Δ (54)

we have

∫
Δ

󵄨󵄨󵄨󵄨󵄨󵄨𝑇𝑓𝐾𝑧 (𝜉)󵄨󵄨󵄨󵄨󵄨󵄨 ℎ (𝜉)𝑝󸀠0𝑑𝐴 (𝜉)
= ∫

Δ

󵄨󵄨󵄨󵄨󵄨𝑃 (𝑓 ∘ 𝜑𝑧) (𝜑𝑧 (𝜉))𝐾𝑧 (𝜉)󵄨󵄨󵄨󵄨󵄨 (1 − |𝑧|2)−𝜖𝑝󸀠
0 𝑑𝐴 (𝜉)

= 1(1 − |𝑧|2)𝜖𝑝󸀠
0

∫
Δ

󵄨󵄨󵄨󵄨󵄨𝑃 (𝑓 ∘ 𝜑𝑧) (𝜉)󵄨󵄨󵄨󵄨󵄨 𝑑𝐴 (𝜉)(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝󸀠
0 󵄨󵄨󵄨󵄨1 − 𝑧𝜉󵄨󵄨󵄨󵄨(2−2𝜖𝑝󸀠

0
)

≤ 󵄩󵄩󵄩󵄩󵄩𝑃 (𝑓 ∘ 𝜑𝑧)󵄩󵄩󵄩󵄩󵄩𝑞(1 − |𝑧|2)𝜖𝑝󸀠
0

(∫
Δ

𝑑𝐴 (𝜉)(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝󸀠
0
𝑞󸀠 󵄨󵄨󵄨󵄨1 − 𝑧𝜉󵄨󵄨󵄨󵄨(2−2𝜖𝑝󸀠

0
)𝑞󸀠
)

1/𝑞󸀠

.

(55)

Also,

sup
𝑧∈Δ

∫
Δ

𝑑𝐴 (𝜉)(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝󸀠
0
𝑞󸀠 󵄨󵄨󵄨󵄨1 − 𝑧𝜉󵄨󵄨󵄨󵄨(2−2𝜖)𝑝󸀠

0
𝑞󸀠
< ∞ (56)

provided that 𝜖 < 1/𝑝󸀠
0𝑞󸀠 and 𝜖𝑝󸀠

0𝑞󸀠 + 2𝑞󸀠 − 2𝜖𝑝󸀠
0𝑞󸀠 < 2. That

is, 2/𝑝󸀠
0𝑞 < 𝜖 < 1/𝑝󸀠

0𝑞󸀠 which holds from the choice of 𝜖.
Now, observe that𝑇𝑓𝐾𝑧 (𝜉) = ⟨𝑇𝑓𝐾𝑧, 𝐾𝜉⟩ = ⟨𝐾𝑧, 𝑇𝑓𝐾𝜉⟩ = 𝑇𝑓𝐾𝜉 (𝑧). (57)

Thus, for each 𝜔 ∈ 𝐴1, we have

∫
Δ

󵄨󵄨󵄨󵄨󵄨󵄨𝑇𝑓𝐾𝑧 (𝜉)󵄨󵄨󵄨󵄨󵄨󵄨 ℎ (𝑧)𝑝0 𝜔 (𝑧)𝜔 (Δ)𝑑𝐴 (𝑧)
= ∫

Δ

󵄨󵄨󵄨󵄨󵄨𝑇𝑓𝐾𝜉 (𝑧)󵄨󵄨󵄨󵄨󵄨 ℎ (𝑧)𝑝0 𝜔 (𝑧)𝜔 (Δ)𝑑𝐴 (𝑧)
≤ 1𝜔 (Δ) ∫Δ

󵄨󵄨󵄨󵄨󵄨𝑇𝑓𝐾𝜉 (𝑧)󵄨󵄨󵄨󵄨󵄨 ℎ (𝑧)𝑝0𝑀𝜔(𝑧) 𝑑𝐴 (𝑧)
(58)

since 𝜔(𝑧) ≤ 𝑀𝜔(𝑧) for almost every 𝑧 ∈ Δ. For any 0 < 𝜖1 <𝜔(Δ), there is a pseudoball 𝐵 containing 𝑧 such that

𝑀𝜔(𝑧) ≤ 𝜔 (𝐵)|𝐵| + 𝜖1 ≤ 𝜔 (Δ)|𝐵| + 𝜖1 ≤ 𝜔 (Δ)|𝐵| + 𝜔 (Δ) . (59)

Substitute this in (58) to obtain

∫
Δ

󵄨󵄨󵄨󵄨󵄨𝑇𝑓𝐾𝜉 (𝑧)󵄨󵄨󵄨󵄨󵄨 ℎ (𝑧)𝑝0 𝜔 (𝑧)𝜔 (Δ)𝑑𝐴 (𝑧)
≤ (|𝐵|−1 + 1)∫

Δ

󵄨󵄨󵄨󵄨󵄨𝑇𝑓𝐾𝜉 (𝑧)󵄨󵄨󵄨󵄨󵄨 ℎ (𝑧)𝑝0 𝑑𝐴 (𝑧) .
(60)

Using the identity (54), we have

∫
Δ

󵄨󵄨󵄨󵄨󵄨󵄨𝑇𝑓𝐾𝑧 (𝜉)󵄨󵄨󵄨󵄨󵄨󵄨 ℎ (𝜉)𝑝0 𝜔 (𝜉)𝜔 (Δ)𝑑𝐴 (𝜉) ≤ 𝐶󸀠 ∫
Δ

󵄨󵄨󵄨󵄨󵄨𝑇𝑓𝐾𝜉 (𝑧)󵄨󵄨󵄨󵄨󵄨
⋅ 1(1 − |𝑧|2)𝜖𝑝0

𝑑𝐴 (𝑧)
= 𝐶󸀠 ∫

Δ

󵄨󵄨󵄨󵄨󵄨𝑃 (𝑓 ∘ 𝜑𝜉) (𝜑𝜉 (𝑧))𝐾𝜉 (𝑧)󵄨󵄨󵄨󵄨󵄨
⋅ (1 − |𝑧|2)−𝜖𝑝0 𝑑𝐴 (𝜉) = 𝐶󸀠

(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)−𝜖𝑝0

⋅ ∫
Δ

󵄨󵄨󵄨󵄨󵄨𝑃 (𝑓 ∘ 𝜑𝜉) (𝑧)𝐾𝜉 (𝑧)󵄨󵄨󵄨󵄨󵄨 (1 − |𝑧|2)−𝜖𝑝0 𝑑𝐴 (𝜉)
= 𝐶󸀠

(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)−𝜖𝑝0
∫

Δ

󵄨󵄨󵄨󵄨󵄨𝑃 (𝑓 ∘ 𝜑𝜉) (𝑧)󵄨󵄨󵄨󵄨󵄨 𝑑𝐴 (𝑧)(1 − |𝑧|2)𝜖𝑝0 󵄨󵄨󵄨󵄨1 − 𝑧𝜉󵄨󵄨󵄨󵄨(2−2𝜖𝑝0)
,

(61)

where the last equality is from the change of variable 𝑧 = 𝜑𝜉.
By Hölder’s inequality, we have that

∫
Δ

󵄨󵄨󵄨󵄨󵄨𝑃 (𝑓 ∘ 𝜑𝜉) (𝑧)󵄨󵄨󵄨󵄨󵄨 𝑑𝐴 (𝑧)(1 − |𝑧|2)𝜖𝑝0 󵄨󵄨󵄨󵄨1 − 𝑧𝜉󵄨󵄨󵄨󵄨(2−2𝜖𝑝0)
≤ 󵄩󵄩󵄩󵄩󵄩𝑃 (𝑓 ∘ 𝜑𝑧)󵄩󵄩󵄩󵄩󵄩𝑞

⋅ (∫
Δ

𝑑𝐴 (𝜉)(1 − |𝑤|2)𝜖𝑝0𝑞
󸀠 󵄨󵄨󵄨󵄨1 − 𝑧𝜉󵄨󵄨󵄨󵄨(2−2𝜖𝑝0)𝑞

󸀠
)1/𝑞󸀠 ,

sup
𝜉∈Δ

∫
Δ

𝑑𝐴 (𝜉)(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝0𝑞
󸀠 󵄨󵄨󵄨󵄨1 − 𝑧𝜉󵄨󵄨󵄨󵄨(2−2𝜖𝑝0)𝑞

󸀠
< ∞

(62)

if 𝜖 < 1/𝑝0𝑞󸀠 and 𝜖𝑝0𝑞󸀠+2𝑞󸀠−2𝜖𝑝0𝑞󸀠 < 2; that is, 2/𝑞𝑝0 < 𝜖 <1/𝑝0𝑞󸀠. Now if 𝜖 > 0 is chosen to satisfy (53) we see that the
hypothesis of Lemma 10 is satisfied and thus for every𝜔 ∈ 𝐴1

we have

∫
Δ

󵄨󵄨󵄨󵄨󵄨𝑇𝑓𝑔 (𝑧)󵄨󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧) ≤ 𝐶 sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑃 (𝑓 ∘ 𝜑𝑧)󵄩󵄩󵄩󵄩𝑞

⋅ sup
𝑧∈Δ

󵄩󵄩󵄩󵄩󵄩𝑃 (𝑓 ∘ 𝜑𝑧)󵄩󵄩󵄩󵄩󵄩𝑞
∫

Δ

󵄨󵄨󵄨󵄨𝑔 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧)
= 𝐶𝐶1𝐶2 ∫

Δ

󵄨󵄨󵄨󵄨𝑔 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧) ,
(63)
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where the constant 𝐶 does not depend on 𝜔 but on [𝜔]𝐴1 .
Finally we apply Proposition 11 to {(|𝑇𝑓𝑔|, |𝑔|) : 𝑔 ∈ 𝐿𝑝0} to
obtain the result.

For 𝑓 ∈ 𝐵𝑇 it is easy to show that

sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑃 (𝑓 ∘ 𝜑𝑧)󵄩󵄩󵄩󵄩𝑞 < ∞,
sup
𝑧∈Δ

󵄩󵄩󵄩󵄩󵄩𝑃 (𝑓 ∘ 𝜑𝑧)󵄩󵄩󵄩󵄩󵄩𝑞
< ∞ (64)

for any 𝑞 > 0. Thus, from Theorem 2, we immediately have
the following.

Corollary 14. Suppose 𝑓 ∈ 𝐵𝑇. Then

(1) 𝑇𝑓 is bounded on 𝐴𝑝(⋅),

(2) 𝑇𝑓∘𝜑𝑧
is bounded on 𝐴𝑝(⋅), and󵄩󵄩󵄩󵄩󵄩𝑇𝑓∘𝜑𝑧

󵄩󵄩󵄩󵄩󵄩𝑝(⋅)
≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵𝑇 . (65)

Proof. (1) is an immediate consequence of Theorem 2.(2) follows from the fact that ‖𝑓 ∘ 𝜑𝑧‖𝐵𝑇 = ‖𝑓‖𝐵𝑇 and‖𝑇𝑓∘𝜑𝑧
‖𝑝(⋅) ≤ 𝐶‖𝑓∘𝜑𝑧‖𝐵𝑇, which is given by assertion (1).

We also have the following estimate for operators in the
Toeplitz algebra. To be precise, we have the following.

Lemma 15. Let 𝑆 = 𝑇𝑓1
⋅ ⋅ ⋅ 𝑇𝑓𝑛

, 𝑓𝑖 ∈ 𝐵𝑇, 𝑖 = 1, . . . , 𝑛. Then

sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑝(⋅) < ∞,
sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆∗
𝑧1󵄩󵄩󵄩󵄩𝑝(⋅) < ∞ (66)

for any 𝑃 ∈ P𝑙𝑜𝑔(Δ).
Proof. By assertion (2) of Corollary 14, we have that󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑝(⋅) = 󵄩󵄩󵄩󵄩󵄩𝑇𝑓1∘𝜑𝑧

⋅ ⋅ ⋅ 𝑇𝑓𝑛∘𝜑𝑧

󵄩󵄩󵄩󵄩󵄩𝑝(⋅)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩𝐵𝑇 ⋅ ⋅ ⋅ 󵄩󵄩󵄩󵄩𝑓𝑛

󵄩󵄩󵄩󵄩𝐵𝑇 . (67)

Also, since each 𝑓𝑗 ∈ 𝐵𝑇 and ‖𝑓𝑗‖𝐵𝑇 = ‖𝑓𝑗‖𝐵𝑇, we have that󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑝(⋅) = 󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑓1∘𝜑𝑧
⋅ ⋅ ⋅ 𝑇𝑓𝑛∘𝜑𝑧

󵄩󵄩󵄩󵄩󵄩󵄩𝑝(⋅)≤ 𝐶 󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩𝐵𝑇 ⋅ ⋅ ⋅ 󵄩󵄩󵄩󵄩𝑓𝑛

󵄩󵄩󵄩󵄩𝐵𝑇 . (68)

This completes the proof of the lemma.

4. Norm Estimates

Lemma 16. Let 1 < 𝑝0 < ∞ and 𝑝1 = min(𝑝0, 𝑝󸀠
0) and

suppose that 𝑆 is a bounded operator on 𝐴𝑝(⋅) and 𝑞 > (𝑝1 +1)/(𝑝1 − 1). If 𝜖 > 0 satisfies (53), then for all 𝜔 ∈ 𝐴1 we have
the following:

∫
Δ

󵄨󵄨󵄨󵄨(𝑆𝐾𝑧) (𝜉)󵄨󵄨󵄨󵄨(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝󸀠
0

𝑑𝐴 (𝜉) ≤ 𝐶1
󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑞(1 − |𝑧|2)𝜖𝑝󸀠

0

(69)

for all 𝑧 ∈ Δ and

𝜔 (Δ)−1 ∫
Δ

󵄨󵄨󵄨󵄨(𝑆𝐾𝑧) (𝜉)󵄨󵄨󵄨󵄨(1 − |𝑧|2)𝜖𝑝0
𝜔 (𝑧) 𝑑𝐴 (𝑧) ≤ 𝐶2

󵄩󵄩󵄩󵄩󵄩𝑆∗
𝜉 1󵄩󵄩󵄩󵄩󵄩𝑞(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝0

(70)

for all 𝜉 ∈ Δ, where the constant 𝐶2 does not depend on 𝜔.
Proof. Fix 𝑧 ∈ Δ. Then

𝑆𝐾𝑧 = 𝑆𝑈𝑧1|𝑧|2 − 1 = 𝑈𝑧𝑆𝑧1|𝑧|2 − 1 = ((𝑆𝑧1) ∘ 𝜑𝑧) 𝜑󸀠
𝑧|𝑧|2 − 1 , (71)

where the second equality comes from the definition of 𝑆𝑧 and
the third equality from the definition of 𝑈𝑧. Thus,

∫
Δ

󵄨󵄨󵄨󵄨(𝑆𝐾𝑧) (𝜉)󵄨󵄨󵄨󵄨(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝󸀠
0

𝑑𝐴 (𝜉)
= 11 − |𝑧|2 ∫Δ

󵄨󵄨󵄨󵄨(𝑆𝑧1) ∘ 𝜑𝑧 (𝜉)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜑󸀠
𝑧 (𝜉)󵄨󵄨󵄨󵄨󵄨(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝󸀠
0

𝑑𝐴 (𝜉)
= 1(1 − |𝑧|2)𝜖𝑝󸀠

0

∫
Δ

󵄨󵄨󵄨󵄨(𝑆𝑧1) (𝜉)󵄨󵄨󵄨󵄨(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝󸀠
0 󵄨󵄨󵄨󵄨1 − 𝑧𝜉󵄨󵄨󵄨󵄨2−2𝜖𝑝󸀠

0

𝑑𝐴 (𝜉)
≤ 𝐶󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑞

󵄩󵄩󵄩󵄩𝑓𝑧
󵄩󵄩󵄩󵄩𝑞󸀠(1 − |𝑧|2)𝜖𝑝󸀠
0

,

(72)

where 𝑓𝑧(𝜉) = 1/(1 − |𝜉|2)𝜖𝑝󸀠0 |1 − 𝑧𝜉|2−2𝜖𝑝󸀠
0 . By the choice of 𝜖,

we have that sup𝑧∈Δ‖𝑓𝑧‖𝑞󸀠 < ∞ and (69) holds.
To prove (70), replace 𝑆 by 𝑆∗ in (69), interchange 𝜉 and 𝜉

in (69), and then use the equation

𝑆∗𝐾𝜉 (𝑧) = ⟨𝑆∗𝐾𝜉, 𝐾𝑧⟩ = ⟨𝐾𝜉, 𝑆𝐾𝑧⟩ = 𝑆𝐾𝑧 (𝜉). (73)

Finally, we use the same argument as in the proof of
Theorem 2 to obtain that there is a pseudoball 𝐵 containing 𝑧
such that 𝜔(𝑧) ≤ 𝑀𝜔(𝑧) ≤ 𝜔(Δ)(|𝐵|−1 + 1) and thus

𝜔 (Δ)−1 ∫
Δ

󵄨󵄨󵄨󵄨(𝑆𝐾𝑧) (𝜉)󵄨󵄨󵄨󵄨(1 − |𝑧|2)𝜖𝑝0
𝜔 (𝑧) 𝑑𝐴 (𝑧)

≤ (|𝐵|−1 + 1)∫
Δ

󵄨󵄨󵄨󵄨󵄨(𝑆∗𝐾𝜉) (𝑧)󵄨󵄨󵄨󵄨󵄨(1 − |𝑧|2)𝜖𝑝0
𝑑𝐴 (𝑧) . (74)

A similar argument as the one used to obtain the estimate (69)
will give us (70).

Proposition 17. Let 𝑝 ∈ 𝑃𝑙𝑜𝑔(Δ), 1 < 𝑝0 ≤ 𝑝− ≤ 𝑝+ < ∞,
and𝑝1 = min(𝑝0, 𝑝󸀠

0) and suppose that 𝑆 is a bounded operator
on 𝐴𝑝(⋅). If

𝐶1 = sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑞 < ∞,
𝐶2 = sup

𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆∗
𝑧1󵄩󵄩󵄩󵄩𝑞 < ∞ (75)
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for some 𝑞 > (𝑝1 + 1)/(𝑝1 − 1), then there is a constant 𝐶 such
that ‖𝑆‖𝑝(⋅) ≤ 𝐶𝐶1𝐶2. (76)

Proof. For 𝑓 ∈ 𝐴𝑝(⋅) and 𝑤 ∈ Δ, we have(𝑆𝑓) (𝜉) = ⟨𝑆𝑓,𝐾𝜉⟩ = ⟨𝑓, 𝑆∗𝐾𝜉⟩
= ∫

Δ
𝑓 (𝑧) (𝑆∗𝐾𝜉) (𝑧)𝑑𝐴 (𝑧)

= ∫
Δ
𝑓 (𝑧) (𝑆𝐾𝑧) (𝜉) 𝑑𝐴 (𝑧) ,

(77)

where the last equation follows from (69). Given that 𝜖 > 0
that satisfies (53), we have by (69) that

∫
Δ

󵄨󵄨󵄨󵄨(𝑆𝐾𝑧) (𝜉)󵄨󵄨󵄨󵄨(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝󸀠
0

𝑑𝐴 (𝑤) ≤ 𝐶 󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑞(1 − |𝑧|2)𝜖𝑝󸀠
0

. (78)

In a similar manner, we use (73) and (70) to get that

𝜔 (Δ)−1 ∫
Δ

󵄨󵄨󵄨󵄨(𝑆𝐾𝑧) (𝜉)󵄨󵄨󵄨󵄨(1 − |𝑧|2)𝜖𝑝0
𝜔 (𝑧) 𝑑𝐴 (𝑧)

= 𝜔 (Δ)−1 ∫
Δ

󵄨󵄨󵄨󵄨󵄨(𝑆∗𝐾𝜉) (𝑧)󵄨󵄨󵄨󵄨󵄨(1 − |𝑧|2)𝜖𝑝0
𝜔 (𝑧) 𝑑𝐴 (𝑧)

≤ 𝐶 󵄩󵄩󵄩󵄩󵄩𝑆∗
𝜉 1󵄩󵄩󵄩󵄩󵄩𝑞(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)𝜖𝑝0

.
∫

Δ

󵄨󵄨󵄨󵄨𝑆𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧) ≤ 𝐶∫
Δ

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝜔 (𝑧) 𝑑𝐴 (𝑧)

(79)

for all 𝜔 ∈ 𝐴1 where the constant 𝐶 depends on [𝜔]𝐴1 and
not on 𝜔. We now apply Proposition 11 to get the required
result.

Lemma 18. (a) ‖𝐾𝑧‖𝑝(⋅) is equivalent to (1 − |𝑧|2)−2+2/𝑝(𝑧) for
all 𝑧 ∈ Δ.

(b) 𝐾𝑧/‖𝐾𝑧‖𝑝(⋅) → 0 weakly in 𝐴𝑝(⋅) as 𝑧 → 𝜕Δ.
Proof. The assertion (a) is just Theorem 3.5 of [10].

(b) If 𝑓 ∈ 𝐴𝑝󸀠(⋅), then assertion (a) implies

⟨𝑓, 𝐾𝑧󵄩󵄩󵄩󵄩𝐾𝑧
󵄩󵄩󵄩󵄩𝑝(⋅)

⟩ ≅ 𝑓 (𝑧) (1 − |𝑧|2)−2+2/𝑝(𝑧) . (80)

Thus if 𝑓 is a bounded function in 𝐴𝑝󸀠(⋅), then⟨𝑓,𝐾𝑧/‖𝐾𝑧‖𝑝(⋅)⟩ → 0 as 𝑧 → 𝜕Δ. The assertion follows
from the fact that polynomials are dense in 𝐴𝑝󸀠(⋅).

5. Compact Operators on 𝐴𝑝(⋅)

Theorem 19. Let 𝑝 ∈ P𝑙𝑜𝑔(Δ) be such that 1 < 𝑝− ≤ 𝑝+ < ∞
and suppose that

∫
Δ
‖𝐾 (⋅, 𝑧)‖𝑝󸀠(⋅)+

𝑝(⋅) 𝑑𝐴 (𝑧) < ∞. (81)

Then the operator 𝑇 given by (41) is compact on 𝐿𝑝(⋅)(Δ).

Proof. Firstly we observe that if (81) holds and 𝑔 ∈ 𝐿𝑝󸀠(⋅), then
the function 𝑤 󳨃→ 𝐹(𝑤), where

𝐹 (𝑤) = ∫
Δ
𝐾 (𝑧, 𝑤) 𝑔 (𝑧) 𝑑𝐴 (𝑧) (82)

belongs to 𝐿𝑝󸀠(⋅)(Δ). Indeed,
∫

Δ
|𝐹 (𝑤)|𝑝󸀠(⋅)+ 𝑑𝐴 (𝑤)
= ∫

Δ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ
𝑔 (𝑧)𝐾 (𝑧, 𝑤) 𝑑𝐴 (𝑧)󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝

󸀠(⋅)+ 𝑑𝐴 (𝑤)
≤ 𝐶𝑝(⋅) ∫

Δ

󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑝󸀠(⋅)+
𝑝󸀠(⋅)

‖𝐾 (⋅, 𝑤)‖𝑝󸀠(⋅)+
𝑝(⋅) 𝑑𝐴 (𝑤) < ∞.

(83)

It follows from Lemma 1 that ‖𝐹‖𝑝󸀠(⋅) ≤ ‖𝐹‖𝑝󸀠(⋅)+
< ∞.Thus

for 𝑔 ∈ 𝐿𝑝󸀠(⋅), we see that 𝐹 ∈ 𝐿𝑝󸀠(⋅). Now, suppose (𝜑𝑛) is a
bounded sequence in 𝐿𝑝(⋅) such that 𝜑𝑛 → 𝜑 weakly in 𝐿𝑝(⋅).
For 𝜖 > 0 and any 𝑔 ∈ 𝐿𝑝󸀠(⋅), we can find that𝑁 ∈ N such that
for 𝑛 ≥ 𝑁 we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ

(𝜑𝑛 (𝑤) − 𝜑 (𝑤)) 𝑔 (𝑤) 𝑑𝐴 (𝑤)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 𝜖. (84)

We will show that ‖𝑇𝜑𝑛 − 𝑇𝜑‖𝑝(⋅) → 0 as 𝑛 → ∞. Now, given𝜖, we fix𝑁 such that (84) holds. It follows for any 𝑛 ≥ 𝑁 and
(11) that

󵄩󵄩󵄩󵄩𝑇𝜑𝑛 − 𝑇𝜑󵄩󵄩󵄩󵄩𝑝(⋅) ≤ 𝐶𝑝(⋅)
󵄩󵄩󵄩󵄩𝑇𝜑𝑛 − 𝑇𝜑󵄩󵄩󵄩󵄩∗

𝑝(⋅)

= sup {󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ
(𝑇𝜑𝑛 − 𝑇𝜑) (𝑤) 𝑔 (𝑤) 𝑑𝐴 (𝑤)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 : 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑝󸀠(⋅) ≤ 1}

= sup {󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ
∫

Δ
(𝜑𝑛 (𝑤) − 𝜑 (𝑤))𝐾 (𝑤, 𝑧) 𝑑𝐴 (𝑤) 𝑔 (𝑧) 𝑑𝐴 (𝑧)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 :󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑝󸀠(⋅) ≤ 1}

= sup{󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ
(𝜑𝑛 (𝑤) − 𝜑 (𝑤)) ∫

Δ
𝐾 (𝑧, 𝑤) 𝑔 (𝑧) 𝑑𝐴 (𝑧)𝑑𝐴 (𝑤)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 :󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑝󸀠(⋅) ≤ 1} = sup {󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ

(𝜑𝑛 (𝑤) − 𝜑 (𝑤)) 𝐹 (𝑤)𝑑𝐴 (𝑤)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 :󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑝󸀠(⋅) ≤ 1} < 𝜖.

(85)

Thus ‖𝑇𝜑𝑛 − 𝑇𝜑‖𝑝(⋅) → 0 as 𝑛 → ∞. Finally, it is shown in
Corollary 2.81 of [1] that the variable Lebesgue space 𝐿𝑝(⋅) is
reflexive if and only if 1 < 𝑝− ≤ 𝑝+ < ∞. We thus conclude
that 𝑇 is compact, since 𝐿𝑝(⋅) is reflexive.

We will need the power series formula for the Berezin
transform of the bounded operator 𝑆 on 𝐴2. From the
definition of the reproducing kernel, we get that

𝑘𝑧 (𝑤) = (1 − |𝑧|2) ∞∑
𝑛=0

(𝑛 + 1)𝑤𝑛𝑧𝑛 (86)
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for 𝑧, 𝑤 ∈ Δ. To compute 𝑆(𝑧) = ⟨𝑆𝑘𝑧, 𝑘𝑧⟩, we first compute𝑆𝑘𝑧 by applying 𝑆 to both sides of (86) and then take the inner
product with 𝑘𝑧, again using (86), to obtain𝑆 (𝑧)

= (1 − |𝑧|2)2
∞∑

𝑚,𝑗=0

(𝑗 + 1) (𝑚 + 1) ⟨𝑆𝑤𝑗, 𝑤𝑚⟩ 𝑧𝑗𝑧𝑚. (87)

Lemma20. Suppose 𝑆 is a bounded operator on𝐴𝑝(⋅) such that

sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑞 < ∞ (88)

for some 𝑞 > 1. Then 𝑆(𝑧) → 0 as 𝑧 → 𝜕Δ if and only if for
every 𝑡 ∈ [1, 𝑞), ‖𝑆𝑧1‖𝑡 → 0 as 𝑧 ∈ 𝜕Δ.
Proof. Suppose for every 𝑡 ∈ [1, 𝑞), ‖𝑆𝑧1‖𝑡 → 0 as 𝑧 → 𝜕Δ. In
particular, ‖𝑆𝑧1‖1 → 0 as 𝑧 ∈ 𝜕Δ. Thus󵄨󵄨󵄨󵄨󵄨𝑆 (𝑧)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨⟨𝑆𝑧1, 1⟩󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩1 󳨀→ 0 (89)

as 𝑧 ∈ 𝜕Δ.
Suppose 𝑆(𝑧) → 0 as 𝑧 → 𝜕Δ. Fix 𝑡 ∈ [1, 𝑞). We will show

that ‖𝑆𝑧1‖𝑡 → 0 as 𝑧 ∈ 𝜕Δ.
For 𝑧 ∈ Δ, 𝑗,𝑚 = 0, 1, . . ., an easy computation shows that

∫
Δ
(𝑆𝑧𝑤𝑗)𝑤𝑚𝑑𝐴 (𝑤) = ∫

Δ
(𝑆𝑈𝑧𝑤𝑗)𝑈𝑧𝑤𝑚𝑑𝐴 (𝑤) . (90)

Since 𝑈𝑧𝑤𝑗 = (𝜑𝑧 (𝑤))𝑗 𝜑󸀠
𝑧 (𝑤)= − (𝜑𝑧 (𝑤))𝑗 (1 − |𝑧|2)𝐾𝑧 (𝑤) , (91)

we have that

∫
Δ
(𝑆𝑈𝑧𝑤𝑗)𝑈𝑧𝑤𝑚𝑑𝐴 (𝑤) = (1 − |𝑧|2)2

⋅ ∫
Δ
𝑆 [(𝜑𝑧)𝑗 𝐾𝑧] (𝑤) (𝜑𝑧 (𝑤))𝑚 𝐾𝑧 (𝑤)𝑑𝐴 (𝑤) . (92)

It follows from (90) and (92) and Hölder’s inequality that󵄨󵄨󵄨󵄨󵄨⟨𝑆𝑧𝑤𝑗, 𝑤𝑚⟩󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ
(𝑆𝑧𝑤𝑗)𝑤𝑚𝑑𝐴 (𝑤)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = (1 − |𝑧|2)2

⋅ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ
𝑆 [(𝜑𝑧)𝑗 𝐾𝑧] (𝑤) (𝜑𝑧 (𝑤))𝑚 𝐾𝑧 (𝑤)𝑑𝐴 (𝑤)󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑝(⋅) (1 − |𝑧|2)2 󵄩󵄩󵄩󵄩󵄩𝑆 [𝜑𝑗
𝑧𝐾𝑧]󵄩󵄩󵄩󵄩󵄩𝑝(⋅)

󵄩󵄩󵄩󵄩𝜑𝑚
𝑧 𝐾𝑧

󵄩󵄩󵄩󵄩𝑝󸀠(⋅)

≤ 𝐶𝑝(⋅) (1 − |𝑧|2)2 ‖𝑆‖𝑝(⋅)

󵄩󵄩󵄩󵄩󵄩𝜑𝑗
𝑧𝐾𝑧

󵄩󵄩󵄩󵄩󵄩𝑝(⋅)

󵄩󵄩󵄩󵄩𝜑𝑚
𝑧 𝐾𝑧

󵄩󵄩󵄩󵄩𝑝󸀠(⋅) .
(93)

Now, let

𝑆1 = {𝜆 > 0 : ∫
Δ
(󵄨󵄨󵄨󵄨𝐾𝑧 (𝑤)󵄨󵄨󵄨󵄨𝜆 )𝑝(𝑤) 𝑑𝐴 (𝑤) ≤ 1} ,

𝑆2

= {𝜆 > 0 : ∫
Δ
(󵄨󵄨󵄨󵄨𝜑𝑧 (𝑤)𝐾𝑧 (𝑤)󵄨󵄨󵄨󵄨𝜆 )𝑝(𝑤) 𝑑𝐴 (𝑤) ≤ 1} .

(94)

Then 𝑆1 ⊂ 𝑆2 and thus inf 𝑆1 ≥ inf 𝑆2. This shows that󵄩󵄩󵄩󵄩󵄩𝜑𝑗
𝑧𝐾𝑧

󵄩󵄩󵄩󵄩󵄩𝑝(⋅)
≤ 󵄩󵄩󵄩󵄩𝐾𝑧

󵄩󵄩󵄩󵄩𝑝(⋅) (95)

for any 𝑝(⋅) ∈ 𝑃log(Δ). This and Lemma 18(a) show that󵄨󵄨󵄨󵄨󵄨⟨𝑆𝑧𝑤𝑗, 𝑤𝑚⟩󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑝(⋅) (1 − |𝑧|2)2 ‖𝑆‖𝑝(⋅)

󵄩󵄩󵄩󵄩𝐾𝑧
󵄩󵄩󵄩󵄩𝑝(⋅)

󵄩󵄩󵄩󵄩𝐾𝑧
󵄩󵄩󵄩󵄩𝑝󸀠(⋅)≤ 𝐶 ‖𝑆‖𝑝(⋅) ;

(96)

that is, ⟨𝑆𝑧𝑤𝑗, 𝑤𝑚⟩ is uniformly bounded in 𝑧 ∈ Δ and 𝑗, 𝑚 =0, 1, . . . .
Now, we will show that for every nonnegative integer 𝑛

⟨𝑆𝑧1, 𝑤𝑛⟩ 󳨀→ 0 as 𝑧 󳨀→ 𝜕Δ. (97)

If this is not true, then there is a sequence 𝑧𝑘 ∈ Δ such that

⟨𝑆𝑧𝑘
1, 𝑤𝑛⟩ 󳨀→ 𝑎0𝑛 as 𝑧𝑘 󳨀→ 𝜕Δ (98)

for some nonzero constant 𝑎0𝑛 and 𝑛 ≥ 1. Since ⟨𝑆𝑧𝑤𝑗, 𝑤𝑚⟩
is uniformly bounded, we may assume without loss of
generality that for each 𝑗 and𝑚

⟨𝑆𝑧𝑤𝑗, 𝑤𝑚⟩ 󳨀→ 𝑎𝑗𝑚 as 𝑧 󳨀→ 𝜕Δ, (99)

for some constant 𝑎𝑗𝑚. For 𝑧, 𝜉 ∈ Δ, we have
𝑆 (𝜑𝑧 (𝜉)) = 𝑆𝑧 (𝜉)
= (1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)2

∞∑
𝑗,𝑚=0

(𝑗 + 1) (𝑚 + 1) ⟨𝑆𝑧𝑤𝑗, 𝑤𝑚⟩ 𝜉𝑗𝜉𝑚, (100)

where the second equality comes from (87). Also, note that
the power series in (100) converges uniformly for each 𝜉 ∈ Δ.

For each 𝜉 ∈ Δ, we know that 𝜑𝑧𝑘
(𝜉) → 𝜕Δ as 𝑧𝑘 → 𝜕Δ.

Thus 𝑆(𝜑𝑧(𝜉)) → 0 as 𝑧𝑘 → 𝜕Δ for each 𝜉 ∈ Δ. Replacing 𝑧
by 𝑧𝑘 in (100) and taking the limit as 𝑧𝑘 → 𝜕Δ, we get

(1 − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2)2
∞∑

𝑗,𝑚=0

(𝑗 + 1) (𝑚 + 1) 𝑎𝑗𝑚𝜉𝑗𝜉𝑚 = 0 (101)

for each 𝜉 ∈ Δ. If
𝑓 (𝜉) = ∞∑

𝑗,𝑚=0

(𝑗 + 1) (𝑚 + 1) 𝑎𝑗𝑚𝜉𝑗𝜉𝑚, (102)

then 𝑓(𝜉) = 0 for all 𝜉 ∈ Δ. This gives

[ 𝜕𝑚𝜕𝜉𝑚

𝜕𝑗

𝜕𝜉𝑗
𝑓] (0) = 0 (103)

for each 𝑗 and𝑚. On the other hand, we have

[ 𝜕𝑚𝜕𝜉𝑚

𝜕𝑗

𝜕𝜉𝑗
𝑓] (0) = ((𝑗 + 1)! (𝑚 + 1)!) 𝑎𝑗𝑚 (104)
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for each 𝑗 and 𝑚. In particular, 𝑎0𝑛 = 0 which is a
contradiction. Hence, we obtain

lim
𝑧→𝜕Δ

⟨𝑆𝑧1, 𝑤𝑛⟩ = 0. (105)

For 𝜉 ∈ Δ, we have
(𝑆𝑧1) (𝜉) = ∞∑

𝑛=0

(𝑛 + 1) ⟨𝑆𝑧1, 𝑤𝑛⟩ 𝜉𝑛. (106)

It is clear that for each fixed 𝜉 ∈ Δ, the power series above
converges uniformly for 𝑧 ∈ Δ. This gives

lim
𝑧→𝜕Δ

(𝑆𝑧1) (𝜉) = 0 (107)

for each 𝜉 ∈ Δ. It follows that
lim

𝑧→𝜕Δ

󵄨󵄨󵄨󵄨(𝑆𝑧1) (𝜉)󵄨󵄨󵄨󵄨𝑡 = 0 (108)

for each 𝜉 ∈ Δ. If 𝑠 = 𝑞/𝑡 then 𝑠 > 1 and
∫

Δ
[󵄨󵄨󵄨󵄨(𝑆𝑧1) (𝜉)󵄨󵄨󵄨󵄨𝑡]𝑠 𝑑𝐴 (𝜉) = 󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑞

𝑞 ≤ sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑞

𝑞

< ∞. (109)

This shows that {|(𝑆𝑧1)|𝑡}𝑧∈Δ is uniformly integrable. By
Vitali’s Theorem or Exercise 11 on pages 133-134 of [16], we
have that

lim
𝑧→𝜕Δ

󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑡(⋅) = 0. (110)

This completes the proof of the lemma.

Proof of Theorem 3. If 𝑆 is compact on 𝐴𝑝(⋅), then by
Lemma 18(b),

⟨ 𝑆𝐾𝑧󵄩󵄩󵄩󵄩𝐾𝑧
󵄩󵄩󵄩󵄩𝑝(⋅)

, 𝐾𝑧󵄩󵄩󵄩󵄩𝐾𝑧
󵄩󵄩󵄩󵄩𝑝󸀠(⋅)

⟩ 󳨀→ 0 (111)

as 𝑧 → 𝜕Δ. Now by Lemma 18(a), we see that 𝑆(𝑧) is
equivalent to ⟨𝑆𝐾𝑧/‖𝐾𝑧‖𝑝(⋅), 𝐾𝑧/‖𝐾𝑧‖𝑝󸀠(⋅)⟩ for 𝑧 ∈ Δ. Thus𝑆(𝑧) → 0 as 𝑧 → 𝜕Δ.

Suppose 𝑆(𝑧) → 0 as 𝑧 → 𝜕Δ. By Lemma 20, we have that‖𝑆𝑧1‖𝑡 → 0 as 𝑧 → 𝜕Δ for every 𝑡 ∈ [1, 𝑞). We will show that𝑆 is compact on 𝐴𝑝(⋅). Fix 𝑡 ∈ (1, 𝑞) in the rest of the proof.
For 𝑓 ∈ 𝐴𝑝(⋅), we have that

(𝑆𝑓) (𝑤) = ∫
Δ
𝑓 (𝑧) (𝑆𝐾𝑧) (𝑤) 𝑑𝐴 (𝑧) . (112)

For 0 < 𝑟 < 1, we define an operator 𝑆[𝑟] on 𝐴𝑝(⋅) by

(𝑆[𝑟]𝑓) (𝑤) = ∫
𝑟Δ
𝑓 (𝑧) (𝑆𝐾𝑧) (𝑤) 𝑑𝐴 (𝑧) . (113)

Then 𝑆[𝑟] is an integral operator with kernel (𝑆𝐾𝑧)(𝑤)𝜒𝑟Δ(𝑧).
We will first show that the operator 𝑆[𝑟] is compact on 𝐴𝑝(⋅).
By Theorem 19, we only need to show that

∫
Δ

󵄩󵄩󵄩󵄩(𝑆𝐾𝑧) 𝜒𝑟Δ (𝑧)󵄩󵄩󵄩󵄩𝑝󸀠(⋅)+
𝑝(⋅) 𝑑𝐴 (𝑧)

= ∫
𝑟Δ

󵄩󵄩󵄩󵄩(𝑆𝐾𝑧)󵄩󵄩󵄩󵄩𝑝󸀠(⋅)+
𝑝(⋅) 𝑑𝐴 (𝑧) < ∞. (114)

But

∫
𝑟Δ

󵄩󵄩󵄩󵄩(𝑆𝐾𝑧)󵄩󵄩󵄩󵄩𝑝󸀠(⋅)+
𝑝(⋅) 𝑑𝐴 (𝑧)

≤ ∫
𝑟Δ
‖𝑆‖𝑝󸀠(⋅)+

𝑝(⋅)
󵄩󵄩󵄩󵄩𝐾𝑧

󵄩󵄩󵄩󵄩𝑝󸀠(⋅)+
𝑝(⋅) 𝑑𝐴 (𝑧)

≤ 𝐶 ‖𝑆‖𝑝󸀠(⋅)+
𝑝(⋅) ∫

𝑟Δ

𝑑𝐴 (𝑧)(1 − |𝑧|2)(2−2/𝑝(𝑧))𝑝󸀠(⋅)+

≤ 𝐶𝑟2 ‖𝑆‖𝑝󸀠(⋅)+
𝑝(⋅)(1 − |𝑟|2)2𝑝󸀠(⋅)+

.
(115)

This shows that

∫
𝑟Δ

󵄩󵄩󵄩󵄩(𝑆𝐾𝑧)󵄩󵄩󵄩󵄩𝑝󸀠(⋅)+
𝑝(⋅) 𝑑𝐴 (𝑧) < ∞, (116)

and thus 𝑆[𝑟] is compact on 𝐴𝑝(⋅). Hence, to prove that 𝑆 is
compact, we only need to show that ‖𝑆 − 𝑆[𝑟]‖𝑝(⋅) → 0 as 𝑟 →1−.

If 𝑟 ∈ (0, 1) then 𝑆−𝑆[𝑟] is the integral operator with kernel

(𝑆𝐾𝑧) (𝑤) 𝜒Δ\𝑟Δ (𝑧) (117)

as can be seen from (77) and (113).The proof of Proposition 17
indicates that 󵄩󵄩󵄩󵄩𝑆 − 𝑆[𝑟]

󵄩󵄩󵄩󵄩𝑝(⋅)
≤ 𝐶𝐶1𝐶2, (118)

where

𝐶1 = sup {󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑡 : 𝑟 ≤ |𝑧| < 1} ,𝐶2 = sup {󵄩󵄩󵄩󵄩𝑆∗
𝑧1󵄩󵄩󵄩󵄩𝑡 : 𝑧 ∈ Δ} . (119)

We have shown that 𝐶1 → 0 as 𝑟 → 1− and the hypothesis of
the theorem shows that 𝐶2 < ∞. Thus, ‖𝑆 − 𝑆[𝑟]‖𝑝(⋅) → 0 as𝑟 → 1−, which completes the proof.

Proof of Theorem 4. Suppose 𝑆 is a finite sum of operators of
the form 𝑇𝑓1

⋅ ⋅ ⋅ 𝑇𝑓𝑛
, where each 𝑓𝑗 ∈ 𝐵𝑇. By Corollary 14 and

Lemma 15, we have that 𝑆 is bounded on 𝐴𝑝(⋅) and

sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆𝑧1󵄩󵄩󵄩󵄩𝑞 < ∞,
sup
𝑧∈Δ

󵄩󵄩󵄩󵄩𝑆∗
𝑧1󵄩󵄩󵄩󵄩𝑞 < ∞ (120)

for all 𝑞 > 0. The conclusion then follows from Theorem 3.
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Harmonic Analysis, Birkhäuser, Basel, Switzerland, 2013.

[2] A. Dieudonne, “M-Berezin Transform and Approximation of
Operators on the Bergman Space Over Bounded Symmetric
Domains,” Complex Analysis and Operator Theory, vol. 11, no.
3, pp. 651–674, 2017.

[3] A. Dieudonne and E. Tchoundja, “Toeplitz operators with L1

symbols on Bergman spaces in the unit ball of Cn,” Advances in
Pure and Applied Mathematics, vol. 2, no. 1, pp. 65–88, 2011.

[4] S. Axler and D. Zheng, “Compact operators via the Berezin
transform,” Indiana University Mathematics Journal, vol. 47, no.
2, pp. 387–400, 1998.

[5] W. Bauer and J. Isralowitz, “Compactness characterization of
operators in the Toeplitz algebra of the Fock space F𝑝

𝛼,” Journal
of Functional Analysis, vol. 263, no. 5, pp. 1323–1355, 2012.

[6] M. Englis, “Compact Toeplitz operators via the Berezin trans-
form on bounded symmetric domains,” Integral Equations and
Operator Theory, vol. 33, no. 4, pp. 426–455, 1999.

[7] J.Miao andD. Zheng, “Compact operators on Bergman spaces,”
Integral Equations and OperatorTheory, vol. 48, no. 1, pp. 61–79,
2004.
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Regarding the existence of more than sixty interestingness measures proposed in the literature since 1993 till today in the topics of
association rules mining and facing the importance these last one, the research on normalization probabilistic quality measures of
association rules has already led to many tangible results to consolidate the various existing measures in the literature.This article
recommends a simple way to perform this normalization. In the interest of a unified presentation, the article offers also a new
concept of normalization function as an effective tool for resolution of the problem of normalization measures that have already
their own normalization functions.

1. Introduction

1.1. Definitions and Notations. We always put ourselves in
the framework of a context of binary data mining (see, for
example, [1–3], which illustrate the importance of association
rules mining based on choosing some quality measure) 𝐷 =(𝑇, 𝐼,R), where 𝐼 is a nonempty finite set of attributes or
variables, 𝑇 a finite set of entities or objects, R a binary
relation from 𝑇 to 𝐼, and 𝑃 discrete uniform probability in
the probabilistic space (𝑇,P(𝑇)) [4, 5].

In the next sections, we use the following notation for two
itemsets 𝑋, 𝑌: 𝑋󸀠 = {𝑒 ∈ 𝑇/∀𝑥 ∈ 𝑋; 𝑒R𝑥}, i.e., the set of
all transactions containing the 𝑋 pattern that is the dual of a
pattern 𝑋 of 𝐼 (𝑋 ⊆ 𝐼) [4, 6, 7]. 𝑛 = |𝑇| represents the size
of the total sample size; 𝑛𝑋 = |𝑋󸀠| represents the number of
transactions satisfying pattern 𝑋; 𝑛𝑋𝑌 = |𝑋󸀠 ∩ 𝑌󸀠| represents
the number of transactions satisfying both 𝑋 and 𝑌; 𝑛𝑋 =|𝑇| − |𝑇 − 𝑇𝑋󸀠 |, where 𝑋 is the logical negation of 𝑋; 𝑛𝑋/𝑛 =|𝑇𝑋󸀠 |/|𝑇| represents the support of the pattern 𝑋.

Hereafter, our work is divided into three sections.
Section 2 gives the definition of normalization func-
tion. Section 3 recommends the raw results of normal-
izing function of some probabilistic quality measures.

Finally Section 4, [5, 8–10] sets out the conclusion and
perspectives.

2. Normalizing Function 𝐹𝑛
2.1. Motivations. The theory and practice of normalization
probabilistic quality measures (see, for example, [4, 5, 11],
(Totohasina et al. [12]), [6, 7]) have been resolving included
in the list of tools for problems concerning the data mining.
This is done in the view of regrouping [3, 4, 6, 12–17]
different existing measures available from the literature.
Let us notice that [4] proves existence of infinity quality
measures through the concept of the so-called normalized
quality measure under five conditions, but recently [16]
still proposes a novel interestingness measure. By opening
the door to the possibility of creating definitions of new
concepts in the context of data mining, perhaps, this will
bring to following a new reflection among researchers in this
field. This is the normalizing function. What is meant by a
normalizing function? The following section will attempt to
answer such question. Remember that this paper is the logical
continuation of the paper [18].
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2.2. Proposal Approach

Definition 1. We consider a probabilistic measure of interest𝜇.Wecall normalizing function of𝜇 the piecewise continuous
function that can normalize directly the measure 𝜇 and is
defined as

𝐹𝑛 (𝑥)
= {{{

𝐹𝑓𝑛 (𝑥) , 𝑖𝑓 𝑋 𝑓𝑎V𝑜𝑟𝑠 𝑌 𝑎𝑛𝑑 𝑥 ∈ ]𝑥𝑖𝑛𝑑; 𝑥𝑖𝑚𝑝[ ;
𝐹𝑑𝑛 (𝑥) , 𝑖𝑓 𝑋 𝑑𝑖𝑠𝑓𝑎V𝑜𝑟𝑠 𝑌 𝑎𝑛𝑑 𝑥 ∈ ]𝑥𝑖𝑛𝑐; 𝑥𝑖𝑛𝑑[ .

(1)

It takes the following particular values:

𝐹𝑎𝑛 (𝑥) = {{{
𝑥𝑓𝑥 + 𝑦𝑓, 𝑖𝑓 𝑋 𝑓𝑎V𝑜𝑟𝑠 𝑌;
𝑥𝑑𝑥 + 𝑦𝑑, 𝑖𝑓 𝑋 𝑑𝑖𝑠𝑓𝑎V𝑜𝑟𝑠 𝑌. (2)

𝐹𝑠ℎ𝑛𝑑 (𝑥) = {{{
𝑥𝑓𝑥 + 𝑚 + 𝑦𝑓, 𝑖𝑓 𝑋 𝑓𝑎V𝑜𝑟𝑠 𝑌;
𝑥𝑑𝑥 + 𝑦𝑑, 𝑖𝑓 𝑋 𝑑𝑖𝑠𝑓𝑎V𝑜𝑟𝑠 𝑌. (3)

𝐹𝑠ℎ𝑛𝑔 (𝑥) = {{{
𝑥𝑓𝑥 + 𝑦𝑓, 𝑖𝑓 𝑋 𝑓𝑎V𝑜𝑟𝑠 𝑌;𝑥𝑑𝑥 + 𝑚 + 𝑦𝑑, 𝑖𝑓 𝑋 𝑑𝑖𝑠𝑓𝑎V𝑜𝑟𝑠 𝑌. (4)

𝐹ℎ𝑛 (𝑥) = {{{{{

𝑥𝑓𝑥 + 𝑚 + 𝑦𝑓, 𝑖𝑓 𝑋 𝑓𝑎V𝑜𝑟𝑠 𝑌;𝑥𝑑𝑥 + 𝑚 + 𝑦𝑑, 𝑖𝑓 𝑋 𝑑𝑖𝑠𝑓𝑎V𝑜𝑟𝑠 𝑌, (5)

where 𝑥 is value of 𝜇; 𝑥𝑖𝑚𝑝 is value of 𝜇 at logical implication;𝑥𝑖𝑛𝑑 is value of 𝜇 at independence; 𝑥𝑖𝑛𝑐 is value of 𝜇 at
incompatibility; 𝐹𝑓𝑛 is normalizing function, if 𝑋 favors 𝑌,
that is to say, in case where 𝑃(𝑌󸀠/𝑋󸀠) > 𝑃(𝑌󸀠); 𝐹𝑑𝑛 is normal-
izing function, if 𝑋 disfavors 𝑌, that is to say, in case where𝑃(𝑌󸀠/𝑋󸀠) < 𝑃(𝑌󸀠); 𝐹𝑎𝑛 is normalizing function of measure𝜇, that is, affine normalizable; 𝐹ℎ𝑛 is normalizing function of
measure 𝜇, that is, homographic normalizable; 𝐹𝑠ℎ𝑛𝑑 is nor-
malizing function of measure 𝜇, that is, semihomographic-
normalizable to right; 𝐹𝑠ℎ𝑛𝑔 is 𝜇 normalizing function of
measure𝜇, that is, semihomographic-normalizable to left;𝑥𝑓 ,𝑦𝑓, 𝑥𝑑, and 𝑦𝑑 are 𝜇 of normalization coefficient 𝑥; 𝑚 is real
and R = [−∞;+∞].

Thedefinition of normalizing function is thus determined
according to the quality measures. Note that this is a function
as any other, with respect to the variable 𝑥; it is a numerical
function of a real variable; only, this variable 𝑥 is as follows:𝑥 = 𝑓1(𝑛, 𝑃(𝑋󸀠), 𝑃(𝑌󸀠), 𝑃(𝑌󸀠 ∩ 𝑋󸀠)). The four coefficients
of normalization of probabilistic measures quality have to
meet the following conditions:𝑥𝑓 = 𝑓2(𝑛, 𝑃(𝑋󸀠), 𝑃(𝑌󸀠)), 𝑦𝑓 = 𝑓3(𝑛, 𝑃(𝑋󸀠), 𝑃(𝑌󸀠)),𝑥𝑑 = 𝑓4(𝑛, 𝑃(𝑋󸀠), 𝑃(𝑌󸀠)), and 𝑦𝑑 = 𝑓5(𝑛, 𝑃(𝑋󸀠), 𝑃(𝑌󸀠)),
where𝑓1, 𝑓2, 𝑓3, 𝑓4, and 𝑓5 are the five real functions. We note
in passing that there is also a group of measures with the
same normalization coefficients. The normalizing function
is also one of the means that allow to give an interpretation
of a normalized measurement after providing the respective

values of normalization coefficients 𝑥𝑓, 𝑦𝑓, 𝑥𝑑, and 𝑦𝑑. It
also expresses an opportunity of value for all normalized
measures. According to what we have just written, any
normalization of function reflecting the objective in normal-
ization must necessarily have the following properties.

Property 2 (necessary conditions). 𝑃1: 𝐹𝑓𝑛 is a continu-
ous function, positive and strictly increasing on the inter-
val ]𝑥𝑖𝑛𝑑; 𝑥𝑖𝑚𝑝[ and realizes a bijection on the interval
]𝑥𝑖𝑛𝑑; 𝑥𝑖𝑚𝑝[ 󳨀→ ]0; 1[; that is to say, 𝐹𝑓𝑛 must have the follow-
ing: a limit 1 to the point 𝑥𝑖𝑚𝑝; that is to say, lim𝑥󳨀→𝑥𝑖𝑚𝑝𝐹𝑓𝑛 (𝑥) =1; a limit 0 to the point 𝑥𝑖𝑛𝑑; that is to say, lim𝑥󳨀→𝑥𝑖𝑛𝑑𝐹𝑓𝑛 (𝑥) = 0.𝑃2: 𝐹𝑑𝑛 is a continuous function, negative, and strictly
increasing on the interval ]𝑥𝑖𝑛𝑐; 𝑥𝑖𝑛𝑑[ and realizes a bijection
on the interval ]𝑥𝑖𝑛𝑐; 𝑥𝑖𝑛𝑑[ 󳨀→ ] − 1; 0[; that is to say, 𝐹𝑑𝑛 must
have the following: a limit 0 to the point 𝑥𝑖𝑛𝑑; that is to say,
lim𝑥󳨀→𝑥𝑖𝑛𝑑𝐹𝑑𝑛 (𝑥) = 0; a limit -1 to the point 𝑥𝑖𝑛𝑐; that is to say,
lim𝑥󳨀→𝑥𝑖𝑛𝑐𝐹𝑑𝑛 (𝑥) = −1. As a recap, we have the following.𝑃3: 𝐹𝑛 is a continuous function at the point 𝑥𝑖𝑛𝑑 and
increasing on the interval ]𝑥𝑖𝑛𝑐; 𝑥𝑖𝑚𝑝[ and realizes a bijection
on the interval ]𝑥𝑖𝑛𝑐; 𝑥𝑖𝑚𝑝[ 󳨀→ ]− 1; 1[; that is to say, 𝐹𝑛 must
have the following: a limit 1 to the point 𝑥𝑖𝑚𝑝; that is to say,
lim𝑥󳨀→𝑥𝑖𝑚𝑝𝐹𝑛(𝑥) = 1; a limit 0 to the point 𝑥𝑖𝑛𝑑; that is to say,
lim𝑥󳨀→𝑥𝑖𝑛𝑑𝐹𝑛(𝑥) = 0 and 𝐹𝑛(𝑥𝑖𝑛𝑑) = 0; limit -1 to the point𝑥𝑖𝑛𝑑; that is to say, lim𝑥󳨀→𝑥𝑖𝑛𝑐𝐹𝑛(𝑥) = −1.
3. Applications

We recall in Table 1 the respective definitions of the various
measures that lead to the results below:

(1) Cost multiplying: 𝑥 = 𝑃(𝑋󸀠 ∩ 𝑌󸀠)𝑃(𝑌󸀠)/𝑃(𝑋󸀠 ∩𝑌󸀠)𝑃(𝑌󸀠) = (1−𝑃(𝑌󸀠))𝑃(𝑌󸀠/𝑋󸀠)/(1−𝑃(𝑌󸀠/𝑋󸀠))𝑃(𝑌󸀠)
which is such that 𝑥𝑖𝑚𝑝 = +∞, 𝑥𝑖𝑛𝑑 = 1, 𝑥𝑖𝑛𝑐 = 0.
Using research theories of normalization coefficients𝑥𝑓, 𝑦𝑓, 𝑥𝑑, and 𝑦𝑑 in [18] we have 𝑥𝑓 = −1, 𝑦𝑓 = 1,𝑥𝑑 = 1, and 𝑦𝑑 = −1. As a result, by replacing 𝑥, 𝑥𝑓,𝑦𝑓, 𝑥𝑑, and 𝑦𝑑 by their values in the expression (3) its
normalizing function is such that

𝐹𝑠ℎ𝑛𝑑 (𝑥)
= {{{

−1𝑥 + 1, if 𝑋 favors 𝑌 and 𝑥 ∈ [1; +∞[
𝑥 − 1, if 𝑋 disfavors 𝑌 and 𝑥 ∈ [0; 1] .

(6)

It is easy to see that this function is continuous
piecewise, in particular point 𝑥𝑖𝑛𝑑 = 1.
Finally, it represents a function that exposed the nec-
essary and sufficient conditions for the normalized
and continuous measures.
Its tables of variation are respectively presented in
Figures 1 and 2.
Thegraphic illustration and the variation table of𝐹𝑛 of
the measure Cost Multiplying reveal that 𝐹𝑓𝑛 is strictly
increasing, is positive, and realizes a bijection on
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Table 1: Probabilistic quality measures of expression.

𝑁𝑜 Measures 𝜇 Expressions of 𝑥 = 𝜇(𝑋 󳨀→ 𝑌)
1 Cost multiplying 𝑥 = 𝑃 (𝑋

󸀠 ∩ 𝑌󸀠) 𝑃 (𝑌󸀠)
𝑃(𝑋󸀠 ∩ 𝑌󸀠)𝑃 (𝑌󸀠)

2 Example counter-example 𝑥 = 𝑃 (𝑋
󸀠 ∩ 𝑌󸀠) − 𝑃 (𝑋󸀠 ∩ 𝑌󸀠)
𝑃 (𝑋󸀠 ∩ 𝑌󸀠)

3 Informal gain 𝑥 = log
𝑃 (𝑋󸀠 ∩ 𝑌󸀠)
𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)

4 Odd-Ratio 𝑥 = 𝑃 (𝑋
󸀠 ∩ 𝑌󸀠) 𝑃 (𝑋󸀠 ∩ 𝑌󸀠)

𝑃 (𝑋󸀠 ∩ 𝑌󸀠)𝑃 (𝑋󸀠 ∩ 𝑌󸀠)
5 Conviction 𝑥 = 𝑃 (𝑋

󸀠) 𝑃 (𝑌󸀠)
𝑃(𝑋󸀠 ∩ 𝑌󸀠)

6 Sebag 𝑥 = 𝑃 (𝑋󸀠 ∩ 𝑌󸀠)
𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)

7 𝑀𝐺𝐾 𝑥 = {{{{{{{

𝑃(𝑌󸀠/𝑋󸀠) − 𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠)𝑃 (𝑌󸀠/𝑋󸀠) − 𝑃 (𝑌󸀠)
𝑃 (𝑌󸀠)

8 Rucel and Rao Index 𝑥 = 𝑃 (𝑋󸀠 ∩ 𝑌󸀠)
9 Confidence or precision 𝑥 = 𝑃(𝑌󸀠𝑋󸀠 )
10 Recall 𝑥 = 𝑃(𝑋󸀠𝑌󸀠 )
11 Interest or Lift 𝑥 = 𝑃 (𝑌󸀠/𝑋󸀠)𝑃 (𝑌󸀠)
12 Laverage 𝑥 = 𝑃(𝑌󸀠𝑋󸀠 )
13 Centered confidence 𝑥 = 𝑃(𝑌󸀠𝑋󸀠 ) − 𝑃 (𝑌󸀠)
14 Confirmed confidence 𝑥 = 1 − 2𝑃(𝑌󸀠𝑋󸀠)
15 Certainty factor 𝑥 = 𝑃 (𝑌󸀠/𝑋󸀠) − 𝑃 (𝑌󸀠)1 − 𝑃 (𝑌󸀠)
16 Gras implication 𝑥 = √𝑛𝑃 (𝑋󸀠 ∩ 𝑌󸀠) − 𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)√𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
17 Piatesky-Shapiro 𝑥 = 𝑛(𝑃 (𝑋󸀠 ∩ 𝑌󸀠)
18 Cosinus 𝑥 = 𝑃 (𝑋󸀠 ∩ 𝑌󸀠)

√𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
19 Loevinger 𝑥 = 1 − 𝑃 (𝑋󸀠 ∩ 𝑌󸀠)

𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
20 Cohen ou Kappa 𝑥 = 2 𝑃 (𝑋󸀠 ∩ 𝑌󸀠) − 𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)

𝑃 (𝑋󸀠) + 𝑃 (𝑌󸀠) − 2𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
21 Addiction 𝑥 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃 (𝑌

󸀠) − 𝑃(𝑌󸀠𝑋󸀠)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

22 Novelty 𝑥 = 𝑃 (𝑋󸀠𝑌󸀠) − 𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
23 Czekanowski-Dice 𝑥 = 2𝑃 (𝑋󸀠 ∩ 𝑌󸀠)

𝑃 (𝑋󸀠 ∩ 𝑌󸀠) + 1 − 𝑃 (𝑋󸀠 ∩ 𝑌󸀠)
24 Relative risk 𝑥 = 𝑃 (𝑋󸀠/𝑌󸀠)𝑃 (𝑋󸀠/𝑌󸀠)
25 Negative reliability 𝑥 = 𝑃(𝑋󸀠𝑌󸀠 )
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Figure 1: Change in measure normalizing function “Cost Multiply-
ing”.

Figure 2: Geometric interpretation of the normalization function
of the “Cost Multiplying” measure.

[1; +∞[ 󳨀→ [0; 1] and even 𝑓𝑑 is strictly increasing
and negative and realizes a bijection on [0; 1] 󳨀→[−1; 0].These results show that𝐹𝑛 is strictly increasing
and it realizes a bijection on [0; +∞[ 󳨀→ [−1; 1].
Note that, in the following, for the search of the
four normalization coefficients, the same principle is
used with the measure “dimension multiplier” for the
other following measures because they are already
expressed in Table 1.

(2) Example counter-example: its normalizing func-
tion is such that using the expression (4) for 𝑚 = 0
with 𝑥𝑓 = 𝑃(𝑌󸀠)/(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 = (1 − 2𝑃(𝑌󸀠))/(1 −𝑃(𝑌󸀠)), 𝑥𝑑 = (2𝑃(𝑌󸀠) − 1)/𝑃(𝑌󸀠) and 𝑦𝑑 = −1 so

𝐹𝑠ℎ𝑛𝑔 (𝑥)

=
{{{{{{{{{{{

𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠)𝑥 +

1 − 2𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠) , if 𝑋 favors 𝑌

2𝑃 (𝑌󸀠) − 1
𝑃 (𝑌󸀠) 1𝑥 − 1, if 𝑋 disfavors 𝑌.

(7)

(3) Informal gain: its normalizing function is such
that using expression (4) for 𝑚 = 1 with 𝑥𝑓 =−1/ log𝑃(𝑌󸀠), 𝑦𝑓 = 0, 𝑥𝑑 = 1, and 𝑦𝑑 = −1 so

𝐹𝑠ℎ𝑛𝑔 (𝑥) = {{{{{

−1
log𝑃 (𝑌󸀠)𝑥, if 𝑋 favors 𝑌
1𝑥 + 1 − 1, if 𝑋 disfavors 𝑌. (8)

(4) Odd-ratio: its normalizing function is such that
using expression (3) for𝑚 = 0 with 𝑥𝑓 = −1, 𝑦𝑓 = 1,𝑥𝑑 = 1, and 𝑦𝑑 = −1 so

𝐹𝑠ℎ𝑛𝑑 (𝑥)
= {{{

1𝑥 + 1, if 𝑋 favors 𝑌 and 𝑥 ∈ [1; +∞[
𝑥 − 1, if 𝑋 disfavors 𝑌 and 𝑥 ∈ [0; 1] .

(9)

(5) Conviction: its normalizing function is such that
using expression (5) for𝑚 = 0 with 𝑥𝑓 = −1, 𝑦𝑓 = 1,𝑥𝑑 = −(1 −𝑃(𝑌󸀠))/𝑃(𝑌󸀠), and 𝑦𝑑 = (1 −𝑃(𝑌󸀠))/𝑃(𝑌󸀠)
so

𝐹ℎ𝑛 (𝑥)

= {{{{{{{

−1𝑥 + 1, if 𝑋 favors 𝑌
−1 − 𝑃 (𝑌󸀠)𝑃 (𝑌󸀠) 1𝑥 +

1 − 𝑃 (𝑌󸀠)
𝑃 (𝑌󸀠) , if 𝑋 disfavors 𝑌.

(10)

(6) Sebag: its normalizing function is such that using
expression (3) for 𝑚 = 0 with 𝑥𝑓 = −𝑃(𝑌󸀠)/(1 −𝑃(𝑌󸀠)), 𝑦𝑓 = 1, 𝑥𝑑 = (1 − 𝑃(𝑌󸀠))/𝑃(𝑌󸀠), and 𝑦𝑑 = −1
so

𝐹𝑠ℎ𝑛𝑑 (𝑥) =
{{{{{{{{{{{

− 𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠) 1𝑥 + 1, if 𝑋 favors 𝑌
1 − 𝑃 (𝑌󸀠)
𝑃 (𝑌󸀠) 𝑥 − 1, if 𝑋 disfavors 𝑌.

(11)

(7)𝑀𝐺𝐾: its normalizing function is such that using
expression (2)with 𝑥𝑓 = 1,𝑦𝑓 = 0,𝑥𝑑 = 1, and 𝑦𝑑 = 0
so

𝐹𝑎𝑛 (𝑥) = 𝑥 avec 𝑥 =
{{{{{{{{{{{

𝑃(𝑌󸀠/𝑋󸀠) − 𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠) , if 𝑋 favors 𝑌 and 𝑥 ∈ [0; 1]

𝑃 (𝑌󸀠/𝑋󸀠) − 𝑃 (𝑌󸀠)
𝑃 (𝑌󸀠) , if 𝑋 disfavors 𝑌 and 𝑥 ∈ [−1; 0] .

(12)
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(8) Support; its normalizing function is such thatusing
expression (2) with 𝑥𝑓 = 1/𝑃(𝑋󸀠)(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 =−𝑃(𝑌󸀠)/(1 − 𝑃(𝑌󸀠)), 𝑥𝑑 = 1/𝑃(𝑋󸀠)𝑃(𝑌󸀠), and 𝑦𝑑 = −1
so

𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{

1𝑃 (𝑋󸀠) (1 − 𝑃 (𝑌󸀠))𝑥 −
𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠) , if 𝑋 favors 𝑌

1𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)𝑥 − 1, if 𝑋 disfavors 𝑌.
(13)

(9) Confidence: its normalizing function is such that
using expression (2) with 𝑥𝑓 = 1/(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 =−𝑃(𝑌󸀠)/(1 − 𝑃(𝑌󸀠)), 𝑥𝑑 = 1/𝑃(𝑌󸀠), and 𝑦𝑑 = −1 so

𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{

11 − 𝑃 (𝑌󸀠)𝑥 −
𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠) , if 𝑋 favors 𝑌

1𝑃 (𝑌󸀠)𝑥 − 1, if 𝑋 disfavors 𝑌.
(14)

(10) Recall: its normalizing function is such that using
expression (2) with 𝑥𝑓 = 𝑃(𝑌󸀠)/𝑃(𝑋󸀠)(1 − 𝑃(𝑌󸀠)),𝑦𝑓 = −𝑃(𝑌󸀠)/(1 − 𝑃(𝑌󸀠)), 𝑥𝑑 = 1/𝑃(𝑋󸀠), and 𝑦𝑑 = −1
so

𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{

𝑃(𝑌󸀠)
𝑃 (𝑋󸀠) (1 − 𝑃 (𝑌󸀠))𝑥 −

𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠) , if 𝑋 favors 𝑌.

1𝑃 (𝑋󸀠)𝑥 − 1, if 𝑋 disfavors 𝑌
(15)

(11) Li�: its normalizing function is such that using
expression (2) with 𝑥𝑓 = 𝑃(𝑌󸀠)/(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 =−𝑃(𝑌󸀠)/(1 − 𝑃(𝑌󸀠)), 𝑥𝑑 = 1, and 𝑦𝑑 = −1 so

𝐹𝑎𝑛 (𝑥)

= {{{{{
𝑃(𝑌󸀠)
1 − 𝑃 (𝑌󸀠)𝑥 −

𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠) , if 𝑋 favors 𝑌

𝑥 − 1, if 𝑋 disfavors 𝑌.
(16)

(12) Laverage: its normalizing function is such that
using expression (2) with 𝑥𝑓 = 𝑃(𝑌󸀠)/(1 − 𝑃(𝑌󸀠)),𝑦𝑓 = −𝑃(𝑌󸀠)(𝑃(𝑋󸀠) − 1)/(1 − 𝑃(𝑌󸀠)), 𝑥𝑑 = 1/𝑃(𝑌󸀠),
and 𝑦𝑑 = −𝑃(𝑌󸀠)(𝑃(𝑋󸀠) − 1)/𝑃(𝑌󸀠) so

𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{{{

𝑃 (𝑌󸀠)
1 − 𝑃 (𝑌󸀠)𝑥 −

𝑃 (𝑌󸀠) (𝑃 (𝑋󸀠) − 1)
1 − 𝑃 (𝑌󸀠) , if 𝑋 favors 𝑌

1𝑃 (𝑌󸀠)𝑥 −
𝑃 (𝑌󸀠) (𝑃 (𝑋󸀠) − 1)

𝑃 (𝑌󸀠) , if 𝑋 disfavors 𝑌.
(17)

(13) Centered confidence: its normalizing function is
such that using expression (2) with 𝑥𝑓 = 1/(1 −𝑃(𝑌󸀠)), 𝑦𝑓 = 0, 𝑥𝑑 = 1/𝑃(𝑌󸀠), and 𝑦𝑑 = 0 so

𝐹𝑎𝑛 (𝑥) =
{{{{{{{

11 − 𝑃 (𝑌󸀠)𝑥, if 𝑋 favors 𝑌
1𝑃 (𝑌󸀠)𝑥, if 𝑋 disfavors 𝑌. (18)

(14) Featured confirmed confidence: its normalizing
function is such that using expression (2) with 𝑥𝑓 =1/2(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 = (1 − 2𝑃(𝑌󸀠))/2𝑃(𝑌󸀠), 𝑥𝑑 =1/2𝑃(𝑌󸀠), and 𝑦𝑑 = (1 − 2𝑃(𝑌󸀠))/2𝑃(𝑌󸀠) so

𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{{{

12 (1 − 𝑃 (𝑌󸀠))𝑥 +
1 − 2𝑃 (𝑌󸀠)
2 (1 − 𝑃 (𝑌󸀠)) , if 𝑋 favors 𝑌

12𝑃 (𝑌󸀠)𝑥 +
1 − 2𝑃 (𝑌󸀠)
2𝑃 (𝑌󸀠) , if 𝑋 disfavors 𝑌.

(19)

(15) Certainty factor: its normalizing function is such
that using expression (2) with 𝑥𝑓 = 1, 𝑦𝑓 = 0, 𝑥𝑑 =(1 − 𝑃(𝑋󸀠))/𝑃(𝑌󸀠), and 𝑦𝑑 = 0 so

𝐹𝑎𝑛 (𝑥) =
{{{{{{{

𝑥, if 𝑋 favors 𝑌
1 − 𝑃 (𝑋󸀠)
𝑃 (𝑌󸀠) 𝑥, if 𝑋 disfavors 𝑌. (20)

(16) Gras implication index: its normalizing func-
tion is such that using expression (2) with 𝑥𝑓 =√𝑃(𝑋󸀠)𝑃(𝑌󸀠)/√𝑛𝑃(𝑋󸀠)(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 = 0, 𝑥𝑑 =(√𝑃(𝑋󸀠)𝑃(𝑌󸀠)/√𝑛𝑃(𝑋󸀠)𝑃(𝑌󸀠))𝑥, and 𝑦𝑑 = 0 so

𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{{{{{

√𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
√𝑛𝑃 (𝑋󸀠) (1 − 𝑃 (𝑌󸀠))𝑥, if 𝑋 favors 𝑌
√𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
√𝑛𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)𝑥, if 𝑋 disfavors 𝑌.

(21)

(17) Piatetsky-Shapiro: its normalizing function is such
that using expression (2) with 𝑥𝑓 = 1/𝑛𝑃(𝑋󸀠)(1 −𝑃(𝑌󸀠)), 𝑦𝑓 = 0, 𝑥𝑑 = 1/𝑛𝑃(𝑋󸀠)𝑃(𝑌󸀠), and 𝑦𝑑 = 0
so

𝐹𝑎𝑛 (𝑥)

= {{{{{{{

1𝑛𝑃 (𝑋󸀠) (1 − 𝑃 (𝑌󸀠))𝑥, if 𝑋 favors 𝑌
1𝑛𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)𝑥, if 𝑋 disfavors 𝑌.

(22)

(18) Cosinus: its normalizing function is such thatusing
expression (2) with 𝑥𝑓 = √𝑃(𝑋󸀠)𝑃(𝑌󸀠)/𝑃(𝑋󸀠)(1 −
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𝑃(𝑌󸀠)), 𝑦𝑓 = −𝑃(𝑋󸀠)/(1 − 𝑃(𝑌󸀠)), 𝑥𝑑 =√𝑃(𝑋󸀠)𝑃(𝑌󸀠)/𝑃(𝑋󸀠)𝑃(𝑌󸀠), and 𝑦𝑑 = −1 so
𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{{{{{

√𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
𝑃 (𝑋󸀠) (1 − 𝑃 (𝑌󸀠))𝑥 −

𝑃 (𝑋󸀠)
1 − 𝑃 (𝑌󸀠) , if 𝑋 favors 𝑌

√𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠) 𝑥 − 1, if 𝑋 disfavors 𝑌.

(23)

(19) Loevinger: its normalizing function is such that
using expression (2) with 𝑥𝑓 = 1, 𝑦𝑓 = 0, 𝑥𝑑 =(1 − 𝑃(𝑌󸀠))/𝑃(𝑌󸀠), and 𝑦𝑑 = 0 so

𝐹𝑎𝑛 (𝑥) =
{{{{{{{

𝑥, if favors 𝑌
1 − 𝑃 (𝑌󸀠)
𝑃 (𝑌󸀠) 𝑥, if 𝑋 disfavors 𝑌. (24)

(20) Cohen ou Kappa: its normalizing function is such
that using expression (2) with 𝑥𝑓 = (𝑃(𝑋󸀠) + 𝑃(𝑌󸀠) −2𝑃(𝑋󸀠)𝑃(𝑌󸀠))/2𝑃(𝑋󸀠)(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 = 0, 𝑥𝑑 =(𝑃(𝑋󸀠)+𝑃(𝑌󸀠)−2𝑃(𝑋󸀠)𝑃(𝑌󸀠))/2𝑃(𝑋󸀠)𝑃(𝑌󸀠), and𝑦𝑑 =0 so

𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{{{

𝑃(𝑋󸀠) + 𝑃 (𝑌󸀠) − 2𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
2𝑃 (𝑋󸀠) (1 − 𝑃 (𝑌󸀠)) 𝑥, if 𝑋 favors 𝑌

𝑃 (𝑋󸀠) + 𝑃 (𝑌󸀠) − 2𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
2𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠) 𝑥, if 𝑋 disfavors 𝑌.

(25)

(21) Addiction: its normalizing function is such that
using expression (2) with 𝑥𝑓 = 1/(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 = 0,𝑥𝑑 = 1/𝑃(𝑌󸀠), and 𝑦𝑑 = −1 so

𝐹𝑎𝑛 (𝑥) =
{{{{{{{

11 − 𝑃 (𝑌󸀠)𝑥,1𝑃 (𝑌󸀠)𝑥 − 1.
(26)

(22) Novelty: its normalizing function is such that using
expression (2) with 𝑥𝑓 = 1/𝑃(𝑋󸀠)(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 = 0,𝑥𝑑 = 1/𝑃(𝑋󸀠)𝑃(𝑌󸀠), and 𝑦𝑑 = 0 so

𝐹𝑎𝑛 (𝑥) =
{{{{{{{

1𝑃 (𝑋󸀠) (1 − 𝑃 (𝑌󸀠))𝑥1𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)𝑥.
(27)

(23) Czekanowski-Dice ou F-measure: its normalizing
function is such that using expression (2) with𝑥𝑓 = (𝑃(𝑋󸀠) + 𝑃(𝑌󸀠))/2𝑃(𝑋󸀠)(1 − 𝑃(𝑌󸀠)), 𝑦𝑓 =

−2𝑃(𝑋󸀠)𝑃(𝑌󸀠)/2𝑃(𝑋󸀠)(1 − (𝑃(𝑌󸀠)), 𝑥𝑑 = (𝑃(𝑋󸀠) +𝑃(𝑌󸀠))/2𝑃(𝑋󸀠)𝑃(𝑌󸀠), and 𝑦𝑑 = −1 so
𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{{{

𝑃(𝑋󸀠) + 𝑃 (𝑌󸀠)
2𝑃 (𝑋󸀠) (1 − 𝑃 (𝑌󸀠))𝑥 −

2𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠)
2𝑃 (𝑋󸀠) (1 − (𝑃 (𝑌󸀠))𝑃 (𝑋󸀠) + 𝑃 (𝑌󸀠)

2𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠) 𝑥 − 1.
(28)

(24) Relative risk: its normalizing function is such that
using expression (2) with 𝑥𝑓 = (𝑃(𝑌󸀠) − 𝑃(𝑋󸀠))/(1 −𝑃(𝑌󸀠)), 𝑦𝑓 = −(𝑃(𝑌󸀠) − 𝑃(𝑋󸀠))/(1 − 𝑃(𝑌󸀠)), 𝑥𝑑 = 1,
and 𝑦𝑑 = −1 so

𝐹𝑎𝑛 (𝑥) = {{{{{
𝑃 (𝑌󸀠) − 𝑃 (𝑋󸀠)
1 − 𝑃 (𝑌󸀠) 𝑥 − 𝑃 (𝑌󸀠) − 𝑃 (𝑋󸀠)1 − 𝑃 (𝑌󸀠)𝑥 − 1,.

(29)

(25) Negative reliability: its normalizing function is
such that using expression (2) with 𝑥𝑓 = 1/𝑃(𝑋󸀠),𝑦𝑓 = −(1 − 𝑃(𝑋󸀠) − 𝑃(𝑌󸀠) + 𝑃(𝑌󸀠)𝑃(𝑋󸀠))/𝑃(𝑋󸀠)(1 −𝑃(𝑌󸀠)), 𝑥𝑑 = (1 − 𝑃(𝑌󸀠))/𝑃(𝑋󸀠)(𝑌󸀠), and 𝑦𝑑 = −(1 −𝑃(𝑋󸀠) − 𝑃(𝑌󸀠) + 𝑃(𝑌󸀠)𝑃(𝑋󸀠))/𝑃(𝑋󸀠)𝑃(𝑌󸀠) so

𝐹𝑎𝑛 (𝑥)

=
{{{{{{{{{{{

1𝑃 (𝑋󸀠)𝑥 −
1 − 𝑃 (𝑋󸀠) − 𝑃 (𝑌󸀠) + 𝑃 (𝑌󸀠) 𝑃 (𝑋󸀠)

𝑃 (𝑋󸀠) (1 − 𝑃 (𝑌󸀠))1 − 𝑃 (𝑌󸀠)
𝑃 (𝑋󸀠) (𝑌󸀠)𝑥 −

1 − 𝑃 (𝑋󸀠) − 𝑃 (𝑌󸀠) + 𝑃 (𝑌󸀠) 𝑃 (𝑋󸀠)
𝑃 (𝑋󸀠) 𝑃 (𝑌󸀠) .

(30)

Researches out on the expressions of measurement normal-
izing functions prove that certain measures have identical
normalizing functions, leading to what state the theorem
below.

�eorem 3. (i) All measures having the same baseline(𝑥𝑖𝑚𝑝, 𝑥𝑖𝑛𝑑, 𝑥𝑖𝑛𝑐) have the same normalizing function.
(ii) All measures affine normalizable are homographic

normalizable, but the converse is false.

Proof. (i) Suppose the four possible forms of 𝐹𝑛.
(a) 𝜇 is affine normalizable:

𝐹𝑎𝑛 (𝑥) = {{{
𝑥𝑓𝑥 + 𝑦𝑓, if 𝑋 favors 𝑌
𝑥𝑑𝑥 + 𝑦𝑑, if 𝑋 disfavors 𝑌 (31)

with

𝑥𝑓 = 1𝑥𝑖𝑚𝑝 − 𝑥𝑖𝑛𝑑 ,
𝑦𝑓 = − 1𝑥𝑖𝑚𝑝 − 𝑥𝑖𝑛𝑑 𝑥𝑖𝑛𝑑,
𝑥𝑑 = 1𝑥𝑖𝑛𝑑 − 𝑥𝑖𝑛𝑐

(32)
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and

𝑦𝑑 = − 1𝑥𝑖𝑛𝑑 − 𝑥𝑖𝑛𝑐 𝑥𝑖𝑛𝑑 (33)

so we have
𝐹𝑎𝑛 (𝑥)

= {{{{{{{

1𝑥𝑖𝑚𝑝 − 𝑥𝑖𝑛𝑑 𝑥 −
1𝑥𝑖𝑚𝑝 − 𝑥𝑖𝑛𝑑 𝑥𝑖𝑛𝑑, if 𝑋 favors 𝑌

1𝑥𝑖𝑛𝑑 − 𝑥𝑖𝑛𝑐 𝑥 −
1𝑥𝑖𝑛𝑑 − 𝑥𝑖𝑛𝑐 𝑥𝑖𝑛𝑑, if 𝑋 disfavors 𝑌.

(34)

(b) 𝜇 is to right semihomographic normalizable:
in the c ase where 𝑥𝑖𝑚𝑝 = +∞, that is to say,

lim𝑥󳨀→+∞(𝑥𝑓/(𝑥 + 𝑚)) = 0, the expression is
used:

𝐹𝑠ℎ𝑛𝑑 (𝑥) = {{{
𝑥𝑓𝑥 + 𝑚 + 𝑦𝑓, if 𝑋 favoris 𝑌
𝑥𝑑𝑥 + 𝑦𝑑, if 𝑋 disfavors 𝑌 (35)

with
𝑥𝑓 = − (𝑥 + 𝑚) ,
𝑦𝑓 = 1,
𝑥𝑑 = 1𝑥𝑖𝑛𝑑 − 𝑥𝑖𝑛𝑐

(36)

and

𝑦𝑑 = − 1𝑥𝑖𝑛𝑑 − 𝑥𝑖𝑛𝑐 𝑥𝑖𝑛𝑑 (37)

so
𝐹𝑠ℎ𝑛𝑑 (𝑥)

= {{{{{
−𝑥𝑖𝑛𝑑 + 𝑚𝑥 + 𝑚 + 1, if 𝑋 favors 𝑌

1𝑥𝑖𝑛𝑑 − 𝑥𝑖𝑛𝑐 𝑥 +
1𝑥𝑖n𝑑 − 𝑥𝑖𝑛𝑐 𝑥𝑖𝑛𝑐, si 𝑋 disfavors 𝑌.

(38)

(c) 𝜇 is to le� semihomographic normalizable: in
the case where 𝑥𝑖𝑛𝑐 = −∞; that is to say,
lim𝑥󳨀→−∞(𝑥𝑓/(𝑥𝑖𝑛𝑐 + 𝑚)) = 0. This time we use the
following expression:

𝐹𝑠ℎ𝑛𝑔 (𝑥) = {{{
𝑥𝑓𝑥 + 𝑦𝑓, if 𝑋 favors 𝑌𝑥𝑑𝑥 + 𝑚 + 𝑦𝑑, if 𝑋 disfavors 𝑌 (39)

such that

𝑥𝑓 = 1𝑥𝑖𝑚𝑝 − 𝑥𝑖𝑛𝑑 ,
𝑦𝑓 = − 1𝑥𝑖𝑚𝑝 − 𝑥𝑖𝑛𝑑 𝑥𝑖𝑛𝑑,
𝑥𝑑 = 𝑥𝑖𝑛𝑑 + 𝑚

(40)

and

𝑦𝑑 = −1 (41)

so
𝐹𝑠ℎ𝑛𝑑 (𝑥)

= {{{{{

1𝑥𝑖𝑚𝑝 − 𝑥𝑖𝑛𝑑 𝑥 −
1𝑥𝑖𝑚𝑝 − 𝑥𝑖𝑛𝑑 𝑥𝑖𝑛𝑑, if 𝑋 favors 𝑌

𝑥𝑖𝑛𝑑 + 𝑚𝑥 + 𝑚 − 1, if 𝑋 disfavors 𝑌.
(42)

(d) 𝜇 is homographic normalizable:
in the case where 𝑥𝑖𝑛𝑐 = −∞, 𝑥𝑖𝑚𝑝 = +∞ and 𝑥𝑖𝑛𝑑 ∈
R∗; that is to say,

lim
𝑥󳨀→−∞

𝑥𝑓𝑥𝑖𝑛𝑐 + 𝑚 = 0 (43)

and

lim
𝑥󳨀→−∞

𝑥𝑓𝑥𝑖𝑛𝑐 + 𝑚 = 0. (44)

Here we use the following expression:

𝐹ℎ𝑛 (𝑥) = {{{{{

𝑥𝑓𝑥 + 𝑚 + 𝑦𝑓, if 𝑋 favors 𝑌𝑥𝑑𝑥 + 𝑚 + 𝑦𝑑, si 𝑋 disfavors 𝑌 (45)

where
𝑥𝑓 = − (𝑥𝑖𝑛𝑑 + 𝑚) ,
𝑦𝑓 = 1,
𝑥𝑑 = (𝑥𝑖𝑛𝑑 + 𝑚)

(46)

and

𝑦𝑑 = −1, (47)

so

𝐹ℎ𝑛 (𝑥) = {{{{{
−𝑥𝑖𝑛𝑑 + 𝑚𝑥 + 𝑚 + 1, if 𝑋 favors 𝑌
𝑥𝑖𝑛𝑑 + 𝑚𝑥 + 𝑚 − 1, if 𝑋 disfavors 𝑌. (48)

(ii) (a) It is seen that if 𝑥 ∈ R and (𝑥 + 𝑚) ∈ R∗,
then the four terms of the function of normalizations are
well defined; therefore, there is no problem for calculating the
normalization coefficients.

(b) We see that if 𝑥 = ∞, then we can always get a
projective application R in R for the functions 𝐹𝑠ℎ𝑛, 𝐹𝑠ℎ𝑛𝑑,
and 𝐹𝑠ℎ𝑛𝑔 and therefore the four coefficients of normalization
are always calculable; by constraint, if 𝑥 = ∞, then you can
never get a projective application over the interval R inR for
the function 𝐹𝑎𝑛; therefore, we can not calculate these four
coefficients. The theorem is stated.

Table 1 recalls the respective definitions of the various
measures.
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4. Conclusion and Perspectives

This study showed that normalization of probabilistic quality
measures with a homographic homeomorphism is more
powerful than the normalization homeomorphism refines
initiated by André Totohasina. Indeed, we showed that any
measure affine-normalizable is homographic normalizable,
while the converse is false. Besides, this work has explained
the process of normalization by homographic function and
combination with an affine function by trying to sweep the
present main measures in the literature with the aim of a
presentation easier to understand. The database has several
branches; the purpose of this research is the normalization
of quality measures. We always say, in the context of the
database, the study on association rules knows an important
development, added to the measures called interest; yet
probabilistic quality measures have an important place in the
context of data mining. Thereafter, the probabilistic measure
of quality and its normalization must be complement. As
shown by research on normalization probabilistic quality
measures realizing the normalization operation requires
passing through a relatively complex theory. We can consider
several possible ways to carry out its standardization process.
In our opinion, the use of normalizing function seems the
simplest way.

In future work, we understand the positive impact of con-
sideration of these normalizing functions in the development
of the bases of the rules in search of binary data.
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A sequence {𝜑�푛} in a Hilbert spaceH with inner product < ⋅, ⋅ > is called a generalized Riesz system if there exist an ONB 𝑒 = {𝑒�푛}
inH and a densely defined closed operator 𝑇 inH with densely defined inverse such that {𝑒�푛} ⊂ 𝐷(𝑇) ∩ 𝐷((𝑇−1)∗) and 𝑇𝑒�푛 = 𝜑�푛 ,𝑛 = 0, 1, ⋅ ⋅ ⋅ , and (𝑒, 𝑇) is called a constructing pair for {𝜑�푛} and 𝑇 is called a constructing operator for {𝜑�푛}. The main purpose of
this paper is to investigate under what conditions the ordered set 𝐶�휑 of all constructing operators for a generalized Riesz system{𝜑�푛} hasmaximal elements, minimal elements, the largest element, and the smallest element in order to find constructing operators
fitting to each of the physical applications.

1. Introduction

Generalized Riesz systems can be used to construct some
physical operators (non-self-adjoint Hamiltonian, general-
ized lowering operator, generalized raising operator, number
operator, etc.) [1–3]. Then these operators provide a link to
quasi-Hermitian quantum mechanics, and its relatives. Many
researchers have investigated such operators both from the
mathematical point of view and for their physical applications
[4–9]. Let {𝜑�푛} be a generalizedRiesz systemwith a construct-
ing pair (𝑒, 𝑇). Then, putting 𝜓�푇�푛 = (𝑇−1)∗𝑒�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ ,{𝜑�푛} and {𝜓�푇�푛 } are biorthogonal sequences, that is, < 𝜑�푛,𝜓�푇�푚 >= 𝛿�푛�푚, 𝑛,𝑚 = 0, 1, ⋅ ⋅ ⋅ . For any {𝛼�푛} ⊂ C we can define
the operators: 𝐻𝛼�휑 fl 𝑇𝐻𝛼𝑒 𝑇−1, 𝐴𝛼�휑 fl 𝑇𝐴𝛼𝑒𝑇−1, and 𝐵𝛼�휑 fl𝑇𝐵𝛼𝑒𝑇−1, where𝐻𝛼𝑒 fl ∑∞�푛=0 𝛼�푛𝑒�푛⊗𝑒�푛,𝐴𝛼𝑒 fl ∑∞�푛=0 𝛼�푛+1𝑒�푛+1⊗𝑒�푛,
and 𝐵𝛼𝑒 fl ∑∞�푛=0 𝛼�푛+1𝑒�푛+1 ⊗ 𝑒�푛 are standard self-adjoint Ham-
iltonian, lowering operator, and raising operator for {𝑒�푛 }, respec-
tively, where for 𝑥, 𝑦 ∈ H, (𝑥⊗𝑦)𝜉 fl< 𝜉, 𝑦 > 𝑥, 𝜉 ∈ H. Since

𝐻𝛼�휑𝜑�푛 = 𝛼�푛𝜑�푛,
𝐴𝛼�휑𝜑�푛 = {{{

0, 𝑛 = 0
𝛼�푛𝜑�푛−1, 𝑛 = 1, 2, ⋅ ⋅ ⋅

𝐵𝛼�휑𝜑�푛 = 𝛼�푛+1𝜑�푛+1, 𝑛 = 0, 1, ⋅ ⋅ ⋅ ,
(1)

𝐻𝛼�휑 , 𝐴𝛼�휑, and 𝐵𝛼�휑 are called the non-self-adjoint Hamiltonian,
the generalized lowering operator, and the generalized raising
operator for {𝜑�푛}, respectively. The physical operators of the
extended quantum harmonic oscillator and the Swanson
model are of this form (see Examples 9–11 in Section 3).

From this fact, it seems to be important to consider
under what conditions biorthogonal sequences are general-
ized Riesz systems and in [1–3] we have investigated this
problem. In this paper, we shall focus on the following facts:
physical operators defined by a generalized Riesz system {𝜑�푛}
depend on constructing pairs; for example, their operators
may not be densely defined for some constructing pairs. On
the other hand, if there exists a dense subspace D in H for
a constructing pair (𝑒, 𝑇) which is a core for 𝑇 such that𝐻𝛼𝑒D ⊂ D, 𝐴𝛼𝑒D ⊂ D, and 𝐵𝛼𝑒D ⊂ D, then they have an
algebraic structure; in detail, the 𝑂-algebra on D is defined
by the restrictions of the operators𝐴𝛼�휑 and 𝐵𝛼�휑 toD [10].Thus
it seems to be important to find a constructing pair fitting
to each of the physical applications. From this reason, in this
paper we shall investigate the properties of constructing pairs
for a generalized Riesz system.

In Section 2, we shall investigate the basic properties of
constructing operators. Let {𝜑�푛} be a generalized Riesz system
with a constructing pair (𝑒, 𝑇).The constructing operators for{𝜑�푛} are unique for the fixed ONB 𝑒 in H if {𝜑�푛} is a Riesz
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basis; that is, 𝑇 and 𝑇−1 are bounded, but they are not unique
in general. So, we investigate the set 𝐶𝑒,�휑 of all constructing
operators for 𝑒. In Proposition 1, we shall show that it is
possible to fix anONB 𝑒 = {𝑒�푛} inHwithout loss of generality
for our study in this paper. Hence, we fix an ONB 𝑒 inH and
denote 𝐶𝑒,�휑 by 𝐶�휑 for simplicity. We consider the following
problem: Is any sequence {𝜓�푛} which is biorthogonal to {𝜑�푛} a
generalized Riesz system?

Here we put

𝐶�푁�휑 fl {𝑇 ∈ 𝐶�휑; (𝑇−1)∗ 𝑒�푛 = 𝜓�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅} . (2)

Then we shall show in Proposition 5 that if 𝐶�푁�휑 ̸= 0, then {𝜓�푛}
is a generalized Riesz system and (𝑒, (𝑇−1)∗) is a constructing
pair for {𝜓�푛} for every 𝑇 ∈ 𝐶�푁�휑 , and the mapping

𝑇 ∈ 𝐶�푁�휑 󳨃󳨀→ (𝑇−1)∗ ∈ 𝐶�푁�휓 (3)

is a bijection, where𝐶�휓 is the set of all constructing operators
for {𝜓�푛} and

𝐶�푁�휓 fl {𝐾 ∈ 𝐶�휓; (𝐾−1)∗ 𝑒�푛 = 𝜑�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅} . (4)

Furthermore, we shall show in Proposition 6 that if there
exists a bounded operator 𝑇0 in 𝐶�휑, then 𝐶�휑 = {𝑇0} and𝐶�푁�휓 = {(𝑇−10 )∗}.

In Section 3, we shall consider the ordered set 𝐶�휑 with
order⊂ and investigate under what conditions the ordered set𝐶�휑 has a maximal element, a minimal element, the smallest
element, and the largest element. First we have shown that
if 𝐷�휑 fl linear span {𝜑�푛} is dense in H, then 𝐶�휑 = 𝐶�푁�휑 and
there exists the smallest element of 𝐶�휑, and furthermore if𝐷�휑 and 𝐷(𝜑) fl {𝑥 ∈ H; ∑∞�푘=0 | < 𝑥, 𝜑�푘 > |2 < ∞} is dense
in H, there exist the smallest element of 𝐶�휑 and the largest
element of 𝐶�푁�휓 , and in particular, if {𝜑�푛} and {𝜓�푛} are regular
biorthogonal sequences in H, that is, both 𝐷�휑 and 𝐷�휓 are
dense inH, then𝐶�휑 = 𝐶�푁�휑 ,𝐶�휓 = 𝐶�푁�휓 , and𝐶�휑 has the smallest
element and the largest element. Next we shall consider the
case when 𝐷�휑 is not necessarily dense in H. In Theorem 14,
we shall show that for a subsetF of 𝐶�휑 if there exists a closed
operator 𝐴 inH such that 𝑇 ⊂ 𝐴 for all 𝑇 ∈ F, then F has
a maximal element, and furthermore, if there exists a closed
operator 𝐵 inH such that (𝑇−1)∗ ⊂ 𝐵 for all 𝑇 ∈ F, thenF

have a maximal element and a minimal element.
For the existence of the smallest element of 𝐶�휑 and of the

largest element of 𝐶�휑, we shall show in Theorem 16 that if
there exist closed operators𝐴 and𝐵 inH such that𝑇 ⊂ 𝐴 and(𝑇−1)∗ ⊂ 𝐵 for all 𝑇 ∈ 𝐶�휑, then 𝐶�휑 has the smallest element
and the largest element. Furthermore, for a biorthogonal
pair ({𝜑�푛}, {𝜓�푛}) of generalized Riesz systems satisfying 𝐶�휑 =𝐶�푁�휑 and 𝐶�휓 = 𝐶�푁�휓 , we shall show in Theorem 18 that 𝐶�휑
and 𝐶�휓 have the smallest element and the largest element,
respectively, if and only if there exist closed operators 𝐴 and𝐵 in H such that 𝑇 ⊂ 𝐴 and 𝐾 ⊂ 𝐵 for all 𝑇 ∈ 𝐶�휑
and 𝐾 ∈ 𝐶�휓. These results seem to be useful to find fitting
constructing operators for each physical model because every

closed operator 𝑇 inH satisfying 𝑇�푆 ⊂ 𝑇 ⊂ 𝑇�퐿 belongs to 𝐶�휑,
where 𝑇�푆 is the smallest element of 𝐶�휑 and 𝑇�퐿 is the largest
element of 𝐶�휑.
2. The Basic Properties of
Constructing Operators

In this section, we shall investigate the basic properties of
constructing operators. Let {𝜑�푛} be a generalized Riesz system
with a constructing pair (𝑒, 𝑇). It is easily shown that if {𝜑�푛}
is a Riesz basis, then the constructing operator 𝑇 for {𝜑�푛}
is unique for 𝑒 (see Proposition 1 in detail). But, in general,
the constructing operators for {𝜑�푛} are not unique, and so we
put

𝐶𝑒,�휑 fl {𝑇; (𝑒, 𝑇) is a constructing pair for {𝜑�푛}} . (5)

First, we investigate the relationship between 𝐶𝑒,�휑 and 𝐶𝑓,�휑
for the other ONB 𝑓 = {𝑓�푛} inH.

Proposition 1. Let 𝑇 ∈ 𝐶𝑒,�휑 and 𝑓 = {𝑓�푛} be any ONB inH.
�en the following statements hold.

(1) (𝑓, 𝑇𝑈∗) is a constructing pair for {𝜑�푛}, where 𝑈 is a
unitary operator onH defined by 𝑈𝑒�푛 = 𝑓�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ , and

𝐶𝑓,�휑 = {𝑇𝑈∗; 𝑇 ∈ 𝐶𝑒,�휑} . (6)

(2) For the non-self-adjoint Hamiltonian, the generalized
lowering operator, and the generalized raising operator for {𝜑�푛},
we have

𝑇𝐻𝛼𝑒 𝑇−1 = 𝑇𝑈∗𝐻𝛼𝑓𝑈𝑇−1,
𝑇𝐴𝛼𝑒𝑇−1 = 𝑇𝑈∗𝐴𝛼𝑓𝑈𝑇−1,
𝑇𝐵𝛼𝑒𝑇−1 = 𝑇𝑈∗𝐵𝛼𝑓𝑈𝑇−1.

(7)

Proof. (1) This is almost trivial.
(2) This follows from

𝐷(𝐻𝛼𝑓) = 𝑈𝐷 (𝐻𝛼𝑒 ) ,
𝐻𝛼𝑒 = 𝑈∗𝐻𝛼𝑓𝑈,

𝐷 (𝐴𝛼𝑓) = 𝑈𝐷 (𝐴𝛼𝑒) ,
𝐴𝛼𝑒 = 𝑈∗𝐴𝛼𝑓𝑈,

𝐷 (𝐵𝛼𝑓) = 𝑈𝐷 (𝐵𝛼𝑒 ) ,
𝐵𝛼𝑒 = 𝑈∗𝐵𝛼𝑓𝑈.

(8)

By Proposition 1, we have the following.

Corollary 2. Let 𝑇 ∈ 𝐶𝑒,�휑 and 𝑇∗ = 𝑈|𝑇∗| be the polar
decomposition of 𝑇∗. �en 𝑓 fl 𝑈∗𝑒 is an ONB in H and|𝑇∗| = 𝑇𝑈 ∈ 𝐶𝑓,�휑. Furthermore, we have

𝑇𝐻𝛼𝑒 𝑇−1 = 󵄨󵄨󵄨󵄨𝑇∗󵄨󵄨󵄨󵄨𝐻𝛼𝑓 󵄨󵄨󵄨󵄨𝑇∗󵄨󵄨󵄨󵄨−1 ,
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𝑇𝐴𝛼𝑒𝑇−1 = 󵄨󵄨󵄨󵄨𝑇∗󵄨󵄨󵄨󵄨 𝐴𝛼𝑓 󵄨󵄨󵄨󵄨𝑇∗󵄨󵄨󵄨󵄨−1 ,
𝑇𝐵𝛼𝑒𝑇−1 = 󵄨󵄨󵄨󵄨𝑇∗󵄨󵄨󵄨󵄨 𝐵𝛼𝑓 󵄨󵄨󵄨󵄨𝑇∗󵄨󵄨󵄨󵄨−1 .

(9)

Thus we may fix an ONB 𝑒 = {𝑒�푛} in H without loss
of generality for investigating the properties of 𝐶𝑒,�휑, and so
throughout this paper, we fix an ONB 𝑒 inH and denote 𝐶𝑒,�휑
by𝐶�휑 for simplicity. Next we consider the following problem:
Suppose that ({𝜑�푛}, {𝜓�푛}) is a biorthogonal pair such that {𝜑�푛}
is a generalized Riesz system. �en, is {𝜓�푛} also a generalized
Riesz system?

Let 𝑇 ∈ 𝐶�휑 and 𝜓�푇�푛 fl (𝑇−1)∗𝑒�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ . Then
({𝜑�푛}, {𝜓�푇�푛 }) is a biorthogonal pair and {𝜓�푇�푛 } is a generalized
Riesz system with a constructing pair (𝑒, (𝑇−1)∗). If 𝜓�푇�푛 =𝜓�푛, 𝑛 = 0, 1 ⋅ ⋅ ⋅ , then {𝜓�푛} is a generalized Riesz system
with a constructing pair (𝑒, (𝑇−1)∗). But, the equality 𝜓�푇�푛 fl(𝑇−1)∗𝑒�푛 = 𝜓�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ does not necessarily hold. To
consider when this equality holds, we define the operators𝑇0�휑,𝑒, 𝑇�휑,𝑒, and 𝑇𝑒,�휑 for any sequence {𝜑�푛} inH as follows:

𝑇0�휑,𝑒 fl the linear operator defined by 𝑇0�휑,𝑒𝑒�푛 = 𝜑�푛,
𝑛 = 0, 1, ⋅ ⋅ ⋅ ,

𝑇�휑,𝑒 fl ∞∑
�푛=0

𝜑�푛 ⊗ 𝑒�푛,

𝑇𝑒,�휑 fl ∞∑
�푛=0

𝑒�푛 ⊗ 𝜑�푛.

(10)

These operators have played an important role for our
studies [3] and also in this paper. By Lemma 2.1, 2.2 in [3]
we have the following.

Lemma3. (1)𝑇0�휑,𝑒 and𝑇�휑,𝑒 are densely defined linear operators
inH such that

𝑇�휑,𝑒 ⊃ 𝑇0�휑,𝑒,
𝑇0�휑,𝑒𝑒�푛 = 𝑇�휑,𝑒𝑒�푛 = 𝜑�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ . (11)

(2) 𝐷(𝑇𝑒,�휑) = 𝐷(𝜑) fl {𝑥 ∈ H; ∑∞�푛=0 | < 𝑥, 𝜑�푛 > |2 < ∞}
and (𝑇0�휑,𝑒)∗ = 𝑇∗�휑,𝑒 = 𝑇𝑒,�휑.

(3) 𝑇0�휑,𝑒 is closable if and only if 𝑇�휑,𝑒 is closable if and only
if𝐷(𝜑) is dense inH. If this holds, then

𝑇0�휑,𝑒 = 𝑇�휑,𝑒 = (𝑇𝑒,�휑)∗ . (12)

From now on, let ({𝜑�푛}, {𝜓�푛}) be a biorthogonal pair.
Lemma 4. Suppose that {𝜑�푛} is a generalized Riesz system and𝑇 ∈ 𝐶�휑. �en the following statements are equivalent.

(i) 𝜓�푇�푛 fl (𝑇−1)∗𝑒�푛 = 𝜓�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ .
(ii) 𝐷�휓 ⊂ 𝐷(𝑇∗).

If this holds true, then 𝑇 is called natural.

Proof. (i)󳨐⇒(ii) This is trivial.
(ii)󳨐⇒(i) By definition of 𝑇0�휑,𝑒, we have 𝑇0�휑,𝑒 ⊂ 𝑇.

Furthermore, by Lemma 3, (2), we have

𝑇∗ ⊂ (𝑇0�휑,𝑒)∗ = 𝑇𝑒,�휑. (13)

Take an arbitrary 𝑛 ∈ 𝑁 ∪ {0}. Then, since

⟨𝑇0�휑,𝑒𝑒�푘, 𝜓�푛⟩ = ⟨𝜑�푘, 𝜓�푛⟩ = 𝛿�푘�푛 = ⟨𝑒�푘, 𝑒�푛⟩ (14)

for 𝑘 = 0, 1, ⋅ ⋅ ⋅ , we have 𝜓�푛 ∈ 𝐷((𝑇0�휑,𝑒)∗) = 𝐷(𝑇𝑒,�휑) and𝑇𝑒,�휑𝜓�푛 = 𝑒�푛. Hence it follows from (13) that

𝑇∗𝜓�푛 = 𝑇𝑒,�휑𝜓�푛 = 𝑒�푛. (15)

Thus, we have

𝜓�푛 = (𝑇∗)−1 𝑒�푛 = 𝜓�푇�푛 . (16)

This completes the proof.

We denote the set of all natural constructing operators for{𝜑�푛} by 𝐶�푁�휑 ; that is,
𝐶�푁�휑 = {𝑇 ∈ 𝐶�휑; 𝜓�푇�푛 fl (𝑇−1)∗ 𝑒�푛 = 𝜓�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅} . (17)

Then we have the following.

Proposition5. Suppose that {𝜑�푛} is a generalizedRiesz system.
�en the following statements hold.

(1) If 𝐶�푁�휑 ̸= 0, then {𝜓�푛} is a generalized Riesz system and
(𝑒, (𝑇−1)∗) is a constructing pair for {𝜓�푛} for every 𝑇 ∈ 𝐶�푁�휑 .

(2) Suppose that {𝜓�푛} is also a generalized Riesz system and
put

𝐶�휓 = {𝐾; (𝑒, 𝐾) is a constructing pair for {𝜓�푛}} ,
𝐶�푁�휓

= {𝐾 ∈ 𝐶�휓; 𝜑�퐾�푛 fl (𝐾−1)∗ 𝑒�푛 = 𝜑�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅} .
(18)

�en the mapping

𝑇 ∈ 𝐶�푁�휑 󳨃󳨀→ (𝑇−1)∗ ∈ 𝐶�푁�휓 (19)

is a bijection.
(3) Suppose that 𝑇0 ∈ 𝐶�푁�휑 and 𝑇 ∈ 𝐶�휑 satisfying 𝑇 ⊂ 𝑇0 or𝑇0 ⊂ 𝑇. �en 𝑇 ∈ 𝐶�푁�휑 . Similarly, suppose that 𝐾0 ∈ 𝐶�푁�휓 and

𝐾 ∈ 𝐶�휓 satisfying 𝐾 ⊂ 𝐾0 or𝐾0 ⊂ 𝐾. �en 𝐾 ∈ 𝐶�푁�휓 .
Proof. The statements (1) and (2) are easily shown.

(3) Suppose that 𝑇 ⊂ 𝑇0. Then, since (𝑇−10 )∗ ⊂ (𝑇−1)∗, it
follows that 𝜓�푛 = (𝑇−10 )∗𝑒�푛 = (𝑇−1)∗𝑒�푛 = 𝜓�푇�푛 , 𝑛 = 0, 1, ⋅ ⋅ ⋅ ,
which implies that 𝑇 ∈ 𝐶�푁�휑 . Similarly, we can show 𝑇 ∈ 𝐶�푁�휑 in
case that 𝑇0 ⊂ 𝑇 and can show 𝐾 ∈ 𝐶�푁�휓 in case that 𝐾 ⊂ 𝐾0
or 𝐾0 ⊂ 𝐾. This completes the proof.
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As for the uniqueness of constructing operators for a
generalized Riesz system we have the following.

Proposition 6. Let {𝜑�푛} be a generalized Riesz system. �en
the following statements hold.

(1) Suppose that {𝜑�푛} is a Riesz basis, then {𝜓�푛} is also a
Riesz basis, 𝐶�휑 = {𝑇�휑,𝑒} = {𝑇−1𝑒,�휓} and 𝐶�휓 = {𝑇�휓,𝑒} = {𝑇−1𝑒,�휑}.

(2) Suppose that 𝐷�휑 and 𝐷(𝜑) are dense in H. �en we
have the following.

(i) If there exists an element 𝑇0 of 𝐶�휑 such that 𝑇0 is
bounded, then 𝐶�휑 = {𝑇0} = {𝑇�휑,𝑒} and 𝐶�푁�휓 = {(𝑇−10 )∗} =
{𝑇−1𝑒,�휑}.

(ii) If there exists an element 𝑇0 of 𝐶�휑 such that 𝑇−10 is
bounded, then 𝐶�휓 = {(𝑇−10 )∗} = {𝑇�휓,𝑒} and 𝐶�푁�휑 = {𝑇0} =
{𝑇−1𝑒,�휓}.
Proof. (1) Since {𝜑�푛} is a Riesz basis, there exists an element𝑇0
of 𝐶�휑 such that 𝑇0 and 𝑇−10 are bounded, which implies that
𝑇 = 𝑇0 = 𝑇�휑,𝑒 = 𝑇−1𝑒,�휓 and (𝑇−1)∗ = (𝑇−10 )∗ = 𝑇�휓,𝑒 = 𝑇−1𝑒,�휑 for
all 𝑇 ∈ 𝐶�휑.

(2) (i) Since 𝑇�휑,𝑒 ⊂ 𝑇0 and 𝑇0 is bounded, we have 𝑇�휑,𝑒 =𝑇0. Take an arbitrary 𝑇 ∈ 𝐶�휑. Then, since 𝑇�휑,𝑒 ⊂ 𝑇 and 𝑇�휑,𝑒
is bounded, we have 𝑇�휑,𝑒 = 𝑇. Thus, 𝐶�휑 = {𝑇�휑,𝑒}. We show𝐶�푁�휓 = {𝑇−1𝑒,�휑}. Take an arbitrary 𝐾 ∈ 𝐶�푁�휓 . Since (𝐾−1)∗𝑒�푛 =𝜑�푛 = 𝑇�휑,𝑒𝑒�푛 and𝑇�휑,𝑒 is bounded, it follows that (𝐾−1)∗ = 𝑇�휑,𝑒,
which implies 𝐾 = 𝑇−1𝑒,�휑. Thus, 𝐶�푁�휓 = {𝑇−1𝑒,�휑}.

(ii) This is similarly shown.

3. Ordered Structures of 𝐶�휑
In this section, we shall consider the ordered set 𝐶�휑 of all
constructing operators for a generalized Riesz system {𝜑�푛}
with order ⊂ and investigate when 𝐶�휑 has maximal elements,
minimal elements, the largest element, and the smallest
element. The following result gives a motivation to study the
ordered structures of 𝐶�휑
Lemma 7. Suppose that 𝑇, 𝑆 ∈ 𝐶�휑 and 𝑇 ⊂ 𝑆. �en, for any
linear operator 𝐴 such that 𝑇 ⊂ 𝐴 ⊂ 𝑆, the closure 𝐴 of 𝐴
belongs to 𝐶�휑.
Proof. This is trivial.

For biorthogonal sequences satisfying density-condi-
tions, we have the following.

Proposition 8. �e following statements hold.
(1) Suppose that 𝐷�휑 is dense in H. �en, {𝜑�푛} is a

generalized Riesz system and 𝐶�휑 = 𝐶�푁�휑 , and 𝑇�휑,𝑒 is the smallest
element of 𝐶�휑. Furthermore, suppose that 𝐷(𝜑) is dense inH.
�en, 𝑇−1𝑒,�휑 is the largest element of 𝐶�푁�휓 .

(2) Suppose that 𝐷�휓 is dense in H. �en, {𝜓�푛} is a
generalized Riesz system and𝐶�휓 = 𝐶�푁�휓 , and𝑇�휓,𝑒 is the smallest
element in 𝐶�휓. Furthermore, suppose that𝐷(𝜓) is dense inH.
�en, 𝑇−1𝑒,�휓 is the largest element in 𝐶�휑.

(3) Suppose that ({𝜑�푛}, {𝜓�푛}) is regular; that is, both𝐷�휑 and𝐷�휓 are dense inH. �en, {𝜑�푛} and {𝜓�푛} are generalized Riesz
systems and 𝐶�휑 = 𝐶�푁�휑 and 𝐶�휓 = 𝐶�푁�휓 , and 𝑇�휑,𝑒 is the smallest
element in 𝐶�휑, 𝑇�휓,𝑒 is the smallest element in 𝐶�휓, 𝑇−1𝑒,�휑 is the
largest element in 𝐶�휓, and 𝑇−1𝑒,�휓 is the largest element in 𝐶�휑.
Proof. (1) We can show using Lemma 3 that {𝜑�푛} is a
generalized Riesz system with a constructing pair (𝑒, 𝑇�휑,𝑒)
and the constructing operator 𝑇�휑,𝑒 for {𝜑�푛} is the smallest
element in 𝐶�휑. For more detail, refer to [3]. Furthermore,
a sequence {𝜓�푛} which is biorthogonal to {𝜑�푛} is unique. In
fact, let {𝜓�푛} and {𝜓�耠�푛} be any sequences in H which are
biorthogonal to {𝜑�푛}. Then, since < 𝜓�푛, 𝜑�푚 >= 𝛿�푛�푚 =<𝜓�耠�푛, 𝜑�푚 > for 𝑛,𝑚 = 0, 1, ⋅ ⋅ ⋅ and 𝐷�휑 is dense in H, we have𝜓�푛 = 𝜓�耠�푛 for every 𝑛 = 0, 1, ⋅ ⋅ ⋅ . We show 𝐶�휑 = 𝐶�푁�휑 . Take
an arbitrary 𝑇 ∈ 𝐶�휑. Then, {𝜓�푇�푛 } is biorthogonal to {𝜑�푛}. By
the uniqueness of biorthogonal sequences to {𝜑�푛}, we have𝜓�푇�푛 = 𝜓�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ , which implies that 𝑇 ∈ 𝐶�푁�휑 and
𝐶�휑 = 𝐶�푁�휑 . Suppose that 𝐷�휑 and 𝐷(𝜑) are dense in H. We
show that 𝑇−1𝑒,�휑 is the largest element in 𝐶�푁�휓 . Since 𝐷(𝑇−1𝑒,�휑) =
𝑇𝑒,�휑𝐷(𝑇𝑒,�휑) ⊃ 𝑇𝑒,�휑𝐷�휓 = 𝐷𝑒, 𝑇−1𝑒,�휑 is a densely defined closed
operator in H, and since 𝐷(𝑇𝑒,�휑) = 𝐷(𝜑), it has a densely
defined inverse 𝑇𝑒,�휑. Furthermore, since 𝑇𝑒,�휑𝜓�푛 = 𝑒�푛, 𝑛 =0, 1, ⋅ ⋅ ⋅ , 𝜓�푛 = 𝑇−1𝑒,�휑𝑒�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ . Thus we have 𝑇−1𝑒,�휑 ∈ 𝐶�휓.
Since ((𝑇−1𝑒,�휑)−1)∗ = 𝑇∗𝑒,�휑 = 𝑇�휑,𝑒 ∈ 𝐶�휑, it follows that 𝑇−1𝑒,�휑 ∈ 𝐶�푁�휓 .
Next we show that 𝑇−1𝑒,�휑 is the largest element in 𝐶�푁�휓 . Take an
arbitrary 𝐾 ∈ 𝐶�푁�휓 . Then (𝐾−1)∗ ∈ 𝐶�휑, and so (𝐾−1)∗𝑒�푛 = 𝜑�푛,𝑛 = 0, 1, ⋅ ⋅ ⋅ . Hencewehave𝑇�휑,𝑒 ⊂ (𝐾−1)∗.Thus𝐾 ⊂ 𝑇−1𝑒,�휑, and
so 𝑇−1𝑒,�휑 is the largest element in 𝐶�푁�휓 .

(2) This is proved at the same way as (1).
(3) Since𝐷(𝜑) ⊃ 𝐷�휓 and𝐷(𝜓) ⊃ 𝐷�휑, it follows that𝐷(𝜑)

and 𝐷(𝜓) are dense in H, which implies by (1) and (2) that
the statement (3) holds.

Here we give some physical examples. Let {𝑓�푛}, 𝑛 =0, 1, ⋅ ⋅ ⋅ , be an ONB in 𝐿2(R) consisting of the Hermite
functions which is contained in the Schwartz space S(R) of
all infinitely differential rapidly decreasing functions on R.
We define the moment operator 𝑝 and the position operator𝑞 by
𝐷 (𝑝)

fl the set of all differentiable functions 𝑓 on R such that

𝑑𝑓𝑑𝑥 ∈ 𝐿2 (R) ,
(𝑝𝑓) (𝑥) fl −𝑖 𝑑𝑓𝑑𝑥, 𝑓 ∈ 𝐷 (𝑝)

(20)

and

𝐷(𝑞) fl {𝑓 ∈ 𝐿2 (R) ; ∫∞
−∞

󵄨󵄨󵄨󵄨𝑥𝑓 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑥 < ∞} ,
(𝑞𝑓) (𝑥) fl 𝑥𝑓 (𝑥) , 𝑓 ∈ 𝐷 (𝑞) .

(21)
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Then 𝑝 and 𝑞 are self-adjoint operators in 𝐿2(R) and S(R)
is a core for 𝑝 and 𝑞, and furthermore 𝑝S(R) ⊂ S(R) and𝑞S(R) ⊂ S(R), and [𝑝, 𝑞] fl 𝑝𝑞 − 𝑞𝑝 = −𝑖1 on S(R). Next
we define the standard bosonic operators 𝑎, 𝑎† by

𝑎 = 1√2 (𝑞 + 𝑖𝑝) ,
𝑎† = 1√2 (𝑞 − 𝑖𝑝) .

(22)

Then,

𝑎𝑓�푛 = {{{
0, 𝑛 = 0
√𝑛𝑓�푛−1 𝑛 = 1, 2, ⋅ ⋅ ⋅ ,

𝑎†𝑓�푛 = √𝑛 + 1𝑓�푛+1, 𝑛 = 0, 1, ⋅ ⋅ ⋅
(23)

and [𝑎, 𝑎†] = 1 on S(R).
Example 9 (the extended quantum harmonic oscillator). The
Hamiltonian of this model is the non-self-adjoint operator,
introduced in [11, 12],

𝐻�훽 fl 𝛽2 (𝑝2 + 𝑞2) + 𝑖√2𝑝 = 𝛽𝑎†𝑎 + (𝑎 − 𝑎†) + 𝛽2 1,
𝛽 > 0.

(24)

We put

𝜑(�훽)0 fl 𝑒1/�훽2𝑓0 (𝑥 − √2𝛽 ) = 𝑒1/�훽2𝜋1/4 𝑒−(1/2)(�푥−√2/�훽)
2 . (25)

Then, 𝜑(�훽)0 ∈ S(R) and 𝜑(�훽)0 = 𝑒1/�훽2𝑈(1/𝛽)𝑓0 = 𝑒(�푎+�푎†)/�훽𝑓0,
where 𝑈(1/𝛽) is a unitary operator defined by 𝑈(1/𝛽) fl
𝑒(1/�훽)(�푎†−�푎) = 𝑒−(√2/�훽)�푖�푝. Hence we can define a sequence 𝜑�훽 fl{𝜑(�훽)�푛 } in S(R) by

𝜑(�훽)�푛 fl
1√𝑛! (𝑎† +

1𝛽)
�푛 𝜑(�훽)0 , 𝑛 = 1, 2, ⋅ ⋅ ⋅ . (26)

Similarly, we define a sequence 𝜓�훽 fl {𝜓(�훽)�푛 } in S(R) as
follows:

𝜓(�훽)0 fl 𝑒1/�훽2𝑓0 (𝑥 + √2𝛽 ) ,
𝜓(�훽)�푛 fl

1√𝑛! (𝑎† −
1𝛽)
�푛 𝜓(�훽)0 , 𝑛 = 1, 2, ⋅ ⋅ ⋅ .

(27)

Then {𝜑(�훽)�푛 } and {𝜓(�훽)�푛 } are regular biorthogonal sequences in𝐿2(R) which are generalized Riesz systems with constructing
pairs ({𝑓�푛}, 𝑒(�푎†+�푎)/�훽) and ({𝑓�푛}, 𝑒−(�푎†+�푎)/�훽), respectively, and

𝐴𝜑�훽 fl 𝑒(�푎†+�푎)/�훽𝑎𝑒−(�푎†+�푎)/�훽 = 𝑎 − 1𝛽 ,
𝐵𝜑�훽 fl 𝑒(�푎†+�푎)/�훽𝑎†𝑒−(�푎†+�푎)/�훽 = 𝑎† + 1𝛽 .

(28)

By Proposition 8, 𝑇𝜑�훽 ,𝑓 is the smallest constructing operator
and 𝑇−1𝑓,𝜓�훽 is the largest constructing operator for {𝜑(�훽)�푛 } and

𝑇𝜑�훽,𝑓 ⊂ 𝑒(�푎†+�푎)/�훽 ⊂ 𝑇−1𝑓,𝜓�훽 . Similarly, 𝑇𝜓�훽,𝑓 is the smallest
constructing operator and 𝑇−1𝑓,𝜑�훽 is the largest constructing

operator for {𝜓(�훽)�푛 } and 𝑇𝜓�훽 ,𝑓 ⊂ 𝑒−(�푎†+�푎)/�훽 ⊂ 𝑇−1𝑓,𝜑�훽 .
The following example is a modification of the non-

self-adjoint Hamiltonian 𝐻�훽 in Example 9 exchanging the
momentum operator 𝑝 with the position operator 𝑞.
Example 10. We introduce a non-self-adjoint Hamiltonian

𝐻�耠�훽 fl 𝛽2 (𝑝2 + 𝑞2) + √2𝑖𝑞 = 𝛽𝑎†𝑎 + 𝑖 (𝑎 + 𝑎†) + 𝛽2 ,
𝛽 > 0.

(29)

We define sequences 𝜑�耠�훽 fl {𝜑�耠�푛} and 𝜓�耠�훽 fl {𝜓�耠�푛} in S(R) as
follows:

𝜑�耠0 fl 𝑒−(�푖/�훽)�푎†𝑓0,
𝜑�耠�푛 fl 1√𝑛! (𝑎† +

𝑖𝛽)
�푛 𝜑�耠0, 𝑛 = 1, 2, ⋅ ⋅ ⋅ (30)

and

𝜓�耠0 fl 𝑒1/�훽2𝑒(�푖/�훽)�푎†𝑓0,
𝜓�耠�푛 fl 1√𝑛! (𝑎† −

𝑖𝛽)
�푛 𝜓�耠0, 𝑛 = 1, 2, ⋅ ⋅ ⋅ . (31)

Then 𝜑�耠�훽 and 𝜓�耠�훽 are regular biorthogonal sequences in
𝐿2(R) which are generalized Riesz systems with constructing
pairs ({𝑓�푛}, 𝑇) and ({𝑓�푛}, 𝑇−1), respectively, where 𝑇 fl
𝑒−(�푖/�훽)�푎†𝑒(�푖/�훽)�푎 and 𝑇−1 = 𝑒−(�푖/�훽)�푎𝑒(�푖/�훽)�푎† , and 𝑇𝑎𝑇−1 = 𝑎 + 𝑖/𝛽,𝑇𝑎†𝑇−1 = 𝑎† + 𝑖/𝛽, 𝑇−1𝑎𝑇 = 𝑎 − 𝑖/𝛽, and 𝑇−1𝑎†𝑇 = 𝑎† − 𝑖/𝛽.
Example 11 (the Swansonmodel). TheSwansonHamiltonian,
introduced in [11, 13], is a non-self-adjoint Hamiltonian

𝐻�휃 fl 12 (𝑝2 + 𝑞2) − 𝑖2 tan 2𝜃 (𝑝2 − 𝑞2)
= 𝑎†𝑎 + 𝑖2 tan 2𝜃 (𝑎2 + (𝑎†)2) + 121,

𝜃 ̸= 0 ∈ (−𝜋4 , 𝜋4 ) .
(32)

We define sequences 𝜑�휃 fl {𝜑(�휃)�푛 } and 𝜓�휃 fl {𝜓(�휃)�푛 } in 𝐿2(R) as
follows:

𝜑(�휃)0 fl 𝑐0 ∞∑
�푘=0

𝑒−�푖(tan �휃/2)(�푎†)2𝑓0

= 𝑐0 ∞∑
�푘=0

(−𝑖 tan 𝜃)�푘√(2𝑘 − 1)!!(2𝑘)!! 𝑓2�푘,
𝜑(�휃)�푛 fl

1√𝑛! (cos 𝜃𝑎† + 𝑖 sin 𝜃𝑎)�푛 𝜑(�휃)0

(33)
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and

𝜓(�휃)0 fl 𝑑0 ∞∑
�푘=0

𝑒�푖(tan �휃/2)(�푎†)2𝑓0

= 𝑑0 ∞∑
�푘=0

(𝑖 tan 𝜃)�푘√(2𝑘 − 1)!!(2𝑘)!! 𝑓2�푘,
𝜓(�휃)�푛 fl

1√𝑛! (cos 𝜃𝑎† − 𝑖 sin 𝜃𝑎)�푛 𝜓(�휃)0 ,

(34)

where (2𝑘)!! = 2𝑘(2𝑘 − 2) ⋅ ⋅ ⋅ 4 ⋅ 2, (2𝑘 − 1)!! = (2𝑘 −1)(2𝑘 − 3) ⋅ ⋅ ⋅ 3 ⋅ 1, and 𝑐0 and 𝑑0 are constants satisfying< 𝜑(�휃)0 , 𝜓(�휃)0 >= 1. Then 𝜑�휃 and 𝜓�휃 are regular biorthogonal
sequences in 𝐿2(R) contained inS(R) which are generalized
Riesz systemswith constructing operators𝑇�휃 fl 𝑒�푖(�휃/2)(�푎2−(�푎†)2)
and 𝑇−1�휃 , respectively. For the generalized lowering operator𝐴�휃 fl 𝑇�휃𝑎𝑇−1�휃 and the raising operator 𝐵�휃 fl 𝑇�휃𝑎†𝑇−1�휃 , we
have

𝐴�휃 = (cos 𝜃) 𝑎 + 𝑖 (sin 𝜃) 𝑎†,
𝐵�휃 = (cos 𝜃) 𝑎† + 𝑖 (sin 𝜃) 𝑎. (35)

By Proposition 8, 𝑇𝜑�휃 ,𝑓 (resp., 𝑇𝜓�휃 ,𝑓) is the smallest con-
structing operator and 𝑇−1𝜓�휃 ,𝑓 (resp., 𝑇−1𝜑�휃,𝑓) is the largest
constructing operator for 𝜑�휃 (resp., 𝜓�휃) and every closed
operator 𝑇 (resp., 𝐾) in 𝐿2(R) satisfying 𝑇𝜑�휃,𝑓 ⊂ 𝑇 ⊂𝑇−1𝜓�휃,𝑓 (resp., 𝑇𝜓�휃 ,𝑓 ⊂ 𝐾 ⊂ 𝑇−1𝜑�휃 ,𝑓) is a constructing operator
for 𝜑�휃 (resp., 𝜓�휃).

All physical models discussed above are regular cases, but
it seems to bemathematicallymeaningful to study nonregular
cases and furthermore the studies may become useful for
physical applications in future. Let {𝜑�푛} be a generalized Riesz
system. First we investigate under what conditions 𝐶�휑 has
maximal elements and minimal elements.

Let 𝐶 be a totally ordered subset of 𝐶�휑. Then, it is easily
shown that (𝑇−1)∗𝑒�푛 = (𝑆−1)∗𝑒�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ , for any𝑇, 𝑆 ∈ 𝐶.
Hence we may put

𝜓�퐶�푛 = (𝑇−1)∗ 𝑒�푛, 𝑇 ∈ 𝐶, 𝑛 = 0, 1, ⋅ ⋅ ⋅ . (36)

We have the following statements.

Lemma 12. Let 𝐶 be any totally ordered subset of 𝐶�휑. �e
following statements hold.

(1) Suppose that ∩�푇∈�퐶𝐷(𝑇∗) is dense in H. �en there
exists an upper bounded element 𝐺 of 𝐶.

(2) Suppose that ∩�푇∈�퐶𝑅(𝑇) is dense inH. �en there exists
a lower bounded element 𝑆 of 𝐶.

(3) Suppose that ∩�푇∈�퐶𝐷(𝑇∗) and ∩�푇∈�퐶𝑅(𝑇) are dense in
H. �en for every linear operator 𝐴 such that 𝑆 ⊂ 𝐴 ⊂ 𝐺, the
closure 𝐴 of 𝐴 belongs to 𝐶�휑.
Proof. (1) We put

𝐷(𝐺) = ⋃
�푇∈�퐶

𝐷(𝑇) ,
𝐺𝑥 = 𝑇0𝑥, 𝑥 ∈ 𝐷 (𝐺) ,

(37)

where𝑇0 is an operator in𝐶whose domain𝐷(𝑇0) contains 𝑥.
Since 𝐶 is totally ordered, it follows that 𝐷(𝐺) is a subspace
in H and 𝑇𝑥 = 𝑇0𝑥 for any operators 𝑇, 𝑇0 in 𝐶 whose
domains contain 𝑥. Hence,𝐺 does not depend on themethod
of choosing 𝑇0 ∈ 𝐶 whose domain contains 𝑥. Thus 𝐺 is a
well-defined densely defined linear operator in H such that𝑇 ⊂ 𝐺 for all 𝑇 ∈ 𝐶. We show that 𝐺 is closable. Indeed, we
may show

⋂
�푇∈�퐶

𝐷(𝑇∗) = 𝐷 (𝐺∗) ,
𝐺∗𝑦 = 𝑇∗0 𝑦,

(38)

where 𝑇0 ∈ 𝐶 whose domain 𝐷(𝑇0) contains 𝑥. Take an
arbitrary 𝑦 ∈ ∩�푇∈�퐶𝐷(𝑇∗). Then, we have

⟨𝐺𝑥, 𝑦⟩ = ⟨𝑇0𝑥, 𝑦⟩ = ⟨𝑥, 𝑇∗0 𝑦⟩ (39)
for all 𝑥 ∈ 𝐷(𝐺), where 𝑇0 ∈ 𝐶 whose domain contains 𝑥.
Hence, 𝑦 ∈ 𝐷(𝐺∗) and 𝐺∗𝑦 = 𝑇∗0 𝑦. Since 𝑇 ⊂ 𝐺 for all𝑇 ∈ 𝐶, 𝐷(𝐺∗) ⊂ ∩�푇∈�퐶𝐷(𝑇∗) is trivial. Thus, (38) holds. By
(38) and the assumption of (1),𝐷(𝐺∗) is dense inH, that is,𝐺
is closable. Next we show that𝐺 has a densely defined inverse.
Suppose that 𝐺𝑥 = 0, 𝑥 ∈ 𝐷(𝐺). Then 𝑇0𝑥 = 0 for some𝑇0 ∈ 𝐶, and so 𝑥 = 0 since 𝑇0 has an inverse. Thus 𝐺 has
an inverse. Since 𝑅(𝑇) ⊂ 𝑅(𝐺) and 𝑅(𝑇) is dense in H for
all 𝑇 ∈ 𝐶, it follows that the inverse of 𝐺 is densely defined,
which implies that the closure 𝐺 of 𝐺 has a densely defined
closed operator in H such that 𝐺 ⊃ 𝑇 for all 𝑇 ∈ 𝐶. Finally
we show

{𝑒�푛} ⊂ 𝐷 (𝐺) ∩ 𝐷 ((𝐺∗)−1) ,
𝐺𝑒�푛 = 𝜑�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ . (40)

Clearly, {𝑒�푛} ⊂ 𝐷(𝑇) ⊂ 𝐷(𝐺) for all 𝑇 ∈ 𝐶. Next we show that
for any 𝑛 there exists an element 𝑦�푛 of ∩�푇∈�퐶𝐷(𝑇∗) such that

𝑒�푛 = 𝑇∗𝑦�푛 (41)
for all 𝑇 ∈ 𝐶. Indeed, take an arbitrary 𝑇 ∈ 𝐶. Since 𝑒�푛 ∈𝐷((𝑇∗)−1) = 𝑅(𝑇∗), there exists an element 𝑦�푇�푛 of𝐷(𝑇∗) such
that 𝑒�푛 = 𝑇∗𝑦�푇�푛 . Let any 𝑇�耠 ∈ 𝐶. Since 𝐶 is totally ordered,
either 𝑇�耠 ⊂ 𝑇 or 𝑇 ⊂ 𝑇�耠 holds. Suppose that 𝑇�耠 ⊂ 𝑇. Since𝑇∗ ⊂ (𝑇�耠)∗, it follows that 𝑦�푇�푛 , 𝑦�푇�耠�푛 ∈ 𝐷((𝑇�耠)∗) and

(𝑇�耠)∗ 𝑦�푇�푛 = 𝑇∗𝑦�푇�푛 = 𝑒�푛 = (𝑇�耠)∗ 𝑦�푇�耠�푛 , (42)

which implies that 𝑦�푇�푛 = 𝑦�푇�耠�푛 since (𝑇�耠)∗ has inverse. The
equality 𝑦�푇�푛 = 𝑦�푇�耠�푛 is similarly shown in case that 𝑇 ⊂ 𝑇�耠.
Hence, we have that 𝑦�푛 fl 𝑦�푇�푛 ∈ ∩�푇∈�퐶𝐷(𝑇∗) and 𝑇∗𝑦�푛 = 𝑒�푛
for all 𝑇 ∈ 𝐶. Thus (41) holds. By (38) and (41) we have 𝑒�푛 ∈𝑅(𝐺∗) = 𝐷((𝐺∗)−1). Furthermore, we have 𝐺𝑒�푛 = 𝑇𝑒�푛 = 𝜑�푛,𝑛 = 0, 1, ⋅ ⋅ ⋅ for all 𝑇 ∈ 𝐶. Thus we have 𝐺 ∈ 𝐶�휑 and 𝐺 is an
upper bounded element of 𝐶.

(2) We put
𝐷(𝑆) = ∩�푇∈�퐶𝐷 (𝑇) ,

𝑆𝑥 = 𝑇𝑥, 𝑥 ∈ 𝐷 (𝑆) , (43)

where 𝑇 is any element of 𝐶. Since {𝑒�푛} ⊂ ∩�푇∈�퐶𝐷(𝑇) and𝑇1𝑥 = 𝑇2𝑥 for all 𝑥 ∈ ∩�푇∈�퐶𝐷(𝑇), 𝑆 is a well-defined densely
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defined closed operator in H such that 𝑆 ⊂ 𝑇 for all 𝑇 ∈ 𝐶.
Hence, it is sufficient to show 𝑆 ∈ 𝐶�휑. Since 𝑆 ⊂ 𝑇 for all𝑇 ∈ 𝐶
and𝑇 has the inverse, 𝑆 has the inverse. Furthermore, wemay
show

𝑅 (𝑆) = ∩�푇∈�퐶𝑅 (𝑇) . (44)

In fact, take an arbitrary 𝑦 ∈ ∩�푇∈�퐶𝑅(𝑇). Since 𝐶 is totally
ordered, there exists an element 𝑥 of 𝐷(𝑆) = ∩�푇∈�퐶𝐷(𝑇) such
that 𝑦 = 𝑇𝑥 for all 𝑇 ∈ 𝐶. Hence, 𝑦 = 𝑆𝑥 ∈ 𝑅(𝑆). The
inverse inclusion 𝑅(𝑆) ⊂ ∩�푇∈�퐶𝑅(𝑇) is clear. Hence (44) holds.
By the assumption and (44), 𝑅(𝑆) = 𝐷(𝑆−1) is dense in H.
Furthermore, since {𝑒�푛} ⊂ 𝐷(𝑇) for all 𝑇 ∈ 𝐶, we have{𝑒�푛} ⊂ 𝐷(𝑆) and 𝑆𝑒�푛 = 𝑇𝑒�푛 = 𝜑�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ . Since 𝑆 ⊂ 𝑇, it
follows that {𝑒�푛} ⊂ 𝐷((𝑇∗)−1) ⊂ 𝐷((𝑆∗)−1). Thus, 𝑆 ∈ 𝐶�휑 and
it is a lower bound of 𝐶.

(3) This follows from (1) and (2).

For a subsetF of 𝐶�휑, we put
F�휓 fl {(𝑇−1)∗ ; 𝑇 ∈ F} . (45)

Then we have the following.

Lemma 13. Let F be a subset of 𝐶�휑. �en, 𝑇0 is a maximal
(resp., minimal, the largest and the smallest) element of F if
and only if (𝑇−10 )∗ is a minimal (resp., maximal, the smallest
and the largest) element ofF�휓.

Proof. Suppose that 𝑇0 is a maximal element of F. Take an
arbitrary 𝐾 ∈ F�휓 satisfying 𝐾 ⊂ (𝑇−10 )∗. Then we have that𝐾 = (𝑇−1)∗ for some 𝑇 ∈ F and 𝑇0 ⊂ 𝑇, which implies
by the maximality of 𝑇0 that 𝑇 = 𝑇0 and 𝐾 = (𝑇−10 )∗. Thus,(𝑇−10 )∗ is a minimal element of F�휓. Furthermore, we can
similarly show that if (𝑇−10 )∗ is aminimal element ofF�휓, then𝑇0 is amaximal elementF.The other statements are similarly
shown.


eorem 14. Let F be a subset of 𝐶�휑. �en we have the
following:

(1) �e following statements are equivalent:

(i) F has a maximal element.
(ii) �ere exists a closed operator 𝐴 in H such that𝑇 ⊂ 𝐴 for all 𝑇 ∈ F.
(iii) F�휓 has a minimal element.

(2) �e following statements are equivalent:

(i) F has a minimal element.
(ii) �ere exists a closed operator 𝐵 in H such that(𝑇−1)∗ ⊂ 𝐵 for all 𝑇 ∈ F.
(iii) F�휓 has a maximal element.

(3) �e following statements are equivalent:

(i) F has a maximal element and a minimal ele-
ment.

(ii) �ere exist closed operators 𝐴 and 𝐵 in H such
that 𝑇 ⊂ 𝐴 and (𝑇−1)∗ ⊂ 𝐵 for all 𝑇 ∈ F.

(iii) F�휓 has a maximal element and a minimal
element.

Proof. (1) (i)󳨐⇒(ii) This is trivial.
(ii)󳨐⇒(i) Suppose that there exists a closed operator 𝐴

in H such that 𝑇 ⊂ 𝐴 for all 𝑇 ∈ F. Then for any totally
ordered subset𝐶 ofFwe have𝐷(𝐴∗) ⊂ ⋂�푇∈�퐶𝐷(𝑇∗). Hence,
it follows that ⋂�푇∈�퐶𝐷(𝑇∗) is dense in H, which implies by
Lemma 12 that F has an upper bounded element. By Zorn’s
lemma,F has a maximal element.

(i)⇐⇒(iii) This follows from Lemma 13.
(2) (i)󳨐⇒(ii) This is trivial.
(ii)󳨐⇒(i) Suppose that there exists a closed operator 𝐴

in H such that (𝑇−1)∗ ⊂ 𝐵 for all 𝑇 ∈ F. Then we can
similarly show thatF�휓 has amaximal element, which implies
by Lemma 13 thatF has a minimal element.

(i)⇐⇒(iii) This follows from Lemma 13.
(3)This follows from (1) and (2).This completes the proof.

We remark that the closed operators 𝐴 and 𝐵 in Theo-
rem 14 do not need any other conditions, for example, the
existence of inverse.

ByTheorem 14, we have the following.

Corollary 15. Let 𝑇0 ∈ 𝐶�휑 and putF�푇0 = {𝑇 ∈ 𝐶�휑; 𝑇0 ⊂ 𝑇}.
�en the following statements hold.

(1) Suppose that there exists a closed operator 𝐴 inH such
that 𝑇 ⊂ 𝐴 for all 𝑇 ∈ F�푇0 . �en there exists a maximal
element of 𝐶�휑 which is an extension of 𝑇0.

(2) Suppose that there exists a closed operator 𝐵 inH such
that (𝑇−1)∗ ⊂ 𝐵 for all 𝑇 ∈ F�푇0 . �en there exists a minimal
element of 𝐶�휑 which is a restriction of 𝑇0.
Proof. (1) By Theorem 14, F�푇0 has a maximal element 𝑇1.
Here we show that 𝑇1 is a maximal element of 𝐶�휑. Indeed,
this follows since 𝑇 ∈ F�푇0 for any element 𝑇 of 𝐶�휑 satisfying𝑇1 ⊂ 𝑇. We can similarly show (2).

Next we investigate the existence of the smallest element
and of the largest element of 𝐶�휑.

eorem 16. 𝐶�휑 has the smallest element and the largest
element if and only if there exist closed operators 𝐴 and 𝐵 in
H such that 𝑇 ⊂ 𝐴 and (𝑇−1)∗ ⊂ 𝐵 for all 𝑇 ∈ 𝐶�휑.
Proof. Suppose that there exist closed operators 𝐴 and 𝐵 in
H such that 𝑇 ⊂ 𝐴 and (𝑇−1)∗ ⊂ 𝐵 for all 𝑇 ∈ 𝐶�휑. We define
an operator 𝑇0 as follows:

𝐷 (𝑇0) = ⋂
�푇∈�퐶�휑

𝐷 (𝑇) ,
𝑇0𝑥 = 𝑇𝑥, 𝑥 ∈ 𝐷 (𝑇0) ,

(46)

where𝑇 is an element of 𝐶�휑. Take an arbitrary 𝑥 ∈ 𝐷(𝑇0) and𝑇1, 𝑇2 ∈ 𝐶�휑. Since 𝑥 ∈ 𝐷(𝑇1), 𝑥 ∈ 𝐷(𝑇2), 𝑇1 ⊂ 𝐴 and 𝑇2 ⊂ 𝐴,
we have

𝑇1𝑥 = 𝑇2𝑥 = 𝐴𝑥. (47)
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Thus, 𝑇0 does not depend on the method of choosing 𝑇 ∈ 𝐶�휑,
and so𝑇0 is well defined. Since {𝑒�푛} ⊂ ∩�푇∈�퐶�휑𝐷(𝑇) = 𝐷(𝑇0),𝑇0
is a densely defined closed operator inH such that 𝑇0 ⊂ 𝑇 for
all 𝑇 ∈ 𝐶�휑. Since (𝑇−1)∗ ⊂ 𝐵 for all 𝑇 ∈ 𝐶�휑, we have 𝐷(𝐵∗) ⊂⋂�푇∈�퐶�휑 𝑅(𝑇), which implies that ⋂�푇∈�퐶�휑 𝑅(𝑇) is dense in H.
Hence, we canprove at the sameway as the proof of Lemma 12
(2) that 𝑇0 is the smallest element 𝐶�휑. Next we show that 𝐶�휑
has the largest element. Take an arbitrary𝑇 ∈ 𝐶�휑.Then𝜓�푇 is a
generalized Riesz system with a constructing operator (𝑇−1)∗
and 𝐾 ⊂ 𝐵 and (𝐾−1)∗ ⊂ 𝐴 for all 𝐾 ∈ 𝐶�푁�휓�푇 . Hence, as shown
above there exists the smallest element𝐾1 of𝐶�푁�휓�푇 , and so𝐾1 =(𝑇−11 )∗ for some 𝑇1 ∈ 𝐶�휑 and (𝑇−11 )∗ ⊂ (𝑇−1)∗. Thus 𝑇 ⊂ 𝑇1
and𝑇1 is the largest element of𝐶�휑 .The converse is trivial.This
completes the proof.

As seen in Section 2, for a biorthogonal pair ({𝜑�푛}, {𝜓�푛}),
the equality (𝑇−1)∗𝑒�푛 = 𝜓�푛, 𝑛 = 0, 1, ⋅ ⋅ ⋅ does not necessarily
hold for all 𝑇 ∈ 𝐶�휑. From this fact we define the notion of𝑛𝑎𝑡𝑢𝑟𝑎𝑙 pair of generalized Riesz systems.

Definition 17. A biorthogonal pair ({𝜑�푛}, {𝜓�푛}) of generalized
Riesz systems is said to be natural, if 𝐶�휑 = 𝐶�푁�휑 and 𝐶�휓 = 𝐶�푁�휓 ,
that is, (𝑇−1)∗𝑒�푛 = 𝜓�푛 for all 𝑛 and 𝑇 ∈ 𝐶�휑 and (𝐾−1)∗𝑒�푛 = 𝜑�푛
for all 𝑛 and 𝐾 ∈ 𝐶�휓.

eorem 18. Let ({𝜑�푛}, {𝜓�푛}) be a natural pair of generalized
Riesz systems. �en 𝐶�휑 and 𝐶�휓 have the smallest element and
the largest element, respectively, if and only if there exist closed
operators 𝐴 and 𝐵 in H such that 𝑇 ⊂ 𝐴 and 𝐾 ⊂ 𝐵 for all𝑇 ∈ 𝐶�휑 and𝐾 ∈ 𝐶�휓.
Proof. This is shown using Theorem 16 for the generalized
Riesz systems for {𝜑�푛} and {𝜓�푛}.

For a generalized Riesz system {𝜑�푛}, suppose that there
exist the largest element 𝑇�퐿 of𝐶�휑 and the smallest element 𝑇�푆
of𝐶�휑.Then every closed operator 𝑇 inH satisfying 𝑇�푆 ⊂ 𝑇 ⊂𝑇�퐿 is a constructing operator of {𝜑�푛}, and so we can construct
all kinds of non-self-adjoint Hamiltonians 𝑇𝐻𝛼𝑒 𝑇−1, lowering
operator𝑇𝐴𝛼𝑒𝑇−1 and raising operator𝑇𝐵𝛼𝑒𝑇−1 for {𝜑�푛}. Itmay
be possible to find constructing operators suitable for each of
the physical models.

4. Conclusions

All the results presented in this paper are of pure mathemat-
ical nature, but we hope that they will be applied to more
physical models in future. For example, we argue that cases
like the CCR-algebras and their physical applications could
probably studied by taking suitable constructing operators for
convenient generalized Riesz systems.
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The convolution of harmonic functions, unlike the analytic case, proved to be very challenging. In this paper, we introduce dilatation
conditions that guarantee the convolution of two harmonic functions to be locally one-to-one, sense-preserving, and close-to-
convex harmonic in the unit disk.

1. Introduction

Let A denote the class of functions that are analytic in the
open unit disc D fl {𝑧 ∈ C : |𝑧| < 1} and let A󸀠
be the subclass of A consisting of functions ℎ with the
normalization ℎ(0) = ℎ󸀠(0) − 1 = 0. We letK(𝛼) denote the
class of functions ℎ ∈ A󸀠 so that

Re{1 + 𝑧ℎ󸀠󸀠 (𝑧)ℎ󸀠 (𝑧) } > 𝛼; − 12 ≤ 𝛼; 𝑧 ∈ D. (1)

Consider the family of complex-valued harmonic func-
tions𝑓 = 𝑢+𝑖V defined inD, where 𝑢 and V are real harmonic
in D. Such functions can be expressed as 𝑓 = ℎ + 𝑔, whereℎ ∈ A and 𝑔 ∈ A. Clunie and Sheil-Small in their remarkable
paper [1] explored the functions of the form 𝑓 = ℎ + 𝑔
that are locally one-to-one, sense-preserving, and harmonic
in D. By Lewy’s Theorem (see [2] or [1]), a necessary and
sufficient condition for the harmonic function 𝑓 = ℎ + 𝑔
to be locally one-to-one and sense-preserving in D is that its
Jacobian 𝐽𝑓 = |ℎ󸀠|2 − |𝑔󸀠|2 is positive or equivalently, if and
only if ℎ󸀠(𝑧) ̸= 0 in D and the second complex dilatation 𝜔 of𝑓 satisfies |𝜔| = |𝑔󸀠/ℎ󸀠| < 1 in D.

In an interesting article, Bshouty and Lyzzaik [3] proved
the following.

Theorem 1. Let 𝑓 = ℎ + 𝑔 be a harmonic mapping of D, withℎ󸀠(0) ̸= 0, that satisfies 𝑔󸀠(𝑧) = 𝑧ℎ󸀠(𝑧) and ℎ ∈ K(−1/2) for
all 𝑧 ∈ D. Then 𝑓 is a univalent close-to-convex mapping.

A simply connected proper subdomain of C is said to be
close-to-convex if its complement in C is the union of closed
half-lines with pairwise disjoint interiors. Consequently, a
univalent analytic or harmonic function 𝑓 : D → C is said to
be close-to-convex if𝑓(D) is close-to-convex (e.g., see Clunie
and Sheil-Small [1] or Bshouty and Lyzzaik [3]).

Ruscheweyh and Sheil-Small in a striking article [4]
proved that the Hadamard product or convolution of two
analytic convex functions is also convex analytic and that the
convolution of an analytic convex function and an analytic
close-to-convex function is close-to-convex analytic in the
unit disk D. Ironically, these results could not be extended to
the harmonic case, since the convolution of harmonic func-
tions, unlike the analytic case, proved to be very challenging.
The purpose of the present paper is to introduce dilatation
conditions that guarantee the convolution of two harmonic
functions to be locally one-to-one, sense-preserving, and
close-to-convex harmonic in the unit disk D. In other words,
we extend Theorem 1 to the convolution of two harmonic
functions 𝑓1 = ℎ1 + 𝑔1 and 𝑓2 = ℎ2 + 𝑔2 with certain
dilatations, where ℎ1 ∗ ℎ2 ∈ K(𝛼).

The operator ∗ stands for the convolution or Hadamard
product of two power series ℎ1(𝑧) = ∑∞𝑛=1 𝑎𝑛𝑧𝑛 and ℎ2(𝑧) =∑∞𝑛=1 𝑏𝑛𝑧𝑛 given by ℎ1(𝑧)∗ℎ2(𝑧) = (ℎ1∗ℎ2)(𝑧) = ∑∞𝑛=1 𝑎𝑛𝑏𝑛𝑧𝑛.
Similarly, the convolution of two harmonic functions 𝑓1 =ℎ1+𝑔1 and𝑓2 = ℎ2+𝑔2 is given by𝑓1∗𝑓2 = ℎ1∗ℎ2+𝑔1 ∗ 𝑔2.

In regard to the convolution of harmonic univalent
functions, Clunie and Sheil-Small [1] proved the following.
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Theorem 2. If 𝜙 ∈ K(0) and if 𝑓 is convex harmonic in D,
then their convolution (𝜙 + 𝜀𝜙) ∗ 𝑓 (|𝜀| ≤ 1) is close-to-convex
harmonic in D.

A mapping 𝑓 : D → C is called convex harmonic if 𝑓(D)
is a convex domain.

The convexity condition for the function 𝜙 in Theorem 2
cannot be compromised as it is demonstrated in the follow-
ing.

Example 3. Set

𝑓 (𝑧) = ℎ (𝑧) + 𝑔 (𝑧) = 𝑧 − (1/2) 𝑧2(1 − 𝑧)2 − ((1/2) 𝑧2(1 − 𝑧)2) (2)

and consider the starlike analytic function 𝜙(𝑧) = 𝑧 + 𝑧𝑛/𝑛;𝑛 ≥ 2 in D. Letting 𝜀 = 0 in Theorem 2, we observe that the
harmonic convolution

(𝜙 (𝑧) + (0) ⋅ 𝜙 (𝑧)) ∗ (ℎ (𝑧) + 𝑔 (𝑧)) = 𝑧 + 𝑛 + 12𝑛 𝑧𝑛 (3)

is not even univalent in D.

In an attempt to investigate the possibilities of improving
the required convexity condition for 𝜙, the authors in [5]
proved the following.

Theorem 4. Let 𝜙 ∈ K(0) and ℎ ∈ K(0). Also let 𝑤 be a
Schwarz function. Then the convolution function

(𝜙 (𝑧) + 𝜀𝜙 (𝑧)) ∗ (ℎ (𝑧) + ∫𝑧
0

𝑤 (𝑡) ℎ󸀠 (𝑡) 𝑑𝑡) ;
|𝜀| = 1,

(4)

is close-to-convex harmonic in D.

Theorem 4 for 𝜙(𝑧) = 𝑧/(1 − 𝑧) and 𝜀 = 1 yields
a theorem given by Bshouty et al. ([6], Theorem 2). From
what is said above, especially Example 3, one wonders if there
are other conditions that guarantee the close-to-convexity of
the convolution of two harmonic functions. In the following
theorem, we find such conditions.

Theorem 5. Let ℎ1 ∈ A󸀠 and ℎ2 ∈ A󸀠 so that ℎ1 ∗ℎ2 ∈ K(𝛼),
where K(𝛼) is given by inequality (1). If one of the following
conditions hold

(i) 𝛼 ≥ −1/2; 𝑔1(𝑧) = 𝑧ℎ1(𝑧) and 𝑔󸀠2(𝑧) = 𝑧ℎ󸀠2(𝑧),
(ii) 𝛼 ≥ 0; 𝑔󸀠1(𝑧) = 𝑧𝑛ℎ󸀠1(𝑧) and 𝑔󸀠2(𝑧) = 𝑧𝑛ℎ󸀠2(𝑧), where𝑛 ∈ N,

then the convolution function 𝐹(𝑧) = ℎ1(𝑧) ∗ ℎ2(𝑧) +𝑔1(𝑧) ∗ 𝑔2(𝑧) is locally one-to-one, sense-preserving, and close-
to-convex harmonic in D.

Since the convolution of two convex analytic functions is
also convex (see Ruscheweyh and Sheil-Small [4]), an obvious
consequence of the above theorem would be as follows.

Corollary 6. Let ℎ1 ∈ K(0) and ℎ2 ∈ K(0) and set 𝑔1(𝑧) =𝑧𝑛ℎ󸀠1(𝑧) and 𝑔󸀠2(𝑧) = 𝑧𝑛ℎ󸀠2(𝑧). Then the convolution function𝐹(𝑧) = ℎ1(𝑧)∗ℎ2(𝑧)+𝑔1(𝑧) ∗ 𝑔2(𝑧) is locally one-to-one, sense-
preserving, and close-to-convex harmonic in D.

2. Preliminary Lemmas and
Proof of Theorem 5

To prove our Theorem 5, we shall need the following three
lemmas, the first of which is a celebrated result by Clunie and
Sheil-Small [1] and the second one is given by Kaplan [7].The
third lemma which is on subordination is a modification of
a result given by Miller and Mocanu (e.g., see [8] Lemma 1
or [9]). For functions 𝑝 and 𝑞, where 𝑝(0) = 𝑞(0) = 0, we
write 𝑝 ≺ 𝑞 (i.e., 𝑝 is subordinate to 𝑞) if there exists an
analytic function 𝜔 with 𝜔(0) = 0 and |𝜔(𝑧)| < 1 so that𝑝(𝑧) = 𝑞(𝜔(𝑧)) in D.

Lemma 7. (i) If 𝑔 and ℎ are analytic in D so that |𝑔󸀠(0)| <|ℎ󸀠(0)| and if ℎ + 𝜀𝑔 is close-to-convex analytic in D for each𝜀 (|𝜀| = 1), then the function 𝑓 = ℎ + 𝑔 is close-to-convex
harmonic in D.

(ii) If ℎ and 𝑔 are analytic in D so that ℎ ∈ K(0) and if𝑓 = ℎ+𝑔 is locally univalent inD, then the function 𝑓 = ℎ+𝑔
is close-to-convex harmonic in D.

Lemma8. Anecessary and sufficient condition for the analytic
function ℎ : D → C to be close-to-convex is that ℎ󸀠 is
nonvanishing in D and

∫𝜃2
𝜃
1

Re{1 + 𝑟𝑒𝑖𝜃 ℎ󸀠󸀠 (𝑟𝑒𝑖𝜃)ℎ󸀠 (𝑟𝑒𝑖𝜃) } 𝑑𝜃 > −𝜋;
𝜃1 < 𝜃2, 0 < 𝑟 < 1.

(5)

Lemma9. IfR 𝑝(𝑧) > 0 and 𝑞(𝑧) is analytic inD, then 𝑞(𝑧)+𝑧𝑝(𝑧)𝑞󸀠(𝑧) ≺ 𝑧 implies 𝑞(𝑧) ≺ 𝑧.
Proof of Theorem 5.
Proof of Part (i). The convolution function 𝐹(𝑧) = ℎ1(𝑧) ∗ℎ2(𝑧) + 𝑔1(𝑧) ∗ 𝑔2(𝑧) = 𝐻(𝑧) + 𝐺(𝑧) is locally univalent and
sense-preserving since

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝐺
󸀠 (𝑧)𝐻󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(1/𝑧) 𝑔1 (𝑧) ∗ 𝑔󸀠2 (𝑧)(1/𝑧) ℎ1 (𝑧) ∗ ℎ󸀠2 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑔1 (𝑧) ∗ 𝑧𝑔󸀠2 (𝑧)ℎ1 (𝑧) ∗ 𝑧ℎ󸀠2 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧ℎ1 (𝑧) ∗ 𝑧2ℎ󸀠2 (𝑧)ℎ1 (𝑧) ∗ 𝑧ℎ󸀠2 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = |𝑧| < 1.

(6)

Obviously |𝐺󸀠(0)| < |𝐻󸀠(0)|; therefore, in view of
Lemma 7, it suffices to prove that 𝑇𝜆(𝑧) = 𝐻(𝑧) − 𝜆𝐺(𝑧) for|𝜆| = 1 is close-to-convex analytic in D.

We note that

𝑇󸀠𝜆 (𝑧) = 𝐻󸀠 (𝑧) − 𝜆𝐺󸀠 (𝑧)
= 𝐻󸀠 (𝑧) − 𝜆 ((1/𝑧) 𝑔1 (𝑧) ∗ 𝑔󸀠2 (𝑧))
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= 𝐻󸀠 (𝑧) − 𝜆 (ℎ1 (𝑧) ∗ 𝑧ℎ󸀠2 (𝑧))
= 𝐻󸀠 (𝑧) − 𝜆𝑧 ((1/𝑧) ℎ1 (𝑧) ∗ ℎ󸀠2 (𝑧))
= 𝐻󸀠 (𝑧) − 𝜆𝑧 (𝐻󸀠 (𝑧)) = (1 − 𝜆𝑧) ⋅ 𝐻󸀠 (𝑧) ,

(7)

and 𝑇󸀠󸀠𝜆 (𝑧) = −𝜆𝐻󸀠(𝑧) + (1 − 𝜆𝑧)𝐻󸀠󸀠(𝑧).
We also observe that 𝑇𝜆 is nonvanishing in D since𝐻󸀠(0) ̸= 0. Therefore,

Re{1 + 𝑧𝑇󸀠󸀠𝜆 (𝑧)𝑇󸀠𝜆 (𝑧) }
= Re{1 + 𝑧−𝜆𝐻󸀠 (𝑧) + (1 − 𝜆𝑧)𝐻󸀠󸀠 (𝑧)(1 − 𝜆𝑧)𝐻󸀠 (𝑧) }
= Re{1 + 𝜆𝑧𝜆𝑧 − 1 + 𝑧 𝐻󸀠󸀠 (𝑧)𝐻󸀠 (𝑟𝑒𝑖𝜃)} .

(8)

Now, by Lemma 8 and inequality (5) for 𝜃1 < 𝜃2 < 𝜃1+2𝜋
and 0 < 𝑟 < 1, it suffices to show that

∫𝜃2
𝜃
1

Re{1 + 𝑟𝑒𝑖𝜃𝑇󸀠󸀠𝜆 (𝑟𝑒𝑖𝜃)𝑇󸀠𝜆 (𝑟𝑒𝑖𝜃) } 𝑑𝜃 > −𝜋. (9)

For 𝑧 ∈ D, one may verify (also see Bshouty and Lyzzaik [3]
p. 770) that

Re { 𝑧𝑧 − 1} = 12 − 12 1 − |𝑧|2|1 − 𝑧|2 . (10)

For 𝑧 = 𝑟𝑒𝑖𝜃, replacing 𝑧 by 𝜆𝑧 and letting 𝜁 = 𝜆𝑟 yield
Re{ 𝜆𝑧𝜆𝑧 − 1} = 12 − 12 1 − 󵄨󵄨󵄨󵄨𝜁󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨𝑒𝑖𝜃 − 𝜁󵄨󵄨󵄨󵄨2 = 12 − 12𝑃𝜁 (𝜃) , (11)

where 𝑃𝜁(𝜃) is the Poisson Kernal. It then follows that

∫𝜃2
𝜃
1

Re{ 𝜆𝑟𝑒𝑖𝜃𝜆𝑟𝑒𝑖𝜃 − 1}𝑑𝜃 = ∫𝜃2
𝜃
1

Re {12 − 12 ⋅ 𝑃𝜁 (𝜃)} 𝑑𝜃
= 𝜃2 − 𝜃12 − 12 ∫𝜃2

𝜃
1

𝑃𝜁 (𝜃) 𝑑𝜃
> 𝜃2 − 𝜃12 − 12 ∫2𝜋

0
𝑃𝜁 (𝜃) 𝑑𝜃 = 𝜃2 − 𝜃12 − 𝜋.

(12)

On the other hand, since 𝐻(𝑧) = ℎ1(𝑧) ∗ ℎ2(𝑧) ∈ K(−1/2),
we obtain

∫𝜃2
𝜃
1

Re{1 + 𝑟𝑒𝑖𝜃𝐻󸀠󸀠 (𝑟𝑒𝑖𝜃)𝐻󸀠 (𝑟𝑒𝑖𝜃) } 𝑑𝜃 > 𝜃1 − 𝜃22 . (13)

Therefore, in view of the required condition (9), we get

∫𝜃2
𝜃
1

Re{1 + 𝑟𝑒𝑖𝜃𝑇󸀠󸀠𝜆 (𝑟𝑒𝑖𝜃)𝑇󸀠𝜆 (𝑟𝑒𝑖𝜃) } 𝑑𝜃
= ∫𝜃2
𝜃
1

Re(1 + 𝜆𝑟𝑒𝑖𝜃𝜆𝑟𝑒𝑖𝜃 − 1)𝑑𝜃
+ ∫𝜃2
𝜃
1

Re(𝑟𝑒𝑖𝜃𝐻󸀠󸀠 (𝑟𝑒𝑖𝜃)𝐻󸀠 (𝑟𝑒𝑖𝜃) )𝑑𝜃
> 𝜃2 − 𝜃12 − 𝜋 + 𝜃1 − 𝜃22 = −𝜋.

(14)

Proof of Part (ii). In view of Lemma 7, it suffices to show
that the convolution function 𝐹(𝑧) = ℎ1(𝑧) ∗ ℎ2(𝑧) +𝑔1(𝑧) ∗ 𝑔2(𝑧) = 𝐻(𝑧) + 𝐺(𝑧) is locally univalent and sense-
preserving in D. In other words, we need to show that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝐺
󸀠 (𝑧)𝐻󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[𝑔1 (𝑧) ∗ 𝑔2 (𝑧)]󸀠[ℎ1 (𝑧) ∗ ℎ2 (𝑧)]󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 1. (15)

Using the Hadamard product properties of power series,
we have

1 > 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧𝑛 (ℎ󸀠1 ∗ ℎ󸀠2)ℎ󸀠1 ∗ ℎ󸀠2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑔󸀠1 ∗ 𝑔󸀠2ℎ󸀠1 ∗ ℎ󸀠2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[𝑔1 ∗ 𝑧𝑔󸀠2]󸀠[ℎ1 ∗ 𝑧ℎ󸀠2]󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[𝑧 ((1/𝑧) 𝑔1 ∗ 𝑔󸀠2)]󸀠[𝑧 ((1/𝑧) ℎ1 ∗ ℎ󸀠2)]󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[𝑧 (𝑔1 ∗ 𝑔2)󸀠]󸀠
[𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑔1 ∗ 𝑔2)󸀠 + 𝑧 (𝑔1 ∗ 𝑔2)󸀠󸀠[𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑔1 ∗ 𝑔2)󸀠 (ℎ1 ∗ ℎ2)󸀠 + 𝑧 (𝑔1 ∗ 𝑔2)󸀠󸀠 (ℎ1 ∗ ℎ2)󸀠(ℎ1 ∗ ℎ2)󸀠 [𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑔1 ∗ 𝑔2)󸀠 [(ℎ1 ∗ ℎ2)󸀠 + 𝑧 (ℎ1 ∗ ℎ2)󸀠󸀠] + 𝑧 (𝑔1 ∗ 𝑔2)󸀠󸀠 (ℎ1 ∗ ℎ2)󸀠 − 𝑧 (𝑔1 ∗ 𝑔2)󸀠 (ℎ1 ∗ ℎ2)󸀠󸀠

(ℎ1 ∗ ℎ2)󸀠 [𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑔1 ∗ 𝑔2)󸀠 [𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠 + 𝑧 (𝑔1 ∗ 𝑔2)󸀠󸀠 (ℎ1 ∗ ℎ2)󸀠 − 𝑧 (𝑔1 ∗ 𝑔2)󸀠 (ℎ1 ∗ ℎ2)󸀠󸀠

(ℎ1 ∗ ℎ2)󸀠 [𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑔1 ∗ 𝑔2)󸀠(ℎ1 ∗ ℎ2)󸀠 +

𝑧
[𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠 (

(𝑔1 ∗ 𝑔2)󸀠󸀠 (ℎ1 ∗ ℎ2)󸀠 − (𝑔1 ∗ 𝑔2)󸀠 (ℎ1 ∗ ℎ2)󸀠󸀠(ℎ1 ∗ ℎ2)󸀠 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑔1 ∗ 𝑔2)󸀠(ℎ1 ∗ ℎ2)󸀠 + 𝑧( (ℎ1 ∗ ℎ2)󸀠[𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠)((𝑔1 ∗ 𝑔2)󸀠󸀠 (ℎ1 ∗ ℎ2)󸀠 − (𝑔1 ∗ 𝑔2)󸀠 (ℎ1 ∗ ℎ2)󸀠󸀠[(ℎ1 ∗ ℎ2)󸀠]2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑔1 ∗ 𝑔2)󸀠(ℎ1 ∗ ℎ2)󸀠 + 𝑧 (ℎ1 ∗ ℎ2)󸀠[𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠 (
(𝑔1 ∗ 𝑔2)󸀠(ℎ1 ∗ ℎ2)󸀠)

󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(16)

Therefore,

(𝑔1 ∗ 𝑔2)󸀠(ℎ1 ∗ ℎ2)󸀠 + 𝑧 (ℎ1 ∗ ℎ2)󸀠[𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠 (
(𝑔1 ∗ 𝑔2)󸀠(ℎ1 ∗ ℎ2)󸀠)

󸀠 ≺ 𝑧. (17)

On the other hand, since ℎ1∗ℎ2 ∈ K(0), 𝑧(ℎ1∗ℎ2)󸀠 is starlike
or

Re
{{{

𝑧 [𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠𝑧 (ℎ1 ∗ ℎ2)󸀠
}}} = Re

[𝑧 (ℎ1 ∗ ℎ2)󸀠]󸀠(ℎ1 ∗ ℎ2)󸀠 > 0. (18)

Thus, in view of Lemma9, (𝑔1(𝑧)∗𝑔2(𝑧))󸀠/(ℎ1(𝑧)∗ℎ2(𝑧))󸀠 ≺ 𝑧
or |𝐺󸀠(𝑧)/𝐻󸀠(𝑧)| = |[𝑔1(𝑧)∗𝑔2(𝑧)]󸀠/[ℎ1(𝑧)∗ℎ2(𝑧)]󸀠| < 1.
Remark 10. It is left as an open problemwhetherTheorem5(i)
can be extended to the case 𝑔1(𝑧) = 𝑧𝑛ℎ1(𝑧) and 𝑔󸀠2(𝑧) =𝑧𝑛ℎ󸀠2(𝑧) if 𝑛 > 1.
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Given the abstract evolution equation 𝑦󸀠(𝑡) = 𝐴𝑦(𝑡), 𝑡 ∈ R, with scalar type spectral operator 𝐴 in a complex Banach space, found
are conditions necessary and sufficient for all weak solutions of the equation, which a priori need not be strongly differentiable, to
be strongly infinite differentiable on R. The important case of the equation with a normal operator 𝐴 in a complex Hilbert space is
obtained immediately as a particular case. Also, proved is the following inherent smoothness improvement effect explaining why
the case of the strong finite differentiability of the weak solutions is superfluous: if every weak solution of the equation is strongly
differentiable at 0, then all of them are strongly infinite differentiable on R.

“Curiosity is the lust of the mind.”
Thomas Hobbes

1. Introduction

We find conditions on a scalar type spectral operator 𝐴 in a
complex Banach space necessary and sufficient for all weak
solutions of the evolution equation

𝑦󸀠 (𝑡) = 𝐴𝑦 (𝑡) , 𝑡 ∈ R, (1)
which a priori need not be strongly differentiable, to be
strongly infinite differentiable on R. The important case of
the equation with a normal operator𝐴 in a complex Hilbert
space is obtained immediately as a particular case. We also
prove the following inherent smoothness improvement effect
explaining why the case of the strong finite differentiability of
the weak solutions is superfluous: if every weak solution of
the equation is strongly differentiable at 0, then all of them
are strongly infinite differentiable on R.

The found results develop those of paper [1], where simi-
lar consideration is given to the strong differentiability of the
weak solutions of the equation

𝑦󸀠 (𝑡) = 𝐴𝑦 (𝑡) , 𝑡 ≥ 0, (2)

on [0,∞) and (0,∞).
Definition 1 (weak solution). Let 𝐴 be a densely defined
closed linear operator in a Banach space 𝑋 and 𝐼 be an inter-
val of the real axis R. A strongly continuous vector function𝑦 : 𝐼 󳨀→ 𝑋 is called a weak solution of the evolution equa-
tion

𝑦󸀠 (𝑡) = 𝐴𝑦 (𝑡) , 𝑡 ∈ 𝐼, (3)

if, for any 𝑔∗ ∈ 𝐷(𝐴∗),
𝑑𝑑𝑡 ⟨𝑦 (𝑡) , 𝑔∗⟩ = ⟨𝑦 (𝑡) , 𝐴∗𝑔∗⟩ , 𝑡 ∈ 𝐼, (4)

where 𝐷(⋅) is the domain of an operator, 𝐴∗ is the operator
adjoint to 𝐴, and ⟨⋅, ⋅⟩ is the pairing between the space𝑋 and
its dual 𝑋∗ (cf. [2]).

5
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Remarks 2.

(i) Due to the closedness of 𝐴, a weak solution of (3) can
be equivalently defined to be a strongly continuous
vector function 𝑦 : 𝐼 󳨃󳨀→ 𝑋 such that, for all 𝑡 ∈ 𝐼,

∫𝑡
𝑡0

𝑦 (𝑠) 𝑑𝑠 ∈ 𝐷 (𝐴) and

𝑦 (𝑡) = 𝑦 (𝑡0) + 𝐴∫𝑡
𝑡0

𝑦 (𝑠) 𝑑𝑠,
(5)

where 𝑡0 is an arbitrary fixed point of the interval𝐼, and is also called a mild solution (cf. [3, Ch. II,
Definition 6.3], see also [4, Preliminaries]).

(ii) Such a notion of weak solution, which need not be
differentiable in the strong sense, generalizes that of
classical one, strongly differentiable on 𝐼 and satisfy-
ing the equation in the traditional plug-in sense, the
classical solutions being precisely the weak ones
strongly differentiable on 𝐼.

(iii) As is easily seen 𝑦 : R 󳨀→ 𝑋 is a weak solution of (1)
iff

𝑦+ (𝑡) fl 𝑦 (𝑡) , 𝑡 ≥ 0, (6)

is a weak solution of (2) and

𝑦− (𝑡) fl 𝑦 (−𝑡) , 𝑡 ≥ 0, (7)

is a weak solution of the equation

𝑦󸀠 (𝑡) = −𝐴𝑦 (𝑡) , 𝑡 ≥ 0. (8)

(iv) When a closed densely defined linear operator 𝐴 in
a complex Banach space 𝑋 generates a strongly con-
tinuous group {𝑇(𝑡)}𝑡∈R of bounded linear operators
(see, e.g., [3, 5]), i.e., the associated abstract Cauchy
problem (ACP)

𝑦󸀠 (𝑡) = 𝐴𝑦 (𝑡) , 𝑡 ∈ R,
𝑦 (0) = 𝑓 (9)

is well-posed (cf. [3, Ch. II, Definition 6.8]), the weak
solutions of (1) are the orbits

𝑦 (𝑡) = 𝑇 (𝑡) 𝑓, 𝑡 ∈ R, (10)

with𝑓 ∈ 𝑋 (cf. [3, Ch. II, Proposition 6.4], see also [2,
Theorem]), whereas the classical ones are those with𝑓 ∈ 𝐷(𝐴) (see, e.g., [3, Ch. II, Proposition 6.3]).

(v) In our discourse, the associated ACPmay be ill-posed,
i.e., the scalar type spectral operator 𝐴 need not gen-
erate a strongly continuous group of bounded linear
operators (cf. [6]).

2. Preliminaries

Here, for the reader’s convenience, we outline certain essen-
tial preliminaries.

Henceforth, unless specified otherwise, 𝐴 is supposed
to be a scalar type spectral operator in a complex Banach
space (𝑋, ‖ ⋅ ‖) with strongly 𝜎-additive spectral measure (the
resolution of the identity) 𝐸𝐴(⋅) assigning to each Borel set 𝛿
of the complex plane C a projection operator 𝐸𝐴(𝛿) on𝑋 and
having the operator’s spectrum 𝜎(𝐴) as its support [7, 8].

Observe that, in a complex finite-dimensional space, the
scalar type spectral operators are all linear operators on the
space, for which there is an eigenbasis (see, e.g., [7, 8]) and,
in a complex Hilbert space, the scalar type spectral operators
are precisely all those that are similar to the normal ones [9].

Associated with a scalar type spectral operator in a com-
plex Banach space is the Borel operational calculus analogous
to that for a normal operator in a complex Hilbert space
[7, 8, 10, 11], which assigns to any Borel measurable function𝐹 : 𝜎(𝐴) 󳨀→ C a scalar type spectral operator

𝐹 (𝐴) fl ∫
𝜎(𝐴)

𝐹 (𝜆) 𝑑𝐸𝐴 (𝜆) (11)

(see [7, 8]).
In particular,

𝐴𝑛 = ∫
𝜎(𝐴)

𝜆𝑛𝑑𝐸𝐴 (𝜆) , 𝑛 ∈ Z+, (12)

(Z+ fl {0, 1, 2, . . .} is the set of nonnegative integers, 𝐴0 fl 𝐼, 𝐼
is the identity operator on𝑋), and

𝑒𝑧𝐴 fl ∫
𝜎(𝐴)

𝑒𝑧𝜆𝑑𝐸𝐴 (𝜆) , 𝑧 ∈ C. (13)

The properties of the spectral measure and operational calcu-
lus, exhaustively delineated in [7, 8], underlie the entire sub-
sequent discourse.Here, we underline a few facts of particular
importance.

Due to its strong countable additivity, the spectralmeasure𝐸𝐴(⋅) is bounded [8, 12], i.e., there is such an𝑀 > 0 that, for
any Borel set 𝛿 ⊆ C, 󵄩󵄩󵄩󵄩𝐸𝐴 (𝛿)󵄩󵄩󵄩󵄩 ≤ 𝑀. (14)

Observe that the notation ‖ ⋅ ‖ is used here to designate the
norm in the space 𝐿(𝑋) of all bounded linear operators on𝑋.
We adhere to this rather conventional economy of symbols in
what follows also adopting the same notation for the norm in
the dual space𝑋∗.

For any 𝑓 ∈ 𝑋 and 𝑔∗ ∈ 𝑋∗, the total variation
measure V(𝑓, 𝑔∗, ⋅) of the complex-valued Borel measure⟨𝐸𝐴(⋅)𝑓, 𝑔∗⟩ is a finite positive Borel measure with

V (𝑓, 𝑔∗,C) = V (𝑓, 𝑔∗, 𝜎 (𝐴)) ≤ 4𝑀󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩 (15)

(see, e.g., [13, 14]).
Also (Ibid.), for a Borel measurable function 𝐹 : C 󳨀→ C,𝑓 ∈ 𝐷(𝐹(𝐴)), 𝑔∗ ∈ 𝑋∗, and a Borel set 𝛿 ⊆ C,

∫
𝛿
|𝐹 (𝜆)| 𝑑V (𝑓, 𝑔∗, 𝜆) ≤ 4𝑀󵄩󵄩󵄩󵄩𝐸𝐴 (𝛿) 𝐹 (𝐴) 𝑓󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩 . (16)
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In particular, for 𝛿 = 𝜎(𝐴), 𝐸𝐴(𝜎(𝐴)) = 𝐼 and
∫
𝜎(𝐴)

|𝐹 (𝜆)| 𝑑V (𝑓, 𝑔∗, 𝜆) ≤ 4𝑀󵄩󵄩󵄩󵄩𝐹 (𝐴) 𝑓󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩 . (17)

Observe that the constant 𝑀 > 0 in (15)–(17) is from (14).
Further, for a Borel measurable function 𝐹 : C 󳨀→[0,∞), a Borel set 𝛿 ⊆ C, a sequence {Δ 𝑛}∞𝑛=1 of pairwise

disjoint Borel sets in C, and 𝑓 ∈ 𝑋, 𝑔∗ ∈ 𝑋∗,
∫
𝛿
𝐹 (𝜆) 𝑑V(𝐸𝐴(∞⋃

𝑛=1

Δ 𝑛)𝑓, 𝑔∗, 𝜆)

= ∞∑
𝑛=1

∫
𝛿∩Δ 𝑛

𝐹 (𝜆) 𝑑V (𝐸𝐴 (Δ 𝑛) 𝑓, 𝑔∗, 𝜆) .
(18)

Indeed, since, for any Borel sets 𝛿, 𝜎 ⊆ C,

𝐸𝐴 (𝛿) 𝐸𝐴 (𝜎) = 𝐸𝐴 (𝛿 ∩ 𝜎) (19)

[7, 8], for the total variation measure,

V (𝐸𝐴 (𝛿) 𝑓, 𝑔∗, 𝜎) = V (𝑓, 𝑔∗, 𝛿 ∩ 𝜎) . (20)

Whence, due to the nonnegativity of 𝐹(⋅) (see, e.g., [15]),
∫
𝛿
𝐹 (𝜆) 𝑑V(𝐸𝐴(∞⋃

𝑛=1

Δ 𝑛)𝑓, 𝑔∗, 𝜆)
= ∫
𝛿∩∪∞𝑛=1Δ 𝑛

𝐹 (𝜆) 𝑑V (𝑓, 𝑔∗, 𝜆)
= ∞∑
𝑛=1

∫
𝛿∩Δ 𝑛

𝐹 (𝜆) 𝑑V (𝑓, 𝑔∗, 𝜆)

= ∞∑
𝑛=1

∫
𝛿∩Δ 𝑛

𝐹 (𝜆) 𝑑V (𝐸𝐴 (Δ 𝑛) 𝑓, 𝑔∗, 𝜆) .

(21)

The following statement, allowing characterizing the domains
of Borel measurable functions of a scalar type spectral
operator in terms of positive Borel measures, is fundamental
for our discourse.

Proposition 3 ([16, Proposition 3.1]). Let 𝐴 be a scalar type
spectral operator in a complex Banach space (𝑋, ‖ ⋅ ‖) with
spectral measure 𝐸𝐴(⋅) and 𝐹 : 𝜎(𝐴) 󳨀→ C be a Borel
measurable function. Then 𝑓 ∈ 𝐷(𝐹(𝐴)) iff

(i) for each 𝑔∗ ∈ 𝑋∗, ∫
𝜎(𝐴)

|𝐹(𝜆)|𝑑V(𝑓, 𝑔∗, 𝜆) < ∞;

(ii) sup{𝑔∗∈𝑋∗|‖𝑔∗‖=1} ∫{𝜆∈𝜎(𝐴)||𝐹(𝜆)|>𝑛} |𝐹(𝜆)|𝑑V(𝑓, 𝑔∗, 𝜆)󳨀→ 0, 𝑛 󳨀→ ∞,

where V(𝑓, 𝑔∗, ⋅) is the total variation measure of ⟨𝐸𝐴(⋅)𝑓, 𝑔∗⟩.
The succeeding key theorem provides a description of the

weak solutions of (2) with a scalar type spectral operator𝐴 in
a complex Banach space.

Theorem4 ([16,Theorem 4.2] with𝑇 = ∞). Let𝐴 be a scalar
type spectral operator in a complex Banach space (𝑋, ‖ ⋅ ‖).

A vector function 𝑦 : [0,∞) 󳨀→ 𝑋 is a weak solution of (2) iff
there is an 𝑓 ∈ ⋂𝑡≥0𝐷(𝑒𝑡𝐴) such that

𝑦 (𝑡) = 𝑒𝑡𝐴𝑓, 𝑡 ≥ 0, (22)

the operator exponentials understood in the sense of the Borel
operational calculus (see (13)).

Remark 5. Theorem 4 generalizes [17,Theorem 3.1], its coun-
terpart for a normal operator 𝐴 in a complex Hilbert space.

We also need the following characterizations of a partic-
ular weak solution’s of (2) with a scalar type spectral operator𝐴 in a complex Banach space being strongly differentiable on
a subinterval 𝐼 of [0,∞).
Proposition 6 ([1, Proposition 3.1] with 𝑇 = ∞). Let 𝑛 ∈ N
and 𝐼 be a subinterval of [0,∞). A weak solution 𝑦(⋅) of (2) is𝑛 times strongly differentiable on 𝐼 iff

𝑦 (𝑡) ∈ 𝐷 (𝐴𝑛) , 𝑡 ∈ 𝐼, (23)

in which case

𝑦(𝑘) (𝑡) = 𝐴𝑘𝑦 (𝑡) , 𝑘 = 1, . . . , 𝑛, 𝑡 ∈ 𝐼. (24)

Subsequently, the frequent terms “spectral measure” and
“operational calculus” are abbreviated to s.m. and o.c., respec-
tively.

3. General Weak Solution

Theorem 7 (general weak solution). Let 𝐴 be a scalar type
spectral operator in a complex Banach space (𝑋, ‖ ⋅ ‖). A vector
function 𝑦 : R 󳨀→ 𝑋 is a weak solution of (1) iff there is an𝑓 ∈ ⋂𝑡∈R𝐷(𝑒𝑡𝐴) such that

𝑦 (𝑡) = 𝑒𝑡𝐴𝑓, 𝑡 ∈ R, (25)

the operator exponentials understood in the sense of the Borel
operational calculus (see (13)).

Proof. As is noted in the Introduction, 𝑦 : R 󳨀→ 𝑋 is a weak
solution of (1) iff

𝑦+ (𝑡) fl 𝑦 (𝑡) , 𝑡 ≥ 0, (26)

is a weak solution of (2) and

𝑦− (𝑡) fl 𝑦 (−𝑡) , 𝑡 ≥ 0, (27)

is a weak solution of (8).
Applying Theorem 4, to 𝑦+(⋅) and 𝑦−(⋅), we infer that this

is equivalent to the fact

𝑦 (𝑡) = 𝑒𝑡𝐴𝑓, 𝑡 ∈ R, with some 𝑓 ∈ ⋂
𝑡∈R

𝐷(𝑒𝑡𝐴) . (28)

34 Applied Principles of Mathematical Analysis
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Remarks 8.
(i) More generally, Theorem 4 and its proof can be easily

modified to describe in the same manner all weak
solution of (3) for an arbitrary interval 𝐼 of the real
axis R.

(ii) Theorem 7 implies, in particular,

(a) that the subspace⋂𝑡∈R𝐷(𝑒𝑡𝐴) of all possible ini-
tial values of the weak solutions of (1) is the larg-
est permissible for the exponential form given
by (25), which highlights the naturalness of the
notion of weak solution;

(b) that associated ACP (9), whenever solvable, is
solvable uniquely.

(iii) Observe that the initial-value subspace ⋂𝑡∈R𝐷(𝑒𝑡𝐴)
of (1), containing the dense in 𝑋 subspace⋃𝛼>0 𝐸𝐴(Δ𝛼)𝑋, where

Δ𝛼 fl {𝜆 ∈ C | |𝜆| ≤ 𝛼} , 𝛼 > 0, (29)

which coincides with the class E{0}(𝐴) of entire
vectors of 𝐴 of exponential type [18], is dense in 𝑋 as
well.

(iv) When a scalar type spectral operator 𝐴 in a complex
Banach space generates a strongly continuous group{𝑇(𝑡)}𝑡∈R of bounded linear operators,

𝑇 (𝑡) = 𝑒𝑡𝐴 and
𝐷(𝑒𝑡𝐴) = 𝑋,

𝑡 ∈ R,
(30)

[6], and hence, Theorem 7 is consistent with the well-
knowndescription of theweak solutions for this setup
(see (10)).

(v) Clearly, the initial-value subspace⋂𝑡∈R𝐷(𝑒𝑡𝐴) of (1) is
narrower than the initial-value subspace ⋂𝑡≥0𝐷(𝑒𝑡𝐴)
of (2) and the initial-value subspace ⋂𝑡≥0𝐷(𝑒𝑡(−𝐴)) =⋂𝑡≤0𝐷(𝑒𝑡𝐴) of (8); in fact it is the intersection of the
latter two.

4. Differentiability of
a Particular Weak Solution

Here, we characterize a particular weak solution’s of (1) with
a scalar type spectral operator 𝐴 in a complex Banach space
being strongly differentiable on a subinterval 𝐼 of R.
Proposition9 (differentiability of a particularweak solution).
Let 𝑛 ∈ N and 𝐼 be a subinterval of R. A weak solution 𝑦(⋅) of
(1) is 𝑛 times strongly differentiable on 𝐼 iff

𝑦 (𝑡) ∈ 𝐷 (𝐴𝑛) , 𝑡 ∈ 𝐼, (31)
in which case,

𝑦(𝑘) (𝑡) = 𝐴𝑘𝑦 (𝑡) , 𝑘 = 1, . . . , 𝑛, 𝑡 ∈ 𝐼. (32)
Proof. The statement immediately follows from the prior
theorem and Proposition 6 applied to

Im 

(A)

Re 

min(0,−＜− ln | Im | ) max(0,＜+ ln | Im | )

Figure 1

𝑦+ (𝑡) fl 𝑦 (𝑡) and

𝑦− (𝑡) fl 𝑦 (−𝑡) ,
𝑡 ≥ 0,

(33)

for an arbitrary weak solution 𝑦(⋅) of (1).
Remark 10. Observe that, as well as for Proposition 6, for 𝑛 =1, the subinterval 𝐼 can degenerate into a singleton.

Inductively, we immediately obtain the following analog
of [1, Corollary 3.2].

Corollary 11 (infinite differentiability of a particular weak
solution). Let𝐴 be a scalar type spectral operator in a complex
Banach space (𝑋, ‖ ⋅ ‖) and 𝐼 be a subinterval of R. A weak
solution 𝑦(⋅) of (1) is strongly infinite differentiable on 𝐼 (𝑦(⋅) ∈𝐶∞(𝐼,𝑋)) iff, for each 𝑡 ∈ 𝐼,

𝑦 (𝑡) ∈ 𝐶∞ (𝐴) fl ∞⋂
𝑛=1

𝐷(𝐴𝑛) , (34)

in which case

𝑦(𝑛) (𝑡) = 𝐴𝑛𝑦 (𝑡) , 𝑛 ∈ N, 𝑡 ∈ 𝐼. (35)

5. Infinite Differentiability of Weak Solutions

In this section, we characterize the strong infinite differen-
tiability on R of all weak solutions of (1) with a scalar type
spectral operator 𝐴 in a complex Banach space.

Theorem 12 (infinite differentiability of weak solutions). Let𝐴 be a scalar type spectral operator in a complex Banach space(𝑋, ‖ ⋅ ‖)with spectral measure 𝐸𝐴(⋅). Every weak solution of (1)
is strongly infinite differentiable on R iff there exist 𝑏+ > 0 and𝑏− > 0 such that the set 𝜎(𝐴)\L𝑏−,𝑏+ , where

L𝑏−,𝑏+ fl {𝜆
∈ C | Re𝜆 ≤ min (0, −𝑏− ln |Im 𝜆|) or Re𝜆
≥ max (0, 𝑏+ ln |Im 𝜆|)} ,

(36)

is bounded (see Figure 1).
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Proof. “If” part: suppose that there exist 𝑏+ > 0 and 𝑏− > 0
such that the set 𝜎(𝐴)\L𝑏−,𝑏+ is bounded and let 𝑦(⋅) be an
arbitrary weak solution of (1).

ByTheorem 7,

𝑦 (𝑡) = 𝑒𝑡𝐴𝑓, 𝑡 ∈ R, with some 𝑓 ∈ ⋂
𝑡∈R

𝐷(𝑒𝑡𝐴) . (37)

Our purpose is to show that 𝑦(⋅) ∈ 𝐶∞(R, 𝑋), which, by
Corollary 11, is attained by showing that, for each 𝑡 ∈ R,

𝑦 (𝑡) ∈ 𝐶∞ (𝐴) fl ∞⋂
𝑛=1

𝐷(𝐴𝑛) . (38)

Let us proceed by proving that, for any 𝑡 ∈ R and𝑚 ∈ N

𝑦 (𝑡) ∈ 𝐷 (𝐴𝑚) (39)

via Proposition 3.
For any 𝑡 ∈ R,𝑚 ∈ N, and an arbitrary 𝑔∗ ∈ 𝑋∗,

∫
𝜎(𝐴)

|𝜆|𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
= ∫
𝜎(𝐴)\L𝑏− ,𝑏+

|𝜆|𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
+ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |−1<Re𝜆<1}

|𝜆|𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
+ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≥1}

|𝜆|𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
+ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≤−1}

|𝜆|𝑚 𝑒𝑡Re 𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
< ∞.

(40)

Indeed,

∫
𝜎(𝐴)\L𝑏− ,𝑏+

|𝜆|𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) < ∞ (41)

and

∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |−1<Re 𝜆<1}

|𝜆|𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) < ∞ (42)

due to the boundedness of the sets

𝜎 (𝐴) \L𝑏−,𝑏+ and {𝜆 ∈ 𝜎 (𝐴) ∩L𝑏−,𝑏+ | −1 < Re𝜆 < 1} , (43)

the continuity of the integrated function on C, and the
finiteness of the measure V(𝑓, 𝑔∗, ⋅).

Further, for any 𝑡 ∈ R,𝑚 ∈ N, and an arbitrary 𝑔∗ ∈ 𝑋∗,
∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≥1}

|𝜆|𝑚 𝑒𝑡Re 𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
≤ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≥1}

[|Re𝜆| + |Im 𝜆|]𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
since, for 𝜆 ∈ 𝜎 (𝐴) ∩L𝑏−,𝑏+ with Re 𝜆 ≥ 1, 𝑒𝑏−1+ Re𝜆 ≥ |Im𝜆| ;
≤ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≥1}

[Re𝜆 + 𝑒𝑏−1+ Re𝜆]𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
since, in view of Re𝜆 ≥ 1, 𝑏+𝑒𝑏−1+ Re𝜆 ≥ Re 𝜆;

≤ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≥1}

[𝑏+𝑒𝑏−1+ Re𝜆 + 𝑒𝑏−1+ Re𝜆]𝑚

⋅ 𝑒𝑡Re 𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
= [𝑏+ + 1]𝑚 ∫

{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≥1}
𝑒[𝑚𝑏−1+ +𝑡]Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)

since 𝑓 ∈ ⋂
𝑡∈R

𝐷(𝑒𝑡𝐴) , by Proposition 3;
< ∞.

(44)

Finally, for any 𝑡 ∈ R,𝑚 ∈ N and an arbitrary 𝑔∗ ∈ 𝑋∗,
∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re 𝜆≤−1}

|𝜆|𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
≤ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≤−1}

[|Re𝜆| + |Im 𝜆|]𝑚 𝑒𝑡Re 𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
since, for 𝜆 ∈ 𝜎 (𝐴) ∩L𝑏−,𝑏+ with Re 𝜆 ≤ −1, 𝑒𝑏−1− (−Re𝜆) ≥ |Im 𝜆| ;

≤ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≤−1}

[−Re𝜆 + 𝑒𝑏−1− (−Re𝜆)]𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) since, in view of − Re𝜆 ≥ 1, 𝑏−𝑒𝑏−1− (−Re𝜆) ≥ −Re𝜆;

≤ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≤−1}

[𝑏−𝑒𝑏−1− (−Re𝜆) + 𝑒𝑏−1− (−Re𝜆)]𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
= [𝑏− + 1]𝑚 ∫

{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re 𝜆≤−1}
𝑒[𝑡−𝑚𝑏−1− ]Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) since 𝑓 ∈ ⋂

𝑡∈R

𝐷(𝑒𝑡𝐴) , by Proposition 3;
< ∞.

(45)
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Also, for any 𝑡 ∈ R,𝑚 ∈ N, and an arbitrary 𝑛 ∈ N,

sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)||𝜆|𝑚𝑒𝑡Re 𝜆>𝑛}

|𝜆|𝑚 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
≤ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)\L𝑏−,𝑏+ ||𝜆|

𝑚𝑒𝑡Re 𝜆>𝑛}
|𝜆|𝑚

⋅ 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
+ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |−1<Re𝜆<1,|𝜆|

𝑚𝑒𝑡Re 𝜆>𝑛}
|𝜆|𝑚

⋅ 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
+ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≥1,|𝜆|

𝑚𝑒𝑡Re 𝜆>𝑛}
|𝜆|𝑚

⋅ 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
+ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re 𝜆≤−1,|𝜆|

𝑚𝑒𝑡Re 𝜆>𝑛}
|𝜆|𝑚

⋅ 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)
󳨀→ 0, 𝑛 󳨀→ ∞.

(46)

Indeed, since, due to the boundedness of the sets

𝜎 (𝐴) \L𝑏−,𝑏+ and {𝜆 ∈ 𝜎 (𝐴) ∩L𝑏−,𝑏+ | −1 < Re𝜆 < 1} (47)

and the continuity of the integrated function on C, the sets

{𝜆 ∈ 𝜎 (𝐴) \L𝑏−,𝑏+ | |𝜆|𝑚 𝑒𝑡Re𝜆 > 𝑛} (48)

and

{𝜆 ∈ 𝜎 (𝐴) ∩L𝑏−,𝑏+ | −1 < Re𝜆 < 1, |𝜆|𝑚 𝑒𝑡Re𝜆 > 𝑛} (49)

are empty for all sufficiently large 𝑛 ∈ N, we immediately infer
that, for any 𝑡 ∈ R and𝑚 ∈ N,

lim
𝑛󳨀→∞

sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)\L𝑏−,𝑏+ ||𝜆|

𝑚𝑒𝑡Re𝜆>𝑛}
|𝜆|𝑚

⋅ 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) = 0
(50)

and

lim
𝑛󳨀→∞

sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |−1<Re𝜆<1,|𝜆|

𝑚𝑒𝑡Re 𝜆>𝑛}
|𝜆|𝑚

⋅ 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) = 0.
(51)

Further, for any 𝑡 ∈ R,𝑚 ∈ N, and an arbitrary 𝑛 ∈ N,

sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≥1,|𝜆|

𝑚𝑒𝑡Re 𝜆>𝑛}
|𝜆|𝑚

⋅ 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) as in (44) ;
≤ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

[𝑏+ + 1]𝑚

⋅ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≥1,|𝜆|

𝑚𝑒𝑡Re𝜆>𝑛}
𝑒[𝑚𝑏−1+ +𝑡]Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)

since 𝑓 ∈ ⋂
𝑡∈R

𝐷(𝑒𝑡𝐴) , by (16) ;
≤ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

[𝑏+ + 1]𝑚

⋅ 4𝑀󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) ∩L𝑏−,𝑏+ | Re𝜆 ≥ 1, |𝜆|𝑚 𝑒𝑡Re𝜆 > 𝑛})
⋅ 𝑒[𝑚𝑏−1+ +𝑡]𝐴𝑓󵄩󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩

≤ [𝑏+ + 1]𝑚
⋅ 4𝑀󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) ∩L𝑏−,𝑏+ | Re𝜆 ≥ 1, |𝜆|𝑚 𝑒𝑡Re𝜆 > 𝑛})
⋅ 𝑒[𝑚𝑏−1+ +𝑡]𝐴𝑓󵄩󵄩󵄩󵄩󵄩󵄩 by the strong continuity of the s.m.;

󳨀→ [𝑏+ + 1]𝑚 4𝑀󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝐴 (0) 𝑒[𝑚𝑏−1+ +𝑡]𝐴𝑓󵄩󵄩󵄩󵄩󵄩󵄩 = 0, 𝑛 󳨀→ ∞.

(52)

Finally, for any 𝑡 ∈ R,𝑚 ∈ N, and an arbitrary 𝑛 ∈ N,

sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≤−1,|𝜆|

𝑚𝑒𝑡Re𝜆>𝑛}
|𝜆|𝑚

⋅ 𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) as in (45) ;
≤ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

[𝑏− + 1]𝑚

⋅ ∫
{𝜆∈𝜎(𝐴)∩L𝑏−,𝑏+ |Re𝜆≤−1,|𝜆|

𝑚𝑒𝑡Re 𝜆>𝑛}
𝑒[𝑡−𝑚𝑏−1− ]Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)

since 𝑓 ∈ ⋂
𝑡∈R

𝐷(𝑒𝑡𝐴) , by (16) ;
≤ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

[𝑏− + 1]𝑚

⋅ 4𝑀󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) ∩L𝑏−,𝑏+ | Re𝜆 ≤ −1, |𝜆|𝑚 𝑒𝑡Re 𝜆 > 𝑛})
⋅ 𝑒[𝑡−𝑚𝑏−1− ]𝐴𝑓󵄩󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩

≤ [𝑏− + 1]𝑚
⋅ 4𝑀󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) ∩L𝑏−,𝑏+ | Re𝜆 ≤ −1, |𝜆|𝑚 𝑒𝑡Re 𝜆 > 𝑛})
⋅ 𝑒[𝑡−𝑚𝑏−1− ]𝐴𝑓󵄩󵄩󵄩󵄩󵄩󵄩 by the strong continuity of the s.m.;

󳨀→ [𝑏+ + 1]𝑚 4𝑀󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝐴 (0) 𝑒[𝑡−𝑚𝑏−1− ]𝐴𝑓󵄩󵄩󵄩󵄩󵄩󵄩 = 0, 𝑛 󳨀→ ∞.

(53)

By Proposition 3 and the properties of the o.c. (see [8,
Theorem XVIII.2.11 (f)]), (40) and (46) jointly imply that, for
any 𝑡 ∈ R and 𝑚 ∈ N,

𝑓 ∈ 𝐷 (𝐴𝑚𝑒𝑡𝐴) , (54)
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which further implies that, for each 𝑡 ∈ R,

𝑦 (𝑡) = 𝑒𝑡𝐴𝑓 ∈ ∞⋂
𝑛=1

𝐷(𝐴𝑛) š 𝐶∞ (𝐴) . (55)

Whence, by Corollary 11, we infer that

𝑦 (⋅) ∈ 𝐶∞ (R, 𝑋) , (56)

which completes the proof of the “if” part.

“Only if” part: let us prove this part by contrapositive assuming
that, for any 𝑏+ > 0 and 𝑏− > 0, the set 𝜎(𝐴)\L𝑏−,𝑏+ is
unbounded. In particular, this means that, for any 𝑛 ∈ N,
unbounded is the set

𝜎 (𝐴) \L(2𝑛)−1 ,(2𝑛)−1 = {𝜆 ∈ 𝜎 (𝐴) | − (2𝑛)−1 ln |Im 𝜆|
< Re𝜆 < (2𝑛)−1 ln |Im 𝜆|} . (57)

Hence, we can choose a sequence of points {𝜆𝑛}∞𝑛=1 in the
complex plane as follows:

𝜆𝑛 ∈ 𝜎 (𝐴) , 𝑛 ∈ N,
− (2𝑛)−1 ln 󵄨󵄨󵄨󵄨Im 𝜆𝑛󵄨󵄨󵄨󵄨 < Re𝜆𝑛 < (2𝑛)−1 ln 󵄨󵄨󵄨󵄨Im𝜆𝑛󵄨󵄨󵄨󵄨 ,

𝑛 ∈ N,
𝜆0 fl 0,

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 > max [𝑛4, 󵄨󵄨󵄨󵄨𝜆𝑛−1󵄨󵄨󵄨󵄨] , 𝑛 ∈ N.

(58)

The latter implies, in particular, that the points 𝜆𝑛, 𝑛 ∈ N, are
distinct (𝜆𝑖 ̸= 𝜆𝑗, 𝑖 ̸= 𝑗).

Since, for each 𝑛 ∈ N, the set

{𝜆 ∈ C | − (2𝑛)−1 ln |Im 𝜆| < Re𝜆
< (2𝑛)−1 ln |Im 𝜆| , |𝜆| > max [𝑛4, 󵄨󵄨󵄨󵄨𝜆𝑛−1󵄨󵄨󵄨󵄨]}

(59)

is open in C; along with the point 𝜆𝑛, it contains an open disk

Δ 𝑛 fl {𝜆 ∈ C | 󵄨󵄨󵄨󵄨𝜆 − 𝜆𝑛󵄨󵄨󵄨󵄨 < 𝜀𝑛} (60)

centered at 𝜆𝑛 of some radius 𝜀𝑛 > 0, i.e., for each 𝜆 ∈ Δ 𝑛,
− (2𝑛)−1 ln |Im 𝜆| < Re𝜆 < (2𝑛)−1 ln |Im 𝜆| and

|𝜆| > max [𝑛4, 󵄨󵄨󵄨󵄨𝜆𝑛−1󵄨󵄨󵄨󵄨] . (61)

Furthermore, we can regard the radii of the disks to be small
enough so that

0 < 𝜀𝑛 < 1𝑛 , 𝑛 ∈ N, and
Δ 𝑖 ∩ Δ 𝑗 = 0,

𝑖 ̸= 𝑗 (i.e., the disks are pairwise disjoint) .
(62)

Whence, by the properties of the s.m.,

𝐸𝐴 (Δ 𝑖) 𝐸𝐴 (Δ 𝑗) = 0, 𝑖 ̸= 𝑗, (63)

where 0 stands for the zero operator on𝑋.

Observe also, that the subspaces 𝐸𝐴(Δ 𝑛)𝑋, 𝑛 ∈ N, are
nontrivial since

Δ 𝑛 ∩ 𝜎 (𝐴) ̸= 0, 𝑛 ∈ N, (64)

with Δ 𝑛 being an open set in C.
By choosing a unit vector 𝑒𝑛 ∈ 𝐸𝐴(Δ 𝑛)𝑋 for each 𝑛 ∈ N,

we obtain a sequence {𝑒𝑛}∞𝑛=1 in𝑋 such that
󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩 = 1, 𝑛 ∈ N, and

𝐸𝐴 (Δ 𝑖) 𝑒𝑗 = 𝛿𝑖𝑗𝑒𝑗, 𝑖, 𝑗 ∈ N, (65)

where 𝛿𝑖𝑗 is the Kronecker delta.
As is easily seen, (65) implies that the vectors 𝑒𝑛, 𝑛 ∈ N,

are linearly independent.
Furthermore, there is an 𝜀 > 0 such that

𝑑𝑛 fl dist (𝑒𝑛, span ({𝑒𝑖 | 𝑖 ∈ N, 𝑖 ̸= 𝑛})) ≥ 𝜀,
𝑛 ∈ N. (66)

Indeed, the opposite implies the existence of a subsequence{𝑑𝑛(𝑘)}∞𝑘=1 such that
𝑑𝑛(𝑘) 󳨀→ 0, 𝑘 󳨀→ ∞. (67)

Then, by selecting a vector

𝑓𝑛(𝑘) ∈ span ({𝑒𝑖 | 𝑖 ∈ N, 𝑖 ̸= 𝑛 (𝑘)}) , 𝑘 ∈ N, (68)

such that

󵄩󵄩󵄩󵄩𝑒𝑛(𝑘) − 𝑓𝑛(𝑘)󵄩󵄩󵄩󵄩 < 𝑑𝑛(𝑘) + 1𝑘 , 𝑘 ∈ N, (69)

we arrive at

1 = 󵄩󵄩󵄩󵄩𝑒𝑛(𝑘)󵄩󵄩󵄩󵄩 since, by (65) , 𝐸𝐴 (Δ 𝑛(𝑘)) 𝑓𝑛(𝑘) = 0;
= 󵄩󵄩󵄩󵄩𝐸𝐴 (Δ 𝑛(𝑘)) (𝑒𝑛(𝑘) − 𝑓𝑛(𝑘))󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩𝐸𝐴 (Δ 𝑛(𝑘))󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑒𝑛(𝑘) − 𝑓𝑛(𝑘)󵄩󵄩󵄩󵄩 by (14) ;
≤ 𝑀󵄩󵄩󵄩󵄩𝑒𝑛(𝑘) − 𝑓𝑛(𝑘)󵄩󵄩󵄩󵄩 ≤ 𝑀[𝑑𝑛(𝑘) + 1𝑘] 󳨀→ 0,

𝑘 󳨀→ ∞,

(70)

which is a contradiction proving (66).
As follows from theHahn-BanachTheorem, for any 𝑛 ∈ N,

there is an 𝑒∗𝑛 ∈ 𝑋∗ such that
󵄩󵄩󵄩󵄩𝑒∗𝑛 󵄩󵄩󵄩󵄩 = 1, 𝑛 ∈ N, and

⟨𝑒𝑖, 𝑒∗𝑗 ⟩ = 𝛿𝑖𝑗𝑑𝑖, 𝑖, 𝑗 ∈ N. (71)

Let us consider separately the two possibilities concerning the
sequence of the real parts {Re𝜆𝑛}∞𝑛=1: its being bounded or
unbounded.

First, suppose that the sequence {Re𝜆𝑛}∞𝑛=1 is bounded,
i.e., there is such an 𝜔 > 0 that
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󵄨󵄨󵄨󵄨Re𝜆𝑛󵄨󵄨󵄨󵄨 ≤ 𝜔, 𝑛 ∈ N, (72)

and consider the element

𝑓 fl
∞∑
𝑘=1

𝑘−2𝑒𝑘 ∈ 𝑋, (73)

which is well defined since {𝑘−2}∞𝑘=1 ∈ 𝑙1 (𝑙1 is the space of
absolutely summable sequences) and ‖𝑒𝑘‖ = 1, 𝑘 ∈ N (see
(65)).

In view of (65), by the properties of the s.m.,

𝐸𝐴(∞⋃
𝑘=1

Δ 𝑘)𝑓 = 𝑓 and

𝐸𝐴 (Δ 𝑘) 𝑓 = 𝑘−2𝑒𝑘,
𝑘 ∈ N.

(74)

For any 𝑡 ≥ 0 and an arbitrary 𝑔∗ ∈ 𝑋∗,

∫
𝜎(𝐴)

𝑒𝑡Re 𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) by (74) ;
= ∫
𝜎(𝐴)

𝑒𝑡Re 𝜆 𝑑V(𝐸𝐴(∞⋃
𝑘=1

Δ 𝑘)𝑓, 𝑔∗, 𝜆) by (18) ;

= ∞∑
𝑘=1

∫
𝜎(𝐴)∩Δ 𝑘

𝑒𝑡Re 𝜆 𝑑V (𝐸𝐴 (Δ 𝑘) 𝑓, 𝑔∗, 𝜆) by (74) ;

= ∞∑
𝑘=1

𝑘−2 ∫
𝜎(𝐴)∩Δ 𝑘

𝑒𝑡Re𝜆 𝑑V (𝑒𝑘, 𝑔∗, 𝜆)
since, for 𝜆 ∈ Δ 𝑘, by (72) and (62) ,Re𝜆 = Re𝜆𝑘 + (Re𝜆 − Re𝜆𝑘) ≤ Re𝜆𝑘 + 󵄨󵄨󵄨󵄨𝜆 − 𝜆𝑘󵄨󵄨󵄨󵄨 ≤ 𝜔 + 𝜀𝑘 ≤ 𝜔 + 1;

≤ 𝑒𝑡(𝜔+1) ∞∑
𝑘=1

𝑘−2 ∫
𝜎(𝐴)∩Δ 𝑘

1 𝑑V (𝑒𝑘, 𝑔∗, 𝜆) = 𝑒𝑡(𝜔+1) ∞∑
𝑘=1

𝑘−2V (𝑒𝑘, 𝑔∗, Δ 𝑘) by (15) ;

≤ 𝑒𝑡(𝜔+1) ∞∑
𝑘=1

𝑘−24𝑀󵄩󵄩󵄩󵄩𝑒𝑘󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩 = 4𝑀𝑒𝑡(𝜔+1) 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩
∞∑
𝑘=1

𝑘−2 < ∞.

(75)

Also, for any 𝑡 < 0 and an arbitrary 𝑔∗ ∈ 𝑋∗,

∫
𝜎(𝐴)

𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) by (74) ;
= ∫
𝜎(𝐴)

𝑒𝑡Re𝜆 𝑑V(𝐸𝐴(∞⋃
𝑘=1

Δ 𝑘)𝑓, 𝑔∗, 𝜆) by (18) ;

= ∞∑
𝑘=1

∫
𝜎(𝐴)∩Δ 𝑘

𝑒𝑡Re𝜆 𝑑V (𝐸𝐴 (Δ 𝑘) 𝑓, 𝑔∗, 𝜆) by (74) ;

= ∞∑
𝑘=1

𝑘−2 ∫
𝜎(𝐴)∩Δ 𝑘

𝑒𝑡Re𝜆 𝑑V (𝑒𝑘, 𝑔∗, 𝜆)
since, for 𝜆 ∈ Δ 𝑘, by (72) and (62) ,Re𝜆 = Re𝜆𝑘 − (Re𝜆𝑘 − Re𝜆) ≥ Re𝜆𝑘 − 󵄨󵄨󵄨󵄨Re𝜆𝑘 − Re𝜆󵄨󵄨󵄨󵄨 ≥ −𝜔 − 𝜀𝑘 ≥ −𝜔 − 1;

≤ 𝑒−𝑡(𝜔+1) ∞∑
𝑘=1

𝑘−2∫
𝜎(𝐴)∩Δ 𝑘

1 𝑑V (𝑒𝑘, 𝑔∗, 𝜆) = 𝑒−𝑡(𝜔+1) ∞∑
𝑘=1

𝑘−2V (𝑒𝑘, 𝑔∗, Δ 𝑘) by (15) ;

≤ 𝑒−𝑡(𝜔+1) ∞∑
𝑘=1

𝑘−24𝑀󵄩󵄩󵄩󵄩𝑒𝑘󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩 = 4𝑀𝑒−𝑡(𝜔+1) 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩
∞∑
𝑘=1

𝑘−2 < ∞.

(76)
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Similarly to (75), for any 𝑡 ≥ 0 and an arbitrary 𝑛 ∈ N,

sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}

𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)

≤ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

𝑒𝑡(𝜔+1) ∞∑
𝑘=1

𝑘−2 ∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}∩Δ 𝑘

1 𝑑V (𝑒𝑘, 𝑔∗, 𝜆)
by (74) ;

= 𝑒𝑡(𝜔+1)
⋅ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∞∑
𝑘=1

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re𝜆>𝑛}∩Δ 𝑘

1 𝑑V (𝐸𝐴 (Δ 𝑘) 𝑓, 𝑔∗, 𝜆)
by (18) ;

= 𝑒𝑡(𝜔+1) sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}

1 𝑑V(𝐸𝐴(∞⋃
𝑘=1

Δ 𝑘)𝑓,

𝑔∗, 𝜆) by (74) ;
= 𝑒𝑡(𝜔+1) sup

{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}

1 𝑑V (𝑓, 𝑔∗, 𝜆)
by (16) ;

≤ 𝑒𝑡(𝜔+1) sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

4𝑀󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) | 𝑒𝑡Re𝜆 > 𝑛})𝑓󵄩󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩

≤ 4𝑀𝑒𝑡(𝜔+1) 󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) | 𝑒𝑡Re𝜆 > 𝑛})𝑓󵄩󵄩󵄩󵄩󵄩
by the strong continuity of the s.m.;

󳨀→ 4𝑀𝑒𝑡(𝜔+1) 󵄩󵄩󵄩󵄩𝐸𝐴 (0) 𝑓󵄩󵄩󵄩󵄩 = 0, 𝑛 󳨀→ ∞.

(77)

Similarly to (76), for any 𝑡 < 0 and an arbitrary 𝑛 ∈ N,

sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}

𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)

≤ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

𝑒−𝑡(𝜔+1) ∞∑
𝑘=1

𝑘−2 ∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re𝜆>𝑛}∩Δ 𝑘

1 𝑑V (𝑒𝑘, 𝑔∗,
𝜆) by (74) ;

= 𝑒−𝑡(𝜔+1)
⋅ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∞∑
𝑘=1

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re𝜆>𝑛}∩Δ 𝑘

1 𝑑V (𝐸𝐴 (Δ 𝑘) 𝑓, 𝑔∗, 𝜆)
by (18) ;

= 𝑒−𝑡(𝜔+1) sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re𝜆>𝑛}

1 𝑑V(𝐸𝐴(∞⋃
𝑘=1

Δ 𝑘)𝑓,

𝑔∗, 𝜆) by (74) ;
= 𝑒−𝑡(𝜔+1) sup

{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re𝜆>𝑛}

1 𝑑V (𝑓, 𝑔∗, 𝜆)
by (16) ;

≤ 𝑒−𝑡(𝜔+1) sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

4𝑀󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) | 𝑒𝑡Re𝜆 > 𝑛}) 𝑓󵄩󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩

≤ 4𝑀𝑒−𝑡(𝜔+1) 󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) | 𝑒𝑡Re𝜆 > 𝑛}) 𝑓󵄩󵄩󵄩󵄩󵄩
by the strong continuity of the s.m.;

󳨀→ 4𝑀𝑒−𝑡(𝜔+1) 󵄩󵄩󵄩󵄩𝐸𝐴 (0) 𝑓󵄩󵄩󵄩󵄩 = 0, 𝑛 󳨀→ ∞.
(78)

By Proposition 3, (75), (76), (77), and (78) jointly imply that

𝑓 ∈ ⋂
𝑡∈R

𝐷(𝑒𝑡𝐴) , (79)

and hence, by Theorem 7,

𝑦 (𝑡) fl 𝑒𝑡𝐴𝑓, 𝑡 ∈ R, (80)

is a weak solution of (1).
Let

ℎ∗ fl ∞∑
𝑘=1

𝑘−2𝑒∗𝑘 ∈ 𝑋∗, (81)

the functional being well defined since {𝑘−2}∞𝑘=1 ∈ 𝑙1 and‖𝑒∗𝑘 ‖ = 1, 𝑘 ∈ N (see (71)).
In view of (71) and (66), we have

⟨𝑒𝑛, ℎ∗⟩ = ⟨𝑒𝑘, 𝑘−2𝑒∗𝑘⟩ = 𝑑𝑘𝑘−2 ≥ 𝜀𝑘−2, 𝑘 ∈ N. (82)

Hence,

∫
𝜎(𝐴)

|𝜆| 𝑑V (𝑓, ℎ∗, 𝜆) by (18) as in (75) ;
= ∞∑
𝑘=1

𝑘−2∫
𝜎(𝐴)∩Δ 𝑘

|𝜆| 𝑑V (𝑒𝑘, ℎ∗, 𝜆)
since, for 𝜆 ∈ Δ 𝑘, by (61) , |𝜆| ≥ 𝑘4;

≥ ∞∑
𝑘=1

𝑘−2𝑘4V (𝑒𝑘, ℎ∗, Δ 𝑘) ≥ ∞∑
𝑘=1

𝑘2 󵄨󵄨󵄨󵄨⟨𝐸𝐴 (Δ 𝑘) 𝑒𝑘, ℎ∗⟩󵄨󵄨󵄨󵄨 by (65) and (82) ;

≥ ∞∑
𝑘=1

𝑘2𝜀𝑘−2 = ∞.

(83)

By Proposition 3, (83) implies that

𝑦 (0) = 𝑓 ∉ 𝐷 (𝐴) , (84)

which, by Proposition 9 (𝑛 = 1, 𝐼 = {0}) further implies that
the weak solution 𝑦(𝑡) = 𝑒𝑡𝐴𝑓, 𝑡 ∈ R, of (1) is not strongly
differentiable at 0.

Now, suppose that the sequence {Re𝜆𝑛}∞𝑛=1 is unbounded.
Therefore, there is a subsequence {Re𝜆𝑛(𝑘)}∞𝑘=1 such that

Re𝜆𝑛(𝑘) 󳨀→ ∞ or

Re𝜆𝑛(𝑘) 󳨀→ −∞,
𝑘 󳨀→ ∞.

(85)

Let us consider separately each of the two cases.
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First, suppose that

Re𝜆𝑛(𝑘) 󳨀→ ∞, 𝑘 󳨀→ ∞ (86)

Then, without loss of generality, we can regard that

Re𝜆𝑛(𝑘) ≥ 𝑘, 𝑘 ∈ N. (87)

Consider the elements

𝑓 fl
∞∑
𝑘=1

𝑒−𝑛(𝑘)Re𝜆𝑛(𝑘)𝑒𝑛(𝑘) ∈ 𝑋 and

ℎ fl
∞∑
𝑘=1

𝑒−(𝑛(𝑘)/2)Re𝜆𝑛(𝑘)𝑒𝑛(𝑘) ∈ 𝑋,
(88)

well defined since, by (87),

{𝑒−𝑛(𝑘)Re𝜆𝑛(𝑘)}∞
𝑘=1

, {𝑒−(𝑛(𝑘)/2)Re𝜆𝑛(𝑘)}∞
𝑘=1

∈ 𝑙1 (89)

and ‖𝑒𝑛(𝑘)‖ = 1, 𝑘 ∈ N (see (65)).

By (65),

𝐸𝐴(∞⋃
𝑘=1

Δ 𝑛(𝑘))𝑓 = 𝑓 and

𝐸𝐴 (Δ 𝑛(𝑘)) 𝑓 = 𝑒−𝑛(𝑘)Re𝜆𝑛(𝑘)𝑒𝑛(𝑘),
𝑘 ∈ N,

(90)

and

𝐸𝐴(∞⋃
𝑘=1

Δ 𝑛(𝑘))ℎ = ℎ and

𝐸𝐴 (Δ 𝑛(𝑘)) ℎ = 𝑒−(𝑛(𝑘)/2)Re𝜆𝑛(𝑘)𝑒𝑛(𝑘),
𝑘 ∈ N.

(91)

For any 𝑡 ≥ 0 and an arbitrary 𝑔∗ ∈ 𝑋∗,

∫
𝜎(𝐴)

𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) by (18) as in (75) ;
= ∞∑
𝑘=1

𝑒−𝑛(𝑘)Re𝜆𝑛(𝑘) ∫
𝜎(𝐴)∩Δ 𝑛(𝑘)

𝑒𝑡Re𝜆 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)
since, for 𝜆 ∈ Δ 𝑛(𝑘), by (62) , Re𝜆 = Re𝜆𝑛(𝑘) + (Re𝜆 − Re𝜆𝑛(𝑘)) ≤ Re𝜆𝑛(𝑘) + 󵄨󵄨󵄨󵄨𝜆 − 𝜆𝑛(𝑘)󵄨󵄨󵄨󵄨 ≤ Re𝜆𝑛(𝑘) + 1;

≤ ∞∑
𝑘=1

𝑒−𝑛(𝑘)Re𝜆𝑛(𝑘)𝑒𝑡(Re𝜆𝑛(𝑘)+1) ∫
𝜎(𝐴)∩Δ 𝑛(𝑘)

1 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)

= 𝑒𝑡 ∞∑
𝑘=1

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘)V (𝑒𝑛(𝑘), 𝑔∗, Δ 𝑛(𝑘)) by (15) ;

≤ 𝑒𝑡 ∞∑
𝑘=1

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘)4𝑀󵄩󵄩󵄩󵄩𝑒𝑛(𝑘)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩 = 4𝑀𝑒𝑡 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩
∞∑
𝑘=1

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘)
< ∞.

(92)

Indeed, for all 𝑘 ∈ N sufficiently large so that

𝑛 (𝑘) ≥ 𝑡 + 1, (93)

in view of (87),

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘) ≤ 𝑒−𝑘. (94)

For any 𝑡 < 0 and an arbitrary 𝑔∗ ∈ 𝑋∗,

∫
𝜎(𝐴)

𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆) by (18) as in (75) ;

= ∞∑
𝑘=1

𝑒−𝑛(𝑘)Re𝜆𝑛(𝑘) ∫
𝜎(𝐴)∩Δ 𝑛(𝑘)

𝑒𝑡Re 𝜆 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)
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since, for 𝜆 ∈ Δ 𝑛(𝑘), by (62) , Re𝜆 = Re𝜆𝑛(𝑘) − (Re𝜆𝑛(𝑘) − Re𝜆) ≥ Re𝜆𝑛(𝑘) − 󵄨󵄨󵄨󵄨Re𝜆𝑛(𝑘) − Re𝜆󵄨󵄨󵄨󵄨 ≥ Re𝜆𝑛(𝑘) − 1;
≤ ∞∑
𝑘=1

𝑒−𝑛(𝑘)Re𝜆𝑛(𝑘)𝑒𝑡(Re𝜆𝑛(𝑘)−1) ∫
𝜎(𝐴)∩Δ 𝑛(𝑘)

1 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)

= 𝑒−𝑡 ∞∑
𝑘=1

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘)V (𝑒𝑛(𝑘), 𝑔∗, Δ 𝑛(𝑘)) by (15) ;

≤ 𝑒−𝑡 ∞∑
𝑘=1

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘)4𝑀󵄩󵄩󵄩󵄩𝑒𝑛(𝑘)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩 = 4𝑀𝑒−𝑡 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩
∞∑
𝑘=1

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘)
< ∞.

(95)

Indeed, for all 𝑘 ∈ N, in view of 𝑡 < 0,
𝑛 (𝑘) − 𝑡 ≥ 𝑛 (𝑘) ≥ 1, (96)

and hence, in view of (87),

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘) ≤ 𝑒−𝑘. (97)

Similarly to (92), for any 𝑡 ≥ 0 and an arbitrary 𝑛 ∈ N,

sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}

𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)

≤ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

𝑒𝑡 ∞∑
𝑘=1

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘) ∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re𝜆>𝑛}∩Δ 𝑛(𝑘)

1 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)

= 𝑒𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∞∑
𝑘=1

𝑒−[(𝑛(𝑘)/2)−𝑡]Re𝜆𝑛(𝑘)𝑒−(𝑛(𝑘)/2)Re𝜆(𝑘)

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}∩Δ 𝑛(𝑘)

1 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)
since, by (87) , there is an 𝐿 > 0 such that 𝑒−[(𝑛(𝑘)/2)−𝑡]Re𝜆𝑛(𝑘) ≤ 𝐿, 𝑘 ∈ N;
≤ 𝐿𝑒𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∞∑
𝑘=1

𝑒−(𝑛(𝑘)/2)Re𝜆𝑛(𝑘) ∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re𝜆>𝑛}∩Δ 𝑛(𝑘)

1 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)
by (91) ;

= 𝐿𝑒𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∞∑
𝑘=1

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}∩Δ 𝑛(𝑘)

1 𝑑V (𝐸𝐴 (Δ 𝑛(𝑘)) ℎ, 𝑔∗, 𝜆)
by (18) ;

= 𝐿𝑒𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re𝜆>𝑛}

1 𝑑V(𝐸𝐴(∞⋃
𝑘=1

Δ 𝑛(𝑘))ℎ, 𝑔∗, 𝜆)
by (91) ;

= 𝐿𝑒𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}

1 𝑑V (ℎ, 𝑔∗, 𝜆) by (16) ;
≤ 𝐿𝑒𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

4𝑀󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) | 𝑒𝑡Re𝜆 > 𝑛}) ℎ󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩
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≤ 4𝐿𝑀𝑒𝑡 󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) | 𝑒𝑡Re𝜆 > 𝑛}) ℎ󵄩󵄩󵄩󵄩󵄩
by the strong continuity of the s.m.;

󳨀→ 4𝐿𝑀𝑒𝑡 󵄩󵄩󵄩󵄩𝐸𝐴 (0) ℎ󵄩󵄩󵄩󵄩 = 0, 𝑛 󳨀→ ∞.
(98)

Similar to 5, for any 𝑡 < 0 and an arbitrary 𝑛 ∈ N,

sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}

𝑒𝑡Re𝜆 𝑑V (𝑓, 𝑔∗, 𝜆)

≤ sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

𝑒−𝑡 ∞∑
𝑘=1

𝑒−[𝑛(𝑘)−𝑡]Re𝜆𝑛(𝑘) ∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re𝜆>𝑛}∩Δ 𝑛(𝑘)

1 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)

= 𝑒−𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∞∑
𝑘=1

𝑒−[(𝑛(𝑘)/2)−𝑡]Re𝜆𝑛(𝑘)𝑒−(𝑛(𝑘)/2)Re𝜆(𝑘)

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}∩Δ 𝑛(𝑘)

1 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)
since, by (87) , there is an 𝐿 > 0 such that 𝑒−[(𝑛(𝑘)/2)−𝑡]Re𝜆𝑛(𝑘) ≤ 𝐿, 𝑘 ∈ N;
≤ 𝐿𝑒−𝑡 sup

{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∞∑
𝑘=1

𝑒−(𝑛(𝑘)/2)Re𝜆𝑛(𝑘) ∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}∩Δ 𝑛(𝑘)

1 𝑑V (𝑒𝑛(𝑘), 𝑔∗, 𝜆)
by (91) ;

= 𝐿𝑒−𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∞∑
𝑘=1

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}∩Δ 𝑛(𝑘)

1 𝑑V (𝐸𝐴 (Δ 𝑛(𝑘)) ℎ, 𝑔∗, 𝜆)
by (18) ;

= 𝐿𝑒−𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}

1 𝑑V(𝐸𝐴(∞⋃
𝑘=1

Δ 𝑛(𝑘))ℎ, 𝑔∗, 𝜆)
by (91) ;

= 𝐿𝑒−𝑡 sup
{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

∫
{𝜆∈𝜎(𝐴)|𝑒𝑡Re 𝜆>𝑛}

1 𝑑V (ℎ, 𝑔∗, 𝜆) by (16) ;
≤ 𝐿𝑒−𝑡 sup

{𝑔∗∈𝑋∗|‖𝑔∗‖=1}

4𝑀󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) | 𝑒𝑡Re𝜆 > 𝑛}) ℎ󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔∗󵄩󵄩󵄩󵄩
≤ 4𝐿𝑀𝑒−𝑡 󵄩󵄩󵄩󵄩󵄩𝐸𝐴 ({𝜆 ∈ 𝜎 (𝐴) | 𝑒𝑡Re𝜆 > 𝑛}) ℎ󵄩󵄩󵄩󵄩󵄩

by the strong continuity of the s.m.;
󳨀→ 4𝐿𝑀𝑒−𝑡 󵄩󵄩󵄩󵄩𝐸𝐴 (0) ℎ󵄩󵄩󵄩󵄩 = 0, 𝑛 󳨀→ ∞.

(99)

By Proposition 3, (92), 5, 5, and (99) jointly imply that

𝑓 ∈ ⋂
𝑡∈R

𝐷(𝑒𝑡𝐴) , (100)

and hence, by Theorem 7,

𝑦 (𝑡) fl 𝑒𝑡𝐴𝑓, 𝑡 ∈ R, (101)

is a weak solution of (1).
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Since, for any 𝜆 ∈ Δ 𝑛(𝑘), 𝑘 ∈ N, by (62), (87),

Re𝜆 = Re𝜆𝑛(𝑘) − (Re𝜆𝑛(𝑘) − Re𝜆)
≥ Re𝜆𝑛(𝑘) − 󵄨󵄨󵄨󵄨Re𝜆𝑛(𝑘) − Re𝜆󵄨󵄨󵄨󵄨 ≥ Re𝜆𝑛(𝑘) − 𝜀𝑛(𝑘)
≥ Re𝜆𝑛(𝑘) − 1𝑛 (𝑘) ≥ 𝑘 − 1 ≥ 0

(102)

and, by (61),

Re𝜆 < (2𝑛 (𝑘))−1 ln |Im 𝜆| , (103)

we infer that, for any 𝜆 ∈ Δ 𝑛(𝑘), 𝑘 ∈ N,

|𝜆| ≥ |Im 𝜆| ≥ 𝑒2𝑛(𝑘)Re𝜆 ≥ 𝑒2𝑛(𝑘)(Re𝜆𝑛(𝑘)−1/𝑛(𝑘)). (104)

Using this estimate, for the functional ℎ∗ ∈ 𝑋∗ defined by
(81), we have

∫
𝜎(𝐴)

|𝜆| 𝑑V (𝑓, ℎ∗, 𝜆) by (18) as in (75) ;
= ∞∑
𝑘=1

𝑒−𝑛(𝑘)Re𝜆𝑛(𝑘) ∫
Δ 𝑛(𝑘)

|𝜆| 𝑑V (𝑒𝑛(𝑘), ℎ∗, 𝜆)

≥ ∞∑
𝑘=1

𝑒−𝑛(𝑘)Re𝜆𝑛(𝑘)𝑒2𝑛(𝑘)(Re𝜆𝑛(𝑘)−1/𝑛(𝑘))V (𝑒𝑛(𝑘), ℎ∗, Δ 𝑛(𝑘))

= ∞∑
𝑘=1

𝑒−2𝑒𝑛(𝑘)Re𝜆𝑛(𝑘) 󵄨󵄨󵄨󵄨⟨𝐸𝐴 (Δ 𝑛(𝑘)) 𝑒𝑛(𝑘), ℎ∗⟩󵄨󵄨󵄨󵄨
by (87) , (65) , and (82) ;

≥ ∞∑
𝑘=1

𝑒−2𝜀 𝑒𝑛(𝑘)𝑛 (𝑘)2 = ∞.

(105)

By Proposition 3, (83) implies that

𝑦 (0) = 𝑓 ∉ 𝐷 (𝐴) , (106)

which, by Proposition 9 (𝑛 = 1, 𝐼 = {0}), further implies that
the weak solution 𝑦(𝑡) = 𝑒𝑡𝐴𝑓, 𝑡 ∈ R, of (1) is not strongly
differentiable at 0.

The remaining case of

Re𝜆𝑛(𝑘) 󳨀→ −∞, 𝑘 󳨀→ ∞, (107)

is symmetric to the case of

Re𝜆𝑛(𝑘) 󳨀→ ∞, 𝑘 󳨀→ ∞, (108)

and is considered in absolutely the same manner, which
furnishes a weak solution 𝑦(⋅) of (1) such that

𝑦 (0) ∉ 𝐷 (𝐴) , (109)

and hence, by Proposition 9 (𝑛 = 1, 𝐼 = {0}), not strongly
differentiable at 0.

With every possibility concerning {Re𝜆𝑛}∞𝑛=1 considered,
we infer that assuming the opposite to the “if” part’s premise
allows to find a weak solution of (1) on [0,∞) that is not
strongly differentiable at 0, much less strongly infinite differ-
entiable on R.

Thus, the proof by contrapositive of the “only if” part is
complete and so is the proof of the entire statement.

FromTheorem 12 and [1, Theorem 4.2], the latter charac-
terizing the strong infinite differentiability of all weak solu-
tion of (2) on (0,∞), we also obtain the following.

Corollary 13. Let 𝐴 be a scalar type spectral operator in a
complex Banach space. If all weak solutions of (2) are strongly
infinite differentiable on (0,∞), then all weak solutions of (1)
are strongly infinite differentiable on R.

Remark 14. As follows fromTheorem 12, all weak solutions of
(1) with a scalar type spectral operator𝐴 in a complex Banach
space can be strongly infinite differentiable while the operator𝐴 is unbounded, e.g., when 𝐴 is an unbounded self-adjoint
operator in a complex Hilbert space (cf. [17, Theorem 7.1]).
This fact contrasts the situationwhen a closed densely defined
linear operator 𝐴 in a complex Banach space generates a
strongly continuous group {𝑇(𝑡)}𝑡∈R of bounded linear opera-
tors, i.e., the associated abstract Cauchy problem iswell-posed
(see Remarks 1.1), in which case even the (left or right) strong
differentiability of all weak solutions of (1) at 0 immediately
implies boundedness for 𝐴 (cf. [3]).

6. The Cases of Normal and
Self-Adjoint Operators

As an important particular case of Theorem 12, we obtain

Corollary 15 (the case of a normal operator). Let 𝐴 be a
normal operator in a complex Hilbert space. Every weak solu-
tion of (1) is strongly infinite differentiable on R iff there exist𝑏+ > 0 and 𝑏− > 0 such that the set 𝜎(𝐴)\L𝑏−,𝑏+ , where

L𝑏−,𝑏+ fl {𝜆 ∈ C | Re𝜆
≤ min (0, −𝑏− ln |Im 𝜆|) or Re𝜆
≥ max (0, 𝑏+ ln |Im𝜆|)} ,

(110)

is bounded (see Figure 1).

Remark 16. Corollary 15 develops the results of paper [17],
where similar consideration is given to the strong differen-
tiability of the weak solutions of (2) with a normal operator𝐴 in a complex Hilbert space on [0,∞) and (0,∞).

From Corollary 13, we immediately obtain the following.

Corollary 17. Let 𝐴 be a normal operator in a complex
Hilbert space. If all weak solutions of (2) are strongly infinite
differentiable on (0,∞) (cf. [17, Theorem 5.2]), then all weak
solutions of (1) are strongly infinite differentiable on R.

Considering that, for a self-adjoint operator 𝐴 in a com-
plex Hilbert space𝑋,

𝜎 (𝐴) ⊆ R (111)
(see, e.g., [10, 11]), we further arrive at the following.

Corollary 18 (the case of a self-adjoint operator). Every weak
solution of (1) with a self-adjoint operator 𝐴 in a complex
Hilbert space is strongly infinite differentiable on R.

Cf. [17, Theorem 7.1].
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7. Inherent Smoothness Improvement Effect

As is observed in the proof of the “only if” part ofTheorem 12,
the opposite to the “if” part’s premise implies that there is a
weak solution of (1), which is not strongly differentiable at 0.
This renders the case of finite strong differentiability of the
weak solutions superfluous and we arrive at the following in-
herent effect of smoothness improvement.

Proposition 19. Let 𝐴 be a scalar type spectral operator in a
complex Banach space (𝑋, ‖ ⋅ ‖). If every weak solution of (1) is
strongly differentiable at 0, then all of them are strongly infinite
differentiable on R.

Cf. [1, Proposition 5.1].

8. Concluding Remark

Due to the scalar type spectrality of the operator 𝐴, Theo-
rem 12 is stated exclusively in terms of the location of its
spectrum in the complex plane, similarly to the celebrated
Lyapunov stability theorem [19] (cf. [3, Ch. I, Theorem 2.10]),
and thus is an intrinsically qualitative statement (cf. [1, 20]).
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We extend the result of Kirk-Saliga and we generalize Alfuraidan and Khamsi theorem for reflexive graphs. As a consequence, we
obtain the ordered version of Caristi’s fixed point theorem. Some concrete examples are given to support the obtained results.

1. Introduction

Fixed point theory is one of the most useful tools in
mathematics; it is used to solve many existence problems
such as differential equations, control theory, optimization,
and several other branches (for the literature see [1]). The
most well-known fixed point result is Banach contraction
principle [2]; it is famous for its applications, proving the
existence of solution of integral equations by converting
the problem to fixed point problem (see [3]). Recall that
a point 𝑥 ∈ 𝑋 is called a fixed point for a map 𝑇 :𝑋 → 𝑋 if 𝑇𝑥 = 𝑥. Due to its importance, this theorem
found a number of generalizations and extensions in many
directions; for more details see [4] and the references therein.
In 1976, Caristi (see [5]) gave an elegant generalization of
Banach contraction principle, where the assumption that
“𝑇 : 𝑋 → 𝑋 is continuous” is dropped and replaced by
a weak assumption. Since then, various proofs, extensions,
and generalizations are given by many authors (see [6–8]).
It is worth mentioning that Caristi’s fixed point theorem is
equivalent to the Ekeland variational principle [8]. Also, it
characterizes the completeness of the metric space as showed
by Kirk in [9]. Among those generalizations, there is Kirk-
Saliga fixed point theorem (see [10]) which states that any
map𝑇 : 𝑋 → 𝑋 has a fixed point provided that𝑋 is complete
metric space and there exist an integer 𝑝 ∈ N and a lower

semicontinuous function 𝜑 : 𝑋 → [0,∞) such that

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑝𝑥) (1)

and𝜑(𝑇𝑥) ≤ 𝜑(𝑥) for any 𝑥 ∈ 𝑋. Formore on the latter result,
one can consult [11].

Recently, Ran and Reurings [12] extend the Banach
contraction principle in the context of partially ordered set
where the contraction is restricted to the comparable ele-
ments which allowed them to give a meaningful application
to linear and nonlinear matrix equations. Moreover, Nieto
and Rodŕıguez-López in [13] have weakened the continuity
assumption using a more suitable condition where the order
is combinedwith the topological properties. Formore details,
one can consult [14, 15]. Also, in [16] Alfuraidan and Khamsi
gave an analogue version of Caristi’s fixed point theorem
in the setting of partially ordered metric space where the
inequality holds only for comparable elements. However,
the new approach in their work is mixing the concept of
the reflexive acyclic digraph with fixed point results. In this
article, we discuss an extension of Kirk-Saliga result and
we generalize Alfuraidan and Khamsi theorem for reflexive
graphs. As a corollary, we obtain the ordered version of
Caristi’s fixed point theorem. Some concrete examples are
given to support the obtained results. Throughout this paper
we denote by N the set of all integers and by N∗ the set of all
positive integers.
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2. Preliminaries

We start by recalling some basic notions on graphs borrowed
from [17].

Definition 1. Let 𝑉 be an arbitrary set.

(i) A directed graph, or digraph, is a pair 𝐺 = (𝑉, 𝐸),
where𝐸 is a subset of theCartesian product𝑉×𝑉.The
elements of𝑉 are called vertices or nodes of𝐺 and the
elements of 𝐸 are the edges also called oriented edges
or arcs of 𝐺. An edge of the form (V, V) is a loop on V.
Another way to express that𝐸 is a subset of𝑉×𝑉 is to
say that 𝐸 is a binary relation over𝑉. Given a digraph𝐺, the set of vertices (of edges) of𝐺 is denoted by𝑉(𝐺)
(𝐸(𝐺)).

(ii) The digraph 𝐺 = (𝑉, 𝐸) is said to be transitive if
whenever (𝑥, 𝑦) ∈ 𝐸 and (𝑦, 𝑧) ∈ 𝐸, (𝑥, 𝑧) ∈ 𝐸.

Definition 2. A digraph 𝐺 = (𝑉, 𝐸) is said to be reflexive ifΔ fl {(V, V) | V ∈ 𝑉} is a subset of 𝐸. Otherwise, every vertex
has a loop.

Definition 3. Let 𝐺 = (𝑉, 𝐸) be a digraph.
(i) A vertex 𝑥 is said to be isolated if for all vertex 𝑦 ̸= 𝑥,

we have neither (𝑥, 𝑦) ∈ 𝐸 nor (𝑦, 𝑥) ∈ 𝐸.
(ii) Two vertices 𝑥, 𝑦 ∈ 𝑉. A path in 𝐺, from (or joining)𝑥 to 𝑦, is a sequence of vertices 𝑝 = {𝑎𝑖}0≤𝑖≤𝑛, 𝑛 ∈ N∗

such that 𝑎0 = 𝑥, 𝑎𝑛 = 𝑦 and (𝑎𝑖, 𝑎𝑖+1) ∈ 𝐸, for all𝑖 ∈ {0, 1, . . . , 𝑛 − 1}. The integer 𝑛 is the length of the
path 𝑝. If 𝑥 = 𝑦 and 𝑛 > 1, the path 𝑝 is called a
directed cycle. An acyclic digraph is a digraph which
has no directed cycle.

(iii) We denote by 𝑦 ∈ [𝑥]𝐺 the fact that 𝑦 can be reached
from 𝑥 by means of a path in 𝐺.

Ametric space (𝑋, 𝑑) endowedwith a digraph𝐺 such that𝑉(𝐺) = 𝑋 is denoted by (𝑋, 𝑑, 𝐺). The following notion of
regularity is borrowed from Alfuraidan and Khamsi in [16]
that considered it for posets.

Definition 4. Let (𝑋, 𝑑, ⪯) be a partially orderedmetric space.
We say that 𝑋 satisfies the condition (OSC) if for any
decreasing sequence {𝑥𝑛} ⊆ 𝑋 that is convergent to 𝑥 ∈ 𝑋,𝑥 = inf{𝑥𝑛 : 𝑛 ∈ N}.

In the setting of digraphs, the analogue of the infimum of
chain may be stated as follows.

Definition 5. Let (𝑋, 𝑑, 𝐺) be metric space endowed with a
digraph. We say that 𝑋 satisfies the condition (OSCL) if for
any sequence {𝑥𝑛} ⊆ 𝑋 that is convergent to 𝑥 ∈ 𝑋 and for
all 𝑛 ∈ N, 𝑥𝑛+1 ∈ [𝑥𝑛]𝐺, 𝑥 ∈ [𝑥𝑛]𝐺 for all 𝑛 ∈ N and if
there exists 𝑦 ∈ 𝑋 such that 𝑦 ∈ [𝑥𝑛]𝐺, for all 𝑛 ∈ N, then𝑦 ∈ [𝑥]𝐺.

Remark 6. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space.
Let 𝐺⪯ be the digraph associated with the order ⪯ (see [16]).
One can see that

𝑥 ⪯ 𝑦 ⇐⇒ (𝑦, 𝑥) ∈ 𝐸 (𝐺⪯) ⇐⇒ 𝑥 ∈ [𝑦]𝐺⪯ . (2)

Under the above observations, the (OSCL) property is
reduced to the (OSC) condition.

Let 𝜔 be the first transfinite ordinal and let Ω be the first
uncountable transfinite ordinal. 𝜔 is the order type of N “the
set of integers” and Ω is the order type of R the set of real
numbers. Note that, for each 𝜉 < Ω, 𝜉 is countable.
Proposition 7 (see [11]). The following is valid:

(i) The ordinal Ω cannot be attained via sequential limits
of countable ordinals. That is if {𝛼𝑛} is an ascending
sequence of countable ordinals, then the ordinal

𝛼 = sup {𝛼𝑛} = lim𝛼𝑛 (3)

is countable too.

(ii) Each second kind countable ordinal is attainable via
such sequences. In other words: if 𝛼 < Ω is of
second kind (ordinal limit), then there exists a strictly
ascending sequence {𝛼𝑛} of countable ordinals with
property (3).

The following result is needed throughout this work; for
the proof see [18, Proposition A.6, pp. 284].

Proposition 8. Suppose that a sequence {𝑥𝛼}𝛼∈Ω ⊆ R is
bounded and either nonincreasing or nondecreasing. Then
there exists 𝛽 ∈ Ω such that 𝑥𝛼 = 𝑥𝛽 for allΩ > 𝛼 ≥ 𝛽.

We conclude this section by the following useful defini-
tions.

Definition 9. Let (𝑋, 𝑑, 𝐺) be metric space endowed with a
digraph,𝑝 ∈ N and𝜑 : 𝑋 → [0, +∞[ a lower semicontinuous
function. Let 𝑇 : 𝑋 → 𝑋 be a self-mapping. We say the
following:

(1) 𝑇 is a 𝐺-monotone if for all (𝑥, 𝑦) ∈ 𝑋2,
𝑥 ∈ [𝑦]𝐺 󳨐⇒ 𝑇𝑥 ∈ [𝑇𝑦]𝐺 . (4)

(2) 𝑇 is a 𝐺-Caristi mapping if for all 𝑥 ∈ 𝑋,

𝑇𝑥 ∈ [𝑥]𝐺 󳨐⇒ 𝑑 (𝑇𝑥, 𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑥) . (5)

(3) 𝑇 is a 𝐺-Kirk-Saliga mapping if for all 𝑥 ∈ 𝑋,

𝑇𝑥 ∈ [𝑥]𝐺 󳨐⇒ {{{
(KS1) : 𝑑 (𝑇𝑥, 𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑝𝑥) ;
(KS2) : 𝜑 (𝑇𝑥) ≤ 𝜑 (𝑥) . (6)
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3. Main Results

Theorem10. Let (𝑋, 𝑑, 𝐺) be a completemetric space endowed
with a reflexive digraph satisfying the (OSCL) condition. Let𝑇 : 𝑋 → 𝑋 be a 𝐺-monotone and 𝐺-Kirk-Saliga mapping. If
there exists an element 𝑥0 ∈ 𝑋 such that 𝑇𝑥0 ∈ [𝑥0]𝐺, then 𝑇
admits a fixed point in 𝑋.

Proof. If𝑝 = 0 then𝑇𝑥 = 𝑥, for all𝑥 ∈ 𝑋 such that𝑇𝑥 ∈ [𝑥]𝐺.
Assume that 𝑝 ≥ 1 and consider the function 𝜙 defined from𝑋 into [0, +∞[ by

𝜙 (𝑥) = 𝑝−1∑
𝑖=0

𝜑 (𝑇𝑖𝑥) , ∀𝑥 ∈ 𝑋. (7)

The idea of the proof is to construct a transfinite orbit (𝑥𝛼)𝛼∈Ω,
where Ω is the first uncountable ordinal satisfying, for each𝛼 ∈ Ω,

𝐴(𝛼): 𝑇𝑥𝛼 = 𝑥𝛼+1;
𝐵(𝛼): 𝑥𝛼 = lim𝜆→𝛼−𝑥𝜆, whenever 𝛼 is an ordinal limit;
𝐶(𝛼): 𝑥𝛼 ∈ [𝑥𝜇]𝐺, whenever 𝜇 ≺ 𝛼;
𝐷(𝛼): 𝑑(𝑥𝛼, 𝑥𝜇) ≤ 𝜙(𝑥𝜇) − 𝜙(𝑥𝛼), whenever 𝜇 ⪯ 𝛼.

Consider the sequence {𝑥𝑛} defined for each 𝑛 ∈ N by𝑥𝑛+1 = 𝑇𝑥𝑛. Since 𝑇𝑥0 ∈ [𝑥0]𝐺 and using the monotony of𝑇, we obtain 𝑥𝑛+1 ∈ [𝑥𝑛]𝐺 for each 𝑛 ∈ N. According to
(KS2), the nonnegative sequence {𝜙(𝑥𝑛)} is decreasing and
then converges. From (KS1), we get that for all integers 𝑛 > 𝑚

𝑑 (𝑥𝑚, 𝑥𝑛) ≤
𝑛−1∑
𝑖=𝑚

𝑑 (𝑥𝑖, 𝑥𝑖+1) ≤
𝑛−1∑
𝑖=𝑚

𝜙 (𝑥𝑖) − 𝜙 (𝑥𝑖+1)
≤ 𝜙 (𝑥𝑚) − 𝜙 (𝑥𝑛) .

(8)

Hence, {𝑥𝑛} is a Cauchy sequence and then converges to 𝑥𝜔 ∈𝑋. Let us put 𝑥𝜔+1 = 𝑇𝑥𝜔. Clearly the properties 𝐴(𝛼)–𝐷(𝛼)
are satisfied for each 𝛼 ≤ 𝜔. Let 𝛽 ∈ Ω. Assume that the orbit{𝑥𝛼}𝛼<𝛽 has been defined. We need to define 𝑥𝛽 and show
that the four properties 𝐴(𝛽)–𝐷(𝛽) hold. For that, we have
to distinguish two cases, when 𝛽 is an immediate successor
or 𝛽 is an ordinal limit. Clearly 𝐴(𝛽) and 𝐵(𝛽) are satisfied;
let us focus on 𝐶(𝛽) and𝐷(𝛽).
Claim 1 (C(𝛽) holds)
Case 1. Assume that 𝛽 is an ordinal limit; that is, there exists
a strictly ascending sequence (𝛽𝑛)𝑛 of ordinals inΩ such that𝛽 = sup{𝛽𝑛; 𝑛 ∈ N} and 𝛽𝑚 ⪯ 𝛽𝑛 ≺ 𝛽 whenever 𝑚 ≤ 𝑛. Since𝐷(𝛼) holds for all 𝛼 ≺ 𝛽, we get

𝑑 (𝑥𝛽𝑛 , 𝑥𝛽𝑚) ≤ 𝜙 (𝑥𝛽𝑚) − 𝜙 (𝑥𝛽𝑛) , (9)

which implies that (𝜙(𝑥𝛽𝑛))𝑛 is decreasing sequence in [0,∞)
and hence it is convergent.Then (𝑥𝛽𝑛) is Cauchy sequence, so
it converges in𝑋. Set 𝑥𝛽 = lim𝑛→∞𝑥𝛽𝑛 . By (OSCL) property,
we obtain 𝑥𝛽 ∈ [𝑥𝛽𝑛]𝐺 for all 𝑛 ∈ N. Let 𝛼 ≺ 𝛽. There exists𝑛0 ∈ N such that for each 𝑛 ≥ 𝑛0 we have

𝛼 ⪯ 𝛽𝑛 ≺ 𝛽, (10)

and thus for each 𝑛 ≥ 𝑛0,
𝑥𝛽𝑛 ∈ [𝑥𝛼]𝐺 , 𝑥𝛽 ∈ [𝑥𝛽𝑛]𝐺 󳨐⇒ 𝑥𝛽 ∈ [𝑥𝛼]𝐺 . (11)

Since 𝛼 is taken arbitrary, we obtain 𝐶(𝛽).
Case 2. Assume that 𝛽 is an immediate successor; there exists𝛼 ≺ 𝛽 such that 𝛽 = 𝛼 + 1.

(i) If 𝛼 is an immediate successor, there exists an ordinal𝜇 such 𝛼 = 𝜇 + 1. From 𝐶(𝛼), we have 𝑥𝛼 ∈ [𝑥𝜇]𝐺
and using the 𝐺-monotonicy of 𝑇 it follows that 𝑥𝛽 ∈[𝑥𝛼]𝐺 and so 𝐶(𝛽) holds.

(ii) If 𝛼 is an ordinal limit, from Proposition 7, there
exists an ascending sequence {𝛼𝑛} ⊂ Ω such that𝛼 = sup{𝛼𝑛 : 𝑛 ∈ N}. From 𝐵(𝛼) we have 𝑥𝛼 =
lim𝑛→+∞𝑥𝛼𝑛 . Using the (OSCL) condition, we have𝑥𝛼 ∈ [𝑥𝛼𝑛]𝐺. Since 𝑇 is 𝐺-monotone, 𝑥𝛽 ∈ [𝑥𝛼𝑛+1]𝐺
and as 𝑥𝛼𝑛+1 ∈ [𝑥𝛼𝑛]𝐺, we get 𝑥𝛽 ∈ [𝑥𝛼𝑛]𝐺. Again,
(OSCL) insures that 𝑥𝛽 ∈ [𝑥𝛼]𝐺. Then 𝐶(𝛽) holds.

Claim 2 (D(𝛽) holds)
Case 1. Assume that 𝛽 is ordinal limit. Let 𝛼 ≺ 𝛽. There exists𝑛0 ∈ N such that for each 𝑛 ≥ 𝑛0 we have

𝛼 ⪯ 𝛽𝑛 ≺ 𝛽. (12)

Then we get for each 𝑛 ≥ 𝑛0 that
𝑑 (𝑥𝛼, 𝑥𝛽𝑛) ≤ 𝜙 (𝑥𝛼) − 𝜙 (𝑥𝛽𝑛) , (13)

and for all 𝑖 ∈ {0, 1, . . . , 𝑝 − 1}
lim
𝑛→∞

𝑇𝑖𝑥𝛽𝑛 = lim
𝑛→∞

𝑥𝛽𝑛+𝑖 = 𝑥𝛽. (14)

Since 𝜑 is lower semicontinuous, we get

𝜑 (𝑥𝛽) ≤ lim inf
𝑛→∞

𝜑 (𝑇𝑖𝑥𝛽𝑛) . (15)

From 𝐶(𝛽), we have 𝑥𝛽 ∈ [𝑥𝛽𝑛]𝐺 for all 𝑛 ∈ N. Using the
same argument as above, we get 𝑇𝑥𝛽 ∈ [𝑥𝛽𝑛]𝐺 and (OSCL)
insures that 𝑇𝑥𝛽 ∈ [𝑥𝛽]𝐺. Hence, for all 𝑖 ∈ {0, 1, . . . , 𝑝 − 1},
𝑇𝑖+1𝑥𝛽 ∈ [𝑇𝑖𝑥𝛽]𝐺. This implies that

𝜑 (𝑇𝑝𝑥𝛽) ≤ 𝜑 (𝑇𝑝−1𝑥𝛽) ≤ ⋅ ⋅ ⋅ ≤ 𝜑 (𝑇𝑥𝛽) ≤ 𝜑 (𝑥𝛽) . (16)

By passing to limit superior in inequality (13), it follows that

𝑑 (𝑥𝛼, 𝑥𝛽) ≤ 𝜙 (𝑥𝛼) − lim inf
𝑛→+∞

𝜙 (𝑥𝛽𝑛)

≤ 𝜙 (𝑥𝛼) −
𝑝−1∑
𝑖=0

lim inf
𝑛→+∞

𝜑 (𝑇𝑖𝑥𝛽𝑛)
≤ 𝜙 (𝑥𝛼) − 𝑝𝜑 (𝑥𝛽) ≤ 𝜙 (𝑥𝛼) − 𝜙 (𝑥𝛽) .

(17)

Hence,𝐷(𝛽) holds.
Case 2. Assume that 𝛽 = 𝛼 + 1 is an immediate successor; we
have shown above that 𝐶(𝛽) holds. Then 𝑇𝑥𝛼 = 𝑥𝛽 ∈ [𝑥𝛼]𝐺
and by assumption we get

𝑑 (𝑥𝛼, 𝑥𝛽) ≤ 𝜙 (𝑥𝛼) − 𝜙 (𝑥𝛽) , (18)
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and for all 𝛾 ⪯ 𝛼, we have
𝑑 (𝑥𝛾, 𝑥𝛼) ≤ 𝜙 (𝑥𝛾) − 𝜙 (𝑥𝛼) . (19)

The triangle inequality implies that

𝑑 (𝑥𝛾, 𝑥𝛽) ≤ 𝜙 (𝑥𝛾) − 𝜙 (𝑥𝛽) , (20)

for each 𝛾 ⪯ 𝛽, which completes the proof of 𝐷(𝛽) in both
cases.

Thus, the orbit (𝑥𝛼)𝛼∈Ω is well constructed. Since {𝜙(𝑥𝛼)}
is nonincreasing on {𝑥𝛼} and Ω is uncountable, there must
exist 𝛼0 ∈ Ω such that 𝜙(𝑥𝛼) is constant for all 𝛼 ⪰ 𝛼0. From𝐷(𝛼0 + 1), we get

𝑑 (𝑥𝛼0+1, 𝑥𝛼0) ≤ 𝜙 (𝑥𝛼0) − 𝜙 (𝑥𝛼0+1) = 0. (21)

Hence, 𝑇𝑥𝛼0 = 𝑥𝛼0+1 = 𝑥𝛼0 .
We support our result by giving an example of a mapping

which is 𝐺-Kirk-Saliga mapping, for some integer 𝑝 > 1, but
not 𝐺-Caristi.
Example 11. Consider the metric space (𝑋, 𝑑), where 𝑋 =[0, 1] and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, for all 𝑥, 𝑦 ∈ 𝑋. Endow 𝑋 with
the directed graph 𝐺 = (𝑋, 𝐸) represented in Figure 1, where

𝐸 = Δ ∪ {(√1
2 , 0) , (1, 0) , ( 1

2𝑛 , 0) , ( 1
2𝑛 ,

1
2𝑛+1 ) : 𝑛

∈ N
∗} .

(22)

Consider the function 𝜑 : 𝑋 → [0, +∞[ defined by

𝜑 (𝑥) = {{{
√𝑥, if 𝑥 ∈ [0, 1[ ;
0, if 𝑥 = 1, (23)

and themapping𝑇 : 𝑋 → 𝑋 defined by𝑇𝑥 = 𝑥2, if 𝑥 ∈ [0, 1[;
𝑇1 = √1/2.

One can see that 𝑇1 ∉ [1]𝐺, 𝑇√1/2 ∉ [√1/2]𝐺 and
𝑋𝐺 fl {𝑥 ∈ 𝑋 : 𝑇𝑥 ∈ [𝑥]𝐺} = {0, 1

2𝑛 : 𝑛 ∈ N
∗} . (24)

We verify the following assertions:

(i) (𝑋, 𝑑) is complete and 𝑇 is 𝐺-monotone obviously.
(ii) 𝐺 satisfies the (OSCL) property. Indeed, let {𝑥𝑛} be

a sequence in 𝑋 such that {𝑥𝑛} converges to some𝑥 ∈ 𝑋 and 𝑥𝑛+1 ∈ [𝑥𝑛]𝐺, for all 𝑛 ∈ N. Two cases
to distinguish are as follows:

(1) There exists 𝑛0 ∈ N such that𝑥𝑛 = 𝑥𝑛0 , for all 𝑛 ≥𝑛0. Then for all 𝑛 ≥ 𝑛0, 𝑥𝑛 = 𝑥. If 𝑥 is an isolated
vertex, the (OSCL) is obviously satisfied. If not,𝑦 ∈ [𝑥𝑛]𝐺 for all 𝑛 ∈ N implies 𝑦 ∈ [𝑥]𝐺. Thus,
(OSCL) is satisfied.

0

1

2

2

1

2n+2
1

2n+1
1

2n
1

23
1

22
1

2

Figure 1: Graph 𝐺 (the loops and the isolated vertices are not
represented).

(2) For all 𝑘 ∈ N, there exists𝑚𝑘 ∈ N such 𝑥𝑚𝑘 ̸= 𝑥𝑘.
Then {𝑥𝑛} ⊆ {1/2𝑛 : 𝑛 ∈ N}; that is, there exists
a nondecreasing function 𝜓 : N → N such that
𝑥𝑛 = 1/2𝜓(𝑛) for all 𝑛 ∈ N, and 𝑥 = 0. If 𝑦 ∈[𝑥𝑛]𝐺 for all 𝑛 ∈ N, then 𝑦 = 0. Thus, (OSCL) is
satisfied.

(iii) 𝑇 is 𝐺-kirk-Saliga mapping in 𝑋 with 𝑝 = 3. Indeed,
for all 𝑥 ∈ 𝑋𝐺,

𝑥 − 𝑥2 ≤ √𝑥 − 𝑥4 ⇐⇒
𝑑 (𝑥, 𝑇𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇3𝑥) , (25)

but 𝑇 is not 𝐺-Caristi mapping, since

𝑑 (1
2 , 𝑇

1
2) > 𝜑(1

2) − 𝜑(𝑇1
2) . (26)

(iv) 𝑇0 ∈ [0]𝐺.
and 𝑇 admits a fixed point in𝑋 which is 0.

If we remove the (OSCL) property, we are not certain that
the fixed point will be obtained. Let us illustrate that by this
counterexample.

Example 12. Replace in the above example the digraph 𝐺 by
the digraph 𝐺󸀠 represented in Figure 2, where

𝐸󸀠 = Δ ∪ {( 1
2𝑛 , 0) , ( 1

2𝑛 , 1) , ( 1
2𝑛 ,

1
2𝑛+1 ) : 𝑛 ∈ N

∗} , (27)

and we consider the mapping 𝑇 : 𝑋 → 𝑋 defined as follows:

𝑇0 = 1;
𝑇𝑥 = 𝑥2, if 𝑥 ∈ ]0, 1[ ;
𝑇1 = 0.

(28)

One can see that 𝐺󸀠 satisfies (OSC) property but does not
satisfy the (OSCL), since 1/2𝑛 → 0 and for all 𝑛 ∈ N,0 ∈ [1/2𝑛]𝐺󸀠 and 1 ∈ [1/2𝑛]𝐺󸀠 but 1 ∉ [0]𝐺󸀠 . The mapping 𝑇
satisfies all others conditions of Theorem 10 but has no fixed
point in𝑋.
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Figure 2: Graph 𝐺󸀠 (the loops and the isolated vertices are not
represented).

Corollary 13. Let (𝑋, 𝑑, 𝐺) be a complete metric space
endowed with a reflexive digraph which satisfies the (OSCL)
property. Let 𝑛 = ∏𝑘𝑖=0𝑝𝛼𝑖𝑖 , where 𝑝𝑖 is prime integer and(𝑘, 𝛼𝑖) ∈ N×N∗, for each 𝑖 ∈ {0, 1, . . . , 𝑘}, and let𝑇 : 𝑋 → 𝑋 be
a 𝐺-monotone mapping such that there exists 𝑗 ∈ {0, 1, . . . , 𝑘},
for all 𝑥 ∈ 𝑋,

𝑇𝑝𝑗𝑥 ∈ [𝑥]𝐺 󳨐⇒ {{{
max {𝑑 (𝑥, 𝑇𝑝𝑖𝑥) : 𝑖 ∈ {0, 1, . . . , 𝑘}} ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑛𝑥) ,
𝜑 (𝑇𝑝𝑗𝑥) ≤ 𝜑 (𝑥) . (29)

Then 𝑇 admits a fixed point in 𝑋 provided that there exists an
element 𝑥0 ∈ 𝑋 such that 𝑇𝑥0 ∈ [𝑥0]𝐺.
Proof. Clearly,𝑇𝑝𝑗 satisfies all conditions ofTheorem 10; then
there exists 𝑥 ∈ 𝑋 such that 𝑇𝑝𝑗𝑥 = 𝑥 and so, 𝑇𝑛𝑥 = 𝑥. Since𝑇𝑝𝑗𝑥 ∈ [𝑥]𝐺, we get from (29) that

𝑑 (𝑥, 𝑇𝑝𝑖𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑛𝑥) = 0,
∀𝑖 ∈ {0, 1, . . . , 𝑘} \ {𝑗} . (30)

Now, let 𝑖 ∈ {0, 1, . . . , 𝑘} \ {𝑗}; then 𝑇𝑝𝑖𝑥 = 𝑥. By Bezout
identity, there exists (𝑢, V) ∈ Z2 such that 𝑢V ≤ 0 and𝑝𝑗𝑢 + 𝑝𝑖V = 1. Without loss of generality, we suppose that
𝑢 < 0 and V > 0. Since 𝑇𝑝𝑗𝑥 = 𝑥 and 𝑇𝑝𝑖𝑥 = 𝑥, then𝑇1−𝑝𝑗𝑢𝑥 = 𝑇𝑥 and 𝑇𝑝𝑖V𝑥 = 𝑥. Since 𝑝𝑖V = 1 − 𝑝𝑗𝑢, then𝑇𝑥 = 𝑥.

We conclude this work by a discussion about preordered
sets.

Let (𝑋, ⩽) be a preordered set; that is, the binary relation
“⩽” is reflexive and transitive.

Given a reflexive digraph𝐺 = (𝑋, 𝐸), we can always define
a preorder ⩽𝐺 on𝑋 as follows:

𝑥⩽𝐺 𝑦 ⇐⇒ 𝑥 ∈ [𝑦]𝐺 . (31)

Conversely, if (𝑋, ⩽) is a preordered set, we define the reflexive
digraph𝐺⩽ as follows: two vertices 𝑥, 𝑦 ∈ 𝑋 are connected by
an arc from 𝑥 to 𝑦 if 𝑥 ⩽ 𝑦. Note that 𝐺⩽ is transitive (i.e.,
if (𝑥, 𝑦) ∈ 𝐸(𝐺⩽) and (𝑦, 𝑧) ∈ 𝐸(𝐺⩽); then (𝑥, 𝑧) ∈ 𝐸(𝐺⩽)),
so 𝑥 ∈ [𝑦]𝐺⩽ ⇔ (𝑥, 𝑦) ∈ 𝐸(𝐺⩽). These remarks lead to the
following definition.

Definition 14. Let (𝑋, ⩽) be a preordered set.We say that (𝑋, ⩽) satisfies the (OSCL) condition if and only if 𝐺⩽ satisfies the
(OSCL) condition.

We shall say that 𝑇 : 𝑋 → 𝑋 is ⩽-monotone (resp.,⩽-Kirk-Saliga) mapping if 𝐺⩽-monotone (resp., 𝐺⩽-Kirk-
Saliga) mapping.

An analogue version of Theorem 10 in the setting of the
preordered metric spaces may be stated as follows.

Theorem 15. Let (𝑋, 𝑑, ⩽) be a preordered complete metric
space satisfying the (OSCL) condition. Let 𝑇 : 𝑋 → 𝑋 be
a ⩽-monotone and ⩽-Kirk-Saliga mapping. If there exists an
element 𝑥0 ∈ 𝑋 such that 𝑇𝑥0 ⩽ 𝑥0, then 𝑇 admits a fixed
point in𝑋.

Remark 16. If moreover the above binary relation ⩽ is
antisymmetric (i.e., (𝑥 ⩽ 𝑦 and 𝑦 ⩽ 𝑥) imply 𝑥 = 𝑦), we
obtain, from Remark 6, the following result established by
Alfuraidan and Khamsi.

Corollary 17 (see [16, Theorem 5]). Let (𝑋, 𝑑, ⩽) be a com-
plete partially ordered metric space satisfying the property
(OSC). Let 𝑇 : 𝑋 → 𝑋 be a ⩽-monotone and ⩽-Kirk-Saliga
mapping with 𝑝 = 1. If there exists an element 𝑥0 ∈ 𝑋 such
that 𝑇𝑥0 ⩽ 𝑥0, then 𝑇 admits a fixed point in𝑋.
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Greedy expansions with prescribed coefficients, which have been studied by V. N. Temlyakov in Banach spaces, are considered here
in a narrower case of Hilbert spaces.We show that in this case the positive result on the convergence does not require monotonicity
of coefficient sequenceC. Furthermore,we show that the condition sufficient for the convergence, namely, the inclusionC ∈ ℓ2 \ℓ1,
can not be relaxed at least in the power scale. At the same time, in finite-dimensional spaces, the conditionC ∈ ℓ2 can be replaced
by convergence of C to zero.

1. Introduction

Expansion in Fourier series [1] is a classical and comprehen-
sively studied tool of theoretical and applied mathematics
which takes an expanded function as an input and constructs
a sequence of its expansion coefficients. Greedy expansions
[2, 3], which are equivalent in the simplest case to Fourier
series reordered by decreasing norms of terms and known
in statistics and signal processing as Projection Pursuit
Regression [4, 5] and Matching Pursuit [6], respectively,
perform parallel computation of expansion coefficients and
selection of expansion elements from a predefined dictionary.
V. N. Temlyakov [3, 7] (see also [8]) proposed a type of a
greedy expansion that performs only selection of expansion
elements, while coefficients are prescribed in advance. The
definition proposed byV.N. Temlyakov for the case of Banach
spaces, in the case of Hilbert spaces, takes the following form.

Definition 1. Let 𝐻 be a Hilbert space over R with a scalar
product ( ⋅ , ⋅ ),𝐷 be a symmetric unit-normed dictionary in
𝐻 (i.e., span𝐷 = 𝐻, all elements in 𝐷 have a unit norm, and
if 𝑔 ∈ 𝐷, then −𝑔 also belongs to 𝐷). In addition, let 𝑓 ∈ 𝐻,
𝑡 ∈ (0; 1], andC = {𝑐𝑛}∞𝑛=1 be a sequence of positive numbers.
We define inductively a sequence of remainders {𝑟𝑛}∞𝑛=0 ⊂ 𝐻
and a sequence of expanding elements {𝑒𝑛}∞𝑛=1 ⊂ 𝐷. First, we
set 𝑟0 = 𝑓. Then, if 𝑟𝑛−1 ∈ 𝐻 (𝑛 ∈ 1, 2, 3, . . .) has already been

defined, we select 𝑒𝑛 as an (arbitrary) element which satisfies
the condition

(𝑟𝑛−1, 𝑒𝑛) ⩾ 𝑡 sup
𝑒∈𝐷

(𝑟𝑛−1, 𝑒) , (1)

and set 𝑟𝑛 = 𝑟𝑛−1 − 𝑐𝑛𝑒𝑛.
The series ∑∞𝑛=1 𝑐𝑛𝑒𝑛(𝑓) is called a greedy expansion of 𝑓

in the dictionary𝐷with the prescribed coefficientsC and the
weakness parameter 𝑡.

It immediately follows from the definition of a greedy
expansion that 𝑟𝑁 = 𝑓 − ∑𝑁𝑛=1 𝑐𝑛𝑒𝑛(𝑓) (𝑁 ∈ N), and hence
the convergence of the expansion to an expanded element
is equivalent to the convergence of remainders 𝑟𝑛 to zero as
𝑛 󳨀→ ∞.

As a selection of an expanding element 𝑒𝑛 is potentially
not unique, there may exist different realizations of a greedy
expansion for a given dictionary 𝐷, weakness parameter 𝑡
and sequence of coefficients C. Furthermore, for 𝑡 = 1
greedy expansion may turn out to be nonrealizable due to the
absence of an element 𝑒 ∈ 𝐷 which provides sup𝑒∈𝐷(𝑟𝑛−1, 𝑒).

V. N. Temlyakov showed [3, Theorem 2.1] that if a
number of conditions hold which are equivalent in the case
of Hilbert spaces to the divergence of the series ∑∞𝑛=1 𝑐𝑛 and
the convergence of the series ∑∞𝑛=1 𝑐2𝑛 , a greedy expansion
with prescribed coefficients C = {𝑐𝑛}∞𝑛=1 converges to an

7
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expanded element at least for a subsequence of indexes,
i.e., lim inf𝑛󳨀→∞‖𝑟𝑛‖ = 0. Later V. N. Temlyakov proved
the standard convergence (i.e., lim𝑛󳨀→∞𝑟𝑛 = 0) under the
additional condition of monotonicity of C [7, Theorem 4].
Yet, it remained unknown whether the condition C ∈ ℓ2
and the monotonicity condition could be essentially relaxed
without violating the guaranteed convergence to an expanded
element.

2. Main Results

We start with a positive result which states that in Hilbert
spaces the monotonicity is not required for the standard
convergence. Namely, the following theorem holds.

Theorem 2. Let𝐻 be a Hilbert space, 𝐷 be a symmetric unit-
normed dictionary in 𝐻, 𝑡 ∈ (0, 1],C = {𝑐𝑛}∞𝑛=1 be a sequence
of positive numbers which satisfies the conditions

∞

∑
𝑛=1

𝑐𝑛 = ∞;
∞

∑
𝑛=1

𝑐2𝑛 < ∞
(2)

(i.e.,C ∈ ℓ2 \ℓ1).�en for every element𝑓 ∈ 𝐻 all realizations
of its greedy expansion in the dictionary 𝐷 with the prescribed
coefficientsC and the weakness parameter 𝑡 converge to 𝑓.

It is clear that if the first condition on C is violated, then
there is no convergence to an expanded element for all 𝑓with
the norm exceeding the sum ∑∞𝑛=1 𝑐𝑛. The significance of the
second condition onC follows from the following theorem.

Theorem 3. �ere exist a Hilbert space 𝐻, a symmetric unit-
normed dictionary 𝐷 ⊂ 𝐻, an element 𝑓 ∈ 𝐻 and a sequence
of positive numbers C = {𝑐𝑛}∞𝑛=1 such that

∞

∑
𝑛=1

𝑐𝑛 = ∞,

𝑐𝑛 ⩽ 1
√𝑛 ∀𝑛 ∈ {1, 2, 3. . . .} ,

(3)

but a greedy expansion of 𝑓 in the dictionary 𝐷 with the
prescribed coefficients C and the weakness parameter 𝑡 = 1
does not converge to 𝑓.

As for the second condition of Theorem 2 a boundary in
the power scale is 1/√𝑛, Theorem 3 in fact shows that this
condition in Theorem 2 can not be relaxed at least in the
power scale.

However, the question about a possibility of a more
delicate relaxation of the condition C ∈ ℓ2 remains open.
This question can be stated as follows: is it true that for
every sequence C of positive numbers that converges to zero
but does not belong to ℓ2 there exist a Hilbert space 𝐻, a
symmetric unit-normed dictionary 𝐷 ⊂ 𝐻 and an expanded
element 𝑓 ∈ 𝐻 such that at least one realization of greedy
expansion of 𝑓 in 𝐷 with the prescribed coefficients C (and,
e.g., the weakness parameter 𝑡 = 1) does not converge to 𝑓?

We note that assertions similar toTheorems 2 and 3 have
been announced by O. Rassudova in her conference talk
[9], but the proofs have not been published. To the best of
our knowledge, in her proof of an analogue of Theorem 3
O. Rassudova used a modification of the construction [10,
Theorem 3] which is based on analytical estimates and does
not have a clear geometric interpretation. The construction
presented in our work is geometrically demonstrative.

We also note that at least for 𝑡 = 1 for the natural class of
monotonic coefficients in case of finite-dimensional Hilbert
spaces the condition ∑∞𝑛=1 𝑐2𝑛 < ∞ in Theorem 2 can be
replaced by an essentially weaker condition 𝑐𝑛 󳨀→ 0 (𝑛 󳨀→
∞). The proof of this fact is presented in section �e case of
finite-dimensional spaces.

3. Proof of Theorem 2

The theorem can be easily derived from the equality
lim inf𝑛󳨀→∞‖𝑟𝑛‖ = 0, which holds due to the aforementioned
result by V. N. Temlyakov [3, Theorem 2.1]. From the
definition of the greedy expansion it immediately follows that

󵄩󵄩󵄩󵄩𝑟𝑚󵄩󵄩󵄩󵄩2 = (𝑟𝑚−1 − 𝑐𝑚𝑒𝑚, 𝑟𝑚−1 − 𝑐𝑚𝑒𝑚)
= 󵄩󵄩󵄩󵄩𝑟𝑚−1󵄩󵄩󵄩󵄩2 − 2𝑐𝑚 (𝑟𝑚−1, 𝑒𝑚) + 𝑐2𝑚.

(4)

As coefficients 𝑐𝑛 are positive and the dictionary is symmetric,
2𝑐𝑚(𝑟𝑚−1, 𝑒𝑚) ⩾ 0. Hence

󵄩󵄩󵄩󵄩𝑟𝑚󵄩󵄩󵄩󵄩2 ⩽ 󵄩󵄩󵄩󵄩𝑟𝑚−1󵄩󵄩󵄩󵄩2 + 𝑐2𝑚, (5)

and thus

󵄩󵄩󵄩󵄩𝑟𝑚+𝑘󵄩󵄩󵄩󵄩2 ⩽ 󵄩󵄩󵄩󵄩𝑟𝑚󵄩󵄩󵄩󵄩2 +
𝑚+𝑘

∑
𝑗=𝑚+1

𝑐2𝑗 . (6)

The condition C = {𝑐𝑛}∞𝑛=1 ∈ ℓ2 implies that

∀𝜀 > 0 ∃𝑁1 > 0 : ∀𝑚 > 𝑁1
∞

∑
𝑗=𝑚+1

𝑐2𝑗 < 𝜀
2 . (7)

Due to the equality lim inf𝑛󳨀→∞ ‖𝑟𝑛‖ = 0 we have that
∀𝜀 > 0 ∀𝑁 > 0 ∃𝑚 > 𝑁 : 󵄩󵄩󵄩󵄩𝑟𝑚󵄩󵄩󵄩󵄩2 < 𝜀

2 . (8)

From two last assertions we obtain that for every 𝜀 > 0
there exists 𝑚 > 0 such that the following two conditions
simultaneously hold:

∞

∑
𝑗=𝑚+1

𝑐2𝑗 < 𝜀
2 ,

󵄩󵄩󵄩󵄩𝑟𝑚󵄩󵄩󵄩󵄩2 < 𝜀
2 .

(9)

Thus using estimate (6) we get that ‖𝑟𝑚+𝑘‖2 < 𝜀 for all 𝑘 ∈ N.
But according to the definition of the limit it directly means
that lim𝑛󳨀→∞ ‖𝑟𝑛‖ = 0. The proof of Theorem 2 is complete.
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Wenote that for monotonic coefficients and the weakness
parameter 𝑡 = 1 the statement of Theorem 2, which is
covered in this case by [7, Theorem 4], can be also derived
as a corollary of the same result by V. N. Temlyakov about
the convergence for a subsequence of indexes [3, Theorem
2.1] and the following lemma. We find this lemma to be
interesting on its own.

Lemma 4. Let 𝑡 = 1 and 𝑐𝑛 monotonically converge to zero as
𝑛 󳨀→ ∞. �en for every realization of greedy expansion with
the prescribed coefficientsC = {𝑐𝑛}∞𝑛=1 the sequence of norms of
its remainders {‖𝑟𝑛‖}∞𝑛=0 converges.

We begin our proof of this lemma with an estimate of
a possible increase of the remainder norms. Let 𝑀 denote
the set of all indexes 𝑛 for which ‖𝑟𝑛+1‖ > ‖𝑟𝑛‖. If the set
𝑀 is finite, then starting from a certain index the sequence
{‖𝑟𝑛‖}∞𝑛=0 is monotonic and thus convergent. Hence it remains
to consider the case of countably infinite𝑀.

For the sake of brevity we denote the scalar products
(𝑟𝑛, 𝑒𝑛+1) by 𝑥𝑛+1 (𝑛 = 0, 1, 2, . . .). It follows from the defi-
nition of the greedy expansion and the symmetric property
of the dictionary that all 𝑥𝑛 are nonnegative.

The Pythagorean theorem implies that for all indexes 𝑛
the equality

󵄩󵄩󵄩󵄩𝑟𝑛+1󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 − 𝑥2𝑛+1 + (𝑐𝑛+1 − 𝑥𝑛+1)2 (10)

holds. If 𝑛 ∈ 𝑀, then 𝑐𝑛+1 > 2𝑥𝑛+1, ‖𝑟𝑛+1‖2 ⩽ ‖𝑟𝑛‖2 + 𝑐2𝑛+1 and
thus

𝑥𝑛+2 = sup
𝑒∈𝐷

(𝑟𝑛+1, 𝑒) ⩾ − (𝑟𝑛+1, 𝑒𝑛+1) = 𝑐𝑛+1 − 𝑥𝑛+1. (11)

Consequently

󵄩󵄩󵄩󵄩𝑟𝑛+2󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝑟𝑛+1󵄩󵄩󵄩󵄩2 − 𝑥2𝑛+2 + (𝑐𝑛+2 − 𝑥𝑛+2)2

= 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 − 𝑥2𝑛+1 − 𝑥2𝑛+2 + (𝑐𝑛+1 − 𝑥𝑛+1)2

+ (𝑐𝑛+2 − 𝑥𝑛+2)2

= 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + 𝑐2𝑛+1 + 𝑐2𝑛+2 − 2𝑐𝑛+1𝑥𝑛+1 − 2𝑐𝑛+2𝑥𝑛+2
⩽ 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + 𝑐2𝑛+1 + 𝑐2𝑛+2 − 2𝑐𝑛+1𝑥𝑛+1

− 2𝑐𝑛+2 (𝑐𝑛+1 − 𝑥𝑛+1)
= 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + (𝑐𝑛+1 − 𝑐𝑛+2)2 − 2𝑥𝑛+1 (𝑐𝑛+1 − 𝑐𝑛+2)
⩽ 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + (𝑐𝑛+1 − 𝑐𝑛+2)2 .

(12)

At the same time

󵄩󵄩󵄩󵄩𝑟𝑛+2󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝑟𝑛+1󵄩󵄩󵄩󵄩2 + 𝑐2𝑛+2 − 2𝑐𝑛+2𝑥𝑛+2
= 󵄩󵄩󵄩󵄩𝑟𝑛+1󵄩󵄩󵄩󵄩2 + 𝑐𝑛+2 (𝑐𝑛+2 − 2𝑥𝑛+2)
⩽ 󵄩󵄩󵄩󵄩𝑟𝑛+1󵄩󵄩󵄩󵄩2 + 𝑐𝑛+2 (𝑐𝑛+2 − 2 (𝑐𝑛+1 − 𝑥𝑛+1))

= 󵄩󵄩󵄩󵄩𝑟𝑛+1󵄩󵄩󵄩󵄩2
+ 𝑐𝑛+2 ((𝑐𝑛+2 − 𝑐𝑛+1) + (2𝑥𝑛+1 − 𝑐𝑛+1))

⩽ 󵄩󵄩󵄩󵄩𝑟𝑛+1󵄩󵄩󵄩󵄩2 .
(13)

It means that if the remainder norm increased at the
transition from 𝑟𝑛 to 𝑟𝑛+1, then the increase of the norm
square does not exceed 𝑐2𝑛+1, for the next expansion step the
increase is impossible, and the joint increase of the square
of remainder norm for two steps of the expansion does not
exceed (𝑐𝑛+1 − 𝑐𝑛+2)2 and hence does not exceed 𝐶(𝑐𝑛+1−𝑐𝑛+2),
where 𝐶 can be set to 2𝑐1.

Having this estimate, let us complete the proof. We note
that the series ∑𝑛∈𝑀(𝑐𝑛+1 − 𝑐𝑛+2) converges: it can be easily
derived either from the Leibniz’s alternating series test or
from the inequality

∑
𝑛∈𝑀,𝑛⩽𝐾

(𝑐𝑛+1 − 𝑐𝑛+2) ⩽
𝐾

∑
𝑛=0

(𝑐𝑛+1 − 𝑐𝑛+2) = 𝑐1 − 𝑐𝐾+2
⩽ 𝑐1.

(14)

Let us fix an arbitrary positive 𝜀 and find an index 𝑁0 such
that ∑𝑛∈𝑀,𝑛>𝑁0(𝑐𝑛+1 − 𝑐𝑛+2) < 𝜀/(4𝐶) and simultaneously
sup𝑛>𝑁0𝑐2𝑛 < 𝜀/4. Next we find an index 𝑁1 > 𝑁0 such
that ‖𝑟𝑁1‖2 < 𝑟2 + 𝜀/4, where 𝑟 denotes the infimum of the
remainder norms {‖𝑟𝑛‖}𝑛>𝑁0 . Then for every 𝑛 > 𝑁1 we have
that

𝑟2 ⩽ 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 ⩽ 󵄩󵄩󵄩󵄩󵄩𝑟𝑁1󵄩󵄩󵄩󵄩󵄩
2 + ∑
𝑛∈𝑀,𝑛⩾𝑁1

𝐶 (𝑐𝑛+1 − 𝑐𝑛+2) + 𝑐2𝑛

< 𝑟2 + 𝜀.
(15)

Hence ‖𝑟𝑛‖2 󳨀→ 𝑟2 (𝑛 󳨀→ ∞) and consequently ‖𝑟𝑛‖ 󳨀→ 𝑟.
The proof of Lemma 4 is complete.

4. Proof of Theorem 3

Our proof of Theorem 3 includes the following blocks:
construction of a dictionary with simultaneous construction
of coefficients C = {𝑐𝑛}∞𝑛=1; description of realization of
greedy expansion; proof of the absence of convergence to the
expanded element; obtaining the required estimate of 𝑐𝑛. As
a Hilbert space 𝐻 we take an arbitrary infinite-dimensional
separable space, e.g., ℓ2.

Figure 1 illustrates certain steps of the proof.

4.1. Description of the Construction. We first present the
structure of the example; i.e., we describe the construction
of dictionary elements {𝑒𝑛} and coefficients {𝑐𝑛}. As a part
of this construction we also define the sequence of vectors
(remainders) {𝑟𝑛}, including the expanded element 𝑓 = 𝑟0.

Let 𝑓 be an arbitrary non-zero element of 𝐻 with ‖𝑓‖ ⩽
1/2, 𝑟0 = 𝑓. We define dictionary elements 𝑒−1 and 𝑒0 as
arbitrary (unequal) unit vectors such that 𝑒−1, 𝑒0 and 𝑟0 lie
in one plane and the angle 𝛼0 between 𝑒0 and 𝑟0 equals
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Figure 1: An illustration for certain steps of the proof ofTheorem 3.
All vectors except 𝑒 lie in the vertical plane; 𝑒 (as well as 𝑟𝑛−1)
lies in the horizontal plane; 𝑒 represents any vector from the set
{𝑒−1, 𝑒0, −𝑒1, −𝑒2, . . . , −𝑒𝑛−1}. The spherical law of cosines is applied
to angles formed by the vectors 𝑟𝑛−1, 𝑟𝑛, 𝑒. The law of sines is applied
to the triangle formed by vectors 𝑟𝑛−1, 𝑟𝑛, −𝑐𝑛𝑒𝑛.

the angle between 𝑒−1 and 𝑟0 and belongs to the interval
(𝜋/4, 𝜋/2).

Next, we set dictionary element 𝑒1 to an arbitrary unit
vector with the following two properties: its orthogonal
projection on the plane < 𝑒−1, 𝑒0 > lies on the line with
directing vector 𝑟0, and the angle between this vector and
𝑟0 also equals 𝛼0. We also find the coefficient 𝑐1 such that
for 𝑟1 = 𝑟0 − 𝑐1𝑒1 scalar products (𝑟1, −𝑒1), (𝑟1, 𝑒0), (𝑟1, 𝑒−1)
are equal or, equivalently, angles between 𝑟1 and the vectors
𝑒−1, 𝑒0, −𝑒1 are equal. We denote this angle by 𝛼1. Note that𝛼1 ∈ (𝛼0, 𝜋/2): the formal justification of this fact can be
based, e.g., on the equality cos𝛼1 = cos𝛼0 cos(𝜋 − 𝛼0 − 𝛼1),
which directly follows from the spherical law of cosines.

Similarly, we set 𝑒2 to an arbitrary unit vector with an
orthogonal projection on the subspace < 𝑒−1, 𝑒0, 𝑒1 > lying
on the line with directing vector 𝑟1 and the angle between this
vector and 𝑟1 equal 𝛼1, and select the coefficient 𝑐2 in such a
way that for 𝑟2 = 𝑟1 − 𝑐2𝑒2 scalar products (𝑟2, −𝑒2), (𝑟2, −𝑒1),(𝑟2, 𝑒0), (𝑟2, 𝑒−1) are equal or, equivalently, angles between 𝑟2
and the vectors 𝑒−1, 𝑒0, −𝑒1, −𝑒2 are equal. We denote this
angle by 𝛼2. Again it is easy to see that 𝛼2 ∈ (𝛼1, 𝜋/2), as due
to the spherical law of cosines cos 𝛼2 = cos 𝛼1 cos(𝜋−𝛼1−𝛼2).

We continue the construction inductively. Namely, after
constructing {𝑟𝑗}𝑛−1𝑗=0 , {𝑒𝑗}𝑛−1𝑗=−1, {𝑐𝑗}𝑛−1𝑗=1 and {𝛼𝑗}𝑛−1𝑗=0 we set 𝑒𝑛 to
an arbitrary unit vector with an orthogonal projection on the
subspace < 𝑒−1, 𝑒0, . . . , 𝑒𝑛−1 > lying on the line with directing
vector 𝑟𝑛−1 and angle between this vector and 𝑟𝑛−1 equal 𝛼𝑛−1,
and select the coefficient 𝑐𝑛 in such a way that for 𝑟𝑛 = 𝑟𝑛−1 −𝑐𝑛𝑒𝑛 scalar products (𝑟𝑛, −𝑒𝑛), (𝑟𝑛, −𝑒𝑛−1), . . ., (𝑟𝑛, −𝑒1), (𝑟𝑛, 𝑒0),(𝑟𝑛, 𝑒−1) are equal or, equivalently, angles between 𝑟𝑛 and the
vectors 𝑒−1, 𝑒0, −𝑒1, −𝑒2, . . ., −𝑒𝑛−1, −𝑒𝑛 are equal. We denote
this angle by 𝛼𝑛 and note that as cos𝛼𝑛 = cos 𝛼𝑛−1 cos(𝜋 −
𝛼𝑛−1−𝛼𝑛) due to the spherical law of cosines, 𝛼𝑛 ∈ (𝛼𝑛−1, 𝜋/2).

Let us justify formally that it is possible to find 𝑒𝑛 and 𝑐𝑛
with the required properties. Let 𝜃𝑛 denote an arbitrary unit
vector orthogonal to the subspace < 𝑒−1, 𝑒0, . . . , 𝑒𝑛−1 > (which
also contains vector 𝑟𝑛−1), and 𝐸𝑛 denote the set of vectors
{𝑒−1, 𝑒0, −𝑒1, −𝑒2, . . . , −𝑒𝑛−1}. As 𝑒𝑛 we can take any of two unit

vectors from the plane < 𝑟𝑛−1, 𝜃𝑛 > that have an angle with
𝑟𝑛−1 equal to 𝛼𝑛−1. Let 𝑒𝑛 = 𝑎𝑛𝑟𝑛−1 + 𝑏𝑛𝜃𝑛; note that 𝑎𝑛 > 0 as
the angle𝛼𝑛−1 is acute. By construction for all 𝑒 ∈ 𝐸𝑛 the scalar
product (𝑟𝑛−1, 𝑒) equals ‖𝑟𝑛−1‖ cos𝛼𝑛−1. For the sake of brevity
we denote ‖𝑟𝑛−1‖ cos𝛼𝑛−1 by 𝛽𝑛. Hence for all 𝑒 ∈ 𝐸, as 𝜃𝑛 ⊥𝑒, scalar products of 𝑒𝑛 and 𝑒 are the same and equal 𝑎𝑛𝛽𝑛.
Consequently, for an arbitrary positive 𝑐 and every 𝑒 ∈ 𝐸𝑛 we
have equalities (𝑟𝑛−1 − 𝑐𝑒𝑛, −𝑒𝑛) = −𝛽𝑛 + 𝑐, (𝑟𝑛−1 − 𝑐𝑒𝑛, 𝑒) =
𝛽𝑛 − 𝑐𝑎𝑛𝛽𝑛. Thus, it remains to set 𝑐𝑛 to the solution of the
linear equation −𝛽𝑛 + 𝑐 = 𝛽𝑛 − 𝑐𝑎𝑛𝛽𝑛, i.e., to 2𝛽𝑛/(1 + 𝑎𝑛𝛽𝑛).
4.2. Realization of Greedy Expansion. We note that a possible
realization of greedy expansion in the dictionary

𝐷 = {±𝑒−1, ±𝑒0, ±𝑒1, ±𝑒2, . . .} (16)

with the prescribed coefficients C = {𝑐𝑛}∞𝑛=1 (and the
weakness parameter 𝑡 = 1) is a realization in which 𝑒𝑛 is
selected as an expanding element at the 𝑛-th step, and hence
𝑛-th remainder coincides with 𝑟𝑛. Indeed, an angle between a
vector and its orthogonal projection on a subspace does not
exceed an angle between this vector and any non-zero vector
from the subspace. Thus while for every 𝑛 ∈ {1, 2, 3, . . .} and
every 𝑒 ∈ {±𝑒−1, ±𝑒0, ±𝑒1, ±𝑒2, . . . , ±𝑒𝑛} we have an equality

󵄨󵄨󵄨󵄨(𝑟𝑛−1, 𝑒)󵄨󵄨󵄨󵄨 = 󵄩󵄩󵄩󵄩𝑟𝑛−1󵄩󵄩󵄩󵄩 cos 𝛼𝑛−1 (17)

and for 𝑒 = 𝑒𝑛 the scalar product (𝑟𝑛−1, 𝑒) is positive, for 𝑒 =
±𝑒𝑛+𝑗 (𝑗 ∈ {1, 2, 3, . . .}) we have an inequality

󵄨󵄨󵄨󵄨(𝑟𝑛−1, 𝑒)󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝑟𝑛−1󵄩󵄩󵄩󵄩 cos 𝛼𝑛+𝑗−1 ≤ 󵄩󵄩󵄩󵄩𝑟𝑛−1󵄩󵄩󵄩󵄩 cos𝛼𝑛−1. (18)

4.3. Absence of Convergence. In this subsection we show that
the greedy expansion ∑∞𝑛=1 𝑐𝑛𝑒𝑛 does not converge to 𝑓 or,
equivalently, remainders 𝑟𝑛 do not converge to zero.

First we find the limit of 𝛼𝑛. It exists as {𝛼𝑛}∞𝑛=1 is a
nondecreasing sequence with all values belonging to the
interval (𝜋/4, 𝜋/2). As noted above, for all 𝑛 ∈ {0, 1, 2, . . .}
the equality

cos 𝛼𝑛+1 = cos𝛼𝑛 cos (𝜋 − 𝛼𝑛 − 𝛼𝑛+1) (19)

holds. Consequently, if 𝛼 denotes the limit lim𝑛󳨀→∞𝛼𝑛, then
cos(𝜋 − 2𝛼) cos 𝛼 = cos𝛼. It implies that 𝛼 = 𝜋/2.

Now we show that ∑∞𝑛=0(1/ tan 𝛼𝑛) = ∞. Indeed,

cos (𝜋 − 𝛼𝑛 − 𝛼𝑛+1) cos 𝛼𝑛 = cos 𝛼𝑛+1
󳨐⇒ cos (𝛼𝑛 + 𝛼𝑛+1) cos 𝛼𝑛 + cos 𝛼𝑛+1 = 0
󳨐⇒ (cos 𝛼𝑛 cos 𝛼𝑛+1 − sin 𝛼𝑛 sin 𝛼𝑛+1) cos𝛼𝑛

+ cos 𝛼𝑛+1 = 0
󳨐⇒ (cos 𝛼𝑛 − sin 𝛼𝑛 tan 𝛼𝑛+1) cos 𝛼𝑛 + 1 = 0
󳨐⇒ cos2𝛼𝑛 − sin 𝛼𝑛 tan 𝛼𝑛+1 cos𝛼𝑛 + 1 = 0

󳨐⇒ tan 𝛼𝑛+1 = cos2𝛼𝑛 + 1
sin 𝛼𝑛 cos𝛼𝑛 =

(cos 2𝛼𝑛 + 1) /2 + 1
(sin 2𝛼𝑛) /2

= cos 2𝛼𝑛 + 3
sin 2𝛼𝑛
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= (1 − tan2𝛼𝑛) / (1 + tan2𝛼𝑛) + 3
2 tan 𝛼𝑛/ (1 + tan2𝛼𝑛) = 2tan2𝛼𝑛 + 4

2 tan 𝛼𝑛
= tan 𝛼𝑛 + 2

tan 𝛼𝑛 .
(20)

Thus
tan 𝛼𝑛+1 = tan 𝛼0

+ 2( 1
tan 𝛼0 +

1
tan 𝛼1 + . . . + 1

tan 𝛼𝑛) . (21)

As 𝛼𝑛 󳨀→ 𝜋/2, tan 𝛼𝑛 󳨀→ ∞ and hence ∑∞𝑛=0(1/ tan 𝛼𝑛) =
∞.

The law of sines gives the equalities
󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩
sin 𝛼1 =

󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩
sin 𝛼0 󳨐⇒

󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩 = sin 𝛼0
sin 𝛼1

󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩 ;
󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩
sin 𝛼2 =

󵄩󵄩󵄩󵄩𝑟2󵄩󵄩󵄩󵄩
sin 𝛼1 󳨐⇒

󵄩󵄩󵄩󵄩𝑟2󵄩󵄩󵄩󵄩 = sin 𝛼1
sin 𝛼2

󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩 ;
...

󵄩󵄩󵄩󵄩𝑟𝑛−1󵄩󵄩󵄩󵄩
sin 𝛼𝑛 =

󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩
sin 𝛼𝑛−1 󳨐⇒

󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩 = sin 𝛼𝑛−1
sin 𝛼𝑛

󵄩󵄩󵄩󵄩𝑟𝑛−1󵄩󵄩󵄩󵄩 .

(22)

Consequently

󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩 = sin 𝛼𝑛−1
sin 𝛼𝑛

sin 𝛼𝑛−2
sin 𝛼𝑛−1 . . .

sin 𝛼0
sin 𝛼1

󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩 sin 𝛼0
sin 𝛼𝑛 . (23)

Taking into consideration the convergence𝛼𝑛 󳨀→ 𝜋/2 (𝑛 󳨀→
∞), we derive from this equality that

󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩 󴀀󴀂󴀠
𝑛󳨀→∞

0, (24)

so the absence of convergence to the expanded element is
proved.

4.4. Estimate of 𝑐𝑛. Here we first show that ∑∞𝑛=1 𝑐𝑛 = ∞.
Applying again the law of sines, but this time for the other
pairs of angles, we get equalities

󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩
sin 𝛼1 =

𝑐1
sin (𝜋 − 𝛼0 − 𝛼1) 󳨐⇒

𝑐1 = 󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩 sin (𝛼0 + 𝛼1)
sin 𝛼1 ;

...

󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩
sin 𝛼𝑛+1 =

𝑐𝑛+1
sin (𝜋 − 𝛼𝑛 − 𝛼𝑛+1) 󳨐⇒

𝑐𝑛+1 = 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩 sin (𝛼𝑛 + 𝛼𝑛+1)
sin 𝛼𝑛+1 .

(25)

Let us use equality (23):

𝑐𝑛+1 = 󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩 sin 𝛼0 sin (𝛼𝑛 + 𝛼𝑛+1)
sin 𝛼𝑛+1 sin 𝛼𝑛

= 󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩 sin 𝛼0 sin 𝛼𝑛 cos𝛼𝑛+1 + cos 𝛼𝑛 sin 𝛼𝑛+1
sin 𝛼𝑛+1 sin 𝛼𝑛

= 󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩 sin 𝛼0 ( 1
tan 𝛼𝑛 +

1
tan 𝛼𝑛+1) .

(26)

Taking into account the monotonicity of {𝛼𝑛}, it implies the
inequality

𝑐𝑛+1 > 2 󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩 sin 𝛼0
tan 𝛼𝑛+1 . (27)

Consequently, as the series ∑∞𝑛=0(1/ tan 𝛼𝑛) diverges, the
series ∑∞𝑛=1 𝑐𝑛 also diverges.

Then we show that 𝑐𝑛 ⩽ 1/√𝑛. The equality (26) and
monotonicity of {𝛼𝑛} imply that

𝑐𝑛+1 < 2 󵄩󵄩󵄩󵄩𝑟0󵄩󵄩󵄩󵄩 sin 𝛼0
tan 𝛼𝑛 (𝑛 ∈ {0, 1, 2, . . .}) . (28)

It remains to establish the inequality tan 𝛼𝑛 > √𝑛 + 1: as
‖𝑟0‖ ⩽ 1/2, it directly gives the required upper estimate of 𝑐𝑛.
For 𝑛 = 0 this inequality holds because 𝛼0 ∈ (𝜋/4, 𝜋/2). Next,
from equality (20), taking into account that the minimum
value of the function 𝑓(𝑥) = 𝑥+2/𝑥 on the positive semi-axis
equals 2√2, we obtain that tan 𝛼1 ⩾ 2√2 > √2. Besides, 𝑓(𝑥)
is an increasing function on [√2, +∞), and the justification
of the inequality can be completed by induction:

tan 𝛼𝑛+1 = 𝑓 (tan 𝛼𝑛) ⩾ 𝑓 (√𝑛 + 1)
= √𝑛 + 1 + 2

√𝑛 + 1 > √𝑛 + 2. (29)

Justification of this inequality completes the proof of the
upper estimate of 𝑐𝑛 and in total the proof Theorem 3.

We note that the construction described in the proof
of Theorem 3 can be straightforwardly adapted from the
case of greedy expansions with prescribed coefficients to the
generalized Approximate Weak Greedy Algorithm (see [10,
Theorem 3]).

5. The Case of Finite-Dimensional Spaces

In this section we prove the following theorem.

Theorem 5. Let the space𝐻 be finite-dimensional, and let the
coefficients C = {𝑐𝑛}∞𝑛=1 converge to zero monotonically and
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satisfy the condition ∑∞𝑛=1 𝑐𝑛 = ∞. �en for every symmetric
unit-normed dictionary𝐷 ⊂ 𝐻 and any 𝑓 ∈ 𝐻 all realizations
of greedy expansion of 𝑓 in 𝐷 with the prescribed coefficients
C and the weakness parameter 𝑡 = 1 converge to 𝑓.

Thus in the finite-dimensional case at least for 𝑡 = 1 in the
natural class of monotonic coefficient sequences conditions
sufficient for the convergence of a greedy expansion to an
expanded element include only the convergence of coeffi-
cients to zero and infinity of their sum. Clearly, convergence
of coefficients to zero is also a necessary condition for the
convergence of greedy expansion.

As the first step of the proof we note that due to Lemma 4
there exists a limit of norms of remainders of a greedy
expansion with prescribed coefficients lim𝑛󳨀→∞‖𝑟𝑛‖. Let us
suppose that this limit is non-zero. Then starting from a
certain index remainder norms are separated from zero. Due
to the compactness of a sphere in a finite-dimensional space
and the completeness and the symmetric property of the
dictionary it implies that scalar products

𝑥𝑛+1 = (𝑟𝑛, 𝑒𝑛+1) = sup
𝑒∈𝐷

(𝑟𝑛, 𝑒) (30)

are also separated from zero. In other words, there exist a
positive number 𝛾 and an index 𝑁0 such that for all 𝑛 > 𝑁0
the inequality 𝑥𝑛+1 > 𝛾 holds. In addition there exists such
an index 𝑁1 > 𝑁0 that for all 𝑛 > 𝑁1 coefficient 𝑐𝑛 does not
exceed 𝛾. But consequently for 𝑛 ⩾ 𝑁1 it follows fromequality
(10) that

󵄩󵄩󵄩󵄩𝑟𝑛+1󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 − 𝑥2𝑛+1 + (𝑐𝑛+1 − 𝑥𝑛+1)2

= 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 − 𝑐𝑛+1 (2𝑥𝑛+1 − 𝑐𝑛+1)
⩽ 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 − 𝛾𝑐𝑛+1.

(31)

Hence

󵄩󵄩󵄩󵄩󵄩𝑟𝑁1+𝐾󵄩󵄩󵄩󵄩󵄩
2 ⩽ 󵄩󵄩󵄩󵄩󵄩𝑟𝑁1󵄩󵄩󵄩󵄩󵄩

2 − 𝛾
𝑁1+𝐾∑
𝑛=𝑁1+1

𝑐𝑛 󳨀→ −∞

(𝐾 󳨀→ ∞) .
(32)

This contradiction completes the proof of Theorem 5.

6. Conclusion

The main results of the paper state that in Hilbert spaces a
greedy expansion with prescribed coefficients converges to
an expanded element if coefficients satisfy certain relatively
weak conditions that do not include monotonicity, and these
conditions can not be essentially relaxed. At the same time we
showed that for the finite-dimensional case the relaxation is
possible.
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The result of our study is that a coincidence point of two mappings 𝑃 and 𝑄 can be achieved when the ordered pair (𝑃, 𝑄) is an(𝛼, 𝛽, 𝛾)-contraction with respect to a generalized metric space. Moreover, with some additional condition, a common fixed point
can be obtained as a consequence of our main theorems. Further, we apply our findings to some examples and integral equation
problems.

1. Introduction

There has been a wide range of research in discovering fixed
points, or the only fixed point, of certain types of mappings
that are contractions in the past.Many aspects have been used
to accomplish the result. At the very beginning, Geraghty
[1] generally developed the Banach contraction principle by
considering the class Θ whose elements are functions 𝜃 : [0,∞) → [0, 1) such that

𝜃 (𝑡𝑛) 󳨀→ 1
󳨐⇒ 𝑡𝑛 → 0. (1)

In 2012, Samet et al. [2] studied the existing results for𝛼-𝜓-contractions. His concept was given in the following
definition. Suppose that𝑋 ̸= 0 and 𝛼 is a real-valued function
on𝑋 × 𝑋.
Definition 1 (see [2]). Let𝐴 be a self-mapping on𝑋 and 𝑢, V ∈𝑋. If 𝛼(𝐴𝑢, 𝐴V) ≥ 1 whenever 𝛼(𝑢, V) ≥ 1, then we say that 𝐴
is 𝛼-admissible.

Later, Karapinar [3] added more conditions to
Definition 1.

Definition 2 (see [3]). Let𝐴 be an 𝛼-admissible self-mapping
on 𝑋 and 𝑢, V, 𝑤 ∈ 𝑋. If 𝛼(𝑢, 𝑤) ≥ 1 and 𝛼(𝑤, V) ≥ 1 imply𝛼(𝑢, V) ≥ 1, then we say that 𝐴 is triangular 𝛼-admissible.

Furthermore, another essential part in this topic is a
metric space. There were a large number of literatures that
worked not only on a metric space, but also on other
topological spaces; for examples, see [4–6]. Three years ago,
Jleli and Samet [7] defined a generalized metric, known
as a JS-metric. The advantage of their idea is that many
topological spaces are covered by the JS-metric space. With
this reason, results of fixed point theorems on JS-metric
spaces have been recently interesting (e.g., see [8]).

Let 𝐷 : 𝑋 × 𝑋 → [0,∞] be a function and, for 𝑢 ∈ 𝑋,
denote a set of sequences {𝑢𝑛} in 𝑋 such that lim𝑛→∞𝐷(𝑢𝑛,𝑢) = 0 by 𝐶(𝐷,𝑋, 𝑢).
Definition 3 (see [7]). Suppose that, for any 𝑢, V ∈ 𝑋,

(D1) if𝐷(𝑢, V) = 0, then 𝑢 = V;

(D2) 𝐷(𝑢, V) = 𝐷(V, 𝑢);
(D3) there is a K > 0 so that, for each 𝑤, 𝑧 ∈ 𝑋, if {𝑢𝑛} ∈𝐶(𝐷,𝑋,𝑤), then𝐷(𝑤, 𝑧) ≤ 𝐾 lim sup𝑛→∞𝐷(𝑢𝑛, 𝑧).

Then, we call𝐷 a generalizedmetric, or a JS-metric on𝑋, and
also (𝑋,𝐷) a generalized metric space, or a JS-metric space.

Definition 4 (see [7]). Suppose that (𝑋,𝐷) is a JS-metric space
and {𝑢𝑛} ⊆ 𝑋.
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(1) If {𝑢𝑛} ∈ 𝐶(𝐷,𝑋, 𝑢) for some 𝑢 ∈ 𝑋, then we say that{𝑢𝑛} 𝐷-converges to 𝑢.
(2) If lim𝑚,𝑛→∞𝐷(𝑢𝑛, 𝑢𝑚) = 0, then we say that {𝑢𝑛} is𝐷-Cauchy.
(3) If any 𝐷-Cauchy sequence {𝑢𝑛} in 𝑋 𝐷-converges to

some 𝑢 in𝑋, then we say that (𝑋,𝐷) is𝐷-complete.

Proposition 5 (see [7]). Suppose that (𝑋,𝐷) is a JS-metric
space. Let {𝑢𝑛} ⊆ 𝑋 and 𝑢, V ∈ 𝑋. If {𝑢𝑛} ∈ 𝐶(𝐷,𝑋, 𝑢) and{𝑢𝑛} ∈ 𝐶(𝐷,𝑋, V), then 𝑢 = V.

Definition 6 (see [7]). Suppose that (𝑋,𝐷) is a JS-metric
space. Let 𝑃 be a self-mapping on 𝑋 and {𝑢𝑛} ⊆ 𝑋. If {𝑢𝑛} ∈𝐶(𝐷,𝑋, 𝑢0) implies {𝑃𝑢𝑛} ∈ 𝐶(𝐷,𝑋, 𝑃𝑢0) for some 𝑢0 ∈ 𝑋,
then we say that 𝑃 is continuous at 𝑢0. Moreover, if 𝑃 is
continuous at every 𝑢 ∈ 𝑋, then we say 𝑃 is continuous.

Next, Mart́ınez-Moreno et al. [9] had a new perspective
to obtain common fixed points of particular contractive
mappings on a space with two metrics.

Inspired by the above, we consider some existence results
for a coincidence point of two functions when the ordered
pair of these functions is an (𝛼, 𝛽, 𝛾)-contraction on a space
with two JS-metrics. In addition, some examples and an
application of an integral equation are presented.

2. Main Results

First, we assume throughout this section that all functions 𝑃
and 𝑄 are self-mappings defined on𝑋.
Definition 7. For 𝑢, V, 𝑤 ∈ 𝑋, if

(1) 𝛼(𝑄𝑢,𝑄V) ≥ 1 implies 𝛼(𝑃𝑢, 𝑃V) ≥ 1,
(2) 𝛼(𝑢, 𝑤) ≥ 1 and 𝛼(𝑤, V) ≥ 1 imply 𝛼(𝑢, V) ≥ 1,

then we say that 𝑃 is triangular 𝛼-admissible with respect to𝑄.
Next, we defineB as the class of mappings 𝛽 : [0,∞] →[0, 1) such that

𝛽 (𝑡𝑛) 󳨀→ 1
󳨐⇒ 𝑡𝑛 → 0. (2)

Note that 𝛽(𝑡) is defined at 𝑡 = ∞. Also, let 𝛾 : [0,∞] →[0,∞] be a nondecreasing continuous function satisfying
𝛾 (𝑡) = 0

⇐⇒ 𝑡 = 0. (3)

Denote the class of all such functions 𝛾 by Υ.
Definition 8. Suppose that (𝑋,𝐷) is a JS-metric space. If

(1) 𝑃 is triangular 𝛼-admissible with respect to 𝑄,
(2) there exist 𝛽 ∈B and 𝛾 ∈ Υ,

𝛼 (𝑄𝑢, 𝑄V) 𝛾 (𝐷 (𝑃𝑢, 𝑃V))
≤ 𝛽 (𝐷 (𝑄𝑢,𝑄V)) 𝛾 (𝐷 (𝑄𝑢,𝑄V)) (4)

for all 𝑢, V ∈ 𝑋,

thenwe say that the pair (𝑃, 𝑄) is an (𝛼, 𝛽, 𝛾)-contractionwith
respect to𝐷.

Here, we are interested in the existence of a coincidence
point of𝑃 and𝑄, where (𝑃, 𝑄) is an (𝛼, 𝛽, 𝛾)-contraction with
respect to some generalized metric on 𝑋. This can be done
under suitable relations between 𝑃 and 𝑄.
Definition 9. Suppose that (𝑋,𝐷) and (𝑌,𝐷󸀠) are two JS-
metric spaces and {𝑢𝑛} ⊆ 𝑋. If𝐴 : 𝑋 → 𝑌 and 𝐵 : 𝑋 → 𝑋 are
functions such that {𝐵𝑢𝑛} being 𝐷-Cauchy in (𝑋,𝐷) implies{𝐴𝑢𝑛} is𝐷󸀠-Cauchy in (𝑌,𝐷󸀠), then we say that𝐴 is𝐵-Cauchy
on𝑋.

Last but not least, we need the comparison notations for
any two generalized metrics. If𝐷 and𝐷󸀠 are two generalized
metrics on 𝑋, the notation 𝐷 ≥ 𝐷󸀠 represents 𝐷(𝑢, V) ≥𝐷󸀠(𝑢, V) for every 𝑢, V ∈ 𝑋. If the inequality fails for some𝑢, V ∈ 𝑋, we use the notation 𝐷 ̸≥ 𝐷󸀠. All other inequality
signs can be defined in the same fashion.

Theorem 10. Suppose that (𝑋,𝐷󸀠) is a 𝐷󸀠-complete JS-metric
space and 𝐷 is a generalized metric on 𝑋. If

(i) (𝑃, 𝑄) is an (𝛼, 𝛽, 𝛾)-contraction with respect to𝐷,
(ii) 𝑃(𝑋) is a subspace of 𝑄(𝑋),
(iii) there is a 𝑢0 ∈ 𝑋, 𝛼(𝑄𝑢0, 𝑃𝑢0) ≥ 1, and sup{𝐷(𝑄𝑢0,𝑃V) : V ∈ 𝑋} < ∞,
(iv) 𝑃 : (𝑋,𝐷) → (𝑋,𝐷󸀠) is𝑄-Cauchy on𝑋whenever𝐷 ̸≥𝐷󸀠,
(v) 𝑃 and 𝑄 commute,
(vi) 𝑃,𝑄 : (𝑋,𝐷󸀠) → (𝑋,𝐷󸀠) are continuous,

then there exists a coincidence point of 𝑃 and 𝑄.
Proof. From assumption (iii), let 𝑢0 ∈ 𝑋 such that 𝛼(𝑄𝑢0,𝑃𝑢0) ≥ 1 and sup{𝐷(𝑄𝑢0, 𝑃V) : V ∈ 𝑋} < ∞. Since 𝑃(𝑋) ⊆𝑄(𝑋) and 𝑃𝑢0 ∈ 𝑋, a sequence {𝑢𝑛} in 𝑋 can be constructed
such that

𝑄𝑢𝑛 = 𝑃𝑢𝑛−1 (5)

for all 𝑛 ∈ N. Observe that if 𝑄𝑢𝑛0 = 𝑄𝑢𝑛0−1 for some 𝑛0 ∈
N, then 𝑄𝑢𝑛0−1 = 𝑃𝑢𝑛0−1, and so we are done. Assume that𝑄𝑢𝑛 ̸= 𝑄𝑢𝑛−1 for each 𝑛 ∈ N.

Since 𝛼(𝑄𝑢0, 𝑄𝑢1) = 𝛼(𝑄𝑢0, 𝑃𝑢0) ≥ 1 and 𝑃 is triangular𝛼-admissible with respect to𝑄,𝛼(𝑄𝑢1, 𝑄𝑢2) = 𝛼(𝑃𝑢0, 𝑃𝑢1) ≥1. Repeating this process inductively, we obtain that
𝛼 (𝑄𝑢𝑛, 𝑄𝑢𝑛+1) ≥ 1 (6)

for each 𝑛 ∈ N.
Our task is now to prove that {𝑄𝑢𝑛} is𝐷-Cauchy.
Assume that this is not true. Equivalently, there is an 𝜖 > 0

so that, for each 𝑘 ∈ N,
𝐷(𝑄𝑢𝑛𝑘 , 𝑄𝑢𝑚𝑘) ≥ 𝜖 (7)

for some 𝑚𝑘 ≥ 𝑛𝑘 ≥ 𝑘. By inequality (6), together with the
assumption that 𝑃 is triangular 𝛼-admissible with respect to𝑄, we have that

𝛼 (𝑄𝑢𝑛𝑘 , 𝑄𝑢𝑚𝑘) ≥ 1 (8)
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for all 𝑘 ∈ N. Then, by assumption (i),

𝛾 (𝐷 (𝑄𝑢𝑛𝑘+1, 𝑄𝑢𝑚𝑘+1)) = 𝛾 (𝐷 (𝑃𝑢𝑛𝑘 , 𝑃𝑢𝑚𝑘))
≤ 𝛼 (𝑄𝑢𝑛𝑘 , 𝑄𝑢𝑚𝑘) 𝛾 (𝐷 (𝑃𝑢𝑛𝑘 , 𝑃𝑢𝑚𝑘))
≤ 𝛽 (𝐷 (𝑄𝑢𝑛𝑘 , 𝑄𝑢𝑚𝑘)) 𝛾 (𝐷 (𝑄𝑢𝑛𝑘 , 𝑄𝑢𝑚𝑘)) .

(9)

Continuing to apply this concept totally 𝑛𝑘+1 times, we finally
get the equality

𝛾 (𝐷 (𝑄𝑢𝑛𝑘+1, 𝑄𝑢𝑚𝑘+1))
≤ 𝑛𝑘∏
𝑖=0

𝛽 (𝐷 (𝑄𝑢𝑛𝑘−𝑖, 𝑄𝑢𝑚𝑘−𝑖)) 𝛾 (𝐷 (𝑄𝑢0, 𝑄𝑢𝑚𝑘−𝑛𝑘)) .
(10)

Let 0 ≤ 𝑖𝑘 ≤ 𝑛𝑘 such that

𝛽 (𝐷 (𝑄𝑢𝑛𝑘−𝑖𝑘 , 𝑄𝑢𝑚𝑘−𝑖𝑘))
= max {𝛽 (𝐷 (𝑄𝑢𝑛𝑘−𝑖, 𝑄𝑢𝑚𝑘−𝑖)) : 0 ≤ 𝑖 ≤ 𝑛𝑘} .

(11)

Denote 𝛿 = lim sup𝑘→∞𝛽(𝐷(𝑄𝑢𝑛𝑘−𝑖𝑘 , 𝑄𝑢𝑚𝑘−𝑖𝑘)).
Notice that if 𝛿 < 1, then lim𝑘→∞𝛾(𝐷(𝑄𝑢𝑛𝑘+1, 𝑄𝑢𝑚𝑘+1)) =0, and so

lim
𝑘→∞
𝐷(𝑄𝑢𝑛𝑘+1, 𝑄𝑢𝑚𝑘+1) = 0 (12)

which contradicts inequality (7).
Thus, 𝛿 = 1.Then, there is a subsequence of {𝛽(𝐷(𝑄𝑢𝑛𝑘−𝑖𝑘 ,𝑄𝑢𝑚𝑘−𝑖𝑘))} which converges to 1. Without loss of generality,

assume that

lim
𝑘→∞
𝛽 (𝐷 (𝑄𝑢𝑛𝑘−𝑖𝑘 , 𝑄𝑢𝑚𝑘−𝑖𝑘)) = 1. (13)

By the definition of 𝛽,
lim
𝑘→∞
𝐷(𝑄𝑢𝑛𝑘−𝑖𝑘 , 𝑄𝑢𝑚𝑘−𝑖𝑘) = 0. (14)

Therefore, there exists a 𝑘0 ∈ 𝑁 such that

𝐷(𝑄𝑢𝑛𝑘0−𝑖𝑘0 , 𝑄𝑢𝑚𝑘0−𝑖𝑘0 ) < 𝜖2 . (15)

It follows that, also from inequality (7),

𝛾 (𝜖) ≤ 𝛾 (𝐷(𝑄𝑢𝑛𝑘0 , 𝑄𝑢𝑚𝑘0 ))

≤
𝑖𝑘0∏
𝑗=1

𝛽 (𝐷(𝑄𝑢𝑛𝑘0−𝑗, 𝑄𝑢𝑚𝑘0−𝑗))

⋅ 𝛾 (𝐷(𝑄𝑢𝑛𝑘0−𝑖𝑘0 , 𝑄𝑢𝑚𝑘0−𝑖𝑘0 ))
< 𝛾 (𝐷(𝑄𝑢𝑛𝑘0−𝑖𝑘0 , 𝑄𝑢𝑚𝑘0−𝑖𝑘0 )) ≤ 𝛾 ( 𝜖2) .

(16)

This is a contradiction since 𝛾 is nondecreasing. Thus, {𝑄𝑢𝑛}
is𝐷-Cauchy.

The next goal is to show that {𝑄𝑢𝑛} is also 𝐷󸀠-Cauchy. It
can be observed that if𝐷 ≥ 𝐷󸀠, we are done. Assume that𝐷 ̸≥𝐷󸀠. Since 𝑃 is 𝑄-Cauchy on 𝑋, {𝑃𝑢𝑛} is 𝐷󸀠-Cauchy. Conse-
quently,

lim
𝑛,𝑚→∞

𝐷󸀠 (𝑄𝑢𝑛+1, 𝑄𝑢𝑚+1) = lim
𝑛,𝑚→∞

𝐷󸀠 (𝑃𝑢𝑛, 𝑃𝑢𝑚)
= 0, (17)

and so {𝑄𝑢𝑛} is𝐷󸀠-Cauchy.
Since (𝑋,𝐷󸀠) is 𝐷󸀠-complete, one can find a 𝑐 ∈ 𝑋 sat-

isfying

lim
𝑛→∞
𝐷󸀠 (𝑄𝑢𝑛, 𝑐) = lim

𝑛→∞
𝐷󸀠 (𝑃𝑢𝑛, 𝑐) = 0. (18)

That is,

{𝑄𝑢𝑛} , {𝑃𝑢𝑛} ∈ 𝐶 (𝐷󸀠, 𝑋, 𝑐) . (19)

By assumption (vi),

{𝑃𝑄𝑢𝑛} ∈ 𝐶 (𝐷󸀠, 𝑋, 𝑃𝑐)
and {𝑄𝑃𝑢𝑛} ∈ 𝐶 (𝐷󸀠, 𝑋, 𝑄𝑐) .

(20)

Since 𝑃 and 𝑄 commute, 𝑃𝑐 = 𝑄𝑐. This completes the proof.

As a consequence ofTheorem 10, if𝐷 = 𝐷󸀠, then we have
the following theorem. Besides, we can replace properties
(v) and (vi) by other conditions as stated in the theorem
below.

Theorem 11. Suppose that (𝑋,𝐷) is a 𝐷-complete JS-metric
space. Assume that

(i) (𝑃, 𝑄) is an (𝛼, 𝛽, 𝛾)-contraction with respect to𝐷;
(ii) 𝑃(𝑋) is a subspace of 𝑄(𝑋);
(iii) there is a 𝑢0 ∈ 𝑋, 𝛼(𝑄𝑢0, 𝑃𝑢0) ≥ 1, and sup{𝐷(𝑄𝑢0,𝑃V) : V ∈ 𝑋} < ∞;
(iv) either (a) or (b) holds:

(a) 𝑃 and𝑄 are continuous mappings that commute.
(b) 𝑄(𝑋) is 𝐷-complete and, for any {𝑢𝑛} ⊆ 𝑋

satisfying 𝛼(𝑢𝑛, 𝑢𝑛+1) ≥ 1 for each 𝑛 ∈ N, if there
is a 𝑐 ∈ 𝑋 such that {𝑢𝑛} ∈ 𝐶(𝐷,𝑋, 𝑐), then 𝛼(𝑢𝑛,𝑐) ≥ 1 for all 𝑛 ∈ N.

Then, there exists a coincidence point of 𝑃 and 𝑄.
Proof. It is easy to see that if condition (a) is true, then
applying Theorem 10 to the case 𝐷 = 𝐷󸀠 yields the desired
result. Assume that statement (a) does not hold. Thus, (b)
must be valid. Let {𝑢𝑛} ⊆ 𝑋 and 𝑄𝑢𝑛 = 𝑃𝑢𝑛−1 for each 𝑛 ∈ N.
An argument similar to the one used in Theorem 10 shows
that {𝑄𝑢𝑛} is𝐷-Cauchy and 𝛼(𝑄𝑢𝑛, 𝑄𝑢𝑛+1) ≥ 1 for all 𝑛 ∈ N.
From (b),

lim
𝑛→∞
𝐷(𝑄𝑢𝑛, 𝑄𝑐) = lim

𝑛→∞
𝐷(𝑃𝑢𝑛, 𝑄𝑐) = 0 (21)
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for some 𝑐 ∈ 𝑋. That is,

{𝑄𝑢𝑛} , {𝑃𝑢𝑛} ∈ 𝐶 (𝐷,𝑋,𝑄c) . (22)

Again, since condition (b) holds, for any 𝑛 ∈ N, 𝛼(𝑄𝑢𝑛, 𝑄𝑐) ≥1. From (4) and assumption (i), it follows that

𝛾 (𝐷 (𝑃𝑢𝑛, 𝑃𝑐)) ≤ 𝛼 (𝑄𝑢𝑛, 𝑄𝑐) 𝛾 (𝐷 (𝑃𝑢𝑛, 𝑃𝑐))
≤ 𝛽 (𝐷 (𝑄𝑢𝑛, 𝑄𝑐)) 𝛾 (𝐷 (𝑄𝑢𝑛, 𝑄𝑐))
< 𝛾 (𝐷 (𝑄𝑢𝑛, 𝑄𝑐)) .

(23)

Since 𝛾 is nondecreasing,
𝐷(𝑃𝑢𝑛, 𝑃𝑐) ) < 𝐷 (𝑄𝑢𝑛, 𝑄𝑐) , (24)

and so

lim
𝑛→∞
𝐷(𝑃𝑢𝑛, 𝑃𝑐) ) = 0. (25)

Consider

𝐷 (𝑄𝑐, 𝑃𝑐) ≤ 𝐾 lim sup
𝑛→∞

𝐷(𝑃𝑢𝑛, 𝑃𝑐) (26)

for some 𝐾 > 0. Therefore, 𝐷(𝑄𝑐, 𝑃𝑐) = 0. Hence, 𝑄𝑐 = 𝑃𝑐,
completing the proof.

Adding some extra condition to Theorem 10, the coinci-
dence point is actually a common fixed point. This can be
shown in the following theorem. Denote

𝐶 (𝑃,𝑄) = {𝑢 ∈ 𝑋 : 𝑃𝑢 = 𝑄𝑢} . (27)

Theorem 12. Suppose that (𝑋,𝐷󸀠) is a 𝐷󸀠-complete JS-metric
space and𝐷 is a generalizedmetric on𝑋. If all assumptions (i)-
(vi) in Theorem 10 are satisfied and 𝛼(𝑄𝑢,𝑄V) ≥ 1 whenever𝑄𝑢 ̸= 𝑄V, where 𝑢, V ∈ 𝐶(𝑃, 𝑄), then there exists a common
fixed point of 𝑃 and 𝑄.
Proof. According to Theorem 10, 𝐶(𝑃,𝑄) ̸= 0. Then, we can
let 𝑢, V ∈ 𝑋 so that 𝑃𝑢 = 𝑄𝑢 and 𝑃V = 𝑄V.

Suppose that 𝑄𝑢 ̸= 𝑄V. By the assumption, 𝛼(𝑄𝑢,𝑄V) ≥1. From the fact that (𝑃, 𝑄) is an (𝛼, 𝛽, 𝛾)-contraction with
respect to𝐷, we have that
𝛾 (𝐷 (𝑃𝑢, 𝑃V)) ≤ 𝛼 (𝑄𝑢,𝑄V) 𝛾 (𝐷 (𝑃𝑢, 𝑃V))

≤ 𝛽 (𝐷 (𝑄𝑢,𝑄V)) 𝛾 (𝐷 (𝑄𝑢,𝑄V))
< 𝛾 (𝐷 (𝑄𝑢,𝑄V)) = 𝛾 (𝐷 (𝑃𝑢, 𝑃V))

(28)

which leads to a contradiction. Therefore, 𝑄𝑢 = 𝑄V.
Next, let 𝑐 = 𝑄𝑢 = 𝑃𝑢. Since 𝑃 and 𝑄 commute, 𝑄𝑐 =𝑄𝑃𝑢 = 𝑃𝑄𝑢 = 𝑃𝑐.Thus, 𝑐 ∈ 𝐶(𝑃, 𝑄). Referring to the proof

above, we can conclude that 𝑃𝑐 = 𝑄𝑐 = 𝑄𝑢 = 𝑐. Hence, the
proof is complete.

We give examples to illustrate Theorems 10 and 11,
respectively.

Example 13. Suppose that 𝑋 = [0, 1]. Given the generalized
metrics𝐷 and𝐷󸀠 on𝑋 defined by

𝐷 (𝑢, V) =
{{{{{{{{{{{

𝑢 + V, 𝑢 ̸= 0 and V ̸= 0,
𝑢
2 , V = 0,
V
2 , 𝑢 = 0,

(29)

and

𝐷󸀠 (𝑢, V) =
{{{{{{{{{{{

𝐿 (𝑢 + V) , 𝑢 ̸= 0 and V ̸= 0,
𝐿𝑢
2 , V = 0,
𝐿V
2 , 𝑢 = 0,

(30)

where 𝑢, V ∈ 𝑋 and 𝐿 is a real number such that 𝐿 > 1, we
have that (𝑋,𝐷󸀠) is𝐷󸀠-complete. Let 𝛼 be a function defined
by

𝛼 (𝑢, V) = {{{
1, 𝑢, V ∈ [0, 14] with 𝑢 ̸= 0 or V = 0,
0, otherwise. (31)

Given the self-mappings 𝑃 and 𝑄 on𝑋 defined by

𝑃 (𝑢) = 𝑢4
and 𝑄 (𝑢) = 𝑢2, (32)

some tedious manipulation yields assumptions (ii), (v), and
(vi) in Theorem 10. Further, notice that 1/2 ∈ 𝑋 such that𝛼(𝑄(1/2), 𝑃(1/2)) = 𝛼(1/4, 1/16) ≥ 1 and sup{𝐷(𝑄(1/2),𝑃V) : V ∈ 𝑋} < ∞.

Claim 1. 𝑃 is triangular 𝛼-admissible with respect to 𝑄.
Let 𝑢, V, 𝑤 ∈ 𝑋. Assume that 𝛼(𝑄𝑢,𝑄V) ≥ 1. Then,𝑢2, V2 ∈ [0, 1/4] and 𝑄𝑢 = 𝑢2 ̸= 0 or 𝑄V = V2 = 0.

Accordingly, 𝑢, V ∈ [0, 1/2], and 𝑢 ̸= 0 or V = 0. It follows
that 𝑢4, V4 ∈ [0, 1/16], and 𝑃𝑢 = 𝑢4 ̸= 0 or 𝑃V = V4 = 0.
Therefore, 𝛼(𝑃𝑢, 𝑃V) ≥ 1.

Next, assume that 𝛼(𝑢, 𝑤) ≥ 1 and 𝛼(𝑤, V) ≥ 1. It can be
observed that if 𝑤 = 0, then V = 0, and if 𝑤 ̸= 0, then 𝑢 ̸= 0.
That is, 𝑢 ̸= 0 or V = 0. Therefore, 𝛼(𝑢, V) ≥ 1. Thus, we have
Claim 1.

Claim 2. (𝑃, 𝑄) is an (𝛼, 𝛽, 𝛾)-contraction with respect to 𝐷,
where 𝛽 ∈B and 𝛾 ∈ Υ are as follows:

𝛾 (𝑡) = 𝑡2

and 𝛽 (𝑡) = {{{{{

1
4 , 0 ≤ 𝑡 < 1,
1
𝑡2 + 2 , 𝑡 ≥ 1

(33)

for 𝑡 ∈ [0,∞].
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Given 𝑢, V ∈ 𝑋, if 𝛼(𝑄𝑢,𝑄V) = 0, inequality (4) holds.
Assume that 𝛼(𝑄𝑢,𝑄V) ≥ 1. Similar as above, 𝑢, V ∈ [0, 1/2].
Consider the following cases.

Case 1. 𝑄V = 0. We have that

𝛼 (𝑄𝑢, 𝑄V) 𝛾 (𝐷 (𝑃𝑢, 𝑃V)) = 𝑃𝑢/22 = 𝑢44 ≤
1
4 (
𝑢2
4 )

= 𝛽 (𝐷 (𝑄𝑢,𝑄V)) 𝛾 (𝐷 (𝑄𝑢,𝑄V)) .
(34)

Case 2. 𝑄V ̸= 0. Then, 𝑄𝑢 ̸= 0. Consider
𝛼 (𝑄𝑢, 𝑄V) 𝛾 (𝐷 (𝑃𝑢, 𝑃V)) = 𝑃𝑢 + 𝑃V2 = 𝑢4 + V42
≤ 14 (

𝑢2 + V2
2 ) = 𝛽 (𝐷 (𝑄𝑢,𝑄V)) 𝛾 (𝐷 (𝑄𝑢,𝑄V)) .

(35)

Therefore, (𝑃, 𝑄) is a (𝛼, 𝛽, 𝛾)-contraction with respect to𝐷.
Claim 3. 𝑃 : (𝑋,𝐷) → (𝑋,𝐷󸀠) is 𝑄-Cauchy on𝑋.

Notice that 𝐷 ≤ 𝐷󸀠. Suppose that {𝑢𝑛} ⊆ 𝑋 such that{𝑄𝑢𝑛} is 𝐷-Cauchy. Let 𝜖 > 0.There is a 𝑘 ∈ N so that, for all𝑚, 𝑛 ≥ 𝑘, we have that
𝑢2𝑛 + 𝑢2𝑚 = 𝐷 (𝑄𝑢𝑛, 𝑄𝑢𝑚) < 𝜖𝐿 . (36)

With this 𝑘,
𝐷󸀠 (𝑃𝑢𝑛, 𝑃𝑢𝑚) ≤ 𝐿 (𝑢4𝑛 + 𝑢4𝑚) ≤ 𝐿 (𝑢2𝑛 + 𝑢2𝑚) < 𝜖 (37)

for any𝑚, 𝑛 ≥ 𝑘. This completes Claim 3.
Thus, by Theorem 10, 𝑃 and 𝑄 have a coincidence point,

precisely, 0.

Example 14. Let 𝑋 = [0, 1]. Therefore, (𝑋,𝐷) is 𝐷-complete,
where 𝐷 is the generalized metric as defined in Example 13.
Suppose that 𝛼 is a function as follows:

𝛼 (𝑢, V) = {{{
1, 𝑢 ̸= 0 or V = 0,
0, otherwise. (38)

Define self-mappings 𝑃 and 𝑄 on𝑋 by

𝑃 (𝑢) = 𝑢
𝑢 + 6

and 𝑄 (𝑢) = 𝑢3 .
(39)

Note that 𝑃(𝑋) ⊆ 𝑄(𝑋) and 𝑄(𝑋) is 𝐷-complete. Moreover,
we have 1 ∈ 𝑋 such that 𝛼(𝑄1, 𝑃1) ≥ 1 and sup{𝐷(𝑄1, 𝑃V) :
V ∈ 𝑋} < ∞.

Claim 1. 𝑃 is triangular 𝛼-admissible with respect to 𝑄.
Let 𝑢, V, 𝑤 ∈ 𝑋. Assume that 𝛼(𝑄𝑢,𝑄V) ≥ 1. Then, 𝑄𝑢 ̸=0 or 𝑄𝑢 = 0. That is, 𝑢 ̸= 0 or V = 0. Thus, 𝑃𝑢 ̸= 0 or 𝑃V = 0.

Therefore, 𝛼(𝑃𝑢, 𝑃V) ≥ 1.

Similar as in the proof of the previous example, if𝛼(𝑢, 𝑤) ≥ 1 and 𝛼(𝑤, V) ≥ 1, then 𝛼(𝑢, V) ≥ 1. Therefore,
Claim 1 is obtained.

Claim 2. (𝑃, 𝑄) is an (𝛼, 𝛽, 𝛾)-contraction with respect to 𝐷,
where 𝛽 ∈B and 𝛾 ∈ Υ defined by 𝛽(𝑡) = 1/2 and 𝛾(𝑡) = 𝑡/2
for 𝑡 ∈ [0,∞], respectively.

Suppose 𝑢, V ∈ 𝑋. If 𝛼(𝑄𝑢,𝑄V) = 0, then inequality (4)
holds. Assume that 𝛼(𝑄𝑢,𝑄V) ≥ 1. Consider the following
cases.

Case 1. 𝑄V = 0. We have that

𝛼 (𝑄𝑢,𝑄V) 𝛾 (𝐷 (𝑃𝑢, 𝑃V)) = 𝑃𝑢/22 = 12 (
𝑢

2 (𝑢 + 6))
≤ 12 (

𝑢
6) = 𝛽 (𝐷 (𝑄𝑢,𝑄V)) 𝛾 (𝐷 (𝑄𝑢,𝑄V)) .

(40)

Case 2. 𝑄V ̸= 0. Then, 𝑄𝑢 ̸= 0. Consider
𝛼 (𝑄𝑢,𝑄V) 𝛾 (𝐷 (𝑃𝑢, 𝑃V)) = 𝑃𝑢 + 𝑃V2
= 12 (

𝑢
𝑢 + 6 +

V
V + 6) ≤

1
2 (
𝑢
6 +

V
6)

= 𝛽 (𝐷 (𝑄𝑢,𝑄V)) 𝛾 (𝐷 (𝑄𝑢,𝑄V)) .
(41)

Therefore, we have Claim 2.
Next, let {𝑢𝑛} ⊆ 𝑋 such that, for any 𝑛 ∈ N, 𝛼(𝑢𝑛, 𝑢𝑛+1) ≥1. Assume that {𝑢𝑛} ∈ 𝐶(𝐷,𝑋, 𝑐) for some 𝑐 ∈ 𝑋. By the

definition of 𝛼, for each 𝑛 ∈ N, 𝑢𝑛 ̸= 0 or 𝑢𝑛+1 = 0. Fix 𝑛 ∈ N.
If 𝑢𝑛 ̸= 0, then 𝛼(𝑢𝑛, 𝑐) ≥ 1. Assume that 𝑢𝑛 = 0. Suppose
that 𝑐 ̸= 0. Then, 𝐷(𝑢𝑛, 𝑐) = 𝐷(0, 𝑐) = 𝑐/2 ̸= 0. This is a
contradiction since {𝑢𝑛} ∈ 𝐶(𝐷,𝑋, 𝑐). Thus, 𝑐 = 0. Therefore,
we get that 𝛼(𝑢𝑛, 𝑐) ≥ 1. Since 𝑛 is arbitrary, this is true for
every 𝑛 ∈ N. Hence, by Theorem 11, 𝑐 = 0 is a coincidence
point of 𝑃 and 𝑄.
3. Application

We wish to apply our finding to the existence problem of a
solution to the integral equation.This is one of the crucial uses
of fixed point theorems that can be found in the literatures
(see [10–13]).

𝑢 (𝑡) = ∫𝑇
0
𝑝 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠 + 𝑏 (𝑡) (42)

for 𝑡 ∈ [0, 𝑇], where 𝑇 is a real number such that 𝑇 > 0.
Suppose that𝑋 = 𝐶([0, 𝑇],R) and

𝐷 (𝑢, V) = max
𝑡∈[0,𝑇]

|𝑢 (𝑡)| + max
𝑡∈[0,𝑇]

|V (𝑡)| (43)

for 𝑢, V ∈ 𝐶([0, 𝑇],R). We have that (𝑋,𝐷) is a 𝐷-complete
JS-metric space. The following theorem shows when the
equation (42) has a solution if the integral equation is
homogeneous.

Theorem 15. Consider equation (42). Suppose that

(i) 𝑝 : [0, 𝑇] × [0, 𝑇] ×R→ R is continuous;
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(ii) for any 𝑢, V ∈ R, if 𝑢 ≤ V, then 𝑝(𝑡, 𝑠, 𝑢) ≤ 𝑝(𝑡, 𝑠, V) and
󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑠, 𝑢)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑠, V)󵄨󵄨󵄨󵄨 ≤ ln (1 + |𝑢| + |V|)

𝑇 , (44)

where 𝑠, 𝑡 ∈ [0, 𝑇];
(iii) there is a 𝑢0 ∈ 𝑋, 𝑢0(𝑡) ≤ ∫𝑇0 𝑝(𝑡, 𝑠, 𝑢0(𝑠))𝑑𝑠, where𝑡 ∈ [0, 𝑇];
(iv) sup{max𝑡∈[0,𝑇]| ∫𝑇0 𝑝(𝑡, 𝑠, V(𝑠))𝑑𝑠| : V ∈ 𝑋} < ∞.

Then, the integral equation (42) has a solution.

Proof. Define the self-mappings 𝑃 and 𝑄 on𝑋 as follows:

𝑃𝑢 (𝑡) = ∫𝑇
0
𝑝 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠, (45)

and 𝑄𝑢(𝑡) = 𝑢(𝑡) for 𝑢 ∈ 𝑋 and 𝑡 ∈ [0, 𝑇]. Suppose that𝛼 : 𝑋 × 𝑋 → R is a function defined by

𝛼 (𝑢, V) = {{{
1, 𝑢 (𝑡) ≤ V (𝑡) for any 𝑡 ∈ [0, 𝑇] ,
0, otherwise. (46)

Clearly, 𝑃(𝑋) ⊆ 𝑄(𝑋), and 𝑃 and𝑄 are continuousmappings
that commute. Moreover, by assumptions (𝑖𝑖𝑖) and (𝑖V), it is
straightforward to show that condition (𝑖𝑖𝑖) of Theorem 11 is
satisfied. Our problem reduces to show that the pair (𝑃, 𝑄) is
an (𝛼, 𝛽, 𝛾)-contraction with respect to 𝐷 for some 𝛽 ∈ B
and 𝛾 ∈ Υ.

First, we establish that 𝑃 is triangular-𝛼-admissible with
respect to 𝑄.

Assume that 𝛼(𝑄𝑢,𝑄V) ≥ 1. Then,𝑄𝑢(𝑡) ≤ 𝑄V(𝑡); that is,𝑢(𝑡) ≤ V(𝑡) for any 𝑡 ∈ [0, 𝑇]. By assumption (ii), 𝑝(𝑡, 𝑠, 𝑢) ≤𝑝(𝑡, 𝑠, V). Therefore,

𝑃𝑢 (𝑡) = ∫𝑇
0
𝑝 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠 ≤ ∫𝑇

0
𝑝 (𝑡, 𝑠, V (𝑠)) 𝑑𝑠

= 𝑃V (𝑡) .
(47)

That is, 𝛼(𝑃𝑢, 𝑃V) ≥ 1. It is simple to show that the second
condition of Definition 7 holds. Thus, 𝑃 is triangular-𝛼-
admissible with respect to 𝑄.

Finally, it remains to prove inequality (4).
If 𝑢(𝑡) > V(𝑡) for some 𝑡 ∈ [0, 𝑇], we are done. Suppose

that 𝑢(𝑡) ≤ V(𝑡) for all 𝑡 ∈ [0, 𝑇]. From assumption (𝑖𝑖),
consider

|𝑃𝑢 (𝑡)| + |𝑃V (𝑡)|
≤ ∫𝑇
0

󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑠, 𝑢 (𝑠))󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑠, V (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 1𝑇 ∫
𝑇

0
ln (1 + |𝑢 (𝑠)| + |V (𝑠) )| 𝑑𝑠

≤ ln(1 + max
𝑡∈[0,𝑇]

|𝑄𝑢 (𝑡)| + max
𝑡∈[0,𝑇]

|𝑄V (𝑡)|) ,

(48)

and, then,

ln (|𝑃𝑢 (𝑡)| + |𝑃V (𝑡)| + 1)
≤ ln(∫𝑇

0

󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑠, 𝑢 (𝑠))󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑠, V (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠 + 1)

≤ ln( 1𝑇 ∫
𝑇

0
ln (1 + |𝑢 (𝑠)| + |V (𝑠) )| 𝑑𝑠 + 1)

≤ ln(ln(1 + max
𝑡∈[0,𝑇]

|𝑄𝑢 (𝑡)| + max
𝑡∈[0,𝑇]

|𝑄V (𝑡)|) + 1)

= ln (ln (1 +max𝑡∈[0,𝑇] |𝑄𝑢 (𝑡)| +max𝑡∈[0,𝑇] |𝑄V (𝑡)|) + 1)
ln (1 +max𝑡∈[0,𝑇] |𝑄𝑢 (𝑡)| +max𝑡∈[0,𝑇] |𝑄V (𝑡)|)

⋅ ln(1 + max
𝑡∈[0,𝑇]

|𝑄𝑢 (𝑡)| + |𝑄V (𝑡)|) .

(49)

This gives us the desired inequality for 𝛾(𝑡) = ln(𝑡 + 1) and

𝛽 (𝑡) = {{{
ln (ln (1 + 𝑡) + 1)

ln (1 + 𝑡) , 𝑡 > 0,
𝑘, 𝑡 = 0 (50)

for some 𝑘 ∈ [0, 1), where 𝑡 ∈ [0,∞). Thus, (𝑃, 𝑄) is an(𝛼, 𝛽, 𝛾)-contraction with respect to𝐷.
Hence, there exists a coincidence point of 𝑃 and𝑄 which

is a solution to the integral equation (42).
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We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition
method (LADM). The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the
problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show
the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.

1. Introduction

The Euler-Bernoulli beam theory states that the action load
produces the bending moment 𝑀(𝑥) ∈ 𝐶([0, 𝐿]) which is
proportional to deflection characteristics of the beam. The
equation of this law can be written as follows:

𝑦
󸀠󸀠

[1 + (𝑦󸀠)
2
]

3/2
= −

𝑀(𝑥)

𝐸𝐼
, (1)

where 𝑦 ∈ 𝐶2
([0, 𝐿]) is deflection curve of a uniform beam,

the modulus of elasticity 𝐸, and the moment of inertia 𝐼. We
note that 𝐸 and 𝐼 are both constant and the product of 𝐸 and
𝐼 is called beam stiffness. In a case of small deformation, we
assume that 𝑦󸀠

(𝑥) is infinitesimal. Equation (1) is reduced to
the well-known fourth-order linear differential equation:

𝐸𝐼
𝑑

4
𝑦

𝑑𝑥4
=
𝑑

2
𝑀

𝑑𝑥2
. (2)

In this study we consider the uniform flexible of cantilever
beam; see Figure 1. The parameters 𝐿 and Δ are unde-
formed length and horizontal displacement, respectively.
The deformed length of beam is verified by the integral
∫

𝑙

0
[1 + (𝑦

󸀠
)
2
]
1/2
𝑑𝑥, where 𝑙 = 𝐿 − Δ. It was shown in [1]

that the slope of deflection curve represents the following

equation 𝑦
󸀠
(𝑥) = 𝐺(𝑥)/[1 − 𝐺

2
(𝑥)]

1/2, where 𝐺(𝑥) =

(∫
𝑙

𝑥
𝑀(𝑠)𝑑𝑠)/(𝐸𝐼) for the known function𝑀.The deflection

curve in Figure 1 corresponds to initial value problem of the
geometric problem:

𝑦
󸀠󸀠
(𝑥)

[1 + (𝑦󸀠
(𝑥))

2
]

3/2
= −

𝑀(𝑥)

𝐸𝐼
, 𝑥 ∈ [0, 𝑙]

𝑦 (0) = 0,

𝑦
󸀠
(0) =

𝐺 (0)

[1 − 𝐺2
(0)]

1/2
,

(3)

where𝑀(𝑥) = 𝑃𝑥. If the slope is very small, the linear Euler-
Bernoulli beam theory [2] governs the problem

𝐸𝐼
𝑑

4
𝑦

𝑑𝑥4
= 0, 𝑥 ∈ [0, 𝐿] ,

𝐸𝐼𝑦
󸀠󸀠
(0) = −𝑃𝐿,

𝐸𝐼𝑦
(3)
(0) = −𝑃,

𝑦 (𝐿) =
𝑃𝐿

3

3𝐸𝐼
,

𝑦
󸀠
(𝐿) = 0.

(4)

9
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Figure 1: Cantilever beam with a concentrated load at the free end.

The solution of the problem (4) is

𝑦 (𝑥) =
𝑃𝑥

3

6𝐸𝐼
−
𝑃𝐿

2
𝑥

2𝐸𝐼
. (5)

Our method proposes to reform problem (3) in a sense of
fractional calculus without linearization. Because fractional
calculus is the great idea to describe behavior in nature, for
example, force response of viscoelastic material [3, 4], fluid
flow [5], and fitting experimental data [6]. For convenience,
we set 𝑘 = −𝑃/𝐸𝐼 and 𝑐 = 𝐺(0)/[1−𝐺2

(0)]
1/2. We develop (1)

to deal with fractional order 𝛼 ∈ (1, 2]; system (3) becomes

𝐷
𝛼
0𝑦 (𝑥) = 𝑘𝑥 [1 + (𝑦

󸀠
(𝑥))

2
]

3/2

, 𝑥 ∈ [0, 𝑙] ,

𝑦 (0) = 0,

𝑦
󸀠
(0) = 𝑐.

(6)

We use Adomian polynomial to approximate a nonlinear
term and derive a semianalytical solution by use of Laplace
transform for the initial value problem (6).

2. Preliminaries

In this section we introduce some definitions and theory of
fractional calculus and Laplace transform which are used in
our method. See [7] for more details.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 > 0 is defined as

𝐼
𝛼
0 𝑦 (𝑥) =

1

Γ (𝛼)
∫

𝑡

0
(𝑡 − 𝜏)

𝛼−1
𝑓 (𝜏) 𝑑𝜏. (7)

Definition 2. The Caputo fractional derivative of order 𝛼 > 0
is defined as

𝐷
𝛼
0𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0
(𝑡 − 𝜏)

𝑛−𝛼−1
𝑓

(𝑛)
(𝜏) 𝑑𝜏,

𝑛 = ⌈𝛼⌉ .

(8)

Theorem 3. If 𝑝 > 0 and 𝑞 > 0, then (𝐷𝑝
0𝐷

𝑞
0𝑓)(𝑥) =

𝐷
𝑝+𝑞
𝑓(𝑥).

Theorem 4. The Laplace transform of the Caputo fractional
derivative is given by

𝐿 {𝐷
𝛼
0𝑦 (𝑥)} = 𝑠

𝛼
𝐿 {𝑦 (𝑥)} −

𝑛

∑

𝑘=0

𝑠
𝛼−𝑘−1

𝑦
(𝑘)
(0) , (9)

where 𝑛 = ⌊𝛼⌋ and 𝑘 is a nonnegative integer. The inverse
Laplace transform of power function is given by

𝐿
−1
{
Γ (𝑝 + 1)

𝑠𝑝+1
} = 𝑡

𝑝
, 𝑝 > −1. (10)

3. Semianalytical Solution via LADM

To formulate the general solution of problem (6), we replace
𝑦

󸀠 with 𝑢 in the equation of problem (6) and applied
Theorem 3. We obtain

𝐷
𝛼−1
0 𝑢 = 𝑘𝑥 [1 + 𝑢

2
]

3/2
. (11)

Taking Laplace transform of (11) gives

𝐿 {𝐷
𝛼−1
0 𝑢} = 𝑘𝐿 {𝑥 [1 + 𝑢

2
]

3/2
} . (12)

UsingTheorem 4 and replacing 𝑦󸀠
(0) by 𝑐, we can rewrite as

𝐿 {𝑢} =
𝑐

𝑠
+ 𝑘𝑠

1−𝛼
𝐿 {𝑥 [1 + 𝑢

2
]

3/2
} . (13)

We take inverse Laplace transform of (13), and the following
operator equation is obtained:

𝑢 = 𝑐 + 𝑘𝐿
−1
{𝑠

1−𝛼
𝐿 {𝑥 [1 + 𝑢

2
]

3/2
}} . (14)

We apply Adomian polynomial [8, 9] to approximate a non-
linear term of (14), by setting

𝑁𝑢 = [1 + 𝑢
2
]

3/2
=

∞

∑

𝑛=0

𝐴𝑛 (𝑢) ;

𝐴𝑛 (𝑢) =
1

𝑛!
(

∞

∑

𝑖=0

𝑐 (V, 𝑛)
𝑑
V
𝑁𝑢

𝑑𝑢V
) .

(15)

Equation (14) becomes

𝑢 = 𝑐 + 𝑘𝐿
−1
{𝑠

1−𝛼
𝐿{𝑥

∞

∑

𝑛=0

𝐴𝑛 (𝑢)}} . (16)

Assume that the solution of (11) can bewritten as 𝑢 = ∑∞
𝑛=1 𝑢𝑛.

From the combination of Laplace transform and Adomian
decomposition method, we obtain the formulation of LADM
for fractional order of cantilever beam deflection equation:

∞

∑

𝑛=0

𝑢𝑛 = 𝑐 + 𝑘𝐿
−1
{𝑠

1−𝛼
𝐿{𝑥

∞

∑

𝑛=0

𝐴𝑛 (𝑢)}} . (17)
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In this work, we apply the first four terms of LADMwhich are
provided from following recurrence:

𝑢0 = 𝑐,

𝑢𝑖+1 = 𝑘𝐿
−1
{𝑠

1−𝛼
𝐿 {𝑥𝐴 𝑖}} ,

for 𝑖 = 0, 1, 2,

(18)

where

𝐴0 = 𝑁𝑢0,

𝐴1 = 𝑢1

𝑑 (𝑁𝑢0)

𝑑𝑢0

,

(19)

𝐴2 = 𝑢2

𝑑 (𝑁𝑢0)

𝑑𝑢0

+
𝑢

2
1

2!

𝑑
2
(𝑁𝑢0)

𝑑𝑢
2
0

. (20)

The components of adomian polynomial are given by

𝐴0 = (1 + 𝑢
2
0)

3/2
,

𝐴1 = 3𝑢0𝑢1 (1 + 𝑢
2
0)

1/2
,

𝐴2 = 3𝑢0𝑢2 (1 + 𝑢
2
0)

1/2
+
3

2
𝑢

2
1 (1 + 𝑢

2
0)

1/2

+
3

2
(𝑢0𝑢1)

2
(1 + 𝑢

2
0)

−1/2
.

(21)

The iteration results of recurrence (18) are shown as follows:

𝑢0 = 𝑐,

𝐴0 = (1 + 𝑐
2
)

3/2
,

𝑢1 = −𝑘𝐿
−1
{𝑠

1−𝛼
𝐿 {𝑥𝐴0}} = −

𝑘 (1 + 𝑐
2
)

3/2

Γ (1 + 𝛼)
𝑥

𝛼
,

𝐴1 = −

3𝑐𝑘 (1 + 𝑐
2
)

2

Γ (2 + 𝛼 − 1)
𝑥

𝛼
,

𝑢2 = −𝑘𝐿
−1
{𝑠

1−𝛼
𝐿 {𝑥𝐴1}} =

3𝑐𝑘
2
(1 + 𝑐

2
)

2
Γ (2 + 𝛼)

Γ (1 + 𝛼) Γ (1 + 2𝛼)

⋅ 𝑥
2𝛼
,

𝐴2 = (
9𝑐

2
Γ (2 + 𝛼)

Γ (1 + 2𝛼)
+

3 (1 + 2𝑐
2
)

2Γ (1 + 𝛼)
)

𝑘
2
(1 + 𝑐

2
)

5/2

Γ (1 + 𝛼)

⋅ 𝑥
2𝛼
,

𝑢3 = −𝑘𝐿
−1
{𝑠

1−𝛼
𝐿 {𝑥𝐴2}}

= −(
9𝑐

2
Γ (2 + 𝛼)

Γ (1 + 2𝛼)
+

3 (1 + 2𝑐
2
)

2Γ (1 + 𝛼)
)

⋅

Γ (2 + 2𝛼) 𝑘
3
(1 + 𝑐

2
)

5/2

Γ (1 + 𝛼) Γ (1 + 3𝛼)
𝑥

3𝛼
.

(22)

The first four terms’ approximate solution is 𝑢 = 𝑢0+𝑢1+𝑢2+

𝑢3:

𝑢 (𝑥) = 𝑐 −

𝑘 (1 + 𝑐
2
)

3/2

Γ (1 + 𝛼)
𝑥

𝛼

+

3𝑐𝑘
2
(1 + 𝑐

2
)

2
Γ (2 + 𝛼)

Γ (1 + 𝛼) Γ (1 + 2𝛼)
𝑥

2𝛼

− (
9𝑐

2
Γ (2 + 𝛼)

Γ (1 + 2𝛼)
+

3 (1 + 2𝑐
2
)

2Γ (1 + 𝛼)
)

⋅

Γ (2 + 2𝛼) 𝑘
3
(1 + 𝑐

2
)

5/2

Γ (1 + 𝛼) Γ (1 + 3𝛼)
𝑥

3𝛼
.

(23)

Since 𝑢 = 𝑦󸀠 and 𝑦(0) = 0, thus 𝑦(𝑥) = ∫𝑥

0
𝑢(𝑠)𝑑𝑠. This yields

𝑦 (𝑥) = 𝑐𝑥 −

𝑘 (1 + 𝑐
2
)

3/2

Γ (2 + 𝛼)
𝑥

1+𝛼

+

3𝑐𝑘
2
(1 + 𝑐

2
)

2
Γ (2 + 𝛼)

Γ (1 + 𝛼) Γ (2 + 2𝛼)
𝑥

1+2𝛼

− (
9𝑐

2
Γ (2 + 𝛼)

Γ (1 + 2𝛼)
+

3 (1 + 2𝑐
2
)

2Γ (1 + 𝛼)
)

⋅

Γ (2 + 2𝛼) 𝑘
3
(1 + 𝑐

2
)

5/2

Γ (1 + 𝛼) Γ (2 + 3𝛼)
𝑥

1+3𝛼
.

(24)

3.1. Integer Order for Small Deformation. We simulate some
deflection curve of the results in (24) and (5) which are
solution of LADM and classical method, respectively. The
parameters are 𝐿 = 100 in., Δ = 0 in., 𝐸𝐼 = 1.8 × 105 kip in.2,
𝛼 = 2, and 𝑃 = 1 kip. Figure 2 shows the deflection
of cantilever beam, obtained by using classical method and
LADM. LADM has accurate slope around the free end of the
beam as well as classical method. Moreover LADM shows
that the deflection curve remains nearly straight line in the
case of small deformation.

The effects of various loads influencing maximum deflec-
tion at the free end and length of the deformed beam
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Figure 2: Small deflection curve.

Table 1: Numerical results under various load testing.

Load
(kip)

Linear LADM
𝑦max Curve length 𝑦max Curve length
(in.) (in.) (in.) (in.)

0.1 0.1852 100.0002 0.2770 100.0004
0.2 0.3704 100.0008 0.5525 100.0015
0.3 0.5556 100.0019 0.8264 100.0034
0.4 0.7407 100.0033 1.0989 100.0060
0.5 0.9259 100.0051 1.3698 100.0094
1 1.8519 100.0206 2.7020 100.0365
5 9.2593 100.5125 12.0619 100.7396
10 18.519 102.0283 20.0049 102.2721
50 92.5926 140.3049 — —
100 185.1852 216.3719 — —

are presented in Table 1. We observe that the calculation
of nonlinear integer order deformation via LADM fails at
𝑃 = 50 kips and 𝑃 = 100 kips. Since 𝐺(0) > 1 thus
integral of bending moment is greater than stiffness of the
beam.This yields large deformation, large rotation, and large
strain, namely, some concept of large deformation. Not only
does LADM fails, but also classical method does, because it
contradicts the assumption that the lengths of deformed and
undeformed beam are identical. This is the motivation for
reform in fractional order model.

3.2. Fractional Order for Large Deformation. There are many
methods for describing a large deformation of a beam, for
example, the Laplace-Padé coupling with NDHPM andHPM
[10], VIM [11], and pseudolinear system [1]. In this section, we
introduce the process of investigating semianalytical solution
via LADM and some numerical results of pseudolinear
system in [1].

To illustrate the numerical results we suppose that hor-
izontal displacement Δ = 40. The beam parameters are
𝐿 = 1000 in. and 𝐸𝐼 = 1.8 × 10

5 kip in.2. The fact from our
assumption is

𝑦
󸀠
(840) = 0. (25)

In this case we fixed the concentrate load 𝑃 = 0.4 kip.
We get the deformed length 𝑙 = 840 and initial condition

Table 2: Values of slope at 840 in. and maximum vertical displace-
ment for various fractional orders.

Fractional order Slope at 840 in. Deformed length (in.)
1.56 −0.185702 768.244392
1.55 −0.102380 798.176219
1.54 −0.023820 829.711010
1.53 0.050256 862.954991
1.52 0.120111 898.022706

Table 3: Numerical results of slope deflection.

𝑥 (in.) Pseudolinear (in.) LADM (in.)
0 1.1049 1.2630
100.0 1.0698 1.2132
200.0 0.9720 1.1186
300.0 0.8360 0.9943
400.0 0.6822 0.8460
500.0 0.5232 0.6773
600.0 0.3632 0.4903
700.0 0.2009 0.2862
800.0 0.0304 0.0679
816.9 0 0.0294

𝑐 = 𝑦
󸀠
(0) = 1.2626. Fractional order is determined by

simulating the results of slope at 840 and deformed length.
Table 2 shows that order 𝛼 = 1.54 is given, 𝑦󸀠

(840) = −0.0238

and 𝑦󸀠
(829.711) = 0, which is the most accurate for the

fact in (25). We design order 𝛼 = 1.54 for this problem.
Using the first four terms’ approximation, the deflection is
shown in Figure 3(a). The slope deflection of psudolinear
system and LADMare presented in Table 3.Moment diagram
(𝑀𝑒) can be computed from the deflection curve as follows:
𝑀𝑒(𝑥) = 𝐸𝐼𝑦

󸀠󸀠
(𝑥)/[1 + (𝑦

󸀠
(𝑥))

2
]
3/2 and 𝑉(𝑥) = 𝑀

󸀠
𝑒(𝑥)

for shear diagram. The results of both moment and shear
diagram are shown in Figures 3(b) and 3(c), respectively.

4. Conclusion

In this study, we use Euler-Bernoulli beam equation for
describing the uniform flexible cantilever beam with a con-
centrated load.The initial conditions are given by calculating
slope of the beam. We use LADM to determine the semi-
analytical solution. LADM with integer order system can
approximate solution without cancellation a nonlinear term
in the case of small deformation. For the large deformation,
we reform the problem to fractional order system and
estimate fractional order 𝛼which conserves the fact from the
assumption. Finally, we show that LADMgives the solution as
a polynomial expression which is the advantage for analyzing
moment and shear diagrams. LADM may be a powerful
and successive method for solving nonlinear science and
engineering problem.
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Figure 3: Numerical results of deformation via LADM (4 terms).
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Numerical experiments with smooth surface extension and image inpainting using harmonic and biharmonic functions are carried
out. The boundary data used for constructing biharmonic functions are the values of the Laplacian and normal derivatives of the
functions on the boundary. Finite difference schemes for solving these harmonic functions are discussed in detail.

1. Introduction

Thesmooth function extension problem is a classical problem
that has been studied extensively in the literature from
various viewpoints. Some of the well-known results include
Urysohn’s Lemma, the Tietze Extension, and Whitney’s
ExtensionTheorem (see, e.g., [1–9]).

Inpainting was first introduced in [10] and then has been
studied extensively by several authors (see, e.g., [11, 12]).
Although smooth image inpainting is a smooth function
extension problem, the most common approach in image
inpainting so far is to use the solution to some PDE which
are obtained fromminimum-energy models as the recovered
image. The most commonly used density function for these
energy models is total derivation.

In [12], by considering smooth inpainting as a smooth
surface extension problem, the author studied methods for
linear inpainting and cubic inpainting. Error bounds for
these inpainting methods are derived in [12]. In [13], several
surface completion methods have been studied. An optimal
bound for the errors of the cubic inpainting method in
[12] is given. Applications to smooth inpainting have also
been discussed in [13]. There, error bounds of completion
methods are derived in terms of the radius of the domains
on which the functions are completed. In one of the methods
in [13], the author proposed to use 𝑝-harmonic functions for
smooth surface completion and smooth surface inpainting.
Later in [14], 𝑝-harmonic functions are also studied for

smooth surface completion and inpainting. The differences
of the method using 𝑝-harmonic functions in [13, 14] are as
follows: the method in [13] uses Δ𝑖𝑢|𝑆, 𝑖 = 0, 1, . . . , 𝑝 − 1,
as boundary data while the method in [14] uses (𝜕𝑖/𝜕𝑁𝑖)𝑢|

𝑆
,𝑖 = 0, 1, . . . , 𝑝−1, as boundary data to solve for a 𝑝-harmonic

function. Here, 𝑢 is the function to be inpainted and 𝑆 is the
boundary of the inpainted region.

The goals of this paper are to implement and compare
the performance of the two surface completion schemes in
[13, 14]. In particular, we focus our study on smooth surface
completion and smooth surface inpainting by biharmonic
functions.

2. Surface Completion by
Biharmonic Functions

Let𝐷 be a simply connected region inR2 with 𝐶1-boundary𝑆 = 𝜕𝐷 and 𝑑 be the diameter of 𝐷. Let 𝑢
0
be a

smooth function on any region containing 𝐷. Assume that𝑢
0
is known on a neighbourhood outside 𝐷. The surface

completion problem consists of finding a function 𝑢 on a
region containing𝐷 such that𝑢 = 𝑢

0
outside 𝐷. (1)

There are several ways to construct the function 𝑢 so that (1)
holds. For smooth surface completion, one is often interested
in finding a sufficiently smooth function 𝑢 satisfying (1).
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An application of smooth surface completion is in
smooth image inpainting. In smooth image inpainting, one
has a smooth image 𝑢

0
which is known in a neighbourhood

outside of a region 𝐷 while the data inside 𝐷 is missing. The
goal of image inpainting is to extend the function 𝑢 over the
region 𝐷 in such a way that the extension over the missing
region is not noticeable with human eyes.

In image inpainting, an inpainting scheme is said to be of
linear order, or simply linear inpainting, if, for any smooth
test image 𝑢0, as the diameter 𝑑 of the inpainting region 𝐷
shrinks to 0, one has󵄩󵄩󵄩󵄩𝑢 − 𝑢

0

󵄩󵄩󵄩󵄩𝐷 = 𝑂 (𝑑2) , (2)

where 𝑢 is the image obtained from the inpainting scheme.
Here, ‖ ⋅ ‖

𝐷 denotes the 𝐿∞(𝐷) norm. Here and throughout,𝑓 = 𝑂(𝑔) if |𝑓|/|𝑔| is bounded uniformly by some constant𝐶 > 0.
Note that harmonic inpainting, that is, the extension

found from the equationΔ𝑢 = 0 in 𝐷,𝑢|𝑆 = 𝑢
0

󵄨󵄨󵄨󵄨𝑆 , (3)

is a linear inpainting scheme [12].
In [12], the following result for cubic inpainting is proved.

Theorem1 (cubic inpainting,Theorem 6.5 [12]). Let𝑢
1
be the

harmonic inpainting of 𝑢
0
. Let 𝑢

ℓ
be a linear inpainting of Δ𝑢

0

on𝐷 (not necessarily harmonic), and let 𝑢(𝑥) be defined by𝑢 (𝑥) = 𝑢
1 (𝑥) + 𝑢

2 (𝑥) , 𝑥 ∈ 𝐷, (4)

where 𝑢
2
solves Poisson’s equationΔ𝑢

2
= 𝑢
ℓ
, 𝑖𝑛 𝐷,𝑢2󵄨󵄨󵄨󵄨𝑆 = 0. (5)

Then, 𝑢 defines a cubic inpainting of 𝑢
0
; that is,󵄩󵄩󵄩󵄩𝑢 − 𝑢0󵄩󵄩󵄩󵄩𝐷 = 𝑂 (𝑑4) . (6)

Remark 2. If 𝑢
ℓ is the harmonic inpainting of Δ𝑢0 in 𝐷, that

is, 𝑢ℓ solves the equationΔ𝑢
ℓ
= 0 in 𝐷,𝑢ℓ󵄨󵄨󵄨󵄨𝑆 = Δ𝑢0󵄨󵄨󵄨󵄨𝑆 , (7)

then the element 𝑢 defined by (4) is a biharmonic function
which solves the following problem:Δ2𝑢 = 0,Δ𝑢|𝑆 = Δ𝑢

0

󵄨󵄨󵄨󵄨𝑆 ,𝑢|𝑆 = 𝑢
0

󵄨󵄨󵄨󵄨𝑆 . (8)

In [13], this result is generalized to a multiresolution
approximation extension scheme in which the Laplacian

is replaced by more general lagged diffusivity anisotropic
operators. It is proved in [13] that if 𝑢 solves the equationΔ𝑛𝑢 = 0 in 𝐷,Δ𝑖𝑢󵄨󵄨󵄨󵄨󵄨𝑆 = Δ𝑖𝑢0󵄨󵄨󵄨󵄨󵄨𝑆 , 𝑖 = 0, 1, . . . , 𝑛 − 1, (9)

then 󵄩󵄩󵄩󵄩𝑢 − 𝑢0󵄩󵄩󵄩󵄩𝐷 = 𝑂 (𝑑2𝑛) . (10)

A sharper error bound than (10) is obtained in [13].
Equation (9) can be written as a system of Poisson’s

equations as follows:
V
0
= 0, in 𝐷,ΔV
𝑖
= V
𝑖−1

in 𝐷,
V𝑖
󵄨󵄨󵄨󵄨𝑆 = Δ𝑛−𝑖𝑢0󵄨󵄨󵄨󵄨󵄨𝑆 ,𝑖 = 1, 2, . . . , 𝑛𝑢 = V
𝑛.

(11)

Thus, the problem of solving (9) is reduced to the problem of
solving Poisson’s equations of the formΔ𝑢 = 𝑓 in 𝐷,𝑢|𝑆 = 𝑔. (12)

Numerical methods for solving (12) have been extensively
studied in the literature.

Note that the normal derivatives (𝜕𝑖/𝜕𝑁𝑖)𝑢0|𝑆 are not
presented in (9). Thus, extension using (9) may not be differ-
entiable across the boundary 𝑆. To improve the smoothness
of the extension across 𝑆, it is suggested to find 𝑢 from the
equation Δ𝑛𝑢 = 0 in 𝐷,𝜕𝑖𝜕𝑁𝑖 𝑢 = 𝜕𝑖𝜕𝑁𝑖 𝑢0, 𝑖 = 0, 1, . . . , 𝑛 − 1. (13)

It is proved in [14] that if 𝑢 is the solution to (13), then (10)
also holds.

Equation (13) cannot be reduced to a system of Poisson’s
equations as (9). In fact, to solve (13), one often uses a
finite difference approach which consists of finding discrete
approximations to the operators Δ𝑛 and 𝜕𝑖/𝜕𝑁𝑖, 𝑖 = 1, . . . , 𝑛−1. For “large” 𝑛, it is quite complicated, though possible, to
obtain these approximations.

As we can see from the above discussions, (9) is easier
to solve numerically than (13). However, scheme (9) does
not use any information about the normal derivatives of
the surface on 𝑆. Thus, the extension surface, obtained from
scheme (9), may not be smooth across the boundary 𝑆. On
the contrary, (13) uses normal derivatives as boundary data
and, therefore, is expected to yield better results than scheme
(9) does.

In the next section, we will implement and compare
the two surface completion schemes using (9) and (13). In
particular, we focus our study on biharmonic functionswhich
are solutions to (9) and (13) for 𝑛 = 2.
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3. Implementation

Let us discuss a numerical method for solving the equation

Δ2𝑢 = 0 in 𝐷,Δ𝑢|𝑆 = 𝑓,𝑢|𝑆 = 𝑔. (14)

To solve this equation, one often defines V = Δ𝑢 and solves
for 𝑢 from the following system:ΔV = 0,

V|𝑆 = 𝑓,Δ𝑢 = V,𝑢|𝑆 = 𝑔.
(15)

Thus, the problem of solving (15) is reduced to the problem
of solving the following Poisson’s equation:Δ𝑢 = 𝑓

1 in 𝐷,𝑢|𝑆 = 𝑔
1
. (16)

To solve (16), we use a 5-point finite difference scheme to
approximate the Laplacian operator. This 5-point scheme is
based on the following well-known formula:

Δ 5𝑢 fl
1ℎ2 ( 11 −4 11 )𝑢 = Δ𝑢 + 𝑂 (ℎ2) . (17)

Here, ℎ is the discretization step size. This scheme is well
defined at points 𝑃, whose nearest neighbours are interior
points of𝐷. If𝑃 has a neighbour𝑄 ∈ 𝜕𝐷, thenwe use a stencil
of the form

Δ
5
𝑢 (𝑃) fl 1ℎ2 ( 1−4 11 )𝑢 (𝑃) + 𝑢 (𝑄)ℎ2

= Δ𝑢 (𝑃) + 𝑂 (ℎ2) .
(18)

In the above formula,𝑄 is the nearest neighbour to the left of𝑃. Similar formulae when 𝑄 is the nearest neighbour on the
top, in the bottom, and to the right of𝑃 can be obtained easily.

In our experiments, we choose 𝐷 as a square and the
solution 𝑢 on the computation grid is presented as a vector.
Using the 5-point finite difference scheme, (16) is reduced to
the following algebraic system:

𝐴𝑢 = (𝑓
1
− 𝑔
1ℎ2) , (19)

where 𝐴 is the 5-point finite difference approximation to the
Laplacian and 𝑔

1
is a vector containing boundary values of𝑢 on 𝑆 at suitable entries. Matrix 𝐴 is a tridiagonal matrix;

that is, all nonzero elements of 𝐴 lie on the main diagonal
and the first diagonals above and below the main diagonal.
Matrix −ℎ2𝐴 can be obtained by the function delsq available
in Matlab.

Let us discuss a numerical method for solving the equa-
tion Δ2𝑢 = 0,𝑢𝑁󵄨󵄨󵄨󵄨𝑆 = 𝑓,𝑢|𝑆 = 𝑔. (20)

For a discrete approximation to the bi-Laplacian, we use a 13-
point finite difference schemewhich is based on the following
formula (see [15]):

Δ2
13
𝑢 = 1ℎ4((

(

12 −8 21 −8 20 −8 12 −8 21
))
)

𝑢
= Δ2𝑢 + 𝑂 (ℎ2) .

(21)

This stencil is well defined for a grid point 𝑃 if all its nearest
neighbours are in the interior of the domain. If 𝑃 has a
neighbour 𝑄 ∈ 𝜕𝐷 and 𝑄 is on the left of 𝑃, then we use the
following formula:

Δ2
13
𝑢 (𝑃) fl 1ℎ4((

(

12 −8 2−8 20 −8 12 −8 21
))
)

𝑢(𝑃) + 𝑢
𝑁 (𝑄)ℎ3

+ 𝑢 (𝑄)ℎ4 = Δ2𝑢 + 𝑂 (ℎ−1) .
(22)

Using the above finite difference scheme, (20) is reduced
to a linear algebraic system of the form 𝐴𝑢 = 𝑏, where 𝐴 is
a five-diagonal matrix. Numerical solutions to 𝑢 on the grid
can be obtained by solving this linear algebraic system.

Before we proceed with numerical experiments, we need
the following.

3.1. Quantitative Comparisons. It is constructive to provide
quantitative correlations between original and processed
images and in particular code to compare figures such as
those below. In order to calculate these required correla-
tions (and many are provided), we refer the reader to a
free access code for our method in scikit-image processing
in python unit completely at the disposal of the reader
which readily provides quantitative correlations—in partic-
ular for the figures. The scikit-image processing package
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is at http://scikit-image.org/ and is a collection of open
access algorithms for image processing with peer-reviewed
code.

For our method, see http://scikit-image.org/docs/stable/
api/skimage.restoration.html?highlight=biharmonicskimage
.restoration.inpaint-biharmonic.

Moreover, for the benefit of the reader, many comparison
methods with associated code are given in this unit; see some
below, but see the full package for a longer list with references.

(i) Denoise-bilateral (see [16]).
(ii) Denoise-nl-means (see [17–19]).
(iii) Denoise-tv-bregman, denoise-tv-chambolle, denoise-

wavelet, estimate-sigma, inpaint-biharmonic (the
present paper), nl-means-denoising, richardson-lucy,
unsupervised-wiener, unwrap-phase, Wiener-Hunt
deconvolution.

4. Numerical Experiments

4.1. Smooth Surface Completion. Let us first do some numer-
ical experiments with smooth surface completion. In our
experiments, we compare numerical solutions from the three
surface completion methods: the method with harmonic
functions, the method with biharmonic functions in [12, 13],
and the method with biharmonic functions in [14].

The function 𝑢 to be completed in our first experiment is𝑢 (𝑥, 𝑦) = 𝑥𝑦 + 𝑥2 (𝑦 + 1) , 𝑥, 𝑦 ∈ 𝐷 = [−1, 1] . (23)

Note that this function is a biharmonic function.The domain𝐷 is discretized by a grid of size (𝑛+1)× (𝑛+1) points. In the
first experiment, we used 𝑛 = 50.

In our numerical experiments, we denote by 𝑢
𝐻

the
extension by a harmonic function, by 𝑢

𝐿
the biharmonic

extension from [13], and by 𝑢
𝑁

the biharmonic extension
from [14].

Figure 1 plots the original function and the error of
reconstruction by a harmonic function. Figure 2 plots the
errors of surface reconstructions by biharmonic functions
from [13, 14].

From Figures 1 and 2, one can see that the biharmonic
reconstructions from [13, 14] are much better than the
reconstruction by harmonic functions. The method in [13]
in this experiment yields numerical results with accuracy a
bit higher than the method in [14]. However, this does not
imply that the method in [13] is better in terms of accuracy
than the method in [14]. In the condition number of A,
the finite difference approximation to the bi-Laplacian in
this experiment is larger than that of the finite difference
approximation to the Laplacian. Due to these condition
numbers, the algorithmusing themethod in [13] yields results
with higher accuracy than the algorithm using the method
in [14]. As we can see in later experiments, the method
in [14] often gives better results than the method in [13].
The conclusion from this example is that both methods in
[13, 14] yield numerical solutions at very high accuracy. The
harmonic reconstruction in this experiment is not very good.
This stems from the fact that the function to be reconstructed
is not harmonic.

In the next experiment, the function to be reconstructed
is chosen by

𝑢 (𝑥, 𝑦) = (1 + cos (𝑥)) (1 + cos (𝑦))4 , 𝑥, 𝑦 ∈ [−1, 1] . (24)

This function 𝑢(𝑥, 𝑦) is not a biharmonic function.
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Figures 3 and 4 plot the errors of harmonic and bihar-
monic reconstructions. From these figures, it is clear that the
method in [14] yields the best approximation. The harmonic
reconstruction is the worst amongst the 3 methods in this
experiment.

4.2. Image Inpainting. Let us do some numerical experiments
with image inpainting.

Figure 5 plots a damaged image and a reconstructed
image by harmonic functions. Figure 6 plots restored images
by biharmonic functions following themethods from [13, 14].

It can be seen from Figures 5 and 6 that the biharmonic
extension method from [14] yields the best reconstruction.
Although the biharmonic extension method from [13] is
better than harmonic extension in our experiments with
smooth surface completion, it is not as good as the harmonic
extension in this experiment.This is understandable since our
image contains edges and is not a smooth function. It can
be seen from the restored image by the method in [13] in
Figure 6 that the reconstruction may not be smooth, or even
differentiable, across the boundary.
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Figure 5: Damaged image and restored image by harmonic functions.
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Figure 6: Restored image by biharmonic functions.
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Damaged image Harmonic inpainting

Figure 7: Damaged image and restored image by harmonic functions.

Chui−Mhaskar inpainting Chui inpainting

Figure 8: Restored image by biharmonic functions.

Table 1: Results for𝐷
𝑖
= [−2−𝑖, 2−𝑖] × [−2−𝑖, 2−𝑖] for 𝑖 = 0, 9.𝑖 log

2

󵄩󵄩󵄩󵄩𝑢𝐻 − 𝑢󵄩󵄩󵄩󵄩∞ log
2

󵄩󵄩󵄩󵄩𝑢𝐿 − 𝑢󵄩󵄩󵄩󵄩∞ log
2

󵄩󵄩󵄩󵄩𝑢𝑁 − 𝑢󵄩󵄩󵄩󵄩∞
0 2.36 0.37 −1.46
1 0.50 −3.48 −5.34
2 −1.46 −7.44 −9.32
3 −3.45 −11.44 −13.31
4 −5.45 −15.43 −17.31
5 −7.45 −19.43 −21.31
6 −9.45 −23.43 −25.31
7 −11.45 −27.43 −29.31
8 −13.45 −31.43 −33.34
9 −15.45 −35.46 −38.54
Appendix

Table 1 presents numerical results for the function 𝑢 defined
by (24) and on the domain 𝐷

𝑖
= [−2−𝑖, 2−𝑖] × [−2−𝑖, 2−𝑖],𝑖 = 0, 9. The diameter of 𝐷

𝑖
is 𝑑
𝑖
= 21−𝑖. From Table 1,

one can see that the harmonic reconstruction has an order of

accuracy of 2 while the biharmonic reconstruction methods
have an order of accuracy of 4.This agreeswith the theoretical
estimates in [12–14].

Figures 7 and 8 plot a damaged picture of peppers
and reconstructed images by the 3 methods. From these
figures, one gets the same conclusion as in the previous
experiment.The biharmonic reconstruction in [14] yields the
best restoration while the biharmonic reconstruction in [13]
yields the worst reconstruction.
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A new SEIRS epidemic model with nonlinear incidence rate and nonpermanent immunity is presented in the present paper. The
fact that the incidence rate per infective individual is given by a nonlinear function and product of rational powers of two state
variables, as well as the introduction of an epidemic-induced death rate, leads to a more realistic modeling of the physical problem
itself. A stability analysis is performed and the features of Hopf bifurcation are investigated. Both the corresponding critical regions
in the parameter space and their stability characteristics are presented. Furthermore, by using algorithms based on a new symbolic
form as regards the restriction of an 𝑛-dimensional nonlinear parametric system to the center manifold and the normal forms of
the corresponding Hopf bifurcation, as well, the associated bifurcation diagram is derived, and finally various emerging limit cycles
are numerically obtained by appropriate implemented methods.

1. Introduction

The realistic modeling of epidemic models constitutes an
important issue of modern research as it can contribute to
both a better understanding and more accurate modeling of
the actual dynamics and the interrelation of the populations
involved. Nonpermanent immunity leads to SEIRS or SIRS
models which have been studied with respect to the effects
of the epidemiological parameters, with bilinear (see, e.g.,
[1]) or nonlinear incidence rate (see [2, 3] and the references
therein). In particular, in [3] the writers investigate the
stability of both the disease-free equilibrium and the endemic
one. Also, they determine conditions regarding the existence
and stability of Hopf-bifurcated limit cycles with respect to
the latter, concerning both SEIRS and SIRS models. The
nonlinear incidence rate offers a deeper insight into the actual
relation between the populations of susceptible and infective
individuals. Furthermore, we introduce an additional death
rate solely due to the disease, and hence the SEIRS model is
enriched with new nonlinear terms.

Let us now present the specifics of the aforementioned
model, described by the following 4D differential system:̇𝑆 = 𝑟𝑁 − 𝑑𝑆 + 𝜀𝑅 − ℎ (𝑆, 𝐼) 𝐼,𝐸̇ = − (𝑑 + 𝜎) 𝐸 + ℎ (𝑆, 𝐼) 𝐼,̇𝐼 = − (𝛾 + 𝑑 + 𝛼) 𝐼 + 𝜎𝐸,𝑅̇ = 𝛾𝐼 − (𝑑 + 𝜀) 𝑅,

(1)

𝑁̇ = 𝑟𝑁 − 𝑑𝑁 − 𝛼𝐼, (2)

where 𝑆,𝐸, 𝐼,𝑅,𝑁 denote the number of susceptible, exposed
(incubating), infective, and recovered individuals and the
total population, respectively, while ℎ(𝑆, 𝐼) represents the
incidence rate per infective individual and 𝑟, 𝑑, 𝜀, 𝜎, 𝛼, 𝛾 stand
for the system parameters. As regards their physicalmeaning,𝑟 denotes the birth rate, 𝑑 denotes the physical death rate, 𝜀
denotes the rate of loss of immunity, 𝜎 denotes the rate of
incubation, 𝛼 is the additional death rate due to the epidemic,
and 𝛾 denotes the recovery rate. Then by normalizing with
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respect to the total population 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅 which is
considered constant and taking into account (2), the system
becomes 𝑥̇ = 𝑟 − 𝑟𝑥 + 𝜀𝑧 + 𝛼𝑥𝑦 − ℎ (𝑥, 𝑦) 𝑦,𝑤̇ = − (𝑟 + 𝜎)𝑤 + 𝛼𝑤𝑦 + ℎ (𝑥, 𝑦) 𝑦,̇𝑦 = 𝜎𝑤 − (𝑟 + 𝛾 + 𝛼) 𝑦 + 𝛼𝑦2,𝑧̇ = 𝛾𝑦 − (𝑟 + 𝜀) 𝑧 + 𝛼𝑦𝑧

(3)

with 𝑥 = 𝑆𝑁,
𝑤 = 𝐸𝑁,𝑦 = 𝐼𝑁,𝑧 = 𝑅𝑁,𝑥 + 𝑤 + 𝑦 + 𝑧 = 1.

(4)

Now, by eliminating 𝑧 = 1 − 𝑥 − 𝑤 − 𝑦, system (3) is reduced
to the following three-dimensional one:𝑥̇ = 𝑟 + 𝜀 − (𝑟 + 𝜀) 𝑥 − 𝜀𝑤 − 𝜀𝑦 + 𝛼𝑥𝑦 − ℎ (𝑥, 𝑦) 𝑦,𝑤̇ = − (𝑟 + 𝜎)𝑤 + 𝛼𝑤𝑦 + ℎ (𝑥, 𝑦) 𝑦,̇𝑦 = 𝜎𝑤 − (𝑟 + 𝛾 + 𝛼) 𝑦 + 𝛼𝑦2. (5)

By setting ℎ (𝑥, 𝑦) = 𝛽𝑥𝑚𝑦𝑠−1, (6)

where 𝛽,𝑚 are positive constants and 𝑠 > 1, (5) takes the final
form 𝑥̇ = 𝑟 + 𝜀 − (𝑟 + 𝜀) 𝑥 − 𝜀𝑤 − 𝜀𝑦 + 𝛼𝑥𝑦 − 𝛽𝑥𝑚𝑦𝑠,𝑤̇ = − (𝑟 + 𝜎)𝑤 + 𝛼𝑤𝑦 + 𝛽𝑥𝑚𝑦𝑠,̇𝑦 = 𝜎𝑤 − (𝑟 + 𝛾 + 𝛼) 𝑦 + 𝛼𝑦2. (7)

The analysis is multiparametric in that the parameter space of
the system is structured by three varying parameters.Thus in

Section 2 a stability analysis of the system is performed, where
the active parameters are determined and various graphical
representations are obtained concerning the critical (with
respect to Hopf bifurcations) values of the varying parame-
ters, as well as the critical, noncritical, and stability regions
in the parameter space considered. Then, based on a new
proper symbolic form as regards the center manifold analysis
(see [4]), the basic features and steps of which are generally
presented in Section 3, effective algorithms are implemented,
by using symbolic computational software, which result in
the associated bifurcation portraits throughout the regions of
the parameter space under consideration.These portraits are
presented in Section 4, together with limit cycles correspond-
ing to the cases resulting from the respective analysis and
obtained by use of a custom orthogonal collocation method
on finite elements. Finally, Appendices A and B include
algebraic manipulations and formulae related to the analysis
carried out throughout this work.

2. Stability Analysis-Hopf Bifurcation

Final reduced system (7) possesses two types of equilibria: a
disease-free one, namely,Σ0 = (1, 0, 0) , (8)

and an endemic one of the form Σ1(𝑥0, 𝑦0, 𝑧0) with 𝑦0 ̸=0 obtained after some tedious algebraic manipulations (see
Appendix A), as𝑥0 = 1𝜎 (𝛼𝑦0 − 𝜅0) [𝛼2 (𝑦0)3 − 𝛼𝜅4 (𝑦0)2+ (𝜅3 + 𝜎𝜀) 𝑦0 − 𝜎𝜅0] , (9)

𝛽𝜎 (𝑥0)𝑚 (𝑦0)𝑠−1 = 𝛼2 (𝑦0)2 − 𝛼 (𝜅4 − 𝜀) 𝑦0 + 𝜅3− 𝜀𝜅2, (10)

𝑤0 = 1𝜎 [−𝛼 (𝑦0)2 + 𝜅2𝑦0] , (11)

where 𝜅0 = 𝑟 + 𝜀, 𝜅1 = 𝑟 + 𝜀 + 𝜎, 𝜅2 = 𝑟 + 𝛾 + 𝛼, 𝜅3 = 𝜅1𝜅2,
and 𝜅4 = 𝜅1 + 𝜅2. We focus on the endemic equilibriumΣ1 = (𝑥0, 𝑦0, 𝑤0) with 𝑥0, 𝑦0, 𝑤0 given in (9)–(11), since it
corresponds to persistence of the disease.

As regards the local stability ofΣ1, taking into account (7),
(10), and (11), the Jacobian matrix evaluated at Σ1 becomes

𝐽0 = (𝛼𝑦0 − 𝜅0 − 𝑚𝜎 𝐴𝑦0𝑥0 −𝜀 −𝜀 + 𝛼𝑥0 − 𝑠𝜎𝐴𝑚𝜎 𝐴𝑦0𝑥0 𝛼𝑦0 − 𝜅1 + 𝜀 𝛼𝜎 [−𝛼 (𝑦0)2 + 𝜅2𝑦0] + 𝑠𝜎𝐴0 𝜎 2𝛼𝑦0 − 𝜅2 ), (12)

79Hopf Bifurcation Analysis of a New SEIRS Epidemic Model with Nonlinear Incidence Rate and Nonpermanent...

__________________________ WORLD TECHNOLOGIES __________________________



WT

where 𝑦0 = 𝑦0 (𝛾, 𝑟, 𝛼, 𝜀, 𝜎, 𝛽,𝑚, 𝑠) ,𝑥0 = 𝑥0 (𝑦0; 𝛾, 𝑟, 𝛼, 𝜀, 𝜎) ,𝐴 = 𝐴 (𝑦0; 𝛾, 𝑟, 𝛼, 𝜀, 𝜎)= 𝛼2 (𝑦0)2 − 𝛼 (𝜅4 − 𝜀) 𝑦0 + 𝜅3 − 𝜀𝜅2.
(13)

The associated characteristic equation is𝜆3 + 𝐵2𝜆2 + 𝐵1𝜆 + 𝐵0 = 0. (14)

Now, by considering the well-known Routh-Hurwitz neces-
sary and sufficient stability conditions, namely,𝐵0 > 0,𝐵1 > 0,𝐵1𝐵2 − 𝐵0 > 0, (15)

related to the equilibrium Σ1, we conclude with the formulae𝐵0 = 1𝜎𝑥0 (𝑃00 + 𝑃01𝑥0) ,𝐵1 = 1𝜎𝑥0 (𝑃10 + 𝑃11𝑥0) ,𝐵3 = 𝐵1𝐵2 − 𝐵0= 1𝜎2 (𝑥0)2 (𝑃30 + 𝑃31𝑥0 + 𝑃32 (𝑥0)2) ,
(16)

where 𝑃𝑖𝑗 = 𝑓𝑖𝑗(𝑦0; 𝛾, 𝑟, 𝛼, 𝜀, 𝜎,𝑚, 𝑠), 𝑖 = 0, 1, 3, 𝑗 = 0, 1, 2, are
polynomials with respect to 𝑦0.

Moreover, by solving the equation 𝐵3 = 0 (resulting from
(14) for 𝜆 = 𝑖𝜔) with respect to 𝑦0 (after substitution of the
right-hand side of (9) for 𝑥0, we finally evaluate the real roots
of a 9th-degree polynomial numerically), we further evaluate𝑥0 and𝑤0 by substituting the obtained root of 𝐵3 into (9) and
(11), respectively. Then, taking into account the fact that 𝜅2 >𝛼, we arrive at 𝑤0 > 0 by means of (11) in the case where0 < 𝑦0 < 1. Thus if 0 < 𝑥0 < 1,0 < 𝑦0 < 1,𝑤0 < 1,𝐵0 > 0,𝐵1 > 0

(17)

then (𝑥0, 𝑦0, 𝑤0) represent the critical values (𝑥0cr, 𝑦0cr, 𝑤0cr).
Then, by solving (10) with respect to 𝛽 and considering(𝛾, 𝜎, 𝛽) varying parameters of the problem we obtain the

critical value𝛽cr = 𝛼2 (𝑦0cr)2 − 𝛼 (𝜅4 − 𝜀) 𝑦0cr + 𝜅3 − 𝜀𝜅2𝜎 (𝑥0cr)𝑚 (𝑦0cr)𝑠−1 (18)

provided that 0 < 𝛽cr < 1, with 𝑥0cr, 𝑦0cr being the
aforementioned critical equilibrium of the system (7). Thus
a critical surface 𝛽cr = 𝛽cr(𝛾, 𝜎) is generated in the parameter
space (𝛾, 𝜎, 𝛽) (we have 𝑦0cr = 𝑦0cr(𝛾, 𝜎) and due to (9) we also
have 𝑥0cr = 𝑥0cr(𝛾, 𝜎, 𝑦0cr(𝛾, 𝜎)), with 𝑟, 𝛼, 𝜀, 𝑚, 𝑠 being fixed),
defined over the area of the parameter plane (𝛾, 𝜎), where the
critical values of 𝛽 are obtained via (17) and (18); we call this
area critical region. Moreover, we differentiate 𝐵3, given by
(16), with respect to the active parameters 𝑝 (𝑝 = 𝛾, 𝜎, 𝛽),
namely,𝐵3,𝑝 = 1𝜎2 (𝑥0)2 (𝑃30,𝑝 + 𝑃31,𝑝𝑥0 + 𝑃32,𝑝 (𝑥0)2

+ (𝑃31 + 2𝑃32𝑥0) 𝑥0𝑝) − 2𝐵3𝜎𝑥0 (𝛿𝑥0 + 𝜎𝑥0𝑝) ,
𝛿 = {{{1, 𝑝 = 𝜎0, 𝑝 = 𝛾, 𝛽𝑃3𝑗,𝑝 = 𝑓3𝑗,𝑝 + 𝑓3𝑗,𝑦0𝑦0𝑝, 𝑗 = 0, 1, 2,

(19)

where ◻,𝑝 = 𝜕◻/𝜕𝑝 and ◻,𝑦0 = 𝜕◻/𝜕𝑦0, and also 𝑥0𝑝 and𝑦0𝑝 denote the partial derivatives of 𝑥0 and 𝑦0 with respect
to 𝑝, provided in Appendix A (A.2). Then by introducing the
critical equilibrium (𝑥0cr(𝑦0cr), 𝑦0cr) and taking into account the
fact that 𝑦0cr is a numerically obtained root of a high degree
polynomial, we conclude that by setting the right-hand side
of (19) equal to zero, no explicit relation can be extracted
involving the parameters of the system. Furthermore, for any
fixed values of 𝑟, 𝛼, 𝜀, 𝑚, 𝑠, we numerically compute𝐵3,𝑝 (𝛾, 𝜎, 𝛽cr, 𝑥0cr, 𝑦0cr) ̸= 0, (20)

everywhere on the critical surface. Thus, considering (17) and
(20), according to Liu criterion [5] 𝐽0 has a pair of purely
imaginary eigenvalues together with a negative real one on
this surface; the transversality condition (see Appendix B,(C1-2)) holds, as well. Hence, a Hopf bifurcation occurs
at the critical equilibrium. Graphical representations of 𝛽cr
(evaluated by using (18)) versus 𝛾 (for different values of 𝜎,
with 𝑟, 𝛼, 𝜀, 𝑚, 𝑠 being fixed), versus 𝜎 (for different values
of 𝛾, with 𝑟, 𝛼, 𝜀, 𝑚, 𝑠 being fixed), and versus 𝑠 (for different
values of 𝛾, with 𝑟, 𝛼, 𝜀, 𝜎,𝑚 being fixed) are presented in
Figures 1(a), 1(b), and 1(c), respectively, while critical regions
are obtained in the parameter plane (𝛾, 𝜎) for fixed values of𝑟, 𝛼, 𝜀, 𝑚, 𝑠 in Figures 2(a) and 2(b).

We should note that variation of the values of fixed
parameters does not affect the number of critical values
as regards 𝛽. Thus, in any case, the expression (17), under
restrictions (18), yields zero or at most one critical value (0 <𝛽cr < 1). Additionally, we note that an increase in 𝑠 or𝑚 gives
rise to an expansion of the zero region, namely, the area of the
parameter plane (𝛾, 𝜎) where no critical values of 𝛽 exist.

Furthermore, the status of the equilibrium points corre-
sponding to the values of 𝛽 in the range (0, 1) is shown in
Figures 3(a) and 3(b). More precisely, after the right-hand
side of (9) has been substituted for 𝑥0, by using standard
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Figure 1: The critical value, 𝛽cr, as a function of the parameters: (a) 𝛾 for 𝜎 = 0.25 (magenta) and 𝜎 = 0.75 (green), (b) 𝜎 for 𝛾 = 0.01
(magenta), 𝛾 = 0.05 (blue), and 𝛾 = 0.075 (green), and (c) 𝑠 for 𝜎 = 0.5 and 𝛾 = 0.01 (magenta), 𝛾 = 0.06 (blue), 𝛾 = 0.12 (green), and𝛾 = 0.17 (red).
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Figure 2:Critical regions (magenta – one critical value for 𝛽) and zero regions (black – no critical value for 𝛽), for 𝑟 = 10−4, 𝛼 = 10−4, 𝜀 = 10−3,
and𝑚 = 0.5 and (a) 𝑠 = 1.2 and (b) 𝑠 = 1.6.
numerical computation routines, (10) is solved with respect
to 𝑦0 for any given value of 𝛽 and fixed values for the
other parameters. Then 𝑥0 and 𝑤0 can be obtained by means
of (9) and (11), respectively, and finally the coefficients 𝐵𝑖,𝑖 = 0, 1, 2 of the characteristic equation (14) are determined.

Thus, concerning the critical pairs (𝛾, 𝜎) (the points of the
critical region), we focus on the slope of the real part of the
complex conjugate eigenvalues of the Jacobian as a function
of 𝛽, inside an interval (𝛽cr−𝑑1, 𝛽cr+𝑑2), 𝑑1, 𝑑2 > 0 (where a
pair of complex eigenvalues exist), in order to determine the
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Figure 3: Stability features regarding the critical (green) and the zero (black and red) regions. Green denotes the negative slope of the real part
of the complex eigenvalues versus 𝛽, around 𝛽cr, red indicates the existence of unstable endemic equilibria for 𝛽 ∈ (𝛿, 1), and black outlines
the pairs (𝛾, 𝜎) for which no endemic equilibria arise in the whole range (0, 1) for 𝛽. The parameters are defined as 𝑟 = 10−4, 𝛼 = 10−4,𝜀 = 10−3, and𝑚 = 0.5 and (a) 𝑠 = 1.2 and (b) 𝑠 = 1.6.
direction and stability of the occurring codimension 1 Hopf
bifurcation (see Appendix B). As regards the zero regions (no𝛽cr), one investigates the existence of equilibrium points, as
well as their stability, as 𝛽 varies within the range (0, 1).

As a result, we conclude that regardless of the parameter
values, the real part of the complex eigenvalues transverses
the 𝛽-axis (at 𝛽cr) with negative slope, all over the critical sur-
face (for 𝛽 lying into the aforementioned “complex” interval,
the sign of the real eigenvalue is always negative). Moreover,
we encounter an unstable endemic equilibriumdepending on𝛽 in the zero regions, for this active parameter lying inside
an interval (𝛿, 1), 𝛿 = 𝛿(𝛾, 𝑟, 𝛼, 𝜀, 𝜎,𝑚, 𝑠) > 0 (we have no
equilibria at (0, 𝛿)), with 𝛿 notably sensitive to 𝛾-variation,
in the sense that as 𝛾 increases, 𝛿 shifts rapidly towards
unity, shrinking the (unstable) “equilibrium” 𝛽- interval.
Additionally, by increasing 𝑠 or 𝑚, a “0- equilibrium” region
emerged inside the zero region (there exist no equilibria in
the whole range (0, 1)), getting larger as these two rational
exponents (especially 𝑠) increase.
3. Analytical Formulae for a Parametric𝑛-Dimensional System

3.1. Reduction to an (𝑛 + 2)-Dimensional Coordinate Space.
Now, we briefly discuss the basic features of a new formula-
tion regarding a parametric 𝑛-dimensional nonlinear system
analysis. The procedure adopted is presented in detail in [4,
Section 2], resulting in the derivation of the two-dimensional
restriction to the center manifold of the system, as well as in
the fast numerical computation of the Lyapunov coefficients
associated with simple or degenerate Hopf bifurcations of
the system. Thus considering a smooth continuous-time
three-parameter system with smooth dependence on the
parameters, namely,𝑑𝑥𝑑𝑡 = 𝑓 (𝑥; 𝑎) ,𝑥 ∈ R

𝑛, 𝑎 = (𝑎1, 𝑎2, 𝑎3)𝑇 ∈ R
3, 𝑓 : R𝑛+3 󳨀→ R

𝑛, 𝑓 ∈ 𝐶∞ (21)

(for SEIRS system (7) we have that (𝑎1, 𝑎2, 𝑎3) = (𝛾, 𝜎, 𝛽)),
then expansion around the equilibrium path yields𝑑𝜉𝑑𝑡 = 𝐽0 (𝑎) 𝜉 + 𝐹 (𝜉; 𝑎) , 𝜉 = 𝑥 − 𝑥0 (𝑎) , (22)

with 𝐽0(𝑎) = 𝐷𝑥𝑓(𝑥0(𝑎); 𝑎) being the Jacobian matrix eval-
uated at this equilibrium path. The smooth vector function𝐹 : R𝑛+3 → R𝑛 represents the nonlinear terms; that is,𝐹 = 𝑂(‖𝑥‖2) and𝐹 (𝜉; 𝑎) = ∞∑

𝑚=2

1𝑚!𝐹(𝑚) (𝜉, . . . , 𝜉⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

; 𝑎) , (23)

where𝐹(𝑚) (1𝑢, . . . ,𝑚𝑢; 𝑎)= 𝑛∑
𝑗1 ,...,𝑗𝑚=1

𝜕𝑚𝑓 (𝑥; 𝑎)𝜕𝑥𝑗1 ⋅ ⋅ ⋅ 𝜕𝑥𝑗𝑚 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0 1𝑢𝑗1 ⋅ ⋅ ⋅𝑚𝑢𝑗𝑚 ,𝑚 = 2, 3, . . . (24)

with 𝑖𝑢 = (𝑖𝑢1, . . . , 𝑖𝑢𝑛)𝑇 ∈ C𝑛, 𝑖 = 1, . . . , 𝑚. Additionally, if
a critical triplet 𝑎0 = (𝑎10, 𝑎20, 𝑎30) exists, where 𝐽0 has a pair
of pure imaginary eigenvalues 𝜆1,2 = ±𝑖𝜔0, 𝜔0 > 0, while
the real part of the rest of the eigenvalues is negative, then
a Hopf bifurcation occurs at 𝑎0, leading to a family of limit
cycles. This implies that 𝐽0 has a pair of complex conjugate
eigenvalues 𝜆(𝑎), 𝜆(𝑎) in a region around 𝑎0, with𝜆 (𝑎) = 𝜇 (𝑎) + 𝑖𝜔 (𝑎) ,𝜇 (𝑎0) = 0,𝜔 (𝑎0) = 𝜔0 > 0. (25)

We also note that the classic Hopf theory additionally
demands that, at 𝑎0, 𝜆(𝑎) cross the imaginary axis with
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nonzero speed (transversality condition). Moreover we con-
sider the normalized complex eigenvectors 𝑞(𝑎) ∈ C𝑛 and𝑝(𝑎) ∈ C𝑛 of 𝐽0 and 𝐽0𝑇, respectively, having the properties𝐽0𝑞 = 𝜆𝑞,𝐽0𝑇𝑝 = 𝜆𝑝,⟨𝑝, 𝑞⟩ = 𝑛∑

𝑖=1

𝑝𝑖𝑞𝑖 = 1,
⟨𝑝, 𝑞⟩ = 0.

(26)

Also, the two-dimensional parameter-dependent real
eigenspace (corresponding to 𝜆, 𝜆) (spanned by {Re 𝑞(𝑎),
Im 𝑞(𝑎)}), is denoted by 𝑇(𝑎) (which becomes critical at𝑎0: 𝑇𝑐 = 𝑇(𝑎0)), and the (𝑛 − 2)-dimensional (𝑛 > 2) real
eigenspace, corresponding to all eigenvalues of 𝐽0 other than𝜆, 𝜆, is denoted by 𝑇𝑠𝑢(𝑎). Finally, the following Lemma ([6],
Lemma 5.4) holds.
Lemma 1. 𝑦 ∈ 𝑇𝑠𝑢 if and only if ⟨𝑝, 𝑦⟩ = 0.

Then, based on the decomposition𝑥 − 𝑥0 = 𝜉 = 𝑧𝑞 + 𝑧𝑞 + 𝑦,𝑥 ∈ R
𝑛, 𝑧 ∈ C

1, 𝑦 ∈ R
𝑛 ∩ 𝑇𝑠𝑢, 𝑧𝑞 + 𝑧 𝑞 ∈ 𝑇, (27)

by means of the third and fourth relation of (26), the last
equation yields 𝑧 = ⟨𝑝, 𝜉⟩ ,𝑦 = 𝜉 − ⟨𝑝, 𝜉⟩ 𝑞 − ⟨𝑝, 𝜉⟩ 𝑞. (28)

Thus taking into account (22) and the first and second
equation of (26), as well as (27), differentiation of (28) results
in the reduced form of system (22) in the (𝑛+2)-dimensional
coordinate space (𝑧, 𝑦):𝑧̇ = 𝜆 (𝑎) 𝑧 + 𝑔 (𝑧, 𝑧, 𝑦; 𝑎) , (29)̇𝑦 = 𝐽0 (𝑎) 𝑦 + 𝐹 (𝑧𝑞 + 𝑧 𝑞 + 𝑦; 𝑎) − 𝑔 (𝑧, 𝑧, 𝑦; 𝑎) 𝑞− 𝑔 (𝑧, 𝑧, 𝑦; 𝑎) 𝑞, (30)

where the dot (⋅) denotes differentiation with respect to 𝑡 and𝑔 (𝑧, 𝑧, 𝑦; 𝑎) = ⟨𝑝, 𝐹 (𝑧𝑞 + 𝑧 𝑞 + 𝑦; 𝑎)⟩ . (31)

Systems (22) and (29)-(30) are in fact dimensionally equiva-
lent, due to the two real constraints imposed on 𝑦 by means
of Lemma 1.

3.2. ANew Symbolic Representation of the System. By express-
ing the complex function 𝑔(𝑧, 𝑧, 𝑦) in the form

𝑔 = 12𝑔00(2) + 16𝑔00(3) + ⋅ ⋅ ⋅
+ (𝑔10(1) + 12𝑔10(2) + 16𝑔10(3) + ⋅ ⋅ ⋅) 𝑧
+ (𝑔01(1) + 12𝑔01(2) + 16𝑔01(3) + ⋅ ⋅ ⋅) 𝑧 + 𝑔(2)+ 𝑔(3) + ⋅ ⋅ ⋅ ,

(32)

where𝑔(𝑚) (𝑧, 𝑧, 𝑦)= ∑
𝑘+𝑙=𝑚

1𝑘!𝑙! (𝑔𝑘𝑙 + 𝑔𝑘𝑙(1) + 12𝑔𝑘𝑙(2) + 16𝑔𝑘𝑙(3) + ⋅ ⋅ ⋅)
⋅ 𝑧𝑘𝑧𝑙,𝑔𝑖𝑗(𝑚+) (𝑦)
= ⟨𝑝, 𝐹(𝑖+𝑗+𝑚+)(𝑞, . . . , 𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖

, 𝑞, . . . , 𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑗

, 𝑦, . . . , 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚+

)⟩,
𝑔𝑘𝑙 = 𝑔𝑘𝑙(0)

(33)

with 𝑔𝑖𝑗(𝑚+) ∈ C, 𝑚 = 2, 3, . . . , 𝑖 + 𝑗 = 0, 1, 2, . . . , 𝑚+ =0, 1, 2, . . ., then (29) and (30) become

𝑧̇ = 12𝑔00(2) + 16𝑔00(3) + ⋅ ⋅ ⋅ + (𝜆 + 𝑔10(1) + 12𝑔10(2)+ 16𝑔10(3) + ⋅ ⋅ ⋅) 𝑧 + (𝑔01(1) + 12𝑔01(2) + 16𝑔01(3)+ ⋅ ⋅ ⋅) 𝑧 + 𝑔(2) + 𝑔(3) + ⋅ ⋅ ⋅ ,
(34)

̇𝑦 = 𝐽0 (𝑎) 𝑦 + 12𝑟00(2) + 16𝑟00(3) + ⋅ ⋅ ⋅ − (12𝑔00(2)+ 16𝑔00(3) + ⋅ ⋅ ⋅) 𝑞 − (12𝑔00(2) + 16𝑔00(3) + ⋅ ⋅ ⋅) 𝑞
+ [𝑟10(1) + 12𝑟10(2) + 16𝑟10(3) + ⋅ ⋅ ⋅− (𝑔10(1) + 12𝑔10(2) + 16𝑔10(3) + ⋅ ⋅ ⋅) 𝑞
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− (𝑔01(1) + 12𝑔01(2) + 16𝑔01(3) + ⋅ ⋅ ⋅) 𝑞] 𝑧 + [𝑟01(1)+ 12𝑟01(2) + 16𝑟01(3) + ⋅ ⋅ ⋅− (𝑔01(1) + 12𝑔01(2) + 16𝑔01(3) + ⋅ ⋅ ⋅) 𝑞− (𝑔10(1) + 12𝑔10(2) + 16𝑔10(3) + ⋅ ⋅ ⋅) 𝑞] 𝑧 + 𝑟(2)+ 𝑟(3) + ⋅ ⋅ ⋅ ,
(35)

where𝑟(𝑚) (𝑧, 𝑧, 𝑦) = ∑
𝑘+𝑙=𝑚

1𝑘!𝑙! [𝑟𝑘𝑙 + 𝑟𝑘𝑙(1) + 12𝑟𝑘𝑙(2)+ 16𝑟𝑘𝑙(3) + ⋅ ⋅ ⋅− (𝑔𝑘𝑙 + 𝑔𝑘𝑙(1) + 12𝑔𝑘𝑙(2) + 16𝑔𝑘𝑙(3) + ⋅ ⋅ ⋅) 𝑞− (𝑔𝑙𝑘 + 𝑔𝑙𝑘(1) + 12𝑔𝑙𝑘(2) + 16𝑔𝑙𝑘(3) + ⋅ ⋅ ⋅) 𝑞] 𝑧𝑘𝑧𝑙,
𝑟𝑖𝑗(𝑚+) (𝑦) = 𝐹(𝑖+𝑗+𝑚+)(𝑞, . . . , 𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖

, 𝑞, . . . , 𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑗

, 𝑦, . . . , 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚+

) ,
𝑟𝑘𝑙 = 𝑟𝑘𝑙(0)

(36)

with 𝑔𝑖𝑗(𝑚+) as in (33), 𝑟𝑖𝑗(𝑚+) ∈ C𝑛, 𝑚 = 2, 3, . . ., 𝑖 + 𝑗 =0, 1, 2, . . . , 𝑚+ = 0, 1, 2, . . ..
Now, by introducing the center manifold expression𝑦 = 𝑉 (𝑧, 𝑧) = ∞∑

𝑚=2

∑
𝑘+𝑙=𝑚

1𝑘!𝑙!𝑤𝑘𝑙𝑧𝑘𝑧𝑙, (37)

with𝑤𝑘𝑙 ∈ C𝑛, 𝑘+𝑙 = 2, 3, . . . and ⟨𝑝, 𝑤𝑘𝑙⟩ = 0, and combining
(37), as well as the invariance relation ̇𝑦 = 𝑉𝑧𝑧̇+𝑉𝑧𝑧̇, with (34)
and (35), the analysis proceeds according to the steps figured
out in [4, Subsection 2.3]. Thus after extensive algebraic
manipulations combined with computer assisted calculations
carried out by use of the symbolic mathematical compu-
tational software Mathematica 7, the necessary (depending
on the considered bifurcation codimension) center manifold
coefficients, as well as the coefficients of the system restricted
to the center manifold, are derived as explicit and implicit
expressions of the parameters involved. Finally, the corre-
sponding Lyapunov coefficients are numerically evaluated
fast, not only at the critical parameter values, but throughout
the whole parameter space, as well, and consequently the
respective bifurcation portraits can be constructed.

4. Bifurcation Results-Discussion

After setting 𝑟 = 10−4, 𝛼 = 10−4, 𝜀 = 10−3, 𝑚 = 0.5, 𝑠 = 1.2
regarding the values of the fixed parameters, by following the

procedure developed in [4] (briefly discussed in Section 3 of
the present paper), we arrive at the bifurcation portrait of
the system with respect to the Σ1 equilibrium path, presented
in Figure 4. Regarding the sign of the Lyapunov coefficient,
it remains strictly negative on the whole critical surface𝛽cr = 𝛽cr(𝛾, 𝜎). Thus stable limit cycles are generated through
supercriticalHopf bifurcations, arising for (𝛾, 𝜎) taking values
in the critical region and 𝛽 < 𝛽cr(𝛾, 𝜎) (the real part of
the complex conjugate eigenvalues is a decreasing function
of 𝛽 around 𝛽cr; see Section 2). Since the critical Lyapunov
coefficient 𝑙1 never becomes zero, the systemundergoes solely
a codimension 1Hopf bifurcation, for any critical triplet of the
active parameters (hence, in Appendix B, we only refer (after
a general inspection) to the features of the third-order normal
form of the planar equation).

The fact that the limit cycles bifurcated are stable means
that the phenomenon is persistent; that is, the flows in a
nearby neighbourhood of the limit cycle are attracted by
the cycle itself, leading to the corresponding disequilibrium
fluctuations defined by the periodic trajectory, as expected
in a considerable number of epidemics. The bifurcation
results are verified by the computation and presentation
of one cycle for specific values of the parameters by use
of a custom algorithm of orthogonal collocation on finite
elements, shown in Figures 5(a), 5(b), and 5(c) and a family
of limit cycles obtained for different values of the epidemic-
induced parameter 𝛼, shown in Figures 6(a), 6(b), and 6(c),
where the corresponding 𝛽cr and also the period 𝑇 of the
periodic orbits increase with 𝛼. The stability of the obtained
cycles is additionally verified by numerical computation of
the respective Floquet-multipliers and exponents. For the
limit cycles presented in Figure 5, let the Floquet-multipliers
be 𝜇𝑖 = 𝑒𝜆𝑖 ⋅𝑇, 𝑖 = 1, 2, 3, with 𝜆𝑖 = (1/𝑇) ⋅ ln(𝜇𝑖) being the
respective exponents and 𝑇 being the fundamental period of
the cycle, computed as follows: 𝜇𝑖 = {1, 0.82, 1.1 × 10−17}
and 𝜆𝑖 = {0, −4.7 × 10−4, −0.095}, respectively. Moreover
we note that the same cycles are generated by the variable-
step, variable-order Adams-Bashforth-Moulton predictor-
corrector method of orders 1 to 12, which is the standard
integrated Matlab routine used to solve nonstiff ODEs, noted
as “ode113” in the graphs illustrated in Figures 5 and 6.

As regards the role and significance of the introduction
of the additional epidemic-induced death rate, 𝑎, apart from
the fact that it contributes to a more accurate and realistic
description of the occurrence of the epidemic, which leads
to the de facto increase of the mortality rate of infected indi-
viduals, it also offers the opportunity for a more detailed and
richer parameterisation as well as the effect of the epidemic
on the dynamics and interrelation between the populations
involved, especially in aggressive diseases. Evidently, the
introduction of 𝑎 gives rise to new nonlinear terms involved
in all four equations of the original system, as shown in (3),
and has an important effect on the numeric value of the
fundamental period of the bifurcating cycles, which would
have been overseen, otherwise. Moreover, the introduction
of the above-mentioned parameter could also contribute to
making estimations of the additional resources needed, based
on the changes in the duration of critical phases and stages
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Figure 4: Bifurcation portrait as regards the supercritical Hopf bifurcation for 𝑟 = 10−4, 𝛼 = 10−4, 𝜀 = 10−3, 𝑚 = 0.5, and 𝑠 = 1.2. Negative
sign (blue region) of the first Lyapunov coefficient at the critical surface 𝛽cr = 𝛽cr(𝛾, 𝜎), in the parameter plane (𝛾, 𝜎) (no 𝛽cr in the gray region).
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Figure 5: Stable cycle generated by supercritical Hopf bifurcation in 𝑥𝑦 (𝑆𝐼), 𝑤𝑦 (𝐸𝐼) planes and in 3D (𝑆𝐸𝐼), respectively, for(𝑟, 𝛼, 𝜀, 𝑚, 𝑠, 𝛾, 𝜎, 𝛽) = (10−4, 10−4, 10−3, 0.5, 1.2, 0.042, 0.5, 0.328525) (𝛽cr = 0.338525), determined by a custom orthogonal collocation on
finite elements algorithm.Unstable endemic equilibrium (redmarker): (𝑥0, 𝑤0, 𝑦0) = (0.073948, 0.001986, 0.023535). Period:𝑇 = 410.572533
days. ode113: Adams-Bashforth-Moulton PECE solver of orders 1 to 12 (Matlab).
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Figure 6: Stable cycles generated by supercritical Hopf bifurcation in 𝑥𝑦 (𝑆𝐼), 𝑤𝑦 (𝐸𝐼) planes and in 3D (𝑆𝐸𝐼), respectively, for(𝑟, 𝜀, 𝑚, 𝑠, 𝛾, 𝜎, 𝛽) = (10−4, 10−3, 0.5, 1.2, 0.0548, 0.24, 0.46825), 𝛼 ∈ [5 ⋅ 10−5, 10−3], determined by a custom orthogonal collocation on finite
elements algorithm. min𝛽cr = 0.51825 (𝛼 = 5 ⋅ 10−5). Periods: 𝑇min = 410.414990 days (𝛼 = 5 ⋅ 10−5); 𝑇max = 441.550487 days (𝛼 = 10−3).
ode113: Adams-Bashforth-Moulton PECE solver of orders 1 to 12 (Matlab).

during an epidemic cycle and the maximum number of
infected individuals (i.e., estimating the additional cost and
health resources needed), thus making it possible to manage
and control the epidemics more effectively, efficiently, and
with a better allocation of available resources.

Concerning the results presented in [3] with respect to
SEIRS model, especially the ones related to Hopf bifurcation,
firstly we would like to note that in the system investigated
therein an equilibrium status between the birth and the death
rate is considered, without taking into account the aforemen-
tioned pure epidemic-induced death rate introduced herein.
Furthermore, the bifurcation analysis in [3] is performed
in a two-dimensional parameter space. More precisely the

respective diagrams are obtained with respect to the rational
power 𝑠 and the parameter 𝑐 = 𝛽𝜎/[(𝜎 + 𝑟)(𝛾 + 𝑟)] (called
“contact number”; see [7]). We believe that the analysis
and hence the results which are established in a higher
dimension parameter space, like the three-dimensional one
structured in the present work (with 𝛾, 𝜎, 𝛽 considered as the
varying parameters of the system), enhance the parametric
“resolution,” that is, the physical insight into the dynamics
associated with the interaction of the parameters involved
in the physical background. Therefore, taking into account
these essential differences, we see that, in [3], depending on
the parameter values and hence the sign of the first Lyapunov
coefficient, either only a subcritical bifurcation (positive sign)
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or an alternation (due to multiple sign changes) of subcritical
and supercritical (negative sign) bifurcations occurs, located
by the corresponding critical curves in the parameter plane(𝑠, 𝑐).
5. Conclusion

In the present paper a new SEIRS epidemic model with
nonpermanent immunity, nonlinear incidence rate, and an
additional disease-induced death rate is presented. Then as
regards the characteristic equilibrium equation, by means
of the Liu criterion we conclude with the determination of
critical loci in the parameter space, where a Hopf bifurcation
associated with the endemic equilibrium occurs. In addition,
a three-dimensional parameter space structured by the recov-
ery, incubation, and transmission rate forms the basis of the
dynamic analysis, where we proceed by using a new symbolic
form introduced by the writers in a previous work, applicable
in any multidimensional and multiparameter system.

Therefore we believe that the adopted general form of the
system combined with the dimension of the active parameter
space satisfies the demand for a more realistic modeling and
offers a deeper insight into the dynamic behaviour of the
epidemic, with respect to the interaction of the populations
involved. Additionally, due to the lengthy expressions derived
in the treatment of the dynamics concerning the restriction
of the system to the center manifold and the associated
normal forms, as well, the algebraic platform mentioned
above is proved to be appropriate in manipulating a large
amount of analytical data.Thus constructing algorithms of an
implicit structure, by use of chain numerical computations,
all the quantities associated with the bifurcation analysis are
evaluated fast and the bifurcation diagrams of the system can
be obtained throughout the whole parameter space under
consideration, for any values of the fixed parameters.

We should further note that variations of the fixed param-
eters change the shape and the size of the critical and zero
regions, without affecting the qualitative profile of the results.
In particular, increase in the rational exponents involved in
the incidence rate, especially in that concerning the infective
individual, results in a shrinkage of the critical region, while
the zero region, as well as the nonequilibrium area inside
that region (as regards the endemic one), expands towards
lower values of the recovery rate. Finally, the algorithm
of orthogonal collocation on finite elements with Legendre
orthogonal polynomials is proved to be excellent in the fast
and precise numerical computation of the bifurcated stable
limit cycles.

Appendix

A. Algebraic Treatment of System (7)

A.1. Algebraic Manipulations Leading to the Final Form of
System (7). System (7), with 𝑦0 ̸= 0, results in𝑟 + 𝜀 − (𝑟 + 𝜀) 𝑥0 − 𝜀𝑤0 − 𝜀𝑦0 + 𝑎𝑥0𝑦0− 𝛽 (𝑥0)𝑚 (𝑦0)𝑠 = 0

− (𝑟 + 𝜎)𝑤0 + 𝑎𝑤0𝑦0 + 𝛽 (𝑥0)𝑚 (𝑦0)𝑠 = 0𝜎𝑤0 − (𝑟 + 𝛾 + 𝛼) 𝑦0 + 𝑎 (𝑦0)2 = 0.
(A.1)

By replacing the second equation of (A.1) with the sum of the
last two ones, we get𝑟 + 𝜀 − (𝑟 + 𝜀) 𝑥0 − 𝜀𝑤0 − 𝜀𝑦0 + 𝑎𝑥0𝑦0− 𝛽 (𝑥0)𝑚 (𝑦0)𝑠 = 0− 𝑟𝑤0 − (𝑟 + 𝛾 + 𝛼) 𝑦0 + 𝑎𝑤0𝑦0 + 𝑎 (𝑦0)2+ 𝛽 (𝑥0)𝑚 (𝑦0)𝑠 = 0𝜎𝑤0 − (𝑟 + 𝛾 + 𝛼) 𝑦0 + 𝑎 (𝑦0)2 = 0.

(A.2)

Then, bymultiplying the second relation of (A.2) by 𝜎 and the
last one by 𝑟 and adding them up we obtain𝑟 + 𝜀 − (𝑟 + 𝜀) 𝑥0 − 𝜀𝑤0 − 𝜀𝑦0 + 𝑎𝑥0𝑦0− 𝛽 (𝑥0)𝑚 (𝑦0)𝑠 = 0− (𝑟 + 𝜎) (𝑟 + 𝛾 + 𝛼) + 𝑎𝜎𝑤0 + 𝑎 (𝑟 + 𝜎) 𝑦0+ 𝛽𝜎 (𝑥0)𝑚 (𝑦0)𝑠−1 = 0𝜎𝑤0 − (𝑟 + 𝛾 + 𝛼) 𝑦0 + 𝑎 (𝑦0)2 = 0.

(A.3)

By further multiplying the last relation of (A.3) by −𝑎 and
adding it to the second one, we obtain𝑟 + 𝜀 − (𝑟 + 𝜀) 𝑥0 − 𝜀𝑤0 − 𝜀𝑦0 + 𝑎𝑥0𝑦0− 𝛽 (𝑥0)𝑚 (𝑦0)𝑠 = 0− (𝑟 + 𝜎) (𝑟 + 𝛾 + 𝛼) + 𝑎 (2𝑟 + 𝜎 + 𝛾 + 𝛼) 𝑦0− 𝑎2 (𝑦0)2 + 𝛽𝜎 (𝑥0)𝑚 (𝑦0)𝑠−1 = 0𝜎𝑤0 − (𝑟 + 𝛾 + 𝛼) 𝑦0 + 𝑎 (𝑦0)2 = 0.

(A.4)

Moreover, by multiplying the first relation of (A.4) by 𝜎 and
the third one by 𝜀 and adding them up we get𝜎 (𝑟 + 𝜀) − 𝜎 (𝑟 + 𝜀) 𝑥0 − 𝜎𝜀𝑦0 + 𝜎𝑎𝑥0𝑦0− 𝜀 (𝑟 + 𝛾 + 𝛼) 𝑦0 + 𝜀𝑎 (𝑦0)2− 𝛽𝜎 (𝑥0)𝑚 (𝑦0)𝑠 = 0𝛽𝜎 (𝑥0)𝑚 (𝑦0)𝑠−1 − 𝑎2 (𝑦0)2 + 𝑎 (2𝑟 + 𝜎 + 𝛾 + 𝛼) 𝑦0− (𝑟 + 𝜎) (𝑟 + 𝛾 + 𝛼) = 0𝜎𝑤0 − (𝑟 + 𝛾 + 𝛼) 𝑦0 + 𝑎 (𝑦0)2 = 0.

(A.5)
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Then bymultiplying the second relation of (A.5) by 𝑦0 and by
adding the first two relations we finally obtain

𝜎 (𝑟 + 𝜀) − 𝜎 (𝑟 + 𝜀) 𝑥0 − 𝜎𝜀𝑦0 + 𝜎𝑎𝑥0𝑦0 − 𝑎2 (𝑦0)3+ 𝑎 (2𝑟 + 𝜎 + 𝛾 + 𝛼 + 𝜀) (𝑦0)2− (𝑟 + 𝜎 + 𝜀) (𝑟 + 𝛾 + 𝛼) 𝑦0 = 0𝛽𝜎 (𝑥0)𝑚 (𝑦0)𝑠−1 − 𝑎2 (𝑦0)2 + 𝑎 (2𝑟 + 𝜎 + 𝛾 + 𝛼) 𝑦0− (𝑟 + 𝜎) (𝑟 + 𝛾 + 𝛼) = 0𝜎𝑤0 − (𝑟 + 𝛾 + 𝛼) 𝑦0 + 𝑎 (𝑦0)2 = 0.
(A.6)

The latter system yields (9)–(11).

A.2. Derivatives of 𝑥0, 𝑦0 with respect to the Varying Param-
eters. The derivatives of 𝑥0, 𝑦0, with respect to the varying
parameters of the problem (𝛾, 𝜎, 𝛽), are involved in the
transversality condition associated with the emerged Hopf
bifurcation (see relation (C1-2) in Appendix B), as well as
in the equivalent (according to Liu criterion) derivatives of𝐵3 = 𝐵1𝐵2 − 𝐵0 (see (19)). Thus taking into account the fact
that 𝑦0 and 𝑥0 are obtained from (10) and (9), respectively, as𝑦0 = 𝑦0 (𝛾, 𝑟, 𝛼, 𝜀, 𝜎, 𝛽) ,𝑥0 = 𝑥0 (𝑦0; 𝛾, 𝑟, 𝛼, 𝜀, 𝜎) , (A.7)

then by differentiating (9) and (10), and by denoting the
partial derivative of 𝑥0 with respect to 𝑦0, (𝑥0)𝑦0 and the
partial derivatives of 𝑥0 and 𝑦0 with respect to the parameters𝑝 (𝑝 = 𝛾, 𝜎, 𝛽), 𝑥0𝑝, and 𝑦0𝑝, respectively, the following
formulae are obtained:

𝑦0𝛾 = 1𝑌𝑑 {𝜅1 − 𝜀 − 𝛼𝑦0
− 𝑚𝐴𝑥0𝑆2 [−𝛼 (𝑦0)2 + 𝜅1𝑦0]}

𝑥0𝛾 = (𝑥0)
𝑦0

𝑦0𝛾 + −𝛼 (𝑦0)2 + 𝜅1𝑦0𝑆2𝑦0𝜎 = 1𝑌𝑑 {𝜅2 − 𝛼𝑦0 + (𝑚 − 1)𝐴𝜎− 𝑚𝐴𝑥0𝑆2 [−𝛼 (𝑦0)2 + (𝜅2 + 𝜀) 𝑦0 − 𝜅0]} ,

𝑥0𝜎 = (𝑥0)
𝑦0

𝑦0𝜎 − 𝑥0𝜎
+ −𝛼 (𝑦0)2 + (𝜅2 + 𝜀) 𝑦0 − 𝜅0𝑆2𝑦0𝛽 = − 1𝑌𝑑 𝐴𝛽 ,

𝑥0𝛽 = (𝑥0)
𝑦0

𝑦0𝛽,
(A.8)

where 𝑌𝑑 = 𝑚𝐴(𝑥0)
𝑦0𝑥0 + (𝑠 − 1)𝐴𝑦0 − 2𝛼2𝑦0

+ 𝛼 (𝜅4 − 𝜀) ,(𝑥0)
𝑦0

= 𝑆0𝑆2 − 𝛼𝜎𝑆1𝑆22 .
(A.9)

𝐴(𝑦0; 𝛾, 𝑟, 𝛼, 𝜀, 𝜎) is given by (13) and𝑆0 (𝑦0; 𝛾, 𝑟, 𝛼, 𝜀, 𝜎) = 3𝛼2 (𝑦0)2 − 2𝛼𝜅4𝑦0 + 𝜅3 + 𝜎𝜀𝑆1 (𝑦0; 𝛾, 𝑟, 𝛼, 𝜀, 𝜎) = 𝛼2 (𝑦0)3 − 𝛼𝜅4 (𝑦0)2+ (𝜅3 + 𝜎𝜀) 𝑦0 − 𝜎𝜅0𝑆2 (𝑦0; 𝛾, 𝑟, 𝛼, 𝜀, 𝜎) = 𝜎 (𝛼𝑦0 − 𝜅0) .
(A.10)

B. Normal Forms

B.1. Poincaré Normal Forms for the Planar Case (𝑛 = 2). In
this case the terms 𝑔𝑖𝑗(𝑚+) with 𝑖+𝑗 = 0, 1, 2, . . . , 𝑚+ = 1, 2, . . .
in the first part of (33) and in (34) vanish.Moreover, (35) does
not exist. Now, in order to obtain the desired normal form, we
first introduce the transformation𝑧 = 𝑤 + ℎ(2) (𝑤, 𝑤) + ⋅ ⋅ ⋅ + ℎ(2𝑛𝑟+1) (𝑤, 𝑤) ,𝑛𝑟 ∈ N,ℎ(𝑚) (𝑤, 𝑤) = ∑

𝑘+𝑙=𝑚

1𝑘!𝑙!ℎ𝑘𝑙𝑤𝑘𝑤𝑙, 𝑚 = 2, . . . , 2𝑛𝑟 + 1,
(B.1)

the inversion of which is given by (see [6, Section 3.8])𝑤 = 𝑧 − ℎ(2) (𝑧, 𝑧) − ⋅ ⋅ ⋅ − ℎ(2𝑛𝑟+1) (𝑧, 𝑧)+ 𝑂 (|𝑧|2𝑛𝑟+2) . (B.2)

Then by differentiating (B.2) with respect to 𝑡 and substituting
the right-hand side of (29) for 𝑧̇ (with 𝑔 = 𝑔(2) + 𝑔(3) + ⋅ ⋅ ⋅ ),
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as well as the corresponding conjugate equation for 𝑧̇, by
keeping terms up to 2𝑛𝑟+1 order with respect to |𝑧|, we obtain𝑤̇ = 𝜆𝑧 + 𝑔(2) + ⋅ ⋅ ⋅ + 𝑔(2𝑛𝑟+1)− 2𝑛𝑟−1∑

𝑚=1

[(𝜆𝑧 + 𝑔(2) + ⋅ ⋅ ⋅ + 𝑔(2𝑛𝑟+1−𝑚))𝐻(𝑚)− (𝜆𝑧 + 𝑔(2) + ⋅ ⋅ ⋅ + 𝑔(2𝑛𝑟+1−𝑚)) 𝐻̃(𝑚)] − 𝜆𝑧𝐻(2𝑛𝑟)− 𝜆𝑧𝐻̃(2𝑛𝑟) + 𝑂 (|𝑧|2𝑛𝑟+2) ,𝐻(𝑚) (𝑧, 𝑧) = 𝜕ℎ(𝑚+1) (𝑧, 𝑧)𝜕𝑧 ,
𝐻̃(𝑚) (𝑧, 𝑧) = 𝜕ℎ(𝑚+1) (𝑧, 𝑧)𝜕𝑧 , 𝑚 = 1, . . . , 2𝑛𝑟.

(B.3)

Finally substitution of the transformation (B.1) for 𝑧 (as well
as the respective conjugate relation for 𝑧) in (B.3) yields𝑤̇ = 𝜆 (𝑎)𝑤 + 𝐾(2) + ⋅ ⋅ ⋅ + 𝐾(2𝑛𝑟+1) + 𝑂 (|𝑤|2𝑛𝑟+2) ,𝐾(𝑚) (𝑤, 𝑤; 𝑎)= ∑

𝑘+𝑙=𝑚

𝐾𝑘𝑙 (𝜆, 𝜆, ℎ𝑘𝑙, 𝑔𝑘𝑙, ℎ𝑖𝑗, ℎ𝑖𝑗, 𝑔𝑖𝑗, 𝑔𝑖𝑗)𝑤𝑘𝑤𝑙,𝑚 = 2, . . . , 2𝑛𝑟 + 1, 𝑖 + 𝑗 = 2, . . . , 𝑚 − 1,
(B.4)

where terms up to 2𝑛𝑟 +1 order with respect to |𝑤| have been
evaluated. Now, by setting 𝐾𝑘𝑙, 𝑘 + 𝑙 = 2, . . . , 2𝑛𝑟 + 1 equal
to zero we define the coefficients ℎ𝑘𝑙 of transformation (B.1),
while the rest of the resonant terms of the odd order, 𝑐𝑖 =𝐾𝑖+1,𝑖, 𝑖 = 1, . . . , 𝑛𝑟, constitute the desirable normal form of
(29). Furthermore, by substituting the obtained expressions
of ℎ𝑘𝑙, ℎ𝑘𝑙 involved in 𝑐𝑖 (𝑘 + 𝑙 = 2, . . . , 2𝑖) and then by means
of computer calculations we arrive at the analytic formulae of
the normal coefficients𝑐𝑖 = 𝑐𝑖 (𝜆, 𝜆, 𝑔𝑖+1,𝑖, 𝑔𝑠𝑡, 𝑔𝑠𝑡) ,𝑠 + 𝑡 = 2, . . . , 2𝑖, 𝑖 = 1, . . . , 𝑛𝑟, (B.5)

which are lengthy for 𝑖 ≥ 2.
B.2. Normal Form of the Third Order (𝑛𝑟 = 1). In this case,
the above procedure results in the third-order normal form:𝑤̇ = 𝜆 (𝑎)𝑤 + 𝑐1 (𝑎) 𝑤 |𝑤|2 + 𝑂 (|𝑤|4) , (B.6)

where 𝑐1(𝑎)𝑤2𝑤 represents the cubic resonant term, due to
the term (𝜆 + 𝜆)ℎ21 included in𝐾21 (we set ℎ21 = 0). Then by
means of the linear time scaling𝜃 = 𝜔 (𝑎) 𝑡 (B.7)

and the nonlinear time reparameterisation𝑑𝜃 = [1 − Im 𝑐1 (𝑎)𝜔 (𝑎) |𝑤|2] 𝑑𝜏, (B.8)

(B.6) becomes𝑑𝑤𝑑𝜏 = (𝑏 + 𝑖) 𝑤 + 𝑙1 (𝑎) 𝑤 |𝑤|2 + 𝑂 (|𝑤|4) ,𝑏 (𝑎) = 𝜇 (𝑎)𝜔 (𝑎) ,𝑙1 (𝑎) = Re 𝑐1 (𝑎)𝜔 (𝑎) − 𝑏 (𝑎) Im 𝑐1 (𝑎)𝜔 (𝑎) , (B.9)

where the parameter function 𝑙1(𝑎) represents the first
Lyapunov coefficient. If there exist critical values 𝑎0 of the
parameters, where 𝑏 (𝑎0) = 𝜇 (𝑎0)𝜔0 = 0,

𝑙1 (𝑎0) = Re 𝑐1 (𝑎0)𝜔0 ̸= 0, (C1-1)
then by the linear local (around 𝑎0) transformation 𝑤 =𝑢/|𝑙1(𝑎)|1/2, (B.9) yields𝑑𝑢𝑑𝜏 = (𝑏 + 𝑖) 𝑢 + 𝑠𝑢 |𝑢|2 + 𝑂 (|𝑢|4) , (B.10)

with 𝑠 = ±1 = sign 𝑙1(𝑎0) = signRe[𝑐1(𝑎0)]. According to [6]
(Lemma 3.2, valid for both supercritical and subcritical case)
the terms which are higher than the third order in (B.10) do
not affect the bifurcation behaviour of the systemnear 𝑥0, and
thus we consider the locally topologically equivalent system
(B.10), where the𝑂(|𝑢|4) terms have been dropped.Moreover,
if the transversality condition holds at the critical values of the
parameters, that is,𝜕𝑏𝜕𝑎𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎=𝑎0 = 1𝜔0 𝜕𝜇𝜕𝑎𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎=𝑎0 ̸= 0, 𝑖 = 1, 2, 3, (C1-2)
then one limit cycle is bifurcated from the equilibrium 𝑥0 at𝑎0. By using polar coordinates 𝑢 = 𝜌𝑒𝑖𝜑, the equivalent system
(B.10) (without the 𝑂(|𝑢|4) terms) gives 𝑑𝜌/𝑑𝜏 = 𝜌(𝑏 ∓ 𝜌2),𝑠 = ∓1, corresponding to the well-known supercritical (𝑠 =−1, 𝑏 > 0 → 𝜇 > 0) and subcritical (𝑠 = 1, 𝑏 < 0 → 𝜇 < 0)
cases of the Hopf bifurcation. We call 𝑥0(𝑎) a Hopf point of
codimension 1 (H1 point).

In the case where 𝑙1(𝑎0) = 0, we proceed to higher order
normal forms.
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Thequestion discussed in this study concerns one of themost helpful approximationmethods, namely, the expansion of a solution of
a differential equation in a series in powers of a small parameter.We used the Lindstedt-Poincaré perturbationmethod to construct
a solution closer to uniformly valid asymptotic expansions for periodic solutions of second-order nonlinear differential equations.

1. Introduction

In the last few years, the study of approximations methods
for systems of differential equations has been extensively
developed; see, for example, [1]. This technique, known as
the perturbation method (see [2]), has many applications
in the theory of fractional differentiation operators (see
[3]), in reaction-diffusion equations, stochastic stability, and
asymptotic stability (see [4–9]), and for some numerical
considerations (see, for example, [10–12]).

In current applications, some considerations require only
the use of a small number of terms in the perturbation
expansion, but the simple application of the perturbation is
problematic if wewant to calculate a uniformly valid solution.

Therefore, to structure a uniformly valid solution, one
must look for an approximation that eliminates the terms
causing the problem (secular terms). A technique to avoid
the presence of these terms has been developed by Lindstedt.
The principle of the Lindstedt method is to find approxima-
tions for periodic solutions, by convergent series using the
expansion theorem and the periodicity of the solution [13, 14].
This method has various applications and properties; see,
for example, [15]. Later, Poincaré proved that the expansion
obtained by the Lindstedt technique is both asymptotic and
uniformly valid.

The aim of this work is to present an analytical approx-
imation study of periodic solutions for systems of second-
order nonlinear differential equations. Although our analysis

is based on the Lindstedt method, nevertheless the chosen
development is according to a different approach from the
one usually used. Thus, we recover an improvement in the
process of the approximation.

Our paper consists of three sections. In the first section
we present the general framework of our study. In the second,
we recall most of the preliminary notions and the necessary
definitions, and we prove the third approximation in the
general case. Finally, in Section 3 we define and study the
approximations of a new nonclassical equation.

2. Preliminaries and Definitions

In this section, we present an approximation method, based
on the expansion of a solution of a differential equation
in a series in a small parameter. It is used to construct
uniformly valid periodic solutions to second-order nonlinear
differential equations in the form

𝑑2𝑦𝑑𝑡2 (𝑡, 𝜖) + 𝑦 (𝑡, 𝜖) = 𝜖𝐹(𝑦 (𝑡, 𝜖) , 𝑑𝑦𝑑𝑡 (𝑡, 𝜖)) ,
0 < 𝜖 << 1,

(1)

with 𝑦(0, 𝜖) = 𝐴, (𝑑𝑦/𝑑𝑡)(0, 𝜖)(0) = 0, where 0 < 𝜖 << 1
means that the positive parameter 𝜖 is small enough to be
close to zero and 𝐹 is supposed to be an analytical function of𝑦(𝑡, 𝜖) and (𝑑𝑦/𝑑𝑡)(𝑡, 𝜖).
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If 𝜖 = 0 we obtain the following nonperturbed problem:

𝑑2𝑦𝑑𝑡2 (𝑡, 0) + 𝑦 (𝑡, 0) = 0. (2)

Before we discuss our subject, we present some basic con-
cepts concerning the perturbation theory.Then we introduce
the Lindstedt method, which we use to determine uniformly
valid solutions, in order to find a closer approximate solution
for (2) (𝑦∗∗ is closer to 𝑦 than 𝑦∗ means that |𝑦 − 𝑦∗∗| <|𝑦−𝑦∗|). For further developments concerning the Lindstedt
method see [16, 17].

2.1. Approximation Technique. We assume that the (𝑛 + 1)th
approximate solution of (1) can be written as

𝑦 (𝑡, 𝜖) = 𝑛∑
𝑚=0

𝜖𝑚𝑦𝑚 (𝑡, 0) + 𝑂 (𝜖𝑛+1) . (3)

The general procedure of the simple approximation is to
substitute (3) into (1), develop in powers of 𝜖, and put all
coefficients of the powers of 𝜖 equal to zero. This gives a
system of linear nonhomogeneous differential equations that
we can solve recursively.

But the simple approximation takes us on a problem, if
we need to calculate an analytical approximations of periodic
solutions of nonlinear differential equations in the form given
by (1). We illustrate this type of difficulty in the following
example.

2.1.1. Example. We apply the simple approximation to the
following equation:

𝑑2𝑦𝑑𝑡2 (𝑡, 𝜖) + 𝜖 (𝑑𝑦𝑑𝑡 (𝑡, 𝜖))2 + 𝑦 (𝑡, 𝜖) = 0, 0 < 𝜖 << 1, (4)

with the initial values 𝑦(0, 𝜖) = 𝐴, (𝑑𝑦/𝑑𝑡)(0, 𝜖) = 0.
The fourth approximate solution of (4) is 𝑦(𝑡, 𝜖) =𝑦0(𝑡, 0) + 𝜖𝑦1(𝑡, 0) + 𝜖2𝑦2(𝑡, 0) + 𝜖3𝑦3(𝑡, 0) + 𝑂(𝜖4). After

substituting and calculating, we find

𝑦 (𝑡, 𝜖) = 𝐴 cos 𝑡 + 𝜖𝐴26 (−3 + 4 cos 𝑡 − cos 2𝑡) + 𝜖2

⋅ 𝐴372 (−48 + 61 cos 𝑡 − 16 cos 2𝑡 + 12𝑡 sin 𝑡
− 3 cos 3𝑡) + 𝜖3𝐴4 (−2324 + 659540 cos 𝑡 − 13 cos 2𝑡
+ 112 cos 3𝑡 − 131080 cos 4𝑡 + 13𝑡 sin 𝑡 − 118𝑡 sin 2𝑡)
+ 𝑂 (𝜖4) .

(5)

We remark that the terms 𝑦2(𝑡, 0) and 𝑦3(𝑡, 0) are nonpe-
riodic and unbounded as 𝑡 󳨀→ +∞. This leads to the notion
of secular terms.

2.2. Secular Terms. The conservation of a finite numbers
of terms on the right-side of expansion (5) determines a
function that is not only nonperiodic, but also unbounded
as 𝑡 󳨀→ +∞.

Definition 1. Terms such as 𝑡𝑚 cos(𝑝𝑡) or 𝑡𝑚 sin(𝑛𝑡) where𝑚, 𝑛 ∈ N∗, 𝑝 ∈ N are called secular terms.

These expressions appear because expansion (5) is not
uniformly valid. The existence of such expressions destroys
the periodicity of expansion (5) when only a finite number
of terms is conserved. Therefore, to obtain a uniformly valid
solution, we must look for an approximation that eliminates
secular terms. A technique to avoid the presence of secular
terms and allows for an approximation that is valid for all time
has been developed by Lindstedt-Poincaré as described above
in what follows.

2.3. Lindstedt-Poincaré Method. The substance of this
method is to introduce a new independent variable linearly
linked to the old independent variable. This transformation
completely eliminates the secular terms. The basic idea came
from the astronomer Lindstedt, based on the change of
variable 𝜃 = 𝜔(𝜖)𝑡 with 𝜔0 = 𝑤(0) = 1, 𝜔(𝜖) ̸= 1, and both𝑦(𝜃, 𝜖) and 𝜔(𝜖) are expanded in powers of 𝜖 as follows:

𝑦 (𝜃, 𝜖) = 𝑦0 (𝜃, 0) + 𝜖𝑦1 (𝜃, 0) + . . . + 𝜖𝑛𝑦𝑛 (𝜃, 0) + . . . ,
𝜔 (𝜖) = 1 + 𝜖𝜔1 + . . . + 𝜖𝑛𝜔𝑛 + . . . , (6)

and we note that, in this step, 𝜔𝑗 are unknowns; we obtain
them by elimination of the secular terms.

First, we introduce the following notations:

̇𝑦 ≡ 𝑑𝑦𝑑𝜃 (𝜃, 𝜖) ,
̈𝑦 ≡ 𝑑2𝑦𝑑𝜃2 (𝜃, 𝜖) ,

𝐹𝑦 (𝑦, 𝜔 ̇𝑦) ≡ 𝜕𝐹 (𝑦 (𝜃, 𝜖) , ̇𝑦)
𝜕𝑦 (𝜃, 𝜖) ,

𝐹 ̇𝑦 (𝑦, ̇𝑦) ≡ 𝜕𝐹 (𝑦 (𝜃, 𝜖) , ̇𝑦)
𝜕 ̇𝑦 ,

(7)

and (1) becomes

𝜔2 ̈𝑦 + 𝑦 = 𝜖𝐹 (𝑦, 𝜔 ̇𝑦) , 0 < 𝜖 << 1, (8)

with 𝑦(0, 𝜖) = 𝐴, ̇𝑦(0, 𝜖) = 0. When we substitute expansion
(6) into (8) we have

(1 + 𝜖𝜔1 + 𝜖2𝜔2 + 𝜖3𝜔3 + . . .)2
⋅ ( ̈𝑦0 + 𝜖 ̈𝑦1 + 𝜖2 ̈𝑦2 + 𝜖3 ̈𝑦3 + . . .) + 𝑦0 + 𝜖𝑦1 + 𝜖2𝑦2
+ 𝜖3𝑦3 + . . . = 𝜖𝐹 (𝑦0, ̇𝑦0) + 𝜖2 𝜕𝐹 (𝑦0, ̇𝑦0)𝜕𝜖 + 𝜖32
⋅ 𝜕2𝐹 (𝑦0, ̇𝑦0)𝜕𝜖2 + . . . .

(9)
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Then we put all different powers of 𝜖 to zero, and we obtain
(10), (11), (12), (13), and (15), such that

̈𝑦0 + 𝑦0 = 0, (10)

̈𝑦1 + 𝑦1 = −2𝜔1 ̈𝑦0 + 𝐹 (𝑦0, ̇𝑦0) š 𝐺1 (𝑦0 (𝜃, 0) ,
̇𝑦0 (𝜃, 0)) = 𝐺1 (𝜃) , (11)

̈𝑦2 + 𝑦2 = −2𝜔1 ̈𝑦1 − (𝜔21 + 2𝜔2) ̈𝑦0 + 𝐹𝑦 (𝑦0, ̇𝑦0) 𝑦1
+ 𝐹 ̇𝑦 (𝑦0, ̇𝑦0) (𝜔1 ̇𝑦0 + ̇𝑦1) š 𝐺2 (𝑦0 (𝜃, 0) , 𝑦1 (𝜃, 0) ,
̇𝑦0 (𝜃, 0) , ̇𝑦1 (𝜃, 0)) = 𝐺2 (𝜃) ,

(12)

̈𝑦3 + 𝑦3 š 𝐺3 (𝑦0 (𝜃, 0) , 𝑦1 (𝜃, 0) , 𝑦2 (𝜃, 0) ; ̇𝑦0 (𝜃, 0) ,
̇𝑦1 (𝜃, 0) , ̇𝑦2 (𝜃, 0)) = 𝐺3 (𝜃) , (13)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (14)

̈𝑦𝑛 + 𝑦𝑛 = 𝐺𝑛 (𝑦0 (𝜃, 0) , 𝑦1 (𝜃, 0) , . . . , 𝑦𝑛−1 (𝜃, 0) ;
̇𝑦0 (𝜃, 0) , ̇𝑦1 (𝜃, 0) , . . . , ̇𝑦𝑛−1 (𝜃, 0)) = 𝐺𝑛 (𝜃) ; (15)

note here that 𝐺𝑖, 𝑖 = 1, .., 𝑛, is also an analytical function of𝑦0, 𝑦1, . . . , 𝑦𝑖−1; ̇𝑦0, ̇𝑦1, . . . , ̇𝑦𝑖−1.
To calculate an approximate periodic solutions of (8), we

must solve (11), (12), (13), and (15). The following proposition
gives the general formula of periodic solutions. Although
these results are in [17], they are not detailed.

Proposition 2. We consider the following equation:

̈𝑦 + 𝑦 = 𝐺 (𝜃) ,
𝑦 (0) = 0, ̇𝑦 (0) = 0, with 𝐺 (𝜃) ̸= 0, (16)

and the solution of problem (16) is

𝑦 (𝜃) = ∫𝜃
0
sin (𝜃 − 𝜏) 𝐺 (𝜏) 𝑑𝜏. (17)

Moreover, problem (16) has a periodic solution 𝑦1(𝜃, 0) if and
only if

∫2𝜋
0

𝐹 (𝐴 cos 𝜃, −𝐴 sin 𝜃) sin 𝜃 𝑑𝜃 = 0,
2𝜋𝜔1𝐴 + ∫2𝜋

0
𝐹 (𝐴 cos 𝜃, −𝐴 sin 𝜃) cos 𝜃 𝑑𝜃 = 0.

(18)

Proof. We know that the solution of (16) is 𝑦(𝜃) = 𝐶1 cos 𝜃 +𝐶2 sin 𝜃 + 𝑦𝑝(𝜃) such that 𝑦𝑝(𝜃) = 𝐶1(𝜃) cos 𝜃 + 𝐶2(𝜃) sin 𝜃.
By variation of constants we find

𝐶󸀠1 (𝜃) cos 𝜃 + 𝐶󸀠2 (𝜃) sin 𝜃 = 0,
−𝐶󸀠1 (𝜃) sin 𝜃 + 𝐶󸀠2 (𝜃) cos 𝜃 = 𝐺 (𝜃)

⇓
−𝐶󸀠1 (𝜃) = − sin 𝜃𝐺 (𝜃) 󳨐⇒
𝐶1 (𝜃) = −∫𝜃

0
sin 𝜏𝐺 (𝜏) 𝑑𝜏,

𝐶1 (0) = 0,
−𝐶󸀠2 (𝜃) = cos 𝜃𝐺 (𝜃) 󳨐⇒
𝐶1 (𝜃) = ∫𝜃

0
cos 𝜏𝐺 (𝜏) 𝑑𝜏,

𝐶2 (0) = 0

(19)

󳨐⇒ 𝑦𝑝(𝜃) = (− ∫𝜃
0
sin 𝜏𝐺(𝜏)𝑑𝜏) cos 𝜃 +

(∫𝜃
0
cos 𝜏𝐺(𝜏)𝑑𝜏) sin 𝜃 = ∫𝜃

0
(− sin 𝜏 cos 𝜃+cos 𝜏 sin 𝜃)𝐺(𝜏)𝑑𝜏.

󳨐⇒ 𝑦𝑝(𝜃) = ∫𝜃
0
sin(𝜃 − 𝜏)𝐺(𝜏)𝑑𝜏 󳨐⇒ 𝑦(𝜃) = 𝐶1 cos 𝜃 +

𝐶2 sin 𝜃 + ∫𝜃
0
sin(𝜃 − 𝜏)𝐺(𝜏)𝑑𝜏 with the initial values 𝑦(0) =0, ̇𝑦(0) = 0; we have 𝐶1 = 𝐶2 = 0, so we deduce that problem

(16) admits (17) as a solution.
Moreover, (16) gives

̇𝑦1 = 𝑦2
̇𝑦2 = −𝑦1 + 𝐺 (𝜏) . (20)

On the other hand, the condition of periodicity for the
new variable 𝜃 can be expressed as 𝑦(𝜃) = 𝑦(𝜃 + 2𝜋), so
the corresponding conditions for 𝑦𝑛(𝜃) are 𝑦𝑛(𝜃) = 𝑦𝑛(𝜃 +2𝜋), 𝑛 = 1, 2, . . .

󳨐⇒ {{{
𝑦1 (2𝜋) = 𝑦1 (0) = 0
𝑦2 (2𝜋) = 𝑦2 (0) = 0 (21)

which yields to the periodicity condition ∫𝜃+2𝜋
𝜃

sin(𝜃 −𝜏)𝐺(𝜏)𝑑𝜏 = 0,

󳨐⇒ {{{{{{{
∫2𝜋
0

cos 𝜃𝐺 (𝜃) 𝑑𝜃 = 0,
∫2𝜋
0

sin 𝜃𝐺 (𝜃) 𝑑𝜃 = 0. (22)
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According to (11) we have 𝐺(𝜃) = −2𝜔1 ̈𝑦0 + 𝐹(𝑦0, ̇𝑦0), 𝑦0 =𝐴 cos 𝜃; we rewrite (22) as

󳨐⇒ {{{{{{{
∫2𝜋
0

cos 𝜃 [2𝜔1𝐴 cos 𝜃 + 𝐹 (𝐴 cos 𝜃, −𝐴 sin 𝜃)] 𝑑𝜃 = 0,
∫2𝜋
0

sin 𝜃 [2𝜔1𝐴 cos 𝜃 + 𝐹 (𝐴 cos 𝜃, −𝐴 sin 𝜃)] 𝑑𝜃 = 0,

󳨐⇒ {{{{{{{
2𝜔1𝜋𝐴 + ∫2𝜋

0
cos 𝜃𝐹 (𝐴 cos 𝜃, −𝐴 sin 𝜃) 𝑑𝜃 = 0,

∫2𝜋
0

sin 𝜃𝐹 (𝐴 cos 𝜃, −𝐴 sin 𝜃) 𝑑𝜃 = 0,

(23)

which is required.

2.3.1. Example. We apply the method of Lindstedt to (4) with
the initial values 𝑦(0, 𝜖) = 𝐴, ̇𝑦(0, 𝜖) = 0, and we calculate𝑦𝑖(𝜃, 0), 𝑖 = 1, 2, 3 according to Proposition 2. Thus, we find
that the fourth approximation of the periodic solution of (4)
is

𝑦 (𝜃, 𝜖) = 𝐴 cos 𝜃 + 𝜖(𝐴26 ) (−3 + 4 cos 𝜃 − cos 2𝜃)
+ 𝜖2 (𝐴33 ) [−2 + (6124) cos 𝜃 − (23) cos 2𝜃
− (18) cos 3𝜃] + 𝜖3 [−2324𝐴4 + 659540𝐴4 cos 𝜃
− 13𝐴4 cos 2𝜃 + 𝐴412 cos 3𝜃 − 131080𝐴4 cos 4𝜃]
+ 𝑂 (𝜖4) ,

(24)

with 𝜃 = 𝜔(𝜖)𝑡 such that 𝜔(𝜖) = 1 − 𝜖2(𝐴2/6) − 𝜖3((2/9)𝐴3) +𝑂(𝜖4).
Remark 3. Although the calculation of 𝑦3(𝜃) is very long,
usually in applications, the fourth approximation is among
the high orders that are often useful. For this reason, we give
its equation in the next proposition.

Remark 4. The Lindstedt method gives only periodic solu-
tions.

3. Our Results

3.1. General Formula. Practically, for many considerations
we are forced to use a small number of terms in the
perturbation expansion. We note here that the second and
third terms are determined by (11) and (12) in [17]. In the
following proposition, (13) which determines the fourth term
is explicitly stated.

Proposition 5. The general formula of (13) is

̈𝑦3 + 𝑦3 = 𝐺3 (𝜃)
= −2𝜔1 ̈𝑦2 − (𝜔21 + 2𝜔2) ̈𝑦1

− (2𝜔3 + 2𝜔1𝜔2) ̈𝑦0 + 𝑦2𝐹𝑦 (𝑦0, ̇𝑦0)
+ 𝑦122 𝐹𝑦𝑦 (𝑦0, ̇𝑦0)
+ +𝑦1 (𝜔1 ̇𝑦0 + ̇𝑦1) 𝐹𝑦 ̇𝑦 (𝑦0, ̇𝑦0)
+ (𝜔2 ̇𝑦0 + 𝜔1 ̇𝑦1 + ̇𝑦2) 𝐹 ̇𝑦 (𝑦0, ̇𝑦0)
+ 12 (𝜔1 ̇𝑦0 + ̇𝑦1)2 𝐹 ̇𝑦 ̇𝑦 (𝑦0, ̇𝑦0) .

(25)

Proof. First, (9) gives

𝜖3 ( ̈𝑦3 + 𝑦3 + 2𝜔1 ̈𝑦2 + (𝜔12 + 2𝜔2) ̈𝑦1
+ (2𝜔3 + 2𝜔1𝜔2) ̈𝑦0) = 𝜖32

𝜕2𝐹 (𝑦0, ̇𝑦0)𝜕𝜖2 󳨐⇒
̈𝑦3 + 𝑦3 = −2𝜔1 ̈𝑦2 − (𝜔12 + 2𝜔2) ̈𝑦1 − (2𝜔3 + 2𝜔1𝜔2)
⋅ ̈𝑦0 + 12

𝜕2𝐹 (𝑦0, ̇𝑦0)𝜕𝜖2 ,

(26)

such that

𝜕2𝐹 (𝑦, 𝜔 ̇𝑦)
𝜕𝜖2 = 𝜕𝜕𝜖 (𝜕𝐹𝜕𝑦 𝜕𝑦𝜕𝜖 + 𝜕𝐹𝜕 ̇𝑦 𝜕𝜔 ̇𝑦𝜕𝜖 )

= 𝜕𝑦𝜕𝜖 ( 𝜕𝜕𝜖 𝜕𝐹𝜕𝑦) + 𝜕2𝑦𝜕𝜖2 𝜕𝐹𝜕𝑦
+ 𝜕𝜔 ̇𝑦𝜕𝜖 ( 𝜕𝜕𝜖 𝜕𝐹𝜕 ̇𝑦) + 𝜕2𝜔 ̇𝑦𝜕𝜖2 𝜕𝐹𝜕 ̇𝑦

= 𝜕𝑦𝜕𝜖 (𝜕2𝐹𝜕𝑦2 𝜕𝑦𝜕𝜖 + 𝜕2𝐹𝜕𝑦𝜕 ̇𝑦 𝜕𝜔 ̇𝑦𝜕𝜖 ) + 𝜕2𝑦𝜕𝜖2 𝐹𝑦
+ 𝜕2𝜔 ̇𝑦𝜕𝜖2 𝐹 ̇𝑦
+ 𝜕2𝜔 ̇𝑦𝜕𝜖 ( 𝜕2𝐹𝜕𝑦𝜕 ̇𝑦 𝜕𝑦𝜕𝜖 + 𝜕2𝐹𝜕𝑦2 𝜕𝜔

̇𝑦𝜕𝜖 )
= (𝜕𝑦𝜕𝜖)

2 𝐹𝑦𝑦 + 2𝜕𝑦𝜕𝜖 𝜕𝜔 ̇𝑦𝜕𝜖 𝐹𝑦 ̇𝑦 + 𝜕2𝑦𝜕𝜖 𝐹𝑦
+ 𝜕2𝜔 ̇𝑦𝜕𝜖2 𝐹 ̇𝑦 + (𝜕𝜔 ̇𝑦𝜕𝜖 )2 𝐹 ̇𝑦 ̇𝑦,

(27)
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with

𝐹𝑦𝑦 ≡ 𝜕2𝐹𝜕𝑦2 ,
𝐹𝑦 ̇𝑦 ≡ 𝜕2𝐹𝜕𝑦𝜕 ̇𝑦 ,
𝐹 ̇𝑦 ̇𝑦 ≡ 𝜕2𝐹𝜕 ̇𝑦𝜕 ̇𝑦 .

(28)

On the other hand, in the third order we have

𝑦 = 𝑦0 + 𝜖𝑦1 + 𝜖2𝑦2 + 𝜖3𝑦3 󳨐⇒

𝜕𝑦𝜕𝜖 = 𝑦1 + 2𝜖𝑦2 + 3𝜖2𝑦3 󳨐⇒
𝜕2𝑦𝜕𝜖2 = 2𝑦2 + 6𝜖𝑦3,

(29)

and

𝜕𝜔 ̇𝑦𝜕𝜖 = 𝜕𝜔𝜕𝜖 ̇𝑦 + 𝜕 ̇𝑦𝜕𝜖 𝜔
= (𝜔1 + 2𝜖𝜔2 + 3𝜖2𝜔3) ( ̇𝑦0 + 𝜖 ̇𝑦1 + 𝜖2 ̇𝑦2 + 𝜖3 ̇𝑦3)

+ ( ̇𝑦1 + 2𝜖 ̇𝑦2 + 3𝜖2 ̇𝑦3) (1 + 𝜖𝜔1 + 𝜖2𝜔2 + 𝜖3𝜔3) ,
(30)

and also

𝜕2𝜔 ̇𝑦𝜕𝜖2 = (2𝜔2 + 6𝜖𝜔3) ( ̇𝑦0 + 𝜖 ̇𝑦1 + 𝜖2 ̇𝑦2 + 𝜖3 ̇𝑦3) + 2 ( ̇𝑦1 + 2𝜖 ̇𝑦2 + 3𝜖2 ̇𝑦3) (𝜔1 + 2𝜖𝜔2 + 3𝜖2𝜔3)
+ (2 ̇𝑦2 + 6𝜖 ̇𝑦3) (1 + 𝜖𝜔1 + 𝜖2𝜔2 + 𝜖3𝜔3) 󳨐⇒

12
𝜕2𝐹 (𝑦0, ̇𝑦0)𝜕𝜖2 = 𝑦122 𝐹𝑦𝑦 (𝑦0, ̇𝑦0) + (𝜔1 ̇𝑦0 + ̇𝑦1) 𝑦1𝐹𝑦 ̇𝑦 (𝑦0, ̇𝑦0)

+ 𝑦2𝐹𝑦 (𝑦0, ̇𝑦0) + (𝜔2 ̇𝑦0 + 𝜔1 ̇𝑦1 + ̇𝑦2) 𝐹 ̇𝑦 (𝑦0, ̇𝑦0) + (𝜔1 ̇𝑦0 + ̇𝑦1)2 𝐹 ̇𝑦 ̇𝑦 (𝑦0, ̇𝑦0) ,

(31)

and when we substitute (31) into (26), we get (25).

3.2. Main Result. In this essential part of our work, we deal
with some nonclassical equations, more general than (1), and
also different from the equation studied in [2]. We consider
equations in the following form:

𝑑2𝑦𝑑𝑡2 (𝑡, 𝜖) + 𝑦 (𝑡, 𝜖) = 𝑔 (𝜖) 𝐹(𝑦 (𝑡, 𝜖) , 𝑑𝑦𝑑𝑡 (𝑡, 𝜖)) ,
0 < 𝜖 << 1,

(32)

with 𝑦(0, 𝜖) = 𝐴, (𝑑𝑦/𝑑𝑡)(0, 𝜖) = 0, where 𝜖 is a small positive
parameter and 𝐹 is supposed to be an analytical function of𝑦(𝑡, 𝜖) and 𝑑𝑦/𝑑𝑡(𝑡, 𝜖).

To compute an uniformly approximate periodic solution,
a new variable 𝜃 = 𝜔̃𝑡 is introduced, and both 𝑦 and 𝜔̃ are
expanded in powers of 𝜖 as follows:

𝑦 (𝜃, 𝜖) = 𝑦0 (𝜃, 0) + 𝜖𝑦1 (𝜃, 0) + . . . + 𝜖𝑛𝑦𝑛 (𝜃, 0)
+ . . . , (33)

with

𝜔̃ (𝜖) = 1 + 𝜖𝜔̃1 + . . . + 𝜖𝑛𝜔̃𝑛 + . . . . (34)

We note that, in this step, 𝜔̃𝑗 are unknowns, and we obtain
them by elimination of the secular terms.

To use the uniformly approximate periodic solution (33),
we give firstly the general formula of 𝑦0(𝜃, 0), 𝑦1(𝜃, 0), and𝑦2(𝜃, 0) in the following proposition.

Proposition 6. The terms 𝑦0(𝜃, 0), 𝑦1(𝜃, 0) and 𝑦2(𝜃, 0) are,
respectively, solutions of (35), (36), and (37) such that

̈̃𝑦0 + 𝑦0 = 0, (35)

̈̃𝑦1 + 𝑦1 = 𝐺1 (𝜃) , (36)

̈̃𝑦2 + 𝑦2 = 𝐺2 (𝜃) , (37)

with 𝐺1(𝜃) = −2𝜔̃1 ̈̃𝑦0 + 𝑐1𝐹(𝑦0(𝜃, 0), ̇̃𝑦0(𝜃, 0)),
𝐺2 (𝜃) = −2𝜔̃1 ̈̃𝑦0 + 𝑐1𝐹 (𝑦0 (𝜃, 0) , ̇̃𝑦0 (𝜃, 0))

− 2𝜔̃1 ̈̃𝑦1 − (𝜔̃21 + 2𝜔̃2) ̈̃𝑦0
+ +𝑐1 (𝐹𝑦 (𝑦0 (𝜃, 0) , ̇̃𝑦0 (𝜃, 0)) 𝑦1
+ 𝐹 ̇̃𝑦 (𝑦0 (𝜃, 0) , ̇̃𝑦0 (𝜃, 0)) (𝜔1 ̇̃𝑦0 + ̇̃𝑦1))
+ 𝑐2𝐹 (𝑦0 (𝜃, 0) , ̇̃𝑦0 (𝜃, 0)) .

(38)
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Proof. Equation (32) will be written as

𝑑2𝑦 (𝜃, 𝜖)
𝑑𝑡2 + 𝑦 (𝜃) = Σ

𝑘≥1
𝜖𝑘𝑐𝑘𝐹(𝑦 (𝜃, 𝜖) , 𝑑𝑦 (𝜃, 𝜖)

𝑑𝑡 )

= 𝜖( Σ
𝑘≥0

𝜖𝑘𝑐𝑘+1𝐹(𝑦 (𝜃, 𝜖) , 𝑑𝑦 (𝜃, 𝜖)
𝑑𝑡 ))

= 𝜖𝐾(𝑦 (𝜃, 𝜖) , 𝑑𝑦 (𝜃, 𝜖)
𝑑𝑡 ) ,

(39)

where 𝐾 is an analytical function of 𝑦 and 𝑑𝑦/𝑑𝑡.
Substituting (33) into (32), we have

(1 + 𝜖𝜔̃1 + 𝜖2𝜔̃2 + 𝜖3𝜔̃3 + . . .)2 ( ̈̃𝑦0 + 𝜖 ̈̃𝑦1 + 𝜖2 ̈̃𝑦2
+ 𝜖3 ̈̃𝑦3 + . . .) + 𝑦0 + 𝜖𝑦1 + 𝜖2𝑦2 + 𝜖3𝑦3 + . . .
= 𝜖𝐾 (𝑦0, ̇̃𝑦0) + 𝜖2 𝜕𝐾 (𝑦0, ̇̃𝑦0)𝜕𝜖 + 𝜖32

𝜕2𝐾(𝑦0, ̇̃𝑦0)𝜕𝜖2
+ . . . , = 𝜖𝑐1𝐹 (𝑦0, ̇̃𝑦0) + 𝜖2 [𝑐1 𝜕𝐹 (𝑦0, ̇̃𝑦0)𝜕𝜖
+ 𝑐2𝐹 (𝑦0, ̇̃𝑦0)] + . . . , = 𝜖𝑐1𝐹 (𝑦0, ̇̃𝑦0)
+ 𝜖2 [𝑐1 (𝐹𝑦 (𝑦0, ̇̃𝑦0) 𝑦1
+ 𝐹 ̇̃𝑦 (𝑦0, ̇̃𝑦0) (𝜔1 ̇̃𝑦0 + ̇̃𝑦1)) + 𝑐2𝐹 (𝑦0, ̇̃𝑦0)] + ⋅ ⋅ ⋅ ,

(40)

then we put all different powers of 𝜖 to zero, and we obtain
(35), (36), (37), and so on.

The aim of this study is to construct a new approach to
(2), which gives a closer approximate solution of (2) more
than an approximate solution of (1).The relations between an
approximate solution of (32) and that of (1) are determined
by the following lemma.

Lemma 7. If the function 𝑔(𝜖) is expanded in powers of 𝜖 with𝑔(0) = 0 𝑖.𝑒 𝑔(𝜖) = ∑𝑘≥1 𝜖𝑘𝑐𝑘, where 𝑐𝑘 are real constants, we
have(1)𝑦0(𝜃, 0) = 𝑦0(𝜃, 0).(2)𝑦1(𝜃, 0) = 𝑐1𝑦1(𝜃, 0).(3)𝑦2(𝜃, 0) = 𝑐21𝑦2(𝜃, 0) + 𝑐2𝑦1(𝜃, 0).
Proof. (1) Equation (35) gives 𝑦0(𝜃, 0) = 𝐴 cos 𝜃 =𝐴 cos(𝜔̃(0)𝑡) = 𝐴 cos 𝑡 = 𝐴 cos(𝜔(0)𝑡) = 𝐴 cos 𝜃 = 𝑦0(𝜃, 0).

(2)When we apply the periodicity condition (22) to (36),
we have

∫2𝜋
0

cos 𝜃𝐺1 (𝜃) 𝑑𝜃 = 0,
∫2𝜋
0

sin 𝜃𝐺1 (𝜃) 𝑑𝜃 = 0.
⇓
∫2𝜋
0

cos 𝜃 [−2𝜔̃1 ̈̃𝑦0 + 𝑐1𝐹 (𝑦0, ̇̃𝑦0)] 𝑑𝜃 = 0,
∫2𝜋
0

sin 𝜃 [−2𝜔̃1 ̈̃𝑦0 + 𝑐1𝐹 (𝑦0, ̇̃𝑦0)] 𝑑𝜃 = 0.
⇓
𝜔̃1 = −𝑐12𝜋𝐴 ∫2𝜋

0
cos 𝜃𝐹 (𝑦0, ̇̃𝑦0) 𝑑𝜃 = 𝑐1𝜔1,

∫2𝜋
0

sin 𝜃𝐹 (𝑦0, ̇̃𝑦0) 𝑑𝜃 = 0.

(41)

On the other hand, according to (17) the solution 𝑦1(𝜃, 0) of
(36) is given by

𝑦1 (𝜃, 0) = ∫𝜃
0
sin (𝜃 − 𝜏)𝐺1 (𝜏) 𝑑𝜏

= 𝑐1 ∫𝜃
0
sin (𝜃 − 𝜏)𝐺1 (𝜏) 𝑑𝜏 = 𝑐1𝑦1 (𝜃, 0) .

(42)

(3) When we apply the periodicity condition (22) to (12), we
have

∫2𝜋
0

cos 𝜃𝐺2 (𝜃) 𝑑𝜃 = 0,
∫2𝜋
0

sin 𝜃𝐺2 (𝜃) 𝑑𝜃 = 0.
⇓

∫2𝜋
0

cos 𝜃 [𝑐21𝐺2 (𝜃) + 𝑐2𝐹 (𝑦0, ̇̃𝑦0)] 𝑑𝜃 = 0,
∫2𝜋
0

sin 𝜃 [𝑐21𝐺2 (𝜃) + 𝑐2𝐹 (𝑦0, ̇̃𝑦0)] 𝑑𝜃 = 0.
⇓

𝜔̃2 = 𝑐21𝜔2 + 𝑐2𝜔1,
∫2𝜋
0

sin 𝜃𝐹 (𝑦0, ̇̃𝑦0) 𝑑𝜃 = 0.

(43)
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On the other hand, according to (17) the solution 𝑦2(𝜃, 0)
of (11) is given by

𝑦2 (𝜃, 0) = ∫𝜃
0
sin (𝜃 − 𝜏)𝐺2 (𝜏) 𝑑𝜏

= 𝑐21 ∫𝜃
0
sin (𝜃 − 𝜏)𝐺2 (𝜏) 𝑑𝜏

+ 𝑐2 ∫𝜃
0
sin (𝜃 − 𝜏) [−2𝜔̃1 ̈̃𝑦0 + 𝑐1𝐹 (𝑦0, ̇̃𝑦0)] 𝑑𝜏 󳨐⇒

𝑦2 (𝜃, 0) = 𝑐21𝑦2 (𝜃, 0) + 𝑐2𝑦1 (𝜃, 0) .

(44)

Theorem 8. If the function 𝑔(𝜖) is expanded in powers of 𝜖
with 𝑔(0) = 0 𝑖.𝑒 𝑔(𝜖) = ∑𝑘≥1 𝜖𝑘𝑐𝑘, where 𝑐𝑘 are real constants,
so one has the following:

(1) If 𝑐1 ̸= 0,with |𝑐1| < 1, the approximate solutions of
(32) are closer to the solutions of (2) more than the approximate
solutions of (1).

(2) If 𝑐1 = 0 and |𝑐2| < 1,with 𝑐2 ̸= 0, the approximate
solutions of (32) are closer to the solutions of (2) more than the
approximate solutions of (1).

Moreover, the approximate solutions of (32) are closer to
the solutions of (2) more than the approximate solutions of (1)
where 𝑐1 = 0, 𝑐2 ̸= 0.
Proof. According to the results given by Lemma 7, we have
the following:(1) If |𝑐1| < 1 and 𝑐1 ̸= 0 we have

󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦0 (𝜃, 0) − 𝜖𝑦1 (𝜃, 0) − 𝑜 (𝜖)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨𝜖𝑦1 (𝜃, 0) + 𝑜 (𝜖)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝑐1𝜖𝑦1 (𝜃, 0) + 𝑜 (𝜖)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝑐1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜖𝑦1 (𝜃, 0) + 𝑜 (𝜖)󵄨󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨󵄨𝜖𝑦1 (𝜃, 0) + 𝑜 (𝜖)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖)󵄨󵄨󵄨󵄨󵄨 .

(45)

So 𝑦(𝜃, 𝜖) is an approximation to 𝑦0(𝜃, 0) closer than 𝑦(𝜃, 𝜖).(2) If 𝑐1 = 0 and |𝑐2| < 1 with 𝑐2 ̸= 0, we have
󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖)󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦0 (𝜃, 0) − 𝜖2𝑦2 (𝜃, 0) − 𝑜 (𝜖2)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨𝜖2𝑦2 (𝜃, 0) + 𝑜 (𝜖2)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝜖2𝑐2𝑦1 (𝜃, 0) + 𝑜 (𝜖2)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝑐2󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜖2𝑦1 (𝜃, 0) + 𝑜 (𝜖2)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝑐2󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜖2 (𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖) + 𝜖2𝑦2 (𝜃, 0))󵄨󵄨󵄨󵄨󵄨
< 󵄨󵄨󵄨󵄨󵄨𝜖2 (𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖) + 𝜖2𝑦2 (𝜃, 0))󵄨󵄨󵄨󵄨󵄨
< 𝜖2 󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖)󵄨󵄨󵄨󵄨󵄨 + 𝜖4 󵄨󵄨󵄨󵄨󵄨𝑦2 (𝜃, 0)󵄨󵄨󵄨󵄨󵄨 .

(46)

Since |𝑦0(𝜃, 0)−𝑦(𝜃, 𝜖)| = 𝑜(𝜖), for 𝜖 small enough, there exists
a positive real constant 𝐶 such that |𝑦0(𝜃, 0) − 𝑦(𝜃, 𝜖)| ≤ 𝐶𝜖.

Let ℎ be a function defined by ℎ(𝜖) := (𝜖2 − 1)𝐶 +𝜖3|𝑦2(𝜃, 0)|. So, ℎ is continuous with ℎ(0) = −𝐶 < 0, then∃ 𝜖0 > 0 such that ∀𝜖 ∈ ]0, 𝜖0[ , we have ℎ(𝜖) < 0.
Therefore, for all 𝜖 ∈ ]0, 𝜖0[ we get

(𝜖2 − 1) 󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖)󵄨󵄨󵄨󵄨󵄨 + 𝜖4 󵄨󵄨󵄨󵄨󵄨𝑦2 (𝜃, 0)󵄨󵄨󵄨󵄨󵄨
≤ 𝜖 ((𝜖2 − 1)𝐶 + 𝜖3 󵄨󵄨󵄨󵄨󵄨𝑦2 (𝜃, 0)󵄨󵄨󵄨󵄨󵄨) = 𝜖ℎ (𝜖) < 0 (47)

which implies from what precedes that |𝑦0(𝜃, 0) − 𝑦(𝜃, 𝜖)| <|𝑦0(𝜃, 0) − 𝑦(𝜃, 𝜖)|. So 𝑦(𝜃, 𝜖) is an approximation to 𝑦0(𝜃, 0)
closer than 𝑦(𝜃, 𝜖).

Moreover, if 𝑐1 = 0 and 𝑐2 ̸= 0, then ∃ 𝜖0(< 1/|𝑐2|) > 0
such that, ∀𝜖 ∈ ]0, 𝜖0[ ,󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖)󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦0 (𝜃, 0) − 𝜖2𝑦2 (𝜃, 0) − 𝑜 (𝜖2)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨𝜖2𝑦2 (𝜃, 0) + 𝑜 (𝜖2)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝜖2𝑐2𝑦1 (𝜃, 0) + 𝑜 (𝜖2)󵄨󵄨󵄨󵄨󵄨
= 𝜖 󵄨󵄨󵄨󵄨𝑐2󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜖𝑦1 (𝜃, 0) + 𝑜 (𝜖)󵄨󵄨󵄨󵄨󵄨
= 𝜖 󵄨󵄨󵄨󵄨𝑐2󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖)󵄨󵄨󵄨󵄨󵄨
< 󵄨󵄨󵄨󵄨󵄨𝑦0 (𝜃, 0) − 𝑦 (𝜃, 𝜖)󵄨󵄨󵄨󵄨󵄨 .

(48)

So 𝑦(𝜃, 𝜖) is an approximation to 𝑦0(𝜃, 0) closer than 𝑦(𝜃, 𝜖).
Remark 9. Let 𝑔 be a real function such that 𝑔(𝜖) =𝜖𝑚ℎ(𝜖), 𝑚 ∈ N∗, where ℎ(𝜖) can be expanded in powers of𝜖 as ℎ(𝜖) = ∑𝑘≥1 𝜖𝑘𝑎𝑘, with 𝑎𝑘 real constants.(1) If 𝑚 = 1 or 2, according to the conditions of
Theorem 8, we conclude that 𝑦(𝜃, 𝜖) is an approximation to𝑦0(𝜃, 0) closer than 𝑦(𝜃, 𝜖).(2) If 𝑚 > 2 (in the case where 𝑚 = 3, the fourth term
is given by Proposition 5), we can expect that 𝑦(𝜃, 𝜖) is an
approximation to 𝑦0(𝜃, 0) closer than 𝑦(𝜃, 𝜖).
Remark 10. We note here that, in the fractional case, the
existence of a positive solution of (32) is studied in [18].

Remark 11. Although the Lindstedt-Poincaré method gives
uniformly valid asymptotic expansions for periodic solutions
of weakly nonlinear oscillations, i.e., 0 < 𝜖 < 𝐶1, the
technique does not work if the amplitude of the oscillation
is a function of time (see [16, 17]).
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We derive conditions on the parameters 𝑝, 𝑏, and 𝑐 so that the function 𝑧𝑤𝑝,𝑏,𝑐(𝑧), where 𝑤𝑝,𝑏,𝑐(𝑧) is the normalized form of
generalized Struve function, belongs to the class 𝑆∗

1 (𝛼). Also, some sufficient conditions for the function 𝑧𝑤𝑝,𝑏,𝑐(𝑧), to be in the
classU(𝜆), are obtained.

1. Introduction and Preliminaries

Let U fl {𝑧 : |𝑧| < 1} denote the unit disc in the complex
plane C and let A denote the class of functions which are
analytic and of the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎𝑛𝑧
𝑛 (1)

and normalized by the conditions 𝑓(0) = 0 and 𝑓
󸀠
(0) = 1.

Let S denote the class of functions such that

S = {𝑓 : 𝑓 ∈ A and 𝑓 univalent in U} . (2)

Suppose that 𝑓 and 𝑔 are two analytic functions in U, and 𝑔

is univalent in U. We say that 𝑓 is subordinate to 𝑔, written
𝑓(𝑧) ≺ 𝑔(𝑧) or 𝑓 ≺ 𝑔, if and only if 𝑓(0) = 𝑔(0) and 𝑓(U) ⊂

𝑔(U).
A function𝑓 ∈ A belongs to the class of starlike functions

of order 𝛼 denoted by 𝑆∗
(𝛼) if

Re(
𝑧𝑓

󸀠
(𝑧)

𝑓 (𝑧)
) > 𝛼, 𝑧 ∈ U. (3)

A subclass of the class of starlike functions denoted by 𝑆∗
1 (𝛼)

for 0 ≤ 𝛼 < 1 consists of functions for which
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1 − 𝛼, 𝑧 ∈ U. (4)

We also note that 𝑆∗
1 (0) ⊂ 𝑆

∗. In [1–3] the authors have dis-
cussed the coefficient bounds and other extremal properties
of the class 𝑆∗

1 (𝛼).

For 0 < 𝜆 ≤ 1, consider the class
U (𝜆)

= {𝑓 ∈ A :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑧

𝑓 (𝑧)
)

2

𝑓
󸀠
(𝑧) − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜆 for 𝑧 ∈ U} .

(5)

From [4], we have the strict inclusion U(1) fl U ⊂ S. Very
recently, Obradović et al. [5] have discussed the geometric
behaviour of functions inU(𝜆). Also the class has beenwidely
studied by many authors in [4, 6–8].

Let us consider the following second-order linear nonho-
mogenous differential equation (for more details see [9, 10]):

𝑧
2
𝑢

󸀠󸀠
(𝑧) + 𝑏𝑧𝑢

󸀠
(𝑧) + [𝑐𝑧

2
− 𝑝

2
+ (1 − 𝑏) 𝑝] 𝑢 (𝑧)

=
4 (𝑧/2)

𝑝+1

√𝜋Γ (𝑝 + 𝑏/2)
,

(6)

13
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where 𝑏, 𝑝, 𝑐 ∈ C. The function 𝑢𝑝,𝑏,𝑐(𝑧) which is called
the generalized Struve function of order 𝑝 is defined as a
particular solution of (6) and has the series representation as
follows:

𝑢𝑝,𝑏,𝑐 (𝑧)

= ∑

𝑛≥0

(−1)
𝑛
(𝑐)

𝑛

Γ (𝑛 + 3/2) Γ (𝑝 + 𝑛 + (𝑏 + 2) /2)
(
𝑧

2
)

2𝑛+𝑝+1

,

𝑧 ∈ C,

(7)

where Γ stands for the Euler gamma function.
Now, we consider the function 𝑤𝑝,𝑏,𝑐(𝑧) defined in terms

of the generalized Struve function 𝑢𝑝,𝑏,𝑐(𝑧) by the transforma-
tion:

𝑤𝑝,𝑏,𝑐 (𝑧) = 2
𝑃
√𝜋Γ(𝑝 +

𝑏 + 2

2
) 𝑧

(−𝑝−1)/2
𝑢𝑝,𝑏,𝑐 (√𝑧) . (8)

By using the well-known Pochammer symbol (or the shifted
factorial) (𝜒)𝑛 defined for 𝜒, 𝑛 ∈ C in terms of the Euler Γ-
function, we have

(𝜒)𝑛 =
Γ (𝜒 + 𝑛)

Γ (𝜒)

=

{

{

{

1, if 𝑛 = 0, 𝜒 ∈ C∗
,

𝜒 (𝜒 + 1) ⋅ ⋅ ⋅ (𝜒 + 𝑛 − 1) , if 𝑛 ∈ N, 𝜒 ∈ C.

(9)

We obtain the following series representation for the function
𝑤𝑝,𝑏,𝑐 given by (8):

𝑤𝑝,𝑏,𝑐 (𝑧) = ∑

𝑛≥0

(−𝑐/4)
𝑛

(3/2)𝑛 (𝑘)𝑛

𝑧
𝑛
, (10)

where 𝑘 = 𝑝 + (𝑏 + 2)/2 ̸= 0, −1, −2, . . .. Also, this function
is analytic on C and satisfies the following second-order
inhomogeneous differential equation:

4𝑧
2
𝑤

󸀠󸀠
(𝑧) + 2 (2𝑝 + 𝑏 + 3) 𝑧𝑤

󸀠
(𝑧)

+ (𝑐𝑧 + 2𝑝 + 𝑏)𝑤 (𝑧) = (2𝑝 + 𝑏) ,

(11)

where 𝑝, 𝑏, 𝑐 ∈ C.

Recently, the classU(𝜆) and its generalizations have been
widely studied by many authors [4–8, 11]. By applying the
admissible function method authors in [12] have obtained
conditions on the triplet 𝑎, 𝑏, and 𝑐 such that 𝑧𝐹𝑎,𝑏,𝑐(𝑧) is in
the class U, where 𝐹𝑎,𝑏,𝑐(𝑧) is the confluent hypergeometric
function. In [13], the authors have derived conditions on the
parameters 𝑎, 𝑏, and 𝑐 such that the function 𝑧2𝐹1(𝑎, 𝑏, 𝑐) is
in 𝑆∗

1 (0), where 2𝐹1(𝑎, 𝑏, 𝑐; 𝑧) is the Gaussian hypergeometric
function. Moreover, in [9, 10] Yagmur and Orhan have
obtained sufficient conditions for the generalized Struve
function to be convex, starlike, and univalent. Most of these
results were motivated by the research on geometric proper-
ties of Gaussian and confluent hypergeometric function.

Motivated by the above-mentioned works, in this paper
we use the method of differential subordination to show that

𝑧𝑤𝑝,𝑏,𝑐(𝑧) is in the class 𝑆∗
(𝛼) and also we provide sufficient

conditions for the function 𝑧𝑤𝑝,𝑏,𝑐(𝑧) to be in the classU and
hence univalent.

To prove our main results, we will need the following
lemmas.

Lemma 1 (see [14]). Let (nonconstant) function 𝑝(𝑧) be
analytic in U with 𝑝(0) = 0, 𝑝(𝑧) ̸= 0 (𝑧 ∈ U).

If |𝑝(𝑧)| attains its maximum value on the circle |𝑧| = 𝑟 < 1

at a point 𝑧0 ∈ U, then

𝑧0𝑝
󸀠
(𝑧0) = 𝑘𝑝 (𝑧0) ,

R(1 +
𝑧0𝑝

󸀠󸀠
(𝑧0)

𝑝󸀠 (𝑧0)
) ≥ 𝑘,

(12)

where 𝑘 is a real number and 𝑘 ≥ 1.

Lemma 2 (see [15]). If an analytic function 𝑓 has the form
𝑓(𝑧) = 𝑧 + 𝑎2𝑧

2
+ ⋅ ⋅ ⋅ , 𝑧 ∈ U and satisfies the condition

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2
𝑓

󸀠
(𝑧)

𝑓2
(𝑧)

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1 (13)

then 𝑓 is univalent in U.

Lemma 3 (see [15]). Let 𝛽 be a complex number, R(𝛽) > 0,
and let 𝛼 be a complex number, |𝛼| ≤ 1, 𝛼 ̸= −1, and ℎ(𝑧) =

𝑧 + 𝑎2𝑧
2
+ ⋅ ⋅ ⋅ a regular function on U. If

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼 |𝑧|
2𝛽

+ (1 − |𝑧|
2𝛽
)
𝑧ℎ

󸀠󸀠
(𝑧)

𝛽ℎ󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1 (14)

for all 𝑧 ∈ U, then the function

𝐹𝛽 (𝑧) = (𝛽∫

𝑧

0
𝑡
𝛽−1

ℎ
󸀠
(𝑡) 𝑑𝑡)

1/𝛽

= 𝑧 +
2𝑎2

(1 + 𝛽)
𝑧

2

+ (
3𝑎3

2 + 𝛽
+
2𝛽 (1 − 𝛽) 𝑎

2
2

(𝛽 + 1)
3

)𝑧
3
+ ⋅ ⋅ ⋅

(15)

is regular and univalent in U.

Lemma 4 (see [16]). Let Ω ⊂ C and let 𝑞 be analytic and
univalent on U except for those 𝜉 ∈ 𝜕U for which lim𝑧∈𝜉𝑞(𝑧) =

∞. Suppose that 𝜓 : C3
× U → C satisfies the condition

𝜓 (𝑞 (𝜁) , 𝑚𝜁𝑞
󸀠
(𝜁) , 𝜁

2
𝑞

󸀠󸀠
(𝜁) ; 𝑧) ∉ Ω, (16)

where 𝑞(𝑧) is finite,𝑚 ≥ 𝑛 ≥ 1, and |𝜉| = 1. If 𝑝 and 𝑞 analytic
in U, 𝑝(𝑧) = 𝑝(0) + 𝑝𝑛𝑧

𝑛
+ ⋅ ⋅ ⋅ , 𝑝(0) = 𝑞(0), and further if

𝜓 (𝑝 (𝑧) , 𝑧𝑝
󸀠
(𝑧) , 𝑧

2
𝑝

󸀠󸀠
(𝑧) ; 𝑧) ∈ Ω (17)

then 𝑝(𝑧) ≺ 𝑞(𝑧) in U.
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Suppose that 𝑝(𝑧) is analytic in U with 𝑝(𝑧) = 𝑝𝑛𝑧
𝑛
+

𝑝𝑛+1𝑧
𝑛+1

+ ⋅ ⋅ ⋅ and 𝑞(𝑧) = 𝑀𝑧. Then the condition (16) reduces
to a simple form:

𝜓 (𝑀𝑒
𝑖𝜃
, 𝐾𝑒

𝑖𝜃
, 𝐿; 𝑧) ∉ Ω (18)

whenever 𝐾 ≥ 𝑛𝑀, Re(𝐿𝑒−𝑖𝜃
) ≥ (𝑛 − 1)𝐾, 𝑧 ∈ U, and 𝜃 ∈ R.

2. Main Results

Theorem 5. Let 𝛿 > 0, 𝑝, 𝑏 ∈ R, and 𝑐 ∈ C such that |𝑐|𝛿 <

3[(2𝑝 + 𝑏) + 2] − |𝑐|𝛿; then

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝,𝑏,𝑐 (𝛿𝑧) − 1

󵄨󵄨󵄨󵄨󵄨
<

|𝑐| 𝛿

3 [(2𝑝 + 𝑏) + 2] − |𝑐| 𝛿
, 𝑧 ∈ U. (19)

Proof. Let 𝑝(𝑧) = 𝑤𝑝,𝑏,𝑐(𝛿𝑧) − 1, 𝛿 > 0; then 𝑝(𝑧) is analytic
in U with 𝑝(0) = 0. Since the function 𝑤𝑝,𝑏,𝑐(𝑧) satisfies the
differential equation (11) and 𝑤𝑝,𝑏,𝑐(𝛿𝑧) = 𝑝(𝑧) + 1, 𝑝(𝑧)
satisfies the following inhomogeneous differential equation:

4𝑧
2
𝑝

󸀠󸀠
(𝑧) + 2 (2𝑝 + 𝑏 + 3) 𝑧𝑝

󸀠
(𝑧)

+ (𝑐𝛿𝑧 + 2𝑝 + 𝑏) (𝑝 (𝑧) + 1) = (2𝑝 + 𝑏) .

(20)

Using Lemma 4, we will show that |𝑝(𝑧)| < 𝑀, where
𝑀 = |𝑐|𝛿/3[(2𝑝 + 𝑏) + 2] − |𝑐|𝛿. For this, if we let

𝜓 (𝑟, 𝑠, 𝑡; 𝑧) = 4𝑡 + 2 (2𝑝 + 𝑏 + 3) 𝑠

+ (𝑐𝛿𝑧 + 2𝑝 + 𝑏) (1 + 𝑟) − (2𝑝 + 𝑏)

(21)

and Ω = {0}, then it is sufficient to prove that 𝜓(𝑀𝑒
𝑖𝜃
,

𝐾𝑒
𝑖𝜃
, 𝐿; 𝑧) ∉ Ω whenever 𝐾 ≥ 𝑀, Re(𝐿𝑒−𝑖𝜃

) ≥ 0, 𝑧 ∈ U,
and 𝜃 is real, we have that
󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑀𝑒

𝑖𝜃
, 𝐾𝑒

𝑖𝜃
, 𝐿; 𝑧)

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
4𝐿 + 2 (2𝑝 + 𝑏 + 3)𝐾𝑒

𝑖𝜃

+ (𝑐𝛿𝑧 + 2𝑝 + 𝑏) (1 +𝑀𝑒
𝑖𝜃
) − (2𝑝 + 𝑏)

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
4𝐿𝑒

−𝑖𝜃

+ 2 (2𝑝 + 𝑏 + 3)𝐾 + (𝑐𝛿𝑧 + 2𝑝 + 𝑏) (𝑀 + 𝑒
−𝑖𝜃

)

− (2𝑝 + 𝑏) 𝑒
−𝑖𝜃󵄨󵄨󵄨󵄨󵄨

≥ 4Re (𝐿𝑒−𝑖𝜃
) + 2 (2𝑝 + 𝑏 + 3)𝑀

+ Re ((𝑐𝛿𝑧 + 2𝑝 + 𝑏)𝑀)

+ Re ((𝑐𝛿𝑧 + 2𝑝 + 𝑏) 𝑒
−𝑖𝜃

) − Re ((2𝑝 + 𝑏) 𝑒
−𝑖𝜃

)

≥ [2 (2𝑝 + 𝑏 + 3) + (2𝑝 + 𝑏)]𝑀 − Re (𝑐𝛿𝑧𝑒−𝑖𝜃
)

− Re (𝑐𝛿𝑧𝑀) ≥ 3 [(2𝑝 + 𝑏) + 2]𝑀 − |𝑐| 𝛿𝑀 − |𝑐| 𝛿

= 0.

(22)

In the last stage of the inequalities we have used the
definition of𝑀 and shown that

𝜓 (𝑀𝑒
𝑖𝜃
, 𝐾𝑒

𝑖𝜃
, 𝐿; 𝑧) ∉ Ω = {0} (23)

whenever 𝐾 ≥ 𝑀, 𝜃 is real, and 𝑧 ∈ U. Hence, |𝑝(𝑧)| < 𝑀.

Choosing 𝛿 = 1 in the above theorem we have the
following Corollary.

Corollary 6. Let 𝑝, 𝑏 ∈ R, and 𝑐 ∈ C be such that 3[(2𝑝+𝑏)+
2] − 2|𝑐| > 0; then

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝,𝑏,𝑐 (𝑧) − 1

󵄨󵄨󵄨󵄨󵄨
<

|𝑐|

3 [(2𝑝 + 𝑏) + 2] − |𝑐|
, 𝑧 ∈ U. (24)

The next results give sufficient conditions for the function
𝑔𝑝,𝑏,𝑐(𝑧) = 𝑧𝑤𝑝,𝑏,𝑐(𝑧) to be starlike and univalent in the open
unit disc.

Theorem 7. If 𝑝, 𝑏 ∈ R, and 𝑐 ∈ C such that 2|𝑐| < 3[(2𝑝 +

𝑏) + 2] and

(2𝑝 + 𝑏) |𝑐|

[3 [(2𝑝 + 𝑏) + 2] − 2 |𝑐|]
+ |𝑐|

≤ (1 − 𝛼) [2 (2𝑝 + 𝑏 + 3) − 4 (1 − 𝛼)] ,

(25)

then the function 𝑔𝑝,𝑏,𝑐(𝑧) belongs to the class 𝑆∗
1 (𝛼).

Proof. For 𝑔𝑝,𝑏,𝑐(𝑧) = 𝑧𝑤𝑝,𝑏,𝑐(𝑧) to be in the class 𝑆∗
1 (𝛼) we

need to prove that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,𝑏,𝑐

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< (1 − 𝛼) , 𝑧 ∈ U. (26)

Upon setting

[𝑧𝑤𝑝,𝑏,𝑐 (𝑧)]
󸀠

𝑤𝑝,𝑏,𝑐 (𝑧)
− 1 = 𝑞̃ (𝑧) (27)

we observe that 𝑞̃(𝑧) is analytic inU and 𝑞̃(0) = 𝑞̃
󸀠
(0) − 1 = 0.

Also

𝑧𝑤
󸀠
𝑝,𝑏,𝑐 (𝑧) = 𝑞̃ (𝑧) 𝑤𝑝,𝑏,𝑐 (𝑧) ,

𝑧
2
𝑤

󸀠󸀠
𝑝,𝑏,𝑐 (𝑧) = [(𝑞̃ (𝑧) − 1) 𝑞̃ (𝑧) + 𝑧𝑞̃ (𝑧)] 𝑤𝑝,𝑏,𝑐 (𝑧) .

(28)

Now, since 𝑤𝑝,𝑏,𝑐(𝑧) satisfies the inhomogeneous differential
equation (11), in terms of 𝑞̃(𝑧) we see that 𝑞̃(𝑧) satisfies the
following equation:

𝜓 (𝑞̃ (𝑧) , 𝑧𝑞̃
󸀠
(𝑧) ; 𝑧) = 0, (29)

where

𝜓 (𝑟, 𝑠; 𝑧) = 4 [𝑟 (𝑟 − 1) + 𝑠] + 2 (2𝑝 + 𝑏 + 3) 𝑟

+ (𝑐𝑧 + 2𝑝 + 𝑏) − (2𝑝 + 𝑏)
1

𝑔𝑝,𝑏,𝑐 (𝑧)
.

(30)

Now, we claim that |𝑞̃(𝑧)| < 1 − 𝛼, 0 ≤ 𝛼 < 1. By using
Lemma 4 with Ω = {0}, 𝑛 = 1, and 𝑞(𝑧) = (1 − 𝛼)𝑧, we need
to show that

𝜓 ((1 − 𝛼) 𝑒
𝑖𝜃
, 𝐾𝑒

𝑖𝜃
; 𝑧) ∉ Ω, (31)
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where 𝜃 is real,𝐾 ≥ (1 − 𝛼), and 𝑧 ∈ U:

𝜓 ((1 − 𝛼) 𝑒
𝑖𝜃
, 𝐾𝑒

𝑖𝜃
; 𝑧) = 𝑒

𝑖𝜃
𝐶 − 𝐷, (32)

where

𝐶 = 4 [(1 − 𝛼) [(1 − 𝛼) 𝑒
𝑖𝜃
− 1] + 𝐾]

+ 2 (2𝑝 + 𝑏 + 3) (1 − 𝛼) ,

𝐷 = (2𝑝 + 𝑏) [
1

𝑔𝑝,𝑏,𝑐 (𝑧)
− 1] − 𝑐𝑧.

(33)

Also, when 𝛿 = 1 in Theorem 5 we have that if 2|𝑐| < 3(2𝑝 +

𝑏) + 6 then

󵄨󵄨󵄨󵄨󵄨
𝑤𝑝 (𝑧) − 1

󵄨󵄨󵄨󵄨󵄨
<

|𝑐|

3 (2𝑝 + 𝑏) + 6
− |𝑐| ≤ 1. (34)

Also,

|𝐶| ≥ Re𝐶 > 4 (1 − 𝛼) [(1 − 𝛼) 𝑒
𝑖𝜃
− 1] + (1 − 𝛼) 4

+ 2 (2𝑝 + 𝑏 + 3) (1 − 𝛼) ≥ (1 − 𝛼) [4 (1 − 𝛼) cos 𝜃

− 4 (1 − 𝛼) + 4 (1 − 𝛼) + 2 (2𝑝 + 𝑏 + 3)] ≥ (1 − 𝛼)

⋅ [2 (2𝑝 + 𝑏 + 3) − 4 (1 − 𝛼)] = 𝛽̃, say.

(35)

Now, if we show that |𝐷| < 𝛽̃, then we have

󵄨󵄨󵄨󵄨𝜓 (𝑟, 𝑠; 𝑧)
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖𝜃
𝐶 − 𝐷

󵄨󵄨󵄨󵄨󵄨
≥ |𝐶| − |𝐷| = 0. (36)

In order to establish that we need the following results which
state that for 𝑟 < 1 and |𝑤 − 1| < 𝑟 if and only if

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑤
−

1

1 − 𝑟2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<

𝑟

1 − 𝑟2
. (37)

In particular, |𝑤 − 1| < 𝑟 implies that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑤
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<

𝑟

1 − 𝑟
. (38)

When 𝑟 = |𝑐|/(3[(2𝑝 + 𝑏) + 2] − |𝑐|), we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑔𝑝,𝑏,𝑐 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝑟

1 − 𝑟
=

|𝑐|

3 (2𝑝 + 𝑏) + 6 − 2 |𝑐|
. (39)

Using the last inequality, we have

|𝐷| ≤ (2𝑝 + 𝑏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑔𝑝,𝑏,𝑐 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ |𝑐| |𝑧|

<
(2𝑝 + 𝑏) |𝑐|

3 [(2𝑝 + 𝑏) + 2] − 2 |𝑐|
+ |𝑐|

(40)

and so we have |𝐷| < 𝛽̃ provided that

(2𝑝 + 𝑏) |𝑐|

3 [(2𝑝 + 𝑏) + 2] − 2 |𝑐|
+ |𝑐| ≤ 𝛽̃ (41)

holds, where 𝛽̃ is given by (35). And, we observe that the
above condition is stated in the theorem.Thus, |𝑞̃(𝑧)| < (1−𝛼)

in U and hence 𝑔𝑝,𝑏,𝑐(𝑧) belongs to 𝑆
∗
1 (𝛼).

Theorem 8. Let 𝑝, 𝑏 ∈ R, and 𝑐 ∈ C. If 𝑔𝑝,𝑏,𝑐(𝑧) satisfies any
one of the following inequalities:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

[𝑔𝑝,𝑏,𝑐 (𝑧)]
2
[

[

(𝑧𝑔𝑝,𝑏,𝑐 (𝑧))
󸀠󸀠

𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

−

2𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,𝑏,𝑐 (𝑧)

]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1 (𝑧 ∈ U) , (42)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑔𝑝,𝑏,𝑐 (𝑧)]
2

𝑧2𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

[

[

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠

𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

−

2𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,𝑏,𝑐 (𝑧)

]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
1

4
(𝑧 ∈ U) , (43)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠
/𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧) − 2𝑧𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧) /𝑔𝑝,𝑏,𝑐 (𝑧)

𝑧2𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧) / (𝑔𝑝,𝑏,𝑐 (𝑧))

2
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
1

2
(𝑧 ∈ U) , (44)

Re[

[

𝑧
2
𝑔𝑝,𝑏,𝑐 (𝑧)

(𝑔𝑝,𝑏,𝑐 (𝑧))
2
[

[

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠
/𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧) − 2𝑧𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧) /𝑔𝑝,𝑏,𝑐 (𝑧)

𝑧2𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧) / [𝑔𝑝,𝑏,𝑐 (𝑧)]

2
]

]

]

]

< 1 (𝑧 ∈ U) , (45)

then 𝑔𝑝,𝑏,𝑐 is in U and hence 𝑔𝑝,𝑏,𝑐(𝑧) is univalent in
U.
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Proof. Define a function 𝑝(𝑧) by

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

[𝑔𝑝,𝑏,𝑐 (𝑧)]
2
= 1 + 𝑝 (𝑧) (𝑧 ∈ U) , (46)

and then 𝑝(𝑧) is analytic in U and 𝑝(0) = 0. Differentiating
(46) gives

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠

𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

−

2𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,𝑏,𝑐 (𝑧)
=

𝑧𝑝
󸀠
(𝑧)

1 + 𝑝 (𝑧)
. (47)

Hence, from (46) and (47), we have

𝐸1 (𝑧) =

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

(𝑔𝑝,𝑏,𝑐 (𝑧))
2
(

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠

𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

−

2𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,b,𝑐 (𝑧)
) = 𝑧𝑝

󸀠
(𝑧) ,

𝐸2 (𝑧) =

(𝑔𝑝,𝑏,𝑐 (𝑧))
2

𝑧2𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

(

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠

𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

−

2𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,𝑏,𝑐 (𝑧)
) =

𝑧𝑝
󸀠
(𝑧)

(1 + 𝑝 (𝑧))
2
,

𝐸3 (𝑧) =

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠
/𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧) − 2𝑧𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧) /𝑔𝑝,𝑏,𝑐 (𝑧)

𝑧2𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧) / (𝑔𝑝,𝑏,𝑐 (𝑧))

2
− 1

=
𝑧𝑝

󸀠
(𝑧)

𝑝 (𝑧)

1

(1 + 𝑝 (𝑧))
,

𝐸4 (𝑧) =

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

(𝑔𝑝,𝑏,𝑐 (𝑧))
2
(

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠
/𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧) − 2𝑧𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧) /𝑔𝑝,𝑏,𝑐 (𝑧)

𝑧2𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧) / (𝑔𝑝,𝑏,𝑐 (𝑧))

2
− 1

) =
𝑧𝑝

󸀠
(𝑧)

𝑝 (𝑧)
.

(48)

Now suppose that there exists 𝑧0 ∈ U such that

max
|𝑧|<|𝑧

0
|

󵄨󵄨󵄨󵄨𝑝 (𝑧)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑝 (𝑧0)
󵄨󵄨󵄨󵄨 = 1, (49)

and then from Lemma 1, we have

𝑧0𝑝
󸀠
(𝑧0) = 𝑘𝑝 (𝑧0) . (50)

Therefore, letting 𝑝(𝑧0) = 𝑒
𝑖𝜃 in each of (48), we obtain that

󵄨󵄨󵄨󵄨𝐸1 (𝑧0)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝑧0𝑝

󸀠
(𝑧0)

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑘𝑒

𝑖𝜃󵄨󵄨󵄨󵄨󵄨
≥ 1,

󵄨󵄨󵄨󵄨𝐸2 (𝑧0)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧0𝑝
󸀠
(𝑧0)

(1 + 𝑝 (𝑧0))
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
𝑘

󵄨󵄨󵄨󵄨1 + 𝑒𝑖𝜃󵄨󵄨󵄨󵄨

2
≥
1

4
,

󵄨󵄨󵄨󵄨𝐸3 (𝑧0)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧0𝑝
󸀠
(𝑧0)

𝑝 (𝑧0)

1

1 + 𝑝 (𝑧0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
𝑘

󵄨󵄨󵄨󵄨1 + 𝑒𝑖𝜃󵄨󵄨󵄨󵄨

≥
1

2
,

Re {𝐸4 (𝑧0)} = Re{
𝑧0𝑝

󸀠
(𝑧0)

𝑝 (𝑧0)
} = 𝑘 ≥ 1,

(51)

which contradicts our assumption (42)–(45), respectively.
Therefore, |𝑤(𝑧)| < 1 for all 𝑧 ∈ U; then from (46) we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

(𝑔𝑝,𝑏,𝑐 (𝑧))
2
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= |𝑤 (𝑧)| < 1, (52)

which implies 𝑔𝑝,𝑏,𝑐 is in the classU and hence univalent.

Theorem 9. Let 𝑐 > 0, 𝑑 ≥ 0, such that 𝑐 + 2𝑑 ≤ 1. If 𝑔𝑝,𝑏,𝑐(𝑧)

satisfies the inequality

R
{

{

{

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠

𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

−

2𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,𝑏,𝑐 (𝑧)

}

}

}

<
𝑐 + 𝑑

(1 + 𝑐) (1 − 𝑑)
, (53)

then 𝑔𝑝,𝑏,𝑐(𝑧) is univalent in U.

Proof. Define a function 𝑞(𝑧) as follows:

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

(𝑔𝑝,𝑏,𝑐 (𝑧))
2
=
1 + 𝑎𝑞 (𝑧)

1 − 𝑏𝑞 (𝑧)
(𝑧 ∈ U) . (54)

We see that 𝑞(𝑧) is analytic in U and 𝑞(0) = 0. Differentiation
of (54) gives

[𝑧𝑔𝑝,𝑏,𝑐 (𝑧)]
󸀠󸀠

𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

−

2𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,𝑏,𝑐 (𝑧)

=
(𝑐 + 𝑑) 𝑧𝑞

󸀠
(𝑧)

(1 + 𝑐𝑞 (𝑧)) (1 − 𝑑𝑞 (𝑧))
= 𝐸5 (𝑧) , say.

(55)

Now suppose there exists 𝑧0 ∈ U such that

max
|𝑧|<|𝑧

0
|

󵄨󵄨󵄨󵄨𝑞 (𝑧)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑞 (𝑧0)
󵄨󵄨󵄨󵄨 = 1. (56)

Then from Lemma 1, we have

𝑧0𝑞
󸀠
(𝑧0) = 𝑘𝑞 (𝑧0) . (57)
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Now letting 𝑞(𝑧0) = 𝑒
𝑖𝜃
, (𝜃 ∈ [0, 2𝜋]) in (55), we have

Re (𝐸5 (𝑧0)) = 𝑘 (𝑎 + 𝑏)

⋅ Re(
𝑞 (𝑧0)

(1 + 𝑐𝑞 (𝑧0)) (1 − 𝑑𝑞 (𝑧0))
) = 𝑘

⋅ Re( 1

(1 − 𝑑𝑞 (𝑧0))
−

1

(1 + 𝑐𝑞 (𝑧0))
) = 𝑘

⋅ Re( 1 − 𝑑𝑒
𝑖𝜃

1 + 𝑑2 − 2𝑑 cos 𝜃
−

1 + 𝑐𝑒
𝑖𝜃

1 + 𝑐2 + 2𝑐 cos 𝜃
)

= 𝑘(
1

2 + (𝑑2 − 1) / (1 − 𝑑 cos 𝜃)

−
1

2 + (𝑐2 − 1) / (1 + 𝑐 cos 𝜃)
) ,

(58)

where 𝜃 ̸= cos−1
(−1/𝑐) and 𝜃 ̸= cos−1

(1/𝑑). Since 𝑘 ≥ 1 we
have

Re (𝐸 (𝑧0)) >
𝑐 + 𝑑

(1 + 𝑐) (1 − 𝑑)
. (59)

This contradicts the hypothesis and therefore |𝑞(𝑧)| < 1 for
all 𝑧 ∈ U. Thus,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

(𝑔𝑝,𝑏,𝑐 (𝑧))
2
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑐 + 𝑑) 𝑞 (𝑧)

1 − 𝑑𝑞 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝑐 + 𝑑

1 − 𝑑
≤ 1

(𝑧 ∈ U) .

(60)

In view of Lemma 2 it implies that 𝑔𝑝,𝑏,𝑐 is in U and hence
univalent.

Theorem 10. Let 𝑀 ≥ 1, ] be a real number such that ] ≥

2𝑀 + 1 and let 𝛾 be a complex number which satisfies the
inequality

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≤ 1 −

1

]
(2𝑀 + 1) . (61)

If 𝑔𝑝,𝑏,𝑐 is univalent inU and |𝑔𝑝,𝑏,𝑐(𝑧)| ≤ 𝑀 for all 𝑧 ∈ U, then
the function

𝐸 (𝑧) = {]∫
𝑧

0
𝑡
]−1

𝑔𝑝,𝑏,𝑐 (𝑡)

𝑡
𝑑𝑡}

1/]

(62)

is univalent in U, where the values of the complex powers are
taken with their principal values.

Proof. Define a function

𝑝 (𝑧) = ∫

𝑧

0

𝑔𝑝,𝑏,𝑐 (𝑡)

𝑡
𝑑𝑡. (63)

Then we have 𝑝(0) = 𝑝
󸀠
(0) − 1 = 0.

Also

𝑝
󸀠
(𝑧) =

𝑔𝑝,𝑏,𝑐 (𝑧)

𝑧
, (64)

𝑧𝑝
󸀠󸀠
(𝑧)

𝑝󸀠
(𝑧)

=

𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,𝑏,𝑐 (𝑧)
− 1. (65)

From (65), we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑝
󸀠󸀠
(𝑧)

𝑝󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑔
󸀠
𝑝,𝑏,𝑐 (𝑧)

𝑔𝑝,𝑏,𝑐 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 1

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

(𝑔𝑝,𝑏,𝑐 (𝑧))
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑝,𝑏,𝑐 (𝑧)

𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 1.

(66)

From the hypothesis, we have |𝑔𝑝,𝑏,𝑐(𝑧)| ≤ 𝑀 (𝑧 ∈ U); then,
by the Schwarz Lemma (cf [17], we obtain that

󵄨󵄨󵄨󵄨󵄨
𝑔𝑝,𝑏,𝑐 (𝑧)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑀 |𝑧| (𝑧 ∈ U) . (67)

Now, since 𝑔𝑝,𝑏,𝑐(𝑧) is univalent in U

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑝
󸀠󸀠
(𝑧)

𝑝󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

(𝑔𝑝,𝑏,𝑐 (𝑧))
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀 + 1

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2
𝑔

󸀠
𝑝,𝑏,𝑐 (𝑧)

(𝑔𝑝,𝑏,𝑐 (𝑧))
2
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀 +𝑀 + 1 ≤ 2𝑀 + 1.

(68)

Using (68), we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 |𝑧|
2]
+ (1 − |𝑧|

2]
)
𝑧𝑝

󸀠󸀠
(𝑧)

]𝑝󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 +

1

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑝
󸀠󸀠
(𝑧)

]𝑝󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 +

1

𝛽
(2𝑀 + 1) .

(69)

So, from (61) we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 |𝑧|
2]
+ (1 − |𝑧|

2]
)
𝑧𝑝

󸀠󸀠
(𝑧)

]𝑝󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1. (70)

Applying Lemma 3, we obtain the function 𝐸(𝑧) defined by
(62) which is univalent in U.
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Let 𝐶 and 𝑄 be closed convex subsets of real Hilbert spaces𝐻1 and𝐻2, respectively, and let 𝑔 : 𝐶 󳨀→ R be a strictly real-valued
convex function such that the gradient∇𝑔 is an 1/𝐿-ismwith a constant 𝐿 > 0. In this paper, we introduce an iterative scheme using
the gradient projection method, based on Mann’s type approximation scheme for solving the constrained convex minimization
problem (CCMP), that is, to find a minimizer 𝑞 ∈ 𝐶 of the function 𝑔 over set 𝐶. As an application, it has been shown that the
problem (CCMP) reduces to the split feasibility problem (SFP) which is to find 𝑞 ∈ 𝐶 such that 𝐴𝑞 ∈ 𝑄 where 𝐴 : 𝐻1 󳨀→ 𝐻2
is a linear bounded operator. We suggest and analyze this iterative scheme under some appropriate conditions imposed on the
parameters such that another strong convergence theorems for the CCMP and the SFP are obtained. The results presented in this
paper improve and extend the main results of Tian and Zhang (2017) and many others. The data availability for the proposed SFP
is shown and the example of this problem is also shown through numerical results.

1. Introduction

Throughout this paper, we always assume that 𝐶 be a closed
convex subset of a real Hilbert space 𝐻 with inner product
and norm are denoted by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖, respectively. Let 𝑔 :𝐶 󳨀→ R be a strictly real-valued convex function.

Consider the following constrained convex minimization
problem (CCMP):

min
𝑥∈𝐶

𝑔 (𝑥) . (1)

Assume that (1) is consistent (that is, the CCMP has a
solution) and we use U to denote its solution set. If 𝑔 is
Fréchet differentiable, then the gradient projection algorithm
(GPA) is usually applied to solving the CCMP (1), which
generates a sequence {𝑥𝑛} through the recursion:

𝑥𝑛+1 = 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛, ∀𝑛 = 0, 1, 2, . . . , (2)

or more generally,

𝑥𝑛+1 = 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑔) 𝑥𝑛, ∀𝑛 = 0, 1, 2, . . . , (3)

where the initial guess 𝑥0 ∈ 𝐶 is chosen arbitrarily, the
parameters 𝜆 or 𝜆𝑛 are positive real number, and 𝑃𝐶 is
the metric projection from 𝐻 onto 𝐶. It is well known
that the convergence of algorithms (2) and (3) depends on
the behavior of the gradient ∇𝑔. It is known from Levitin
and Polyak [1] that if ∇𝑔 is 𝛼-strongly monotone and 𝐿-
Lipschitzian, that is, there exists the constants𝛼 > 0 and𝐿 > 0
such that

⟨∇𝑔 (𝑥) − ∇𝑔 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝛼 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 , ∀𝑥, 𝑦 ∈ 𝐶, (4)
and 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶, (5)

respectively, then, for 0 < 𝜆 < 2𝛼/𝐿2, the operator
𝑇 = 𝑃𝐶 (𝐼 − 𝜆∇𝑔) (6)

is a contraction; hence, the sequence {𝑥𝑛} defined by the GPA
(2) converges in norm to the unique minimizer of the CCMP
(1). More generally, for 0 < 𝜆𝑛 < 2𝛼/𝐿2 for all 𝑛 = 0, 1, 2, . . .,
the operator

𝐺𝑛 = 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑔) (7)
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is a contraction; if the sequence {𝜆𝑛} is chosen satisfying the
property

0 < lim inf
𝑛󳨀→∞

𝜆𝑛 ≤ lim sup
𝑛󳨀→∞

𝜆𝑛 < 2𝛼
𝐿2 , (8)

then the sequence {𝑥𝑛} defined by the GPA (3) converges in
norm to the unique minimizer of the CCMP (1). However,
if the gradient ∇𝑔 fails to be 𝛼-strongly monotone (it
means that the gradient ∇𝑔 only satisfies the 𝐿-Lipschitzian
condition), then the operators 𝑇 and 𝐺𝑛 defined by (6) and
(7), respectively, may fail to be contraction; consequently, the
sequence {𝑥𝑛} generated by algorithms (2) and (3) may fail to
converge strongly (see also Xu [2]) in the setting of infinite-
dimensional real Hilbert space, but still converge weakly as
the following statement.

Theorem 1 (see [1, 2]). Assume that the CCMP (1) is
the unique consistent. Let the gradient ∇𝑔 satisfy the 𝐿-
Lipschitzian condition and the sequence of the parameter {𝜆𝑛}
satisfies the following condition:

0 < 𝑎 ≤ 𝜆𝑛 ≤ 𝑏 < 2
𝐿 , (9)

for all 𝑛 = 0, 1, 2, . . ., where 𝑎 and 𝑏 are the constants. Then
the sequence generated by the GPA (3) converges weakly to the
minimizer of the CCMP (1). Indeed, the results of this theorem
still hold on the gradient ∇𝑔 which satisfies an 1/𝐿-inverse
strongly monotone with 𝐿 > 0 (in brief, we denote 1/𝐿-ism),
that is, ⟨∇𝑔(𝑥) − ∇𝑔(𝑦), 𝑥 − 𝑦⟩ ≥ (1/𝐿)‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖2
for all 𝑥, 𝑦 ∈ 𝐶, because the class of 𝐿-Lipschitzian mapping
contains the class of 1/𝐿-ism mapping.

We observe from Theorem 1 that if the parameter {𝜆𝑛}
converges to 𝜆 ∈ (0, 2/𝐿) such that {𝜆𝑛} satisfies the condition
(9) then 𝑞 ∈ 𝐶 solves the CCMP (1) which is the unique
consistent if and only if 𝑞 solves the fixed-point equation

𝑞 = 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑞. (10)

It is well known that the gradient-projection algorithm is
very useful in dealing with the CCMP (1) and has extensively
been studied (see [1–9] and the references therein). It has
recently been applied to solve the split feasibility problems
(SFP) (see [10–15]) which find applications in image recon-
structions and the intensity modulated radiation therapy (see
[13–18]). We now consider the following regularized mini-
mization (that is, the CCMP (1) has the unique minimizer
solution) problem:

min
𝑥∈𝐶

𝑔𝛽𝑛 (𝑥) fl 𝑔 (𝑥) + 𝛽𝑛2 ‖𝑥‖2 , (11)

where 𝛽𝑛 > 0 for all 𝑛 = 0, 1, 2, . . . and 𝑔 : 𝐶 󳨀→ R is a
continuous differentiable function, and we also consider the
regularized gradient-projection algorithm which generates a
sequence {𝑥𝑛} by the following recursive formula:

𝑥𝑛+1 = 𝑃𝐶 (𝐼 − 𝜆∇𝑔𝛽𝑛) 𝑥𝑛
= 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛, ∀𝑛 = 0, 1, 2, . . . . (12)

Many researchers studied the strong convergency the-
orems for solving the CCMP (1) using the sequence {𝑥𝑛}
which is generated by algorithm (12) for their proposal on
the gradient ∇𝑔 which is the class of nonexpansive mapping
and the class of 𝐿-Lipschitzian mapping (see [19–25]) and in
case the gradient ∇𝑔 is the class of 1/𝐿-ism mapping such
that 𝐿 > 0, Xu (2010) introduced the sequence {𝑥𝑛} which is
generated by algorithm (12), and he proved that this sequence{𝑥𝑛} converges weakly to the minimizer of the CCMP (1)
in the setting of infinite-dimensional real Hilbert space (see
[15]) under some appropriate condition.

Recently, Tian and Zhang (2017) introduced the sequence{𝑥𝑛} generated by algorithm (12), and they proved that this
sequence {𝑥𝑛} converges strongly to the minimizer of the
CCMP (1) in the same setting of infinite-dimensional real
Hilbert space (see [26]) under the control conditions:

(i) 0 < 𝜆 < 2/(𝐿 + 2).
(ii) {𝛽𝑛} ⊂ (0, 1), lim𝑛󳨀→∞𝛽𝑛 = 0 and ∑∞𝑛=0 𝛽𝑛 = ∞.
(iii) ∑∞𝑛=0 |𝛽𝑛+1 − 𝛽𝑛| < ∞.
In this paper, under the motivated and the inspired by

above results, we introduce new iterative scheme, based on
Mann’s type approximation scheme for solving the CCMP
(1) in the case of the gradient ∇𝑔 being the class of 1/𝐿-ism
mapping such that 𝐿 > 0 as follows:

𝑥0 ∈ 𝐶,
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛,

∀𝑛 = 0, 1, 2, . . . ,
(13)

under the mild some appropriate conditions of the parame-
ters {𝛼𝑛}, {𝛽𝑛}, and𝜆, we obtain a strong convergency theorem
to solve the CCMP (1), in which condition (iii) ∑∞𝑛=0 |𝛽𝑛+1 −𝛽𝑛| < ∞ of Tian and Zhang to be removed. In Section 4 of
the applications, it has been shown that the CCMP (1) reduces
to the split feasibility problem (SFP) and the data availability
for the proposed SFP is shown in Section 5, and the example
of this problem is also shown in Section 6 through numerical
results.

2. Preliminaries

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space 𝐻. If 𝑔 : 𝐶 󳨀→ R is a differentiable function, then we
denote ∇𝑔 the gradient of the function 𝑔. We will also use the
notation: 󳨀→ to denote the strong convergency,⇀ to denote
the weak convergency, and Fix(𝑇) = {𝑥 : 𝑥 = 𝑇𝑥} to denote
the fixed point set of the mapping 𝑇.

Recall that the metric projection 𝑃𝐶 : 𝐻 󳨀→ 𝐶 is defined
as follows: for each 𝑥 ∈ 𝐻, 𝑃𝐶𝑥 is the unique point in 𝐶
satisfying 󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥󵄩󵄩󵄩󵄩 = inf {󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 : 𝑦 ∈ 𝐶} . (14)
Let 𝑔 : 𝐶 󳨀→ R be a function. Recall that the function 𝑔 is a
strictly real-valued convex function if

𝑔 (𝜆𝑥 + (1 − 𝜆) 𝑦) < 𝜆𝑔 (𝑥) + (1 − 𝜆) 𝑔 (𝑦) ,
∀𝜆 ∈ [0, 1] , ∀𝑥, 𝑦 ∈ 𝐶, (15)
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such that𝑥 ̸= 𝑦.We collect together someknown lemmas and
definitions which are our main tool in proving our results.

Lemma2. Let𝐻 be a real Hilbert space.Then, for all 𝑥,𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝑥 + 𝑦󵄩󵄩󵄩󵄩2 = ‖𝑥‖2 + 2 ⟨𝑥, 𝑦⟩ + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2 . (16)

Lemma 3 (see [27]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space𝐻. Then,

𝑧 = 𝑃𝐶𝑥 ⇐⇒ ⟨𝑥 − 𝑧, 𝑧 − 𝑦⟩ ≥ 0, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶. (17)

Definition 4. Let𝐻 be a real Hilbert space. The operator 𝑇 :𝐻 󳨀→ 𝐻 is called

(i) 𝐿-Lipschitzian with 𝐿 > 0 if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻, (18)

(ii) 𝑘-contraction with a positive real number 𝑘 such that𝑘 ∈ (0, 1) if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ 𝑘 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻, (19)

(iii) nonexpansive if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻, (20)

(iv) monotone if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐻, (21)

(v) 𝛼-strongly monotone if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 , ∀𝑥, 𝑦 ∈ 𝐻, (22)

(vi) 𝛼-inverse strongly monotone (𝛼-ism) if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼 󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩2 , ∀𝑥, 𝑦 ∈ 𝐻, (23)

(vii) firmly nonexpansive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦󵄩󵄩󵄩󵄩2 ,
∀𝑥, 𝑦 ∈ 𝐻. (24)

Lemma 5 (see [27]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space𝐻. Then, for 𝑥, 𝑦 ∈ 𝐶 and 𝛼 ∈ [0, 1], we
have

󵄩󵄩󵄩󵄩𝛼𝑥 + (1 − 𝛼) 𝑦󵄩󵄩󵄩󵄩2 = 𝛼 ‖𝑥‖2 + (1 − 𝛼) 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2
− 𝛼 (1 − 𝛼) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 .

(25)

Lemma 6 (see [28]). Let 𝐻 be a real Hilbert space and𝑇 : 𝐻 󳨀→ 𝐻 be an operator. The following statements are
equivalent:

(i) 𝑇 is firmly nonexpansive,
(ii) ‖𝑇𝑥 − 𝑇𝑦‖2 ≤ ⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩, ∀𝑥, 𝑦 ∈ 𝐻,
(iii) 𝐼 − 𝑇 is firmly nonexpansive.

Lemma 7 (see [28]). Let 𝐻 and 𝐾 be two real Hilbert spaces
and let 𝑇 : 𝐾 󳨀→ 𝐾 be a firmly nonexpansive mapping such
that ‖(𝐼−𝑇)𝑥‖ is a convex function from𝐾 toR = [−∞,+∞].
Let 𝐴 : 𝐻 󳨀→ 𝐾 be a bounded linear operator and 𝑓(𝑥) =(1/2)‖(𝐼 − 𝑇)𝐴𝑥‖2 for all 𝑥 ∈ 𝐻. Then,

(i) ∇𝑓(𝑥) = 𝐴∗(𝐼−𝑇)𝐴𝑥 for all𝑥 ∈ 𝐻where𝐴∗ is adjoint
operator of 𝐴,

(ii) ∇𝑓 is ‖𝐴‖2-Lipschitzian.
Lemma 8 (see [29, 30]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻. Let {𝑇𝑛} and 𝜑 be two classes
of nonexpansive mappings from 𝐶 into 𝐶 such that

0 ̸= 𝐹𝑖𝑥 (𝜑) = ∞⋂
𝑛=0

𝐹𝑖𝑥 (𝑇𝑛) . (26)

Then, for any bounded sequence {𝑧𝑛} ⊂ 𝐶, we have
(i) if lim𝑛󳨀→∞‖𝑧𝑛−𝑇𝑛𝑧𝑛‖ = 0 then lim𝑛󳨀→∞‖𝑧𝑛−𝑇𝑧𝑛‖ = 0

for all𝑇 ∈ 𝜑, which is called that the NST-condition(I),
(ii) if lim𝑛󳨀→∞‖𝑧𝑛+1 − 𝑇𝑛𝑧𝑛‖ = 0 then lim𝑛󳨀→∞‖𝑧𝑛 −𝑇𝑚𝑧𝑛‖ = 0 for all 𝑚 ∈ N ∪ {0}, which is called that

the NST-condition (II).

Lemma 9 (see [31] (demiclosedness principle)). Let 𝐶 be a
nonempty closed convex subset of a real Hilbert space 𝐻 and
let 𝑆 : 𝐶 󳨀→ 𝐶 be a nonexpansive mapping with 𝐹𝑖𝑥(𝑆) ̸= 0. If
the sequence {𝑥𝑛} ⊂ 𝐶 converges weakly to 𝑥 and the sequence{(𝐼 − 𝑆)𝑥𝑛} converges strongly to 𝑦. Then, (𝐼 − 𝑆)𝑥 = 𝑦, in
particular, if 𝑦 = 0 then 𝑥 ∈ 𝐹𝑖𝑥(𝑆).
Lemma 10 (see [32]). Let {𝑎𝑛} be a sequence of nonnegative
real number such that

𝑎𝑛+1 ≤ (1 − 𝛾𝑛) 𝑎𝑛 + 𝛾𝑛𝛿𝑛, ∀𝑛 = 0, 1, 2, . . . , (27)

where {𝛾𝑛} is a sequence in (0, 1) and {𝛿𝑛} is a sequence in R
such that

(i) ∑∞𝑛=0 𝛾𝑛 = ∞;

(ii) limsup𝑛󳨀→∞𝛿𝑛 ≤ 0 or ∑∞𝑛=0 |𝛾𝑛𝛿𝑛| < ∞.

Then, lim𝑛󳨀→∞𝑎𝑛 = 0.
3. Main Result

Throughout this paper, we let𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻. First, we will show that 𝐺𝑛
which is defined by

𝐺𝑛𝑥 = 𝛼𝑛𝑥 + (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥,
∀𝑥 ∈ 𝐶, 𝑛 = 0, 1, 2, . . . (28)

has the unique fixed point under the conditions 0 < 𝜆 <2/(𝐿 + 2), 0 ≤ 𝛼𝑛 < 1 and 0 < 𝛽𝑛 < 1 where 𝑔 : 𝐶 󳨀→ R be a
strictly real-valued convex function such that ∇𝑔 is 1/𝐿-ism
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with 𝐿 > 0. Since, ∇𝑔 is 1/𝐿-ism and the nonexpansiveness of𝑃𝐶. Then, for each 𝑥, 𝑦 ∈ 𝐶, we have
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥 − 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑦󵄩󵄩󵄩󵄩2
≤ 󵄩󵄩󵄩󵄩(𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥 − (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑦󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩(1 − 𝜆𝛽𝑛) (𝑥 − 𝑦) − 𝜆 (∇𝑔 (𝑥) − ∇𝑔 (𝑦))󵄩󵄩󵄩󵄩2
= (1 − 𝜆𝛽𝑛)2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 + 𝜆2 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩2
− 2𝜆 (1 − 𝜆𝛽𝑛) ⟨𝑥 − 𝑦, ∇𝑔 (𝑥) − ∇𝑔 (𝑦)⟩

≤ (1 − 𝜆𝛽𝑛)2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 + 𝜆2 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩2
− 2
𝐿𝜆 (1 − 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩

2

= (1 − 𝜆𝛽𝑛)2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2
+ (𝜆2 − 2

𝐿𝜆 (1 − 𝜆𝛽𝑛)) 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩
2

≤ (1 − 𝜆𝛽𝑛)2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2
+ (𝜆2 − 2

𝐿𝜆 +
2
𝐿𝜆2) 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩

2

= (1 − 𝜆𝛽𝑛)2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2
− 𝜆 ( 2𝐿 (1 − 𝜆) − 𝜆) 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜆𝛽𝑛)2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 .

(29)

Therefore,
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥 − 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑦󵄩󵄩󵄩󵄩
≤ (1 − 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 .

(30)

It follows that, for 𝑥 ̸= 𝑦, by (30) we have
󵄩󵄩󵄩󵄩𝐺𝑛𝑥 − 𝐺𝑛𝑦󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩(𝛼𝑛𝑥
+ (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥) − (𝛼𝑛𝑦
+ (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑦)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥
− 𝑦) + (1 − 𝛼𝑛) (𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥
− 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑦)󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + (1
− 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥 − 𝑃𝐶 (𝐼
− 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑦󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) (1
− 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 < 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 .

(31)

That is,
󵄩󵄩󵄩󵄩𝐺𝑛𝑥 − 𝐺𝑛𝑦󵄩󵄩󵄩󵄩 < 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , ∀𝑥 ̸= 𝑦. (32)

So, 𝐺𝑛 is a contraction, therefore, by Banach’s contraction
principle,𝐺𝑛 has the unique fixed point.Therefore,𝐺𝑛 is well-
defined.

LetU be the solution set of the CCMP (1). It is clear that
U is a closed and convex sets. We now ready to present my
main results as follows.

Theorem 11. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻, 𝑔 : 𝐶 󳨀→ R is a strictly real-valued
convex function such that the gradient ∇𝑔 is 1/𝐿-ism with 𝐿 >0. Assume thatU ̸= 0 and let {𝑥𝑛} ⊂ 𝐶 be a sequence generated
by

𝑥0 ∈ 𝐶,
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛,

∀𝑛 = 0, 1, 2, . . . ,
(33)

where 𝜆 ∈ (0, 2/(2 + 𝐿)) and {𝛼𝑛} ⊂ [0, 1), {𝛽𝑛} ⊂ (0, 1) satisfy
the following conditions:

(i) 𝛼𝑛 ≤ 𝛽𝑚𝑛 such that 𝑚 > 1 for all 𝑛 = 0, 1, 2, . . .,
(ii) lim𝑛󳨀→∞𝛽𝑛 = 0 and ∑∞𝑛=0 𝛽𝑛 = ∞,

then the sequence {𝑥𝑛} converges strongly to 𝑞 ∈ U, which is
the unique minimizer of the CCMP (1).

Proof. We divide the proof into 4 steps.

Step 1. We will show that {𝑥𝑛} is bounded. Let 𝑝 ∈ U. By
the strictly convexity of 𝑔, we have that U is a singleton set.
Noticing from 1/𝐿-ism of∇𝑔 that ∇𝑔 is 𝐿-Lipschitzian. So, by
(10), we have 𝑝 = 𝑃𝐶(𝐼 − 𝜆∇𝑔)𝑝. Therefore, by (30), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩(𝛼𝑛𝑥𝑛
+ (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛) − 𝑝󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩(𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛)
− (𝛼𝑛 + (1 − 𝛼𝑛)) 𝑝󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛼𝑛)
⋅ (𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑝)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥𝑛 − 𝑝)
+ (1 − 𝛼𝑛) (𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛
− 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑝)󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
⋅ 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑝󵄩󵄩󵄩󵄩
≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
⋅ (󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛
− 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑝󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑝 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑝󵄩󵄩󵄩󵄩)
≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) ((1 − 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩(𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑝 − (𝐼 − 𝜆∇𝑔) 𝑝󵄩󵄩󵄩󵄩) = 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛
− 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) ((1 − 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩 + 𝜆𝛽𝑛 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩)
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= 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) (1 − 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩 + (1
− 𝛼𝑛) 𝜆𝛽𝑛 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩 = (𝛼𝑛 + (1 − 𝛼𝑛) (1 − 𝜆𝛽𝑛)) 󵄩󵄩󵄩󵄩𝑥𝑛
− 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) 𝜆𝛽𝑛 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩 = (1 − (1 − 𝛼𝑛) 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛
− 𝑝󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) 𝜆𝛽𝑛 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩 ≤ max {󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩 , 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩}

...
≤ max {󵄩󵄩󵄩󵄩𝑥0 − 𝑝󵄩󵄩󵄩󵄩 , 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩} .

(34)

It follows that {𝑥𝑛} is bounded, and so are {𝑃𝐶(𝐼 − 𝜆(∇𝑔 +𝛽𝑛𝐼))𝑥𝑛} and {𝑃𝐶(𝐼 − 𝜆∇𝑔)𝑥𝑛}.
Step 2. We will show that lim𝑛󳨀→∞‖𝑥𝑛 − 𝑃𝐶(𝐼 − 𝜆∇𝑔)𝑥𝑛‖ = 0.
Since,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)
⋅ 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛
− (𝛼𝑛 + (1 − 𝛼𝑛)) 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥𝑛 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛) + (1 − 𝛼𝑛)
⋅ (𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛)󵄩󵄩󵄩󵄩
≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
⋅ 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛
− 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩
+ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩(𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩
= 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛) 𝜆𝛽𝑛 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 .

(35)

Therefore, by conditions (i) and (ii), we have

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩 = 0. (36)

Since, ∇𝑔 is 1/𝐿-ism, then we have

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑦󵄩󵄩󵄩󵄩2
≤ 󵄩󵄩󵄩󵄩(𝐼 − 𝜆∇𝑔) 𝑥 − (𝐼 − 𝜆∇𝑔) 𝑦󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − 𝜆 (∇𝑔 (𝑥) − ∇𝑔 (𝑦))󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 − 2𝜆 ⟨𝑥 − 𝑦, ∇𝑔 (𝑥) − ∇𝑔 (𝑦)⟩
+ 𝜆2 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 − 2𝜆𝐿 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩2

+ 𝜆2 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩2

= 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 − 𝜆 (2𝐿 − 𝜆) 󵄩󵄩󵄩󵄩∇𝑔 (𝑥) − ∇𝑔 (𝑦)󵄩󵄩󵄩󵄩
2

≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 .
(37)

Hence,

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑦󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , (38)

that is, 𝑃𝐶(𝐼 − 𝜆∇𝑔) is a nonexpansive. Therefore, by (36) and
NST-condition (II) in Lemma 8, we have

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩(𝐼 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔)) 𝑥𝑛󵄩󵄩󵄩󵄩
= lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑥𝑛󵄩󵄩󵄩󵄩 = 0.
(39)

Step 3. Let 𝑞 ∈ U. Since,U is a singleton set, we have

⟨−𝑞, 𝑞 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ U. (40)

Therefore, by Lemma 3, we have 𝑞 = 𝑃U(0). Wewill show that
lim sup𝑛󳨀→∞⟨−𝑞, 𝑥𝑛+1 − 𝑞⟩ ≤ 0. From (10) we have

𝑞 = 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑞. (41)

Since {𝑥𝑛} is bounded, we consider a subsequence {𝑥𝑛𝑖𝑗 }
of {𝑥𝑛𝑖}; there exists a subsequence {𝑥𝑛𝑖𝑗 } of {𝑥𝑛𝑖} which
converges weakly to 𝑧. It follows by the demiclosedness to the
zero in Lemma 9 and (39) that 𝑧 = 𝑃𝐶(𝐼 − 𝜆∇𝑔)𝑧. So, by (10)
we have 𝑧 ∈ U (indeed, 𝑧 = 𝑞). Therefore, by (40), we have

lim sup
𝑛󳨀→∞

⟨−𝑞, 𝑥𝑛+1 − 𝑞⟩ = lim sup
𝑗󳨀→∞

⟨−𝑞, 𝑥𝑛𝑖𝑗+1 − 𝑞⟩
= max {⟨−𝑞, 𝑧 − 𝑞⟩ : for all 𝑥𝑛𝑖𝑗 ⇀ 𝑧 as 𝑗 󳨀→ ∞}
≤ 0.

(42)

Step 4. We will show that {𝑥𝑛} converges strongly to 𝑞. By
(30), Lemma 5, condition (i), and the linearity orthogonal
projection of 𝑃𝐶, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼))
⋅ 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑃𝐶 (𝐼
− 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − (𝛼𝑛 + (1 − 𝛼𝑛)) 𝑞󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥𝑛 − 𝑞) + (1 − 𝛼𝑛)
⋅ (𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞)󵄩󵄩󵄩󵄩2 ≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2
+ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2
= 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + (1 − 𝛼𝑛) ⟨𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼))
⋅ 𝑥𝑛 − 𝑞, 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞⟩ = 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛
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− 𝑞󵄩󵄩󵄩󵄩2 + (1 − 𝛼𝑛)⟨𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞,
𝑥𝑛+1 − 𝛼𝑛𝑥𝑛1 − 𝛼𝑛 − 𝑞⟩ = 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + (1 − 𝛼𝑛)

⋅ ( 1
1 − 𝛼𝑛 ⟨𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞, 𝑥𝑛+1

− 𝑞⟩ + 𝛼𝑛1 − 𝛼𝑛 ⟨𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞, 𝑞

− 𝑥𝑛⟩) = 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + ⟨𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼))
⋅ 𝑥𝑛 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑞, 𝑥𝑛+1 − 𝑞⟩ + 𝛼𝑛 ⟨𝑃𝐶 (𝐼
− 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞, 𝑞 − 𝑥𝑛⟩ ≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2
+ ⟨𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑃𝐶 (𝐼
− 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑞, 𝑥𝑛+1 − 𝑞⟩ + ⟨𝑃𝐶 (𝐼
− 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑞 − 𝑃𝐶 (𝐼 − 𝜆∇𝑔) 𝑞, 𝑥𝑛+1 − 𝑞⟩
+ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩
≤ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛
− 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑞󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞󵄩󵄩󵄩󵄩 + 𝜆𝛽𝑛 ⟨−𝑞,
𝑥𝑛+1 − 𝑞⟩ + 𝛼𝑛 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑞
− 𝑥𝑛󵄩󵄩󵄩󵄩 ≤ 𝛽𝑚𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + (1 − 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑥𝑛+1
− 𝑞󵄩󵄩󵄩󵄩 + 𝜆𝛽𝑛 ⟨−𝑞, 𝑥𝑛+1 − 𝑞⟩ + 𝛽𝑚𝑛 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼
− 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩 = 𝛽𝑚𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2

+ 1 − 𝜆𝛽𝑛2 (󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞󵄩󵄩󵄩󵄩2 − (󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩
− 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞󵄩󵄩󵄩󵄩)2) + 𝜆𝛽𝑛 ⟨−𝑞, 𝑥𝑛+1 − 𝑞⟩ + 𝛽𝑚𝑛 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼
− 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩 ≤ 𝛽𝑚𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2

+ 1 − 𝜆𝛽𝑛2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + 12 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞󵄩󵄩󵄩󵄩
2 + 𝜆𝛽𝑛 ⟨−𝑞,

𝑥𝑛+1 − 𝑞⟩ + 𝛽𝑚𝑛 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑞
− 𝑥𝑛󵄩󵄩󵄩󵄩 ,

(43)

and, therefore,
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞󵄩󵄩󵄩󵄩2 ≤ 2𝛽𝑚𝑛 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + (1 − 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2
+ 2𝜆𝛽𝑛 ⟨−𝑞, 𝑥𝑛+1 − 𝑞⟩
+ 2𝛽𝑚𝑛 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩
= (1 − 𝜆𝛽𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + 𝜆𝛽𝑛 (2𝛽

𝑚−1
𝑛𝜆 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2

+ 2 ⟨−𝑞, 𝑥𝑛+1 − 𝑞⟩
+ 2𝛽𝑚−1𝑛𝜆 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩) = (1 − 𝛾𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + 𝛾𝑛𝛿𝑛,

(44)

where 𝛾𝑛 = 𝜆𝛽𝑛 and
𝛿𝑛 = 2𝛽𝑚−1𝑛𝜆 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + 2 ⟨−𝑞, 𝑥𝑛+1 − 𝑞⟩

+ 2𝛽𝑚−1𝑛𝜆 󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩 .

(45)

It is easy to see that ∑∞𝑛=0 𝛾𝑛 = ∞ and limsup𝑛󳨀→∞𝛿𝑛 ≤ 0.
Therefore, by Lemma 10, we obtain {𝑥𝑛} converges strongly
to 𝑞. This completes the proof.

Notice that when 𝛼𝑛 = 0 for all 𝑛 = 0, 1, 2, . . . then the
result ofTheorem 11 can be reduced into the result of Tian and
Zhang [26] without the control condition ∑∞𝑛=0 |𝛽𝑛+1 − 𝛽𝑛| <∞ as follows.

Corollary 12 (see [26]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻 and 𝑔 : 𝐶 󳨀→ R be a strictly
real-valued convex function such that the gradient ∇𝑔 is 1/𝐿-
ism with 𝐿 > 0. Assume that U ̸= 0 and let {𝑥𝑛} ⊂ 𝐶 be a
sequence generated by

𝑥0 ∈ 𝐶,
𝑥𝑛+1 = 𝑃𝐶 (𝐼 − 𝜆 (∇𝑔 + 𝛽𝑛𝐼)) 𝑥𝑛, ∀𝑛 = 0, 1, 2, . . . , (46)

where 𝜆 ∈ (0, 2/(2+𝐿)) and {𝛽𝑛} ⊂ (0, 1) satisfies the following
conditions: lim𝑛󳨀→∞𝛽𝑛 = 0 and ∑∞𝑛=0 𝛽𝑛 = ∞, then the
sequence {𝑥𝑛} converges strongly to 𝑞 ∈ U, which is the unique
minimizer of the CCMP (1).

4. Applications

Let𝐶 and𝑄 be closed convex subsets of realHilbert spaces𝐻1
and𝐻2, respectively, and 𝐴 : 𝐻1 󳨀→ 𝐻2 be a bounded linear
operator. We now consider the split feasibility problem (SFP)
which introduced in 1994 by Censor and Elfving [13], where
this problem is to find an element 𝑞 ∈ 𝐶 such that 𝐴𝑞 ∈ 𝑄.
Define the convex function 𝑔 : 𝐶 󳨀→ R as follows:

𝑔 (𝑥) = 1
2 󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑃𝑄𝐴𝑥󵄩󵄩󵄩󵄩

2 . (47)

It follows by Lemma 7 that the gradient of 𝑔 as ∇𝑔 = 𝐴∗(𝐼 −𝑃𝑄)𝐴where𝐴∗ is the adjoint operator of𝐴, and∇𝑔 is 1/‖𝐴‖2-
ism. We have the consequence results as follows.

Theorem 13. Let 𝐶 and 𝑄 be closed convex subsets of real
Hilbert spaces 𝐻1 and 𝐻2, respectively, and let 𝐴 : 𝐻1 󳨀→
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𝐻2 be a bounded linear operator. Suppose that the SFP has a
nonempty solution. Let {𝑥𝑛} ⊂ 𝐶 be a sequence generated by

𝑥0 ∈ 𝐶,
𝑥𝑛+1

= 𝛼𝑛𝑥𝑛
+ (1 − 𝛼𝑛) 𝑃𝐶 (𝐼 − 𝜆 (𝐴∗ (𝐼 − 𝑃𝑄)𝐴 + 𝛽𝑛𝐼)) 𝑥𝑛,

∀𝑛 = 0, 1, 2, . . . ,

(48)

where 𝜆 ∈ (0, 2/(2 + ‖𝐴‖2)) and {𝛼𝑛} ⊂ [0, 1), {𝛽𝑛} ⊂ (0, 1)
satisfy the following conditions:

(i) 𝛼𝑛 ≤ 𝛽𝑚𝑛 such that 𝑚 > 1 for all 𝑛 = 0, 1, 2, . . .,
(ii) lim𝑛󳨀→∞𝛽𝑛 = 0 and ∑∞𝑛=0 𝛽𝑛 = ∞,

then the sequence {𝑥𝑛} converges strongly to 𝑞, which is the
unique minimizer of the minimum-norm solution of the SFP.

Corollary 14. Let 𝐶 and 𝑄 be closed convex subsets of real
Hilbert spaces 𝐻1 and 𝐻2, respectively, and let 𝐴 : 𝐻1 󳨀→𝐻2 be a bounded linear operator. Suppose that the SFP has a
nonempty solution. Let {𝑥𝑛} ⊂ 𝐶 be a sequence generated by

𝑥0 ∈ 𝐶,
𝑥𝑛+1 = 𝑃𝐶 (𝐼 − 𝜆 (𝐴∗ (𝐼 − 𝑃𝑄) 𝐴 + 𝛽𝑛𝐼)) 𝑥𝑛,

∀𝑛 = 0, 1, 2, . . . ,
(49)

where 𝜆 ∈ (0, 2/(2 + ‖𝐴‖2)) and {𝛽𝑛} ⊂ (0, 1) satisfies the
following conditions: lim𝑛󳨀→∞𝛽𝑛 = 0 and ∑∞𝑛=0 𝛽𝑛 = ∞, then
the sequence {𝑥𝑛} converges strongly to 𝑞, which is the unique
minimizer of the minimum-norm solution of the SFP.

5. Data Availability

In order of the feasible solution, all algorithms of the
iterations have to compute many inner iterations to find the
appropriate result, and stack overflow often occurs in which
a computer programmakes toomany subroutine calls and its
call stack runs out of space when the parameters of iterations
have usingmany stack arrays to compute the feasible solution.

To avoid the stack overflow, we introduce how to do the
mathematical programming without using the stack arrays
of its parameters for solving the SFP of the algorithm in
Corollary 14. Indeed, the situation of the stack overflow may
have occurred from calculating the floating point numbers
or the significant decimal digits; to avoid it we ought to
be careful of that by always using digit precision command
such as the command 𝑁[𝑒𝑥𝑝𝑟 ] in Mathematica, and the
command 𝑑𝑖𝑔𝑖𝑡𝑠(𝑛𝑢𝑚 ) in Matlab, and also define all matrix
in the regular command typewithout using thematrix palette
to avoid it.

Some mathematical software has a command to give
the total number of seconds of CPU time used and the
total number of seconds since the beginning of compu-
tation in the session such as the commands 𝑇𝑖𝑚𝑒𝑈𝑠𝑒𝑑[]

and 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑇𝑖𝑚𝑒[] in Mathematica, respectively, and the
commands 𝑐𝑝𝑢𝑡𝑖𝑚𝑒 and 𝑡𝑖𝑐/𝑡𝑜𝑐 in Matlab, respectively.

We now give the formulation of orthogonal projection 𝑃𝐶
where 𝐶 is a simply closed convex sets as follows, and in the
case that 𝐶 is not a simply closed convex sets, for instance, 𝐶
is a halfspace, we can found more the formulation in [33].

Proposition 15. For 𝑥 ∈ R𝑁 we have

(i) if 𝐶 = R𝑁 then 𝑃𝐶𝑥 = 𝑥,
(ii) if 𝐶 = {𝑏} such that 𝑏 ∈ R𝑀 then 𝑃𝐶𝑥 = 𝑏,
(iii) if 𝐶 = {𝑥 ∈ R𝑁 : ‖𝑥‖2 ≤ 𝜌, 𝜌 > 0} then

𝑃𝐶𝑥 = {{{
𝜌𝑥
‖𝑥‖2 , 𝑥 ∉ 𝐶,
𝑥, 𝑥 ∈ 𝐶. (50)

Proof. Obviously, the results (i) and (ii) hold by the definition
of orthogonal projection of 𝑃𝐶, and the result (iii) also holds
by the normal vector of the boundary points set of 𝐶.

We are ready to introduce how to do the mathematical
programming without using the stack arrays of its parameters
for solving the SFP of the algorithm in Corollary 14 as follows.
Suppose that the SFP has the unique consistent. Taking 𝐻1 =(R𝑁, ‖ ⋅ ‖2) and 𝐻2 = (R𝑀, ‖ ⋅ ‖2) into Corollary 14. Let
the sets 𝐶 and 𝑄, the operator 𝐴, the sequence {𝑥𝑛}, and the
parameters {𝛽𝑛}, 𝜆 satisfy the conditions in Corollary 14. We
have that {𝑥𝑛} is a convergent sequence, and so it is a Cauchy
sequence. Hence, we can choose the stopping criteria 𝜖 > 0
which satisfies ‖𝑥𝑛+1 − 𝑥𝑛‖2 < 𝜖 for stopping the program,
and also the approximate solution refers to the last iteration.
Steps of the mathematical programming of the algorithm in
Corollary 14 are shown as follows:

Mathematical programming for the split feasibility
problem
Finding the solution of an augmented matrix equa-
tion 𝐴𝑀×𝑁𝑋𝑁×1 = 𝐵𝑀×1.

Step 1. Declare of all parameters 𝐴𝑀×𝑁, 𝐵𝑀×1, the starting
point 𝑥Start𝑁×1 and 𝜖.

We set𝑀 = 3,𝑁 = 3 and 𝑏 = 𝐵𝑀×1.
The example of the commands in Mathematica is shown

as follows.𝐴 = {{1, 2, −1}, {1, 1, −1}, {1, −2, 1}}; 𝑏 = {{1}, {0}, {3}};𝑥𝑆𝑡𝑎𝑟𝑡 = {{0}, {0}, {0}}; 𝜖 = 10−6;
Step 2. Define the formulations of the orthogonal projections
of 𝑃𝐶 and 𝑃𝑄 where

𝐶 = {𝑥 ∈ R
𝑁 : ‖𝑥‖2 ≤ 𝜌, 𝜌 > 0} ,

𝑄 = {𝑥 ∈ R
𝑀 : ‖𝑥‖2 ≤ 𝜎, 𝜎 > 0} .

(51)

If we choose 𝐶 = R𝑁 and 𝑄 = {𝑏} such that 𝑏 ∈ R𝑀 then the
orthogonal projections of 𝑃𝐶 and 𝑃𝑄 are easy to calculated,
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and, hence, we do not need to define its formulations in this
step, and we can put directly its formulations to process.

The example of the commands in Mathematica is shown
as follows.𝑃𝑐[𝑢 ] fl 𝐼𝑓[𝑁𝑜𝑟𝑚[𝑢] > 𝜌, 𝜌𝑢/(𝑁𝑜𝑟𝑚[𝑢]//𝑁),𝑢];𝑃𝑞[𝑢 ] fl 𝐼𝑓[𝑁𝑜𝑟𝑚[𝑢] > 𝜎, 𝜎𝑢/(𝑁𝑜𝑟𝑚[𝑢]//𝑁),𝑢];
Step 3. Set the starting index 𝑛 = 0 and fix parameter 𝜆 ∈(0, 2/(2 + ‖𝐴‖2)). If the parameter 𝜆 is not a fix number such
that it is a sequence, then we must lie it in the while loop of
step 4.

We set 𝜆 = 2/((2 + ‖𝐴‖2) + 102).
The example of the commands in Mathematica is shown

as follows.𝑛 = 0; 𝜆 = 2/((2 + (𝑁𝑜𝑟𝑚[𝐴]//𝑁)2) + 102);

Step 4. Start to calculate the iterations of the sequence {𝑥𝑛}
such that

𝑥𝑛+1 = 𝑃𝐶 (𝐼 − 𝜆 (𝐴∗ (𝐼 − 𝑃𝑄) 𝐴 + 𝛽𝑛𝐼)) 𝑥𝑛 (52)

using the while loop. Set the parameter {𝛽𝑛} ⊂ (0, 1) for all𝑛 = 0, 1, 2, . . . into the while loop such that it satisfies the
following conditions: lim𝑛󳨀→∞𝛽𝑛 = 0 and ∑∞𝑛=0 𝛽𝑛 = ∞. If‖𝑥𝑛+1−𝑥𝑛‖2 < 𝜖 then we break the while loop for approximate
feasible solution, which is referred to in the last iteration.

It well known that, in the case of finite-dimensional real
space, 𝐴∗ = 𝐴𝑇 where 𝐴𝑇 stands for matrix transposition of𝐴, and, hence, the algorithm in Corollary 14 can be reduced
to

𝑥𝑛+1 =
{{{{{{{{{

𝑃𝐶 (𝑥𝑛 − 𝜆𝐴𝑇𝐴𝑥𝑛 + 𝜆𝐴𝑇𝑃𝑄𝐴𝑥𝑛 − 𝜆𝛽𝑛𝑥𝑛) for the closed balls 𝐶 and 𝑄,
𝑃𝐶 (𝑥𝑛 − 𝜆𝐴𝑇𝐴𝑥𝑛 + 𝜆𝐴𝑇𝑏 − 𝜆𝛽𝑛𝑥𝑛) for the closed ball 𝐶 and 𝑄 = {𝑏} ,
𝑥𝑛 − 𝜆𝐴𝑇𝐴𝑥𝑛 + 𝜆𝐴𝑇𝑏 − 𝜆𝛽𝑛𝑥𝑛 for 𝐶 = R𝑁 and 𝑄 = {𝑏}

(53)

where b ∈ R𝑀. We set 𝛽𝑛 = 1/(𝑛+2) for all 𝑛 = 0, 1, 2, . . . and
instead of 𝑥𝑛 and 𝑥𝑛+1 with the variables 𝑥𝑂𝑙𝑑 and 𝑥𝑁𝑒𝑤,
respectively, and also instead of 𝛽𝑛 with 𝛽 in the while loop
for avoidance using stack arrays of the parameters.

The example of the commands in Mathematica is shown
as follows.

𝑥𝑂𝑙𝑑 = 𝑥𝑆𝑡𝑎𝑟𝑡;
Wℎ𝑖𝑙𝑒[𝑇𝑟𝑢𝑒, 𝛽 = 1/(𝑛 + 2);

(∗ 𝑊𝑒 𝑠𝑒𝑡 𝐶 = R𝑁 𝑎𝑛𝑑 𝑄 = {𝑏} 𝑤ℎ𝑒𝑟𝑒 𝑏 ∈
R𝑀.∗)𝑥𝑁𝑒𝑤 = 𝑥𝑂𝑙𝑑 − 𝜆((𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒[𝐴].𝐴).𝑥𝑂𝑙𝑑) +𝜆(𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒[𝐴].𝑏) − 𝜆 𝛽 𝑥𝑂𝑙𝑑;𝑃𝑟𝑖𝑛𝑡[󸀠󸀠𝑥[󸀠󸀠, 𝑛 + 1,󸀠󸀠 ] =󸀠󸀠,𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒[𝑥𝑁𝑒𝑤]//𝑁//𝑀𝑎𝑡𝑟𝑖𝑥𝐹𝑜𝑟𝑚,󸀠󸀠,𝐸𝑟𝑟𝑜𝑟 =󸀠󸀠, 𝑆𝑐𝑖𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝐹𝑜𝑟𝑚[𝑁𝑜𝑟𝑚[𝑥𝑁𝑒𝑤 −𝑥𝑂𝑙𝑑]]];𝐼𝑓[𝑁𝑜𝑟𝑚[𝑥𝑁𝑒𝑤 − 𝑥𝑂𝑙𝑑] < 𝜖,

𝑃𝑟𝑖𝑛𝑡[󸀠󸀠− − −𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 − −−󸀠󸀠];𝑃𝑟𝑖𝑛𝑡[󸀠󸀠𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑥[0] =󸀠󸀠, 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒[𝑥𝑆𝑡𝑎𝑟𝑡]//𝑀𝑎𝑡𝑟𝑖𝑥𝐹𝑜𝑟𝑚];𝑃𝑟𝑖𝑛𝑡[󸀠󸀠𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥[󸀠󸀠, 𝑛 +1,󸀠󸀠 ] =󸀠󸀠, 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒[𝑥𝑁𝑒𝑤]//𝑁//
MatrixForm];𝑃𝑟𝑖𝑛𝑡[󸀠󸀠𝑇𝑖𝑚𝑒𝑈𝑠𝑒𝑑 =󸀠󸀠, 𝑇𝑖𝑚𝑒𝑈𝑠𝑒𝑑[],󸀠󸀠 𝑠𝑒𝑐𝑜𝑛𝑑󸀠󸀠];𝑃𝑟𝑖𝑛𝑡[󸀠󸀠− − −𝐸𝑛𝑑 − −−󸀠󸀠];𝐵𝑟𝑒𝑎𝑘[],(∗ 𝐺𝑜𝑡𝑜 𝑁𝑒𝑥𝑡 𝐿𝑜𝑜𝑝 ∗)𝑥𝑂𝑙𝑑 = 𝑥𝑁𝑒𝑤; 𝑛 + +;

];
];

Step 5. Clear memory of the system.

The example of the command in Mathematica is shown
as follows.𝑄𝑢𝑖𝑡[];
6. Numerical Results

In this section, we give some insight into the behavior of the
algorithm presented in Corollary 14. We implemented them
inMathematica to solve and run on a computer Intel(R) Core
(TM) i3 processor 2.00GHz. We use ‖𝑥𝑛+1 − 𝑥𝑛‖2 < 𝜖 as the
stopping criteria.

Throughout the computational experiments, the param-
eters used in those algorithms were sets as 𝜖 = 10−6, 𝛽𝑛 =1/(𝑛 + 2) and 𝜆 = 2/((2 + ‖𝐴‖2) + 102) for all 𝑛 =0, 1, 2, . . ., where𝐴 is a bounded linear operator. In the results
report below, all CPU times reported are in seconds. The
approximate solution is referred to the last iteration.

Example 1. Find the solution of linear equation system as
follows:

𝑥 + 2𝑦 − 𝑧 = 1,
𝑥 + 𝑦 − 𝑧 = 0,
𝑥 − 2𝑦 + 𝑧 = 3,

(54)

where 𝑥, 𝑦, 𝑧 ∈ R.
Let 𝐻1 = 𝐻2 = (R3, ‖ ⋅ ‖2). Take 𝐴 = ( 1 2 −11 1 −1

1 −2 1
), 𝐶 = R3

and𝑄 = {𝑏 : 𝑏 = (1, 0, 3)𝑇} into Corollary 14.We have chosen𝑥0 ∈ 𝐶 arbitrarily and
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Table 1: Results for Example 1 using algorithm in Corollary 14.

Starting points 𝑥0 Number of iterations CPU(s) Approximate solution 𝑞
(0, 0, 0)𝑇 6015 2.393 (1.999190, 0.997529, 2.995430)𝑇
(1, 1, 1)𝑇 5986 2.293 (1.999180, 0.997518, 2.995410)𝑇
(2, 2, 2)𝑇 5954 2.333 (1.999180, 0.997506, 2.995380)𝑇
(2, 3, 1)𝑇 5963 2.543 (1.999180, 0.997509, 2.995390)𝑇
(3, 2, 1)𝑇 5970 2.533 (1.999180, 0.997512, 2.995400)𝑇

𝑥𝑛+1 = 𝑃𝐶 (𝐼 − 𝜆 (𝐴𝑇 (𝐼 − 𝑃𝑄) 𝐴 + 𝛽𝑛𝐼)) 𝑥𝑛
= 𝑥𝑛 − 𝜆𝐴𝑇𝐴𝑥𝑛 + 𝜆𝐴𝑇𝑃𝑄𝐴𝑥𝑛 − 𝜆𝛽𝑛𝑥𝑛
= 𝑥𝑛 − 𝜆𝐴𝑇𝐴𝑥𝑛 + 𝜆𝐴𝑇𝑏 − 𝜆𝛽𝑛𝑥𝑛

(55)

where 𝑏 = (1, 0, 3)𝑇 for all 𝑛 = 0, 1, 2, . . .. As 𝑛 󳨀→ ∞, we
have 𝑥𝑛 󳨀→ 𝑞 such that 𝑞 is the our solution. The numerical
results are listed in Table 1.

7. Conclusion

In this paper, we obtain an iterative scheme using the gradient
projection method based on Mann’s approximation method
for solving the constrained convex minimization problem
(CCMP) and also solving the split feasibility problem (SFP)
such that another strong convergence theorems for the
CCMP and the SFP are obtained.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors would like to acknowledge the Science Achieve-
ment Scholarship of Thailand (SAST) and the Faculty of
Science, Maejo University, for financial support.

References

[1] E. S. Levitin and B. T. Polyak, “Constrained minimization
methods,” Zhurnal Vychislitel’noi Matematiki i Matematicheskoi
Fiziki, vol. 6, no. 5, pp. 787–823, 1966.

[2] H.-K. Xu, “Averaged mappings and the gradient-projection
algorithm,” Journal of Optimization Theory and Applications,
vol. 150, no. 2, pp. 360–378, 2011.

[3] P. Kumam, “A new hybrid iterative method for solution of
equilibrium problems and fixed point problems for an inverse
strongly monotone operator and a nonexpansive mapping,”
Journal of Applied Mathematics and Computing, vol. 29, no. 1-
2, pp. 263–280, 2009.

[4] Y. Yao and H.-K. Xu, “Iterative methods for finding minimum-
norm fixed points of nonexpansive mappings with applica-
tions,” Journal of Mathematical Programming and Operations
Research, vol. 60, no. 6, pp. 645–658, 2011.

[5] S. He and W. Sun, “New hybrid steepest descent algorithms
for variational inequalities over the common fixed points set
of infinite nonexpansive mappings,” WSEAS Transactions on
Mathematics, vol. 11, no. 2, pp. 83–92, 2012.

[6] M. Su and H.-K. Xu, “Remarks on the gradient-projection
algorithm,” Journal of Nonlinear Analysis and Optimization, vol.
1, no. 1, pp. 35–43, 2010.

[7] R.-X. Ni, “Strong convergence of a hybrid projection algorithm
for approximation of a common element of three sets in Banach
spaces,”WSEAS Transactions on Mathematics, vol. 12, no. 3, pp.
296–306, 2013.

[8] P. Kumam, “A hybrid approximation method for equilibrium
and fixed point problems for a monotone mapping and a
nonexpansive mapping,” Nonlinear Analysis: Hybrid Systems,
vol. 2, no. 4, pp. 1245–1255, 2008.

[9] P. H. Calamai and J. J. Moré, “Projected gradient methods
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We obtain necessary and sufficient conditions so that every solution of neutral delay difference equation Δ(𝑦𝑛 − ∑𝑘𝑗=1 𝑝𝑗𝑛𝑦𝑛−𝑚𝑗 ) +𝑞𝑛𝐺(𝑦𝜎(𝑛)) = 𝑓𝑛 oscillates or tends to zero as 𝑛 󳨀→ ∞, where {𝑞𝑛} and {𝑓𝑛} are real sequences and 𝐺 ∈ 𝐶(R,R), 𝑥𝐺(𝑥) > 0, and𝑚1, 𝑚2, . . . , 𝑚𝑘 are positive integers. Here Δ is the forward difference operator given by Δ𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛, and {𝜎𝑛} is an increasing
unbounded sequences with 𝜎𝑛 ≤ 𝑛. This paper complements, improves, and generalizes some past and recent results.

1. Introduction

Consider the neutral delay difference equation of first order

Δ(𝑦𝑛 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗) + 𝑞𝑛𝐺 (𝑦𝜎(𝑛)) = 𝑓𝑛 (1)

where Δ is the forward difference operator given by Δ𝑥𝑛 =𝑥𝑛+1 − 𝑥𝑛, 𝑞𝑛 and 𝑓𝑛 are members of infinite real sequences,
and 𝑚𝑗 are positive integers. Further, assume {𝑝𝑗𝑛} are real
sequences for each 𝑗 ∈ 1, 2, . . . 𝑘 and that 𝐺 ∈ 𝐶(R,R)
and 𝜎(𝑛) ≤ 𝑛 are monotonic increasing sequences which are
unbounded.

We study the oscillatory behavior of solutions of neutral
difference equation (1) under the following assumptions.

(H1) 𝑥𝐺(𝑥) > 0 for 𝑥 ̸= 0.
(H2) There exists a bounded sequence {𝐹𝑛} such that Δ𝐹𝑛 =𝑓𝑛.
(H3) The sequence {𝐹𝑛} in (H2) satisfies lim𝑛󳨀→∞𝐹𝑛 = 0.
(H4) 𝑞𝑛 > 0, ∑∞𝑛=𝑛0 𝑞𝑛 = ∞.

In addition to the above we assume some new conditions
on 𝑝𝑗𝑛 (see (12), (22), (26), and (30) in next section). It is
important to note that our results hold good for the solutions
of the neutral equation

Δ(𝑦𝑛 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗) + 𝑙∑
𝑗=1

𝑞𝑗𝑛𝐺(𝑦𝜎𝑗(𝑛)) = 𝑓𝑛 (2)

under the assumption

∞∑
𝑛=𝑛0

( 𝑙∑
𝑗=1

𝑞𝑗𝑛) = ∞, 𝑞𝑗𝑛 > 0 (3)

instead of (H4). The following neutral difference equa-
tions/delay difference equations are obtained as particular
case of (2).

Δ (𝑦𝑛 − 𝑝𝑛𝑦𝑛−𝑚) + 𝑙∑
𝑗=1

𝑞𝑗𝑛𝐺(𝑦𝜎𝑗(𝑛)) = 𝑓𝑛, (4)

Δ (𝑦𝑛 − 𝑝𝑛𝑦𝑛−𝑚) + 𝑞𝑛𝐺 (𝑦𝜎(𝑛)) = 𝑓𝑛, (5)
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Δ (𝑦𝑛) + 𝑙∑
𝑗=1

𝑞𝑗𝑛𝐺(𝑦𝜎𝑗(𝑛)) = 0, (6)

and

Δ (𝑦𝑛) + 𝑞𝑛𝐺(𝑦𝜎(𝑛)) = 0. (7)

The neutral difference equations (5) are seen as the
discrete analogue of the neutral differential equations

(𝑦 (𝑡) − 𝑝 (𝑡) 𝑦 (𝑡 − 𝜏))󸀠 + 𝑞 (𝑡) 𝐺 (𝑦 (𝑡 − 𝜎)) = 𝑓 (𝑡) . (8)

The oscillatory and asymptotic behavior of delay difference
equations and neutral difference equations have been inten-
sively studied in recent years due to its various application in
different field of science and technology [1]. It is observed that
several articles (see [2–4]) exist in literature for the study of
neutral difference equations/delay difference equations with
several delay, i.e., for (4) or (6), respectively. However study
of neutral equations with several delay term under Δ symbol,
i.e., (1) or (2), seems to be relatively scarce in literature. Use
of lemmas from [1, Lemma 1.5.1 and 1.5.2] or its discrete
analogue (see [5]) plays an important role in studying (4) [6],
(5) [7], and (8) [8]. In this context, onemay note these lemmas
cannot be applied to the study of (1) or (2). Hence study of (1)
and (2) needs a different approach.

The work in this paper complements and generalizes the
work in [3, 9]. This can be verified that the results in [3, 9]
which are concerned with the study of (6) and (7) cannot be
applied to the delay difference equation

Δ (𝑦𝑛) + (𝑒−2 − 𝑒−3) 𝑦𝑛−2 = 0. (9)

which has a solution 𝑦𝑛 = 𝑒−𝑛 tending to zero. It is because
the primary assumption,

lim inf
𝑘󳨀→∞

𝑘−1∑
𝑖=𝜎(𝑘)

𝑞𝑖 > 1𝑒 , (10)

is not satisfied. However, note that (10) implies (H4) and (H4)
is satisfied in (9) and hence the results of this paper give
an answer to the behavior of solutions of neutral equations
like (9). While working on nonlinear neutral equations most
of the authors [7, 8, 10–12] assume the condition that 𝐺 is
nondecreasing unlike this paper.

Let 𝑛0 be a fixed nonnegative integer. Let max{𝑚1,𝑚2, . . . , 𝑚𝑘} = 𝑚 and 𝜌 = min{𝜎(𝑛0), 𝑛0 − 𝑚}. By a solution
of (1) we mean a real sequence {𝑦𝑛} which is defined for all
positive integers 𝑛 ≥ 𝜌 and satisfies (1) for 𝑛 ≥ 𝑛0. Clearly if
the initial condition

𝑦𝑛 = 𝑎𝑛 for 𝜌 ≤ 𝑛 ≤ 𝑛0, (11)

is given then (1) has a unique solution satisfying the given
initial condition (11). A solution {𝑦𝑛} of (1) is said to be
oscillatory if, for every positive integer 𝑛0 > 0, there exists𝑛 ≥ 𝑛0 such that 𝑦𝑛𝑦𝑛+1 ≤ 0; otherwise {𝑦𝑛} is said to
be nonoscillatory. In the sequel, unless otherwise specified,
when we write a functional inequality, it will be assumed to
hold for all 𝑛 sufficiently large. Here we assume the existence
of solution of (1) and study its oscillatory and asymptotic
behavior.

2. Sufficient Condition

In this section we present some results which prove that
(H4) is sufficient for any solution of (2) to be oscillatory or
tending to zero as 𝑛 󳨀→ ∞. Moreover we give some examples
to illustrate and signify our results. Our first result and the
subsequent ones are as follows.

Theorem 1. Suppose that (H1)–(H4) hold. Assume that there
exists a positive constant 𝑝 such that the sequences {𝑝𝑗𝑛} for 𝑗 =1, 2, . . . , 𝑘 satisfy the condition

𝑝𝑗𝑛 ≥ 0, for every 𝑗 = 1, 2, . . . , 𝑘
and
𝑘∑
𝑗=1

lim sup
𝑛󳨀→∞

𝑝𝑗𝑛 < 𝑝 < 1. (12)

Then every solution of (1) oscillates or tends to zero as 𝑛 󳨀→∞.

Proof. Let 𝑦 = {𝑦𝑛} be any solution of (1) for 𝑛 ≥ 𝑛0, where 𝑛0
is a fixed positive integer. If it oscillates then there is nothing
to prove; otherwise, it leads to two distinct possibilities, either𝑦𝑛 > 0 or 𝑦𝑛 < 0. for 𝑛 ≥ 𝑛1 > 𝑛0. Consider the first one, i.e.,𝑦𝑛 > 0 eventually. There exits positive integer 𝑛2 ≥ 𝑛1 such
that 𝑦𝑛 > 0, 𝑦𝑛−𝑚𝑗 > 0 for each 𝑗, and 𝑦𝜎(𝑛) > 0 for 𝑛 ≥ 𝑛2. For𝑛 ≥ 𝑛2, let

𝑧𝑛 = 𝑦𝑛 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗 , (13)

and

𝑤𝑛 = 𝑧𝑛 − 𝐹𝑛. (14)

From (1), (13), and (14), it follows due to (H1) that

Δ𝑤𝑛 = −𝑞𝑛𝐺 (𝑦𝜎(𝑛)) ≤ 0. (15)

Then there exists 𝑛3 ≥ 𝑛2 such that 𝑤𝑛 is monotonic
and is of constant sign for 𝑛 ≥ 𝑛3. For the sake of a
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contradiction assume that 𝑦𝑛 is not bounded. Then there
exists a subsequence {𝑦𝑛𝑟} such that

𝑛𝑟 󳨀→ ∞,
𝑦𝑛𝑟 󳨀→ ∞

as 𝑟 󳨀→ ∞,
(16)

and

𝑦 (𝑛𝑟) = max {𝑦𝑛 : 𝑛3 ≤ 𝑛 ≤ 𝑛𝑟} . (17)

Since 𝜎(𝑛) 󳨀→ ∞ as 𝑛 󳨀→ ∞, we may choose 𝑟 large enough
so that 𝜎(𝑛𝑟) ≥ 𝑛3. For 0 < 𝜖, because of (H3), we can find a
positive integer 𝑛4 such that 𝑛 ≥ 𝑛4 ≥ 𝑛3 implies |𝐹𝑛| < 𝜖. As
(12) holds, then using (13), (14), and (17) we obtain

𝑤𝑛𝑟 = 𝑦𝑛𝑟 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛𝑟−𝑚𝑗 − 𝐹𝑛𝑟 ≥ (1 − 𝑘∑
𝑗=1

𝑝𝑗𝑛)𝑦𝑛𝑟 − 𝜖
> (1 − 𝑝) 𝑦𝑛𝑟 − 𝜖.

(18)

Taking 𝑟 󳨀→ ∞, we find lim𝑛󳨀→∞𝑤𝑛 = ∞, a contra-
diction as 𝑤𝑛 is monotonic decreasing. Hence 𝑦𝑛 is bounded
which implies 𝑤𝑛 and 𝑧𝑛 are bounded and lim𝑛󳨀→∞𝑤𝑛 exists.
Further it follows that lim inf𝑛󳨀→∞𝑦𝑛 and lim sup𝑛󳨀→∞𝑦𝑛
exist.We claim lim inf𝑛󳨀→∞𝑦𝑛 = 0. Otherwise, let𝑦𝑛 ≥ 𝛼 > 0.
Next boundedness of 𝑦𝑛 yields 𝑦𝑛 ≤ 𝛽. Hence we have 0 ≤𝛼 < 𝑦𝑛 ≤ 𝛽, which will be used for bounding the 𝐺 term in
(1) from below.

From the continuity of 𝐺 and assumption (H1) it follows
that there exists a positive lower bound 𝑚 for 𝐺 on [𝛼, 𝛽].
Hence there exists 𝑛5 such that 𝐺(𝑦𝜎(𝑛)) > 𝑚 > 0 for 𝑛 > 𝑛5.
Then summing (15) from 𝑛 = 𝑛5 to 𝑠 − 1 we obtain

𝑤𝑛5 − 𝑤𝑠 = 𝑠−1∑
𝑗=𝑛5

𝑞𝑗𝐺 (𝑦𝜎(𝑗)) ≥ 𝑚 ∞∑
𝑗=𝑛5

𝑞𝑗. (19)

Since the left hand side is the member of a bounded
sequence, while the right hand side approaches +∞, we have
a contradiction. This yields lim inf𝑛󳨀→∞𝑦𝑛 = 0. From (H3),
monotonic nature of 𝑤𝑛 and (14), it follows that lim𝑛󳨀→∞𝑧𝑛
exists finitely. Let lim𝑛󳨀→∞𝑧𝑛 = 𝛿. If 𝛿 > 0, then

0 < 𝛿 = lim inf
𝑛󳨀→∞

𝑧𝑛 = lim inf
𝑛󳨀→∞

(𝑦𝑛 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

≤ lim inf
𝑛󳨀→∞

𝑦𝑛 + lim sup
𝑛󳨀→∞

(− 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

= −lim inf
𝑛󳨀→∞

( 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗) ≤ − 𝑘∑
𝑗=1

lim inf
𝑛󳨀→∞

(𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

≤ − 𝑘∑
𝑗=1

(lim inf
𝑛󳨀→∞

𝑝𝑗𝑛) (lim inf
𝑛󳨀→∞

𝑦𝑛−𝑚𝑗) ≤ 0,
(20)

a contradiction. If 𝛿 ≤ 0 then

0 ≥ 𝛿 = lim sup
𝑛󳨀→∞

𝑧𝑛 = lim sup
𝑛󳨀→∞

(𝑦𝑛 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

≥ lim sup
𝑛󳨀→∞

𝑦𝑛 + lim inf
𝑛󳨀→∞

(− 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

≥ lim sup
𝑛󳨀→∞

𝑦𝑛 − lim sup
𝑛󳨀→∞

( 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

≥ lim sup
𝑛󳨀→∞

𝑦𝑛 − 𝑘∑
𝑗=1

lim sup
𝑛󳨀→∞

(𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

≥ lim sup
𝑛󳨀→∞

𝑦𝑛 − 𝑘∑
𝑗=1

lim sup
𝑛󳨀→∞

𝑝𝑗𝑛 lim sup
𝑛󳨀→∞

𝑦𝑛−𝑚𝑗
≥ lim sup
𝑛󳨀→∞

𝑦𝑛(1 − 𝑘∑
𝑗=1

lim sup
𝑛󳨀→∞

𝑝𝑗𝑛)
≥ lim sup
𝑛󳨀→∞

𝑦𝑛 (1 − 𝑝) .

(21)

Hence lim sup𝑛󳨀→∞𝑦𝑛 ≤ 0, by (12), which implies the desired
result lim𝑛󳨀→∞𝑦𝑛 = 0. If 𝑦𝑛 < 0 for 𝑛 > 𝑛1 then proceeding
as above we can arrive at lim𝑛󳨀→∞𝑦𝑛 = 0. Thus the theorem
is proved.

Theorem 2. Suppose that (H1)–(H4) hold. Assume that there
exists a positive constant 𝑝 such that the sequences {𝑝𝑗𝑛} for 𝑗 =1, 2, . . . , 𝑘 satisfy the condition

𝑝𝑗𝑛 ≤ 0, for every 𝑗 = 1, 2, . . . , 𝑘
and
𝑘∑
𝑗=1

lim inf
𝑛󳨀→∞

𝑝𝑗𝑛 > −𝑝 > −1. (22)

Then every solution of (1) oscillates or tends to zero as 𝑛 󳨀→ ∞.

Proof. Proceeding as in the proof ofTheorem 1 and setting 𝑧𝑛,𝑤𝑛 as in (13) and (14), respectively, we obtain (15) and further
prove 𝑦𝑛 is bounded with lim inf𝑛󳨀→∞𝑦𝑛 = 0. From (H3) and
the fact that 𝑤𝑛 is monotonic it follows that lim𝑛󳨀→∞𝑤𝑛 =
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lim𝑛󳨀→∞𝑧𝑛 = 𝛿 ∈ R. As 𝑧𝑛 ≥ 0, so 𝛿 ≥ 0. We claim 𝛿 = 0; if
not then 𝛿 > 0, and this implies

𝛿 = lim inf
𝑛󳨀→∞

𝑧𝑛 = lim inf
𝑛󳨀→∞

(𝑦𝑛 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)
≤ lim inf
𝑛󳨀→∞

𝑦𝑛 + lim sup
𝑛󳨀→∞

(− 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)
≤ 𝑘∑
𝑗=1

lim sup
𝑛󳨀→∞

(−𝑝𝑗𝑛) lim sup
𝑛󳨀→∞

(𝑦𝑛−𝑚𝑗)
= 𝑘∑
𝑗=1

− lim inf
𝑛󳨀→∞

(𝑝𝑗𝑛) lim sup
𝑛󳨀→∞

(𝑦𝑛−𝑚𝑗)
≤ 𝑝lim sup
𝑛󳨀→∞

(𝑦𝑛) ≤ 𝑝𝛼.

(23)

Hence we get

𝛼 ≥ 𝛿𝑝 > 𝛿. (24)

Again

𝛿 = lim sup
𝑛󳨀→∞

𝑧𝑛 = lim sup
𝑛󳨀→∞

(𝑦𝑛 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)
≥ lim sup
𝑛󳨀→∞

𝑦𝑛 + lim inf
𝑛󳨀→∞

(− 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

= lim sup
𝑛󳨀→∞

𝑦𝑛 + lim inf
𝑛󳨀→∞

( 𝑘∑
𝑗=1

(−𝑝𝑗𝑛) 𝑦𝑛−𝑚𝑗)

≥ lim sup
𝑛󳨀→∞

𝑦𝑛 + 𝑘∑
𝑗=1

lim inf
𝑛󳨀→∞

((−𝑝𝑗𝑛) 𝑦𝑛−𝑚𝑗)

≥ lim sup
𝑛󳨀→∞

𝑦𝑛 + 𝑘∑
𝑗=1

lim inf
𝑛󳨀→∞

(−𝑝𝑗𝑛) lim inf
𝑛󳨀→∞

𝑦𝑛−𝑚𝑗
= lim sup
𝑛󳨀→∞

𝑦𝑛 = 𝛼,
(25)

a contradiction, due to inequality (24). Hence we conclude𝛿 = 0 and from 𝑧𝑛 > 𝑦𝑛, it follows that lim𝑛󳨀→∞𝑦𝑛 ≤ 0. Hence
lim𝑛󳨀→∞𝑦𝑛 = 0.

The proof for the case 𝑦𝑛 < 0 for large 𝑛 is similar. Hence
the theorem is proved.

Remark 3. Theorems 1 and 2 hold good for 𝑘 = 0 and𝑘 = 1. Hence these results could be compared with results
concerned with the difference equations (4), (5), (6), and (7).

Theorem 4. Suppose that (H1)–(H4) hold. Assume that there
exists a positive constant 𝑝 such that the sequences {𝑝𝑗𝑛} for 𝑗 =1, 2, . . . , 𝑘 satisfy the condition

𝑝𝑗𝑛 < 0 for every 𝑗 = 1, 2, . . . , 𝑘 and there exists, 𝑖 ∈ {1, 2, 3, . . . , 𝑘} such that lim sup
𝑛󳨀→∞

𝑝𝑖𝑛 −∑
𝑗 ̸=𝑖

lim inf
𝑛󳨀→∞

𝑝𝑗𝑛 < −1. (26)

Then every solution of (1) oscillates or tends to zero as 𝑛 󳨀→ ∞.

Proof. Proceeding as in the proof of Theorem 1 and setting𝑧𝑛, 𝑤𝑛 as in (13) and (14), respectively, we obtain (15) and
further prove 𝑦𝑛 is bounded with liminf𝑛󳨀→∞𝑦𝑛 = 0. From
(H3) and that 𝑤𝑛 is monotonic it follows that lim𝑛󳨀→∞𝑤𝑛 =
lim𝑛󳨀→∞𝑧𝑛 = 𝛿 ∈ R. As 𝑧𝑛 ≥ 0, so 𝛿 ≥ 0. We claim 𝛿 = 0. If
not, then 𝛿 > 0, and this implies

𝛿 = lim inf
𝑛󳨀→∞

𝑧𝑛 = lim inf
𝑛󳨀→∞

(𝑦𝑛 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

≤ lim sup
𝑛󳨀→∞

(𝑦𝑛 + ∑
𝑗 ̸=𝑖

− 𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)
+ lim inf
𝑛󳨀→∞

(−𝑝𝑖𝑛𝑦𝑛−𝑚𝑖)
≤ lim sup
𝑛󳨀→∞

𝑦𝑛 + lim sup
𝑛󳨀→∞

∑
𝑗 ̸=𝑖

− 𝑝𝑗𝑛𝑦𝑛−𝑚𝑗
+ lim sup
𝑛󳨀→∞

(−𝑝𝑗𝑛) lim inf
𝑛󳨀→∞

(𝑦𝑛−𝑚𝑗)

≤ lim sup
𝑛󳨀→∞

𝑦𝑛 + ∑
𝑗 ̸=𝑖1

lim sup
𝑛󳨀→∞

(−𝑝𝑗𝑛) lim sup
𝑛󳨀→∞

(𝑦𝑛−𝑚𝑗)
≤ lim sup
𝑛󳨀→∞

(𝑦𝑛) [[1 −∑
𝑗 ̸=𝑖

lim inf
𝑛󳨀→∞

𝑝𝑗𝑛]] .
(27)

Again we have

𝛿 = lim sup
𝑛󳨀→∞

𝑧𝑛 = lim sup
𝑛󳨀→∞

(𝑦𝑛 − 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)

≥ lim inf
𝑛󳨀→∞

𝑦𝑛 + lim sup
𝑛󳨀→∞

(− 𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)
= lim sup
𝑛󳨀→∞

(−𝑝𝑖𝑛𝑦𝑛−𝑚𝑖) + lim inf
𝑛󳨀→∞

∑
𝑗 ̸=𝑖

(−𝑝𝑗𝑛𝑦𝑛−𝑚𝑗)
≥ lim sup
𝑛󳨀→∞

𝑦𝑛−𝑚𝑗 lim inf
𝑛󳨀→∞

(−𝑝𝑖𝑛)
+∑
𝑗 ̸=𝑖

lim inf
𝑛󳨀→∞

((−𝑝𝑗𝑛) 𝑦𝑛−𝑚𝑗)
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≥ lim sup
𝑛󳨀→∞

𝑦𝑛 (−lim sup
𝑛󳨀→∞

𝑝𝑖𝑛)
+∑
𝑗 ̸=𝑖

lim inf
𝑛󳨀→∞

(−𝑝𝑗𝑛) lim inf
𝑛󳨀→∞

𝑦𝑛−𝑚𝑗
≥ lim sup
𝑛󳨀→∞

𝑦𝑛 (−lim sup
𝑛󳨀→∞

𝑝𝑖𝑛) .
(28)

From (27) and (28), it follows that

lim sup
𝑛󳨀→∞

𝑦𝑛((∑
𝑗 ̸=𝑖

lim inf
𝑛󳨀→∞

𝑝𝑗𝑛) − 1 − lim sup
𝑛󳨀→∞

𝑝𝑖𝑛) ≤ 0 (29)

Using (26), we obtain lim𝑛󳨀→∞𝑦𝑛 = 0. Thus the theorem is
proved.

Next, we intend to present a result where 𝑝𝑗𝑛, 𝑗 =1, 2, 3, . . . , 𝑘, satisfy the following condition:
𝑝𝑗𝑛 > 0 for every 𝑗 = 1, 2, . . . , 𝑘 and there exists, 𝑖 ∈ {1, 2, 3, . . . , 𝑘} such that lim inf

𝑛󳨀→∞
𝑝𝑖𝑛 − ∑
𝑗 ̸=𝑖

lim sup
𝑛󳨀→∞

𝑝𝑗𝑛 > 1. (30)

For that purpose we give an example which would lead us to
our next result.

Example 5. Consider the first-order neutral delay difference
equation with several delays and variable coefficients

Δ [𝑦𝑛 − (1 + 2−𝑛) 𝑦𝑛−1 − (4 + 2−𝑛) 𝑦𝑛−2]
+ 2(2𝑛+1)/3𝑦𝑛−4 = 0. (31)

Note that 𝑝𝑗𝑛 satisfy (30) for the above neutral delay dif-
ference equation (31). This neutral delay difference equation
has an unbounded solution 𝑦𝑛 = 2𝑛 tending to∞ as 𝑛 󳨀→ ∞
unlike other results presented so far.

The above example is the motivating point to the state-
ment of our next result. Since the proof is almost similar to
that of Theorem 4, it is omitted.

Theorem 6. Suppose that (H1)–(H4) hold. Assume that there
exists a positive constant 𝑝 such that the sequences {𝑝𝑗𝑛} for𝑗 = 1, 2, . . . , 𝑘 satisfy the condition (30). Then every bounded
solution of (1) oscillates or tends to zero as 𝑛 󳨀→ ∞.

Remark 7. TheaboveTheorems 4 and 6 hold for 𝑘 = 1 but not
for 𝑘 = 0. Hence these results can be compared with results
concernedwith neutral delay difference equations (4) and (5).

Few examples are noted below to illustrate our results and
establish its significance.

Example 8. Consider the first-order neutral delay difference
equation

Δ(𝑦𝑛 − 𝑝1𝑛𝑦𝑛−1 − 𝑝2𝑛𝑦𝑛−4) + 9760𝑦3𝑛−2 = 0, 𝑛 ≥ 5, (32)

where

𝑝1𝑛 = {{{{{
14 , if 𝑛 is odd,15 , if 𝑛 is even, (33)

and

𝑝2𝑛 = {{{{{
13, if 𝑛 is odd,
12 , if 𝑛 is even. (34)

The neutral delay difference equation (32) satisfies all the
conditions of Theorem 1. As such, it has an oscillatory
solution 𝑦𝑛 = (−1)𝑛.
Example 9. Consider the first-order inhomogeneous neutral
delay difference equation

Δ(𝑦𝑛 + 𝑝1𝑛𝑦𝑛−4 + 𝑝2𝑛𝑦𝑛−5) + 342𝑛−4𝑦3𝑛−3
= − 32𝑛+1 − 322𝑛−2 , 𝑛 ≥ 5, (35)

where𝑝1𝑛 = 2−𝑛+1/16 and 𝑝2𝑛 = 2−𝑛+1/32.This neutral delay
difference equation satisfies all the conditions of Theorem 2.
As such, it has a bounded positive solution 𝑦𝑛 = 2−𝑛 tending
to zero as 𝑛 󳨀→ ∞. Note that, no result in the papers cited
under reference can be applied to the neutral delay difference
equations (32) and (35).

Remark 10. Results of [3, 9] cannot be applied to the delay
difference equation (9), because the condition (10) is not
satisfied.However, due toRemark 3,Theorem 1 can be applied
to the delay equation (9) as all the conditions are satisfied and
as such the delay equation has a positive bounded solution𝑒−𝑛 tending to zero as 𝑛 󳨀→ ∞. Thus our work complements
the work in [3, 9]. Further, since we do not assume 𝐺 is
nondecreasing, our Theorems 1, 2, 4, and 6 improve and
generalize the results in [7].

3. Necessary Conditions

In this section we show that (H4) is necessary for every
solution of (1) to be oscillatory or tending to zero as 𝑛 󳨀→ ∞.
For this, we need the following lemma.

Lemma 11 (Krasnoselskii’s fixed point theorem [13]). Let 𝑋
be a Banach space and 𝑆 be a bounded closed convex subset of
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𝑋. Let 𝐴, 𝐵 be operators from 𝑆 to𝑋 such that 𝐴𝑥+𝐵𝑦 ∈ 𝑆 for
every pair of 𝑥, 𝑦 ∈ 𝑆. If 𝐴 is a contraction and 𝐵 is completely
continuous then the equation

𝐴𝑥 + 𝐵𝑥 = 𝑥 (36)

has a solution in 𝑆.
Theorem 12. Assume that (H2) holds. Further, assume that
one of the conditions of (12) and (22) hold. Then (H4) is a
necessary condition for all solution of (1) to be oscillatory or
tending to zero as 𝑛 󳨀→ ∞.

Proof. Suppose the condition (12) holds. The proof for the
case when (22) holds would follow on similar lines. Assume
for the sake of contradiction that (H4) does not hold. Hence

∞∑
𝑛=𝑛0

𝑞𝑛 < ∞. (37)

Thus, all we need to show is the existence of a bounded
solution 𝑦𝑛 of (1) with lim inf𝑛󳨀→∞𝑦𝑛 > 0. From (H2), we
find a positive constant 𝑐 and a positive integer 𝑛1 > 𝑛0 > 0
such that 󵄨󵄨󵄨󵄨𝐹𝑛󵄨󵄨󵄨󵄨 < 𝑐 𝑓𝑜𝑟 𝑛 ≥ 𝑛1. (38)

Choose a positive constant 𝐿 such that 𝐿 ≥ 5𝑐/1 − 𝑝. Since𝐺 ∈ 𝐶(R,R), let
𝜇 = max {|𝐺 (𝑥)| : 𝑐 ≤ 𝑥 ≤ 𝐿} . (39)

Let
𝜂 = max {𝑚1, 𝑚2, . . . , 𝑚𝑘} . (40)

Then using (37) one can fix 𝑛2 > 𝑛1 such that for 𝑛 ≥ 𝑛2 it
follows that

𝜇∞∑
𝑖=𝑛

𝑞𝑖 < 𝑐. (41)

Choose 𝑁1 > 𝑛2 such that
𝑁0 = min {𝜎 (𝑁1) ,𝑁1 − 𝜂} . (42)

Let 𝑋 = ℓ𝑁0∞ , Banach space of real bounded sequences 𝑥 ={𝑥𝑛} with 𝑥1 = 𝑥2 = ⋅ ⋅ ⋅ = 𝑥𝑁0 and supremum norm

‖𝑥‖ = sup (󵄨󵄨󵄨󵄨𝑥𝑛󵄨󵄨󵄨󵄨 : 𝑛 ≥ 𝑁0) . (43)

Define
𝑆 = {𝑦 ∈ 𝑋 : 𝑐 ≤ 𝑦𝑛 ≤ 𝐿, 𝑛 ≥ 𝑁0} . (44)

Clearly S is a bounded closed and convex subset of X. Nowwe
define two operators 𝐴 and 𝐵 : 𝑆 󳨀→ 𝑋 as follows. For 𝑦 ∈ 𝑆,
define

(𝐴𝑦)𝑛 =
{{{{{{{
(𝐴𝑦)𝑁1 , 𝑁0 ≤ 𝑛 ≤ 𝑁1
𝑘∑
𝑗=1

𝑝𝑗𝑛𝑦𝑛−𝑚𝑗 + 𝐹𝑛 + 3𝑐, 𝑛 ≥ 𝑁1.

(𝐵𝑦)𝑛 =
{{{{{{{
(𝐵𝑦)𝑁1 , 𝑁0 ≤ 𝑛 ≤ 𝑁1
∞∑
𝑖=𝑛

𝑞𝑖𝐺 (𝑦𝜎(𝑖)) , 𝑛 ≥ 𝑁1.
(45)

First we show that if 𝑥, 𝑦 ∈ 𝑆 then 𝐴𝑥 + 𝐵𝑦 ∈ 𝑆. Hence, for𝑥 = {𝑥𝑛} and 𝑦 = {𝑦𝑛} ∈ 𝑆 and for 𝑛 ≥ 𝑁1 we obtain
(𝐴𝑥)𝑛 + (𝐵𝑦)𝑛 ≤ 𝑘∑

𝑗=1

𝑝𝑗𝑛𝑥𝑛−𝑚𝑗 + 3𝑐 + ∞∑
𝑖=𝑛

𝑞𝑖 󵄨󵄨󵄨󵄨𝐺 (𝑦𝜎(𝑖))󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝐹𝑛󵄨󵄨󵄨󵄨 ≤ 𝑝𝐿 + 5𝑐 ≤ 𝐿.

(46)

On the other hand

(𝐴𝑥)𝑛 + (𝐵𝑦)𝑛 ≥ 3𝑐 − ∞∑
𝑖=𝑛

𝑞𝑖 󵄨󵄨󵄨󵄨𝐺 (𝑦𝜎(𝑖))󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝐹𝑛󵄨󵄨󵄨󵄨
≥ 3𝑐 − 𝑐 − 𝑐 ≥ 𝑐.

(47)

Hence

𝑐 ≤ (𝐴𝑥)𝑛 + (𝐵𝑦)𝑛 ≤ 𝐿 for 𝑛 ≥ 𝑁1. (48)

Thus, we proved that 𝐴𝑥 + 𝐵𝑦 ∈ 𝑆 for any 𝑥, 𝑦 ∈ 𝑆. Next we
show that 𝐴 is a contraction on 𝑆. In fact for 𝑥, 𝑦 ∈ 𝑆 and𝑛 ≥ 𝑁1 we have

󵄩󵄩󵄩󵄩(𝐴𝑥)𝑛 − (𝐴𝑦)𝑛󵄩󵄩󵄩󵄩 ≤ 𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑝𝑗𝑛󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑛−𝑚𝑗 − 𝑦𝑛−𝑚𝑗 󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑝 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩

(49)

This implies A is a contraction because 0 < 𝑝 < 1. Next
we show that 𝐵 is completely continuous. For this as a first
step we show that 𝐵 is continuous. Suppose the sequence𝑥𝑙 ≡ {𝑥𝑙𝑛} 󳨀→ 𝑥 ≡ {𝑥𝑛} in 𝑆 as 𝑙 󳨀→ ∞ (with 𝑙 taken from the
index set). Since 𝑆 is closed then 𝑥 ∈ 𝑆. For 𝑛 ≥ 𝑁1 we have

󵄨󵄨󵄨󵄨󵄨(𝐵𝑥𝑙)𝑛 − (𝐵𝑥)𝑛󵄨󵄨󵄨󵄨󵄨 ≤
∞∑
𝑖=𝑛

𝑞𝑖 󵄨󵄨󵄨󵄨󵄨𝐺 (𝑥𝑙𝜎(𝑖)) − 𝐺 (𝑥𝜎(𝑖))󵄨󵄨󵄨󵄨󵄨 (50)

Since 𝐺 is continuous, therefore |𝐺(𝑥𝑙𝜎(𝑖)) − 𝐺(𝑥𝜎(𝑖))| 󳨀→ 0 as𝑙 󳨀→ ∞. Hence𝐵 is continuous. Next what remained to show
is 𝐵𝑆 is relatively compact. Using the result [14,Theorem 3.3],
we need only show that 𝐵𝑆 is uniformly cauchy. Let 𝑥 ≡ {𝑥𝑛}
be a sequence in 𝑆. From (H2) and (37), it follows that, for𝜖 > 0, there exists𝑁∗ ≥ 𝑁1 such that, for 𝑛 ≥ 𝑁∗,

∞∑
𝑖=𝑛

𝑞𝑖 󵄨󵄨󵄨󵄨𝐺 (𝑥𝜎(𝑖))󵄨󵄨󵄨󵄨 < 𝜖2 . (51)

Then for 𝑛3 > 𝑛4 ≥ 𝑁∗ we have󵄨󵄨󵄨󵄨󵄨(𝐵𝑥)𝑛3 − (𝐵𝑥)𝑛4 󵄨󵄨󵄨󵄨󵄨 < 𝜖. (52)

Thus 𝐵𝑆 is uniformly cauchy. Hence it is relatively compact.
Then by Lemma 11, we can find 𝑥0 in 𝑆 such that 𝐴𝑥0 +𝐵𝑥0 =𝑥0. Clearly, (𝑥0)𝑛 is a bounded, positive solution of (1) with
limit infimum greater than or equal to 𝑐 > 0. Thus the
theorem is proved.

Theorem 13. Assume that (H2) holds. Further assume that
one of the conditions of (26) and (30) holds. Then (H4) is a
necessary condition for all solution of (1) to be oscillatory or
tending to zero as 𝑛 󳨀→ ∞.
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Proof. Suppose that 𝑝𝑛 satisfies (30). The proof for the
case when (26) holds is similar. Assume for the sake of
contradiction that (H4) does not hold. Hence (37) holds.
Thus, all we need to show is the existence of a bounded
solution 𝑦𝑛 of (1) with lim inf𝑛󳨀→∞𝑦𝑛 > 0. From (H2), we
find a positive constant 𝐿 and a positive integer 𝑛1 > 𝑛0 > 0
such that

󵄨󵄨󵄨󵄨𝐹𝑛󵄨󵄨󵄨󵄨 < 𝐿 𝑓𝑜𝑟 𝑛 ≥ 𝑛1. (53)

By (30), we can find a small positive real 𝜖, a lower bound 𝑐
for 𝑝𝑖𝑛, and upper bounds 𝑑𝑗 for 𝑝𝑗𝑛 (𝑗 ̸= 𝑖 and 1 ≤ 𝑗 ≤ 𝑘) such
that 𝑐 − ∑𝑑𝑗 − 1 = 𝜖. Let∑𝑑𝑗 = 𝑑. Hence 𝑐 = 𝑑 + 1 + 𝜖. Next
choose an upper bound 𝑏 for 𝑝𝑖𝑛 such that 𝑏 < (𝑐2 − 𝑐)/𝑑. The
nonexistence of such an upper bound for 𝑝𝑖𝑛 would lead to the
fact that, for all 𝛿 > 0, 𝑏 = 𝑐 + 𝛿 and 𝑏 ≥ (𝑐2 − 𝑐)/𝑑. Taking𝛿 = 𝜖, we have 𝜖2 + 𝜖 ≤ 0, a contradiction. Choose a real 𝜆 as
follows:

0 < 𝜆 = (𝐿 + 𝜖) 𝑑 + (𝑐 − 1) (𝑐 + 𝐿 + 𝜖)𝑐2 − (𝑏𝑑 + 𝑐) . (54)

Let

𝐻 = 𝑏𝜆 + 𝐿 + 𝜖𝑐 − 1 . (55)

From (54) and (55) it follows that

𝜆 − 𝐻𝑑 + 𝐿 + 𝜖𝑐 = 1. (56)

Since 𝐺 ∈ 𝐶(R,R), let
𝜇 = max {|𝐺 (𝑥)| : 1 ≤ 𝑥 ≤ 𝐻} . (57)

Let 𝜂 = max{𝑚1, 𝑚2, . . . , 𝑚𝑘}. Then using (37), one can fix𝑛2 > 𝑛1 such that for 𝑛 ≥ 𝑛2 it follows that
𝜇∞∑
𝑖=𝑛

𝑞𝑖 < 𝜖. (58)

Choose 𝑁1 > 𝑛2 such that

𝑁0 = min {𝜎 (𝑁1) ,𝑁1 − 𝜂} . (59)

Let 𝑋 = ℓ𝑁0∞ , Banach space of real bounded sequences 𝑥 ={𝑥𝑛} with 𝑥1 = 𝑥2 = ⋅ ⋅ ⋅ = 𝑥𝑁0 and supremum norm

‖𝑥‖ = sup (󵄨󵄨󵄨󵄨𝑥𝑛󵄨󵄨󵄨󵄨 : 𝑛 ≥ 𝑁0) . (60)

Define

𝑆 = {𝑦 ∈ 𝑋 : 1 ≤ 𝑦𝑛 ≤ 𝐻, 𝑛 ≥ 𝑁0} . (61)

Clearly S is a bounded closed and convex subset of X. Nowwe
define two operators 𝐴 and 𝐵 : 𝑆 󳨀→ 𝑋 as follows. For 𝑦 ∈ 𝑆,
define

(𝐴𝑦)𝑛 =
{{{{{{{{{

(𝐴𝑦)𝑁1 , 𝑁0 ≤ 𝑛 ≤ 𝑁1
𝑦𝑛+𝑚𝑖𝑝𝑖𝑛+𝑚𝑖 −

∑𝑗 ̸=𝑖 𝑝𝑗𝑛+𝑚𝑖𝑦𝑛−𝑚𝑗+𝑚𝑖𝑝𝑖𝑛+𝑚𝑖 + 𝑏𝜆𝑝𝑖𝑛+𝑚𝑖 −
𝐹𝑛+𝑚𝑖𝑝𝑖𝑛+𝑚𝑖 , 𝑛 ≥ 𝑁1.

(𝐵𝑦)𝑛 =
{{{{{{{{{

(𝐵𝑦)𝑁1 , 𝑁0 ≤ 𝑛 ≤ 𝑁1
−∑∞𝑗=𝑛+𝑚𝑖 𝑞𝑗𝐺 (𝑦𝜎(𝑗))𝑝𝑖𝑛+𝑚𝑖 , 𝑛 ≥ 𝑁1.

(62)

Proceeding as in the proof of above theorem we show that (i)
if 𝑥, 𝑦 ∈ 𝑆 then 𝐴𝑥 + 𝐵𝑦 > 1 by (56) and 𝐴𝑥 + 𝐵𝑦 < 𝐻 by
(55), so that 𝐴𝑥 +𝐵𝑦 ∈ 𝑆, (ii) ‖𝐴𝑥𝑛 −𝐴𝑦𝑛‖ < [(𝑑 + 1)/𝑐]‖𝑥𝑛 −𝑦𝑛‖, hence 𝐴 is a contraction on 𝑆, and (iii) 𝐵 is completely
continuous. This completes the proof of the theorem.

Remark 14. For the results in this section, we assume none
of conditions (H3), 𝐺 is nondecreasing, and 𝑥𝐺(𝑥) > 0,
whereas the authors [7, 8] assumed these three conditions in
their corresponding results. Hence the results of this article
generalize and improve the corresponding results of these
papers.

Combining all the above results, i.e., Theorems 1, 2, 4, 6,
12, and 13, we obtain the following theorem.

Theorem 15. Suppose that (H1)-(H3) hold. Assume 𝑝𝑗𝑛 in (1)
to satisfy one of the four conditions (12), (22), (26), and (30).
Then (H4) is both necessary and sufficient condition for every
solution of (1) to be oscillatory or tending to zero as 𝑛 󳨀→ ∞.

Remark 16. The results of this work hold for 𝐺(𝑥) = 𝑥 and𝑓(𝑥) = 0, i.e., for the linear homogeneous equation associated
with (1).
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In this work, we search the existence shifting compliance optimal form of some boundary membrane, which is not elastic and not
isotropic, generating nonlinear PDE. An optimal form of the elastic membrane described by the 𝑝-Laplacian is investigated. The
boundary perturbation method due to Hadamard is applied in Sobolev spaces.

1. Introduction and Preliminaries

In this work we will study the geometric shape optimization
of forms, where the main idea is to vary the edge position
of a form, without changing its topology which remains the
same.We use amembranemodel as shown in Figure 1. At rest
the membrane occupies a reference domain Ω whose edge is
divided into three disjoint parts:

𝜕Ω = Γ ∪ Γ𝑁 ∪ Γ𝐷 (1)

where Γ is the free variable part, Γ𝐷 is the fixed part of the
boundary (Dirichlet boundary conditions), and Γ𝑁 is also
the free part of the boundary on which we apply the efforts
𝑔 ∈ 𝐿𝑝(Γ𝑁)𝑁 (Neumann boundary condition). The three of
parts of the boundary are supposed to be nonzero surface
measurements, as we suppose that the free boundary variable
Γ responds to homogenous Neumann condition. So the verti-
cal displacement 𝑢 is the solution of the following membrane
model:

−Δ𝑢 = 0 𝑖𝑛 Ω
𝑢 = 0 𝑜𝑛 Γ𝐷

𝜕𝑢
𝜕𝑛 = 𝑔 𝑜𝑛 Γ𝑁
𝜕𝑢
𝜕𝑛 = 0 𝑜𝑛 Γ

(2)

We want to minimize the compliance defined by 𝐽(Ω) =
∫
Γ𝑁

𝑔𝑢𝑑𝑥 whenever 𝑥 ∈ Ω.
The shape optimization problem is infΩ∈𝑈𝑎𝑑𝐽(Ω) where it

remains to define the set of admissible forms.

1.1. Existence under a Condition of Regularity. The main idea
of this section is to apply a regularity constraint on all the
admissible forms 𝑈𝑎𝑑, to demonstrate a result of existence
of optimal forms. The results and demonstrations are mainly
due to F. Murat and J. Simons [1, 2]. It rests on a very signi-
ficant restriction of 𝑈𝑎𝑑; in other words, Ω is obtained by
applying a regular diffeomorphism T to the reference domain
Ω0. We first define a diffeomorphism set:

𝜏 = {𝑇 such that (𝑇 − 𝐼𝑑)
∈ 𝑊1,∞ (R𝑁,R𝑁) ; (𝑇−1 − 𝐼𝑑) ∈ 𝑊1,∞ (R𝑁,R𝑁)

(3)

Then we define a set of the admissible forms obtained by
deformation of Ω:

𝐶 (Ω0) = {Ω such that ∃𝑇 ∈ 𝜏;Ω = 𝑇 (Ω0)} (4)

Finally we introduce a pseudo-distance on 𝐶(Ω0):
𝑑 (Ω1, Ω2)
𝑇∈𝜏/𝑇(Ω1)=Ω0

= inf (‖(𝑇 − 𝐼𝑑)‖𝑊1,∞(R𝑁,R𝑁)

+ 󵄩󵄩󵄩󵄩󵄩(𝑇−1 − 𝐼𝑑)󵄩󵄩󵄩󵄩󵄩𝑊1,∞(R𝑁,R𝑁))
(5)
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Figure 1: Membrane.

Thus, we introduce a condition of uniform regularity of the
permissible forms, that is to say, Ω open sets close to Ω0 in
the sense of pseudo-distance; for each 𝑅 > 0 we pose 𝑈𝑎𝑑
= {Ω ∈ 𝐶(Ω0) such that 𝑑(Ω,Ω0) ≤ 𝑅; Γ𝐷 ∪ Γ𝑁 ⊂ 𝜕Ω and
∫
Ω
𝑑𝑥 = 𝑉0} where 𝑉0 is an imposed volume. The result is the

following theorem.

Theorem 1. For all objective functions, the shape optimization
problem infΩ∈𝑈𝑎𝑑𝐽(Ω) admits at least a minimum point.

1.2. Derivation from the Domain. The boundary variation
method that we study is a classical idea well known and used
before by Hadamard [3] in 1907 and many others as [4–
12]. We will adopt the same representation as F. Murat and
J. Simons [1]. In fact, let Ω0 be an open regular bounded
referential domain ofRN and the admissible form class𝐶(Ω0)
composed of the open sets such as Ω = 𝑇(Ω0) where 𝑇 is a
Lipschitz diffeomorphism and

𝑇 = 𝐼𝑑 + 𝜃
with 𝜃 ∈ 𝑊1,∞ (RN,RN)

(6)

where 𝐼𝑑 is the identity application, and we note Ω = (𝐼𝑑 +
𝜃)(Ω0) defined by

Ω = {𝑥 + 𝜃 (𝑥) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∈ Ω0} (7)

Lemma 2 (See [13]). For all 𝜃 ∈ 𝑊1,∞(RN,RN) satisfying
‖𝜃‖𝑊1,∞(RN,RN) < 1, the application 𝑇 = 𝐼𝑑 + 𝜃 is a bijection
ofRN and 𝑇 ∈ 𝜏.
Definition 3. Let 𝐽 be application from 𝐶(Ω0) to R. One says
that it is differentiable with respect to the domain at Ω0 if the
function

Θ 󳨀→ 𝐽 ((𝐼𝑑 + 𝜃) (Ω0)) (8)

is Frechet differentiable at 0 in the Banach space 𝑊1,∞(RN,
RN). i.e., ∃𝐿, a linear continuous form on 𝑊1,∞(RN,RN),
such that

𝐽 ((𝐼𝑑 + 𝜃) (Ω0)) = 𝐽 (Ω0) + 𝐽󸀠 (Ω0) + ∘ (𝜃) ,
with lim
𝜃󳨀→𝑂

∘ (𝜃)
‖𝜃‖𝑊1,∞ = 0. (9)

The linear form 𝐽󸀠(Ω0) depends only on the normal compo-
nent of 𝜃 on the boundary of Ω0.
Proposition 4. Let Ω0 be a regular bounded open set of
RN. Let 𝐽 be a differentiable application on Ω0. If 𝜃1, 𝜃2 ∈
𝑊1,∞(RN,RN) are such that 𝜃1 − 𝜃2 ∈ 𝐶1(RN,RN) such that
𝜃1.𝑛 = 𝜃2.𝑛 on 𝜕Ω0, then the derivative 𝐽󸀠(Ω0) is verifying:

𝐽󸀠 (Ω0) (𝜃1) = 𝐽󸀠 (Ω0) (𝜃2) (10)

1.3. Derivation of Integrals. Since the compliance 𝐽 is defined
by surface or volume integrals then its differentiation devotes
the following tools.

Lemma 5 (see [1, 7]). Let Ω0 be an open set of R𝑁. Let 𝑇 ∈ 𝜏
and 1 ≤ 𝑝 ≤ +∞.Then 𝑓 ∈ 𝐿𝑝(𝑇(Ω0)) iff 𝑓𝑜𝑇 ∈ 𝐿𝑝(Ω0) and
one has

∫
𝑇(Ω0)

𝑓𝑑𝑥 = ∫
Ω0

𝑓𝑜𝑇 |det∇𝑇| 𝑑𝑥

and ∫
𝑇(Ω0)

𝑓 󵄨󵄨󵄨󵄨󵄨det (∇𝑇)−1󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 = ∫
Ω0

𝑓𝑜𝑇𝑑𝑥
(11)

On the other hand 𝑓 ∈ 𝑊1,𝑝(𝑇(Ω0)) iff 𝑓𝑜𝑇 ∈ 𝑊1,𝑝(𝑇(Ω0))
and one has

(∇𝑓) 𝑜𝑇 = ((∇𝑇)−1)𝑡 (∇𝑓𝑜𝑇) (12)

Proposition6 (See [13]). LetΩ0 be a regular bounded open set
ofR𝑁. Let 𝑓 ∈ 𝑊1,1(R𝑁) and 𝐽 be an application from 𝐶(Ω0)
to R defined by 𝐽(Ω) = ∫

Ω
𝑓(𝑥)𝑑𝑥. Then 𝐽 is differentiable in

Ω0 and
𝐽󸀠 (Ω0) (𝜃) = ∫

Ω0

div (𝜃 (𝑥) 𝑓 (𝑥)) 𝑑𝑥

= ∫
𝜕Ω0

𝜃 (𝑥) 𝑛 (𝑥) 𝑓 (𝑥) 𝑑𝑆

with 𝜃 ∈ 𝑊1,∞ (R𝑁,R𝑁)

(13)

Now we move to a lemma on the change of variables in
surfaces integrals.

Lemma 7 (See [1, 7]). Let Ω0 be an open set of R𝑁. Let 𝑇 ∈ 𝜏
be a class C1 diffeomorphism of R𝑁, and 1 ≤ 𝑝 ≤ +∞.Then
𝑓 ∈ 𝐿𝑝(𝑇(Ω0)) iff 𝑓𝑜𝑇 ∈ 𝐿𝑝(Ω0) and one has

∫
𝜕𝑇Ω0

𝑓𝑑𝑆 = ∫
𝜕Ω0

𝑓 ∘ 𝑇 󵄨󵄨󵄨󵄨󵄨det (∇𝑇)−1󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨((∇𝑇)−1)𝑡 𝑛󵄨󵄨󵄨󵄨󵄨󵄨R𝑁𝑑𝑆 (14)

where 𝑛 is the external normal to 𝜕Ω0.
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The surface integral derivative of a function with respect
to the domain is given by the following proposition.

Proposition 8 (See [13]). LetΩ0 be a regular bounded open set
ofR𝑁. Let 𝑓 ∈ 𝑊2,1(R𝑁) and 𝐽 be an application from 𝐶(Ω0)
to R defined by 𝐽(Ω) = ∫

Ω
𝑓(𝑥)𝑑𝑥. Then 𝐽 is differentiable in

Ω0 and
𝐽󸀠 (Ω0) (𝜃) = ∫

𝜕Ω0

(∇𝑓.𝜃 + 𝑓 (div (𝜃) − ∇𝜃𝑛.𝑛))

= ∫
𝜕Ω0

𝜃.𝑛 (𝜕𝑓
𝜕𝑛 + 𝐻𝑓)𝑑𝑆

with 𝜃 ∈ C
1 (R𝑁,R𝑁)

(15)

where 𝐻 is the average curvature of 𝜕Ω0 defined by 𝐻 = 𝑑𝑖V𝑛.
1.4. Derivation of a Domain Dependent Function. In this
section we try to derive a function depending on the domain;
for this we use the Eulerian 𝑈 or Lagrangian 𝐿 derivative. The
second is a more reliable concept than the first. Let 𝑢(𝑥, Ω)
be a function defined for all 𝑥 ∈ Ω and depending on Ω.
It represents a solution of an PDE posed in Ω. In a point 𝑥
belonging to both Ω0 and Ω = (𝐼𝑑 + 𝜃)(Ω0), we can calculate
the differential 𝑢(Ω, 𝑥):

𝑢 ((𝐼𝑑 + 𝜃) (Ω0) , 𝑥) = 𝑢 (Ω0, 𝑥) + 𝑈 (𝜃, 𝑥) + 𝑜 (𝜃)
such that lim

𝜃󳨃󳨀→0

‖𝑜 (𝜃)‖
‖𝜃‖ = 0 (16)

𝑈 is a linear continuous form in 𝜃; it represents a directional
derivative in the direction 𝜃. This definition makes sense in
the case where 𝑥 ∈ Ω, but it poses a problem if 𝑥 ∈ Ω0. Then
in this case we use the Lagrangian derivative; for this we build
the transported 𝑢(𝜃) on Ω0.

By changing variables we obtain 𝑢(𝜃, 𝑥) = 𝑢((𝐼𝑑 +
𝜃)(Ω0)𝑜(𝐼𝑑 + 𝜃)) = 𝑢((𝐼𝑑 + 𝜃)(Ω0), 𝑥 + 𝜃(𝑥)).

To arrive at the derivative Lagrangian by drifting 𝑢(𝜃, 𝑥)
with respect to 𝜃

𝑢 (𝜃, 𝑥) = 𝑢 (𝜃, 𝑥) + 𝐿 (𝜃, 𝑥) + 𝑜 (𝜃)
such that lim

𝜃󳨃󳨀→0

‖𝑜 (𝜃)‖
‖𝜃‖ = 0. (17)

𝐿 is a linear continuous form in 𝜃; it represents a directional
derivative in the direction 𝜃.

There is a relation between these two derivatives 𝐿(𝜃, 𝑥) =
𝑈(𝜃, 𝑥) + 𝜃.∇𝑢(Ω0, 𝑥).
Proposition 9. Let Ω0 be a regular bounded open set of 𝑅𝑁.
Let 𝑓(Ω) be an application from 𝐶(Ω0) to 𝐿1(R); one defines
its transpose from 𝑊1,1(R𝑁) to 𝐿1(R)𝑓(𝜃, 𝑥) = 𝑓((𝐼𝑑 +
𝜃)(Ω0)𝑜(𝐼𝑑 + 𝜃)) which we suppose to be derivable in 0 and 𝐿
is considered as its derivative. So the application 𝐽1 from 𝐶(Ω0)
toR defined by 𝐽1(Ω) = ∫

Ω
𝑓(Ω)𝑑𝑥 is differentiable inΩ0 and

for all 𝜃 ∈ 𝑊1,∞(R𝑁,R𝑁) one has
𝐽󸀠1 (Ω0) (𝜃) = ∫

𝜕Ω
(𝑓 (Ω0) div (𝜃) + 𝐿 (𝜃)) 𝑑𝑆 (18)

In the same way, if 𝑓(𝜃) is derivable as an application from
C1(R𝑁,R𝑁) to 𝐿1(𝜕Ω0), so the application 𝐽2 from 𝐶(Ω0) to
R defined by 𝐽2(Ω) = ∫

𝜕Ω
𝑓(Ω)𝑑𝑥 is differentiable in Ω0 and

for all 𝜃 ∈ C1(R𝑁,R𝑁) one has
𝐽󸀠2 (Ω0) (𝜃)

= ∫
𝜕Ω

(𝑓 (Ω0) (div (𝜃) − ∇𝜃𝑛.𝑛 + 𝑌 (𝜃)) 𝑑𝑆 (19)

2. Deriving an Equation
with respect to the Domain

2.1. Dirichlet Conditions. We consider the following equation
with Dirichlet boundary conditions:

−Δ𝑝 (𝑢) = 𝑓 𝑖𝑛 Ω
𝑢 = 0 𝑜𝑛 𝜕Ω (20)

With Ω0 a regular bounded open set in R𝑁, 𝑓 ∈ 𝑊1,𝑝(R𝑁)
and Δ𝑝(𝑢) = div(|∇𝑢|𝑝−2∇𝑢) with 1 < 𝑝 < ∞.

Equation (20) admits a unique solution in 𝑊1,𝑝0 (Ω).
Remark. For 𝑝 = 2 we obtain the linear operator “Laplacian”.

The variational formulation of problem (20) is as follows:
∀V ∈ 𝑊1,𝑝0 (Ω) we have ∫

Ω
−Δ𝑝𝑢.V = ∫

Ω
𝑓.V or div(𝑓.𝐹) =

∇𝑓.𝐹 + 𝑓div(𝐹); it implies that

𝑓div (𝐹) = div (𝑓.𝐹) − ∇𝑓.𝐹
So∫
Ω
−Δ𝑝𝑢.V = ∫

Ω
−div (|∇𝑢|𝑝−2 ∇𝑢) .V

= ∫
Ω
−div (V. |∇𝑢|𝑝−2 ∇𝑢)

+ ∫
Ω
∇V∇𝑢𝑝−2∇𝑢

(21)

Using the Green formula we obtain

= ∫
𝜕Ω

V. |∇𝑢|𝑝−2 ∇𝑢.𝑛𝑑𝑆 + ∫
Ω
|∇𝑢|𝑝−2 ∇𝑢∇V (22)

but V ∈ 𝑊1,𝑝0 (Ω); it implies that V = 0 on 𝜕Ω. So the first term
equals zero. Then

= ∫
Ω
|∇𝑢|𝑝−2 ∇𝑢∇V = ∫

Ω
𝑓.V ∀V ∈ 𝑊1,𝑝0 (Ω) (23)

Proposition 10. Let Ω = (𝐼𝑑 + 𝜃)(Ω0); 𝑢(Ω) is the solution of
the problem (20). We define its transported on Ω0 by

𝑢 (𝜃) = 𝑢 ((𝐼𝑑 + 𝜃) (Ω0) ∘ (𝐼𝑑 + 𝜃) ∈ 𝑊1,𝑝0 (Ω0) (24)

Then the application 𝜃 󳨀→ 𝑢(𝜃) from 𝑊1,∞(R𝑁,R𝑁) to
𝑊1,𝑝(Ω0) is differentiable in 0 and its directional derivative
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called Lagrangian derivative 𝐿 =< 𝑢󸀠(0), 𝜃 > is the unique
solution of

−Δ𝑝𝐿 − div [𝛼𝑥∇𝐿 (𝜃, 𝑥)]
− div (|∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝑢 (0, 𝑥)) = 𝑔󸀠 + div (𝑓.𝜃)

𝑖𝑛 Ω
𝐿 = 0 𝑜𝑛 𝜕Ω

(25)

with 𝑔󸀠 = −div[(𝜆(𝑥,𝜃) + 𝛼𝑥𝜌𝜃)∇𝑢(0, 𝑥)].
Proof. We consider a test function 𝑤 = V ∘ (𝐼𝑑 + 𝜃) ∈
𝑊1,𝑝0 (Ω0) 󳨐⇒ V = 𝑤 ∘ (𝐼𝑑 + 𝜃)−1 ∈ 𝑊1,𝑝0 (Ω). Let 𝑈 ∈
𝑊1,𝑝0 (Ω0) such that 𝑢 is a solution of problem (20) satisfying
𝑢 = 𝑈 ∘ (𝐼𝑑 + 𝜃)−1. We remark that 𝑤 and 𝑈 are independent
of 𝜃. By a change of variable 𝑥 = 𝑇(𝑦) and the Lemma 5, (23)
becomes

(23) ⇐⇒
∫
𝑇(Ω0)

|∇𝑢|𝑝−2 ∇𝑢∇V𝑑𝑥 = ∫
𝑇(Ω0)

𝑓V𝑑𝑥 ⇐⇒

∫
Ω0

|∇𝑢 ∘ 𝑇|𝑝−2 (∇𝑢) ∘ 𝑇 (∇V) ∘ 𝑇 |det∇𝑇| 𝑑𝑦

= ∫
Ω0

󵄨󵄨󵄨󵄨𝑓 ∘ 𝑇󵄨󵄨󵄨󵄨 . (V ∘ 𝑇) |det∇𝑇| 𝑑𝑦 ⇐⇒

∫
Ω0

󵄨󵄨󵄨󵄨󵄨󵄨((∇𝑇)−1)𝑡 ∘ ∇ (𝑢 ∘ 𝑇)󵄨󵄨󵄨󵄨󵄨󵄨
𝑝−2 ((∇𝑇)−1)𝑡 ∇ (𝑢 ∘ 𝑇)

⋅ ((∇𝑇)−1)𝑡 ∇ (V ∘ 𝑇) |det (∇𝑇)| 𝑑𝑦
= ∫
Ω0

󵄨󵄨󵄨󵄨𝑓 ∘ 𝑇󵄨󵄨󵄨󵄨 . (V ∘ 𝑇) |det∇𝑇| 𝑑𝑦
(23) ⇐⇒
∫
Ω0

󵄨󵄨󵄨󵄨󵄨󵄨((∇𝑇)−1)𝑡 ∇ (𝑢)󵄨󵄨󵄨󵄨󵄨󵄨
𝑝−2 (∇𝑇)−1

⋅ ((∇𝑇)−1)𝑡 ∇ (𝑢) ∇𝑤 |det (∇𝑇)| 𝑑𝑦
= ∫
Ω0

󵄨󵄨󵄨󵄨𝑓 ∘ 𝑇󵄨󵄨󵄨󵄨 .𝑤 |det∇𝑇| 𝑑𝑦 ⇐⇒

∫
Ω0

|det (∇𝑇)| 󵄨󵄨󵄨󵄨󵄨󵄨((∇𝑇)−1)𝑡 ∇ (𝑢)󵄨󵄨󵄨󵄨󵄨󵄨
𝑝−2 (∇𝑇)−1

⋅ ((∇𝑇)−1)𝑡 ∇ (𝑢) ∇𝑤𝑑𝑦 = ∫
Ω0

󵄨󵄨󵄨󵄨𝑓 ∘ 𝑇󵄨󵄨󵄨󵄨 .𝑤 |det∇𝑇| 𝑑𝑦

We pose 𝐴 (𝜃, 𝑢) = |det (∇𝑇)| 󵄨󵄨󵄨󵄨󵄨󵄨((∇𝑇)−1)𝑡 ∇ (𝑢)󵄨󵄨󵄨󵄨󵄨󵄨
𝑝−2

⋅ (∇𝑇)−1 ((∇𝑇)−1)𝑡 ∇ (𝑢)

(26)

and since 𝑇 = 𝐼𝑑 + 𝜃 we have ∇𝑇 = 𝐼 + ∇𝜃; it implies that

𝐴 (𝜃, 𝑢) = |det (𝐼 + ∇𝜃)| 󵄨󵄨󵄨󵄨󵄨󵄨((𝐼 + ∇𝜃)−1)𝑡 ∇ (𝑢)󵄨󵄨󵄨󵄨󵄨󵄨
𝑝−2

⋅ (𝐼 + ∇𝜃)−1 ((𝐼 + ∇𝜃)−1)𝑡 ∇ (𝑢)
(27)

Then (23)⇐⇒ ∫
Ω0

𝐴(𝜃, 𝑢)∇𝑤𝑑𝑦 = ∫
Ω0

|𝑓 ∘ 𝑇|.𝑤| det∇𝑇|𝑑𝑦;
then we drift with respect to 𝜃 in 0.

On the other hand the application 𝜃 󳨀→ 𝐴(𝜃, 𝑢) from
𝑊1,∞(R𝑁,R𝑁) to 𝐿∞(R𝑁,R𝑁) is differentiable in 0.

In fact det(𝐼 + ∇𝜃) = 1 + div(𝜃) + ∘(𝜃) with lim𝜃󳨀→0(‖ ∘
(𝜃)‖𝐿∞(R𝑁)/‖𝜃‖𝑊1,∞(R𝑁,R𝑁)) = 0. Therefore | det(𝐼 + ∇𝜃)| =
1 + div(𝜃) + ∘(𝜃) because 𝜃 is small enough.

We have (𝐼 + ∇𝜃)−1 = 𝐼 − ∇𝜃 + ∘ (𝜃)
and ((𝐼 + ∇𝜃)−1)𝑡 = 𝐼 − (∇𝜃)𝑡 + ∘ (𝜃)

And 𝑢 (𝜃, 𝑥) = 𝑢 (0, 𝑥) + 𝐿 (𝜃, 𝑥) + ∘ (𝜃) 󳨐⇒
∇𝑢 (𝜃, 𝑥) = ∇𝑢 (0, 𝑥) + ∇𝐿 (𝜃, 𝑥) + ∘ (𝜃)

(28)

By using [14] we find

󵄨󵄨󵄨󵄨󵄨󵄨((1 − ∇𝜃)−1)𝑡 ∇𝑢󵄨󵄨󵄨󵄨󵄨󵄨
𝑝−2 = 󵄨󵄨󵄨󵄨󵄨[𝐼 − (∇𝜃)𝑡 + ∘ (𝜃)]

⋅ [∇𝑢 (0, 𝑥) + ∇𝐿 (𝜃, 𝑥) + ∘ (𝜃)]󵄨󵄨󵄨󵄨󵄨
𝑝−2 = 󵄨󵄨󵄨󵄨󵄨∇𝑢 (0, 𝑥)

− (∇𝜃)𝑡 ∇𝑢 (0, 𝑥) + ∇𝐿 (𝜃, 𝑥) + ∘ (𝜃)󵄨󵄨󵄨󵄨󵄨
𝑝−2 = 𝐵 (𝜃, 𝑢)

= |∇𝑢 (0, 𝑥)|𝑝−2 − 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨
𝑝−2

+ |∇𝐿 (𝜃, 𝑥)|𝑝−2 + ∘ (𝜃)

(29)

On the other hand | det(𝐼 + ∇𝜃)|(𝐼 + ∇𝜃)−1((𝐼 + ∇𝜃)−1)𝑡 =
(1 + div(𝜃))𝐼 − ∇𝜃 − (∇𝜃)𝑡 + ∘(𝜃).

Thus

𝐴 (𝜃, 𝑢) = 𝐵 (𝜃, 𝑢) [(1 + div (𝜃)) 𝐼 − ∇𝜃 − (∇𝜃)𝑡
+ ∘ (𝜃)] [∇𝑢 (0, 𝑥) + ∇𝐿 (𝜃, 𝑥) + ∘ (𝜃)] = 𝐵 (𝜃, 𝑢)
⋅ [∇𝑢 (0, 𝑥) + ∇𝐿 (𝜃, 𝑥)
+ (div𝜃𝐼 − ∇𝜃 − (∇𝜃)𝑡) (∇𝑢 (0, 𝑥) + ∇𝐿 (𝜃, 𝑥))
+ ∘ (𝜃)] = 𝐵 (𝜃, 𝑢) [∇𝑢 (0, 𝑥) + ∇𝐿 (𝜃, 𝑥)
+ (div𝜃𝐼 − ∇𝜃 − (∇𝜃)𝑡)∇𝑢 (0, 𝑥) + ∘ (𝜃)]
= |∇𝑢 (0, 𝑥)|𝑝−2 ∇𝑢 (0, 𝑥) + |∇𝑢 (0, 𝑥)|𝑝−2 ∇𝐿 (𝜃, 𝑥)
+ (div (𝜃) 𝐼 − ∇𝜃 − (∇𝜃)𝑡) |∇𝑢 (0, 𝑥)|𝑝−2 ∇𝑢 (0, 𝑥)
− 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨

𝑝−2 ∇𝑢 (0, 𝑥)
− 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨

𝑝−2 ∇𝐿 (𝜃, 𝑥)
− 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨

𝑝−2 (div (𝜃) 𝐼 − ∇𝜃 − (∇𝜃)𝑡)
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⋅ ∇𝑢 (0, 𝑥) + |∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝑢 (0, 𝑥)
+ |∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝐿 (𝜃, 𝑥) + |∇𝐿 (𝜃, 𝑥)|𝑝−2 (div (𝜃) 𝐼
− ∇𝜃 − (∇𝜃)𝑡)∇𝑢 (0, 𝑥) + ∘ (𝜃) = |∇𝑢 (0, 𝑥)|𝑝−2
⋅ ∇𝑢 (0, 𝑥) + |∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝐿 (𝜃, 𝑥)
− 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨

𝑝−2 ∇𝑢 (0, 𝑥) + |∇𝐿 (𝜃, 𝑥)|𝑝−2

⋅ ∇𝑢 (0, 𝑥) − 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨
𝑝−2 (div (𝜃) 𝐼 − ∇𝜃

− (∇𝜃)𝑡)∇𝑢 (0, 𝑥) + |∇𝐿 (𝜃, 𝑥)|𝑝−2 (div (𝜃) 𝐼 − ∇𝜃
− (∇𝜃)𝑡)∇𝑢 (0, 𝑥) + |∇𝑢 (0, 𝑥)|𝑝−2 [∇𝐿 (𝜃, 𝑥)
+ (div (𝜃) 𝐼 − ∇𝜃 − (∇𝜃)𝑡)∇𝑢 (0, 𝑥)]
− 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨

𝑝−2 ∇𝐿 (𝜃, 𝑥) + ∘ (𝜃)
(30)

Therefore, we have

∫
Ω0

𝐴 (𝜃, 𝑢) ∇𝑤 − ∫
Ω0

|∇𝑢 (0, 𝑥)|𝑝−2 ∇𝑢 (0, 𝑥) .∇𝑤

= ∫
Ω0

|∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝐿 (𝜃, 𝑥) ∇𝑤 + (|∇𝑢 (0, 𝑥)|𝑝−2

− 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨
𝑝−2)∇𝐿 (𝜃, 𝑥)

+ [|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + div (𝜃) 𝐼 − ∇𝜃 − (∇𝜃)𝑡)
− 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨

𝑝−2 (𝐼 + div (𝜃) 𝐼 − ∇𝜃 − (∇𝜃)𝑡)
+ |𝑢 (0, 𝑥)|𝑝−2 (div (𝜃) 𝐼 − ∇𝜃 − (∇𝜃)𝑡)] ∇𝑢 (0, 𝑥)
= ∫
Ω0

div (𝑓.𝜃) .𝑤

(31)

Then afterwards we put

𝜌𝜃 = div (𝜃) − ∇𝜃 − (∇𝜃)𝑡

𝜆(𝑥,𝜃) = 󵄨󵄨󵄨󵄨󵄨(∇𝜃)𝑡 ∇𝑢 (0, 𝑥)󵄨󵄨󵄨󵄨󵄨
𝑝−2

𝛼𝑥 = |∇𝑢 (0, 𝑥)|𝑝−2
And 𝑔 = −div [(𝜆(𝑥,𝜃) (𝐼 + 𝜌𝜃) + 𝛼𝑥𝜌𝜃) ∇𝑢 (0, 𝑥)]
Thus ∫

Ω0

𝐴 (𝜃, 𝑢) ∇𝑤

− ∫
Ω0

|∇𝑢 (0, 𝑥)|𝑝−2 ∇𝑢 (0, 𝑥) .∇𝑤

= ∫
Ω0

|∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝐿 (𝜃, 𝑥) ∇𝑤

+ ∫
Ω0

(𝛼𝑥 − 𝜆(𝑥,𝜃)) ∇𝐿 (𝜃, 𝑥) ∇𝑤

+ ∫
Ω0

[|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃)] ∇𝑢 (0, 𝑥) ∇𝑤

− ∫
Ω0

(𝜆(𝑥,𝜃) (𝐼 + 𝜌𝜃) + 𝛼𝑥𝜌𝜃) ∇𝑢 (0, 𝑥) ∇𝑤 + ∘ (𝜃)

= ∫
Ω0

div (𝑓.𝜃) 𝑤 + ∘ (𝜃) ⇐⇒

∫
Ω0

−Δ𝑝𝐿.𝑤 + ∫
Ω0

−div [(𝛼𝑥 − 𝜆(𝑥,𝜃)) ∇𝐿 (𝜃, 𝑥)]𝑤

+ ∫
Ω0

−div (|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃) ∇𝑢 (0, 𝑥) 𝑤

+ ∫
Ω0

𝑔.𝑤 = ∫
Ω0

div (𝑓.𝜃) 𝑤
(32)

Thus ∀𝑤 ∈ 𝑊1,𝑝0 (Ω) 𝐿 the Lagrangian of 𝑢 is a solution of the
following differential equation:

−Δ𝑝𝐿 − div [(𝛼𝑥 − 𝜆(𝑥,𝜃)) ∇𝐿 (𝜃, 𝑥)]
− div (|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃) ∇𝑢 (0, 𝑥) = 𝑔
+ div (𝑓.𝜃) 𝑖𝑛 Ω

𝐿 = 0 𝑜𝑛 𝜕Ω

(33)

Remark 11. When 𝑝 > 2 we will have:
(i) 𝜆(𝑥,𝜃).∇𝐿(𝜃, 𝑥) = ∘(𝜃)
(ii) |𝐿(𝜃, 𝑥)|𝑝−2𝜌𝜃 = ∘(𝜃)
(iii) 𝜆(𝑥,𝜃).𝜌𝜃 = ∘(𝜃)

Then 𝐿, the Lagrangian of 𝑢, will be solution of the following
reduced differential equation:

−Δ𝑝𝐿 − div [𝛼𝑥∇𝐿 (𝜃, 𝑥)]
− div (|∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝑢 (0, 𝑥)) = 𝑔󸀠 + div (𝑓.𝜃)

𝑖𝑛 Ω
𝐿 = 0 𝑜𝑛 𝜕Ω

(34)

with 𝑔󸀠 = −div[(𝜆(𝑥,𝜃) + 𝛼𝑥𝜌𝜃)∇𝑢(0, 𝑥)]
2.2. Neumann Conditions. We consider the following equa-
tion with Neumann boundary conditions (see [15]):

−Δ𝑝 (𝑢) + |𝑢|𝑝−2 𝑢 = 𝑓 𝑖𝑛 Ω
|∇𝑢|𝑝−2 𝜕𝑢𝜕𝑛 = 𝑔 𝑜𝑛 𝜕Ω

(35)
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where Ω0 a regular bounded open set in R𝑁, 𝑓 ∈ 𝑊1,𝑝(R𝑁),
𝑔 ∈ 𝑊2,𝑝(R𝑁), and Δ𝑝(𝑢) = div(|∇𝑢|𝑝−2∇𝑢) with 1 < 𝑝 <
∞.

The variational formulation of problem (35) is to find 𝑢 ∈
𝑊1,𝑝(Ω) such that∀V ∈ 𝑊1,𝑝(Ω) (v represents a test function)
∫
Ω
−Δ𝑝(𝑢).V𝑑𝑥 + ∫

Ω
|𝑢|𝑝−2𝑢.V𝑑𝑥 = ∫

Ω
𝑓.V𝑑𝑥 or div(𝑓.𝐹) =

∇𝑓.𝐹 + 𝑓div(𝐹).
It implies that 𝑓div(𝐹) = div(𝑓.𝐹) − ∇𝑓.𝐹:
Then ∫

Ω
−div (|∇𝑢|𝑝−2 ∇𝑢) .V𝑑𝑥 + ∫

Ω
|𝑢|𝑝−2 𝑢.V𝑑𝑥

= ∫
Ω
𝑓.V𝑑𝑥 ⇐⇒

∫
Ω
|∇𝑢|𝑝−2 ∇𝑢.∇V − ∫

Ω
div (V |∇𝑢|𝑝−2 ∇𝑢)

+ ∫
Ω
|𝑢|𝑝−2 𝑢.V𝑑𝑥 = ∫

Ω
𝑓.V𝑑𝑥.

(36)

By using the Green formula we find

∫
Ω
|∇𝑢|𝑝−2 ∇𝑢.∇V𝑑𝑥 − ∫

𝜕Ω
V |∇𝑢|𝑝−2 ∇𝑢.𝑛𝑑𝑆

+ ∫
Ω
|𝑢|𝑝−2 𝑢.V𝑑𝑥 = ∫

Ω
𝑓.V𝑑𝑥 ⇐⇒

∫
Ω
|∇𝑢|𝑝−2 ∇𝑢.∇V𝑑𝑥 + ∫

Ω
|𝑢|𝑝−2 𝑢.V𝑑𝑥 = ∫

Ω
𝑓.V𝑑𝑥

+ ∫
𝜕Ω

𝑔.V𝑑𝑆 and ∀V ∈ 𝑊1,𝑝 (Ω)

(37)

Proposition 12. Let Ω = (𝐼𝑑 + 𝜃)(Ω0); 𝑢(Ω) is the solution of
problem (35). We define its transport on Ω0 by 𝑢(𝜃) = 𝑢((𝐼𝑑 +
𝜃)(Ω0) ∘ (𝐼𝑑 + 𝜃) ∈ 𝑊1,𝑝0 (Ω0).

Then the application 𝜃 󳨀→ 𝑢(𝜃) from C1(R𝑁,R𝑁) to
𝑊1,∞(Ω0) is differentiable in 0 on the direction 𝜃 and its
directional derivative called Lagrangian derivative of 𝑢 is 𝐿 =<
𝑢󸀠(0), 𝜃 > where 𝐿 ∈ 𝑊1,𝑝(Ω0) is the unique solution of

−Δ𝑝𝐿 + |∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝐿 (𝜃, 𝑥) = 𝐹
+ div ((𝛼𝑥 − 𝜆(𝑥,𝜃)) ∇𝐿 (𝜃, 𝑥))
+ div [|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃) ∇𝑢 (0, 𝑥)]
− |𝐿 (𝜃, 𝑥)|𝑝−2 𝑢 (0, 𝑥) − |𝑢 (0, 𝑥)|𝑝−2 𝐿 (𝜃, 𝑥)
− (|𝑢 (0, 𝑥)|𝑝−2 + |∇𝐿 (𝜃, 𝑥)|𝑝−2)
⋅ (𝑢 (0, 𝑥)|𝑝−2 + 𝐿 (𝜃, 𝑥)) div𝜃 𝑖𝑛 Ω

𝐺𝜃 − (𝛼𝑥 − 𝜆(𝑥,𝜃)) 𝜕𝐿 (𝜃, 𝑥)
𝜕𝑛 − |∇𝐿 (𝜃, 𝑥)|𝑝−2

⋅ (𝐼 + 𝜌𝜃) 𝜕𝑢 (0, 𝑥)
𝜕𝑛 − |𝐿 (𝜃, 𝑥)|𝑝−2 𝜕𝐿 (𝜃, 𝑥)

𝜕𝑛 = 0
𝑜𝑛 𝜕Ω

(38)

where 𝐹 = −div((𝜆(𝑥,𝜃)(𝐼 + 𝜌𝜃) + 𝛼𝑥𝜌𝜃)∇𝑢(0, 𝑥) − 𝑓.𝜃).

Proof. Wemake a change of variable 𝑥 = 𝑦 + 𝜃(𝑦) where 𝑦 ∈
Ω0 and 𝑥 ∈ Ω in the variational formulation (37). We pose
𝑤(𝑦) = V(𝑥) ⇐⇒ 𝑤(𝑦) = V(𝐼𝑑+𝜃)(𝑦) ⇐⇒ V = 𝑤∘ (𝐼𝑑+𝜃)−1
noticing that 𝑤 does not depend on 𝜃. Thus by drifting the
variational formulation, we obtain by using Lemmas 5 and 7

(37) ⇐⇒
∫
Ω0

𝐴 (𝜃, 𝑢) ∇𝑤𝑑𝑦

+ ∫
Ω0

|𝑢 (𝜃, 𝑥)|𝑝−2 𝑢 (𝜃, 𝑥) .𝑤 |det∇𝑇| 𝑑𝑦

= ∫
Ω0

(𝑓 ∘ 𝑇) .𝑤 |det∇𝑇| 𝑑𝑦

+ ∫
𝜕Ω

𝑔 ∘ 𝑇𝑤 |det∇𝑇| 󵄨󵄨󵄨󵄨󵄨󵄨((∇𝑇)−1)𝑡 .𝑛󵄨󵄨󵄨󵄨󵄨󵄨R𝑁 𝑑𝑆

(39)

Or

∫
Ω0

𝐴 (𝜃, 𝑢) ∇𝑤𝑑𝑦

= ∫
Ω0

|∇𝑢 (0, 𝑥)|𝑝−2 ∇𝑢 (0, 𝑥) .∇𝑤

+ ∫
Ω0

|∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝐿 (𝜃, 𝑥) .∇𝑤

+ ∫
Ω0

(𝛼𝑥 − 𝜆(𝑥,𝜃)) ∇𝐿 (𝜃, 𝑥) ∇𝑤

+ ∫
Ω0

[|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃)] ∇𝑢 (0, 𝑥) ∇𝑤

− ∫
Ω0

(𝜆(𝑥,𝜃) (𝐼 + 𝜌𝜃) + 𝛼𝑥𝜌𝜃) ∇𝑢 (0, 𝑥) ∇𝑤
+ ∘ (𝜃)

(40)

We have by using [14]

∫
Ω0

|𝑢 (𝜃, 𝑥)|𝑝−2 𝑢 (𝜃, 𝑥) .𝑤 |det∇𝑇| 𝑑𝑦

= ∫
Ω0

|𝑢 (0, 𝑥) + 𝐿 (𝜃, 𝑥)|𝑝−2

⋅ (𝑢 (0, 𝑥) + 𝐿 (𝜃, 𝑥)) .𝑤. (1 + div (𝜃)) 𝑑𝑦 + ∘ (𝜃)
= ∫
Ω0

(|𝑢 (0, 𝑥)|𝑝−2 + |𝐿 (𝜃, 𝑥)|𝑝−2)
⋅ (𝑢 (0, 𝑥) + 𝐿 (𝜃, 𝑥)) .𝑤. (1 + div (𝜃)) 𝑤𝑑𝑦 + ∘ (𝜃)
= ∫
Ω0

|𝑢 (0, 𝑥)|𝑝−2 𝑢 (0, 𝑥) 𝑤𝑑𝑦 + ∫
Ω0

|𝐿 (𝜃, 𝑥)|𝑝−2

⋅ 𝐿 (𝜃, 𝑥) 𝑤𝑑𝑦 + ∫
Ω0

|𝐿 (𝜃, 𝑥)|𝑝−2 𝑢 (0, 𝑥) 𝑤𝑑𝑦

+ ∫
Ω0

|𝑢 (0, 𝑥)|𝑝−2 𝐿 (𝜃, 𝑥) 𝑤𝑑𝑦
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+ ∫
Ω0

(|𝑢 (0, 𝑥)|𝑝−2 + |𝐿 (𝜃, 𝑥)|𝑝−2)
⋅ (𝑢 (0, 𝑥) + 𝐿 (𝜃, 𝑥)) .𝑤.div (𝜃)𝑤𝑑𝑦 + ∘ (𝜃)

(41)

And also ∫
Ω0

(𝑓 ∘ 𝑇) .𝑤 |det∇𝑇| 𝑑𝑦 − ∫
Ω0

𝑓𝑤𝑑𝑦

= ∫
Ω0

div (𝑓.𝜃) 𝑤𝑑𝑦 + ∘ (𝜃)

Then ∫
𝜕Ω

𝑔 ∘ 𝑇𝑤 |det∇𝑇| 󵄨󵄨󵄨󵄨󵄨󵄨((∇𝑇)−1)𝑡 .𝑛󵄨󵄨󵄨󵄨󵄨󵄨R𝑁 𝑑𝑆

− ∫
𝜕Ω0

𝑔𝑤𝑑𝑆 = ∫
𝜕Ω0

(∇𝑔𝜃 + 𝑔 (div𝜃 − ∇𝜃𝑛.𝑛))
⋅ 𝑤𝑑𝑆 + ∘ (𝜃)

(42)

And

∫
Ω0

𝐴 (𝜃, 𝑢) ∇𝑤𝑑𝑦 + ∫
Ω0

|𝑢 (𝜃, 𝑥)|𝑝−2

⋅ 𝑢 (𝜃, 𝑥) .𝑤 |det∇𝑇| 𝑑𝑦
− ∫
Ω0

|𝑢 (𝜃, 𝑥)|𝑝−2 ∇𝑢 (𝜃, 𝑥) .∇𝑤 − ∫
Ω0

|𝑢 (𝜃, 𝑥)|𝑝−2

⋅ 𝑢 (𝜃, 𝑥) .𝑤𝑑𝑦 = ∫
Ω0

|∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝐿 (𝜃, 𝑥) .∇𝑤

− ∫
Ω0

|𝐿 (𝜃, 𝑥)|𝑝−2 𝐿 (𝜃, 𝑥) .𝑤𝑑𝑦

+ ∫
Ω0

(𝛼𝑥 − 𝜆(𝑥,𝜃)) ∇𝐿 (𝜃, 𝑥) ∇𝑤

+ ∫
Ω0

[|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃)] ∇𝑢 (0, 𝑥) ∇𝑤

− ∫
Ω0

(𝜆(𝑥,𝜃) (𝐼 + 𝜌𝜃) + 𝛼𝑥𝜌𝜃) ∇𝑢 (0, 𝑥) ∇𝑤

+ ∫
Ω0

|𝐿 (𝜃, 𝑥)|𝑝−2 𝑢 (0, 𝑥) 𝑤𝑑𝑦 + ∫
Ω0

|𝑢 (𝜃, 𝑥)|𝑝−2

⋅ 𝐿 (𝜃, 𝑥) 𝑤𝑑𝑦 + ∫
Ω0

(|𝑢 (0, 𝑥)|𝑝−2 + |𝐿 (𝜃, 𝑥)|𝑝−2)

⋅ (𝑢 (0, 𝑥) + 𝐿 (𝜃, 𝑥)) .𝑤.div (𝜃) 𝑤𝑑𝑦 = ∫
Ω0

div (𝑓.𝜃)

⋅ 𝑤𝑑𝑦 + ∫
𝜕Ω0

(∇𝑔𝜃 + 𝑔 (div𝜃 − ∇𝜃𝑛.𝑛)) 𝑤𝑑𝑆
+ ∘ (𝜃)

(43)

For

∫
Ω0

−Δ𝑝𝐿.𝑤𝑑𝑦 + ∫
Ω0

|𝐿 (𝜃, 𝑥)|𝑝−2 𝐿 (𝜃, 𝑥) 𝑤𝑑𝑦

− ∫
Ω0

div ((𝛼𝑥 − 𝜆(𝑥,𝜃)) ∇𝐿 (𝜃, 𝑥)) 𝑤𝑑𝑦

− ∫
Ω0

div (|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃) ∇𝑢 (0, 𝑥)) 𝑤𝑑𝑦

+ ∫
Ω0

div ((𝜆(𝑥,𝜃) (𝐼 + 𝜌𝜃) + 𝛼𝑥𝜌𝜃) ∇𝑢 (0, 𝑥)) 𝑤𝑑𝑦

+ ∫
Ω0

|𝐿 (𝜃, 𝑥)|𝑝−2 𝑢 (0, 𝑥) 𝑤𝑑𝑦 + ∫
Ω0

|𝑢 (𝜃, 𝑥)|𝑝−2

⋅ 𝐿 (𝜃, 𝑥) 𝑤𝑑𝑦 + ∫
Ω0

(|𝑢 (0, 𝑥)|𝑝−2 + |𝐿 (𝜃, 𝑥)|𝑝−2)

⋅ (𝑢 (0, 𝑥) + 𝐿 (𝜃, 𝑥)) .𝑤.div (𝜃) 𝑤𝑑𝑦 − ∫
Ω0

div (𝑓.𝜃)

⋅ 𝑤𝑑𝑦 = ∫
𝜕Ω0

(∇𝑔𝜃 + 𝑔 (div𝜃 − ∇𝜃𝑛.𝑛)) 𝑤𝑑𝑆

− ∫
𝜕Ω0

|𝐿 (𝜃, 𝑥)|𝑝−2 𝜕𝐿 (𝜃, 𝑥)
𝜕𝑛 𝑤𝑑𝑆

− ∫
𝜕Ω0

(𝛼𝑥 − 𝜆(𝑥,𝜃)) 𝜕𝐿 (𝜃, 𝑥)
𝜕𝑛 𝑤𝑑𝑆

− ∫
𝜕Ω0

|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃) 𝜕𝑢 (0, 𝑥)
𝜕𝑛 𝑤𝑑𝑆

+ ∫
𝜕Ω0

|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃) 𝜕𝑢 (0, 𝑥)
𝜕𝑛 𝑤𝑑𝑆

+ ∫
𝜕Ω0

(𝜆(𝑥,𝜃) (𝐼 + 𝜌𝜃) + 𝛼𝑥𝜌𝜃) 𝜕𝑢 (0, 𝑥)
𝜕𝑛 𝑤𝑑𝑆

= [𝐺𝜃 − (𝛼𝑥 − 𝜆(𝑥,𝜃)) 𝜕𝐿 (𝜃, 𝑥)
𝜕𝑛 − |∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼

+ 𝜌𝜃) 𝜕𝑢 (0, 𝑥)
𝜕𝑛 − |𝐿 (𝜃, 𝑥)|𝑝−2 𝜕𝐿 (𝜃, 𝑥)

𝜕𝑛 ]
⋅ 𝑤𝑑𝑆

(44)

We note 𝐺𝜃 = ∇𝑔𝜃 + 𝑔 (div𝜃 − ∇𝜃𝑛.𝑛) + (𝜆(𝑥,𝜃) (𝐼
+ 𝜌𝜃) + 𝛼𝑥𝜌𝜃) 𝜕𝑢 (0, 𝑥)

𝜕𝑛
(45)

So the transported derivative of 𝑢(𝜃, 𝑥) at 0 in the direction 𝜃
is the Lagrangian 𝐿=< 𝑢󸀠(0), 𝜃 > which is the solution of the
following equation:

− Δ𝑝𝐿 + |∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝐿 (𝜃, 𝑥) = 𝐹
+ div ((𝛼𝑥 − 𝜆(𝑥,𝜃)) ∇𝐿 (𝜃, 𝑥))
+ div [|∇𝐿 (𝜃, 𝑥)|𝑝−2 (𝐼 + 𝜌𝜃) ∇𝑢 (0, 𝑥)]
− |𝐿 (𝜃, 𝑥)|𝑝−2 𝑢 (0, 𝑥) − |𝑢 (0, 𝑥)|𝑝−2 𝐿 (𝜃, 𝑥)
− (|𝑢 (0, 𝑥)|𝑝−2 + |∇𝐿 (𝜃, 𝑥)|𝑝−2)
⋅ (𝑢 (0, 𝑥)|𝑝−2 + 𝐿 (𝜃, 𝑥)) div𝜃 𝑖𝑛 Ω
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𝐺𝜃 − (𝛼𝑥 − 𝜆(𝑥,𝜃)) 𝜕𝐿 (𝜃, 𝑥)
𝜕𝑛 − |∇𝐿 (𝜃, 𝑥)|𝑝−2

⋅ (𝐼 + 𝜌𝜃) 𝜕𝑢 (0, 𝑥)
𝜕𝑛 − |𝐿 (𝜃, 𝑥)|𝑝−2 𝜕𝐿 (𝜃, 𝑥)

𝜕𝑛 = 0
on 𝜕Ω

(46)
where 𝐹 = −div((𝜆(𝑥,𝜃)(𝐼 + 𝜌𝜃) + 𝛼𝑥𝜌𝜃)∇𝑢(0, 𝑥) − 𝑓.𝜃).
3. Optimality Condition

To calculate the optimality conditions of the following prob-
lem infΩ∈𝑈𝑎𝑑𝐽(Ω) with 𝑈𝑎𝑑 = {Ω ∈ 𝐶(Ω0) and ∫

𝑥
𝑑𝑥 =

𝑉0}, where 𝐶(Ω0) is the set of admissible forms obtained by
diffeomorphism, the cost function 𝐽(Ω) is the compliance
defined by

𝐽 (Ω) = ∫
Ω

󵄨󵄨󵄨󵄨𝑢 (Ω) − 𝑢 (Ω0)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 (47)

to reach a target displacement 𝑢(Ω0) ∈ 𝐿𝑝(RN) where the
function 𝑢(Ω) is solution of the boundary problem posed
(resp., Dirichlet or Neumann boundary conditions).

We consider the following boundary value problems.

Dirichlet Boundary Condition

−Δ𝑝 (𝑢) = 𝑓 𝑖𝑛 Ω
𝑢 = 0 𝑜𝑛 𝜕Ω (48)

where 𝑓 ∈ 𝑊1,𝑝(R𝑁).
Neumann Boundary Condition

−Δ𝑝 (𝑢) + |𝑢|𝑝−2 𝑢 = 𝑓 𝑖𝑛 Ω
|∇𝑢|𝑝−2 𝜕𝑢𝜕𝑛 = 𝑔 𝑜𝑛 𝜕Ω

(49)

where 𝑓 ∈ 𝑊1,𝑝(R𝑁) and 𝑔 ∈ 𝑊2,𝑝(R𝑁).
The problems admit a unique solution 𝑢(Ω).

Theorem 13. Let Ω0 be a regular bounded open set. The cost
function 𝐽(Ω) is differentiable and its derivative is

𝐽󸀠 (Ω0) (𝜃) = ∫
Ω0

󵄨󵄨󵄨󵄨𝑢 (Ω0) − 𝑢0󵄨󵄨󵄨󵄨𝑝−2 div (𝜃)

+ 𝑝 󵄨󵄨󵄨󵄨𝑢 (Ω0) − 𝑢0󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (Ω0) − 𝑢0)
⋅ (𝐿 − 𝜃.∇𝑢0) 𝑑𝑥

(50)

𝐿 is the Lagrangian derivative and also solution of

−Δ𝑝𝐿 − div [𝛼𝑥∇𝐿 (𝜃, 𝑥)]
− div (|∇𝐿 (𝜃, 𝑥)|𝑝−2 ∇𝑢 (0, 𝑥)) = 𝑔󸀠 + div (𝑓.𝜃)

𝑖𝑛 Ω
𝐿 = 0 𝑜𝑛 𝜕Ω

(51)

with 𝑔󸀠 = −div[(𝜆(𝑥,𝜃) + 𝛼𝑥𝜌𝜃)∇𝑢(0, 𝑥)].

Proof. By applying Proposition 4 for the compliance we ob-
tain

𝐽󸀠 (Ω0) (𝜃) = ∫
Ω0

󵄨󵄨󵄨󵄨𝑢 (Ω0) − 𝑢0󵄨󵄨󵄨󵄨𝑝−2 div (𝜃)

+ ∫
Ω0

󵄨󵄨󵄨󵄨𝑢 (Ω0) − 𝑢0󵄨󵄨󵄨󵄨𝑝 𝜃

𝐽󸀠 (Ω0) (𝜃) = ∫
Ω0

󵄨󵄨󵄨󵄨𝑢 (Ω0) − 𝑢0󵄨󵄨󵄨󵄨𝑝−2 div (𝜃)

+ 𝑝∫
Ω0

󵄨󵄨󵄨󵄨𝑢 (Ω0) − 𝑢0󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (Ω0) − 𝑢0)
⋅ (∇𝑢 − ∇𝑢0) 𝑑𝑥

𝐽󸀠 (Ω0) (𝜃) = ∫
Ω0

󵄨󵄨󵄨󵄨𝑢 (Ω0) − 𝑢0󵄨󵄨󵄨󵄨𝑝−2 div (𝜃)

+ 𝑝 󵄨󵄨󵄨󵄨𝑢 (Ω0) − 𝑢0󵄨󵄨󵄨󵄨𝑝−2 (𝑢 (Ω0) − 𝑢0)
⋅ (𝐿 − 𝜃.∇𝑢0) 𝑑𝑥

(52)

where𝐿 is the Lagrangian derivative, solution of the PDE.
Remark 14. From extensive literature which deals with opti-
mumcondition calculus for problems as inf Ω∈U𝑎𝑑𝐽(Ω)we can
cite

(i) 𝐽1(Ω) = ∫
𝜕Ω0

|𝑢(Ω0) − 𝑢0|𝑝𝑑𝑆
(ii) 𝐽2(Ω) = ∫

𝜕Ω0
|∇𝑢(Ω0)−∇𝑢0|𝑝𝑑𝑆+∫

𝜕Ω0
|𝑢(Ω0)−𝑢0|𝑝𝑑𝑆

So, to calculate the gradient of each compliance we use the
same argument by the propositions [13].
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Consider Krein spaces U and Y and let H𝑘 and K𝑘 be regular subspaces of U and Y, respectively, such that H𝑘 ⊂ H𝑘+1 and
K𝑘 ⊂ K𝑘+1 (𝑘 ∈ N). For each 𝑘 ∈ N, let 𝐴𝑘 : H𝑘 → K𝑘 be a contraction. We derive necessary and sufficient conditions for the
existence of a contraction 𝐵 : U→ Y such that 𝐵|H𝑘 = 𝐴𝑘. Some interesting results are proved along the way.

1. Introduction

A number of extensions and generalizations of classical func-
tion theoretic interpolation problems are driven by factors
such as applications in systems and control theory.Many such
extensions and generalizations make use of the commutant
lifting theorem in one way or another. In particular, the
commutant lifting theorem in the Hilbert space case which
was obtained by Sz.-Nagy and Foias has been used to
solve extension problems like the ones of Nevanlinna-Pick,
Nudelman, Nehari, and many others. Extensions of this
theorem to an indefinite setting are given in [1–5]. In [6]
(see also [7, 8]), a time-variant version of the commutant
lifting theorem is developed. This time-variant version is
called the three-chain completion theorem and is used to solve
a number of nonstationary norm constrained interpolation
problems on Hilbert spaces. Recall (see [6]) that the given
data for the three-chain completion problem are bounded
linear operators𝐴𝑘 :H𝑘 󳨀→K𝑘 ⊖M𝑘 (𝑘 ∈ Z) , (1)

where H𝑘 ⊂ U and M𝑘 ⊂ K𝑘 ⊂ Y for 𝑘 ∈ Z are Hilbert
spaces satisfying the inclusion relations

H𝑘−1 ⊂H𝑘,
M𝑘−1 ⊂M𝑘,

K𝑘−1 ⊂K𝑘 (𝑘 ∈ Z) .
(2)

Given operators (1) and tolerance 𝛾 the problem is to find an
operator 𝐵 : U→ Y such that ‖𝐵‖ ≤ 𝛾 and𝐵H𝑘 ⊂K𝑘,(𝐼 − 𝑃M𝑘) 𝐵󵄨󵄨󵄨󵄨󵄨H𝑘 = 𝐴𝑘 (𝑘 ∈ Z) . (3)

As far as we know, no extension of this theorem to an
indefinite setting has been developed so far.

The three-chain theorem mentioned above is the moti-
vation for the extension problem considered in this paper.
For 𝑘 ∈ N, consider a sequence of Krein space contractions𝐴𝑘 : H𝑘 → K𝑘, where H𝑘 and K𝑘 are nested regular
subspaces of some Krein spaces U and Y, respectively. The
problem is to find a contraction 𝐵 : U→ Y such that𝐵ℎ = 𝐴𝑘ℎ (4)

for all ℎ ∈H𝑘.
In order to keep this paper as self-contained as possible,

we briefly outline some definitions and some elementary facts
about Krein spaces and bounded linear operators defined
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on them. This is done in Section 2. Some important results
are stated and proved in Section 3. An extension theorem is
considered in Section 4 while Section 5 contains some simple
application of the extension theorem discussed in Section 4.

2. Preliminaries

In this section we recall some definitions and basic notions of
indefinite metric space theory. More details can be obtained
from [2, 9–12].

LetK be a linear space and let ⟨⋅, ⋅⟩ be a sesquilinear form
onK.This sesquilinear form is called an indefinite metric on
K. IfK admits a direct orthogonal sum decomposition

K =K
+ ⊕K− (5)

in which (K±, ±⟨⋅, ⋅⟩) are Hilbert spaces, then K (or(K, ⟨⋅, ⋅⟩)) is called aKrein space. Decomposition (5), which is
not unique in general, is called a fundamental decomposition
and gives rise to orthogonal projections from K onto K±,
which we denote by 𝑃±, respectively. The self-adjoint and
unitary operator 𝐽 on K defined by 𝐽 = 𝑃+ − 𝑃−, is called
a fundamental symmetry onK.

The spaceK with the inner product[𝑥, 𝑦] = ⟨𝐽𝑥, 𝑦⟩ = ⟨𝑥+, 𝑦+⟩ − ⟨𝑥−, 𝑦−⟩ , 𝑥±, 𝑦± ∈K± (6)

is a Hilbert space. This inner product is used to define the
norm of an element 𝑥 of the Krein spaceK by‖𝑥‖2 = [𝑥, 𝑥] . (7)

Topological notions such as convergence and continuity are
understood to be with respect to this norm topology. The
inner product [⋅, ⋅] in (6) depends on decomposition (5), as
does the norm ‖⋅‖ in (7), but the norms generated by different
decompositions ofK are equivalent.Wewill denote the norm‖ ⋅ ‖ in (7) by ‖ ⋅ ‖𝐽 where clarity is needed.

An orthogonal projection in a Krein space is a bounded
self-adjoint operator 𝑅 inK such that 𝑅2 = 𝑅. Note that the
norm of an orthogonal projection in a Krein space need not
be less than 1. The rangeM of an orthogonal projection 𝑅 in
a Krein space K is a closed subspace of K and the space K
can be decomposed as

K =M ⊕M⊥, (8)

where M⊥ = {𝑙 ∈ K : ⟨𝑙, 𝑚⟩ = 0 ∀𝑚 ∈ M}.
On the other hand, given a closed subspace M of K
such that decomposition (8) holds, then M is the range of
an orthogonal projection in K. In this case, (M, ⟨⋅, ⋅⟩) is
again a Krein space. Unlike in the Hilbert space case, the
decomposition (8) need not hold for a given closed subspace.
Closed subspaces for which this decomposition holds are
referred to as regular subspaces.

Let H and K be Krein spaces and let 𝑇 : H → K be a
bounded linear operator. We say that 𝑇 is a contraction if for
all 𝑥 ∈H, ⟨𝑇𝑥, 𝑇𝑥⟩K ≤ ⟨𝑥, 𝑥⟩H. If both𝑇 and its Krein space
adjoint 𝑇∗ are contractions, then 𝑇 is called a bicontraction.

Let H and K be Krein spaces and let 𝑇 ∈ 𝐵(H,K), the
space of bounded linear operators fromH intoK. A column
extension of 𝑇 is an operator of the form

𝐶 = (𝑇𝐸) :H 󳨀→ (K
E
) , (9)

whereE is aKrein space and𝐸 ∈ 𝐵(H,E). By a row extension
of 𝑇 we shall mean an operator of the form

𝐿 = (𝑇 𝐸) : (H
E
) 󳨀→K, (10)

where E is a Krein space and 𝐸 ∈ 𝐵(E,K). It is shown
in [2] (see also [3]) that if 𝑇 is a contraction, then there
exist contractive row and column extensions of 𝑇 where the
extension space is a Hilbert space. Contractive 2 × 2 matrix
extensions of a contractive operator 𝑇 : H → K where the
extending spaceE is a Hilbert space are thoroughly discussed
in [2]where Lemma 1,Theorem2, andLemma3 can be found.
Results more general than those provided by Lemma 1 and
Theorem 2 can be found in [1] while Lemma 3 can also be
found in [4].

Lemma 1. LetH andK be Krein spaces and let𝑇 ∈ 𝐵(H,K)
be a contraction. Let

𝐶 = ( 𝑇̃𝐸∗) ∈ 𝐵 (H,K ⊕ Ẽ) (11)

be a contractive column extension of 𝑇 with Ẽ a Hilbert space.
If norms are computed relative to some fixed fundamental
decompositions of H and K and the induced fundamental
decomposition ofK ⊕ Ẽ, then‖𝐶‖2 ≤ 1 + 2 ‖𝑇‖2 . (12)

The above norm estimate enables one to fix a bound for
the norm of the operator 𝐶. The following lemma is helpful
in finding 2×2matrix extensions of a contractive operator 𝑇.
See [13] for a similar result in a Hilbert space setting.

Theorem 2. LetH,K, and E be Krein spaces and let Ẽ be a
Hilbert space. Assume that

(𝐶11 𝐶12) : (H
E
) 󳨀→K,

(𝐶11𝐶21) :H 󳨀→ (K
Ẽ
) (13)

are contractions. Then there exists an operator 𝐶22 : E → Ẽ
such that

𝐶 = (𝐶11 𝐶12𝐶21 𝐶22) : (HE) 󳨀→ (K
Ẽ
) (14)

is a contraction. If (𝐶11 𝐶12) (15)

is a bicontraction,𝐶22may be chosen such that𝐶 is a bicontrac-
tion.
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We conclude this section by stating the following lemma.

Lemma 3. Let N1,N2, . . . be regular subspaces of a Krein
space H such that N1 ⊃ N2 ⊃ ⋅ ⋅ ⋅ . Suppose that the
projections 𝑃1, 𝑃2, . . . of H onto the subspaces N1,N2, . . . are
uniformly bounded. Then

N = ∞⋂
𝑛=1

N𝑛,
M = spanN⊥𝑛 ,𝑛 = 1, 2, . . .

(16)

are regular subspaces ofHwithN =M⊥. If 𝑃 is the projection
of H onto N, then 𝑃 = lim𝑛→∞𝑃𝑛 with convergence in the
strong operator topology.

3. Some Preliminary Results

In this section we prove some useful results regarding
sequences of regular subspaces. See [4, Corollary 3.3 and
Lemma 3.4] for closely related results.

Theorem 4. For 𝑛 ≥ 1, let L𝑛 be a sequence of regular
subspaces of a Krein space H such that L𝑛 ⊂ L𝑛+1, 𝑛 ∈ N.
For each 𝑛 ∈ N, let 𝑃𝑛 be the projection of H onto L𝑛. If the
projections 𝑃𝑛 are uniformly bounded then L = spanL𝑛 is a
regular subspace ofH.

Proof. Set N1 = L⊥1 , N2 = L⊥2 , . . .. Then N1,N2, . . . is a
sequence of regular subspaces of H such that N1 ⊃ N2 ⊃⋅ ⋅ ⋅ . Let𝑄1, 𝑄2, . . . be the projections ofH onto the subspaces
N1,N2, . . .. Then 𝑄𝑛 = (1 − 𝑃𝑛) and so ‖𝑄𝑛‖ ≤ 1 + ‖𝑃𝑛‖.
Since the projections 𝑃𝑛 are uniformly bounded we see that
the projections𝑄𝑛 are also uniformly bounded. HenceL is a
regular subspace ofH by Lemma 3.

Theorem 5. For 𝑛 ≥ 1, letL𝑛 be regular subspaces of a Krein
space K such that L𝑛 ⊂ L𝑛+1. Let 𝑃𝑛 be the projection of K
onto L𝑛. If L𝑛 = L+𝑛 ⊕L−𝑛 is a fundamental decomposition
ofL𝑛, we denote by 𝑄±𝑛 the projection ofL𝑛 ontoL±𝑛 . Let

L = spanL𝑛. (17)

Then the following are equivalent:

(1) L is regular and there exists a fundamental symmetry𝐽 on L such that 𝐽 | L𝑛 is a fundamental symmetry
onL𝑛.

(2) There exist fundamental decompositions L𝑛 = L+𝑛 ⊕
L−𝑛 such that

(a) L±𝑛 ⊂L±𝑛+1,
(b) sup‖𝑄±𝑛𝑃𝑛‖𝐽 < ∞,

where 𝐽 is any fundamental symmetry onK.

Proof. Suppose that (1) holds and let L = L+ ⊕ L− be
the fundamental decomposition ofL which gives rise to the

fundamental symmetry 𝐽 = 𝑄+−𝑄− with the stated property,
where 𝑄±L = L±. Then 𝐽 | L𝑛 = 𝑄+𝑛 − 𝑄−𝑛 where 𝑄±𝑛L𝑛 =
L±𝑛 . To show that (a) holds, we let 𝑥 ∈L+𝑛 . Then𝑥 = 𝑄+𝑛𝑥 − 𝑄−𝑛𝑥 = 𝐽𝑥 = 𝑄+𝑛+1𝑥 − 𝑄−𝑛+1𝑥. (18)

Hence 𝑥 = 𝑄+𝑛+1𝑥−𝑄−𝑛+1𝑥 and so (𝐼 −𝑄+𝑛+1)𝑥 = −𝑄−𝑛+1𝑥. This
means that 𝑄−𝑛+1𝑥 = −𝑄−𝑛+1𝑥 and that 𝑄−𝑛+1𝑥 = 0. Therefore𝑥 = 𝑄+𝑛+1𝑥 ∈ L+𝑛+1. Similarly, we have that L−𝑛 ⊂ L−𝑛+1.
Hence (a) holds. To show that (b) also holds, we let𝑦 ∈K =L𝑛 ⊕ (L ⊖L𝑛) ⊕L⊥. (19)

Let 𝐽𝑛 = 𝐽 |L𝑛, 𝐽𝑛 = 𝐽 | (L⊖L𝑛) and let 𝐽⊥ be a fundamental
symmetry onL⊥.Then 𝐽 fl 𝐽+𝐽⊥ is a fundamental symmetry
onK. Now,󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2K,𝐽 = ⟨𝐽𝑦, 𝑦⟩= ⟨𝐽 (𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛) , (𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛)⟩

= ⟨𝐽𝑛𝑥𝑛, 𝑥𝑛⟩ + ⟨𝐽𝑛𝑦𝑛, 𝑦𝑛⟩ + ⟨𝐽⊥𝑧𝑛, 𝑧𝑛⟩ ,
(20)

where 𝑦 = 𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 with 𝑥𝑛 ∈ L𝑛, 𝑦𝑛 ∈ (L ⊖L𝑛) and𝑧𝑛 ∈L⊥. Therefore󵄩󵄩󵄩󵄩𝑄+𝑛𝑃𝑛𝑦󵄩󵄩󵄩󵄩2L𝑛,𝐽𝑛 = 󵄩󵄩󵄩󵄩𝑄+𝑛𝑥𝑛󵄩󵄩󵄩󵄩2L𝑛 ,𝐽𝑛 = ⟨𝐽𝑛𝑄+𝑛𝑥𝑛, 𝑄+𝑛𝑥𝑛⟩= ⟨𝑄+𝑛𝑥𝑛, 𝑄+𝑛𝑥𝑛⟩ = ⟨𝑄+𝑛𝑥𝑛, 𝑥𝑛⟩= ⟨(𝑄+𝑛 − 𝑄−𝑛 ) 𝑥𝑛, 𝑥𝑛⟩ + ⟨𝑄−𝑛𝑥𝑛, 𝑥𝑛⟩≤ ⟨(𝑄+𝑛 − 𝑄−𝑛 ) 𝑥𝑛, 𝑥𝑛⟩ = ⟨𝐽𝑛𝑥𝑛, 𝑥𝑛⟩≤ ⟨𝐽𝑛𝑥𝑛, 𝑥𝑛⟩ + ⟨𝐽𝑛𝑦𝑛, 𝑦𝑛⟩ + ⟨𝐽⊥𝑧𝑛, 𝑧𝑛⟩
= 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2K .

(21)

Hence ‖𝑄+𝑛𝑃𝑛‖ ≤ 1. Similarly ‖𝑄−𝑛𝑃𝑛‖ ≤ 1.
Conversely, assume that (2) holds. We start by showing

thatL is regular. To do this we note that 𝑃𝑛 = (𝑄+𝑛 + 𝑄−𝑛 )𝑃𝑛.
So ‖𝑃𝑛‖ ≤ ‖𝑄+𝑛𝑃𝑛‖ + ‖𝑄−𝑛𝑃𝑛‖ ≤ 𝑀1 for some constant𝑀1 > 0.
HenceL = spanL𝑛 is regular byTheorem 4.

Next set N𝑛 = (L+𝑛 )⊥ and let 𝑅𝑛 be the projection
of K onto N𝑛 = (L+𝑛 )⊥. Then 𝑅𝑛 = 𝐼 − 𝑄+𝑛𝑃𝑛. Hence‖𝑅𝑛‖ ≤ 1 + ‖𝑄+𝑛𝑃𝑛‖ ≤ 𝑀2 for some constant 𝑀2 > 0
since (2) holds. Hence N+ fl ⋂N𝑛 and M+ fl spanL+𝑛
are regular subspaces by Lemma 3. Let 𝑥 ∈ M+. Then
there exists a sequence 𝑥𝑛 ∈ spanL+𝑛 such that 𝑥𝑛 → 𝑥.
Hence ⟨𝑥𝑛, 𝑥𝑛⟩ → ⟨𝑥, 𝑥⟩. This means that ⟨𝑥, 𝑥⟩ ≥ 0 since⟨𝑥𝑛, 𝑥𝑛⟩ ≥ 0. Hence M+ is regular and nonnegative and so
it is a uniformly positive subspace of L. Similarly M− fl
spanL−𝑛 is a uniformly negative subspace ofL.Wenow show
that

L =M
+ ⊕M−. (22)
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Let 𝑥 ∈ M+. Then there exists a sequence 𝑥𝑛 ∈ span L+𝑛
such that 𝑥𝑛 → 𝑥. If 𝑦 ∈ M− then there exists a sequence𝑦𝑛 ∈ span L−𝑛 such that 𝑦𝑛 → 𝑦. Hence ⟨𝑥, 𝑦⟩ = lim⟨𝑥𝑛, 𝑦𝑛⟩
= 0. This implies that M+ ⊥ M−. Next, assume that 𝑢 ∈
L ⊖ (M+ ⊕M−). Then 𝑢 ⊥ M+ and 𝑢 ⊥ M−. This in turn
means that 𝑢 ⊥ L+𝑛 and 𝑢 ⊥ L−𝑛 and so 𝑢 ⊥ L𝑛. Let V ∈ L.
Then there exists a sequence V𝑛 ∈ spanL𝑛 such that V𝑛 → V.
Hence ⟨𝑢, V⟩ = lim⟨𝑢, V𝑛⟩ = 0 for all V ∈ L and so V = 0.
Hence L = M+ ⊕ M−. This implies that M+ is maximal
positive andM− ismaximal negative.HenceM+ is amaximal
uniformly positive space and M− is a maximal uniformly
negative space. Since M+ ⊥ M−, M+ is uniformly positive
and M− is uniformly negative, there exists a fundamental
decomposition L = L+ ⊕ L− such that M± ⊂ L±. But
M± maximal implies M± = L±. Hence L = M+ ⊕ M−

is a fundamental decomposition of L. This decomposition
gives rise to a fundamental symmetry 𝐽 = 𝑄+ − 𝑄− where𝑄±L =M±.

We show that 𝐽 | L𝑛 = 𝑄+𝑛 − 𝑄−𝑛 . Let 𝑥 ∈ L𝑛 ⊂ L.
Then 𝑥 = 𝑥+ + 𝑥−, 𝑥± ∈ L±𝑛 ⊂ spanL±𝑛 = M±. Hence𝑄+𝑥 = 𝑄+(𝑥+ + 𝑥−) = 𝑥+ = 𝑄+𝑛𝑥. Similarly, 𝑄−𝑥 = 𝑄−𝑛𝑥 and
so 𝐽 |L𝑛 = 𝑄+𝑛 − 𝑄−𝑛 .
Corollary 6. For 𝑛 ≥ 1, let K, L𝑛, L, and 𝑃𝑛 be as in
Theorem 5. Then there exists a fundamental symmetry 𝐽 onK
which commutes with the projections 𝑃𝑛 ontoL𝑛 if and only if
L is regular and there exists a fundamental symmetry 𝐽󸀠 onL
such that 𝐽󸀠 |L𝑛 is a fundamental symmetry onL𝑛.

Proof. Suppose that L is regular and 𝐽󸀠 exists which has the
stated property. Let L = L+ ⊕ L− be the fundamental
decomposition which gives rise to 𝐽󸀠. SinceL is regular there
exists a fundamental decomposition K = K+ ⊕ K− such
thatL± ⊂K±. This gives rise to 𝐽 onK such that 𝐽 |L𝑛 is a
fundamental symmetry onL𝑛. Let𝑓 ∈K.Then𝑓 = 𝑓𝑛+𝑓⊥𝑛 ,
where 𝑓𝑛 ∈ L𝑛 and 𝑓⊥𝑛 ∈ L⊥𝑛 . Now, 𝐽𝑃𝑛𝑓 = 𝐽𝑓𝑛 = 𝑓+𝑛 − 𝑓−𝑛
(where 𝑓±𝑛 ∈L±𝑛 , L𝑛 =L+𝑛 ⊕L−𝑛 ). On the other hand,

𝑃𝑛𝐽𝑓 = 𝑃𝑛𝐽 (𝑓𝑛 + 𝑓⊥𝑛 )= 𝑃𝑛𝐽 [(𝑓+𝑛 + 𝑓−𝑛 ) + (𝑓⊥+𝑛 + 𝑓⊥−𝑛 )]= 𝑃𝑛 [𝐽 (𝑓+𝑛 + 𝑓−𝑛 ) + 𝐽 (𝑓⊥+𝑛 + 𝑓⊥−𝑛 )]= 𝑃𝑛 (𝑓+𝑛 − 𝑓−𝑛 ) + 𝑃𝑛 (𝑓⊥+𝑛 − 𝑓⊥−𝑛 ) = 𝑓+𝑛 − 𝑓−𝑛 .
(23)

Hence 𝐽𝑃𝑛 = 𝑃𝑛𝐽.
Conversely, assume that there exists a fundamental sym-

metry 𝐽onK that commuteswith the projections𝑃𝑛. To show
that𝑃𝑛’s are uniformly boundedwe consider the fundamental
decomposition K = K+ ⊕ K− which gives rise to the
fundamental symmetry 𝐽. Let

𝑃𝑛 = (𝐴𝑛11 𝐴𝑛12𝐴𝑛21 𝐴𝑛22) : (K+K−

) 󳨀→ (L+𝑛
L−𝑛

) (24)

be the matrix representation of 𝑃𝑛 with respect to these
decompositions. Then the commutativity condition

(1 00 −1)(𝐴
𝑛
11 𝐴𝑛12𝐴𝑛21 𝐴𝑛22) = (𝐴

𝑛
11 𝐴𝑛12𝐴𝑛21 𝐴𝑛22)(1 00 −1) (25)

implies that 𝐴𝑛21 = 𝐴𝑛12 = 0 and so the matrix representation
of 𝑃𝑛 is diagonal; that is to say,

𝑃𝑛 = (𝐴𝑛11 00 𝐴𝑛22) : (K+K−

) 󳨀→ (L+𝑛
L−𝑛

) . (26)

Since ‖𝐴𝑛11‖ ≤ 1 and ‖𝐴𝑛22‖ ≤ 1 for all 𝑛 ∈ N, we see that𝑃𝑛’s are uniformly bounded.The uniformboundedness of𝑃𝑛’s
implies that L is regular. From the matrix representation of𝑃𝑛 above we see that 𝐴𝑛11 = 𝑄+𝑛𝑃𝑛 and 𝐴𝑛22 = 𝑄−𝑛𝑃𝑛 and so
sup‖𝑄±𝑛𝑃𝑛‖ < ∞. Hence condition (b) in Theorem 5 holds.
Since, for each 𝑛 ∈ N, L𝑛 is a regular subspace and L𝑛 ⊂
L𝑛+1, we have that, for any fundamental decomposition
L𝑛 =L+𝑛 ⊕L−𝑛 , there exist a fundamental decomposition

L𝑛+1 =L
+
𝑛+1 ⊕L−𝑛+1 (27)

such thatL±𝑛 ⊂L±𝑛+1. Hence condition (a) inTheorem 5 also
holds. This shows that part (1) of Theorem 5 holds and this
completes the proof.

4. An Extension Theorem for
a Sequence of Contractions

In this section, we formulate and give a proof of an extension
theorem for a sequence of contractions defined on a nested
sequence of regular subspaces. Please refer to [14, Lemma 3.1]
and [5] for closely related results.

Theorem7. LetU andY be Krein spaces and letH𝑘 ⊂ U and
K𝑘 ⊂ Y, 𝑘 ∈ N, be sequences of regular subspaces satisfying

H𝑘 ⊂H𝑘+1,
K𝑘 ⊂K𝑘+1. (28)

Let 𝑃H𝑘 and 𝑃K𝑘 be the orthogonal projections of U onto H𝑘
andY ontoK𝑘, respectively, and let H̃ = spanH𝑘 and K̃ =
spanK𝑘. Assume that there exist fundamental symmetries 𝐽
on U and 𝐽󸀠 on Y such that 𝐽 commutes with 𝑃H𝑘 and 𝐽󸀠
commutes with 𝑃K𝑘 and that U ⊖ H̃, Y ⊖ K̃, H𝑘+1 ⊖ H1,
andK𝑘+1 ⊖K1 are all Hilbert space.

For each 𝑘 ∈ N, let𝐴𝑘 :H𝑘 󳨀→K𝑘 (29)

be a contraction. Then there exists a contraction 𝐵 : U → Y
such that 𝐵|H𝑘 = 𝐴𝑘, 𝑘 ∈ N, (30)

if and only if 𝐴𝑘+1󵄨󵄨󵄨󵄨H𝑘 = 𝐴𝑘,
sup
𝑘∈N

󵄩󵄩󵄩󵄩𝐴𝑘󵄩󵄩󵄩󵄩 < ∞. (31)
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Proof. First, let us assume that such an extension 𝐵 ∈𝐵(U,Y) exists and take ℎ𝑘 ∈ H𝑘. Since H𝑘 ⊂ H𝑘+1 and
(30) holds, we have that𝐴𝑘+1ℎ𝑘 = 𝐵ℎ𝑘 = 𝐴𝑘ℎ𝑘 (32)

and therefore 𝐴𝑘+1|H𝑘 = 𝐴𝑘. Hence the first condition in
(31) holds. To show that the second condition also holds, we
first note that since 𝐽 and 𝐽󸀠 commute with 𝑃H𝑘 and 𝑃K𝑘 ,
respectively, Corollary 6 ensures that the subspaces H̃ and
K̃ are regular and that there exist fundamental symmetries𝐽H̃ on H̃ and 𝐽󸀠

K̃
on K̃ such that 𝐽H̃ | H𝑘 is a fundamental

symmetry on H𝑘 and 𝐽󸀠K̃ | K𝑘 is a fundamental symmetry
onK𝑘. Let ℎ ∈H𝑘. Then we have that 𝐴𝑘ℎ𝐵ℎ. Hence,󵄩󵄩󵄩󵄩𝐴𝑘ℎ󵄩󵄩󵄩󵄩K̃ = 󵄩󵄩󵄩󵄩𝐴𝑘ℎ󵄩󵄩󵄩󵄩K𝑘 = ⟨𝐽󸀠K̃𝐴𝑘ℎ, 𝐴𝑘ℎ⟩= ⟨𝐽󸀠

K̃
𝐵ℎ, 𝐵ℎ⟩ = ‖𝐵ℎ‖K̃ = ‖𝐵‖ ‖ℎ‖H̃ . (33)

Hence, ‖𝐴𝑘‖ ≤ ‖𝐵‖ for all 𝑘 ∈ N and so the norms of 𝐴𝑘’s are
uniformly bounded.

Conversely, let 𝐴𝑘 : H𝑘 → K𝑘, 𝑘 ∈ N, be contractions
satisfying both conditions in (31). Since 𝐴𝑘+1|H𝑘 = 𝐴𝑘, we
can decompose the operator

𝐴𝑘+1󵄨󵄨󵄨󵄨H𝑘 :H𝑘 󳨀→ ( K𝑘

K𝑘+1 ⊖K𝑘) (34)

as 𝐴𝑘+1|H𝑘 = ( 𝐴𝑘0 ). The fact that 𝐴𝑘 is a contraction and
H𝑘+1 ⊖H𝑘 is a Hilbert space implies that the operator

(𝐴𝑘 0) : ( H𝑘

H𝑘+1 ⊖H𝑘) 󳨀→K𝑘 (35)

is a contraction. Since 𝐴𝑘+1|H𝑘 = ( 𝐴𝑘
0
) is a contraction,

Theorem 2 implies that there exists a bounded operator 𝑐22 :
H𝑘+1 ⊖H𝑘 →K𝑘+1 ⊖K𝑘 such that

𝐶𝑘+1 = (𝐴𝑘 00 𝑐22) : ( H𝑘

H𝑘+1 ⊖H𝑘) 󳨀→ ( K𝑘

K𝑘+1 ⊖K𝑘) (36)

is a contraction. For each 𝑘 = 0, 1, 2, . . ., the operator 𝐶𝑘+1 is
clearly a contractive extension of 𝐴𝑘.

We now show that, for 𝑘 = 0, 1, 2, . . ., the contractive
liftings 𝐶𝑘+1’s of 𝐴𝑘’s are uniformly bounded. Let 𝑀 be the
bound for the norm of 𝐴𝑘’s. Then ‖ (𝐴𝑘 0) ‖ = ‖𝐴𝑘‖ ≤ 𝑀
and so Lemma 1 implies that ‖𝐶𝑘+1‖2 ≤ 1+2‖𝐴𝑘‖2 ≤ 1+2𝑀2.
Hence 𝐶𝑘+1’s are uniformly bounded.

Define an operator 𝐶󸀠∞ : spanH𝑘 → spanK𝑘 by 𝐶󸀠∞𝑥 =𝐶𝑘+1𝑥 for 𝑥 ∈ H𝑘. The operator 𝐶󸀠∞ is well defined. To see
this, assume that 𝑥 ∈ H𝑘 and 𝑥 ∈ H𝑙. Then 𝐶󸀠∞𝑥 = 𝐶𝑘+1𝑥
and 𝐶󸀠∞𝑥 = 𝐶𝑙+1𝑥. For 𝑘 < 𝑙, 𝐶𝑙+1|H𝑘 = 𝐴 𝑙|H𝑘 = 𝐴𝑘 =𝐶𝑘+1|H𝑘 . The operator 𝐶󸀠∞ is bounded since the contractions𝐶𝑘+1 are uniformly bounded. To see that this is the case,
consider 𝑥 ∈H𝑘. Then[𝑥, 𝑥]H̃ = ⟨𝐽H̃𝑥, 𝑥⟩H̃ = ⟨𝐽H̃𝑥, 𝑥⟩H𝑘 = ⟨𝐽H𝑘𝑥, 𝑥⟩H𝑘= [𝑥, 𝑥]H𝑘 . (37)

Hence for 𝑥 ∈ spanH𝑘, we see that󵄩󵄩󵄩󵄩󵄩𝐶󸀠∞𝑥󵄩󵄩󵄩󵄩󵄩K̃ = 󵄩󵄩󵄩󵄩𝐶𝑘+1𝑥󵄩󵄩󵄩󵄩K̃ = 󵄩󵄩󵄩󵄩𝐶𝑘+1𝑥󵄩󵄩󵄩󵄩K𝑘 ≤ 󵄩󵄩󵄩󵄩𝐶𝑘+1󵄩󵄩󵄩󵄩 ‖𝑥‖H𝑘= 󵄩󵄩󵄩󵄩𝐶𝑘+1󵄩󵄩󵄩󵄩 ‖𝑥‖H̃ (38)

and so 𝐶󸀠∞ is a bounded operator. Since it is defined on
a dense set we can extend it by continuity to a bounded
operator 𝐶∞ : H̃ → K̃. The operator 𝐶∞ is clearly an
extension of 𝐴𝑘 for each 𝑘 ≥ 0 since 𝐶𝑘+1 is an extension
of 𝐴𝑘 for each 𝑘 ≥ 0. To show that 𝐶∞ is a contraction, let𝑥 ∈ H̃. Then there exists a sequence 𝑥𝑛 ∈ spanH𝑘 such that𝑥𝑛 → 𝑥. Since the inequality⟨𝐶󸀠∞𝑥𝑛, 𝐶󸀠∞𝑥𝑛⟩ ≤ ⟨𝑥𝑛, 𝑥𝑛⟩ (39)

holds for each 𝑛 we have⟨𝐶∞𝑥, 𝐶∞𝑥⟩ = lim
𝑛→∞

⟨𝐶󸀠∞𝑥𝑛, 𝐶󸀠∞𝑥𝑛⟩≤ lim
𝑛→∞

⟨𝑥𝑛, 𝑥𝑛⟩ = ⟨𝑥, 𝑥⟩ . (40)

Hence 𝐶∞ : H̃→ K̃ is a contraction.
Define a new operator 𝐵 : U→ Y by the matrix

𝐵 fl (𝐶∞ 𝐸0 𝑋) : ( H̃

U ⊖ H̃) 󳨀→ ( K̃

Y ⊖ K̃) , (41)

where (𝐶∞ 𝐸) (42)

is any contractive row extension of 𝐶∞ and 𝑋 ∈ 𝐵((U ⊖
H̃), (Y ⊖ K̃)). Since Y ⊖ K̃ is a Hilbert space, Theorem 2
guarantees the existence of 𝑋 such that 𝐵 is a contraction.
Note that since U ⊖ H̃ is also a Hilbert space we may set𝐸 = 0, the zero operator, in the matrix representation of 𝐵
and the above result still holds.

Clearly, 𝐵 | H𝑘 = 𝐴𝑘 and so 𝐵 is the required extension.

5. Applications

In this section we use Theorem 7 to solve a nonstationary
extension problem in a Krein space setting. Let U𝑘 and
Y𝑗 (𝑗, 𝑘 ∈ N) be Krein spaces with fixed fundamental
decompositions

U𝑘 = U
+
𝑘 ⊕U−𝑘 ,

Y𝑗 = Y
+
𝑗 ⊕Y−𝑗 (43)

and let 𝑓𝑗,𝑘 : U𝑘 󳨀→ Y𝑗 (44)

be bounded operators with matrix representations

𝑓𝑗,𝑘 = (𝑓11𝑗,𝑘 𝑓21𝑗,𝑘𝑓21𝑗,𝑘 𝑓22𝑗,𝑘) : (U
+
𝑘

U−𝑘
) 󳨀→ (Y+𝑗

Y−𝑗
) (45)
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with𝑓11𝑗,𝑘 = 0 for 𝑗 > 𝑘 and𝑓21𝑗,𝑘 = 0 for 𝑗 > 0. Define the Krein
spaces

󳨀→
U and

󳨀→
Y by

󳨀→
U fl U0 ⊕U1 ⊕U2 ⊕ ⋅ ⋅ ⋅ ,󳨀→
Y fl Y0 ⊕Y1 ⊕Y2 ⊕ ⋅ ⋅ ⋅ (46)

and let 𝐺 : 󳨀→U to
󳨀→
Y be a bounded operator such that

𝑃Y𝑗𝐺󵄨󵄨󵄨󵄨󵄨󵄨U𝑘 = 𝑓𝑗,𝑘. (47)

We use Theorem 7 to establish conditions under which such
an operator 𝐺 is a contraction. Equality (47) implies that the
operator 𝐺 is of the form

𝐺 =((((((
(

⋅ ⋅ ⋅ 𝑓4,0 𝑓3,0 𝑓2,0 𝑓1,0 𝑓0,0⋅ ⋅ ⋅ 𝑓4,1 𝑓3,1 𝑓2,1 𝑓1,1 𝑓0,1⋅ ⋅ ⋅ 𝑓4,2 𝑓3,2 𝑓2,2 𝑓1,2 𝑓0,2⋅ ⋅ ⋅ 𝑓4,3 𝑓3,3 𝑓2,3 𝑓1,3 𝑓0,3
c

... ... ... ... ...

))))))
)

:
((((((((((
(

...
U4

U3

U2

U1

U0

))))))))))
)

󳨀→
((((((((((
(

Y0

Y1

Y2

Y3

Y4...

))))))))))
)

. (48)

Consider the decompositions

󳨀→
U = ⋅ ⋅ ⋅ ⊕U−1 ⊕U−0 ⊕U+0 ⊕U+1 ⊕ ⋅ ⋅ ⋅ ,󳨀→
Y = ⋅ ⋅ ⋅ ⊕Y−1 ⊕Y−0 ⊕Y+0 ⊕Y+1 ⊕ ⋅ ⋅ ⋅ . (49)

With the above decompositions, the operator 𝐺 takes the
form

𝐺 =
(((((((((((((((
(

d
... ... ... ... ... ... ... ... c⋅ ⋅ ⋅ 𝑓112,3 𝑓112,2 0 0 0 0 0 0 ⋅ ⋅ ⋅⋅ ⋅ ⋅ 𝑓111,3 𝑓111,2 𝑓111,1 0 0 0 0 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 𝑓110,3 𝑓110,2 𝑓110,1 𝑓110,0 𝑓120,0 𝑓120,1 𝑓120,2 𝑓120,3 ⋅ ⋅ ⋅⋅ ⋅ ⋅ 𝑓210,3 𝑓210,2 𝑓210,1 𝑓210,0 𝑓220,0 𝑓220,1 𝑓220,2 𝑓220,3 ⋅ ⋅ ⋅⋅ ⋅ ⋅ 𝑓111,3 𝑓111,2 𝑓111,1 𝑓111,0 𝑓221,0 𝑓221,1 𝑓221,2 𝑓221,3 ⋅ ⋅ ⋅
c

... ... ... ... ... ... ... ... ...

)))))))))))))))
)

:

(((((((((((((((((
(

...
U+2

U+1

U+0
U−0

U−1

U−2...

)))))))))))))))))
)

󳨀→
(((((((((((((((((
(

...
Y+2

Y+1

Y+0
Y−0

Y−1

Y−2...

)))))))))))))))))
)

.

(50)

For each 𝑘 ∈ N, let 𝐴𝑘 denote the operator𝐴𝑘

=
(((((((((((((((
(

𝑓11𝑘,𝑘 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 ⋅ ⋅ ⋅... d
... ... ... ... ... ... ... ...𝑓112,𝑘 ⋅ ⋅ ⋅ 𝑓112,2 0 0 0 0 0 0 ⋅ ⋅ ⋅𝑓111,𝑘 ⋅ ⋅ ⋅ 𝑓111,2 𝑓111,1 0 0 0 0 0 ⋅ ⋅ ⋅𝑓110,𝑘 ⋅ ⋅ ⋅ 𝑓110,2 𝑓110,1 𝑓110,0 𝑓120,0 𝑓120,1 𝑓120,2 𝑓120,3 ⋅ ⋅ ⋅𝑓210,𝑘 ⋅ ⋅ ⋅ 𝑓210,2 𝑓210,1 𝑓210,0 𝑓220,0 𝑓220,1 𝑓220,2 𝑓220,3 ⋅ ⋅ ⋅𝑓211,𝑘 ⋅ ⋅ ⋅ 𝑓211,2 𝑓211,1 𝑓211,0 𝑓221,0 𝑓221,1 𝑓221,2 𝑓221,3 ⋅ ⋅ ⋅... ... ... ... ... ... ... ... ... ...

)))))))))))))))
)

:

(((((((((((((((
(

U𝑘...
U+2

U+1

U+0
U−0

U−1

U−2...

)))))))))))))))
)

󳨀→
(((((((((((((((
(

Y𝑘...
Y+2

Y+1

Y+0
Y−0

Y−1

Y−2...

)))))))))))))))
)

.

(51)

With these notations, we are in a position to state the
following theorem.

Theorem 8. Let U𝑘 and Y𝑗 be Krein spaces with decomposi-
tions (43) with operators 𝑓𝑗,𝑘 : U𝑘 → Y𝑗 in (44). Then there
exists a contraction 𝐺 : 󳨀→U → 󳨀→

Y satisfying (47) if and only if,
for each 𝑘 ∈ N, the operator 𝐴𝑘 in (51) defines a contraction
whose norm has an upper bound independent of 𝑘.
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Proof. Assume that a contraction 𝐺 : 󳨀→U→ 󳨀→
Y satisfying (47)

exists and consider the operator matrices (50) and (51). We
see that, for 𝑘 ∈ N, 𝐴𝑘 = 𝑃K𝑘𝐺󵄨󵄨󵄨󵄨󵄨H𝑘 , (52)

where

H𝑘 =
(((((((((
(

U𝑘...
U+1

U+0
U−0

U−1...

)))))))))
)

,

K𝑘 =
(((((((((
(

Y𝑘...
Y+1

Y+0
Y−0

Y−1...

)))))))))
)

.

(53)

Since
󳨀→
Y ⊖K𝑘 is a Hilbert space, we see that ‖𝑃K𝑘‖ ≤ 1 and

so 󵄩󵄩󵄩󵄩𝐴𝑘󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑃K𝑘󵄩󵄩󵄩󵄩󵄩 ‖𝐺‖ ≤ ‖𝐺‖ . (54)

This shows that the operators 𝐴𝑘 are uniformly bounded.
Since 𝐺 is a contraction and

󳨀→
Y ⊖K𝑘 is a Hilbert space, (52)

implies that 𝐴𝑘 is a contraction for each 𝑘 ∈ N.
To prove the reverse implication, we assume that for each𝑘 ∈ N the operator 𝐴𝑘 : H𝑘 → K𝑘 is a contraction of

norm at most 𝛾 where 0 < 𝛾 < ∞. Since spanH𝑘 = 󳨀→U
and spanK𝑘 = 󳨀→Y, it follows that spanH𝑘 and spanK𝑘 are
regular subspaces. By construction, the subspaces H𝑘 and
K𝑘 satisfy the conditions of Corollary 6 and hence do satisfy
all the conditions specified in Theorem 7. Since, for each𝑘 ∈ N, the operators 𝐴𝑘 :H𝑘 󳨀→K𝑘 (55)

are defined by (51) and are assumed to be uniformly bounded,
condition (31) in Theorem 7 is also fulfilled (it can be easily
seen that the first condition in (31) is satisfied by the operators𝐴𝑘). Since (31) is satisfied for all 𝑘 ∈ N, it follows that there
exists a contraction 𝐵 satisfying (30) and therefore must be of
the form (50). This concludes the proof.
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In this paper, a new type of non-self-mapping, called Berinde MT-cyclic contractions, is introduced and studied. Best proximity
point theorems for this type of mappings in a metric space are presented. Some examples illustrating ourmain results are also given.
Our results generalize and improve some known results in the literature.

1. Introduction and Preliminaries

Several problems in a real world can be modeled in the
form of operator equations. An equation 𝑆𝑥 = 𝑥, which
is called the fixed point equation, is one of the important
means for solving some problems among them. Fixed point
theory is then considered as an important tool for solving
such problems. The well-known fixed point theorem for
contraction mappings was given by Banach [1]. It is known as
the Banach contraction principle. This principle guarantees
that each contraction mapping from a complete metric space
𝑋 into itself always has a unique fixed point.

In 2004, Berinde [2] introduced and studied the concept
of weak contraction mappings in the context of a complete
metric space. Let (𝑋, 𝑑) be a metric space. A mapping 𝑆 :
𝑋 󳨀→ 𝑋 is called a weak contraction if there exist 𝑎 ∈ (0, 1)
and 𝐿 ≥ 0 such that

𝑑 (𝑆𝑥, 𝑆𝑦) ≤ 𝑎𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑥, 𝑆𝑦) , for all 𝑥, 𝑦 ∈ 𝑋. (1)

A fixed point theorem of this type of mapping was proved in
[2]. It extended and generalized that of the Banach contrac-
tion principle and others; see [2] and references therein.

On the other hand, if the fixed point equation 𝑆𝑥 = 𝑥
does not have a solution, then 𝑑(𝑥, 𝑆𝑥) > 0 for all 𝑥 ∈ 𝑋.

In this situation, it is natural to ask whether we can find an
approximate solution 𝑥 such that the error is

𝑑 (𝑥, 𝑆𝑥) = min
𝑦∈𝑋

𝑑 (𝑦, 𝑆𝑦) . (2)

In order to have a concrete lower bound, let us consider
two nonempty subsets 𝑊 and 𝑉 of a metric space 𝑋 and a
mapping 𝑆 : 𝑊 󳨀→ 𝑉. It is observed that 𝑑(𝑥, 𝑆𝑥) ≥ 𝑑(𝑊,𝑉)
for all 𝑥 ∈ 𝑊, where 𝑑(𝑊,𝑉) = inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝑊 and 𝑦 ∈
𝑉}. So we are interested to find a point 𝑥0 ∈ 𝑊 such that

𝑑 (𝑥0, 𝑆𝑥0) = 𝑑 (𝑊,𝑉) . (3)

Such point 𝑥0 is called a best proximity point of themapping 𝑆,
and 𝑑(𝑥0, 𝑆𝑥0) is called the global minimum value of 𝑑(𝑊,𝑉).

The best proximity point theorem was first studied by Fan
[3], in 1969. He proved that if 𝑊 is a nonempty compact
convex subset in a normed space 𝑋 and 𝑆 : 𝑊 󳨀→ 𝑋 is
a continuous mapping, then there exists 𝑢 ∈ 𝑊 such that
‖𝑢 − 𝑆𝑢‖ = 𝑑(𝑆𝑢,𝑊) where 𝑑(𝑆𝑢,𝑊) fl min{‖𝑆𝑢 − 𝑎‖ : 𝑎 ∈
𝑊}. Especially, if 𝑆(𝑊) ⊆ 𝑊, thenwe get that 𝑢 is a fixed point
of 𝑆.

Several years later, the above result has been studied and
generalized by many researchers, such as Reich [4], Sehgal
and Singh [5], Vetrivel et al. [6], Anuradha and Veeramani
[7], Basha [8, 9], Kirk et al. [10], Raj [11], Gabeleh [12], Abkar
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and Gabeleh [13], Eldred and Veeramani [14], and Du and
Lakzian [15] and references therein. Some recent research
papers worth mentioning are [16–19].

Throughout this paper, we denote by𝑊 and 𝑉 nonempty
subsets of a metric space (𝑋, 𝑑).We also require the following
notions:

𝑑 (𝑊,𝑉) fl inf {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉} ,
𝑊0 fl {𝑥 ∈ 𝑊 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝑊,𝑉) for some 𝑦 ∈ 𝑉} ,
𝑉0 fl {𝑦 ∈ 𝑉 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝑊,𝑉) for some 𝑥 ∈ 𝑊} .

(4)

Amapping 𝑆 : 𝑊∪𝑉 󳨀→ 𝑊∪𝑉 is called a cyclicmapping
if 𝑆(𝑊) ⊆ 𝑉 and 𝑆(𝑉) ⊆ 𝑊. And a point 𝑥 ∈ 𝑊∪𝑉 is said to
be a best proximity point of 𝑆 if 𝑑(𝑥, 𝑆𝑥) = 𝑑(𝑊,𝑉). In 2006,
Eldred and Veeramani [14] introduced the concept of cyclic
contraction and proved the existence of a best proximity point
for this type of mapping on a complete metric space.

Definition 1 (see [14]). A mapping 𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 is
called a cyclic contraction if the following conditions hold:

(i) 𝑆 is a cyclic mapping;
(ii) there exists 𝑘 ∈ (0, 1) such that 𝑑(𝑆𝑥, 𝑆𝑦) ≤ 𝑘𝑑(𝑥, 𝑦)+

(1 − 𝑘)𝑑(𝑊,𝑉) for all 𝑥 ∈ 𝑊, 𝑦 ∈ 𝑉.
The concept of 𝑀𝑇-function was used by Reich [20] and

Mizoguchi and Takahashi [21] to define a class of multivalued
mappings which is more general than that of contraction
mappings. After that Du [22, 23] studied the class of mul-
tivalued mappings generated by Mizoguchi and Takahashi
functions (or MT-functions) and gave characterizations of
MT-functions.

Definition 2 (see [22]). A function𝜑 : [0,∞) 󳨀→ [0, 1) is said
to be an MT-function (or R-function) if lim sup𝑠󳨀→𝑡+𝜑(𝑠) < 1
for all 𝑡 ∈ [0,∞).
Theorem 3 (see [23]). Let 𝜑 : [0,∞) 󳨀→ [0, 1) be a function.
Then the following statements are equivalent.

(a) 𝜑 is an MT-function; i.e., lim sup𝑠󳨀→𝑡+𝜑(𝑠) < 1 for all
𝑡 ∈ [0,∞).

(b) For each 𝑡 ∈ [0,∞), there exist 𝑟𝑡 ∈ [0, 1) and 𝜀𝑡 > 0
such that 𝜑(𝑠) ≤ 𝑟𝑡 for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀𝑡).

(c) For any nonincreasing sequence {𝑥𝑛}𝑛∈N in [0,∞), 0 ≤
sup𝑛∈N𝜑(𝑥𝑛) < 1.

It is clear that if 𝜑 is a nondecreasing function or a
nonincreasing function, then 𝜑 is an MT-function. For more
examples and details, see [15, 22, 23].

Consequently, Du and Lakzian [15] introducedMT-cyclic
contractions with respect to 𝜑 and proved the existence and
convergence theorems for this type of non-self-mapping in
metric spaces.

Definition 4 (see [15]). If a map 𝑆 : 𝑊∪𝑉 󳨀→ 𝑊∪𝑉 satisfies
the following: then 𝑆 is called an MT-cyclic contraction with
respect to 𝜑 on 𝑊 ∪ 𝑉.

(i) 𝑆 is a cyclic mapping;
(ii) there exists an MT-function 𝜑 : [0,∞) 󳨀→ [0, 1)

such that 𝑑(𝑆𝑥, 𝑆𝑦) ≤ 𝜑(𝑑(𝑥, 𝑦))𝑑(𝑥, 𝑦) + (1 −
𝜑(𝑑(𝑥, 𝑦)))𝑑(𝑊,𝑉) for all 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉.

It is obvious that if 𝜑(𝑡) = 𝑘 with 𝑘 ∈ [0, 1), then 𝑆 is
a cyclic contraction, and, hence, an MT-cyclic contraction
with respect to 𝜑 which is more general than that of cyclic
contraction. For example of an MT-cyclic contraction with
respect to 𝜑, but is not a cyclic contraction, see [15].

In 2009, Suzuki et al. [24] introduced the concept of the
property UC of two nonempty subsets of a metric space as
follows.

Definition 5 (see [24]). Let (𝑊,𝑉) be a pair of nonempty
subsets of a metric space (𝑋, 𝑑). The pair (𝑊,𝑉) is said to
satisfy the property UC if {𝑥𝑛} and {𝑧𝑛} are sequences in 𝑊
and {𝑦𝑛} is a sequence in 𝑉 such that

lim
𝑛󳨀→∞

𝑑 (𝑥𝑛, 𝑦𝑛) = 𝑑 (𝑊,𝑉) = lim
𝑛󳨀→∞

𝑑 (𝑧𝑛, 𝑦𝑛) , (5)

and then lim𝑛󳨀→∞𝑑(𝑥𝑛, 𝑧𝑛) = 0.
Later, in 2011, Kosuru and Veeramani [25] introduced the

concept of semisharp proximal pair of two nonempty subsets
of ametric space.This concept is againmore general than that
of the property UC.

Definition 6 (see [25]). Let (𝑊,𝑉) be a pair of nonempty
subsets of a metric space (𝑋, 𝑑). The pair (𝑊,𝑉) is said to
be a semisharp proximal pair if for each 𝑤 ∈ 𝑊 and 𝑢 ∈ 𝑉
there exist at most one 𝑥 ∈ 𝑉 and 𝑦 ∈ 𝑊 such that 𝑑(𝑤, 𝑥) =
𝑑(𝑊,𝑉) = 𝑑(𝑦, 𝑢).
Example 7. Consider the space𝑋 of all real valued continuous
functions on [0, 1] with the supremum norm; i.e., 𝑋 =
(𝐶[0, 1], ‖ ⋅ ‖∞). Set

𝑊 = {𝑓𝑡 : 𝑡 ∈ [0, 1]}
and 𝑉 = {𝑔𝑡 : 𝑡 ∈ [0, 1]} , (6)

where

𝑓𝑡 (𝑥) = {{
{{
{

𝑡 + 𝑥, if 𝑥 ∈ [0, 12] ;
𝑡 − 𝑥 + 1, if 𝑥 ∈ [12 , 1] ,

(7)

and

𝑔𝑡 (𝑥) = {{
{{{

𝑡 + 𝑥 + 1, if 𝑥 ∈ [0, 12] ;
𝑡 − 𝑥 + 2, if 𝑥 ∈ [12 , 1] .

(8)

It is easy to show that ‖𝑓𝑡 − 𝑔𝑡‖ = 1 and ‖𝑓𝑡 − 𝑔𝑘‖ > 1 for all
𝑡 ̸= 𝑘 ∈ [0, 1]. Hence 𝑑(𝑊,𝑉) = 1 and (𝑊,𝑉) is a semisharp
proximal pair.

Note that the propertyUC implies semisharp proximality.
In 2015, R. Espinola, et al. [26] introduced the concept of
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a proximally complete pair (𝑊,𝑉) of subsets of a metric
space. They proved existences and convergence theorems of
best proximity points for cyclic contraction mappings. They
obtained a useful theorem presented as follows.

Theorem 8 (Espinola et al. [26, Theorem 3.3]). Let (𝑊,𝑉) be
a pair of complete subsets of a metric space satisfying the UC
property. If {𝑥𝑛} is a sequence in 𝑊 ∪ 𝑉 with 𝑥2𝑛 ∈ 𝑊 and
𝑥2𝑛+1 ∈ 𝑉, for all 𝑛 ∈ N, then the sequences {𝑥2𝑛} and {𝑥2𝑛+1}
have convergent subsequences in𝑊 and 𝑉, respectively.

By those works mentioned above, we aim to introduce a
new type of single-valued, non-self-mapping which is more
general than that of contractions, cyclic contractions, and
𝑀𝑇-cyclic contractions. The best proximity point theorems
for this type ofmappings inmetric spaces will be investigated.
Our main results extend and generalize those of Du and
Lakzian [15], Eldred and Veeramani [14], and others.

2. Main Results

By using ideas of cyclic contractions, MT-functions, and
weak contractions, we shall first introduce BerindeMT-cyclic
contractions with respect to 𝜑 and prove the existence and
convergence theorems for this type of non-self-mapping in
metric spaces.

Definition 9. Let 𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 be a cyclic mapping.
The mapping 𝑆 is said to be a Berinde MT-cyclic contraction
with respect to 𝜑 if there exists anMT-function 𝜑 : [0,∞) 󳨀→
[0, 1) and 𝐿 ≥ 0 such that

𝑑 (𝑆𝑥, 𝑆𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)
+ (1 − 𝜑 (𝑑 (𝑥, 𝑦))) 𝑑 (𝑊,𝑉)
+ 𝐿min {𝑑 (𝑦, 𝑆𝑥) , 𝑑 (𝑥, 𝑆𝑦)} ,

(9)

for all 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉.
It is easy to see that a BerindeMT-cyclic contraction with

respect to 𝜑 can be reduced to an MT-cyclic contraction with
respect to 𝜑.
Remark 10. If 𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 is a Berinde MT-cyclic
contraction with respect to 𝜑, then 𝑆 satisfies the following
condition:

𝑑 (𝑆𝑥, 𝑆𝑦) ≤ 𝑑 (𝑥, 𝑦) + 𝐿min {𝑑 (𝑦, 𝑆𝑥) , 𝑑 (𝑥, 𝑆𝑦)} , (10)

for all 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉. To see this, we can write (9) in the
form 𝑑(𝑆𝑥, 𝑆𝑦) − 𝑑(𝑊,𝑉) ≤ 𝜑(𝑑(𝑥, 𝑦))[𝑑(𝑥, 𝑦) − 𝑑(𝑊,𝑉)] +
𝐿min{𝑑(𝑦, 𝑆𝑥), 𝑑(𝑥, 𝑆𝑦)}, for all 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉. Because
of 𝜑(𝑑(𝑥, 𝑦)) < 1, it follows that

𝑑 (𝑆𝑥, 𝑆𝑦) − 𝑑 (𝑊,𝑉)
≤ 𝑑 (𝑥, 𝑦) − 𝑑 (𝑊,𝑉)

+ 𝐿min {𝑑 (𝑦, 𝑆𝑥) , 𝑑 (𝑥, 𝑆𝑦)} ,
(11)

and, for all 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉, hence (10) is satisfied.

Example 11. Let 𝑙∞ be the metric space consisting of all
bounded real sequences with supremum metric 𝑑∞ and let
{𝑒𝑛} be the canonical basis of 𝑐0 , where 𝑐0 is the space of all null
sequences. Let {𝜏𝑛} be a sequence of positive real numbers
satisfying 𝜏1 = 𝜏2 and 0 < 𝑎 ≤ 𝜏𝑛+1 < 𝜏𝑛 for 𝑛 ≥ 2
and for some positive real number 𝑎. Thus {𝜏𝑛} is convergent.
Put 𝑥𝑛 = 𝜏𝑛𝑒𝑛 for 𝑛 ∈ N and let 𝑋 = {𝑥1, 𝑥2, 𝑥3, . . .}.
Then 𝑋 is a bounded and complete subset of 𝑙∞, and hence
(𝑋, 𝑑∞) is a complete metric space with 𝑑∞(𝑥𝑛, 𝑥𝑚) = 𝜏𝑛 if𝑚 > 𝑛.

Let 𝑊 = {𝑥1, 𝑥3, 𝑥5, . . .}, 𝑉 = {𝑥1, 𝑥2, 𝑥4, . . .} and let 𝑆 :
𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 be defined by

𝑆𝑥𝑛 = {
{
{

𝑥1 if 𝑛 = 1, 2;
𝑥𝑛+3 if 𝑛 ≥ 3, (12)

and define 𝜑 : [0,∞) 󳨀→ [0, 1) by

𝜑 (𝑡)

= {
{
{

𝜏𝑛+3
𝜏𝑛 if 𝑡 = 𝜏𝑛 for some 𝑛 ∈ N with 𝑛 ≥ 3;

0 otherwise.
(13)

Then 𝑑(𝑊,𝑉) = 0 and 𝑆(𝑊) ⊆ 𝑉, 𝑆(𝑉) ⊆ 𝑊. Since
lim sup𝑠󳨀→𝑡+𝜑(𝑠) = 0 < 1 for all 𝑡 ∈ [0,∞), we have that
𝜑 is an 𝑀𝑇-function. Next, we show that 𝑆 is a Berinde𝑀𝑇-
cyclic contractionwith respect to𝜑. Obviously,𝑑(𝑆𝑥1 , 𝑆𝑥𝑖) for𝑖 = 1, 2, 3, . . . satisfy (9) with 𝐿 ≥ 1. We will consider three
cases as follows.

Case 1. For 𝑖 ≥ 3 and 𝑥𝑖 ∈ 𝑊, we have

𝑑 (𝑆𝑥2, 𝑆𝑥𝑖) = 𝑑 (𝑥1, 𝑥𝑖+3) = 𝜏1 ≤ 𝐿𝜏2
= 𝜑 (𝑑 (𝑥2, 𝑥𝑖)) 𝑑 (𝑥2, 𝑥𝑖)

+ (1 − 𝜑 (𝑑 (𝑥2, 𝑥𝑖))) 𝑑 (𝑊,𝑉)
+ 𝐿min {𝑑 (𝑥2, 𝑥𝑖+3) , 𝑑 (𝑥𝑖, 𝑥1)} ,

for 𝐿 ≥ 1.

(14)

Case 2. For 𝑖 ≥ 4 and 𝑥𝑖 ∈ 𝑉, we get

𝑑 (𝑆𝑥3, 𝑆𝑥𝑖) = 𝑑 (𝑥6, 𝑥𝑖+3) = 𝜏6
≤ 𝜏6 + 𝐿min {𝑑 (𝑥3, 𝑥𝑖+3) , 𝑑 (𝑥𝑖, 𝑥6)}
= 𝜑 (𝑑 (𝑥3, 𝑥𝑖)) 𝑑 (𝑥3, 𝑥𝑖)

+ (1 − 𝜑 (𝑑 (𝑥3, 𝑥𝑖))) 𝑑 (𝑊,𝑉)
+ 𝐿min {𝑑 (𝑥3, 𝑥𝑖+3) , 𝑑 (𝑥𝑖, 𝑥6)} ,

for 𝐿 ≥ 0.

(15)
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Case 3. For 𝑗 > 𝑖 ≥ 4 and 𝑥𝑖, 𝑥𝑗 ∈ 𝑊 ∪ 𝑉, we have
𝑑 (𝑆𝑥𝑖, 𝑆𝑥𝑗) = 𝑑 (𝑥𝑖+3, 𝑥𝑗+3) = 𝜏𝑖+3

≤ 𝜏𝑖+3
+ 𝐿min {𝑑 (𝑥𝑖, 𝑥𝑗+3) , 𝑑 (𝑥𝑗, 𝑥𝑖+3)}

= 𝜑 (𝑑 (𝑥𝑖, 𝑥𝑗)) 𝑑 (𝑥𝑖, 𝑥𝑗)
+ (1 − 𝜑 (𝑑 (𝑥𝑖, 𝑥𝑗))) 𝑑 (𝑊,𝑉)
+ 𝐿min {𝑑 (𝑥𝑖, 𝑥𝑗+3) , 𝑑 (𝑥𝑗, 𝑥𝑖+3)} ,

for 𝐿 ≥ 0.

(16)

From all of the above cases, we can now conclude that 𝑆 is a
Berinde 𝑀𝑇-cyclic contraction with respect to 𝜑 and 𝐿 ≥ 1.
We note from Case 1 that 𝑆 is not an 𝑀𝑇-cyclic contraction
with respect to 𝜑.
Proposition 12. Let𝑊 and𝑉 be nonempty subsets of a metric
space (𝑋, 𝑑) and 𝑆 : 𝑊∪𝑉 󳨀→ 𝑊∪𝑉 be a Berinde MT-cyclic
contraction with respect to 𝜑.Then starting with any given 𝑥0 ∈𝑊 ∪ 𝑉, define a sequence {𝑥𝑛} in𝑊 ∪ 𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛 for all𝑛 ≥ 0; we have 𝑑(𝑥𝑛, 𝑥𝑛+1) 󳨀→ 𝑑(𝑊,𝑉) as 𝑛 󳨀→ ∞.

Proof. Let 𝑥0 ∈ 𝑊 ∪ 𝑉 be given. Define a sequence {𝑥𝑛} in𝑊 ∪ 𝑉 by

𝑥𝑛+1 = 𝑆𝑥𝑛, for each 𝑛 ≥ 0. (17)

Suppose that 𝑥0 ∈ 𝑊 (when 𝑥0 ∈ 𝑉 is similar); then 𝑥1 =
𝑆𝑥0 ∈ 𝑉, and so, 𝑥2 = 𝑆𝑥1 ∈ 𝑊. Since 𝑆 is a Berinde MT-
cyclic contraction with respect to 𝜑, we have

𝑑 (𝑥1, 𝑥2) = 𝑑 (𝑆𝑥0, 𝑆𝑥1)
≤ 𝜑 (𝑑 (𝑥0, 𝑥1)) 𝑑 (𝑥0, 𝑥1)

+ (1 − 𝜑 (𝑑 (𝑥0, 𝑥1))) 𝑑 (𝑊,𝑉)
+ 𝐿min {𝑑 (𝑥1, 𝑆𝑥0) , 𝑑 (𝑥0, 𝑆𝑥1)}

= 𝜑 (𝑑 (𝑥0, 𝑥1)) 𝑑 (𝑥0, 𝑥1)
+ (1 − 𝜑 (𝑑 (𝑥0, 𝑥1))) 𝑑 (𝑊,𝑉)
+ 𝐿min {𝑑 (𝑥1, 𝑥1) , 𝑑 (𝑥0, 𝑥2)}

= 𝜑 (𝑑 (𝑥0, 𝑥1)) 𝑑 (𝑥0, 𝑥1)
+ (1 − 𝜑 (𝑑 (𝑥0, 𝑥1))) 𝑑 (𝑊,𝑉) .

(18)

Again, since 𝑥2 ∈ 𝑊 and 𝑆 is a cyclic mapping, we get 𝑥3 =𝑆𝑥2 ∈ 𝑉. By the Berinde MT-cyclic contraction with respect
to 𝜑 of 𝑆, we have

𝑑 (𝑥2, 𝑥3) = 𝑑 (𝑆𝑥1, 𝑆𝑥2)
≤ 𝜑 (𝑑 (𝑥1, 𝑥2)) 𝑑 (𝑥1, 𝑥2)

+ (1 − 𝜑 (𝑑 (𝑥1, 𝑥2))) 𝑑 (𝑊,𝑉)

+ 𝐿min {𝑑 (𝑥1, 𝑆𝑥2) , 𝑑 (𝑥2, 𝑆𝑥1)}
= 𝜑 (𝑑 (𝑥1, 𝑥2)) 𝑑 (𝑥1, 𝑥2)

+ (1 − 𝜑 (𝑑 (𝑥1, 𝑥2))) 𝑑 (𝑊,𝑉)
+ 𝐿min {𝑑 (𝑥1, 𝑥3) , 𝑑 (𝑥2, 𝑥2)}

= 𝜑 (𝑑 (𝑥1, 𝑥2)) 𝑑 (𝑥1, 𝑥2)
+ (1 − 𝜑 (𝑑 (𝑥1, 𝑥2))) 𝑑 (𝑊,𝑉) .

(19)

By induction, we can show that, for each 𝑛 ≥ 1,
𝑑 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝜑 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) 𝑑 (𝑥𝑛−1, 𝑥𝑛)

+ (1 − 𝜑 (𝑑 (𝑥𝑛−1, 𝑥𝑛))) 𝑑 (𝑊,𝑉) . (20)

By Remark 10, we have

𝑑 (𝑥𝑛, 𝑥𝑛+1) = 𝑑 (𝑆𝑥𝑛−1, 𝑆𝑥𝑛)
≤ 𝑑 (𝑥𝑛−1, 𝑥𝑛)

+ 𝐿min {𝑑 (𝑥𝑛−1, 𝑆𝑥𝑛) , 𝑑 (𝑥𝑛, 𝑆𝑥𝑛−1)}
= 𝑑 (𝑥𝑛−1, 𝑥𝑛) ,

(21)

for all 𝑛 ≥ 1. It means that {𝑑(𝑥𝑛, 𝑥𝑛+1)} is a nonincreasing
sequence. By Theorem 3, we get 0 ≤ sup𝑛∈N𝜑(𝑑(𝑥𝑛, 𝑥𝑛+1)) <
1.

Put 𝑘 fl sup𝑛∈N𝜑(𝑑(𝑥𝑛, 𝑥𝑛+1)). Thus 0 ≤ 𝜑(𝑑(𝑥𝑛, 𝑥𝑛+1)) ≤
𝑘 < 1, for all 𝑛 ≥ 1. It follows from (20) that

𝑑 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝑘𝑑 (𝑥𝑛−1, 𝑥𝑛) + (1 − 𝑘) 𝑑 (𝑊,𝑉) ,
for all 𝑛 ≥ 1. (22)

Hence for each 𝑛 ≥ 1, we have
𝑑 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝑘𝑑 (𝑥𝑛−1, 𝑥𝑛) + (1 − 𝑘) 𝑑 (𝑊,𝑉)
≤ 𝑘 [𝑘 (𝑑 (𝑥𝑛−2, 𝑥𝑛−1) + (1 − 𝑘) 𝑑 (𝑊,𝑉))]

+ (1 − 𝑘) 𝑑 (𝑊,𝑉)
= 𝑘2 (𝑑 (𝑥𝑛−2, 𝑥𝑛−1) + (1 − 𝑘2) 𝑑 (𝑊,𝑉))

...
≤ 𝑘𝑛 (𝑑 (𝑥0, 𝑥1) + (1 − 𝑘𝑛) 𝑑 (𝑊,𝑉)) .

(23)

Since 𝑑(𝑊,𝑉) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1) and 𝑘𝑛 󳨀→ 0 as 𝑛 󳨀→ ∞, by
taking 𝑛 󳨀→ ∞ in the above inequality, we obtain that

𝑑 (𝑥𝑛, 𝑥𝑛+1) 󳨀→ 𝑑 (𝑊,𝑉) , as 𝑛 󳨀→ ∞. (24)

The proof is now completed.

Example 13. Let 𝜏𝑛 = 1/3 + 1/𝑛 for all 𝑛 ∈ N. Then
lim𝑛󳨀→∞𝜏𝑛 = 1/3. Put 𝑥𝑛 = 𝜏𝑛𝑒𝑛 for 𝑛 ∈ N and let 𝑋 =
{𝑥1, 𝑥2, 𝑥3, . . .} be a bounded and complete subset of 𝑙∞.Then
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(𝑋, 𝑑∞) be a complete metric space with 𝑑∞(𝑥𝑛, 𝑥𝑚) = 𝜏𝑛
if 𝑚 > 𝑛. Set 𝑊 = {𝑥1, 𝑥3, 𝑥5, . . .} and 𝑉 = {𝑥2, 𝑥4, 𝑥6, . . .}.
So lim𝑛󳨀→∞𝑑(𝑥𝑛, 𝑥𝑛+1) = lim𝑛󳨀→∞𝜏𝑛 = 1/3 = 𝑑(𝑊,𝑉). Let
𝑆 : 𝑊 ∩ 𝑉 󳨀→ 𝑊 ∩ 𝑉 be defined by

𝑆𝑥𝑛 = 𝑥𝑛+1 for all 𝑛 ∈ N. (25)

It is easy to see that 𝑆(𝑊) = 𝑉 and 𝑆(𝑉) ⊂ 𝑊 and so 𝑆 is
a cyclic mapping. Define 𝜑 : [0,∞) 󳨀→ [0, 1) as

𝜑 (𝑡) = {
{{

𝜏𝑛+1
𝜏𝑛 if 𝑡 = 𝜏𝑛 for some 𝑛 ∈ N;

0 otherwise. (26)

Then 𝜑 is an MT-function. Now, we will show that 𝑆 is a
Berinde MT-cyclic contraction with respect to 𝜑. For 𝑚, 𝑛 ∈
N with 𝑚 > 𝑛,

𝑑 (𝑆𝑥𝑛, 𝑆𝑥𝑚) = 𝜏𝑛+1
< 𝜏𝑛+1 + 1

3 (1 − 𝜏𝑛+1
𝜏𝑛 )

+ 𝐿min {𝑑 (𝑥𝑛, 𝑆𝑥𝑚) , 𝑑 (𝑥𝑚, 𝑆𝑥𝑛)}
= 𝜑 (𝑑 (𝑥𝑛, 𝑥𝑚)) 𝑑 (𝑥𝑛, 𝑥𝑚)

+ (1 − 𝜑 (𝑑 (𝑥𝑛, 𝑥𝑚))) 𝑑 (𝑊,𝑉)
+ 𝐿min {𝑑 (𝑥𝑛, 𝑆𝑥𝑚) , 𝑑 (𝑥𝑚, 𝑆𝑥𝑛)} .

(27)

Hence 𝑆 is a BerindeMT-cyclic contraction with respect to 𝜑.
Therefore, all the assumptions of Proposition 12 hold.

The following result is obtained immediately fromPropo-
sition 12 because every nondecreasing function or nonin-
creasing function is an MT-function.

Corollary 14. Let 𝑊 and 𝑉 be nonempty subsets of a metric
space (𝑋, 𝑑) and 𝑆 : 𝑊∪𝑉 󳨀→ 𝑊∪𝑉 be a cyclicmapping. Let
𝑥0 ∈ 𝑊 be given and define a sequence {𝑥𝑛} in𝑊∪𝑉 by 𝑥𝑛+1 =𝑆𝑥𝑛, for all 𝑛 ≥ 0. Suppose that there exists a nondecreasing (or
nonincreasing) function 𝜂 : [0,∞) 󳨀→ [0, 1) such that for all
𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉

𝑑 (𝑆𝑥, 𝑆𝑦) ≤ 𝜂 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)
+ (1 − 𝜂 (𝑑 (𝑥, 𝑦))) 𝑑 (𝑊,𝑉)
+ 𝐿min {𝑑 (𝑦, 𝑆𝑥) , 𝑑 (𝑥, 𝑆𝑦)} .

(28)

Then lim𝑛󳨀→∞𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑊,𝑉).
By Proposition 12, if 𝑆 is a cyclic contraction or an

MT-cyclic contraction with respect to 𝜑, then we obtain
directly the following results which were proved by Eldred
and Veeramani [14] and Du and Lakzian [15], respectively.

Corollary 15 (Eldred and Veeramani [14, Proposition 3.1]).
Let𝑊 and𝑉 be nonempty subsets of a metric space (𝑋, 𝑑) and
𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 be a cyclic contraction. Then starting
with any 𝑥0 ∈ 𝑊 and defining a sequence {𝑥𝑛} in 𝑊 ∪ 𝑉 by
𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0, then lim𝑛󳨀→∞𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑊,𝑉).

Corollary 16 (Du and Lakzian [15,Theorem 2.1]). Let𝑊 and
𝑉 be nonempty subsets of a metric space (𝑋, 𝑑) and 𝑆 : 𝑊 ∪
𝑉 󳨀→ 𝑊 ∪ 𝑉 be an MT-cyclic contraction with respect to 𝜑.
Then starting with any 𝑥0 ∈ 𝑊 ∪ 𝑉, define a sequence {𝑥𝑛} in𝑊 ∪ 𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛 for all 𝑛 ≥ 0; we have 𝑑(𝑥𝑛, 𝑥𝑛+1) 󳨀→
𝑑(𝑊,𝑉) as 𝑛 󳨀→ ∞.

Observe that if𝑊 and𝑉 are nonempty subsets of ametric
space (𝑋, 𝑑) and 𝑆 : 𝑊∪𝑉 󳨀→ 𝑊∪𝑉 is a cyclic mapping with
𝑥0 ∈ 𝑊, define a sequence {𝑥𝑛} in𝑊∪𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛, for all𝑛 ≥ 0; then {𝑥2𝑛} and {𝑥2𝑛+1} are subsequences of {𝑥𝑛} in 𝑊
and𝑉, respectively. Similarly, if 𝑥0 ∈ 𝑉, then {𝑥2𝑛} and {𝑥2𝑛+1}
are subsequences of {𝑥𝑛} in𝑉 and𝑊, respectively. Moreover,
𝑑(𝑊,𝑉) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1), for all 𝑛 ≥ 0.
Theorem 17. Let 𝑊 and 𝑉 be nonempty subsets of a metric
space (𝑋, 𝑑) and 𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 be a cyclic mapping.
Let 𝑥0 ∈ 𝑊 be given and define a sequence {𝑥𝑛} in 𝑊 ∪ 𝑉 by
𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0. Suppose that the following conditions
hold:

(i) 𝑑(𝑆𝑥, 𝑆𝑦) ≤ 𝑑(𝑥, 𝑦) + 𝐿min{𝑑(𝑥, 𝑆𝑦), 𝑑(𝑦, 𝑆𝑥)} for all
𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉 with 𝐿 ≥ 0;

(ii) {𝑥2𝑛} has a convergent subsequence in𝑊;
(iii) lim𝑛󳨀→∞𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑊,𝑉).

Then there exists 𝑥 ∈ 𝑊 such that 𝑑(𝑥, 𝑆𝑥) = 𝑑(𝑊,𝑉).
Proof. Let 𝑥0 ∈ 𝑊 and {𝑥2𝑛𝑘} be a subsequence of {𝑥2𝑛} such
that

lim
𝑘󳨀→∞

𝑥2𝑛𝑘 = 𝑥, for some 𝑥 ∈ 𝑊. (29)

In fact, for each 𝑘 ∈ N,

𝑑 (𝑊,𝑉) ≤ 𝑑 (𝑥, 𝑥2𝑛𝑘−1)
≤ 𝑑 (𝑥, 𝑥2𝑛𝑘) + 𝑑 (𝑥2𝑛𝑘 , 𝑥2𝑛𝑘−1) .

(30)

It follows by (𝑖𝑖𝑖) that
lim
𝑘󳨀→∞

𝑑 (𝑥, 𝑥2𝑛𝑘−1) = 𝑑 (𝑊,𝑉) , as 𝑘 󳨀→ ∞. (31)

From (𝑖), for each 𝑘 ∈ N, we have

𝑑 (𝑊,𝑉) ≤ 𝑑 (𝑆𝑥, 𝑥2𝑛𝑘) = 𝑑 (𝑆𝑥, 𝑆𝑥2𝑛𝑘−1)
≤ 𝑑 (𝑥, 𝑥2𝑛𝑘−1)

+ 𝐿min {𝑑 (𝑥, 𝑥2𝑛𝑘) , 𝑑 (𝑥2𝑛𝑘−1, 𝑆𝑥)}
≤ 𝑑 (𝑥, 𝑥2𝑛𝑘−1) + 𝐿𝑑 (𝑥, 𝑥2𝑛𝑘) .

(32)

Taking 𝑘 󳨀→ ∞ in the above inequality, we obtain that

𝑑 (𝑥, 𝑆𝑥) = lim
𝑘󳨀→∞

𝑑 (𝑥2𝑛𝑘 , 𝑆𝑥) = 𝑑 (𝑊,𝑉) . (33)

The proof is completed.

Using the same proof as Theorem 17, we obtain a similar
result.
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Theorem 18. Let 𝑊 and 𝑉 be nonempty subsets of a metric
space (𝑋, 𝑑) and 𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 be a cyclic mapping.
Let 𝑥0 ∈ 𝑊 be given and define a sequence {𝑥𝑛} in 𝑊 ∪ 𝑉 by
𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0. Suppose that the following conditions
hold:

(i) 𝑑(𝑆𝑥, 𝑆𝑦) ≤ 𝑑(𝑥, 𝑦) + 𝐿min{𝑑(𝑥, 𝑆𝑦), 𝑑(𝑦, 𝑆𝑥)} for all
𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉 with 𝐿 ≥ 0;

(ii) {𝑥2𝑛+1} has a convergent subsequence in 𝑉;
(iii) lim𝑛󳨀→∞𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑊,𝑉).

Then there exists 𝑦 ∈ 𝑉 such that 𝑑(𝑦, 𝑆𝑦) = 𝑑(𝑊,𝑉).
Applying Proposition 12 and Theorems 17 and 18, we

establish the following new best proximity point theorems for
a Berinde MT-cyclic contraction with respect to 𝜑.
Theorem 19. Let 𝑊 and 𝑉 be nonempty subsets of a metric
space (𝑋, 𝑑) and 𝑆 : 𝑊∪𝑉 󳨀→ 𝑊∪𝑉 be a Berinde MT-cyclic
contraction with respect to 𝜑. Let 𝑥0 ∈ 𝑊 be given and define
a sequence {𝑥𝑛} in𝑊 ∪ 𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0. If {𝑥2𝑛}
has a convergent subsequence in 𝑊, then there exists 𝑥 ∈ 𝑊
such that 𝑑(𝑥, 𝑆𝑥) = 𝑑(𝑊,𝑉).
Theorem 20. Let 𝑊 and 𝑉 be nonempty subsets of a metric
space (𝑋, 𝑑) and 𝑆 : 𝑊∪𝑉 󳨀→ 𝑊∪𝑉 be a Berinde MT-cyclic
contraction with respect to 𝜑. Let 𝑥0 ∈ 𝑊 be given and define a
sequence {𝑥𝑛} in𝑊 ∪ 𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0. If {𝑥2𝑛+1}
has a convergent subsequence in𝑉, then there exists 𝑦 ∈ 𝑉 such
that 𝑑(𝑦, 𝑆𝑦) = 𝑑(𝑊,𝑉).

ByTheorems 19 and 20, we obtain the next result.

Corollary 21. Let 𝑊 and 𝑉 be nonempty subsets of a metric
space (𝑋, 𝑑) and 𝑆 : 𝑊∪𝑉 󳨀→ 𝑊∪𝑉 be a Berinde MT-cyclic
contraction with respect to 𝜑. Let 𝑥0 ∈ 𝑊 be given and define
a sequence {𝑥𝑛} in𝑊∪𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0. Suppose
that𝑊 or𝑉 is compact. Then there exists 𝑥 ∈ 𝑊∪𝑉 such that
𝑑(𝑥, 𝑆𝑥) = 𝑑(𝑊,𝑉).
Theorem 22. Let 𝑊 and 𝑉 be nonempty subsets of a metric
space (𝑋, 𝑑) such that (𝑊,𝑉) is a semisharp proximal pair and
𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 is a Berinde MT-cyclic contraction with
respect to 𝜑. Let 𝑥0 ∈ 𝑊 be given and define a sequence {𝑥𝑛} in𝑊 ∪ 𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0. If {𝑥2𝑛} has a convergent
subsequence in𝑊, then the following hold:

(i) there exists 𝑥 ∈ 𝑊 such that 𝑑(𝑥, 𝑆𝑥) = 𝑑(𝑊,𝑉);
(ii) 𝑥 and 𝑆𝑥 are fixed point of 𝑆2 in𝑊 and𝑉, respectively.

Proof. ByTheorem 19, there exists𝑥 ∈ 𝑊 such that𝑑(𝑥, 𝑆𝑥) =
𝑑(𝑊,𝑉) and it follows that

𝑑 (𝑊,𝑉) ≤ 𝑑 (𝑆𝑥, 𝑆2𝑥)
≤ 𝜑 (𝑑 (𝑥, 𝑆𝑥)) 𝑑 (𝑥, 𝑆𝑥)

+ (1 − 𝜑 (𝑑 (𝑥, 𝑆𝑥))) 𝑑 (𝑊,𝑉)

+ 𝐿min {𝑑 (𝑥, 𝑆2𝑥) , 𝑑 (𝑆𝑥, 𝑆𝑥)}
= 𝜑 (𝑑 (𝑥, S𝑥)) 𝑑 (𝑥, 𝑆𝑥)

+ (1 − 𝜑 (𝑑 (𝑥, 𝑆𝑥))) 𝑑 (𝑊,𝑉)
= 𝑑 (𝑊,𝑉) .

(34)

Hence 𝑑(𝑆𝑥, 𝑆2𝑥) = 𝑑(𝑊,𝑉). In the semisharp proximality of
(𝑊,𝑉), we have 𝑆2𝑥 = 𝑥. Consider

𝑑 (𝑥, 𝑆2 (𝑆𝑥)) = 𝑑 (𝑥, 𝑆 (𝑆2𝑥)) = 𝑑 (𝑥, 𝑆𝑥)
= 𝑑 (𝑊,𝑉) ,

(35)

which implies that 𝑆2(𝑆𝑥) = 𝑆𝑥.Therefore, 𝑥 and 𝑆𝑥 are fixed
points of 𝑆2 in 𝑊 and 𝑉, respectively.

Using the proof of Theorem 22, we obtain the following
result.

Theorem 23. Let 𝑊 and 𝑉 be nonempty subsets of a metric
space (𝑋, 𝑑) such that (𝑊,𝑉) is a semisharp proximal pair, and
𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 is a Berinde MT-cyclic contraction with
respect to 𝜑. Let 𝑥0 ∈ 𝑊 be given and define a sequence {𝑥𝑛} in𝑊∪𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0. If {𝑥2𝑛+1} has a convergent
subsequence in 𝑉, then the following hold:

(i) there exists 𝑥 ∈ 𝑉 such that 𝑑(𝑥, 𝑆𝑥) = 𝑑(𝑊,𝑉);
(ii) 𝑥 and 𝑆𝑥 are fixed point of 𝑆2 in𝑉 and𝑊, respectively.

By using Theorem 8, we have the following corollary.

Corollary 24. Let𝑊 and𝑉 be nonempty complete subsets of a
metric space (𝑋, 𝑑) such that (𝑊,𝑉) satisfies the property UC,
and 𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 is a Berinde MT-cyclic contraction
with respect to 𝜑. Let 𝑥0 ∈ 𝑊 be given and define a sequence
{𝑥𝑛} in𝑊 ∪ 𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0. Then the following
hold:

(i) there exists 𝑥 ∈ 𝑊 such that 𝑑(𝑥, 𝑆𝑥) = 𝑑(𝑊,𝑉);
(ii) 𝑥 and 𝑆𝑥 are fixed points of 𝑆2 in𝑊 and𝑉, respectively.
We have discussed that, under some specific conditions,

a Berinde MT-cyclic contraction with respect to 𝜑 can be
reduced to a cyclic contraction or an MT-cyclic contraction
with respect to 𝜑. Thus, Theorems 17 and 19 are generaliza-
tions of the results proved by Eldred and Veeramani [14] and
Du and Lakzian [15], respectively. Hence, the three following
corollaries are obtained directly from those theorems.

Corollary 25 (Eldred and Veeramani [14, Proposition 3.2]).
Let 𝑊 and 𝑉 be nonempty closed subsets of a complete metric
space 𝑋. Let 𝑆 : 𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 be a cyclic contraction,
𝑥0 ∈ 𝑊, and define 𝑥𝑛+1 = 𝑆𝑥𝑛 for all 𝑛 ≥ 0. Suppose that {𝑥2𝑛}
has a convergent subsequence in 𝑊. Then there exists 𝑥 ∈ 𝑊
such that 𝑑(𝑥, 𝑆𝑥) = 𝑑(𝐴, 𝐵).
Corollary 26 (Du and Lakzian [15,Theorem 2.3]). Let𝑊 and
𝑉 be nonempty subsets of a metric space (𝑋, 𝑑) and 𝑆 : 𝑊 ∪
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𝑉 󳨀→ 𝑊 ∪ 𝑉 be a cyclic mapping. Let 𝑥0 ∈ 𝑊 be given and
define a sequence {𝑥𝑛} in 𝑊 ∪ 𝑉 by 𝑥𝑛+1 = 𝑆𝑥𝑛, for all 𝑛 ≥ 0.
Suppose that the following conditions hold:

(i) 𝑑(𝑆𝑥, 𝑆𝑦) ≤ 𝑑(𝑥, 𝑦) for all 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑉;
(ii) {𝑥2𝑛} has a convergent subsequence in𝑊;
(iii) lim𝑛󳨀→∞𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑊,𝑉).

Then there exists 𝑥 ∈ 𝑊 such that 𝑑(𝑥, 𝑆𝑥) = 𝑑(𝑊,𝑉).
Corollary 27 (Du and Lakzian [15, Theorem 2.4]). Let 𝑊
and 𝑉 be nonempty subsets of a metric space (𝑋, 𝑑) and 𝑆 :
𝑊 ∪ 𝑉 󳨀→ 𝑊 ∪ 𝑉 be a MT-cyclic contraction with respect
to 𝜑. Let 𝑥0 ∈ 𝑊 be given and define a sequence {𝑥𝑛} in
𝑊 ∪ 𝑉 by 𝑥𝑛+1 = S𝑥𝑛, for all 𝑛 ≥ 0. Suppose that {𝑥2𝑛} has
a convergent subsequence in 𝑊. Then there exists 𝑥 ∈ 𝑊 such
that 𝑑(𝑥, 𝑆𝑥) = 𝑑(𝑊,𝑉).
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In the present paper, new type of extension of classical beta function is introduced and its convergence is proved. Further it is used to
introduce the extension of Gauss hypergeometric function and confluent hypergeometric functions.Thenwe study their properties,
integral representation, certain fractional derivatives, and fractional integral formulas and application of these functions.

1. Introduction and Preliminaries

Nodoubt the classical beta function 𝐵(𝛼, 𝛽) is one of the most
fundamental special functions, because of its precious role
in several field of sciences such as mathematical, physical,
and statistical sciences and engineering. In many areas of
appliedmathematics, different types of special functions have
become necessary tool for the scientists and engineers. Dur-
ing the recent decades or so, numerous interesting and useful
extensions of the different special functions (the Gamma and
beta functions, the Gauss hypergeometric function, and so
on) have been introduced by different authors [1–6].

In 1997 Choudhary et al. [1] introduced the following
extension of classical beta function defined as
𝐵𝑝 (𝛼, 𝛽) = 𝐵 (𝛼, 𝛽; 𝑝)

= ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 exp(− 𝑝𝑡 (1 − 𝑡)) 𝑑𝑡,

(R (𝑝) ≥ 0) .
(1)

Further Chaudhry et al. [7, p. 591, Eqs. (2.1) and (2.2)]
made use of the extended beta function 𝐵𝑝(𝛼, 𝛽) in (1) to
extend the Gauss hypergeometric function and confluent
hypergeometric function as follows:

𝐹𝑝 (𝑎, 𝑏; 𝑐; 𝑧) = ∞∑
𝑛=0

(𝑎)𝑛 𝐵𝑝 (𝑏 + 𝑛, 𝑐 − 𝑏)
𝐵 (𝑏, 𝑐 − 𝑏) 𝑧𝑛𝑛! ,

(|𝑧| < 1; R (𝑐) > R (𝑏) > 0; R (𝑝) ≥ 0)
(2)

and

Φ𝑝 (𝑏; 𝑐; 𝑧) = ∞∑
𝑛=0

𝐵𝑝 (𝑏 + 𝑛, 𝑐 − 𝑏)
𝐵 (𝑏, 𝑐 − 𝑏) 𝑧𝑛𝑛! ,

(|𝑧| < 1; R (𝑐) > R (𝑏) > 0; R (𝑝) ≥ 0) .
(3)

and present their Euler type integrals as follows:

𝐹𝑝 (𝑎, 𝑏; 𝑐; 𝑧) = 1𝐵 (𝑏, 𝑐 − 𝑏)
⋅ ∫1

0
𝑡𝑏−1 (1 − 𝑡)𝑐−𝑏−1 (1 − 𝑧𝑡)−𝑎 exp [− 𝑝𝑡 (1 − 𝑡)] 𝑑𝑡,

(𝑝 > 0; 𝑝 = 0, 󵄨󵄨󵄨󵄨arg (1 − 𝑧)󵄨󵄨󵄨󵄨 < 𝜋; R (𝑐) > R (𝑏) > 0)
(4)

and

Φ𝑝 (𝑏; 𝑐; 𝑧) = 1𝐵 (𝑏, 𝑐 − 𝑏)
⋅ ∫1

0
𝑡𝑏−1 (1 − 𝑡)𝑐−𝑏−1 exp [𝑧𝑡 − 𝑝𝑡 (1 − 𝑡)] 𝑑𝑡,

(𝑝 > 0; 𝑝 = 0; R (𝑐) > R (𝑏) > 0) .
(5)
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If we choose 𝑝 = 0, the above definitions given in (1), (2),
(3), (4), and (5) reduce to the following form, respectively:

𝐵 (𝛼, 𝛽) = ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 𝑑𝑡,

(R (𝛼) > 0, R (𝛽) > 0) .
(6)

𝐹 (𝑎, 𝑏; 𝑐; 𝑧) = ∞∑
𝑛=0

(𝑎)𝑛 𝐵 (𝑏 + 𝑛, 𝑐 − 𝑏)𝐵 (𝑏, 𝑐 − 𝑏) 𝑧𝑛𝑛! ,
(|𝑧| < 1; R (𝑐) > R (𝑏) > 0) .

(7)

Φ (𝑏; 𝑐; 𝑧) = ∞∑
𝑛=0

𝐵 (𝑏 + 𝑛, 𝑐 − 𝑏)𝐵 (𝑏, 𝑐 − 𝑏) 𝑧𝑛𝑛! ,
(|𝑧| < 1; R (𝑐) > R (𝑏) > 0) .

(8)

𝐹 (𝑎, 𝑏; 𝑐; 𝑧)
= 1𝐵 (𝑏, 𝑐 − 𝑏) ∫

1

0
𝑡𝑏−1 (1 − 𝑡)𝑐−𝑏−1 (1 − 𝑧𝑡)−𝑎 𝑑𝑡,

(󵄨󵄨󵄨󵄨arg (1 − 𝑧)󵄨󵄨󵄨󵄨 < 𝜋;R (𝑐) > R (𝑏) > 0) .
(9)

Φ (𝑏; 𝑐; 𝑧)
= 1𝐵 (𝑏, 𝑐 − 𝑏) ∫

1

0
𝑡𝑏−1 (1 − 𝑡)𝑐−𝑏−1 exp (𝑧𝑡) 𝑑𝑡,

(R (𝑐) > R (𝑏) > 0) .
(10)

Gauss hypergeometric function and confluent hypergeo-
metric function are special cases of the generalized hyperge-
ometric series 𝑝𝐹𝑞(𝑝, 𝑞 ∈ N) defined as (see [8, p.73]) and [9,
pp. 71-75]:

𝑝𝐹𝑞 [ 𝛼1, . . . , 𝛼𝑝;𝛽1, . . . , 𝛽𝑞; 𝑧] = ∞∑
𝑛=0

(𝛼1)𝑛 ⋅ ⋅ ⋅ (𝛼𝑝)𝑛(𝛽1)𝑛 ⋅ ⋅ ⋅ (𝛽𝑞)𝑛
𝑧𝑛𝑛!

= 𝑝𝐹𝑞 (𝛼1, . . . , 𝛼𝑝; 𝛽1, . . . , 𝛽𝑞; 𝑧) ,
(11)

where (𝜉)𝑛 is the Pochhammer symbol defined (for 𝜉 ∈ C)
by (see[9, p.2 and p.5])

(𝜉)𝑛 fl {{{
1 (𝑛 = 0)
𝜉 (𝜉 + 1) . . . (𝜉 + 𝑛 − 1) (𝑛 ∈ N) (12)

= Γ (𝜉 + 𝑛)Γ (𝜉) (𝜉 ∈ C \ Z−
0 ) , (13)

and Z−
0 denotes the set of nonpositive integers and Γ(𝜉) is

familiar Gamma function.
The Fox-Wright function 𝑝Ψ𝑞 is defined as (see, for

details, Srivastava and Karisson [10])

𝑝Ψ𝑞 [𝑧] = 𝑝Ψ𝑞
[
[

(𝑎1, 𝛼1) , . . . , (𝑎𝑝, 𝛼𝑝) ;
(𝑏1, 𝛽1) , . . . , (𝑏𝑞, 𝛽𝑞) ; 𝑧]

]

= 𝑝Ψ𝑞
[
[

(𝑎𝑖, 𝛼𝑖)1,𝑝 ;
(𝑏𝑗, 𝛽𝑗)1,𝑞 ; 𝑧]

]
= ∞∑

𝑛=0

∏𝑝
𝑖=1Γ (𝑎𝑖 + 𝛼𝑖𝑛)∏𝑞
𝑗=1Γ (𝑏𝑗 + 𝛽𝑗𝑛)

𝑧𝑛𝑛! ,
(14)

where the coefficients 𝛼1, . . . , 𝛼𝑝, 𝛽1, . . . , 𝛽𝑞 ∈ R+ such
that

1 + 𝑞∑
𝑗=1

𝛽𝑗 −
𝑝∑
𝑖=1

𝛼𝑖 ≥ 0. (15)

Motivated from the above literature, we introduce new exten-
sion of classical beta function in (16) and its convergence is
studied in Theorem 1 in Section 2. Using MATLAB(R2015a),
the numerical results and graphs are presented in Section 3
and also radius of convergence of new extension of classical
beta function is discussed on the basis of numerical results
established by using MATLAB software. We establish the
integral representations and study the properties of new
extension of classical beta function.

Using the new extended beta function, extension of
the beta distribution is also introduced; Gauss hypergeo-
metric function and confluent hypergeometric function are
extended by employing the new extension of classical beta
function. Then we have studied the generating relations,
extension of Riemann-Lioville fractional derivative operator.
Fractional integrals of extended hypergeometric functions
and their image formulas in the form of beta transform,
Laplace transform, and Whittaker transform have been
also established. The solutions of fractional kinetic equa-
tions involving extended Gauss hypergeometric function and
extended confluent hypergeometric function are established.
Thenumerical results and graphical interpretation havemade
it easier to study the nature of these fractional kinetic
equations.

2. Extension of Beta Function

In this section, we introduce new extension of classical
beta function. Its convergence is proved mathematically;
then numerical results are established for different values of
parameters involved.

We introduce new extension of classical beta function as
follows:

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 𝑒𝑚𝑡(1−𝑡)𝑑𝑡, (16)

where R(𝛼) > 0,R(𝛽) > 0,𝑚 ∈ C; |𝑚| < 𝑀 (where 𝑀 is
positive number).

Theorem 1. IfR(𝛼) > 0,R(𝛽) > 0,𝑚 ∈ C; |𝑚| < 𝑀 (where𝑀 is positive number), then the new extension of the classical
beta function in equation (16) is convergent.
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Proof. We can write (16) as follows:

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 ∞∑

𝑛=0

[𝑚𝑡 (1 − 𝑡)]𝑛𝑛! 𝑑𝑡

= ∞∑
𝑛=0

𝑚𝑛

𝑛! ∫1

0
𝑡𝛼+𝑛−1 (1 − 𝑡)𝛽+𝑛−1 𝑑𝑡,

(17)

and further, using the definition of classical beta function
(6), (17) reduces to

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∞∑
𝑛=0

𝑚𝑛

𝑛! 𝐵 (𝛼 + 𝑛, 𝛽 + 𝑛) . (18)

In the above equation, 𝑀𝐶𝐵𝑚(𝛼, 𝛽) is in series form
involving 𝐵(𝛼 + 𝑛, 𝛽 + 𝑛) (where 𝑛 = 0, 1, 2, . . .) and in
each term of the series, 𝐵(𝛼 + 𝑛, 𝛽 + 𝑛) is convergent, since
R(𝛼 + 𝑛) > 0 andR(𝛽 + 𝑛) > 0 forR(𝛼) > 0 andR(𝛽) > 0,
which implies that each term of the series (18) exists.

Now we shall prove that 𝑀𝐶𝐵𝑚(𝛼, 𝛽) is convergent. 𝑚
may be greater than or less than 0, so there are two cases as
follows.

Case 1. If 𝑚 > 0, then we need to prove that 𝑀𝐶𝐵𝑚(𝛼, 𝛽) is
convergent.

Equation (18) can be written as

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∞∑
𝑛=0

𝑎𝑛,
where 𝑎𝑛 = 𝑚𝑛

𝑛! 𝐵 (𝛼 + 𝑛, 𝛽 + 𝑛) .
(19)

Further,

lim
𝑛󳨀→∞

𝑎𝑛𝑎𝑛+1 = ∞ > 1. (20)

By ratio test for positive series, 𝑀𝐶𝐵𝑚(𝛼, 𝛽) is convergent
for𝑚 > 0.
Case 2. If𝑚 < 0, then we need to prove that the extension of
classical beta function 𝐵𝑚(𝛼, 𝛽) is convergent.

To prove this case, let 𝑚 = −𝑝 (where 𝑝 > 0); then (18)
becomes

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∞∑
𝑛=0

(−𝑝)𝑛
𝑛! 𝐵 (𝛼 + 𝑛, 𝛽 + 𝑛) . (21)

Equation (21) can be written as

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = −∞∑
𝑛=0

(−1)𝑛−1 𝑏𝑛,
where 𝑏𝑛 = 𝑝𝑛𝑛! 𝐵 (𝛼 + 𝑛, 𝛽 + 𝑛) .

(22)

The series (22) is an alternating series; therefore

(1) 𝑏𝑛 > 0, ∀𝑝 > 0,R(𝛼, 𝛽) > 0
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Figure 1: Graph of new extension of classical beta function for fixed
value of 𝛼, 𝛽 and𝑚 = −2 : .5 : 2.

(2) 𝑏𝑛−𝑏𝑛+1 = (𝑝𝑛/𝑛!)𝐵(𝛼+𝑛, 𝛽+𝑛)[1−(𝛼+𝑛)(𝛽+𝑛)/(𝛼+𝛽 + 2𝑛)(𝛼 + 𝛽 + 2𝑛 + 1)] > 0 󳨐⇒ 𝑏𝑛 is decreasing
(3) lim𝑛󳨀→∞𝑏𝑛 = 0 if 𝑝 ≤ 2 (𝑝𝑛/𝑛! 󳨀→ 0 as 𝑛 󳨀→ ∞ only

if 𝑝 ≤ 2 and 𝐵(𝛼 + 𝑛, 𝛽 + 𝑛) 󳨀→ 0 as 𝑛 󳨀→ ∞)

All the conditions of Leibniz’s test for alternating series have
been satisfied; therefore 𝐵𝑚(𝛼, 𝛽) is convergent for 0 < 𝑝 ≤2 𝑖.𝑒. − 2 ≤ 𝑚 < 0.

From Cases 1 and 2 it is implied that the power series in
(18) is convergent.

3. Numerical Results and Graphs of New
Extension of the Classical Beta Function

The numerical results of new extension of classical beta
functionhave been calculated in this section. For this purpose
we choose the values of variables 𝛼, 𝛽 and parameter 𝑚 as𝛼, 𝛽 ∈ [0, 10] and 𝑚 ∈ [−2.0335, 2.0335]. All the numerical
values of new extension of the classical beta function are
presented in Tables 1 and 2, fromwhich we can easily observe
that 𝑀𝐶𝐵𝑚(𝛼, 𝛽) does not exist at 𝛼 = 𝛽 = 0 and it is also
investigated that 𝑀𝐶𝐵𝑚(𝛼, 𝛽) does not exist for𝑚 < −2.0335
and 𝑚 > 2.0335; 𝑀𝐶𝐵𝑚(𝛼, 𝛽) 󳨀→ ∞ as 𝛼, 𝛽 󳨀→ 0 and
𝑀𝐶𝐵𝑚(𝛼, 𝛽) 󳨀→ 0 as 𝛼, 𝛽 󳨀→ ∞, which implies that the
behaviour of new extension of classical beta function is the
same as that of classical beta function.

We also check the effect of 𝑚 on the new extension of
classical beta function. For this purpose, we fix the values
of 𝛼 and 𝛽 as shown in Figure 1, then we plot the graph
which depicts that 𝑀𝐶𝐵𝑚(𝛼, 𝛽) is an increasing function as
the values of 𝑚 increase. It is very clear from Figure 1 that
for the graph of classical beta function, new extension of
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Table 1: Numerical values of new extension of classical beta function 𝑀𝐶𝐵𝑚(𝛼, 𝛽).
𝛼 𝛽 𝑚 = −2.0335 𝑚 = −2.0 𝑚 = −1.0 𝑚 = 0.0
0.00 0.00 NaN NaN NaN NaN
0.01 0.01 198.27177610 198.29548624 199.06411204 199.96757732
0.02 0.02 98.27460320 98.29781890 99.05065967 99.93608768
0.03 0.03 64.94418565 64.96691911 65.70435720 66.57217010
0.04 0.04 48.28052079 48.30278382 49.02519017 49.87579792
0.05 0.05 38.28360599 38.30541007 39.01314459 39.84694542
0.06 0.06 31.62010537 31.64146162 32.33487366 33.15225447
0.07 0.07 26.86144500 26.88236422 27.56179291 28.36312969
0.08 0.08 23.29333673 23.31382939 23.97960405 24.76526226
0.09 0.09 20.51895277 20.53902903 21.19146950 21.96180446
0.10 0.10 18.30019555 18.31986529 18.95928227 19.71463949
1.0 1.0 0.72102562 0.72477846 0.84887277 1.00000000
2.0 2.0 0.11166177 0.11238923 0.13665458 0.16666667
3.0 3.0 0.02163870 0.02179192 0.02692731 0.03333333
4.0 4.0 0.00455690 0.00459058 0.00572283 0.00714286
5.0 5.0 0.00100158 0.00100918 0.00126512 0.00158730
6.0 6.0 0.00022592 0.00022766 0.00028649 0.00036075
7.0 7.0 0.00005185 0.00005225 0.00006594 0.00008325
8.0 8.0 0.00001205 0.00001214 0.00001536 0.00001943
9.0 9.0 0.00000283 0.00000285 0.00000361 0.00000457
10.0 10.0 0.00000067 0.00000067 0.00000085 0.00000108

Table 2: Numerical values of new extension of classical beta function 𝑀𝐶𝐵𝑚(𝛼, 𝛽).
𝛼 𝛽 𝑚 = 0.0 𝑚 = 1.0 𝑚 = 2.0 𝑚 = 2.0335
0.00 0.00 NaN NaN NaN NaN
0.01 0.01 199.96757732 201.03554301 202.30476477 202.35127432
0.02 0.02 99.93608768 100.98330172 102.22848838 102.27412810
0.03 0.03 66.57217010 67.59910183 68.82077895 68.86556756
0.04 0.04 49.87579792 50.88290361 52.08158267 52.12553836
0.05 0.05 39.84694542 40.83466875 42.01084757 42.05398809
0.06 0.06 33.15225447 34.12102693 35.27519021 35.31753282
0.07 0.07 28.36312969 29.31337104 30.44599075 30.48755229
0.08 0.08 24.76526226 25.69738092 26.80891675 26.84971362
0.09 0.09 21.96180446 22.87619790 23.96709764 24.00714582
0.10 0.10 19.71463949 20.61169459 21.68239456 21.72170964
1.0 1.0 1.00000000 1.18459307 1.41068613 1.41909001
2.0 2.0 0.16666667 0.20385173 0.25000000 0.25172603
3.0 3.0 0.03333333 0.04133360 0.05133577 0.05171118
4.0 4.0 0.00714286 0.00892526 0.01116423 0.01124846
5.0 5.0 0.00158730 0.00199311 0.00250456 0.00252383
6.0 6.0 0.00036075 0.00045452 0.00057299 0.00057746
7.0 7.0 0.00008325 0.00010515 0.00013287 0.00013392
8.0 8.0 0.00001943 0.00002458 0.00003112 0.00003137
9.0 9.0 0.00000457 0.00000579 0.00000734 0.00000740
10.0 10.0 0.00000108 0.00000137 0.00000174 0.00000176

classical beta function remains concave upward (or convex
downward) for different values of 𝛼, 𝛽, and 𝑚. The value
of 𝑚 does not affect the nature of classical beta function;
the main effect of the value of 𝑚 is that it just pushes the

curve up or drags down the curve from the curve of the
classical beta function. In Figure 2, Mesh-Plot is established
of new extension of classical beta function, which can be
easily interpreted.
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Figure 2: Mesh-Plot of the new extension of classical beta function.

From the above proof of radius of convergence of series
and further numerical investigation of the power series in
Tables 1 and 2, we find that the interval of convergence of the
series is [−2.0335, 2.0335], which implies that 𝑀𝐶𝐵𝑚(𝛼, 𝛽) is
convergent for |𝑚| < 𝑀, where 𝑀 is positive number not
greater than 2.0335.

Note 2. From the above discussion, it is easy to conclude that
the value of R(𝑚) lies in the interval [−2.0335, 2.0335]; i.e.,−2.0335 ≤ R(𝑚) ≤ 2.0335.
Note 3. In the sequel of this paper, |𝑚| < 𝑀 represents the
circle of convergence and 𝑀 is the radius of convergence of
(16), where𝑀 is not greater than 2.0335.
Remark 4. For R(𝛼) > 0, R(𝛽) > 0, 𝑚 ∈ C; |𝑚| < 𝑀
(where 𝑀 is positive number not greater than 2.0335), the
new extension of classical beta function can be presented in
the relation Fox-Wright function (see (14)) as follows:

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∞∑
𝑛=0

𝑚𝑛

𝑛! Γ (𝛼 + 𝑛) Γ (𝛽 + 𝑛)
Γ (𝛼 + 𝛽 + 2𝑛)

= 2Ψ1 [ (𝛼, 1) , (𝛽, 1)
(𝛼 + 𝛽, 2) ; 𝑚] .

(23)

The above result is obtained from (18).

4. Integral Representation of the New
Extension of Classical Beta Function

The integral representation of the new extended beta function
is important both to check whether the extension is natural
and simple and for later use. It is also important to investigate
the relationship between the classical beta function and
the new extension of the classical beta function. In this

connection, we first provide a relationship between them.The
following integral formula is useful for further investigation
[11]:

∫∞

0
𝑥𝑚 exp (−𝛽𝑥𝑛) 𝑑𝑥 = Γ (𝛾)𝑛𝛽𝛾 ,

(where 𝛾 = m + 1
n

) and R (𝛽) > 0.
(24)

Theorem 5 (relation between new extension of the classical
beta function and the classical beta function). IfR(𝛼+𝑠) > 0,
R(𝛽 + 𝑠) > 0, 𝑚 ∈ C; |𝑚| < 𝑀 (where 𝑀 is positive number
not greater than 2.0335), then we have the following relation:

∫∞

0
𝑚𝑠−1 𝑀𝐶𝐵𝑚 (𝛼, 𝛽) 𝑑𝑚

= (−1)𝑠 Γ (𝑠) 𝐵 (𝛼 + 𝑠, 𝛽 + 𝑠) .
(25)

Proof. Multiplying both sides of (16) by𝑚𝑠−1, then integrating
with respect to𝑚 from𝑚 = 0 to𝑚 = ∞, we have

∫∞

0
𝑚𝑠−1 𝑀𝐶𝐵𝑚 (𝛼, 𝛽) 𝑑𝑚

= ∫∞

0
𝑚𝑠−1 [∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1

⋅ exp (𝑚𝑡 (1 − 𝑡)) 𝑑𝑡] 𝑑𝑚,
(26)

and interchanging the order of integration, (26) reduces
to

∫∞

0
𝑚𝑠−1 𝑀𝐶𝐵𝑚 (𝛼, 𝛽) 𝑑𝑚 = ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1

⋅ [∫∞

0
𝑚𝑠−1 exp (𝑚𝑡 (1 − 𝑡)) 𝑑𝑚]𝑑𝑡,

(27)
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and further using the formula given in (24), after simpli-
fication, (27) reduces to

∫∞

0
𝑚𝑠−1 𝑀𝐶𝐵𝑚 (𝛼, 𝛽) 𝑑𝑚

= (−1)𝑠 Γ (𝑠) ∫1

0
𝑡𝛼+𝑠−1 (1 − 𝑡)𝛽+𝑠−1 𝑑𝑡,

(28)

and using the definition of classical beta function, we have the
required result.

Remark 6. By setting 𝑠 = 1, the result in (25) reduces to

∫∞

0

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) 𝑑𝑚 = −𝐵 (𝛼 + 1, 𝛽 + 1) ,
R (𝛼) > −1, R (𝛽) > −1

(29)

which gives the interesting relation between classical beta
function and new extended beta function.

Remark 7. All the derivatives of the new extension of classical
beta function with respect to the parameter 𝑚 can be
expressed in terms of the function as

𝜕𝑛𝜕𝑛𝑚𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = 𝐵 (𝛼 + 𝑛, 𝛽 + 𝑛) ,
R (𝛼 + 𝑛) > 0, R (𝛽 + 𝑛) > 0.

(30)

Theorem 8 (integral representations of the new extension of
the classical beta function). If R(𝛼) > 0, R(𝛽) > 0, 𝑚 ∈ C;|𝑚| < 𝑀 (where𝑀 is positive number not greater than 2.0335),
then we have the following relation:

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = 2∫𝜋/2

0
cos2𝛼−1𝜃 sin2𝛽−1𝜃 exp (𝑚 cos2𝜃 sin2𝜃) 𝑑𝜃, (31)

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∫∞

0

𝑢𝛼−1
(1 + 𝑢)𝛼+𝛽 exp( 𝑚𝑢

(1 + 𝑢)2)𝑑𝑢, (32)

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = 12 ∫∞

0

𝑢𝛼−1 + 𝑢𝛽−1
(1 + 𝑢)𝛼+𝛽 exp( 𝑚𝑢

(1 + 𝑢)2)𝑑𝑢, (33)

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = (𝑐 − 𝑎)1−𝛼−𝛽
⋅ ∫𝑐

𝑎
(𝑢 − 𝑎)𝛼−1 (𝑐 − 𝑢)𝛽−1 exp(𝑚 (𝑢 − 𝑎) (𝑐 − 𝑢)

(𝑐 − 𝑎)2 ) 𝑑𝑢, (34)

𝑀𝐶𝐵𝑚 (𝛼, 𝛽)
= 21−𝛼−𝛽 ∫1

−1
(1 + 𝑡)𝛼−1 (1 − 𝑡)𝛽−1 exp(𝑚(1 − 𝑡2)

4 )𝑑𝑢, (35)

𝑀𝐶𝐵𝑚 (𝛼, 𝛽)
= 21−𝛼−𝛽 ∫∞

−∞
exp [(𝛼 − 𝛽) 𝑥 + 𝑚

4 cosh2𝑥] 𝑑𝑥
(cosh 𝑥)𝛼+𝛽 ,

(36)

𝑀𝐶𝐵𝑚 (𝛼, 𝛽)
= 22−𝛼−𝛽 ∫∞

0
cosh ((𝛼 − 𝛽) 𝑥) exp [ 𝑚

4 cosh2𝑥] 𝑑𝑥
(cosh 𝑥)𝛼+𝛽 ,

(37)

𝑀𝐶𝐵𝑚 (𝛼, 𝛽)
= 21−𝛼−𝛽 ∫∞

−∞
exp [12 (𝛼 − 𝛽) 𝑥 + 𝑚2 cosh 𝑥] 𝑑𝑥

(cosh 𝑥/2)𝛼+𝛽 ,
(38)

𝑀𝐶𝐵𝑚 (𝛼, 𝛽)
= 22−𝛼−𝛽 ∫∞

0

cosh ((𝛼 − 𝛽) 𝑥/2)
(cosh 𝑥/2)𝛼+𝛽 exp [ 𝑚2 cosh 𝑥]𝑑𝑥. (39)

Proof. The result (31) can be easily obtained by setting 𝑡 =
cos2𝜃 in (16); to prove (32) choose 𝑡 = 𝑢/(1 + 𝑢); (33) can be
easily obtained by applying the symmetric property in (32)
then adding new one and (32); the result in (34) is obtained
by taking 𝑡 = (𝑢 − 𝑎)/(𝑐 − 𝑎), and setting 𝑎 = −1, 𝑐 = 1 in
(34) gives the result in (35) and to prove the result in (36) put𝑢 = tanh 𝑥 in (35). The results in (37), (38), and (39) can be
easily obtained from the result (36).

Remark 9 (useful inequalities). If R(𝛼) > 0, R(𝛽) > 0, then
we have the following inequality

󵄨󵄨󵄨󵄨󵄨𝑀𝐶𝐵𝑚 (𝛼, 𝛽)󵄨󵄨󵄨󵄨󵄨 ≤ 1.6626𝐵 (𝛼, 𝛽) (40)

follows from the integral representation (32), since the func-
tion exp(𝑚𝑢/(1 + 𝑢)2) attains its maximum value 1.6626 at𝑢 = 1 and 𝑚 = 2.0335.
5. Properties of the New Extension of
the Classical Beta Function

Theorem 10 (functional relation). If R(𝛼) > 0, R(𝛽) > 0,𝑚 ∈ C; |𝑚| < 𝑀 (where 𝑀 is positive number), then we have
the following relation:

𝑀𝐶𝐵𝑚 (𝛼, 𝛽 + 1) + 𝑀𝐶𝐵𝑚 (𝛼 + 1, 𝛽) = 𝑀𝐶𝐵𝑚 (𝛼, 𝛽) . (41)

Proof. Using the definition of new extension of beta function,
LHS of (41) is equal to

∫1

0
{𝑡𝛼−1 (1 − 𝑡)𝛽 + 𝑡𝛼 (1 − 𝑡)𝛽−1} 𝑒𝑚𝑡(1−𝑡)𝑑𝑡, (42)

and after simplification (42) reduced to

∫1

0
{𝑡𝛼−1 (1 − 𝑡)𝛽−1} 𝑒𝑚𝑡(1−𝑡)𝑑𝑡 = 𝑀𝐶𝐵𝑚 (𝛼, 𝛽) . (43)

If we choose 𝑚 = 0, we get the usual relation for the beta
function from (41).

Theorem 11 (symmetry). If R(𝛼) > 0, R(𝛽) > 0, 𝑚 ∈ C;|𝑚| < 𝑀 (where 𝑀 is positive number), then we have the
following relation:

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = 𝑀𝐶𝐵𝑚 (𝛽, 𝛼) . (44)
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Proof. From (18), we have

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∞∑
𝑛=0

(𝑚)𝑛𝑛! 𝐵 (𝛼 + 𝑛, 𝛽 + 𝑛) , (45)

and since usual beta function is symmetric, i.e., 𝐵(𝛼, 𝛽) =𝐵(𝛽, 𝛼), using this property in the right-hand side of (45),
then we have

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∞∑
𝑛=0

𝑚𝑛

𝑛! 𝐵 (𝛽 + 𝑛, 𝛼 + 𝑛)
= 𝑀𝐶𝐵𝑚 (𝛽, 𝛼) .

(46)

Theorem 12 (first summation relation). If R(𝛼) > 0, R(1 −𝛽) > 0, 𝑚 ∈ C; |𝑚| < 𝑀 (where 𝑀 is positive real number),
then we have the following relation:

𝑀𝐶𝐵𝑚 (𝛼, 1 − 𝛽) = ∞∑
𝑛=0

(𝛽)𝑛𝑛! 𝑀𝐶𝐵𝑚 (𝛼 + 𝑛, 1) . (47)

Proof. The LHS of (47) can be written as
𝑀𝐶𝐵𝑚 (𝛼, 1 − 𝛽)

= ∫1

0
𝑡𝛼−1 (1 − 𝑡)−𝛽 exp (𝑚𝑡 (1 − 𝑡)) 𝑑𝑡, (48)

and using the binomial series expansion (1 − 𝑡)−𝛽 =∑∞
𝑛=0((𝛽)𝑛/𝑛!)𝑡𝑛 in (48) and then interchanging the order of

summation and integration, the above result (48) reduced to
the following form:

𝑀𝐶𝐵𝑚 (𝛼, 1 − 𝛽)
= ∞∑

𝑛=0

(𝛽)𝑛𝑛! ∫1

0
𝑡𝛼+𝑛−1 exp (𝑚𝑡 (1 − 𝑡)) 𝑑𝑡 󳨐⇒ (49)

𝑀𝐶𝐵𝑚 (𝛼, 1 − 𝛽) = ∞∑
𝑛=0

(𝛽)𝑛𝑛! 𝑀𝐶𝐵𝑚 (𝛼 + 𝑛, 1) . (50)

Theorem 13 (second summation relation). If R(𝛼) >0,R(𝛽) > 0,𝑚 ∈ C; |𝑚| < 𝑀 (where 𝑀 is positive number),
then we have the following relation:

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∞∑
𝑛=0

𝑀𝐶𝐵𝑚 (𝛼 + 𝑛, 𝛽 + 1) . (51)

Proof. The LHS of (47) can be written as

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 exp (𝑚𝑡 (1 − 𝑡)) 𝑑𝑡, (52)

and using the binomial series expansion (1 − 𝑡)𝛽−1 =(1 − 𝑡)𝛼 ∑∞
𝑛=0 𝑡𝑛(|𝑡| < 1) and interchanging the order of

summation and integration, (52) reduces to
𝑀𝐶𝐵𝑚 (𝛼, 𝛽)

= ∞∑
𝑛=0

∫1

0
𝑡𝛼+𝑛−1 (1 − 𝑡)𝛽 exp (𝑚𝑡 (1 − 𝑡)) 𝑑𝑡 󳨐⇒ (53)

𝑀𝐶𝐵𝑚 (𝛼, 𝛽) = ∞∑
𝑛=0

𝑀𝐶𝐵𝑚 (𝛼 + 𝑛, 𝛽 + 1) . (54)

Theorem 14 (separation). If R(𝛼) > 0, R(𝛽) > 0, 𝑚 ∈ C;|𝑚| < 𝑀 (where𝑀 is positive number), then 𝑀𝐶𝐵𝑚(𝛼, 𝛽) can
be separated into real and imaginary parts of𝑚 as follows:

𝑀𝐶𝐵𝑟 cos 𝜃 (𝛼, 𝛽)
= ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 exp (𝑟𝑡 (1 − 𝑡) cos 𝜃) 𝑑𝑡, (55)

𝑀𝐶𝐵𝑟 sin 𝜃 (𝛼, 𝛽)
= ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 exp (𝑟𝑡 (1 − 𝑡) sin 𝜃) 𝑑𝑡, (56)

where 𝑟 = √𝑥2 + 𝑦2 = |𝑚| < 𝑀 and 𝜃 = tan−1𝑦/𝑥.
Proof. Since 𝑚 ∈ C, so let 𝑚 = 𝑥 + 𝑖𝑦, where 𝑥, 𝑦 ∈ R and
also let 𝑥 + 𝑖𝑦 = 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃 󳨐⇒ 𝑟 = √𝑥2 + 𝑦2 and
𝜃 = tan−1𝑦/𝑥; then from (16), we have

𝑀𝐶𝐵(𝑥+𝑖𝑦) (𝛼, 𝛽)
= ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 exp (𝑟𝑒𝑖𝜃𝑡 (1 − 𝑡)) 𝑑𝑡, (57)

and after simplification (57) reduces to
𝑀𝐶𝐵(𝑟cos𝜃+𝑖𝑟sin𝜃) (𝛼, 𝛽)

= ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 exp (𝑟𝑡 (1 − 𝑡) cos 𝜃) 𝑑𝑡

+ 𝑖 ∫1

0
𝑡𝛼−1 (1 − 𝑡)𝛽−1 exp (𝑟𝑡 (1 − 𝑡) sin 𝜃) 𝑑𝑡.

(58)

Equating the real and imaginary parts of𝑚 only, we have the
required results.

6. Applications of New Extension of the
Classical Beta Function

It is expected that there will be many applications of the new
extension of the classical beta function, e.g., new extension
of the beta distribution, new extensions of Gauss hyperge-
ometric functions and confluent hypergeometric function,
generating relations, and extension of Riemann-Liouville
derivatives. All these have been introduced in the following
subsections.

6.1. The New Extension of the Beta Distribution. One appli-
cation that springs to mind is to statistics. For example, the
conventional beta distribution can be extended, by using our
new extension of the classical beta function, to variables p and
qwith an infinite range. It appears that such an extension may
be desirable for the project evaluation and review technique
used in some special cases.
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We define the extension of the beta distribution by

𝑓 (𝑡)
= {{{{{

𝑡𝑝−1 (1 − 𝑡)𝑞−1 exp (𝑚𝑡 (1 − 𝑡))
𝑀𝐶𝐵𝑚 (𝑝, 𝑞) , 0 < 𝑡 < 1

0, otherwise.
(59)

A random variable 𝑋 with probability density function
(pdf) given in (59) will be said to have the extended beta
distribution with parameters 𝑝 and 𝑞, −∞ < 𝑝, 𝑞 < ∞, and|𝑚| < 𝑀 where𝑀 is positive number. If ] is any real number
[12], then

𝐸 (𝑋]) = 𝑀𝐶𝐵𝑚 (𝑝 + ], 𝑞)
𝑀𝐶𝐵𝑚 (𝑝, 𝑞) . (60)

In particular, for ] = 1,
𝜇 = 𝐸 (𝑋) = 𝑀𝐶𝐵𝑚 (𝑝 + 1, 𝑞)

𝑀𝐶𝐵𝑚 (𝑝, 𝑞) (61)

represents the mean of the distribution and

𝜎2 = 𝐸 (𝑋2) − (𝐸 (𝑋))2
= 𝑀𝐶𝐵𝑚 (𝑝, 𝑞) 𝑀𝐶𝐵𝑚 (𝑝 + 2, 𝑞) − 𝑀𝐶𝐵2𝑚 (𝑝 + 1, 𝑞)

𝑀𝐶𝐵2𝑚 (𝑝, 𝑞)
(62)

is a variance of the distribution.
The moment of generating function of the distribution is

𝑀(𝑡) = ∞∑
𝑛=0

𝑡𝑛𝐸 (𝑋𝑛)𝑛!
= 1

𝑀𝐶𝐵𝑚 (𝑝, 𝑞)
∞∑
𝑛=0

𝑡𝑛𝑛! 𝑀𝐶𝐵𝑚 (𝑝 + 𝑛, 𝑞) .
(63)

The commutative distribution of (59) can be written as

𝐹 (𝑥) = 𝑀𝐶𝐵𝑚,𝑥 (𝑝, 𝑞)
𝑀𝐶𝐵𝑚 (𝑝, 𝑞) , (64)

where

𝑀𝐶𝐵𝑚,𝑥 (𝑝, 𝑞)
= ∫𝑥

0
𝑡𝑝−1 (1 − 𝑡)𝑞−1 exp (𝑚𝑡 (1 − 𝑡)) 𝑑𝑡,

|𝑚| < 𝑀, −∞ < 𝑝, 𝑞 < ∞
(65)

is the new extended incomplete beta function. For 𝑚 =0, we must have 𝑝, 𝑞 > 0 in (65) for convergence, and
𝑀𝐶𝐵0,𝑥(𝑝, 𝑞) = 𝐵𝑥(𝑝, 𝑞), where 𝐵𝑥(𝑝, 𝑞) is the incomplete
beta function [11] defined as

𝐵𝑥 (𝑝, 𝑞) = 𝑀𝐶𝐵0,𝑥 (𝑝, 𝑞)
= 𝑥𝑝𝑝 2𝐹1 (𝑝, 1 − 𝑞; 𝑝 = 1; 𝑥) . (66)

It is to be noted that the problem of expressing
𝑀𝐶𝐵𝑚,𝑥(𝑝, 𝑞) in terms of other special functions remains
open. Presumably, this distribution should be useful in
extending the statistical results for strictly positive variables
to deal with variables that can take arbitrarily large negative
values as well.

6.2. Extensions of Gauss and Confluent Hypergeometric Func-
tion Using the New Extension of Beta Function. In this
section, we extended the Gauss hypergeometric function
and confluent hypergeometric function via new extension of
classical beta function, which is defined as follows:

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧) fl ∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) 𝑧𝑛𝑛! ,
|𝑧| < 1; R (𝛾) > R (𝛽) > 0; |𝑚| < 𝑀 (where 𝑀 is a positive real number) .

(67)

𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑧) fl ∞∑
𝑛=0

𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽) 𝑧𝑛𝑛! ,

|𝑧| < 1; R (𝛾) > R (𝛽) > 0; |𝑚| < 𝑀 (where 𝑀 is a positive real number) .
(68)

We call 𝑀𝐶𝐹𝑚(𝑎, 𝑏; 𝑐; 𝑧) new extension of Gauss hyper-
geometric function and 𝑀𝐶Φ𝑚(𝑏; 𝑐; 𝑧) new extension of
confluent hypergeometric function.

Note 15. If we choose 𝑚 = 0, the above two new extensions
in (67) and (68) reduce to Gauss hypergeometric function

and confluent hypergeometric function given in (7) and (8),
respectively.

6.3. Numerical Results of New Extension of Gauss Hypergeo-
metric Function and New Extension of Confluent Hypergeo-
metric Function. intoHere, we present the numerical values
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Table 3: Numerical values of new extension of Gauss hypergeometric function 𝑀𝐶𝐹𝑚(2, 1; 3; 𝑥).
x 𝑚 = −2 𝑚 = −1 𝑚 = 0 𝑚 = 1 𝑚 = 2
0.0000 0.7248 0.8489 1.0000 1.1846 1.4107
0.1000 0.7734 0.9080 1.0721 1.2728 1.5188
0.2000 0.8308 0.9778 1.1572 1.3768 1.6463
0.3000 0.9000 1.0618 1.2594 1.5017 1.7993
0.4000 0.9855 1.1653 1.3853 1.6552 1.9870
0.5000 1.0947 1.2972 1.5452 1.8495 2.2240
0.6000 1.2410 1.4730 1.7572 2.1061 2.5356
0.7000 1.4512 1.7236 2.0570 2.4664 2.9701
0.8000 1.7914 2.1235 2.5295 3.0270 3.6382
0.9000 2.4976 2.9335 3.4632 4.1089 4.8982
1.0000 6.7829 7.5302 8.4142 9.4648 10.7195

Table 4: Numerical values of new extension of confluent hypergeometric function 𝑀𝐶
1𝐹1,𝑚(1; 3; 𝑥).

x 𝑚 = −2 𝑚 = −1 𝑚 = 0 𝑚 = 1 𝑚 = 2
0.0000 0.7248 0.8489 1.0000 1.1846 1.4107
0.1000 0.7478 0.8769 1.0342 1.2264 1.4620
0.2000 0.7721 0.9064 1.0701 1.2704 1.5159
0.3000 0.7976 0.9374 1.1080 1.3167 1.5726
0.4000 0.8245 0.9701 1.1478 1.3654 1.6324
0.5000 0.8528 1.0045 1.1898 1.4167 1.6953
0.6000 0.8826 1.0408 1.2340 1.4707 1.7616
0.7000 0.9141 1.0790 1.2806 1.5277 1.8314
0.8000 0.9473 1.1194 1.3298 1.5879 1.9051
0.9000 0.9824 1.1620 1.3817 1.6513 1.9828
1.0000 1.0195 1.2070 1.4366 1.7183 2.0649

of new extension of Gauss hypergeoemtric function and new
extension of confluent hypergeoemtric function in Table 3
and Table 4 for 𝑚 = −2 : 1 : 2. Further their graphs are
plotted in Figure 3 and Figure 4, respectively. When 𝑚 = 0
we have the values of Gauss hypergeoemtric function and
confluent hypergeoemtric function.

6.4. Integral Representation of New Extension of Gauss Hyper-
geometric Function and New Extension of Confluent Hyperge-
ometric Function. Thenew extension of Gauss hypergeomet-
ric function and new extension of confluent hypergeometric
function can be provided with an integral representation by
using the definition of the new extension of classical beta
function (16); we have the following.

Theorem 16. For the new extension of Gauss hypergeometric
function 𝑀𝐶𝐹𝑚(𝛼, 𝛽; 𝛾; 𝑧), we have the following integral
representations:

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧) fl 1𝐵 (𝛽, 𝛾 − 𝛽) ∫1

0
𝑡𝛽−1 (1 − 𝑡)𝛾−𝛽−1

⋅ (1 − 𝑧𝑡)−𝛼 𝑒𝑚𝑡(1−𝑡)𝑑𝑡,
(69)

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧) fl 1𝐵 (𝛽, 𝛾 − 𝛽) ∫1

0
𝑢𝛽−1 (1 + 𝑢)𝛼−𝛾−1

⋅ (1 + (1 − 𝑧) 𝑢)−𝛼 𝑒𝑚𝑢/(1+𝑢)2𝑑𝑢,
(70)

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧) fl 2𝐵 (𝛽, 𝛾 − 𝛽)
⋅ ∫𝜋/2

0
sin2𝛽−1𝜃 cos2𝛾−2𝛽−1𝜃 (1 − 𝑧 sin2𝜃)−𝛼

⋅ 𝑒𝑚sin2𝜃cos2𝜃𝑑𝜃.
(71)

Proof. Equation (67) can be written as

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧) fl ∞∑
𝑛=0

(𝛼)𝑛
𝑀C𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) 𝑧𝑛𝑛!
= 1𝐵 (𝛽, 𝛾 − 𝛽)

∞∑
𝑛=0

(𝛼)𝑛
⋅ ∫1

0
𝑡𝛽+𝑛−1 (1 − 𝑡)𝛾−𝛽−1 𝑒𝑚𝑡(1−𝑡) 𝑧𝑛𝑛! 𝑑𝑡
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Figure 3: Graph of the new extension of Gauss hypergeometric
function for 𝛼 = 2, 𝛽 = 1, 𝛾 = 3, and 𝑧 = 0 : 0.1 : 1.

= 1𝐵 (𝛽, 𝛾 − 𝛽)
⋅ ∫1

0
𝑡𝛽−1 (1 − 𝑡)𝛾−𝛽−1 𝑒𝑚𝑡(1−𝑡) ∞∑

𝑛=0

(𝛼)𝑛 (𝑡𝑧)𝑛𝑛! 𝑑𝑡
= 1𝐵 (𝛽, 𝛾 − 𝛽)
⋅ ∫1

0
𝑡𝛽−1 (1 − 𝑡)𝛾−𝛽−1 (1 − 𝑡𝑧)−𝛼 𝑒𝑚𝑡(1−𝑡).

(72)

Setting 𝑢 = 𝑡/(1 − 𝑡) in (69), we have the required result
(70).

Again if we choose 𝑡 = sin2𝜃, we obtain the result (71).

Remark 17. Choosing 𝑧 = 1 in (69), we have the following
relation between new extensions of Gauss hypergeometric
function:

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 1)
fl

1𝐵 (𝛽, 𝛾 − 𝛽) ∫1

0
𝑡𝛽−1 (1 − 𝑡)𝛾−𝛼−𝛽−1 𝑒𝑚𝑡(1−𝑡)𝑑𝑡

= 𝑀C𝐵𝑚 (𝛽, 𝛾 − 𝛼 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽) .

(73)
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Figure 4: Graph of the new extension of confluent hypergeometric
function for 𝛽 = 1, 𝛾 = 3, and 𝑧 = 0 : 0.1 : 1.

Theorem 18. For the new extension of confluent hypergeo-
metric function 𝑀𝐶Φ𝑚(𝛼; 𝛽; 𝑥), we have the following integral
representations:

𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑧) fl 1𝐵 (𝛽, 𝛾 − 𝛽)
⋅ ∫1

0
𝑡𝛽−1 (1 − 𝑡)𝛾−𝛽−1 𝑒𝑧𝑡𝑒𝑚𝑡(1−𝑡)𝑑𝑡,

(74)

𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑧) fl 1𝐵 (𝛽, 𝛾 − 𝛽)
⋅ ∫1

0
𝑢𝛽−1 (1 + 𝑢)−𝛾 𝑒𝑧𝑢/(1+𝑢)𝑒𝑚𝑢/(1+𝑢)2𝑑𝑢,

(75)

𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑧) fl 2𝐵 (𝛽, 𝛾 − 𝛽)
⋅ ∫𝜋/2

0
sin2𝛽−1𝜃 cos2𝛾−2𝛽−1𝜃𝑒𝑧sin2𝜃𝑒𝑚sin2𝜃cos2𝜃𝑑𝜃.

(76)

Proof. The proof of this theorem would run parallel to those
of Theorem 16, so we skip the proof of this theorem.

6.5. Differentiation Formulas for the Representation of the New
Extension of Gauss Hypergeometric Function and New Exten-
sion of Confluent Hypergeometric Function. In the present
section, by using the formulas𝐵(𝛽, 𝛾−𝛽) = (𝛾/𝛽)𝐵(𝛽+1, 𝛾−𝛽)
and (𝛼)𝑛+1 = 𝛼(𝛼 + 1)𝑛, we obtain new formulas including
derivatives of the new extension of Gauss hypergeometric
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function and new extension of confluent hypergeometric
function with respect to the variable 𝑧; we have the following.
Theorem 19. If 𝛼, 𝛽, 𝛾 ∈ C; R(𝛾) > R(𝛽) > 0 and |𝑚| < 𝑀
(where 𝑀 is positive real number), then we have the following
result:

𝑑𝑛𝑑𝑧𝑛 {𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧)}
= (𝛽)𝑛 (𝛼)𝑛(𝛾)𝑛

𝑀𝐶𝐹𝑚 (𝛼 + 𝑛, 𝛽 + 𝑛; 𝛾 + 𝑛; 𝑧) .
(77)

Proof. Taking the derivative of 𝑀𝐶𝐹𝑚(𝛼, 𝛽; 𝛾; 𝑧) with respect
to 𝑧, we have

𝑑𝑑𝑧 {𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧)}
= ∞∑

𝑛=1

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) 𝑧𝑛−1(𝑛 − 1)! ,
(78)

and replacing 𝑛 󳨀→ 𝑛 + 1, (78) reduces to
𝑑𝑑𝑧 {𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧)}
= 𝛽𝛼𝛾

∞∑
𝑛=0

(𝛼 + 1)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛 + 1, 𝛾 − 𝛽)

𝐵 (𝛽 + 1, 𝛾 − 𝛽) 𝑧𝑛−1(𝑛 − 1)!
= 𝛽𝛼𝛾 𝑀𝐶𝐹𝑚 (𝛼 + 1, 𝛽 + 1; 𝛾 + 1; 𝑧) ,

(79)

and with recursive application of this procedure in (79), we
have the desired result (77).

Theorem 20. If 𝛽, 𝛾 ∈ C; R(𝛾) > R(𝛽) > 0 and |𝑚| < 𝑀
(where 𝑀 is positive real number), then we have the following
result:

𝑑𝑛𝑑𝑧𝑛 {𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑧)}
= (𝛽)𝑛 (𝛼)𝑛(𝛾)𝑛

𝑀𝐶Φ𝑚 (𝛽 + 𝑛; 𝛾 + 𝑛; 𝑧) .
(80)

Proof. The proof ofTheorem 20 is as that ofTheorem 19, so it
can be omitted here.

6.5.1. Generating Relations Associated with Hypergeometric
Functions

Theorem 21. If 𝛼, 𝛽, 𝛾 ∈ C; 𝑘 ∈ R; R(𝛾) > R(𝛽) > 0 and|𝑚| < 𝑀 (where𝑀 is positive real number), then the following
generating functions hold:

∞∑
𝑛=0

(𝛼)𝑛 𝑀𝐶𝐹𝑚 (𝛼 + 𝑛, 𝛽; 𝛾; 𝑧) 𝑡𝑛𝑛!
= (1 − 𝑡)−𝛼 𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾;; 𝑧1 − 𝑡) , (|𝑡| < 1) .

(81)

Proof. Let the left-hand side of (81) be denoted by S; then
using the definition of new extension of Gauss hypergeomet-
ric function, we have

S

= ∞∑
𝑛=0

(𝛼)𝑛 [∞∑
𝑘=0

(𝛼 + 𝑛)𝑘
𝑀𝐶𝐵𝑚 (𝛽 + 𝑘, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) 𝑧𝑘𝑘! ] 𝑡𝑛𝑛! .
(82)

Upon reversal of the order of summation and then using
the identity (𝛼)𝑛(𝛼 + 𝑛)𝑘 = (𝛼)𝑘(𝛼 + 𝑘)𝑛, (82) reduces to
S

= ∞∑
𝑘=0

(𝛼)𝑘
𝑀𝐶𝐵𝑚 (𝛽 + 𝑘, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) [∞∑
𝑛=0

(𝑎 + 𝑘)𝑛 𝑡𝑛𝑛!] 𝑧𝑘𝑘! ,
(83)

and further using the definition of binomial (1 − 𝑡)−𝛼−𝑘 =∑∞
𝑛=0(𝛼 + 𝑘)𝑛(𝑡𝑛/𝑛!), (|𝑡| < 1) in (83), we have

S = ∞∑
𝑘=0

(𝛼)𝑘
𝑀𝐶𝐵𝑚 (𝛽 + 𝑘, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) (1 − 𝑡)−𝛼−𝑘 𝑧𝑘𝑘! , (84)

and interpreting the above equation with the view of (67),
we have the desired result (81).

Theorem 22. If 𝛼, 𝛽, 𝛾 ∈ C; 𝑘 ∈ R; R(𝛾) > R(𝛽) > 0 and|𝑚| < 𝑀 (where𝑀 is positive real number), then the following
generating functions hold:

∞∑
𝑘=0

(𝛼 + 𝑘 − 1
𝑘 )𝑀𝐶𝐹𝑚,𝑘 (𝛼 + 𝑘, 𝛽; 𝛾; 𝑧) 𝑡𝑘

= (1 − 𝑡)−𝛼 𝑀𝐶𝐹𝑚,𝑘 (𝛼, 𝛽; 𝛾;; 𝑧1 − 𝑡) , (|𝑡| < 1) .
(85)

Proof. For convenience, let the left-hand side of (85) be
denoted byJ. Applying the series of (67) toJ, we get

J = ∞∑
𝑘=0

(𝛼 + 𝑘 − 1
𝑘 )

⋅ {∞∑
𝑛=0

(𝛼 + 𝑘)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) 𝑧𝑛𝑛! } 𝑡𝑘.
(86)

By changing the order of summation in (86) and using the
known identity ([13, p.5]), namely,

(𝛼
𝑛) = Γ (𝛼 + 1)𝑛!Γ (𝛼 − 𝑛 + 1) , (𝑛 ∈ N𝑜; 𝛼 ∈ C) , (87)

then, after little simplification, we obtain

J = ∞∑
𝑛=0

(𝛼)𝑛
⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) {∞∑
𝑘=0

(𝛼 + 𝑛 + 𝑘 − 1
𝑘 ) 𝑡𝑘}

⋅ 𝑧𝑛𝑛! .

(88)
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Further, upon using the generalized binomial expansion, we
find that the inner sum in (88) yields

∞∑
𝑘=0

(𝛼 + 𝑛 + 𝑘 − 1
𝑘 ) 𝑡𝑘 = (1 − 𝑡)−(𝛼+𝑛) , (|𝑡| < 0) . (89)

Finally in view of (88) and (89), we get the desired assertion
(85) of Theorem 1.

A further generalized Gauss hypergeometric function
(67) is given in the following definition.

Definition 23. Let us introduce a sequence {𝜁(𝛼,𝜌)𝑘 } defined by

𝜁(𝛼,𝜌)𝑘 (𝑧) = 𝜁(𝛼,𝜌)𝑘 (𝛼, 𝛽; 𝛾; 𝑧)
= 𝑀𝐶𝐹𝑚,𝑘 (Δ (𝜌; 𝛼 + 𝑘) , 𝛽; 𝛾; 𝑧) (90)

where 𝛼, 𝛽, 𝛾 ∈ C; 𝑘 ∈ R; 𝜌 ∈ N; R(𝛾) > R(𝛽) > 0 and|𝑚| < 𝑀 (where𝑀 is positive real number); for convenience,Δ(𝜌; 𝛼) abbreviates the array of 𝜌 parameters

𝛼𝜌 , 𝛼 + 1𝜌 , 𝛼 + 2𝜌 , . . . , 𝛼 + 𝜌 − 1𝜌 , (𝜌 ∈ N) . (91)

Now, we prove the following result, which provides the
generating functions for the Gauss hypergeometric function
defined above.

Theorem 24. For each 𝜌 ∈ N, the following generating
functions hold true:

∞∑
𝑘=0

(𝛼 + 𝑙 + 𝑘 − 1
𝑘 ) 𝜁(𝛼,𝜌)𝑘 (𝑧) 𝑡𝑘

= (1 − 𝑡)−𝛼−𝑙 𝜁(𝛼,𝜌)𝑙 ( 𝑧(1 − 𝑡)𝜌) , (|𝑡| < 1)
(92)

where 𝛼, 𝛽, 𝛾 ∈ C; 𝑘 ∈ R; 𝜌 ∈ N; 𝑙 ∈ N0 R(𝛾) > R(𝛽) > 0 and|𝑚| < 𝑀 (where 𝑀 is positive real number).

Proof. Using the definition introduced in (90) and the new
extended Gauss hypergeometric function introduced in (67);
then changing the order of summations, the left hand side of
(92) (say 𝐼) leads to

𝐼 = ∞∑
𝑛=0

(𝛼 + 𝑙𝜌 )
𝑛

⋅ ⋅ ⋅ (𝛼 + 𝑙 + 𝜌 − 1𝜌 )
𝑛

⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽) {∞∑

𝑘=0

(𝛼 + 𝑙 + 𝑛𝜌 + 𝑘 − 1
𝑘 )

⋅ 𝑡𝑘} 𝑧𝑛𝑛! .

(93)

Now taking (90) into account, one can easily arrive at the
desired result (92).

Remark 25. It may be noted that if we set 𝜌 = 1 and replace𝛼 by 𝛼 − 𝑙 in (92), we are easily led to the result (85).

6.6. Extension of Riemann-Liouville Fractional Derivative.
In this section, we introduce new extension of Riemann-
Liouville fractional derivative operator:

𝑀𝐶𝐷𝜇,𝑚
𝑧 {𝑓 (𝑧)}

fl
1Γ (−𝜇) ∫𝑧

0
𝑓 (𝑡) (𝑧 − 𝑡)−𝜇−1 𝑒𝑚𝑡(𝑧−𝑡)/𝑧2𝑑𝑡 (94)

and for 𝑛 − 1 < R(𝜇) < 𝑛, 𝑛 = 1, 2, ..
𝑀𝐶𝐷𝜇,𝑚

𝑧 {𝑓 (𝑧)} fl 𝑑𝑛𝑑𝑧𝑛 𝑀𝐶𝐷𝜇−𝑛

𝑧 {𝑓 (𝑧)}
= 𝑑𝑛𝑑𝑧𝑛 { 1Γ (−𝜇 + 𝑛)
⋅ ∫𝑧

0
𝑓 (𝑡) (𝑧 − 𝑡)−𝜇+𝑛−1 𝑒𝑚𝑡(𝑧−𝑡)/𝑧2𝑑𝑡} ,

(95)

where the path of integration is a line from 0 to 𝑧 in
complex 𝑡−plane. For the case 𝑚 = 0, we obtain the classical
Riemann-Liouville fractional operator.

We start our investigation by calculating the extended
fractional derivative of some elementary functions.

Lemma 26. Let 𝜉, 𝜇 ∈ C;R(𝜉) > −1,R(𝜇) < 0 and |𝑚| < 𝑀
(where 𝑀 is positive real number); then we have

𝑀𝐶𝐷𝜇,𝑚
𝑧 {𝑧𝜉} = 𝑀𝐶𝐵𝑚 (𝜉 + 1, −𝜇)

Γ (−𝜇) 𝑧𝜉−𝜇. (96)

Proof. Employing the definition given in (94) in the left-hand
side of (96), we have

𝑀𝐶𝐷𝜇,𝑚
𝑧 {𝑧𝜉} fl 1Γ (−𝜇) ∫𝑧

0
𝑡𝜉 (𝑧 − 𝑡)−𝜇−1 𝑒𝑚𝑡(𝑧−𝑡)/𝑧2𝑑𝑡. (97)

Choosing 𝑡 = 𝑧𝑢, (97) reduces to
𝑀𝐶𝐷𝜇,𝑚

𝑧 {𝑧𝜉}
= 1Γ (−𝜇) ∫1

0
(𝑧𝑢)𝜉 𝑧−𝜇−1 (1 − 𝑢)−𝜇−1 𝑒𝑚𝑢(1−𝑢)𝑧 𝑑𝑢

= 𝑧𝜉−𝜇Γ (−𝜇) ∫1

0
𝑢𝜉 (1 − 𝑢)−𝜇−1 𝑒𝑚𝑢(1−𝑢)𝑑𝑢

= 𝑀𝐶𝐵𝑚 (𝜉 + 1, −𝜇)
Γ (−𝜇) 𝑧𝜉−𝜇.

(98)

Lemma 27. Let 𝜉, 𝛼, 𝜇 ∈ C;R(𝜉) > 0,R(𝛼) > 0,R(𝜇) < 0,|𝑧| < 1 and |𝑚| < 𝑀 (where 𝑀 is positive real number), then
we have

𝑀𝐶𝐷𝜉−𝜇,𝑚
𝑧 {𝑧𝜉 − 1 (1 − 𝑧)−𝛼}

fl= Γ (𝜉)Γ (𝜇)𝑧𝜇−1𝑀𝐶𝐹𝑚 (𝛼, 𝜉; 𝜇; 𝑧) . (99)
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Proof. Employing the definition given in (94) in the left-hand
side of (99), we have

𝑀𝐶𝐷𝜉−𝜇,𝑚
𝑧 {𝑧𝜉 − 1 (1 − 𝑧)−𝛼} fl 1Γ (𝜇 − 𝜉)

⋅ ∫𝑧

0
𝑡𝜉−1 (1 − 𝑡)−𝛼 𝑒𝑚𝑡(𝑧−𝑡)/𝑧2 (𝑧 − 𝑡)𝜇−𝜉−1 𝑑𝑡.

(100)

Choosing 𝑡 = 𝑧𝑢, (100) reduces to
𝑀𝐶𝐷𝜉−𝜇,𝑚

𝑧 {𝑧𝜉 − 1 (1 − 𝑧)−𝛼} fl 𝑧𝜇−1Γ (𝜇 − 𝜉)
⋅ ∫1

0
𝑡𝜉−1 (1 − 𝑢𝑧)−𝛼 (1 − 𝑢)𝜇−𝜉−1 𝑒𝑚𝑢(1−𝑢)𝑑𝑢

= 𝑧𝜇−1Γ (𝜇 − 𝜉)
⋅ ∫1

0
𝑡𝜉−1 (1 − 𝑢𝑧)−𝛼 (1 − 𝑢)𝜇−𝜉−1 𝑒𝑚𝑢(1−𝑢)𝑑𝑢,

(101)

and further employing the result in (69), after simplification,
we have the required result (101).

Theorem28. Let 𝑓(𝑧) be an analytic function in the disc |𝑧| <𝜌 and it has the power series 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛; then we have

the following result:

𝑀𝐶𝐷𝜇,𝑚
𝑧 {𝑧𝜉−1𝑓 (𝑧)} = 𝑀𝐶𝐷𝜇,𝑚

𝑧 {𝑧𝜉−1 ∞∑
𝑛=0

𝑎𝑛𝑧𝑛}

= 𝑧𝜉−𝜇−1Γ (−𝜇)
∞∑
𝑛=0

𝑎𝑛𝑀𝐶𝐵𝑚 (𝜉 + 𝑛, −𝜇) 𝑧𝑛,
(102)

where 𝜉, 𝜇 ∈ C;R(𝜉) > 0,R(𝜇) < 0 and |𝑚| < 𝑀 (where 𝑀
is positive real number).

Proof.

𝑀𝐶𝐷𝜇,𝑚
𝑧 {𝑧𝜉−1𝑓 (𝑧)} = 𝑀𝐶𝐷𝜇,𝑚

𝑧 {𝑧𝜉−1 ∞∑
𝑛=0

𝑎𝑛𝑧𝑛}

= 1Γ (−𝜇) ∫𝑧

0
𝑡𝜉−1 ∞∑

𝑛=0

𝑎𝑛𝑡𝑛 (𝑧 − 𝑡)−𝜇−1 𝑒𝑚𝑡(𝑧−𝑡)/𝑧2𝑑𝑡
= 1Γ (−𝜇) ∫1

0
(𝑧𝜉)𝜉−1 𝑧−𝜇−1 (1 − 𝜉)−𝜇−1

⋅ 𝑒𝑚𝜉(1−𝜉) ∞∑
𝑛=0

𝑎𝑛 (𝑧𝜉)𝑛 𝑧 𝑑𝜉.

(103)

The series ∑∞
𝑛=0 𝑎𝑛(𝑧𝜉)𝑛 is uniformly convergent in the

disc |𝑧| < 𝜌 for 0 ≤ 𝜉 ≤ 1 and the integral
∫1
0
|𝜉𝜉+𝑛−1(1 − 𝜉)−𝜇−1𝑒𝑚𝜉(1−𝜉)|𝑑𝜉 is convergent provided that

R(𝜉) > 0,R(𝜇) < 0 and |𝑚| < 𝑀 (where 𝑀 is
positive real number), therefore we can interchange the order

of integration and summation; after simplification, above
equation (103) reduces to

𝑀𝐶𝐷𝜇,𝑚
𝑧 {𝑧𝜉−1𝑓 (𝑧)}

= 𝑧𝜉−𝜇−1Γ (−𝜇)
∞∑
𝑛=0

𝑎𝑛𝑧𝑛 ∫1

0
𝜉𝜉+𝑛−1 (1 − 𝜉)−𝜇−1 𝑒𝑚𝜉(1−𝜉)𝑑𝜉, (104)

and interpreting (104) with the view of the definition of new
extension of classical beta function (16), we have the required
result.

Theorem 29 (linear generating function). Let 𝛼, 𝛽, 𝜉, ∈
C;R(𝜉) > 0,R(𝛽) > R(𝛼) > 0 and |𝑚| < 𝑀 (where 𝑀 is
positive real number), such that |𝑥| < min{1, |1 − 𝑡|}; then we
have the following result:

∞∑
𝑛=0

(𝜉)𝑛𝑛! 𝑀𝐶𝐹𝑚 (𝜉 + 𝑛, 𝛼; 𝛽; 𝑥) 𝑡𝑛

= (1 − 𝑡)−𝜉 𝑀𝐶𝐹𝑚 (𝜉, 𝛼; 𝛽; 𝑥1 − 𝑡) .
(105)

Proof. Let us consider the elementary identity

[(1 − 𝑥) − 𝑡]−𝜉 = (1 − 𝑡)−𝜉 [1 − 𝑥1 − 𝑡]
−𝜉 . (106)

Expanding the left-hand side of (106) for |𝑡| < |1−𝑥|, we have
∞∑
𝑛=0

(𝜉)𝑛𝑛! (1 − 𝑥)−𝜉 ( 𝑡1 − 𝑥)𝑛

= (1 − 𝑡)−𝜉 [1 − 𝑥1 − 𝑡]
−𝜉 .

(107)

Further, multiplying both sides of (107) and then applying
the new extension of fractional derivative operator𝐷𝛼−𝛽,𝑚

𝑥 on
both sides, we have

𝑀𝐶𝐷𝛼−𝛽,𝑚
𝑥 {∞∑

𝑛=0

(𝜉)𝑛𝑛! (1 − 𝑥)−𝜉 ( 𝑡1 − 𝑥)𝑛 𝑥𝛼−1}
= (1 − 𝑡)−𝜉 𝑀𝐶𝐷𝛼−𝛽,𝑚

𝑥 {𝑥𝛼−1 [1 − 𝑥1 − 𝑡]
−𝜉} .

(108)

Interchanging the order, which is valid forR(𝛼) > 0 and|𝑡| < |1 − 𝑥|, we have
∞∑
𝑛=0

(𝜉)𝑛𝑛! 𝑀𝐶𝐷𝛼−𝛽,𝑚

𝑥 {𝑥𝛼−1 (1 − 𝑥)−𝜉−𝑛} 𝑡𝑛

= (1 − 𝑡)−𝜉 𝑀𝐶𝐷𝛼−𝛽,𝑚

𝑥 {𝑥𝛼−1 [1 − 𝑥1 − 𝑡]
−𝜉} .

(109)

Now applying the result established in (99) in (109), after
simplification, we have the required result (105).
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6.7. Transformation Formulas

Theorem 30. Let 𝛼, 𝛽, 𝜉, ∈ C;R(𝜉) > 0,R(𝛽) > R(𝛼) > 0
and |𝑚| < 𝑀 (where 𝑀 is positive real number), then we have
the following transformation formula:

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧)
= (1 − 𝑧)−𝛼 𝑀𝐶𝐹𝑚 (𝛼, 𝛾 − 𝛽; 𝛽; 𝑧(𝑧 − 1)) ,

󵄨󵄨󵄨󵄨arg (1 − 𝑧)󵄨󵄨󵄨󵄨 < 𝜋,
(110)

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 1 − 1𝑧)
= 𝑧𝛼𝑀𝐶𝐹𝑚 (𝛼, 𝛾 − 𝛽; 𝛽; 1 − 𝑧) , 󵄨󵄨󵄨󵄨arg (𝑧)󵄨󵄨󵄨󵄨 < 𝜋,

(111)

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧1 + 𝑧)
= (1 + 𝑧)𝛼 𝑀𝐶𝐹𝑚 (𝛼, 𝛾 − 𝛽; 𝛽; 𝑧) ,

󵄨󵄨󵄨󵄨arg (1 + 𝑧)󵄨󵄨󵄨󵄨 < 𝜋.
(112)

Proof. To prove the theorem, we consider the following
identity:

[1 − 𝑧 (1 − 𝑡)]−𝛼 = (1 − 𝑧)−𝛼 (1 + 𝑧1 − 𝑧𝑡)
−𝛼 . (113)

Replacing 𝑡 into 1 − 𝑡, then using the result (113) in (69),
after simplification, we have

𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧) fl (1 − 𝑧)−𝛼𝐵 (𝛽, 𝛾 − 𝛽)
⋅ ∫1

0
𝑡𝛾−𝛽−1 (1 − 𝑡)𝛽−1 (1 + 𝑧1 − 𝑧𝑡)

−𝛼 𝑒𝑚𝑡(1−𝑡)𝑑𝑡,
(114)

further interpreted with the view of (69), we obtain the
desired result (110).

7. Fractional Integration of New Extension of
Hypergeometric Functions

The concept of the Hadamard products (see [14]) is very
useful in our investigation.

Definition 31 (Hadamard products [14]). Let 𝑓(𝑧) fl∑∞
𝑛=0 𝑎𝑛𝑧𝑛 and 𝑔(𝑧) fl ∑∞

𝑛=0 𝑏𝑛𝑧𝑛 be two power series whose
radii of convergence are given by 𝑅𝑓 and 𝑅𝑔, respectively.
Then their Hadamard product is power series defined by

(𝑓 ∗ 𝑔) (𝑧) fl ∞∑
𝑛=0

𝑎𝑛𝑏𝑛𝑧𝑛, (115)

whose radius of convergence 𝑅 satisfies 𝑅𝑓.𝑅𝑔 ≤ 𝑅.

In particular, let us consider the function 𝑝𝐹(𝛼,𝛽;𝜌,𝜉)𝑝+𝑟 [𝑧; 𝑏].
Its decomposition is illustrative. That is

𝑝𝐹(𝛼,𝛽;𝜌,𝜉)𝑝+𝑟 [ 𝑥1, . . . , 𝑥𝑝𝑦1, . . . , 𝑦𝑝+𝑟 ; 𝑧; 𝑏]

= 1𝐹𝑟 [ 1
𝑦1, . . . , 𝑦𝑟 ; 𝑧; 𝑏]

∗ 𝑝𝐹(𝛼,𝛽;𝜌,𝜉)𝑝 [ 𝑥1, . . . , 𝑥𝑝𝑦1+𝑟, . . . , 𝑦𝑝+𝑟 ; 𝑧; 𝑏] .

(116)

The above-mentioned detailed and systematic investiga-
tion by many authors (see, for example, [4, 15]) has largely
motivated our present study.Therefore, the results established
in this paper are of general character and hence encompass
several cases of interest.

In this section, we will establish certain fractional integral
formulas involving the new extension of Gauss hypergeomet-
ric function and new extension of confluent hypergeometric
function. To do this, we need to recall the following pair of
Saigo hypergeometric fractional integral operators.

For 𝑥 > 0, 𝜉, 𝜁, 𝜂 ∈ C andR(𝜉) > 0, we have
(𝐼𝜉,𝜁,𝜂0,𝑥 𝑓 (𝑡)) (𝑥) = 𝑥−𝜉−𝜁Γ (𝜉)

⋅ ∫𝑥

0
(𝑥 − 𝑡)𝜉−1 2𝐹1 (𝜉 + 𝜁, −𝜂; 𝜉; 1 − 𝑡𝑥)𝑓 (𝑡) 𝑑𝑡

(117)

and

(𝐽𝜉,𝜁,𝜂𝑥,∞𝑓 (𝑡)) (𝑥) = 1Γ (𝜉) ∫
∞

𝑥
(𝑡 − 𝑥)𝜉−1

⋅ 𝑡−𝜉−𝜁 2𝐹1 (𝜉 + 𝜁, −𝜂; 𝜉; 1 − 𝑥𝑡 ) 𝑓 (𝑡) 𝑑𝑡,
(118)

where the function 2𝐹1(.) is a special case of the gen-
eralized hypergeometric function, the Gauss hypergeometric
function.

The operator 𝐼𝜉,𝜁,𝜂0,𝑥 (.) contains the Riemann-Liouville
𝑅𝜉
0,𝑥(.) fractional integral operators by means of the following

relationships:

(𝑅𝜉
0,𝑥𝑓 (𝑡)) (𝑥) = (𝐼𝜉,−𝜉,𝜂0,𝑥 𝑓 (𝑡)) (𝑥)

= 1Γ (𝜉) ∫
𝑥

0
(𝑥 − 𝑡)𝜉−1 𝑓 (𝑡) 𝑑𝑡 (119)

and

(𝑊𝜉
𝑥,∞𝑓 (𝑡)) (𝑥) = (𝐽𝜉,−𝜉,𝜂𝑥,∞ 𝑓 (𝑡)) (𝑥)

= 1Γ (𝜉) ∫
∞

𝑥
(𝑡 − 𝑥)𝜉−1 𝑓 (𝑡) 𝑑𝑡. (120)
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It is noted that the operator (118) unifies the Erd𝑒lyi-Kober
fractional integral operators as follows:

(𝐸𝜉,𝜂
0,𝑥𝑓 (𝑡)) (𝑥) = (𝐼𝜉,0,𝜂0,𝑥 𝑓 (𝑡)) (𝑥)

= 𝑥−𝜉−𝜂Γ (𝜉) ∫𝑥

0
(𝑥 − 𝑡)𝜉−1 𝑡𝜂𝑓 (𝑡) 𝑑𝑡 (121)

and
(𝐾𝜉,𝜂

𝑥,∞𝑓 (𝑡)) (𝑥) = (𝐽𝜉,0,𝜂𝑥,∞𝑓 (𝑡)) (𝑥)
= 𝑥𝜂Γ (𝜉) ∫

∞

𝑥
(𝑡 − 𝑥)𝜉−1 𝑡−𝜉−𝜂𝑓 (𝑡) 𝑑𝑡. (122)

The following lemmas proved in Kilbas and Sebastin [16]
are useful to prove our main results.

Lemma 32 (Kilbas and Sebastian 2008). Letting 𝜉, 𝜁, 𝜂 ∈ C be
such thatR(𝜉) > 0,R(𝜌) > max[0,R(𝜁 − 𝜂)], then

(𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1) (𝑥) = Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)𝑥𝜌−𝜁−1. (123)

Lemma 33 (Kilbas and Sebastian 2008). Letting 𝜉, 𝜁, 𝜂 ∈ C be
such thatR(𝜉) > 0,R(𝜌) < 1 +min[R(𝜁),R(𝜂)], then

(𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1) (𝑥)
= Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)

Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1)𝑥𝜌−𝜁−1.
(124)

The main results are given in the following theorem.

Theorem 34. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛼, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(𝜁 − 𝜂)]; then

(𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑡)) (𝑥)
= 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)

Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)
× 𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥)
∗ 2𝐹2 (𝜌, 𝜌 + 𝜂 − 𝜁; 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂; 𝑥) .

(125)

Proof. For convenience, we denote the left-hand side of the
result (125) by I. Using (67), and then interchanging the
order of integration and summation, which is valid under the
conditions of Theorem 34, then

I = ∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) 1𝑛! (𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝑛+𝜌−1)
⋅ (𝑥) .

(126)

Applying the result (123), (126) reduced to

I = ∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
⋅ Γ (𝜌 + 𝑛) Γ (𝜌 + 𝜂 − 𝜁 + 𝑛)
Γ (𝜌 − 𝜁 + 𝑛) Γ (𝜌 + 𝜉 + 𝜂 + 𝑛) 𝑥

𝜌+𝑛−𝜁−1

𝑛! .
(127)

After simplification, (127) reduces to

I = 𝑥𝜌−𝜁−1 ∞∑
𝑛=0

(𝑎)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
⋅ Γ (𝜌 + 𝑛) Γ (𝜌 + 𝜂 − 𝜁 + 𝑛)
Γ (𝜌 − 𝜁 + 𝑛) Γ (𝜌 + 𝜉 + 𝜂 + 𝑛) 𝑥

𝑛

𝑛! .
(128)

Further using (𝑎)𝑛 = Γ(𝑎 + 𝑛)/Γ(𝑎), (128) reduces to the
following form:

I = 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

∞∑
𝑛=0

(𝑎)𝑛

⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽) × (𝜌)𝑛 (𝜌 + 𝜂 − 𝜁)𝑛(𝜌 − 𝜁)𝑛 (𝜌 + 𝜉 + 𝜂)𝑛

⋅ 𝑥𝑛𝑛! ,

(129)

I = 𝑥𝜌−𝜁−1
⋅ Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉𝜉 + 𝜂) 𝑀𝐶

2𝐹𝑚,2 (𝛼, 𝛽, 𝜌, 𝜌 + 𝜂
− 𝜁; 𝛾, 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂; 𝑥) ,

(130)

and interpreting the above equation with the help of the
concept of Hadamard given in (116), we have the required
result.

Theorem 35. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛼, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]; then

(𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 1𝑡 )) (𝑥) = 𝑥𝜌−𝜁−1

⋅ Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)
Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1)

× 𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥) ∗ 2𝐹2 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌 + 1; 1
− 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌 + 1; 𝑥) .

(131)

Theorem 36. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(𝜁 − 𝜂)]; then

(𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑡)) (𝑥)
= 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)

Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂) × 𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥)
∗ 2𝐹2 (𝜌, 𝜌 + 𝜂 − 𝜁; 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂; 𝑥) .

(132)
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Theorem 37. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]; then

(𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 1𝑡 )) (𝑥) = 𝑥𝜌−𝜁−1

⋅ Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)
Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1) × 𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥)

∗ 2𝐹2 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌 + 1; 1 − 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌
+ 1; 𝑥) .

(133)

Proof. Theproofs of theTheorems 35, 36, and 37 are the same
as those of Theorem 34.

7.1. Some Special Cases of the above Fractional Integral For-
mulas. By assigning the suitable values to the parameters
involved in the results established in Theorems 34–37, we
have the following special cases.

By putting 𝜁 = −𝜉, the Saigo hypergeometric fractional
integrals operators reduces to Riemann-Liouville fractional
integral operators; then the results in (125), (131), (132) and
(133) reduce to the following form.

Corollary 38. Let 𝜉, 𝜌, 𝛼, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(−𝜉)]; then

(𝑅𝜉
0,𝑥𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑡)) (𝑥)
= 𝑥𝜌+𝜉−1 Γ (𝜌)

Γ (𝜌 + 𝜉)𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥)
∗ 1𝐹1 (𝜌; 𝜌 + 𝜉; 𝑥) .

(134)

Corollary 39. Let 𝜉, 𝜌, 𝛼, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) < 1 +R(𝜉); then

(𝑊𝜉
𝑥,∞𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 1𝑡 )) (𝑥)
= 𝑥𝜌+𝜉−1 Γ (1 − 𝜉 − 𝜌)

Γ (1 − 𝜌) 𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥)
∗ 1𝐹1 (1 − 𝜉 − 𝜌; 1 − 𝜌; 𝑥) .

(135)

Corollary 40. Let 𝜉, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(−𝜉)]; then

(𝑅𝜉
0,𝑥𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑡)) (𝑥)
= 𝑥𝜌+𝜉−1 Γ (𝜌)

Γ (𝜌 + 𝜉)𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥)
∗ 1𝐹1 (𝜌; 𝜌 + 𝜉; 𝑥) .

(136)

Corollary 41. Let 𝜉, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) > R(𝛽) >0 and |𝑚| < 𝑀 (where 𝑀 is positive real number), such that
R(𝜌) < 1 +R(𝜉); then

(𝑊𝜉
𝑥,∞𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 1𝑡 )) (𝑥)
= 𝑥𝜌+𝜉−1 Γ (1 − 𝜉 − 𝜌)

Γ (1 − 𝜌) 𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥)
∗ 1𝐹1 (1 − 𝜉 − 𝜌; 1 − 𝜌; 𝑥) .

(137)

By putting 𝜁 = 0, the Saigo hypergeometric fractional
integrals operators reduce to the Erd𝑒lyi-Kober fractional
integral operators; then the results in (125), (131), (132) and
(133) reduce to the following form.

Corollary 42. Let 𝜉, 𝜂, 𝜌, 𝛼, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(−𝜂)]; then

(𝐸𝜉,𝜂
0,𝑥𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑡)) (𝑥)
= 𝑥𝜌−1 Γ (𝜌 + 𝜂)

Γ (𝜌 + 𝜉 + 𝜂)𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥)
∗ 1𝐹1 (𝜌 + 𝜂; 𝜌 + 𝜉 + 𝜂; 𝑥) .

(138)

Corollary 43. Let 𝜉, 𝜂, 𝜌, 𝛼, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]; then

(𝐾𝜉,𝜂
𝑥,∞𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 1𝑡 )) (𝑥)
= 𝑥𝜌−1 Γ (𝜂 − 𝜌 + 1)

Γ (𝜉 + 𝜂 − 𝜌 + 1)𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥)
∗ 1𝐹1 (𝜂 − 𝜌 + 1; 𝜉 + 𝜂 − 𝜌 + 1; 𝑥) .

(139)

Corollary 44. Let 𝜉, 𝜂, 𝜌, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(−𝜂)]; then

(𝐸𝜉,𝜂
0,𝑥𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑡)) (𝑥)
= 𝑥𝜌−1 Γ (𝜌 + 𝜂)

Γ (𝜌 + 𝜉 + 𝜂)𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥)
∗ 1𝐹1 (𝜌 + 𝜂; 𝜌 + 𝜉 + 𝜂; 𝑥) .

(140)

Corollary 45. Let 𝜉, 𝜂, 𝜌, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]; then

(𝐾𝜉,𝜂
𝑥,∞𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 1𝑡 )) (𝑥)
= 𝑥𝜌−1 Γ (𝜂 − 𝜌 + 1)

Γ (𝜉 + 𝜂 − 𝜌 + 1)𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥)
∗ 1𝐹1 (𝜂 − 𝜌 + 1; 𝜉 + 𝜂 − 𝜌 + 1; 𝑥) .

(141)
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If we choose 𝑚 = 0, then new extension of Gauss
hypergeometric function and new extension of confluent
hypergeometric function reduce to Gauss hypergeometric
function and confluent hypergeometric function; then from
the formulae establisehd in (125), (131), (132) and (133), we
have the following results.

Corollary 46. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛼, 𝛽, 𝛾 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0, such thatR(𝜌) > max[0,R(𝜁 − 𝜂)]; then

(𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑡)) (𝑥)
= 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)

Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂) × 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑥)
∗ 2𝐹2 (𝜌, 𝜌 + 𝜂 − 𝜁; 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂; 𝑥) .

(142)

Corollary 47. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛼, 𝛽, 𝛾 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0, such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]; then

(𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1 2𝐹1 (𝛼, 𝛽; 𝛾; 1𝑡 )) (𝑥) = 𝑥𝜌−𝜁−1

⋅ Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)
Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1) × 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑥)

∗ 2𝐹2 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌 + 1; 1 − 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌
+ 1; 𝑥) .

(143)

Corollary 48. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0, such thatR(𝜌) > max[0,R(𝜁 − 𝜂)]; then

(𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1Φ(𝛽; 𝛾; 𝑡)) (𝑥)
= 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)

Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂) × Φ (𝛽; 𝛾; 𝑥)
∗ 2𝐹2 (𝜌, 𝜌 + 𝜂 − 𝜁; 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂; 𝑥) .

(144)

Corollary 49. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0, such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]. Then

(𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1Φ(𝛽; 𝛾; 1𝑡 )) (𝑥) = 𝑥𝜌−𝜁−1

⋅ Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)
Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1) × Φ (𝛽; 𝛾; 𝑥)

∗ 2𝐹2 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌 + 1; 1 − 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌
+ 1; 𝑥) .

(145)

8. Beta Transform

The Beta transform of 𝑓(𝑧) is defined as follows [17]:

𝐵 {𝑓 (𝑧) : 𝑎, 𝑏} = ∫1

0
𝑧𝑎−1 (1 − 𝑧)𝑏−1 𝑓 (𝑧) 𝑑𝑧. (146)

Theorem 50. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(𝜁 − 𝜂)]; then
𝐵 {(𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑡)) (𝑥) : 𝑙, 𝑚}

= Γ (𝑚) 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

× 𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥)
∗ 3𝐹3 (𝜌, 𝜌 + 𝜂 − 𝜁, 𝑙; 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂, 𝑙 + 𝑚; 𝑥) .

(147)

Proof. For convenience, we denote the left-hand side of the
result (147) byB. Using the definition of beta transform, the
LHS of (147) becomes

B = ∫1

0
𝑧𝑙−1 (1 − 𝑧)𝑚−1 (𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑡𝑧))

⋅ (𝑥) 𝑑𝑧,
(148)

and further using (129) and then changing the order
of integration and summation, which is valid under the
conditions of Theorem 1, then

B = 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

∞∑
𝑛=0

(𝑎)𝑛
⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) × (𝜌)𝑛 (𝜌 + 𝜂 − 𝜁)𝑛(𝜌 − 𝜁)𝑛 (𝜌 + 𝜉 + 𝜂)𝑛
⋅ 𝑥𝑛𝑛! ∫

1

0
𝑧𝑙+𝑛−1 (1 − 𝑧)𝑚−1 𝑑𝑧.

(149)

Applying the definition of beta transform, (149) reduced
to

B = 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

∞∑
𝑛=0

(𝑎)𝑛
⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝜌)𝑛 (𝜌 + 𝜂 − 𝜁)𝑛(𝜌 − 𝜁)𝑛 (𝜌 + 𝜉 + 𝜂)𝑛

× Γ (𝑙 + 𝑛) Γ (𝑚)Γ (𝑙 + 𝑚 + 𝑛) 𝑥𝑛𝑛! ,

(150)

and interpreting the above equation with the help of (67),
we have

B = Γ (𝑚) 𝑥𝜌−𝜁−1
⋅ Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂) 𝑀𝐶

5𝐹𝑚,3 (𝛼, 𝛽, 𝜌, 𝜌 + 𝜂
− 𝜁, 𝑙; 𝛾, 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂, 𝑙 + 𝑚; 𝑥) .

(151)

Further, interpreting (151) with the view of the concept of
Hadamard (116), we have the required the result.
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Theorem 51. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]; then
𝐵{(𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧𝑡 )) (𝑥) : 𝑙, 𝑚} = Γ (𝑚)

⋅ 𝑥𝜌−𝜁−1 Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)
Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1)

⋅ 𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥) ∗ 3𝐹3 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌 + 1, 𝑙; 1
− 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌 + 1, 𝑙 + 𝑚; 𝑥) .

(152)

Theorem 52. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(𝜁 − 𝜂)]; then
𝐵 {(𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑡)) (𝑥) : 𝑙, 𝑚}

= Γ (𝑚) 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

× 𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥)
∗ 3𝐹3 (𝜌, 𝜌 + 𝜂 − 𝜁, 𝑙; 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂, 𝑙 + 𝑚; 𝑥) .

(153)

Theorem 53. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]; then

𝐵{(𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑧𝑡 )) (𝑥) : 𝑙, 𝑚} = Γ (𝑚)
⋅ 𝑥𝜌−𝜁−1 Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)

Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1)
⋅ 𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥) ∗ 3𝐹3 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌 + 1, 𝑙; 1
− 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌 + 1, 𝑙 + 𝑚; 𝑥) .

(154)

Proof. The proofs of the Theorems 51, 52, and 53 are parallel
to those of Theorem 50.

9. Laplace Transform

The Laplace transform of 𝑓(𝑧) is defined as follows [17]:

𝐿 {𝑓 (𝑧)} = ∫∞

0
𝑒−𝑠𝑧𝑓 (𝑧) 𝑑𝑧. (155)

Theorem 54. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(𝜁 − 𝜂)]; then

𝐿 {𝑧𝑙−1 (𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑡𝑧)) (𝑥)}
= 𝑥𝜌−𝜁−1𝑠𝑙

Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

× 𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥)
∗ 3𝐹2 (𝜌, 𝜌 + 𝜂 − 𝜁, 𝑙; 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂; 𝑥) .

(156)

Proof. For convenience, we denote the left-hand side of the
result (156) byL. Then, applying the Laplace, we have

L

= ∫∞

0
𝑒−𝑠𝑧𝑧𝑙−1 (𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑡𝑧)) (𝑥) 𝑑𝑧, (157)

and further using (129) and then changing the order
of integration and summation, which is valid under the
conditions of Theorem 1, then

L = 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

∞∑
𝑛=0

(𝑎)𝑛

⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽) × (𝜌)𝑛 (𝜌 + 𝜂 − 𝜁)𝑛(𝜌 − 𝜁)𝑛 (𝜌 + 𝜉 + 𝜂)𝑛

⋅ 𝑥𝑛𝑛! ∫
∞

0
𝑒−𝑠𝑧𝑧𝑛+𝑙−1𝑑𝑧.

(158)

After simplification, (158) reduces to

L = 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

∞∑
𝑛=0

(𝑎)𝑛

⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽)

(𝜌)𝑛 (𝜌 + 𝜂 − 𝜁)𝑛(𝜌 − 𝜁)𝑛 (𝜌 + 𝜉 + 𝜂)𝑛
𝑥𝑛𝑛!

⋅ Γ (𝑛 + 𝑙)𝑠𝑛+𝑙 = 𝑥𝜌−𝜁−1

⋅ Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁) Γ (𝑙)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂) 𝑀𝐶

3𝐹𝑚,2 (𝛼, 𝛽, 𝜌, 𝜌 + 𝜂
− 𝜁, 𝑙; 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂, 𝛾; 𝑥) ,

(159)

and interpreting (159) with the view of the concept of
Hadamard (116), we have the required the result.

Theorem 55. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]; then

𝐿 {𝑧𝑙−1 (𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑧𝑡 )) (𝑥)}
= 𝑥𝜌−𝜁−1𝑠𝑙

Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)
Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1)

⋅ 𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥) ∗ 3𝐹2 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌
+ 1, 𝑙; 1 − 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌 + 1; 𝑥) .

(160)
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Theorem 56. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) > max[0,R(𝜁 − 𝜂)]; then
𝐿 {𝑧𝑙−1 (𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑡𝑧)) (𝑥)}

= 𝑥𝜌−𝜁−1𝑠𝑙
Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)

Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂) × 𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥)
∗ 3𝐹2 (𝜌, 𝜌 + 𝜂 − 𝜁, 𝑙; 𝜌 − 𝜁, 𝜌 + 𝜉 + 𝜂; 𝑥) .

(161)

Theorem 57. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
such thatR(𝜌) < 1 +min[R(𝜁),R(𝜂)]; then

𝐿 {𝑧𝑙−1 (𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑧𝑡 )) (𝑥)} = 𝑥𝜌−𝜁−1𝑠𝑙
⋅ Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)
Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1)𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥)

∗ 3𝐹2 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌 + 1, 𝑙; 1 − 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌
+ 1; 𝑥) .

(162)

Proof. The proofs of Theorems 55, 56, and 57 would run
parallel to those of Theorem 54, so the proofs of these
theorems are omitted here.

10. Whittaker Transform

Theorem 58. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number)
and R(𝜎 ± 𝜔) > −1/2, such that R(𝜌) > max[0,R(𝜁 − 𝜂)];
then

∫∞

0
𝑧𝜎−1𝑒−𝛿𝑧/2𝑊𝜏,𝜔 (𝜅𝑧)𝑊1 (𝑧) 𝑑𝑧 = 𝑥𝜌−𝜁−1𝜅𝜎−1

⋅ Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥𝜅)

∗ 4𝐹3 (𝜌, 𝜌 + 𝜂 − 𝜁, 12 + 𝜔 + 𝜎, 12 − 𝜔 + 𝜎; 𝜌
− 𝜁, 𝜌 + 𝜉 + 𝜂, 12 − 𝜏 + 𝜎; 𝑥𝜅) ,

(163)

where 𝑊1(𝑧) = {(𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1 𝑀𝐶𝐹𝑚(𝛼, 𝛽; 𝛾; 𝑡𝑧))(𝑥)}.
Proof. For convenience, we denote the left-hand side of the
result (163) by W. Then using the result from (128), after
changing the order of integration and summation, we get

W = 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

∞∑
𝑛=0

(𝑎)𝑛
⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)

× (𝜌)𝑛 (𝜌 + 𝜂 − 𝜁)𝑛(𝜌 − 𝜁)𝑛 (𝜌 + 𝜉 + 𝜂)𝑛
𝑥𝑛𝑛!

⋅ ∫∞

0
𝑧𝑛+𝜎−1𝑒−𝜅𝑧/2𝑊𝜏,𝜔 (𝜅𝑧) 𝑑𝑧.

(164)

By substituting 𝜅𝑧 = 𝜍, (164) becomes

W = 𝑥𝜌−𝜁−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

∞∑
𝑛=0

(𝑎)𝑛
⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) × (𝜌)𝑛 (𝜌 + 𝜂 − 𝜁)𝑛(𝜌 − 𝜁)𝑛 (𝜌 + 𝜉 + 𝜂)𝑛
⋅ 𝑥𝑛𝑛! 1𝜅𝑛+𝜎−1 ∫∞

0
𝜍𝑛+𝜎−1𝑒−𝜍/2𝑊𝜏,𝜔 (𝜍) 𝑑𝜍.

(165)

Now we use the following integral formula involving
Whittaker function:

∫∞

0
𝑡]−1𝑒−𝑡/2𝑊𝜏,𝜔 (𝑡) 𝑑𝑡

= Γ (1/2 + 𝜔 + ]) Γ (1/2 − 𝜔 + ])Γ (1/2 − 𝜏 + ]) ,
(R (] ± 𝜔) > −12 ) .

(166)

Then we have

W = 𝑥𝜌−𝜁−1𝜅𝜎−1 Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)

∞∑
𝑛=0

(𝑎)𝑛
⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝜌)𝑛 (𝜌 + 𝜂 − 𝜁)𝑛(𝜌 − 𝜁)𝑛 (𝜌 + 𝜉 + 𝜂)𝑛

× Γ (1/2 + 𝜔 + 𝜎 + 𝑛) Γ (1/2 − 𝜔 + 𝜎 + 𝑛)Γ (1/2 − 𝜏 + 𝜎 + 𝑛)
⋅ 1𝑛! (𝑥𝜅)

𝑛 ,

(167)

and interpreting (167)with the help of (67), then, with the
concept of Hadamard (116), we have the desired the result.

Theorem 59. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾, 𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number)
andR(𝜎±𝜔) > −1/2, such thatR(𝜌) < 1+min[R(𝜁),R(𝜂)];
then

∫∞

0
𝑧𝜎−1𝑒−𝛿𝑧/2𝑊𝜏,𝜔 (𝜅𝑧)𝑊2 (𝑧) 𝑑𝑧 = 𝑥𝜌−𝜁−1𝜅𝜎−1

⋅ Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)
Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1)

165New Extension of Beta Function and Its Applications

__________________________ WORLD TECHNOLOGIES __________________________



WT

⋅ 𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑥𝜅) ∗ 4𝐹3 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌
+ 1, 12 + 𝜔 + 𝜎, 12 − 𝜔 + 𝜎; 1 − 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌
+ 1, 12 − 𝜏 + 𝜎; 𝑥𝜅) ,

(168)

where 𝑊2(𝑧) = {(𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1 𝑀𝐶𝐹𝑚(𝛼, 𝛽; 𝛾; 𝑧/𝑡))(𝑥)}.
Theorem 60. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number)
and R(𝜎 ± 𝜔) > −1/2, such that R(𝜌) > max[0,R(𝜁 − 𝜂)];
then

∫∞

0
𝑧𝜎−1𝑒−𝛿𝑧/2𝑊𝜏,𝜔 (𝜅𝑧)𝑊3 (𝑧) 𝑑𝑧 = 𝑥𝜌−𝜁−1𝜅𝜎−1

⋅ Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜁)
Γ (𝜌 − 𝜁) Γ (𝜌 + 𝜉 + 𝜂)𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥𝜅)

∗ 4𝐹3 (𝜌, 𝜌 + 𝜂 − 𝜁, 12 + 𝜔 + 𝜎, 12 − 𝜔 + 𝜎; 𝜌
− 𝜁, 𝜌 + 𝜉 + 𝜂, 12 − 𝜏 + 𝜎; 𝑥𝜅) ,

(169)

where 𝑊3(𝑧) = {(𝐼𝜉,𝜁,𝜂0,𝑥 𝑡𝜌−1 𝑀𝐶Φ𝑚(𝛽; 𝛾; 𝑡𝑧))(𝑥)}.
Theorem 61. Let 𝜉, 𝜁, 𝜂, 𝜌, 𝛽, 𝛾,𝑚 ∈ C;R(𝜉) > 0;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number)
andR(𝜎±𝜔) > −1/2, such thatR(𝜌) < 1+min[R(𝜁),R(𝜂)];
then

∫∞

0
𝑧𝜎−1𝑒−𝛿𝑧/2𝑊𝜏,𝜔 (𝜅𝑧)𝑊4 (𝑧) 𝑑𝑧 = 𝑥𝜌−𝜁−1𝜅𝜎−1

⋅ Γ (𝜁 − 𝜌 + 1) Γ (𝜂 − 𝜌 + 1)
Γ (1 − 𝜌) Γ (𝜉 + 𝜁 + 𝜂 − 𝜌 + 1)𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑥𝜅)

∗ 4𝐹3 (𝜁 − 𝜌 + 1, 𝜂 − 𝜌 + 1, 12 + 𝜔 + 𝜎, 12 − 𝜔
+ 𝜎; 1 − 𝜌, 𝜉 + 𝜁 + 𝜂 − 𝜌 + 1, 12 − 𝜏 + 𝜎; 𝑥𝜅) ,

(170)

where 𝑊4(𝑧) = {(𝐽𝜉,𝜁,𝜂𝑥,∞ 𝑡𝜌−1 𝑀𝐶Φ𝑚(𝛽; 𝛾; 𝑧/𝑡))(𝑥)}.
Proof. The proofs of Theorems 59, 60, and 61 would run
parallel to those of Theorem 58, so the proofs of these
theorems are omitted here.

11. Fractional Kinetic Equations

The importance of fractional differential equations in the
field of applied science has gained more attention not only
in mathematics but also in physics, dynamical systems,
control systems, and engineering, to create the mathematical
model of many physical phenomena. The kinetic equations
especially describe the continuity ofmotion of substance.The

extension and generalization of fractional kinetic equations
involving many fractional operators were found in [18–31].

In view of the effectiveness and a great importance of
the kinetic equation in certain astrophysical problems the
authors develop a further generalized form of the fractional
kinetic equation involving new extensions of Gauss hyperge-
ometric function and confluent hypergeometric function.

The fractional differential equation between rate of
change of the reaction, the destruction rate, and the produc-
tion rate was established by Haubold and Mathai [23], given
as follows:

𝑑𝑁𝑑𝑡 = −𝑑 (𝑁𝑡) + 𝑝 (𝑁𝑡) , (171)

where𝑁 = 𝑁(𝑡) the rate of reaction, 𝑑 = 𝑑(𝑁) the rate of
destruction, 𝑝 = 𝑝(𝑁) the rate of production, and𝑁𝑡 denotes
the function defined by𝑁𝑡(𝑡∗) = 𝑁(𝑡 − 𝑡∗), 𝑡∗ > 0.

In the special case of (171) for spatial fluctuations and
inhomogeneities in 𝑁(𝑡) the quantities are neglected, that is,
the equation

𝑑𝑁𝑑𝑡 = −𝑐𝑖𝑁𝑖 (𝑡) , (172)

with the initial condition that 𝑁𝑖(𝑡 = 0) = 𝑁0 is the
number density of the species 𝑖 at time 𝑡 = 0 and 𝑐𝑖 > 0.
If we remove the index 𝑖 and integrate the standard kinetic
equation (172), we have

𝑁(𝑡) − 𝑁0 = −𝑐 0𝐷−1
𝑡 𝑁(𝑡) , (173)

where 0𝐷−1
𝑡 is the special case of the Riemann-Liouville

integral operator 0𝐷−]
𝑡 defined as

0𝐷−]
𝑡 𝑓 (𝑡) = 1Γ (]) ∫

𝑡

0
(𝑡 − 𝑠)]−1 𝑓 (𝑠) 𝑑𝑠,

(𝑡 > 0, 𝑅 (]) > 0) .
(174)

The fractional generalization of the standard kinetic
equation (173) is given byHaubold andMathai[23] as follows:

𝑁(𝑡) − 𝑁0 = −𝑐] 0𝐷−1
𝑡 𝑁(𝑡) (175)

and obtained the solution of (175) as follows:

𝑁(𝑡) = 𝑁0

∞∑
𝑘=0

(−1)𝑘Γ (]𝑘 + 1) (𝑐𝑡)]𝑘 . (176)

Further, (Saxena and Kalla [27]) considered the following
fractional kinetic equation:

𝑁(𝑡) − 𝑁0𝑓 (𝑡) = −𝑐] 0𝐷−]
𝑡 𝑁(𝑡) , (R (V) > 0) , (177)

where𝑁(𝑡) denotes the number density of a given species
at time 𝑡, 𝑁0 = 𝑁(0) is the number density of that species at
time 𝑡 = 0, 𝑐 is a constant, and 𝑓 ∈ L(0,∞).

166 Applied Principles of Mathematical Analysis

__________________________ WORLD TECHNOLOGIES __________________________



WT

By applying the Laplace transform to (177), we have

𝐿 {𝑁 (𝑡) ; 𝑝} = 𝑁0

𝐹 (𝑝)
1 + 𝑐]𝑝−]

= 𝑁0(∞∑
𝑛=0

(−𝑐])𝑛 𝑝−]𝑛)𝐹 (𝑝) ,
(𝑛 ∈ 𝑁0, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑐𝑝
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 1) .

(178)

Where the Laplace transform [32] is given by

𝐹 (𝑝) = 𝐿 {𝑁 (𝑡) ; 𝑝} = ∫∞

0
𝑒−𝑝𝑡𝑓 (𝑡) 𝑑𝑡,

(R (𝑝) > 0) .
(179)

11.1. Solutions of Generalized Fractional Kinetic Equations. In
this section, we investigated the solutions of the generalized
fractional kinetic equations involving the new extension of
Gauss hypergeometric function and confluent hypergeomet-
ric function.

Remark 62. The solutions of the fractional kinetic equations
in this section are obtained in terms of the generalized

Mittag-Leffler function 𝐸𝛼,𝛽(𝑥) (Mittag-Leffler[33]), which is
defined as

𝐸𝛼,𝛽 (𝑧) = ∞∑
𝑛=0

𝑧𝑛Γ (𝛼𝑛 + 𝛽) , R (𝛼) > 0,R (𝛽) > 0. (180)

Theorem 63. If 𝑎 > 0, 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾,𝑚 ∈ C; R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
then the solution of the equation

𝑁(𝑡) − 𝑁0
𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑑]𝑡]) = −𝑎] 0𝐷−]

𝑡 𝑁(𝑡) (181)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑]𝑡])𝑛𝑛!

⋅ Γ (]𝑛 + 1) 𝐸],]𝑛+1 (−𝑎]𝑡]) .
(182)

Proof. Laplace transform of Riemann-Liouville fractional
integral operator is given by the following (Erdelyi et al. [34],
Srivastava and Saxena[35]):

𝐿 { 0𝐷−]
𝑡 𝑓 (𝑡) ; 𝑝} = 𝑝−]𝐹 (𝑝) , (183)

where 𝐹(𝑝) is defined in (179). Now, applying Laplace
transform on (181) gives

𝐿 {𝑁 (𝑡) ; 𝑝} = 𝑁0𝐿 {𝑀𝐶𝐹𝑚 (𝑎, 𝑏; 𝑐; 𝑑]𝑡]) ; 𝑝} − 𝑎]𝐿 { 0𝐷−]
𝑡 𝑁(𝑡) ; 𝑝} (184)

𝑖.𝑒. 𝑁 (𝑝) = 𝑁0∫∞

0
𝑒−𝑝𝑡 ∞∑

𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑]𝑡])𝑛

𝑛! 𝑑𝑡 − 𝑎]𝑝−]𝑁(𝑝) (185)

and interchanging the order of integration and summation in
(185), we have

𝑁(𝑝) + 𝑎]𝑝−]𝑁(𝑝) = 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
⋅ 𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑])𝑛𝑛! ∫∞

0
𝑒−𝑝𝑡𝑡]𝑛𝑑𝑡

(186)

= 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑])𝑛𝑛! Γ (]𝑛 + 1)𝑝]𝑛+1 . (187)

This leads to

𝑁(𝑝) = 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑])𝑛𝑛!

⋅ Γ (]𝑛 + 1) {𝑝−(]𝑛+1) ∞∑
𝑙=0

[− (𝑝𝑎)
−]]𝑙} .

(188)

Taking Laplace inverse of (188), and by using

𝐿−1 {𝑝−]; 𝑡} = 𝑡]−1Γ (]) , (𝑅 (]) > 0) , (189)

we have

𝐿−1 {𝑁 (𝑝)} = 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑])𝑛𝑛!

× Γ (]𝑟 + 1) 𝐿−1 {∞∑
𝑙=0

(−1)𝑙 𝑎]𝑙𝑝−[](𝑛+𝑙)+1]}
(190)

𝑖.𝑒. 𝑁 (𝑡)
= 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑])𝑛𝑛!

× Γ (]𝑛 + 1) {∞∑
𝑙=0

(−1)𝑙 𝑎]𝑙 𝑡](𝑛+𝑙)Γ (] (𝑛 + 𝑙) + 1)}
(191)

= 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑]𝑡])𝑛𝑛!

× Γ (]𝑛 + 1) {∞∑
𝑙=0

(−1)𝑙 (𝑎]𝑡])𝑙Γ (] (𝑛 + 𝑙) + 1)} .
(192)
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Equation (192) can be written as

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑]𝑡])𝑛𝑛!

⋅ Γ (]𝑛 + 1) 𝐸],]𝑛+1 (−𝑎]𝑡]) .
(193)

Theorem 64. If 𝑎 > 0, 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾, 𝑚 ∈ C;R(𝛾) >
R(𝛽) > 0 and |𝑚| < 𝑀 (where 𝑀 is positive real number),
then the solution of the equation

𝑁(𝑡) − 𝑁0
𝑀𝐶Φ𝑚 (𝛽; 𝛾; 𝑑]𝑡]) = −𝑎] 0𝐷−]

𝑡 𝑁(𝑡) (194)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽)

(𝑑]𝑡])𝑛𝑛! Γ (]𝑛 + 1)
⋅ 𝐸],]𝑛+1 (−𝑎]𝑡]) .

(195)

Theorem 65. If 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾,𝑚 ∈ C;R(𝛾) > R(𝛽) >0 and |𝑚| < 𝑀 (where 𝑀 is positive real number), then the
solution of the equation

𝑁(𝑡) − 𝑁0
𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑑]𝑡]) = −𝑑]

0𝐷−]
𝑡 𝑁(𝑡) (196)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽)
(𝑑]𝑡])𝑛𝑛!

⋅ Γ (]𝑛 + 1) 𝐸],]𝑛+1 (−𝑑]𝑡]) .
(197)

Theorem 66. If 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾, 𝑚 ∈ C;R(𝛾) > R(𝛽) >0 and |𝑚| < 𝑀 (where 𝑀 is positive real number), then the
solution of the equation

𝑁(𝑡) − 𝑁0
𝑀𝐶Φ𝑚 (𝛼, 𝛽; 𝛾; 𝑑]𝑡]) = −𝑑]

0𝐷−]
𝑡 𝑁(𝑡) (198)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽)

(𝑑]𝑡])𝑛𝑛! Γ (]𝑛 + 1)
⋅ 𝐸],]𝑛+1 (−𝑑]𝑡]) .

(199)

Theorem 67. If 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾, 𝑚 ∈ C;R(𝛾) > R(𝛽) >0 and |𝑚| < 𝑀 (where 𝑀 is positive real number), then the
solution of the equation

𝑁(𝑡) − 𝑁0
𝑀𝐶𝐹𝑚 (𝛼, 𝛽; 𝛾; 𝑡) = −𝑑]

0𝐷−]
𝑡 𝑁(𝑡) (200)

is given by the following formula:

𝑁(𝑡)
= 𝑁0

∞∑
𝑛=0

(𝛼)𝑛
𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)

𝐵 (𝛽, 𝛾 − 𝛽) 𝑡𝑛𝐸],𝑛+1 (−𝑑]𝑡]) . (201)
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Figure 5: Solution of fractional kinetic equation given in (182) for𝑁0 = 1, 𝛼 = 2, 𝛽 = 1, 𝛾 = 3, 𝑚 = 2, 𝑑 = 1, 𝑎 = 2, ] = 0.2 : .2 : 0.8.

Theorem 68. If 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾, 𝑚 ∈ C;R(𝛾) > R(𝛽) >0 and |𝑚| < 𝑀 (where 𝑀 is positive real number), then the
solution of the equation

𝑁(𝑡) − 𝑁0
𝑀𝐶Φ𝑚 (𝛼, 𝛽; 𝛾; 𝑡) = −𝑑]

0𝐷−]
𝑡 𝑁(𝑡) (202)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

𝑀𝐶𝐵𝑚 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽) 𝑡𝑛𝐸],𝑛+1 (−𝑑]𝑡]) . (203)

Proof. The proofs of Theorems 64, 65, 66, 67, and 68 are the
same as those of Theorem 63, so we skip the proof of these
theorems.

11.1.1. Numerical results and their graphs of solution of
fractional kinetic equation. In this section, we present the
numerical results in Table 5 for 𝑁0 = 1, 𝛼 = 2, 𝛽 = 1, 𝛾 = 3,𝑚 = 2, 𝑑 = 1, 𝑎 = 2 and ] = 0.2 : 1 : 4.2 of equation
(126) and the graph of solution of fractional kinetic equation
given in (126) are presented in Figures 5, 6 and 7 for 𝑁0 = 1,𝛼 = 2, 𝛽 = 1, 𝛾 = 3, 𝑚 = 2, 𝑑 = 1, 𝑎 = 2; the values of
]are chosen as ] = 0.2 : .2 : 0.8, ] = 1.2 : .2 : 1.8 and
] = 2.2 : .2 : 2.8, respectively. Figure 8 presents theMesh-plot
of the same solution fractional kinetic equation. For different
values of the parameters, it can be easily interpreted and
can be observed that 𝑁(𝑡) > 0 for different values of the
parameters. As the solution of fractional kinetic equations
are presented in the form of summation. For the numerical
results and their graphs, sum first 500 terms have been taken.
If we choose more than 500 terms the results are same.
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Table 5: Numerical values of solution of fractional kinetic equation given in (182) for𝑁0 = 1, 𝛼 = 2, 𝛽 = 1, 𝛾 = 3, 𝑚 = 2, 𝑑 = 1, 𝑎 = 2.
t ] = 0.2 ] = 1.2 ] = 2.2 ] = 3.2 ] = 4.2
0.00 5.6427 5.6427 5.6427 5.6427 5.6427
0.10 6.5072 5.4044 5.6143 5.6408 5.6426
0.20 7.0748 5.1461 5.5127 5.6249 5.6410
0.30 7.5810 4.9199 5.3291 5.5773 5.6330
0.40 8.0669 4.7403 5.0624 5.4788 5.6101
0.50 8.5489 4.6124 4.7172 5.3088 5.5595
0.60 9.0358 4.5376 4.3026 5.0468 5.4638
0.70 9.5338 4.5149 3.8322 4.6727 5.3011
0.80 10.0472 4.5423 3.3237 4.1680 5.0448
0.90 10.5800 4.6174 2.7980 3.5166 4.6637
1.00 11.1353 4.7378 2.2788 2.7061 4.1222
1.10 11.7165 4.9012 1.7917 1.7296 3.3808
1.20 12.3265 5.1058 1.3630 0.5864 2.3968
1.30 12.9684 5.3500 1.0193 -0.7158 1.1249
1.40 13.6456 5.6329 0.7860 -2.1593 -0.4809
1.50 14.3612 5.9541 0.6861 -3.7152 -2.4656
1.60 15.1187 6.3138 0.7398 -5.3414 -4.8712
1.70 15.9220 6.7125 0.9628 -6.9812 -7.7330
1.80 16.7748 7.1514 1.3661 -8.5628 -11.0764
1.90 17.6815 7.6323 1.9551 -9.9980 -14.9121
2.00 18.6466 8.1573 2.7289 -11.1825 -19.2305

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

3

4

5

6

7

8

9

t

N
(t)

]=1.2
]=1.4

]=1.6
]=1.8

Figure 6: Solution of fractional kinetic equation given in (182) for𝑁0 = 1, 𝛼 = 2, 𝛽 = 1, 𝛾 = 3,𝑚 = 2, 𝑑 = 1, 𝑎 = 2, ] = 1.2 : .2 : 1.8.

11.2. Special Cases of Fractional Kinetic Equations. Choosing𝑚 = 0, Theorems 63, 64, 65, 66, 67, and 68 reduce to the
following form.
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Figure 7: Solution of fractional kinetic equation given in (182) for𝑁0 = 1, 𝛼 = 2, 𝛽 = 1, 𝛾 = 3, 𝑚 = 2, 𝑑 = 1, 𝑎 = 2, ] = 2.2 : .2 : 2.8.

Corollary 69. If 𝑎 > 0, 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾 ∈ C; R(𝛾) >
R(𝛽) > 0, then the solution of the equation

𝑁(𝑡) − 𝑁0 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑑]𝑡]) = −𝑎] 0𝐷−]
𝑡 𝑁(𝑡) (204)
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Figure 8: Mesh-Plot of solution of fractional kinetic equation given in (182) for 𝑁0 = 3, 𝛼 = 2, 𝛽 = 1, 𝛾 = 3, 𝑚 = 2, 𝑑 = 1, 𝑎 = 2.

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

(𝛼)𝑛 𝐵 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽)

(𝑑]𝑡])𝑛𝑛!
⋅ Γ (]𝑛 + 1) 𝐸],]𝑛+1 (−𝑎]𝑡]) .

(205)

Corollary 70. If 𝑎 > 0, 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾 ∈ C; R(𝛾) >
R(𝛽) > 0, then the solution of the equation

𝑁(𝑡) − 𝑁0Φ(𝛽; 𝛾; 𝑑]𝑡]) = −𝑎] 0𝐷−]
𝑡 𝑁(𝑡) (206)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

𝐵 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽)

(𝑑]𝑡])𝑛𝑛! Γ (]𝑛 + 1)
⋅ 𝐸],]𝑛+1 (−𝑎]𝑡]) .

(207)

Corollary 71. If 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾 ∈ C;R(𝛾) > R(𝛽) > 0,
then the solution of the equation

𝑁(𝑡) − 𝑁0 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑑]𝑡]) = −𝑑]
0𝐷−]

𝑡 𝑁(𝑡) (208)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

(𝛼)𝑛 𝐵 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽)

(𝑑]𝑡])𝑛𝑛!
⋅ Γ (]𝑛 + 1) 𝐸],]𝑛+1 (−𝑑]𝑡]) .

(209)

Corollary 72. If 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾 ∈ C;R(𝛾) > R(𝛽) > 0,
then the solution of the equation

𝑁(𝑡) − 𝑁0Φ(𝛽; 𝛾; 𝑑]𝑡]) = −𝑑]
0𝐷−]

𝑡 𝑁(𝑡) (210)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

𝐵 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽)

(𝑑]𝑡])𝑛𝑛! Γ (]𝑛 + 1)
⋅ 𝐸],]𝑛+1 (−𝑑]𝑡]) .

(211)

Corollary 73. If 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾 ∈ C;R(𝛾) > R(𝛽) > 0,
then the solution of the equation

𝑁(𝑡) − 𝑁0 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑡) = −𝑑]
0𝐷−]

𝑡 𝑁(𝑡) (212)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

(𝛼)𝑛 𝐵 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽) 𝑡𝑛𝐸],𝑛+1 (−𝑑]𝑡]) . (213)

Corollary 74. If 𝑑 > 0, ] > 0; 𝛼, 𝛽, 𝛾 ∈ C;R(𝛾) > R(𝛽) > 0,
then the solution of the equation

𝑁(𝑡) − 𝑁0Φ (𝛽; 𝛾; 𝑡) = −𝑑]
0𝐷−]

𝑡 𝑁(𝑡) (214)

is given by the following formula:

𝑁(𝑡) = 𝑁0

∞∑
𝑛=0

𝐵 (𝛽 + 𝑛, 𝛾 − 𝛽)
𝐵 (𝛽, 𝛾 − 𝛽) 𝑡𝑛𝐸],𝑛+1 (−𝑑]𝑡]) . (215)

12. Concluding Remarks

In the present article authors introduced the new the gen-
eralization of the classical beta function. It has been further
used to study the various properties of the new extended beta
function. Furthermore, on application of this new extended
beta function, extension of Gauss hypergeometric function
and confluent hypergeometric function are introduced. Frac-
tional integrals of extended hypergeometric functions and
their image formulas (in the form of beta transform, Laplace
transform, and Whittaker transform) are established. We
introduce new fractional generalizations of the standard
kinetic equation and we derived the solutions for the same.
Their numerical results and graphs are established to study
the nature of these fractional kinetic equations involving
new extended Gauss hypergeometric function and confluent
hypergeometric function. From the closed relationship of the
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The main purpose of this paper is to extend the work concerning the measures of growth of an entire function solution of the
generalized axially symmetric Helmholtz equation 𝜕2𝑢/𝜕𝑥2+𝜕2𝑢/𝜕𝑦2+(2𝜇/𝑦)(𝜕𝑢/𝜕𝑦) = 0, 𝜇 > 0, by studying the general measures
of growth ((𝑝, 𝑞)-order, lower (𝑝, 𝑞)-order, (𝑝, 𝑞)-type, and lower (𝑝, 𝑞)-type) in terms of coefficients |𝑎𝑛|/Γ(𝑛+𝜇+1) and the ratios
of these successive coefficients.

1. Introduction

The partial differential equation

𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑦2 + 2𝜇𝑦 𝜕𝑢𝜕𝑦 + 𝑘2𝑢 = 0 (1)

is called generalized axially symmetric Helmholtz equation
(GASHE) and the solutions of (1) are called GASHE func-
tions. The GASHE function 𝑢 is regular about the origin and
has the following Bessel-Gegenbauer series expansion:
𝑢 (𝑟, 𝜃)

= Γ (2𝜇) (𝑘𝑟)−𝜇 ∞∑
𝑛=0

𝑎𝑛𝑛!Γ (2𝜇 + 𝑛)𝐽𝜇+𝑛 (𝑘𝑟) 𝐶𝜇𝑛 (cos (𝜃)) ,
(2)

where 𝑥 = 𝑟 cos(𝜃) and 𝑦 = 𝑟 sin(𝜃), 𝐽𝜇+𝑛 are Bessel functions
of first kind, 𝐶𝜇𝑛 are Gegenbauer polynomials, and Γ(2𝜇) =2𝜇−1(𝜇 − 1)!.

When series (2) converges absolutely and uniformly on
the compact subsets of the whole complex plane, then the
GASHE function 𝑢 is said to be entire. For 𝑢 being entire, it
is known [1, page 214] that

lim sup
𝑟󳨀→∞

( 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨Γ (𝑛 + 𝜇 + 1))
1/𝑛 = 0. (3)

The concept of order 𝜌(𝑓) and lower order 𝜆(𝑓) of an
entire function was introduced by R. P. Boas [2] as follows:

𝜌 (𝑓)
𝜆 (𝑓) = lim

𝑟󳨀→+∞

sup
inf

log log (𝑀 (𝑟, 𝑓))
log (𝑟) (4)

and the concept of type 𝑇(𝑓) and lower type 𝑡(𝑓) has been
introduced to give more precise description of growth of
entire functions when they have the same nonzero finite
order. An entire function, of order 𝜌, 0 < 𝜌 < +∞, is said
to be of type 𝑇(𝑓) and lower type 𝑡(𝑓) if

𝑇 (𝑓)
𝑡 (𝑓) = lim

𝑟󳨀→+∞

sup
inf

log (𝑀 (𝑟, 𝑓))𝑟𝜌(𝑓) , 0 < 𝜌 (𝑓) < ∞ (5)

where M(r,f) = max0≤𝜃≤2𝜋 |𝑓(𝑟, 𝜃)|.
Gilbert and Howard [3] have studied the order 𝜌(𝑢) of

an entire GASHE function 𝑢 in terms of the coefficients 𝑎𝑛
occurring in the series expansion (2) of 𝑢. McCoy [4] studied
the rapid growth of entire function solution of Helmholtz
equation using the concept of index. Kumar [5, 6] extended
and improved this result and studied the growth using
the concept of index pair. Khan and Ali [7] studied the
generalized order and type of entire GASHE function. Kumar
and Singh [8] have studied the lower order and lower type
of entire GASHE function in terms of the coefficients in its
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Bessel-Gegenbauer series expansion (2) when the order of 𝑢
is a finite nonzero number. But, for the class of order 𝜌(𝑢) = 0
and 𝜌(𝑢) = ∞, we cannot define a type of 𝑢. For this reason,
numerous attempts have been made to refine the concept of
order and type. Therefore, the (𝑝, 𝑞)-order and (𝑝, 𝑞)-type of
an entire function have been defined [9, 10]. In this paper,
we extend the work of Kumar and Singh [8] to this new
classification of entire function.

For (𝑝, 𝑞) ̸= (1, 1) and 𝑝 ≥ 𝑞 ≥ 1, we define the (𝑝, 𝑞)-
order and lower (𝑝, 𝑞)-order as

𝜌 (𝑝, 𝑞, 𝑢)
𝜆 (𝑝, 𝑞, 𝑢) = lim

𝑟󳨀→+∞

sup
inf

log[𝑝] (𝑀 (𝑟, 𝑢))
log[𝑞] (𝑟) , (6)

where𝑝 and 𝑞 are integers such that 𝑏 ≤ 𝜌(𝑝, 𝑞, 𝑢) ≤ ∞where𝑏 = 0 if 𝑝 > 𝑞 and 𝑏 = 1 if 𝑝 = 𝑞.
The (𝑝, 𝑞)-type and lower (𝑝, 𝑞)-type are defined as

𝑇 (𝑝, 𝑞, 𝑢)
𝑡 (𝑝, 𝑞, 𝑢) = lim

𝑟󳨀→+∞

sup
inf

log[𝑝−1] (𝑀 (𝑟, 𝑢))
log[𝑞−1] (𝑟)𝜌(𝑝,𝑞,𝑢) , (7)

and log[0](𝑥) = 𝑥 and log[𝑚](𝑥) = log[𝑚−1] log(𝑥) for 𝑚 ≥ 1
and we use the notations

𝑃 (𝛼) = 𝑃 (𝛼, 𝑝, 𝑞) =
{{{{{{{{{{{{{{{

𝛼 if 𝑝 > 𝑞
1 + 𝛼 if 𝑝 = 𝑞 = 2
max (1, 𝛼) if 3 ≤ 𝑝 = 𝑞 < ∞
∞ if 𝑝 = 𝑞 = ∞,

(8)

and 𝑀(𝛼) = 𝑀(𝛼, 𝑝, 𝑞)

=
{{{{{{{{{{{

1𝑒.𝛼 if (𝑝, 𝑞) = (2, 1)
(𝛼 − 1)(𝛼−1)𝛼𝛼 if (𝑝, 𝑞) = (2, 2)
1 if 𝑝 ≥ 3,

𝑁 (𝛼) = 𝑁 (𝛼, 𝑝, 𝑞) = {{{
1𝛼 if 𝑝 = 2
1 if 𝑝 ̸= 2.

(9)

We note that the smallest integer 𝑝 is 2 (𝑝 ≥ 2) since,
for example, the order is given by 𝜌 = inf{𝜇 > 0 : |𝑓(𝑧)| =𝑂(𝑒|𝑧|𝜇), |𝑧| 󳨀→ +∞}.

To prove that 𝑃(𝛼) = 𝑃(𝛽), 𝑀(𝛼) = 𝑀(𝛽), or 𝑁(𝛼) =𝑁(𝛽) we can prove that 𝛼 = 𝛽 for the different values of 𝑝
and 𝑞. From [9], we define the relation between (𝑝, 𝑞)-order,
lower (𝑝, 𝑞)-order, the coefficients of u, and the ratios of these
successive coefficients as follows.

�eorem 1. Let 𝑢(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 be an entire function of(𝑝, 𝑞)-order 𝜌(𝑝, 𝑞, 𝑢), and then
𝜌 (𝑝, 𝑞, 𝑢) = 𝑃 (𝐿 (𝑝, 𝑞)) (10)

where

𝐿 (𝑝, 𝑞) = lim sup
𝑛󳨀→+∞

log[𝑝−1] (𝑛)
log[𝑞−1] (− (1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)) (11)

�eorem 2. Let 𝑢(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 be an entire function of(𝑝, 𝑞)-order 𝜌(𝑝, 𝑞, 𝑢), and then
𝜌 (𝑝, 𝑞, 𝑢) = 𝑃 (𝐿∗ (𝑝, 𝑞)) (12)

where

𝐿∗ (𝑝, 𝑞) = lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (󵄨󵄨󵄨󵄨𝑎𝑛/𝑎𝑛+1󵄨󵄨󵄨󵄨) (13)

�eorem 3. Let 𝑢(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 be an entire function
of (𝑝, 𝑞)-order 𝜌(𝑝, 𝑞, 𝑢) and (|𝑎𝑛/𝑎𝑛+1|)𝑛 a nondecreasing
function of 𝑛 for 𝑛 > 𝑛0 and then

𝜆 (𝑝, 𝑞, 𝑢) = 𝑃 (𝑙 (𝑝, 𝑞)) , (14)

where

𝑙 (𝑝, 𝑞) = lim inf
𝑛󳨀→+∞

log[𝑝−1] (𝑛)
log[𝑞−1] (− (1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)) . (15)

�eorem 4. Let 𝑢(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 be an entire function of(𝑝, 𝑞)-order𝜌(𝑝, 𝑞, 𝑢) and (|𝑎𝑛/𝑎𝑛+1|) a nondecreasing function
of 𝑛 for 𝑛 > 𝑛0 and then

𝜆 (𝑝, 𝑞, 𝑢) = 𝑃 (𝑙∗ (𝑝, 𝑞)) , (16)

where

𝑙∗ (𝑝, 𝑞) = lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (󵄨󵄨󵄨󵄨𝑎𝑛/𝑎𝑛+1󵄨󵄨󵄨󵄨) . (17)

From [10], we define the relation between (𝑝, 𝑞)-type,
lower (𝑝, 𝑞)-type, the coefficients of u, and the ratios of these
successive coefficients as follows.

�eorem 5. Let 𝑢(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 be an entire function.
�e function 𝑓(𝑧) is of (𝑝, 𝑞)-order 𝜌(𝑝, 𝑞, 𝑢) and (𝑝, 𝑞)-type𝑇(𝑝, 𝑞, 𝑢) if and only if 𝑇 = 𝑀𝑉, where 𝑏 = 1 if 𝑝 = 𝑞 and𝑏 = 0 if 𝑝 > 𝑞, and 𝑉 is defined as

𝑉 (𝑝, 𝑞, 𝑢) = lim sup
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] (− (1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌−𝐶 (18)

with 𝐶 = 1 if (𝑝, 𝑞) = (2, 2) and 𝐶 = 0 if (𝑝, 𝑞) ̸= (2, 2).
�eorem 6. Let 𝑢(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 be an entire function of(𝑝, 𝑞)-order 𝜌 and lower (𝑝, 𝑞)-type 𝑡(𝑝, 𝑞, 𝑢) and (|𝑎𝑛/𝑎𝑛+1|)𝑛
a nondecreasing function of 𝑛 for 𝑛 > 𝑛0 and then 𝑡 = 𝑀V,
where

V (𝑝, 𝑞, 𝑢) = lim inf
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] (− (1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌−𝐶 (19)

with 𝐶 = 1 if (𝑝, 𝑞) = (2, 2) and 𝐶 = 0 if (𝑝, 𝑞) ̸= (2, 2).
�eorem 7. Let 𝑢(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 be an entire function
of (𝑝, 𝑞)-order 𝜌(𝑝, 𝑞, 𝑢) and lower (𝑝, 𝑞)-type 𝑡(𝑝, 𝑞, 𝑢), and|𝑎𝑛/𝑎𝑛+1| forms a nondecreasing function of 𝑘 for 𝑘 > 𝑘0; then

𝑁 ∗ 𝑅 ≤ 𝑡 ≤ 𝑇 ≤ 𝑁 ∗ 𝑄, (20)

where

173(p, q)-Growth of an Entire GASHE Function and the Coefficient βn = |an| / Γ (n + µ + 1)
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𝑄 (𝑝, 𝑞) = lim sup
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−1] (󵄨󵄨󵄨󵄨𝑎𝑛/𝑎𝑛+1󵄨󵄨󵄨󵄨)𝜌−𝐶 , (21)

and

𝑅 (𝑝, 𝑞) = lim inf
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−1] (󵄨󵄨󵄨󵄨𝑎𝑛/𝑎𝑛+1󵄨󵄨󵄨󵄨)𝜌−𝐶 , (22)

with 𝐶 = 1 if (𝑝, 𝑞) = (2, 2) and 𝐶 = 0 if (𝑝, 𝑞) ̸= (2, 2).
2. Auxiliary Results

Let 𝑓 and 𝑔 be two functions defined as

𝑓 (𝑧) = +∞∑
𝑛=0

󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨𝑛! (𝑘2)
𝑛 𝑧𝑛,

𝑔 (𝑧) = +∞∑
𝑛=0

󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨𝑛! ( 𝑘2𝑟∗)
𝑛 𝑧𝑛.

(23)

According to [3], we know that if 𝑢 is an entire GASHE
function, then 𝑓 and 𝑔 are also entire functions of the
complex variable 𝑧, and

Γ (𝜇 + 1/2)𝑘∗𝜋22−𝜇 𝑚(𝑟, 𝑔) ≤ 𝑀 (𝑟, 𝑢) ≤ 𝑘𝑀(𝑟, 𝑓) (24)

where 𝑚(𝑟, 𝑔) = max𝑛≥0[(|𝑎𝑛|/𝑛!)(𝑘/2𝑟∗)𝑛] and 𝑀(𝑟, 𝑓) =
max|𝑧|≤𝑟|𝑓(𝑧)|. In this section, we shall prove some auxiliary
results which will be used in the sequel.

Lemma 8. Let 𝑓 and 𝑔 be entire functions of particular form
defined above. �en the (𝑝, 𝑞)-orders and the (𝑝, 𝑞)-types of 𝑓
and 𝑔, respectively, are identical.
Proof. Let Φ(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 be an entire function, and then,
according toTheorem 1, the (𝑝, 𝑞)-order of 𝜙 is given as

𝜌 (𝑝, 𝑞, 𝜙) = lim sup
𝑛󳨀→+∞

log[𝑝−1] (𝑛)
log[𝑞−1] (− (1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)) , (25)

and the (𝑝, 𝑞)-type is defined in view of Theorem 5 as

𝑇 (𝑝, 𝑞, 𝜙)
= lim sup
𝑛󳨀→+∞

log[𝑝−2] (𝑛)
log[𝑞−2] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌(𝑝,𝑞,𝜙) .

(26)

In the consequence of [3], we have

𝜌 (2, 1, 𝑓) = 𝜌 (2, 1, 𝑔) ,
𝑇 (2, 1, 𝑓) = 𝑇 (2, 1, 𝑔) . (27)

Here we consider the case when 𝑞 ≥ 2.
We have

1𝜌 (2, 1, 𝑓) = lim inf
𝑛󳨀→+∞

(−1/𝑛) log ((𝑘/2)𝑛 (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!))
log (𝑛)

= lim inf
𝑛󳨀→+∞

log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1) + log (𝑛!) − log (𝑘/2)𝑛
𝑛 log (𝑛)

= lim inf
𝑛󳨀→+∞

( log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1)𝑛 log (𝑛) + log (𝑛!)𝑛 log (𝑛) − log (𝑘/2)𝑛𝑛 log (𝑛) )

= lim inf
𝑛󳨀→+∞

log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1)𝑛 log (𝑛) + 1,

(28)

and then 1/𝜌(2, 1, 𝑓) ≥ 1 and 𝜌(2, 1, 𝑓) ≤ 1.
This implies that we will necessarily have 𝜌(2, 1, 𝑓) = 0 to

define 𝜌(𝑝, 𝑞, 𝑓). And we have

𝜌 (2, 1, 𝑓) = 0 󳨐⇒
lim inf
𝑛󳨀→+∞

1𝜌 (2, 1, 𝑓) = +∞ 󳨐⇒
lim inf
𝑛󳨀→+∞

log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1)𝑛 log (𝑛) = +∞ 󳨐⇒
lim sup
𝑛󳨀→+∞

𝑛 log (𝑛)
log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1) = 0 󳨐⇒

lim
𝑛󳨀→+∞

log (𝑛!)
log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1) = 0,

󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨1/𝑛 󳨀→ 0.

(29)

Hence, for the function 𝑓 we have

1𝜌 (𝑝, 𝑞, 𝑓) = lim inf
𝑛󳨀→+∞

log[𝑞−1] ((−1/𝑛) log ((𝑘/2)𝑛 (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!)))
log[𝑝−1] (𝑛)

= lim inf
𝑛󳨀→+∞

log[𝑞−1] (log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1) /𝑛 + log (𝑛!) /𝑛 − (1/𝑛) log (𝑘/2)𝑛)
log[𝑝−1] (𝑛)

= lim inf
𝑛󳨀→+∞

1
log[𝑝−1] (𝑛) ∗ log[𝑞−1]( log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1)𝑛 (1 + log (𝑛!)

log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1) − 1
log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1) log(

𝑘2)
𝑛))

= lim inf
𝑛󳨀→+∞

( log[𝑞−1] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))
log[𝑝−1] (𝑛) + log (1 + 𝑜 (1))

log[𝑝−1] (𝑛) ) = lim inf
𝑛󳨀→+∞

log[𝑞−1] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))
log[𝑝−1] (𝑛)

(30)
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and

1𝜌 (𝑝, 𝑞, 𝑔) = lim inf
𝑛󳨀→+∞

log[𝑞−1] ((−1/𝑛) log ((𝑘/2𝑟∗)𝑛 (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!)))
log[𝑝−1] (𝑛)

= lim inf
𝑛󳨀→+∞

log[𝑞−1] (log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨−1) /𝑛 + log (𝑛!) /𝑛 − (1/𝑛) log (𝑘/2𝑟∗)𝑛)
log[𝑝−1] (𝑛)

= lim inf
𝑛󳨀→+∞

( log[𝑞−1] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))
log[𝑝−1] (𝑛) + log (1 + 𝑜 (1))

log[𝑝−1] (𝑛) ) = lim inf
𝑛󳨀→+∞

log[𝑞−1] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))
log[𝑝−1] (𝑛)

(31)

Since 𝑓 and 𝑔 have the same (𝑝, 𝑞)-order it follows that
𝜌 (𝑝, 𝑞, 𝑓) = 𝜌 (𝑝, 𝑞, 𝑔) = 𝜌. (32)

Now we will prove that 𝑓 and 𝑔 have the same (𝑝, 𝑞)-type
for 𝑞 = 2.

1𝑇 (𝑝, 2, 𝑓) = lim inf
𝑛󳨀→+∞

((−1/𝑛) log ((𝑘/2)𝑛 (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!)))𝜌
log[𝑝−2] (𝑛)

= lim inf
𝑛󳨀→+∞

((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨) + log (𝑛!) /𝑛 − (1/𝑛) log (𝑘/2)𝑛)𝜌
log[𝑝−2] (𝑛)

= lim inf
𝑛󳨀→+∞

((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌
log[𝑝−2] (𝑛)

∗ (1 + log (𝑛!)
log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)−1 −

1
log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)−1 log(

𝑘2)
𝑛)𝜌

= lim inf
𝑛󳨀→+∞

((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌
log[𝑝−2] (𝑛) (1 + 𝑜 (1))𝜌

= lim inf
𝑛󳨀→+∞

((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌
log[𝑝−2] (𝑛) .

(33)

In the same way we prove that

1𝑇 (𝑝, 2, 𝑔) = lim inf
𝑛󳨀→+∞

((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌
log[𝑝−2] (𝑛) . (34)

Now, for the case 𝑞 ≥ 3, we have
1𝑇 (𝑝, 𝑞, 𝑓) = lim inf

𝑛󳨀→+∞

log[𝑞−2] ((−1/𝑛) log ((𝑘/2)𝑛 (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!)))𝜌
log[𝑝−2] (𝑛)

= lim inf
𝑛󳨀→+∞

log[𝑞−2] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨) + log (𝑛!) /𝑛 − (1/𝑛) log (𝑘/2)𝑛)𝜌
log[𝑝−2] (𝑛)

= lim inf
𝑛󳨀→+∞

1
log[𝑝−2] (𝑛) ⋅ log[𝑞−2](

− log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)𝑛 (1 + log (𝑛!)
log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)−1 −

log (𝑘/2)𝑛
log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)−1))𝜌

= lim inf
𝑛󳨀→+∞

log[𝑞−2] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨) (1 + 𝑜 (1)))𝜌
log[𝑝−2] (𝑛) = lim inf

𝑛󳨀→+∞

(log[𝑞−2] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)) + log (1 + 𝑜 (1)))𝜌
log[𝑝−2] (𝑛)

= lim inf
𝑛󳨀→+∞

log[𝑞−2] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌
log[𝑝−2] (𝑛) .

(35)

The same is true for

1𝑇 (𝑝, 𝑞, 𝑔) = lim inf
𝑛󳨀→+∞

log[𝑞−2] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!))𝜌
log[𝑝−2] (𝑛) (36)

since 𝑓 and 𝑔 have identical (𝑝, 𝑞)-order and (𝑝, 𝑞)-type.
Lemma 9. For an entire GASHE function 𝑢 of (𝑝, 𝑞)-order𝜌(𝑝, 𝑞, 𝑢), lower (𝑝, 𝑞)-order 𝜆(𝑝, 𝑞, 𝑢), (𝑝, 𝑞)-type 𝑇(𝑝, 𝑞, 𝑢),
and lower (𝑝, 𝑞)-type 𝑡(𝑝, 𝑞, 𝑢). If 𝑓 and 𝑔 are entire functions
as defined above, then

𝜌 (𝑝, 𝑞, 𝑓) = 𝜌 (𝑝, 𝑞, 𝑢) = 𝜌 (𝑝, 𝑞, 𝑔) , (37)𝜆 (𝑝, 𝑞, 𝑓) ≤ 𝜆 (𝑝, 𝑞, 𝑢) ≤ 𝜆 (𝑝, 𝑞, 𝑔) , (38)𝑇 (𝑝, 𝑞, 𝑓) = 𝑇 (𝑝, 𝑞, 𝑢) = 𝑇 (𝑝, 𝑞, 𝑔) , (39)𝑡 (𝑝, 𝑞, 𝑓) ≤ 𝑡 (𝑝, 𝑞, 𝑢) ≤ 𝑡 (𝑝, 𝑞, 𝑔) . (40)

Proof. Using (24), we get

log[𝑝]𝑚(𝑟, 𝑔)
log[𝑞] (𝑟) ≤ log[𝑝]𝑀(𝑟, 𝑢)

log[𝑞] (𝑟) ≤ log[𝑝]𝑀(𝑟, 𝑓)
log[𝑞] (𝑟) . (41)
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From the above relation we obtain𝜌 (𝑝, 𝑞, 𝑓) ≤ 𝜌 (𝑝, 𝑞, 𝑢) ≤ 𝜌 (𝑝, 𝑞, 𝑔) ,𝜆 (𝑝, 𝑞, 𝑓) ≤ 𝜆 (𝑝, 𝑞, 𝑢) ≤ 𝜆 (𝑝, 𝑞, 𝑔) , (42)

and since 𝜌(𝑝, 𝑞, 𝑓) = 𝜌(𝑝, 𝑞, 𝑔) it proves (37) and (38).
Denoting by 𝜌 the common value of (𝑝, 𝑞)-order of 𝑓, 𝑔,

and 𝑢, we have from (24)

log[𝑝−1]𝑚(𝑟, 𝑔)
log[𝑞−1] (𝑟)𝜌 ≤ log[𝑝−1]𝑀(𝑟, 𝑢)

log[𝑞−1] (𝑟)𝜌
≤ log[𝑝−1]𝑀(𝑟, 𝑓)

log[𝑞−1] (𝑟)𝜌 .
(43)

This proves (39) and (40).

Before we start the next section, let us define 𝛽𝑛 =|𝑎𝑛|/Γ(𝑛 + 𝜇 + 1), 𝛾𝑛 = (|𝑎𝑛|/𝑛!)(𝑘/2)𝑛, and 𝛿𝑛 =(|𝑎𝑛|/𝑛!)(𝑘/2𝑟∗)𝑛.
It is known, according to [3], that if (𝛽𝑛/𝛽𝑛+1) is a

nondecreasing function of 𝑛 then (Γ𝑛/Γ𝑛+1) and (𝛿𝑛/𝛿𝑛+1) also
is a nondecreasing function of 𝑛.
3. Main Results

�eorem 10. Let 𝑢 be an entire GASHE function of (𝑝, 𝑞)-
order 𝜌(𝑝, 𝑞, 𝑢) and (𝑝, 𝑞)-type 𝑇(𝑝, 𝑞, 𝑢). If (𝛽𝑛/𝛽𝑛+1) is a
nondecreasing function of 𝑛 for 𝑛 > 𝑛0, then

𝜌 (𝑝, 𝑞, 𝑢) = lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (𝛽𝑛)) , (44)

𝑇 (𝑝, 𝑞, 𝑢) = lim sup
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] ((−1/𝑛) log (𝛽𝑛))𝜌 . (45)

Proof. For an entire function 𝜙(𝑧) = ∑∞0 𝑎𝑛𝑧𝑛 and according
toTheorem 1, we have

𝜌 (𝑝, 𝑞, 𝜙) = lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)) . (46)

We know that if (𝛽𝑛/𝛽𝑛+1) is a nondecreasing function of𝑛 for 𝑛 > 𝑛0, and then also (𝛾𝑛/𝛾𝑛+1) and (𝛿𝑛/𝛿𝑛+1).
Applying (46) to 𝑓, we get
𝜌 (𝑝, 𝑞, 𝑓)

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log ( (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!) (𝑘/2)𝑛)))

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛) ⋅ (log[𝑞−1] (−1𝑛
⋅ log(󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨𝑛! Γ (𝑛 + 𝜇 + 1)Γ (𝑛 + 𝜇 + 1) (𝑘2)

𝑛)))−1

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛) ⋅ (log[𝑞−1] (−1𝑛
⋅ log(𝛽𝑛 (𝑛 + 1)𝜇 (𝑘2)

𝑛)))−1

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛) ⋅ (log[𝑞−1] (−1𝑛

⋅ log (𝛽𝑛) − log ((𝑛 + 1)𝜇 (𝑘/2)𝑛)𝑛 ))−1

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (𝛽𝑛)) + 𝑜 (1)

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (𝛽𝑛)) .

(47)

Similarly, applying (46) to 𝑔, we prove
𝜌 (𝑝, 𝑞, 𝑔)
= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log ((󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!) (𝑘/2𝑟∗)𝑛)))

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (𝛽𝑛)) .

(48)

Then result (44) is found from the two relations 𝜌(𝑝, 𝑞, 𝑓)
and 𝜌(𝑝, 𝑞, 𝑔) above and relation (37).

Let 𝜌 be the common (𝑝, 𝑞)-order of 𝑓 and 𝑔.
The (𝑝, 𝑞)-type of 𝜙 is defined according toTheorem 5 as

𝑇 (𝑝, 𝑞, 𝜙)
= lim sup
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌(𝑝,𝑞,𝜙) ,

(49)

and we can easily prove that

𝑇 (𝑝, 𝑞, 𝑓) = lim sup
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] ((−1/𝑛) log (𝛽𝑛))𝜌 , (50)

and

𝑇 (𝑝, 𝑞, 𝑔) = lim sup
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] ((−1/𝑛) log (𝛽𝑛))𝜌 . (51)

Equation (45) now follows in view of (37) and (39).
Hence the proof is completed.

�eorem11. Let𝑢 be an entireGASHE function of (𝑝, 𝑞)-order𝜌(𝑝, 𝑞, 𝑢), and |𝛽𝑛/𝛽𝑛+1| is a nondecreasing function of 𝑛 for𝑛 > 𝑛0. �en

𝜌 (𝑝, 𝑞, 𝑢) = lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (𝛽𝑛/𝛽𝑛+1) . (52)

Proof. For an entire function 𝜙(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛, according to
Theorem 2,

𝜌 (𝑝, 𝑞, 𝜙) = lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (󵄨󵄨󵄨󵄨𝑎𝑛/𝑎𝑛+1󵄨󵄨󵄨󵄨) , (53)

provided |𝑎𝑛/𝑎𝑛+1| is a nondecreasing function of 𝑛 for 𝑛 > 𝑛0.
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Applying this equation on 𝑓 we get

𝜌 (𝑝, 𝑞, 𝑓) = lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (𝛾𝑛/𝛾𝑛+1) = lim sup

𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] ((󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 / 󵄨󵄨󵄨󵄨𝑎𝑛+1󵄨󵄨󵄨󵄨) ((𝑛 + 1)!/𝑛!) (2/𝑘))

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛) ⋅ (log[𝑞] ( 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ⋅ Γ (𝑛 + 𝜇 + 2) ⋅ Γ (𝑛 + 𝜇 + 1)󵄨󵄨󵄨󵄨𝑎𝑛+1󵄨󵄨󵄨󵄨 ⋅ Γ (𝑛 + 𝜇 + 1) ⋅ Γ (𝑛 + 𝜇 + 2) (𝑛 + 1) 2𝑘))
−1

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] ((𝛽𝑛/𝛽𝑛+1) (Γ (𝑛 + 𝜇 + 1) /Γ (𝑛 + 𝜇 + 2)) (𝑛 + 1) (2/𝑘)) .

(54)

Since (Γ(𝑛+𝜇+1)/Γ(𝑛+𝜇+2))(𝑛+1) ≈ (𝑛+1)/(𝑛+𝜇+1) ≈ 1
as 𝑛 󳨀→ ∞ then

𝜌 (𝑝, 𝑞, 𝑓) = lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] ((𝛽𝑛/𝛽𝑛+1) (2/𝑘))

= lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (𝛽𝑛/𝛽𝑛+1) .

(55)

By the same way, we prove

𝜌 (𝑝, 𝑞, 𝑔) = lim sup
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (𝛽𝑛/𝛽𝑛+1) . (56)

Relation (52) now follows on using (37). Hence the proof is
completed.

�eorem 12. Let 𝑢 be an entire GASHE function of (𝑝, 𝑞)-
order 𝜌(𝑝, 𝑞, 𝑢), lower (𝑝, 𝑞)-order 𝜆(𝑝, 𝑞, 𝑢), and lower (𝑝, 𝑞)-
type 𝑡(𝑝, 𝑞, 𝑢) and let (𝛽𝑛/𝛽𝑛+1) be a nondecreasing function of𝑛 for 𝑛 > 𝑛0. �en

𝜆 (𝑝, 𝑞, 𝑢) = lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (𝛽𝑛)) , (57)

𝑡 (𝑝, 𝑞, 𝑢) = lim inf
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] ((−1/𝑛) log (𝛽𝑛))𝜌 . (58)

Proof. For an entire function 𝜙(𝑧) = ∑∞0 𝑎𝑛𝑧𝑛, and according
toTheorem 3,

𝜆 (𝑝, 𝑞, 𝜙) = lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨)) . (59)

We know that if (𝛽𝑛/𝛽𝑛+1) form a nondecreasing function of𝑛 for 𝑛 > 𝑛0, then, also, (𝛾𝑛/𝛾𝑛+1) and (𝛿𝑛/𝛿𝑛+1).

Applying (59) to 𝑓, we get
𝜆 (𝑝, 𝑞, 𝑓)

= lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log ( (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!) (𝑘/2)𝑛)))

= lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛) ∗ log[𝑞−1] (−1𝑛
⋅ log( 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨Γ (𝑛 + 𝜇 + 1) Γ (𝑛 + 𝜇 + 1)𝑛! (𝑘2)

𝑛))−1

= lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (𝛽𝑛)) + 𝑜 (1)

= lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (𝛽𝑛))

(60)

Similarly, applying (59) to 𝑔, we prove that
𝜆 (𝑝, 𝑞, 𝑔)
= lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log ((󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 /𝑛!) (𝑘/2𝑟∗)𝑛)))

= lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞−1] ((−1/𝑛) log (𝛽𝑛)) .

(61)

Then result (57) is now followed by (38) and above by the two
relations for 𝜆(𝑝, 𝑞, 𝑓) and 𝜆(𝑝, 𝑞, 𝑔).

If 𝜙(𝑧) = ∑∞0 𝑎𝑛𝑧𝑛 is an entire function of (𝑝, 𝑞)-order𝜌(𝑝, 𝑞, 𝜙) and lower (𝑝, 𝑞)-type 𝑡(𝑝, 𝑞, 𝜙), and if |𝑎𝑛/𝑎𝑛+1| is a
nondecreasing function of 𝑛 for 𝑛 > 𝑛0, then, according to
Theorem 6, we have

𝑡 (𝑝, 𝑞, 𝜙) = lim inf
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨))𝜌(𝑝,𝑞,𝜙) . (62)

We can easily prove that

𝑡 (𝑝, 𝑞, 𝑓) = lim inf
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] ((−1/𝑛) log (𝛽𝑛))𝜌(𝑝,𝑞,𝑓) , (63)
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and

𝑡 (𝑝, 𝑞, 𝑔) = lim inf
𝑛󳨀→∞

log[𝑝−2] (𝑛)
log[𝑞−2] ((−1/𝑛) log (󵄨󵄨󵄨󵄨𝛽𝑛󵄨󵄨󵄨󵄨))𝜌(𝑝,𝑞,𝑔) . (64)

Equation (58) now follows in view of (37) and (40). Hence the
proof is completed.

�eorem 13. Let 𝑢 be an entire GASHE function of lower(𝑝, 𝑞)-order 𝜆(𝑝, 𝑞, 𝑢), and let (𝛽𝑛/𝛽𝑛+1) be a nondecreasing
function of 𝑛 for 𝑛 > 𝑛0. �en

𝜆 (𝑝, 𝑞, 𝑢) = lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (𝛽𝑛/𝛽𝑛+1) . (65)

Proof. Let𝜙(𝑧) = ∑∞0 𝑎𝑛𝑧𝑛 be an entire function and |𝑎𝑛/𝑎𝑛+1|
form a nondecreasing function of 𝑛 for 𝑛 > 𝑛0, and, according
toTheorem 4, we have

𝜆 (𝑝, 𝑞, 𝜙) = lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] 󵄨󵄨󵄨󵄨𝑎𝑛/𝑎𝑛+1󵄨󵄨󵄨󵄨 . (66)

Applying this on 𝑓 and 𝑔, we can easily prove that

𝜆 (𝑝, 𝑞, 𝑓) = lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (𝛽𝑛/𝛽𝑛+1) , (67)

and

𝜆 (𝑝, 𝑞, 𝑔) = lim inf
𝑛󳨀→∞

log[𝑝−1] (𝑛)
log[𝑞] (𝛽𝑛/𝛽𝑛+1) . (68)

Thus, we obtain relation (65) by using (38) and the two
equalities above.

�eorem 14. Let 𝑢 be an entire GASHE function of (𝑝, 𝑞)-
order 𝜌, (0 < 𝜌 < ∞), (𝑝, 𝑞)-type 𝑇(𝑝, 𝑞, 𝑢), and lower (𝑝, 𝑞)-
type 𝑡(𝑝, 𝑞, 𝑢). �en

lim inf
𝑛󳨀→+∞

𝑁(𝜌) ⋅ log[𝑝−2] (𝑛)
log[𝑞−1] (𝛽𝑛/𝛽𝑛+1)𝜌 ≤ 𝑡 (𝑢, 𝑝, 𝑞)

≤ 𝑇 (𝑢, 𝑝, 𝑞) ≤ lim sup
𝑛󳨀→+∞

𝑁(𝜌) ⋅ log[𝑝−2] (𝑛)
log[𝑞−1] (𝛽𝑛/𝛽𝑛+1)𝜌 .

(69)

Proof. If 𝜙(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧𝑛 is an entire function of (𝑝, 𝑞)-
type 𝑇(𝑝, 𝑞, 𝑔) and lower (𝑝, 𝑞)-type 𝑡(𝑝, 𝑞, 𝑔), then in view
of Theorem 7 we have

lim inf
𝑛󳨀→∞

𝑁(𝜌) ⋅ log[𝑝−2] (𝑛)
log[𝑞−1] (󵄨󵄨󵄨󵄨𝑎𝑛/𝑎𝑛+1󵄨󵄨󵄨󵄨)𝜌−𝐶 ≤ 𝑡 ≤ 𝑇. (70)

𝑇 ≤ lim sup
𝑛󳨀→∞

𝑁(𝜌) ∗ log[𝑝−2] (𝑛)
log[𝑞−1] (󵄨󵄨󵄨󵄨𝑎𝑛/𝑎𝑛+1󵄨󵄨󵄨󵄨)𝜌−𝐶 . (71)

Applying inequality (71) to 𝑓(𝑧) = ∑∞0 𝛾𝑛𝑧𝑛, we get
𝑇 (𝑓) ≤ lim sup

𝑛󳨀→∞
𝑁(𝜌) ⋅ log[𝑝−2] (𝑛)

log[𝑞−1] (𝛾𝑛/𝛾n+1)𝜌−𝐶
≤ lim sup
𝑛󳨀→∞

𝑁(𝜌)
⋅ log[𝑝−2] (𝑛)
log[𝑞−1] ((󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 / 󵄨󵄨󵄨󵄨𝑎𝑛+1󵄨󵄨󵄨󵄨) ((𝑛 + 1)!/𝑛!) (2/𝑘))𝜌−𝐶

≤ lim sup
𝑛󳨀→∞

𝑁(𝜌) ⋅ log[𝑝−2] (𝑛)
log[𝑞−1], (𝛽𝑛/𝛽𝑛+1)𝜌−𝐶 ,

(72)

and then

𝑇 (𝑢) = 𝑇 (𝑓)
≤ lim sup
𝑛󳨀→∞

𝑁(𝜌) ⋅ log[𝑝−2] (𝑛)
log[𝑞−1] (𝛽𝑛/𝛽𝑛+1)𝜌−𝐶

(73)

and applying (70) to the function 𝑔(𝑧) = ∑∞0 𝛿𝑛𝑧𝑛 we get
lim inf
𝑛󳨀→+∞

𝑁(𝜌) ⋅ log[𝑝−2] (𝑛)
log[𝑞−1] (𝛿𝑛/𝛿𝑛+1)𝜌 ≤ 𝑡 (𝑔) ≤ 𝑡 (𝑢) , (74)

and we can easily prove

lim inf
𝑛󳨀→+∞

log[𝑝−2] (𝑛)
log[𝑞−1] (𝛿𝑛/𝛿𝑛+1)𝜌

= lim inf
𝑛󳨀→+∞

log[𝑝−2] (𝑛)
log[𝑞−1] (𝛽𝑛/𝛽𝑛+1)𝜌 ,

(75)

and, thus,

lim inf
𝑛󳨀→+∞

𝑁(𝜌) ⋅ log[𝑝−2] (𝑛)
log[𝑞−1] (𝛽𝑛/𝛽𝑛+1)𝜌(𝑝,𝑞,𝑓) ≤ 𝑡 (𝑢) , (76)

and thus the proof is completed.
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The performance of the numerical computation based on the diagonally implicit multistep block method for solving Volterra
integrodifferential equations (VIDE) of the second kind has been analyzed. The numerical solutions of VIDE will be computed at
two points concurrently using the proposed numerical method and executed in the predictor-corrector (PECE)mode.The strategy
to obtain the numerical solution of an integral part is discussed and the stability analysis of the diagonally implicit multistep block
method was investigated. Numerical results showed the competence of diagonally implicit multistep block method when solving
Volterra integrodifferential equations compared to the existing methods.

1. Introduction

Consider the Volterra integrodifferential equation of the
second kind

𝑦󸀠 (𝑥) = 𝐹 (𝑥, 𝑦 (𝑥) , 𝑧 (𝑥)) , 𝑦 (𝑥0) = 𝑦0, (1)

where

𝑧 (𝑥) = ∫𝑥
0
𝐾 (𝑥, 𝑠) 𝑦 (𝑠) 𝑑𝑠, 0 ≤ 𝑠 ≤ 𝑥. (2)

The numerical methods are generated to solve (1) which
is a standard algorithm for ordinary differential equations
and Newton-Cote integration formulae are required for
solving the integral part since it cannot be solved explicitly.
These equations usually appeared in physics, biology, and
engineering applications such as biological models, neutron
diffusion, wind ripple in the desert, heat transfer, and many
more.

For many years, several methods had been applied to
solve first-order problemofVIDE.Day [1] proposedNewton-
Cotes integration formula of the trapezoidal rule for the
solutions of outer and inner integral to obtain approximate

solutions of integrodifferential equations. A comparison
between the variational iteration method and trapezoidal
rule revealing that the variational iteration method is more
efficient and convenient to solve linear VIDE was discussed
by Saadati et al. [2].

In [3], finite difference method is used for solving linear
VIDE by Raftari. He transforms the Volterra integrodifferen-
tial equation in a matrix form and solved it by using finite
difference method based on Simpson’s rule and trapezoidal
rule. A fourth-order robust numerical method was presented
by Filiz [4] with a combination of the trapezoidal rule and
Simpson’s 1/3 rule to evaluate the solution of VIDE for kernel
equal to one.Then, he extended his workwith a Runge-Kutta-
Verner method in [5] and used higher rules of numerical
integration method for solving the integral part.

The extended trapezoidal method [6] was proposed for
the numerical solution of VIDE of the second kind and
implemented the method in 𝑃𝐸𝐶𝐸 scheme. Mohamed and
Majid [7] had solved the second kind of VIDE using one-step
block method and the Newton-Cotes quadrature formula
was employed for finding the solution of the integral part.
The multistep block method in [8] had implemented two
approaches for solving VIDE for𝐾(𝑥, 𝑠) = 1 and𝐾(𝑥, 𝑠) ̸= 1.
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xn−1 xn xn+1 xn+2

Figure 1: Two-point multistep block method.

2. Numerical Method

The proposed numerical method is in the form of block
method and it will generate two ormore solutions at the same
time. The proposed method is a two-point block method;
hence it will generate two solutions in one block.

In Figure 1, the two approximate values of 𝑦𝑛+1 and 𝑦𝑛+2
will be computed simultaneously in a block.The approximate
values of 𝑦𝑛+1 can be developed by integrating (1) over
the interval [𝑥𝑛, 𝑥𝑛+1] while the interval for values 𝑦𝑛+2 is[𝑥𝑛, 𝑥𝑛+2]. Hence, the formulae of 𝑦𝑛+1 and 𝑦𝑛+2 can be
obtained as

∫𝑥𝑛+𝑟
𝑥
𝑛

𝑦󸀠 (𝑥) 𝑑𝑥 = ∫𝑥𝑛+𝑟
𝑥
𝑛

𝐹 (𝑥, 𝑦, 𝑧) 𝑑𝑥. (3)

Therefore,

𝑦𝑛+𝑟 − 𝑦𝑛 = ∫𝑥𝑛+𝑟
𝑥
𝑛

𝐹 (𝑥, 𝑦, 𝑧) 𝑑𝑥, (4)

where 𝑟 = 1, 2. Then, function 𝐹(𝑥, 𝑦, 𝑧) in (4) will be
approximated using Lagrange interpolating polynomial, and
the interpolation points involved in obtaining the corrector
formula of 𝑦𝑛+1 are {𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛+1}. Taking 𝑥 = 𝑥𝑛+1 + 𝑠ℎ,𝑑𝑥 = ℎ𝑑𝑠, and replacing into (4), the limit of integration in
(4) will be −1 to 0.

The formulation of 𝑦𝑛+2 can be obtained when three
points are involved in the interpolation polynomial, that is,{𝑥𝑛−1, 𝑥𝑛+1, 𝑥𝑛+2}. Considering 𝑥 = 𝑥𝑛+2 + 𝑠ℎ, 𝑑𝑥 = ℎ𝑑𝑠 in
(4) and the limit of integration will be changed from −2 to0. The corrector formulae of 𝑦𝑛+1 and 𝑦𝑛+2 will be obtained
usingMAPLE software.The predictor formulae are one order
less than the corrector formulae and the same process of
derivation is applied.

Diagonally Implicit Multistep Block Method

Predictor

𝑦𝑝𝑛+1 = 𝑦𝑛 + ℎ [32𝐹𝑛 − 12𝐹𝑛−1] ,
𝑦𝑝𝑛+2 = 𝑦𝑛 + ℎ [4𝐹𝑛 − 2𝐹𝑛−1] .

(5)

Corrector

𝑦𝑐𝑛+1 = 𝑦𝑛 + ℎ [ 512𝐹𝑛+1 +
2
3𝐹𝑛 −

1
12𝐹𝑛−1] ,

𝑦𝑐𝑛+2 = 𝑦𝑛 + ℎ [29𝐹𝑛+2 + 53𝐹𝑛+1 + 19𝐹𝑛−1] .
(6)

The matrix form of the corrector formulae is

[1 0
0 1] [

𝑦𝑛+1
𝑦𝑛+2] = [

0 −1
0 −1] [

𝑦𝑛−1
𝑦𝑛 ]

+ ℎ[[
[
− 112

2
31

9
5
3
]]
]
[𝐹𝑛−1𝐹𝑛 ]

+ ℎ[[
[

5
12 0
5
3

2
9
]]
]
[ 𝐹𝑛+1𝐹𝑛+2 ]

(7)

which is equivalent to the difference equations

𝐴0𝑌𝑚 = 𝐴1𝑌𝑚−1 + ℎ (𝐵0𝐹𝑚−1 + 𝐵1𝐹𝑚) , (8)

where 𝐴0, 𝐴1, 𝐵0, and 𝐵1 are the coefficients with 𝑚-vectors𝑌𝑚, 𝑌𝑚−1, 𝐹𝑚−1, and 𝐹𝑚 defined as

𝑌𝑚 = [𝑦𝑛+1𝑦𝑛+2] ,

𝑌𝑚−1 = [𝑦𝑛−1𝑦𝑛 ] ,

𝐹𝑚−1 = [𝐹𝑛−1𝐹𝑛 ] ,

𝐹𝑚 = [𝐹𝑛+1𝐹𝑛+2] .

(9)

3. Analysis of Diagonally Implicit
Multistep Block Method

3.1. Order and Convergence of the Method. The order of the
method can be obtained by referring [9]

𝑘∑
𝑗=0

[𝛼𝑗𝑦 (𝑥 + 𝑗ℎ) − ℎ𝛽𝑗𝑦󸀠 (𝑥 + 𝑗ℎ)]
= 𝐶𝑝𝑦𝑝 + 𝑂 (ℎ𝑝+1) ,

(10)

where 𝑝 is the order of the linear multistep method, 𝑂(ℎ𝑝+1)
is the local truncation error, and 𝐶𝑝 is defined as

𝐶𝑝 =
𝑘∑
𝑗=0

𝑗𝑝𝛼𝑗𝑝! − 𝑗(𝑝−1)𝛽𝑗(𝑝 − 1)! . (11)

Definition 1. The numerical method is said to be in order 𝑝 if
the linear operator of numerical method is

𝐶0 = 𝐶1 = 𝐶2 = ⋅ ⋅ ⋅ = 𝐶𝑝 = 0, 𝐶𝑝+1 ̸= 0, (12)

where 𝐶𝑝+1 is called as an error constant of the method.
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The order of diagonally implicit multistep block method
in (7) can be determined by applying the formula in (11);
hence the values of 𝛼 and 𝛽 are obtained as follows:

𝛼0 = [00] ,

𝛼1 = [−1−1] ,

𝛼2 = [10] ,

𝛼3 = [01] ,

𝛽0 = [[
[
− 1121
9
]]
]
,

𝛽1 = [[
2
30]]

,

𝛽2 = [[
[

5
125
3
]]
]
,

𝛽3 = [[
0
2
9
]
]
.

(13)

Substitute the values of 𝛼 and 𝛽 into (11) and obtain

𝐶0 =
3∑
𝑗=0

1
0! 𝑗0𝛼𝑗 = [

0
0] ,

𝐶1 =
3∑
𝑗=0

1
1! 𝑗1𝛼𝑗 −

3∑
𝑗=0

1
0!𝑗0𝛽𝑗 = [

0
0] ,

𝐶2 =
3∑
𝑗=0

1
2! 𝑗2𝛼𝑗 −

3∑
𝑗=0

1
1!𝑗1𝛽𝑗 = [

0
0] ,

𝐶3 =
3∑
𝑗=0

1
3! 𝑗3𝛼𝑗 −

3∑
𝑗=0

1
2!𝑗2𝛽𝑗 = [

0
0] ,

𝐶4 =
3∑
𝑗=0

1
4! 𝑗4𝛼𝑗 −

3∑
𝑗=0

1
3!𝑗3𝛽𝑗 = [[[

− 1241
9
]]
]
.

(14)

Therefore, the diagonally implicit multistep block method is
third-order where the coefficient of error constant is

𝐶𝑝+1 = 𝐶4 = [− 124
1
9]
𝑇 ̸= [0 0]𝑇 . (15)

Definition 2. The local truncation error at 𝑥𝑛+𝑘 of themethod
is defined to be expression 𝐿[𝑦(𝑥𝑛); ℎ], when 𝑦(𝑥) is the
theoretical solution of the initial value problem

𝐿 [𝑦 (𝑥𝑛) ; ℎ] =
𝑘∑
𝑗=0

[𝛼𝑗𝑦 (𝑥 + 𝑗ℎ) − ℎ𝛽𝑗𝑦󸀠 (𝑥 + 𝑗ℎ)] . (16)

For the formula 𝑦𝑐𝑛+1,
𝑦𝑐𝑛+1 = 𝑦𝑛 + ℎ [ 512𝐹𝑛+1 +

2
3𝐹𝑛 −

1
12𝐹𝑛−1] . (17)

Since 𝐹𝑛+1 = 𝑦󸀠(𝑥𝑛+1), Taylor expansion will be applied to the
derivatives 𝑦󸀠(𝑥𝑛+1) and 𝑦󸀠(𝑥𝑛−1) where 𝐹𝑛−1 = 𝑦󸀠(𝑥𝑛−1),

𝑦󸀠 (𝑥𝑛+1) = 𝑦󸀠 (𝑥𝑛) + ℎ𝑦󸀠󸀠 (𝑥𝑛) + ℎ22! 𝑦󸀠󸀠󸀠 (𝑥𝑛)
+ 𝑂 (ℎ3) ,

𝑦󸀠 (𝑥𝑛−1) = 𝑦󸀠 (𝑥𝑛) − ℎ𝑦󸀠󸀠 (𝑥𝑛) + ℎ22! 𝑦󸀠󸀠󸀠 (𝑥𝑛)
+ 𝑂 (ℎ3) .

(18)

Then, since 𝐹𝑛 = 𝑦󸀠(𝑥𝑛) we have
𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦󸀠𝑛 + ℎ

2

2 𝑦󸀠󸀠𝑛 + ℎ
3

6 𝑦󸀠󸀠󸀠𝑛 + 𝑂 (ℎ4) . (19)

So, the local truncation error for 𝑦𝑛+1 is 𝑂(ℎ4). For the
formula 𝑦𝑐𝑛+2,

𝑦𝑐𝑛+2 = 𝑦𝑛 + ℎ [29𝐹𝑛+2 +
5
3𝐹𝑛+1 +

1
9𝐹𝑛−1] . (20)

The Taylor expansion for 𝑦󸀠(𝑥𝑛+2) = 𝐹𝑛+2 is given as

𝑦󸀠 (𝑥𝑛+2) = 𝑦󸀠 (𝑥𝑛) + 2ℎ𝑦󸀠󸀠 (𝑥𝑛) + (2ℎ)22! 𝑦󸀠󸀠󸀠 (𝑥𝑛)
+ 𝑂 (ℎ3) .

(21)

Then, we will have

𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦󸀠𝑛 + 2ℎ2𝑦󸀠󸀠𝑛 + 43ℎ3𝑦󸀠󸀠󸀠𝑛 + 𝑂 (ℎ4) . (22)

This shows that the local truncation error for 𝑦𝑛+2 is 𝑂(ℎ4).
Definition 3. Thenumerical method is said to be consistent if
the order of method is 𝑝 ≥ 1 and the method is consistent if
and only if

𝑘∑
𝑗=0

𝛼𝑗 = 0,
𝑘∑
𝑗=0

𝑗𝛼𝑗 =
𝑘∑
𝑗=0

𝛽𝑗.
(23)
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Proof. (i) ∑𝑘𝑗=0 𝛼𝑗 = 0,
3∑
𝑗=0

𝛼𝑗 = 𝛼0 + 𝛼1 + 𝛼2 + 𝛼3

= [00] + [
−1
−1] + [

1
0] + [

0
1] = [

0
0] .

(24)

(ii) ∑𝑘𝑗=0 𝑗 ⋅ 𝛼𝑗 = ∑𝑘𝑗=0 𝛽𝑗,
3∑
𝑗=0

𝑗 ⋅ 𝛼𝑗 = 0 ⋅ 𝛼0 + 1 ⋅ 𝛼1 + 2 ⋅ 𝛼2 + 3 ⋅ 𝛼3

= 0 [00] + 1 [
−1
−1] + 2 [

1
0] + 3 [

0
1] = [

1
2] ,

3∑
𝑗=0

𝛽𝑗 = 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3

= [[
[
− 1121
9
]]
]
+ [
[
2
30]]

+ [[
[

5
125
3
]]
]
+ [
[
0
2
9
]
]
= [12] .

(25)

Therefore,
3∑
𝑗=0

𝑗 ⋅ 𝛼𝑗 =
3∑
𝑗=0

𝛽𝑗 = [12] . (26)

ByDefinitions 1 and 3, the diagonally implicit multistep block
method is consistent.

Definition 4. A block method is said to be zero-stable if and
only if providing the roots of 𝑅𝑗, 𝑗 = 1(1)𝑘 of the first
characteristic polynomial, 𝜌(𝑅), specified as

𝜌 (𝑅) = det[
[
𝑘∑
𝑗=0

𝐴(𝑖)𝑅(𝑘−𝑖)]
]
= 0 (27)

satisfies |𝑅𝑗| ≤ 1 and those roots with |𝑅𝑗| = 1.
Proof. The values of 𝐴 can be obtained in (7):

𝜌 (𝑟) = det [𝑅𝐴0 − 𝐴1] = det[𝑅[1 0
0 1] − [

0 −1
0 −1]]

= det[𝑅 1
0 𝑅 + 1] = 𝑅 (𝑅 + 1) .

(28)

The diagonally implicit multistep block method is zero stable
since |𝑅| ≤ 1.
Theorem 5. The method is said to be convergent if and only if
the method is consistent and zero-stable.

Proof. By Definitions 1, 3, and 4, the diagonally implicit
multistep block method is convergent.

3.2. Stability Region of the Method. In this section, the
stability region of the diagonally implicit multistep block
method of order three is discussed for the numerical solution
of VIDE.The test equation for first-order VIDE of the second
kind [10] is

𝑦󸀠 (𝑥) = 𝜉𝑦 (𝑥) + 𝜂∫𝑥
0
𝑦 (𝑡) 𝑑𝑡, (29)

where 𝜉 and 𝜂 are real constants, 𝜉 = 𝜆 + 𝜇 and 𝜂 = −𝜆𝜇.
Therefore,

𝑦󸀠 (𝑥) = (𝜆 + 𝜇) 𝑦 (𝑥) − 𝜆𝜇∫𝑥
0
𝑦 (𝑡) 𝑑𝑡. (30)

Definition 6. The method is said to be 𝐴-stable if and only if
the region of absolute stability contains at the quarter planeℎ𝜉 < 0, ℎ2𝜂 < 0.

From the proposed method for the numerical solution,
the characteristics polynomials 𝜌(𝑟), 𝜎(𝑟), 𝜌(𝑟), and 𝜎̃(𝑟) can
be developed as follows.

Corrector formula for 𝑦𝑛+1 is
𝜌 (𝑟) = 𝑟2 − 𝑟,
𝜎 (𝑟) = 5

12𝑟2 + 23𝑟 − 112 .
(31)

Corrector formula for 𝑦𝑛+2 is
𝜌 (𝑟) = 𝑟3 − 𝑟,
𝜎 (𝑟) = 2

9𝑟3 + 53𝑟2 + 19 .
(32)

Simpson’s rule is

𝜌 (𝑟) = 𝑟2 − 1,
𝜎̃ (𝑟) = 13𝑟2 + 43𝑟 + 13 .

(33)

The stability polynomial of the diagonally implicit multistep
block method can be determined by substituting (31), (32),
and (33) into this particular formula,

𝜋 (𝑟, ℎ𝜉, ℎ2𝜂) = 𝜌 (𝑟) [𝜌 (𝑟) − 𝐻1𝜎 (𝑟)]
− 𝐻2𝜎̃ (𝑟) 𝜎 (𝑟) ,

(34)

where𝐻1 = ℎ𝜉 and𝐻2 = ℎ2𝜇. Thus, the stability polynomial
of the proposed method is obtained:
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Figure 2: Stability region in𝐻1,𝐻2 plane.

− 736𝐻1 + 7108𝐻2 − 227𝐻21 − 2243𝐻22 + 554𝐻21𝑟4

− 7154𝐻21𝑟3 +
41
18𝐻21𝑟2 −

53
54𝐻21𝑟 +

3
2𝐻1𝑟2

− 79𝐻1𝑟 −
23
36𝐻1𝑟4 +

1
9𝐻1𝑟3 +

4
81𝐻1𝐻2

+ 5486𝐻22𝑟4 − 131486𝐻22𝑟3 + 9554𝐻22𝑟2 − 5486𝐻22𝑟
− 23108𝐻2𝑟4 − 20554 𝐻2𝑟3 + 11627 𝐻2𝑟2 − 1954𝐻2𝑟
− 6181𝐻1𝐻2𝑟3 +

61
81𝐻1𝐻2𝑟 −

1
9𝐻1𝐻2𝑟2

+ 581𝐻1𝐻2𝑟4 + 𝑟4 − 3𝑟3 + 3𝑟2 − 𝑟 = 0.

(35)

The region of stability polynomial can be illustrated in
Figure 2.

Regarding Definition 6, the third-order of diagonally
implicitmultistep blockmethod in Figure 2 is𝐴-stablewithin
the shaded region.

4. Implementation

The one-step methods are required for finding the first start-
ing point at 𝑥𝑛+1 since Volterra integrodifferential equations
of the second kind have two types of kernels. For𝐾(𝑥, 𝑠) = 1,
Runge-Kuttamethod is involved in solving differential part of
VIDE,while,midpointmethod is needed to solveVIDEwhen𝐾(𝑥, 𝑠) ̸= 1. Hence, the predictor and the corrector formula
can be implemented until the end of the interval

𝑦𝑝𝑛+1 = 𝑦𝑛 + ℎ [32𝐹𝑛 −
1
2𝐹𝑛−1] ,

𝑦𝑝𝑛+2 = 𝑦𝑛 + ℎ [4𝐹𝑛 − 2𝐹𝑛−1] ,

𝑦𝑐𝑛+1 = 𝑦𝑛 + ℎ [ 512𝐹𝑛+1 +
2
3𝐹𝑛 −

1
12𝐹𝑛−1] ,

𝑦𝑐𝑛+2 = 𝑦𝑛 + ℎ [29𝐹𝑛+2 +
5
3𝐹𝑛+1 +

1
9𝐹𝑛−1] .

(36)

Since 𝑧(𝑥) in 𝐹(𝑥, 𝑦(𝑥), 𝑧(𝑥)) is the integral term in VIDE
and cannot be solved explicitly, therefore, Simpson’s rule is
adapted for solving the integral part.

(i) For 𝐾(𝑥, 𝑠) = 1, Simpson’s 1/3 rule is applied to solve
the integral term in VIDE:

𝑧𝑛+2 = 𝑧𝑛 + ℎ [13𝑦𝑛 +
4
3𝑦𝑛+1 +

1
3𝑦𝑛+2] . (37)

(ii) For𝐾(𝑥, 𝑠) ̸= 1, composite Simpson’s rule is employed
for solving the integral part:

𝑧𝑛+2 = ℎ3
𝑛+2∑
𝑖=0

𝜔𝑠𝑖𝐾(𝑥𝑛+2, 𝑥𝑖, 𝑦𝑖) ,

𝑧𝑛+3 = ℎ
3
𝑛+2∑
𝑖=0

𝜔𝑠𝑖𝐾(𝑥𝑛+3, 𝑥𝑖, 𝑦𝑖)

+ ℎ6 [𝐾 (𝑥𝑛+3, 𝑥𝑛+2, 𝑦𝑛+2)
+ 4𝐾 (𝑥𝑛+2, 𝑥𝑛+5/2, 𝑦𝑛+5/2) + 𝐾 (𝑥𝑛+3, 𝑥𝑛+3, 𝑦𝑛+3)] ,

(38)

where 𝜔𝑠𝑖 are Simpson’s rule weights 1, 4, 2, 4, . . . , 2, 4, 1. The
unknown value of 𝑦𝑛+5/2 in (38) can be estimated by using
Lagrange interpolation at the point {𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3},

𝑦𝑛+5/2 = 116𝑦𝑛 − 516𝑦𝑛+1 + 1516𝑦𝑛+2 + 516𝑦𝑛+3. (39)

4.1. Algorithm of the Method. The input of the programming
is the endpoints of 𝑎 and 𝑏 and the integer,𝑁. The developed
algorithm for the method is given as follows.

Step 1. Set

𝑥0 = 𝑎;𝑦0 = 𝛼;𝑧0 = 0;ℎ = (𝑏 − 𝑎)/𝑁;
OUTPUT: (𝑥0, 𝑦0, 𝑧0).

Step 2. For 𝑖 = 1,
When 𝐾(𝑥, 𝑠) = 1, using RK3 to evaluate the value of𝑦.
When 𝐾(𝑥, 𝑠) ̸= 1, applying Midpoint Method.

Step 3. For 𝑖 = 2, . . . , (𝑁/2), do Steps 4–6.
Step 4. Set 𝑥 = 𝑎 + 𝑖ℎ.

184 Applied Principles of Mathematical Analysis

__________________________ WORLD TECHNOLOGIES __________________________



WT

Table 1: Numerical results for Example 1.

ℎ 0.025 0.0125 0.00625 0.003125
MAXE

RK3 8.3229(−08) 1.0910(−08) 1.3953(−09) 1.7637(−10)
ABM3 1.9468(−06) 2.4548(−07) 3.0813(−08) 3.8593(−09)
2PMBM 4.2079(−07) 4.9165(−08) 5.9272(−09) 7.2715(−10)
DIMBM 4.1354(−07) 4.7815(−08) 5.8390(−09) 7.2152(−10)

TFC
RK3 120 240 480 960
ABM3 82 162 322 642
2PMBM 43 83 163 323
DIMBM 42 82 162 322

TS
RK3 40 80 160 320
ABM3 40 80 160 320
2PMBM 21 41 81 161
DIMBM 21 41 81 161

Time
RK3 0.1035 0.1840 0.2970 0.4527
ABM3 0.0860 0.1410 0.2264 0.3454
2PMBM 0.0670 0.1200 0.2024 0.3204
DIMBM 0.0450 0.1120 0.1600 0.2660

Step 5. Calculate for 𝑦𝑝𝑛+1 and 𝑧𝑝𝑛+1, 𝑦𝑝𝑛+2 and 𝑧𝑝𝑛+2.
Step 6. Compute the solution for𝑦𝑐𝑛+1 and 𝑧𝑐𝑛+1,𝑦𝑐𝑛+2 and 𝑧𝑐𝑛+2.
Step 7. Calculate the error.

Step 8. OUTPUT: (𝑥, 𝑦, 𝑧) and the absolute error.

Step 9. STOP.

5. Numerical Results

Four tested problems of first-order Volterra integrodifferen-
tial equations were considered in order to study the perfor-
mance of the diagonally implicit multistep block method.

Example 1 ((𝐾(𝑥, 𝑠) = 1) linear VIDE).
𝑦󸀠 (𝑥) = 1 − ∫𝑥

0
𝑦 (𝑠) 𝑑𝑠, 𝑦 (0) = 0, 0 ≤ 𝑥 ≤ 1. (40)

Exact solution is 𝑦(𝑥) = sin(𝑥).
Source: [4].

Example 2 ((𝐾(𝑥, 𝑠) ̸= 1) linear VIDE).
𝑦󸀠 (𝑥) = − sin (𝑥) − cos (𝑥) + ∫𝑥

0
2 cos (𝑥 − 𝑠) 𝑦 (𝑠) 𝑑𝑠,
𝑦 (0) = 1, 0 ≤ 𝑥 ≤ 5.

(41)

Exact solution is 𝑦(𝑥) = exp(−𝑥).
Source: [11].

Example 3 ((𝐾(𝑥, 𝑠) ̸= 1) nonlinear VIDE).
𝑦󸀠 (𝑥) = 𝑥 exp (1 − 𝑦 (𝑥)) − 1

(1 + 𝑥)2 − 𝑥
− ∫𝑥
0

𝑥
(1 + 𝑠)2 exp (1 − 𝑦 (𝑠)) 𝑑𝑠

𝑦 (0) = 1, 0 ≤ 𝑥 ≤ 4.
(42)

Exact solution is 𝑦(𝑥) = 1/(1 + 𝑥).
Source: [12].

Example 4 ((𝐾(𝑥, 𝑠) ̸= 1) nonlinear VIDE).
𝑦󸀠 (𝑥) = 2𝑥 − 12 sin (𝑥4) + ∫

𝑥

0
𝑥2𝑠 cos (𝑥2𝑦 (𝑠)) 𝑑𝑠,
𝑦 (0) = 0, 0 ≤ 𝑥 ≤ 2.

(43)

Exact solution is 𝑦(𝑥) = 𝑥2.
Source: [13].

Notations used in Tables 1–4 are as follows:

ℎ: step size
MAXE: maximum error
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Table 2: Numerical results for Example 2.

ℎ 0.25 0.125 0.0625 0.03125
MAXE

BVMs 2.1607(−01) 2.8411(−02) 3.6378(−03) 4.6011(−04)
ABM3 1.5401(−02) 3.1321(−03) 5.3778(−04) 7.9127(−05)
2PMBM 5.7923(−02) 1.2209(−03) 3.7500(−04) 8.4172(−05)
DIMBM 1.8211(−02) 3.4489(−03) 4.6803(−04) 6.0807(−05)

TFC
BVMs - - - -
ABM3 84 164 324 644
2PMBM 50 90 170 330
DIMBM 22 42 82 162

TS
BVMs - - - -
ABM3 20 40 80 160
2PMBM 11 21 41 81
DIMBM 11 21 41 81

Time
BVMs - - - -
ABM3 0.0715 0.1546 0.2433 0.3546
2PMBM 0.0460 0.0780 0.1710 0.2738
DIMBM 0.0140 0.0410 0.1170 0.1480

Table 3: Numerical results for Example 3.

ℎ 0.025 0.0125 0.00625 0.003125
MAXE

ABM3 2.3797(−06) 3.2252(−07) 4.2061(−08) 5.3727(−09)
2PMBM 8.0020(−06) 9.7319(−07) 1.2000(−07) 1.4862(−08)
DIMBM 3.6545(−06) 4.6274(−07) 5.8216(−08) 7.2999(−09)

TFC
ABM3 644 1284 2564 5124
2PMBM 330 650 1290 2570
DIMBM 322 642 1282 2562

Time
ABM3 0.3543 0.5677 1.1650 1.9855
2PMBM 0.2810 0.4210 0.7496 1.3570
DIMBM 0.2610 0.3010 0.6740 1.1050

TS: total steps

TFC: total functions call

Time: the execution time taken

RK3: Runge-Kutta method of order 3 with Simpson’s1/3 rule by Filiz [4]
ABM3: AdamBashforthMoultonOrder 3 with Simp-
son’s rule.

BVMs: Combination of BVMs and third-order Gen-
eralized Adams Method by Chen and Zhang [11]

2PMBM: Two points Multistep Block Method of
Order 3 with Simpson’s rule by Mohamed and Majid
[8]
DIMBM: Diagonally implicit multistep blockmethod
with Simpson’s rule proposed in this paper

Tables 1–4 display the numerical results for the four tested
problems when solved using the proposed block method and
the code was written in C language.

The numerical results for Examples 1–4 displayed in
Tables 1–4 are solved numerically using the proposed numer-
ical method with Simpson’s rule. In Table 1, the numerical
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Table 4: Numerical results for Example 4.

ℎ 2/9 2/17 2/33 2/65
MAXE

ABM3 5.0218(−02) 1.8761(−03) 1.1046(−04) 5.8996(−06)
2PMBM 2.7425(−02) 6.5258(−04) 1.7781(−04) 6.6888(−06)
DIMBM 8.8008(−03) 8.6068(−04) 1.7703(−04) 6.6994(−06)

TFC
ABM3 40 72 136 246
2PMBM 22 38 70 134
DIMBM 10 18 34 66

Time
ABM3 0.0670 0.0723 0.1291 0.2030
2PMBM 0.0140 0.0352 0.0662 0.1336
DIMBM 0.0050 0.0280 0.0350 0.0420

TFC
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Figure 3: Graph of the numerical results when solving Example 1.

results will be obtained when the step size ℎ = 0.025,0.0125, 0.00625, and 0.003125 for the case when 𝐾(𝑥, 𝑠) = 1.
The maximum error of DIMBM is comparable compared to
2PMBMat all tested ℎ but the order of accuracy is the same or
one order less compared to RK3 andABM3.The performance
of DIMBM is better in terms of total functions call and total
number of steps compared to RK3 and ABM3.

In Tables 2, 3, and 4, the numerical results are solved using
the proposed numerical method via composite Simpson’s for
the integral part when 𝐾(𝑥, 𝑠) ̸= 1. In Table 2, the maximum
error of DIMBM is comparable compared to 2PMBM and

ABM3. The DIMBM manage to obtain less total functions
call compared to ABM3 and 2PMBM. For the nonlinear
Examples 3 and 4, we could observe that ABM3 and 2PMBM
are expensive in terms of total functions call, respectively.
Figures 3–6 display the numerical results of maximum error
versus total functions call when solving the tested problems.
This has shown the advantage of DIMBM in the form of
a standard multistep method because the cost per step is
cheaper and the numerical results aremore accuratewhen the
step size is reduced. In terms of timing, DIMBM gave faster
results compared to ABM3 and 2PMBM.
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Figure 4: Graph of the numerical results when solving Example 2.
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Figure 5: Graph of the numerical results when solving Example 3.

6. Conclusion

In this research, we proposed the diagonally implicit multi-
step block method for solving linear and nonlinear Volterra

integrodifferential equations and comparisons were made
with the existingmethod. Comparisons with existingmethod
reveal that the diagonally implicit multistep block method is
more efficient and cheaper.
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Figure 6: Graph of the numerical results when solving Example 4.
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We apply new modified recursion schemes obtained by the Adomian decomposition method (ADM) to analytically solve specific
types of two-point boundary value problems for nonlinear fractional order ordinary and partial differential equations. The new
modified recursion schemes, which sometimes utilize the technique of Duan’s convergence parameter, are derived using the Duan-
Rach modified ADM. The Duan-Rach modified ADM employs all of the given boundary conditions to compute the remaining
unknown constants of integration, which are then embedded in the integral solution form before constructing recursion schemes
for the solution components. New modified recursion schemes obtained by the method are generated in order to analytically solve
nonlinear fractional order boundary value problems with a variety of two-point boundary conditions such as Robin and separated
boundary conditions. Some numerical examples of such problems are demonstrated graphically. In addition, the maximal errors(ME𝑛) or the error remainder functions (ER𝑛(𝑥)) of each problem are calculated.

1. Introduction

During the last three decades, fractional order differential
equations (FDEs) have played an important role inmodelling
many phenomena in engineering [1, 2], applied sciences [3–
6], and biological systems [7, 8]. This is because the behavior
of most systems appear after effects or memory which can
be explained better by using fractional order derivatives
[5]. Several methods have been proposed to analytically
and numerically solve nonlinear fractional order differen-
tial equations including initial value problems (IVPs) and
boundary value problems (BVPs).Thesemethods include the
Adomian decomposition method (ADM) [9–14], the multi-
step generalized differential transform method (MSGDTM)
[15], the Adams-Bashforth-Moulton type predictor-corrector
scheme [16], and the Haar wavelet method [17].

The ADM has been extensively utilized to solve IVPs
and BVPs for nonlinear ordinary or partial differential
equations, integral equations, or integrodifferential equations

since it can provide approximate analytic solutions without
linearization, perturbation, discretization, guessing the initial
term, or using Green’s functions which are quite difficult to
determine in most cases.The ADM has been used as a tool to
investigate analytical and numerical solutions of real-world
problems by Hashim et al. [18] and Sweilam and Khader [19].
Modifications of the ADM have been developed for different
purposes for IVPs for both integer order and fractional order
differential equations.

Several researchers proposed expressing the initial solu-
tion component 𝑢0 as a series of orthogonal polynomials,
such as Chebyshev polynomials [20], or Legendre polyno-
mials [21, 22]. In 2013 Duan et al. [11] combined the ADM
with convergence acceleration techniques such as diagonal
Padé approximants and iterated Shanks transforms to solve
nonlinear fractional ordinary differential equations. It was
found that the modified techniques can efficiently extend
the convergence region of the decomposition series solution.
In 2014 Ramana and Prasad [23] modified the ADM to
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solve parabolic equations and the results obtained by their
modified method converged very quickly and were more
accurate than the standard ADM results.

There are now several different resolution techniques
using the ADM for solving BVPs of nonlinear integer order
differential equations. These techniques were developed by
many authors as follows. Tatari and Dehghan [24] gave the
solution of the general form of multipoint BVPs using the
ADM. Al-Hayani [25] used the ADM with Green’s function
to solve sixth-order BVPs. Duan and Rach [26] proposed
the Duan-Rach modified decomposition method for solving
BVPs for higher order nonlinear differential equations. Duan
et al. [27] developed the multistage ADM for solving BVPs
for second-order nonlinear ordinary differential equations
with Robin boundary conditions. In particular, modified
approaches for solving nonlinear fractional order BVPs can
be found in [10, 14, 28]. Most of the resolution techniques
are fundamentally based on two principles of using the ADM.
Thefirst approach is themethod of undetermined coefficients
(see, e.g., [10, 14, 29, 30]) in the ADMwhich approximates the
constants of integration embedded in the recursion scheme
of the ADM by solving numerically a sequence of nonlin-
ear algebraic equations obtained by employing boundary
conditions. The Duan-Rach modified ADM (see, e.g., [26,
27, 30, 31]), which is the second approach, determines the
remaining unknown constants of integration of the solution
by using the remaining boundary conditions before designing
a suitable modified recursion scheme. In the Duan-Rach
modified ADM, the constants of integration are calculated
simultaneously along with the solution components. Details
of the Duan-Rach modified ADM will be discussed in
Section 2.3.

In our work, we study the use of the Duan-Rachmodified
ADM to solve nonlinear high fractional order boundary
value problems with a variety of boundary conditions such
as Robin and separated boundary conditions. We will study
these fractional BVPs for the Caputo fractional derivative
which allows some boundary conditions to be included into
the formulas of the solutions. To the best of the authors’
knowledge, our paper will be the first to develop formulas
for the recursion schemes obtained by using the Duan-Rach
modified ADM for the above types of problems.

This paper is organized as follows. In Section 2, we
review necessary definitions and important properties of the
fractional order integrals and derivatives that are needed in
our work. The principal reviews of the ADM and the Duan-
Rach modified ADM are briefly given in this section as well.
In Section 3, we give the formulas for the recursion schemes
obtained by using theDuan-RachmodifiedADM for selected
types of nonlinear fractional BVPs. In Section 4, we give
numerical examples of solutions obtained using the proposed
recursion schemes for some scientific fractional BVPs with
mixed sets of Dirichlet, Neumann, Robin, and separated
boundary conditions. These examples include a Bratu-type
fractional BVP, an oscillating base temperature equation, and
an elastic beam problem.

2. Mathematical Preliminaries

2.1. Review of Fractional Order Integrals and Derivatives.
In this section, we present basic definitions and important
theorems of the fractional calculus (see [5, 32–35]) required
in this paper.

Definition 1 (see [5]). A function 𝑓(𝑥) (𝑥 > 0) is said to be in
the space𝐶𝛼 (𝛼 ∈ R) if it can be expressed as𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥)
for some 𝑝 > 𝛼, where 𝑓1(𝑥) is continuous in [0,∞), and it
is said to be in the space 𝐶𝑚𝛼 if 𝑓(𝑚) ∈ 𝐶𝛼, 𝑚 ∈ N. Clearly,𝐶𝛼 ⊆ 𝐶𝛽 if 𝛽, 𝛼 ∈ R and 𝛽 ≤ 𝛼.
Definition 2 (see [5]). The Riemann-Liouville fractional inte-
gral operator of order 𝛼 > 0 of a function 𝑓 ∈ 𝐶𝛼 with 𝑎 ≥ 0
is defined as

RL𝐽𝛼𝑎𝑓 (𝑥) = 1Γ (𝛼) ∫
𝑥

𝑎
(𝑥 − 𝜏)𝛼−1 𝑓 (𝜏) 𝑑𝜏, 𝑥 > 𝑎,

RL𝐽0𝑎𝑓 (𝑥) = 𝑓 (𝑥) ,
(1)

where Γ(⋅) is the gamma function.

Definition 3 (see [5]). The Caputo fractional derivative of𝑓(𝑥) of order 𝛼 > 0 with 𝑎 ≥ 0 is defined as

𝐶𝐷𝛼𝑎𝑓 (𝑥) = {{{{{
RL𝐽𝑚−𝛼𝑎 𝑓(𝑚) (𝑥) = 1Γ (𝑚 − 𝛼) ∫

𝑥

𝑎

𝑓(𝑚) (𝜏)
(𝑥 − 𝜏)𝛼−𝑚+1 𝑑𝜏, 𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ N,

𝑓(𝑚) (𝑥) , 𝛼 = 𝑚, (2)

for 𝑥 ≥ 𝑎 and 𝑓 ∈ 𝐶𝑚−1.
For 0 < 𝛽 ≤ 𝛼, 𝑎 ≥ 0, and 𝑚 ∈ N, we have the following

important properties [5]:

RL𝐽𝛼𝑎 RL𝐽𝛽𝑎𝑓 (𝑥) = RL𝐽𝛽𝑎 RL𝐽𝛼𝑎𝑓 (𝑥) = RL𝐽𝛼+𝛽𝑎 𝑓 (𝑥) ,
where 𝑓 ∈ 𝐶𝛼, (3)

RL𝐽𝛼𝑎 (𝑥 − 𝑎)𝜇 = Γ (𝜇 + 1)
Γ (𝜇 + 𝛼 + 1) (𝑥 − 𝑎)𝜇+𝛼 ,

where 𝜇 > −1, 𝑥 > 𝑎,
(4)

𝐶𝐷𝛼𝑎 (𝑥 − 𝑎)𝜇 = Γ (𝜇 + 1)
Γ (𝜇 − 𝛼 + 1) (𝑥 − 𝑎)𝜇−𝛼 ,

where 0 ≤ 𝑚 − 1 < 𝛼 ≤ 𝑚 < 𝜇 + 1, 𝜇 > 0, 𝑥 > 𝑎,
(5)
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RL𝐽𝛾𝑎 𝐶𝐷𝛾𝑎𝑓 (𝑥) = 𝑓 (𝑥) − 𝑚−1∑
𝑘=0

𝑓(𝑘) (𝑎) (𝑥 − 𝑎)𝑘𝑘! ,
where 𝑚 − 1 < 𝛾 ≤ 𝑚, 𝑓 ∈ 𝐶𝑚𝛾 , 𝛾 ≥ −1.

(6)

2.2. Review of theDecompositionMethods. Wefirst review the
important concepts of the Adomian decomposition method
(ADM) [9] introduced by George Adomian who is an Amer-
ican physicist. The ADM combined with the use of symbolic
algebra packages such as MATHEMATICA or MAPLE is a
powerful method for solving nonlinear operator equations
including ordinary or partial differential equations [14, 36].
Here we describe the ADM to solve integer order IVPs and
BVPs as follows.

Consider the ordinary differential equation in the follow-
ing operator form:

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔, (7)

where 𝐿 is the highest order derivative; that is, 𝐿 =(𝑑𝑝/𝑑𝑥𝑝)(⋅), where 𝑝 is the integer order of the derivative,
which is assumed to be easily invertible, 𝑅 is a linear differ-
ential operator of order less than 𝐿, 𝑁 denotes a nonlinear
operator assumed to be analytic, 𝑔 is a source term, and 𝑢
is the solution of the equation. The ADM decomposes the
solution 𝑢(𝑥) and the analytic nonlinear term 𝑁𝑢 of the
nonlinear operator equation (7) into a rapidly convergent
series of solution components and a series of the Adomian
polynomials.

Applying the inverse linear operator 𝐿−1, which is a 𝑝-
fold definite integration, to both sides of (7) and using the
given conditions, that is, the initial conditions or boundary
conditions, and the fact that 𝐿−1𝐿𝑢 = 𝑢 − Φ, we obtain

𝑢 = Φ + 𝐿−1𝑔 − 𝐿−1 (𝑅𝑢) − 𝐿−1 (𝑁𝑢) , (8)

where Φ denotes the terms arising from using the given
conditions. The ADM decomposes the solution 𝑢(𝑥) into an
infinite series

𝑢 = ∞∑
𝑛=0

𝑢𝑛, (9)

and then it decomposes the nonlinear term 𝑁𝑢(𝑥) into a
series

𝑁𝑢 = ∞∑
𝑛=0

𝐴𝑛, (10)

where 𝐴𝑛 = 𝐴𝑛(𝑢0(𝑥), 𝑢1(𝑥), . . . , 𝑢𝑛(𝑥)) are the Adomian
polynomials that are obtained by the following formula (see
the derivation of the formula in [27, 37] and the references
therein):

𝐴𝑛 = 1𝑛! 𝑑𝑛𝑑𝜆𝑛𝑁 (∞∑
𝑘=0

𝑢𝑘𝜆𝑘)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=0 , 𝑛 ≥ 0, (11)

where 𝜆 is a grouping parameter. The first six Adomian
polynomials obtained by using (11) for the general analytic
nonlinear term𝑁𝑢(𝑥) = 𝑓(𝑢(𝑥)) are as follows:

𝐴0 = 𝑓 (𝑢0) ,
𝐴1 = 𝑓󸀠 (𝑢0) 𝑢1,
𝐴2 = 𝑓󸀠 (𝑢0) 𝑢2 + 𝑓󸀠󸀠 (𝑢0) 𝑢212! ,
𝐴3 = 𝑓󸀠 (𝑢0) 𝑢3 + 𝑓󸀠󸀠 (𝑢0) 𝑢1𝑢2 + 𝑓󸀠󸀠󸀠 (𝑢0) 𝑢313! ,
𝐴4 = 𝑓󸀠 (𝑢0) 𝑢4 + 𝑓󸀠󸀠 (𝑢0) (𝑢222! + 𝑢1𝑢3)

+ 𝑓󸀠󸀠󸀠 (𝑢0) 𝑢21𝑢22! + 𝑓(4) (𝑢0) 𝑢414! ,
𝐴5 = 𝑓󸀠 (𝑢0) 𝑢5 + 𝑓󸀠󸀠 (𝑢0) (𝑢2𝑢3 + 𝑢1𝑢4)

+ 𝑓(3) (𝑢0) (𝑢3𝑢212! + 𝑢22𝑢12! )

+ 𝑓(4) (𝑢0) 𝑢2𝑢313! + 𝑓(5) (𝑢0) 𝑢515! .

(12)

We observe that the Adomian polynomials are of the follow-
ing forms:

𝐴0 = 𝑓 (𝑢0) ,
𝐴𝑛 = 𝑛∑

𝑘=1

𝑓(𝑘) (𝑢0) 𝐶𝑘𝑛, 𝑛 ≥ 1, (13)

where 𝐶𝑘𝑛 are the sums of all possible products of 𝑘 com-
ponents from 𝑢1, 𝑢2, . . . , 𝑢𝑛−𝑘+1, whose subscripts sum to 𝑛,
divided by the factorial of the number of repeated subscripts.

From (8), (9), and (10), we have

∞∑
𝑛=0

𝑢𝑛 = Φ + 𝐿−1𝑔 − 𝐿−1 (𝑅𝑢) − 𝐿−1 (𝑁𝑢) , (14)

and the classic (or standard) Adomian recursion scheme [36,
38] is as follows:

𝑢0 (𝑥) = Φ + 𝐿−1𝑔,
𝑢𝑛+1 (𝑥) = −𝐿−1 (𝑅𝑢𝑛) − 𝐿−1 (𝐴𝑛) , 𝑛 ≥ 0. (15)

Then the 𝑛-term approximation of the solution is

𝜑𝑛 (𝑥) = 𝑛−1∑
𝑘=0

𝑢𝑘 (𝑥) , (16)

which in the lim𝑛→∞ yields the exact solution to (7) as

𝑢 (𝑥) = lim
𝑛→∞

𝜑𝑛 (𝑥) . (17)
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The choice of different initial solutions 𝑢0(𝑥) can generate
different recursion schemes which can remedy problems in
the classic scheme caused by the difficulty of integration for𝑢0(𝑥) or the slowness of convergence to the series solution
(see [39] for details). One criterion that can be used for
choosing the initial solution is to achieve a simple integration
for the initial solution component of the series solution.Then,
to obtain a fast rate of convergence and an extended region
of convergence, we can apply Duan’s convergence parameter
technique [40–42] to the recursion scheme for that initial
solution component. Duan and coresearchers [26, 27] have
shown that the parametrized recursion scheme usually gives a
sequence of decreasing maximal errors which approach zero
when the value of 𝑛 in the approximation 𝜑𝑛(𝑥) increases.
2.3. The Duan-Rach Modified Decomposition Method. In this
section, we will provide the idea of the modified ADM
called the Duan-Rach modified decomposition method to
solve integer order BVPs. The method generates a recur-
sion scheme for computing successive solution components
without any undetermined coefficients. Unlike the method
of undetermined coefficients, this new Duan-Rach modified
decomposition method [26, 27, 30] does not require the
solution of a sequence of the nonlinear algebraic equations
obtained from the approximation 𝜑𝑛(𝑥) for the constants
of integration. In the Duan-Rach modified decomposition
method, we first incorporate as many of the given boundary
conditions as possible into the solution 𝑢(𝑥) in (8) of the BVP
and then we determine the remaining unknown constants
of integration before constructing the modified recursion
scheme.

We will now give an example of the use of the Duan-Rach
modified decomposition method to solve the following two-
point BVP:

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔,
𝑢 (𝑎) = 𝛽,
𝑢 (𝑏) = 𝛾,

(18)

where the operator 𝐿 in (18) is 𝐿 = (𝑑2/𝑑𝑥2)(⋅). Using the first
condition of the boundary conditions in (18), we obtain the
solution form as follows:

𝑢 (𝑥) = 𝛽 + 𝑢󸀠 (𝑎) (𝑥 − 𝑎) + 𝐿−1𝑔 − 𝐿−1 (𝑅𝑢)
− 𝐿−1 (𝑁𝑢) , (19)

where 𝐿−1 = ∫𝑥
𝑎
∫𝜏
𝑎
(⋅)𝑑𝑠 𝑑𝜏. We then apply the second

condition of the boundary conditions in (18) to solve for 𝑢󸀠(𝑎)
which can be expressed as follows:

𝑢󸀠 (𝑎) = 1𝑏 − 𝑎 [𝛾 − 𝛽 − [𝐿−1𝑔]
𝑥=𝑏

+ [𝐿−1 (𝑅𝑢)]
𝑥=𝑏

+ [𝐿−1 (𝑁𝑢)]
𝑥=𝑏

] .
(20)

Substituting (20) into (19) yields

𝑢 (𝑥) = 𝛽 + 𝛾 − 𝛽𝑏 − 𝑎 (𝑥 − 𝑎) − 𝑥 − 𝑎𝑏 − 𝑎 [𝐿−1𝑔]
𝑥=𝑏

+ 𝑥 − 𝑎𝑏 − 𝑎 [𝐿−1 (𝑅𝑢)]
𝑥=𝑏

+ 𝑥 − 𝑎𝑏 − 𝑎 [𝐿−1 (𝑁𝑢)]
𝑥=𝑏

+ 𝐿−1𝑔 − 𝐿−1 (𝑅𝑢)
− 𝐿−1 (𝑁𝑢) .

(21)

Applying the Adomian polynomials for the nonlinear terms
in (21), we then obtain the following modified recursion
scheme:

𝑢0 (𝑥) = 𝛽 + 𝛾 − 𝛽𝑏 − 𝑎 (𝑥 − 𝑎) − 𝑥 − 𝑎𝑏 − 𝑎 [𝐿−1𝑔]
𝑥=𝑏

+ 𝐿−1𝑔,
𝑢𝑛+1 (𝑥) = 𝑥 − 𝑎𝑏 − 𝑎 [𝐿−1 (𝑅𝑢)]

𝑥=𝑏

+ 𝑥 − 𝑎𝑏 − 𝑎 [𝐿−1 (𝐴𝑛)]𝑥=𝑏 − 𝐿−1 (𝑅𝑢)
− 𝐿−1 (𝐴𝑛) , 𝑛 ≥ 0.

(22)

3. Description of the Proposed
Recursion Schemes for Solving Certain
Types of Fractional Order BVPs

Themain advantage of using the Duan-Rach modified ADM
for solving nonlinear integer order BVPs which we can
see from Section 2.3 is that evaluating the inverse operator
directly at the boundary points allows us to obtain the
solution components without using numerical methods to
calculate the values of unknown constants of integration as
in the method of undetermined coefficients. In this section,
we construct the recursion schemes developed by using the
Duan-Rach modified ADM for solving fractional higher
order two-point BVPs with their boundary conditions. We
give examples for a set of Robin conditions and separated
boundary conditions. We consider the following nonlinear
fractional order differential equation:

𝐶𝐷𝛼𝑎𝑢 (𝑥) + 𝑁𝑢 = 𝑔 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, (23)

where 𝛼 is a fractional order of the differential equation with𝑚 − 1 ≤ 𝛼 ≤ 𝑚, 𝑚 = 2, 4, 𝑁 is a nonlinear operator, 𝑔(𝑥)
is a source term, and 𝑢(𝑥) is the solution of the equation.
Comparing with (7), we see that the operator 𝐿 = 𝐶𝐷𝛼𝑎 is
theCaputo fractional derivative operator of order𝛼. Applying𝐿−1 = RL𝐽𝛼𝑎 , which is the Riemann-Liouville fractional
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integral operator of order 𝛼, to both sides of (23) and using
the property in (6) yield

RL𝐽𝛼𝑎 𝐶𝐷𝛼𝑎𝑢 (𝑥) = RL𝐽𝛼𝑎 (𝑔 (𝑥) − 𝑁𝑢) ,
𝑢 (𝑥) − 𝑚−1∑

𝑘=0

𝑢(𝑘) (𝑎) (𝑥 − 𝑎)𝑘𝑘!
= RL𝐽𝛼𝑎 (𝑔 (𝑥)) − RL𝐽𝛼𝑎 (𝑁𝑢) ,

𝑢 (𝑥)
= 𝑚−1∑
𝑘=0

𝑢(𝑘) (𝑎) (𝑥 − 𝑎)𝑘𝑘! + RL𝐽𝛼𝑎 (𝑔 (𝑥))
− RL𝐽𝛼𝑎 (𝑁𝑢) .

(24)

The specific types of boundary conditions imposed on the
fractional differential equation in (23) or the fractional
integral equation in (24) depend upon the value of 𝛼.
3.1. The Fractional Order Differential Equation (23) with a
Set of Robin Boundary Conditions. We consider a nonlinear
fractional order differential equation of the form

𝐶𝐷𝛼𝑎𝑢 + 𝑁𝑢 = 𝑔 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, 1 < 𝛼 ≤ 2, (25)

subject to a set of Robin boundary conditions

𝑝𝑢 (𝑎) + 𝑞𝑢󸀠 (𝑎) = 𝛽, (26)

𝑟𝑢 (𝑏) + 𝑠𝑢󸀠 (𝑏) = 𝛾, (27)

where𝑁(𝑢(𝑥)) is an analytic nonlinear term and 𝑝, 𝑞, 𝑟, and𝑠 satisfy the following condition:
𝑝𝑠 − 𝑞𝑟 + 𝑝𝑟 (𝑏 − 𝑎) ̸= 0. (28)

In order to have the two boundary conditions required for the
problem and to make the condition (28) hold, it is necessary
to have 𝑝, 𝑞 not both zero, 𝑟, 𝑠 not both zero, and 𝑝, 𝑟 not both
zero.

From (24), we have that the solution of this BVP can be
written in the form

𝑢 (𝑥) = 𝑢 (𝑎) + 𝑢󸀠 (𝑎) (𝑥 − 𝑎) + RL𝐽𝛼𝑎 (𝑔 (𝑥))
− RL𝐽𝛼𝑎 (𝑁𝑢) . (29)

We now apply the Duan-Rach modified ADM to the
problem in (25). Using (29), we evaluate 𝑢(𝑥) at 𝑥 = 𝑏 to
obtain

𝑢 (𝑏) = 𝑢 (𝑎) + 𝑢󸀠 (𝑎) (𝑏 − 𝑎) + [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏
− [ RL𝐽𝛼𝑎 (𝑁𝑢)]

𝑥=𝑏
, (30)

where [ RL𝐽𝛼𝑎(⋅)]𝑥=𝑏 is the Riemann-Liouville fractional inte-
gral operator of order 𝛼 evaluated at 𝑥 = 𝑏.

Differentiating (29) and then using the property that(𝑑/𝑑𝑥) RL𝐽𝛼𝑎(⋅) = RL𝐽𝛼−1𝑎 (⋅) and evaluating 𝑢󸀠(𝑥) at 𝑥 = 𝑏, we
obtain

𝑢󸀠 (𝑏) = 𝑢󸀠 (𝑎) + [ RL𝐽𝛼−1𝑎 (𝑔 (𝑥))]
𝑥=𝑏

− [ RL𝐽𝛼−1𝑎 (𝑁𝑢)]
𝑥=𝑏

, (31)

where [ RL𝐽𝛼−1𝑎 (⋅)]𝑥=𝑏 is the Riemann-Liouville fractional
integral operator of order 𝛼 − 1 evaluated at 𝑥 = 𝑏.

Substituting (30) and (31) into (27), we get

𝑟 [𝑢 (𝑎) + 𝑢󸀠 (𝑎) (𝑏 − 𝑎) + [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏
− [ RL𝐽𝛼𝑎 (𝑁𝑢)]

𝑥=𝑏
] + 𝑠 [𝑢󸀠 (𝑎)

+ [ RL𝐽𝛼−1𝑎 (𝑔 (𝑥))]
𝑥=𝑏

− [ RL𝐽𝛼−1𝑎 (𝑁𝑢)]
𝑥=𝑏

] = 𝛾.
(32)

After manipulating the terms in the above equation, we
obtain

𝑟𝑢 (𝑎) + [𝑟 (𝑏 − 𝑎) + 𝑠] 𝑢󸀠 (𝑎)
= 𝛾 + 𝑟 ([ RL𝐽𝛼𝑎 (𝑁𝑢)]

𝑥=𝑏
− [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏)

+ 𝑠 ([ RL𝐽𝛼−1𝑎 (𝑁𝑢)]
𝑥=𝑏

− [ RL𝐽𝛼−1𝑎 (𝑔 (𝑥))]
𝑥=𝑏

) .
(33)

It is possible to solve the system of two linearly inde-
pendent equations (26) and (33) for the two remaining
undetermined coefficients 𝑢(𝑎) and 𝑢󸀠(𝑎) if the determinant
of the coefficient matrix denoted by Δ is not zero, that is, if

Δ = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 𝑞
𝑟 𝑠 + 𝑟 (𝑏 − 𝑎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑝𝑠 − 𝑞𝑟 + 𝑝𝑟 (𝑏 − 𝑎) ̸= 0. (34)

For Δ ̸= 0, the values of 𝑢(𝑎) and 𝑢󸀠(𝑎) can be expressed in
terms of the specified values of the system parameters 𝑎, 𝑏, 𝛽,𝛾, 𝑝, 𝑞, 𝑟, and 𝑠 as follows:

𝑢 (𝑎) = 1Δ [𝑟𝛽 (𝑏 − 𝑎) + 𝑠𝛽 − 𝑞𝑟
+ 𝑞𝑠 [ RL𝐽𝛼−1𝑎 (𝑔 (𝑥))]

𝑥=𝑏
+ 𝑞𝑟 [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏

− 𝑞𝑠 [ RL𝐽𝛼−1𝑎 (𝑁𝑢)]
𝑥=𝑏

− 𝑞𝑟 [ RL𝐽𝛼𝑎 (𝑁𝑢)]
𝑥=𝑏

] ,
𝑢󸀠 (𝑎) = 1Δ [𝑝𝛾 − 𝑟𝛽 − 𝑝𝑠 [ RL𝐽𝛼−1𝑎 (𝑔 (𝑥))]

𝑥=𝑏

− 𝑝𝑟 [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏 + 𝑝𝑠 [ RL𝐽𝛼−1𝑎 (𝑁𝑢)]
𝑥=𝑏

+ 𝑝𝑟 [ RL𝐽𝛼𝑎 (𝑁𝑢)]
𝑥=𝑏

] .

(35)
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Substituting (35) into (29), we obtain the following equivalent
nonlinear Fredholm-Volterra integral equation:

𝑢 (𝑥) = 1Δ [𝑠𝛽 − 𝑞𝛾 + 𝑟𝛽 (𝑏 − 𝑎) + (𝑝𝛾 − 𝑟𝛽) (𝑥 − 𝑎)
+ (𝑞𝑠 − 𝑝𝑠 (𝑥 − 𝑎)) [ RL𝐽𝛼−1𝑎 (𝑔 (𝑥))]

𝑥=𝑏

+ (𝑞𝑟 − 𝑝𝑟 (𝑥 − 𝑎)) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏
− (𝑞𝑠 − 𝑝𝑠 (𝑥 − 𝑎)) [ RL𝐽𝛼−1𝑎 (𝑁𝑢)]

𝑥=𝑏

− (𝑞𝑟 − 𝑝𝑟 (𝑥 − 𝑎)) [ RL𝐽𝛼𝑎 (𝑁𝑢)]
𝑥=𝑏

]
+ RL𝐽𝛼𝑎 (𝑔 (𝑥)) − RL𝐽𝛼𝑎 (𝑁𝑢) ,

(36)

which is free of any undetermined coefficients. Therefore
(36) represents the solution of the fractional order nonlinear
differential equation (25) subject to the Robin boundary
conditions (26) and (27). Next we apply the decomposition
to the solution 𝑢(𝑥) and the nonlinear term𝑁𝑢(𝑥); that is,

𝑢 (𝑥) = ∞∑
𝑛=0

𝑢𝑛 (𝑥) ,

𝑁𝑢 (𝑥) = ∞∑
𝑛=0

𝐴𝑛 (𝑥) ,
(37)

respectively, where 𝐴𝑛(𝑥) are the Adomian polynomials
defined in (11).

Inserting the equations in (37) into (36), the solution
components are determined by the followingmodified recur-
sion scheme:

𝑢0 (𝑥) = 1Δ [𝑠𝛽 − 𝑞𝛾 + 𝑟𝛽 (𝑏 − 𝑎) + (𝑝𝛾 − 𝑟𝛽) (𝑥 − 𝑎)
+ (𝑞𝑠 − 𝑝𝑠 (𝑥 − 𝑎)) [ RL𝐽𝛼−1𝑎 (𝑔 (𝑥))]

𝑥=𝑏

+ (𝑞𝑟 − 𝑝𝑟 (𝑥 − 𝑎)) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏]
+ RL𝐽𝛼𝑎 (𝑔 (𝑥)) ,

𝑢𝑛+1 (𝑥) = 1Δ [(−𝑞𝑠 + 𝑝𝑠 (𝑥 − 𝑎)) [ RL𝐽𝛼−1𝑎 (𝐴𝑛)]𝑥=𝑏
+ (−𝑞𝑟 + 𝑝𝑟 (𝑥 − 𝑎)) [ RL𝐽𝛼𝑎 (𝐴𝑛)]𝑥=𝑏]
− RL𝐽𝛼𝑎 (𝐴𝑛) , 𝑛 ≥ 0,

(38)

where the resulting integrals are assumed to exist.
The 𝑛-term approximation of the solution to the BVP

obtained by the ADM is the following truncated decompo-
sition series:

𝜑𝑛 (𝑥) = 𝑛−1∑
𝑘=0

𝑢𝑘 (𝑥) . (39)

With the above decomposition obtained by the Duan-Rach
modified ADM, each approximation 𝜑𝑛(𝑥), 𝑛 ≥ 1, must
exactly satisfy the boundary conditions (26) and (27). In

addition, other techniques such as partitioning initial terms
into two appropriate terms [39, 43, 44] or using the Duan’s
convergence parameter [40–42] can be incorporated, if nec-
essary, into the recursion scheme (38) for solving the BVP
described in (25)–(27).

Using the general formulas given above, we can derive the
equivalent nonlinear Fredholm-Volterra integral equations
and their associated recursion schemes for (25) for the special
cases of the boundary conditions in (26) and (27).The results
are as follows.

Case 1. The nonlinear fractional BVP consists of (25) and the
following Dirichlet boundary conditions:

𝑢 (𝑎) = 𝛽,
𝑢 (𝑏) = 𝛾. (40)

The boundary conditions (40) correspond to the case of 𝑝 =𝑟 = 1 and 𝑞 = 𝑠 = 0 in (26) and (27).Thus we haveΔ = 𝑏−𝑎 ̸=0 and then (36) is reduced to

𝑢 (𝑥) = 1𝑏 − 𝑎 [𝛽 (𝑏 − 𝑎) + (𝛾 − 𝛽) (𝑥 − 𝑎)
− (𝑥 − 𝑎) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏
+ (𝑥 − 𝑎) [ RL𝐽𝛼𝑎 (𝑁𝑢)]

𝑥=𝑏
] + RL𝐽𝛼𝑎 (𝑔 (𝑥))

− RL𝐽𝛼𝑎 (𝑁𝑢) ,

(41)

where RL𝐽𝛼𝑎(⋅) and [ RL𝐽𝛼𝑎(⋅)]𝑥=𝑏 are the Riemann-Liouville
fractional integral operator of order 𝛼 and the Riemann-
Liouville fractional integral operator of order 𝛼 evaluated at𝑥 = 𝑏, respectively.

Substituting equations in (37) into (41), we can determine
the solution components from the following modified recur-
sion scheme:

𝑢0 (𝑥) = 1𝑏 − 𝑎 [𝛽 (𝑏 − 𝑎) + (𝛾 − 𝛽) (𝑥 − 𝑎)
− (𝑥 − 𝑎) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏] + RL𝐽𝛼𝑎 (𝑔 (𝑥)) ,

𝑢𝑛+1 (𝑥) = 𝑥 − 𝑎𝑏 − 𝑎 [ RL𝐽𝛼𝑎 (𝐴𝑛)]𝑥=𝑏 − RL𝐽𝛼𝑎 (𝐴𝑛) ,
𝑛 ≥ 0,

(42)

provided that the resulting integrals exist.

Case 2. The nonlinear fractional BVP consists of (25) and
the following mixed set of Neumann and Dirichlet boundary
conditions:

𝑢󸀠 (𝑎) = 𝛽,
𝑢 (𝑏) = 𝛾. (43)
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The boundary conditions (43) correspond to the case of 𝑝 =𝑠 = 0 and 𝑞 = 𝑟 = 1 in (26) and (27).Thuswe haveΔ = −1 ̸= 0
and then (36) becomes

𝑢 (𝑥) = 𝛾 − 𝛽 (𝑏 − 𝑎) + 𝛽 (𝑥 − 𝑎) − [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏
+ [ RL𝐽𝛼𝑎 (𝑁𝑢)]

𝑥=𝑏
+ RL𝐽𝛼𝑎 (𝑔 (𝑥))

− RL𝐽𝛼𝑎 (𝑁𝑢) ,
(44)

where RL𝐽𝛼𝑎(⋅) and [ RL𝐽𝛼𝑎(⋅)]𝑥=𝑏 are the Riemann-Liouville
fractional integral operator of order 𝛼 and the Riemann-
Liouville fractional integral operator of order 𝛼 evaluated at𝑥 = 𝑏, respectively.

Substituting the equations in (37) into (44), we obtain the
following modified recursion scheme:

𝑢0 (𝑥) = 𝛾 − 𝛽 (𝑏 − 𝑎) + 𝛽 (𝑥 − 𝑎)
− [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏 + RL𝐽𝛼𝑎 (𝑔 (𝑥)) ,

𝑢𝑛+1 (𝑥) = [ RL𝐽𝛼𝑎 (𝐴𝑛)]𝑥=𝑏 − RL𝐽𝛼𝑎 (𝐴𝑛) , 𝑛 ≥ 0,
(45)

where we assume the resulting integrals exist.

Case 3. The nonlinear fractional BVP consists of (25) and
the following mixed set of Robin and Neumann boundary
conditions:

𝑝𝑢 (𝑎) + 𝑞𝑢󸀠 (𝑎) = 𝛽,
𝑠𝑢󸀠 (𝑏) = 𝛾. (46)

The boundary conditions (46) correspond to the case of 𝑟 = 0
and 𝑠 = 1 in (27). Thus we have Δ = 𝑝 ̸= 0 and then E (36) is
reduced to

𝑢 (𝑥) = 1𝑝 [𝛽 − 𝑞𝛾 + 𝑝𝛾 (𝑥 − 𝑎)
+ (𝑞 − 𝑝 (𝑥 − 𝑎)) [ RL𝐽𝛼−1𝑎 (𝑔 (𝑥))]

𝑥=𝑏

+ (−𝑞 + 𝑝 (𝑥 − 𝑎)) [ RL𝐽𝛼−1𝑎 (𝑁𝑢)]
𝑥=𝑏

]
+ RL𝐽𝛼𝑎 (𝑔 (𝑥)) − RL𝐽𝛼𝑎 (𝑁𝑢) ,

(47)

where RL𝐽𝛼𝑎(⋅) and [ RL𝐽𝛼−1𝑎 (⋅)]𝑥=𝑏 are the Riemann-Liouville
fractional integral operator of order 𝛼 and the Riemann-
Liouville fractional integral operator of order 𝛼 − 1 evaluated
at 𝑥 = 𝑏, respectively.

Insertion of the equations in (37) into (47) gives the
following modified recursion scheme:

𝑢0 (𝑥) = 1𝑝 [𝛽 − 𝑞𝛾 + 𝑝𝛾 (𝑥 − 𝑎)
+ (𝑞 − 𝑝 (𝑥 − 𝑎)) [ RL𝐽𝛼−1𝑎 (𝑔 (𝑥))]

𝑥=𝑏
]

+ RL𝐽𝛼𝑎 (𝑔 (𝑥)) ,

𝑢𝑛+1 (𝑥) = 1𝑝 [(−𝑞 + 𝑝 (𝑥 − 𝑎)) [ RL𝐽𝛼−1𝑎 (𝐴𝑛)]𝑥=𝑏]
− RL𝐽𝛼𝑎 (𝐴𝑛) , 𝑛 ≥ 0,

(48)

where we assume the resulting integrals exist.

3.2. The Fractional Order Differential Equation (23) with
Separated Boundary Conditions. We consider a nonlinear
fractional order two-point BVP consisting of the fractional
order differential equation

𝐶𝐷𝛼𝑎𝑢 + 𝑁𝑢 = 𝑔 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, 3 < 𝛼 ≤ 4, (49)

and the following separated boundary conditions:

𝑢 (𝑎) = 𝜌,
𝑝𝑢󸀠󸀠 (𝑎) − 𝑞𝑢󸀠󸀠󸀠 (𝑎) = 𝛽, (50)

𝑢 (𝑏) = 𝜎,
𝑟𝑢󸀠󸀠 (𝑏) + 𝑠𝑢󸀠󸀠󸀠 (𝑏) = 𝛾, (51)

where 𝑁(𝑢(𝑥)) is an analytic nonlinear term, 𝜌, 𝜎, 𝛽, 𝛾 ∈ R,
and 𝑝, 𝑞, 𝑟, 𝑠 ≥ 0 satisfy the following condition

𝑝𝑠 + 𝑞𝑟 + 𝑝𝑟 (𝑏 − 𝑎) ̸= 0. (52)

In order to satisfy four necessary boundary conditions
required for the problem and to have condition (52), it is
necessary to have 𝑝, 𝑞 not both zero, 𝑟, 𝑠 not both zero, and𝑝, 𝑟 not both zero.

From (24) and the first condition in (50), we have that the
solution of this BVP can be written in the form

𝑢 (𝑥) = 𝑢 (𝑎) + 𝑢󸀠 (𝑎) (𝑥 − 𝑎) + 𝑢󸀠󸀠 (𝑎)2 (𝑥 − 𝑎)2

+ 𝑢󸀠󸀠󸀠 (𝑎)6 (𝑥 − 𝑎)3 + RL𝐽𝛼𝑎 (𝑔 (𝑥))
− RL𝐽𝛼𝑎 (𝑁𝑢) ,

𝑢 (𝑥) = 𝜌 + 𝑢󸀠 (𝑎) (𝑥 − 𝑎) + 𝑢󸀠󸀠 (𝑎)2 (𝑥 − 𝑎)2

+ 𝑢󸀠󸀠󸀠 (𝑎)6 (𝑥 − 𝑎)3 + RL𝐽𝛼𝑎 (𝑔 (𝑥))
− RL𝐽𝛼𝑎 (𝑁𝑢) .

(53)

We now apply the Duan-Rach modified ADM to the
problem in (49). Using (53) and the first condition in (51), we
evaluate 𝑢(𝑥) at 𝑥 = 𝑏 to obtain

𝜎 = 𝑢 (𝑏)
= 𝜌 + 𝑢󸀠 (𝑎) (𝑏 − 𝑎) + 𝑢󸀠󸀠 (𝑎)2 (𝑏 − 𝑎)2

+ 𝑢󸀠󸀠󸀠 (𝑎)6 (𝑏 − 𝑎)3 + [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏
− [ RL𝐽𝛼𝑎 (𝑁𝑢)]

𝑥=𝑏
.

(54)
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Differentiating (53) three times and then using the properties
that (𝑑𝑛/𝑑𝑥𝑛) RL𝐽𝛼𝑎(⋅) = RL𝐽𝛼−𝑛𝑎 (⋅), 𝑛 = 1, 2, 3, to the resulting
equations, we obtain

𝑢󸀠 (𝑥) = 𝑢󸀠 (𝑎) + 𝑢󸀠󸀠 (𝑎) (𝑥 − 𝑎) + 𝑢󸀠󸀠󸀠 (𝑎)2 (𝑥 − 𝑎)2
+ RL𝐽𝛼−1𝑎 (𝑔 (𝑥)) − RL𝐽𝛼−1𝑎 (𝑁𝑢) ,

𝑢󸀠󸀠 (𝑥) = 𝑢󸀠󸀠 (𝑎) + 𝑢󸀠󸀠󸀠 (𝑎) (𝑥 − 𝑎) + RL𝐽𝛼−2𝑎 (𝑔 (𝑥))
− RL𝐽𝛼−2𝑎 (𝑁𝑢) ,

𝑢󸀠󸀠󸀠 (𝑥) = 𝑢󸀠󸀠󸀠 (𝑎) + RL𝐽𝛼−3𝑎 (𝑔 (𝑥)) − RL𝐽𝛼−3𝑎 (𝑁𝑢) .

(55)

Evaluating (55) at 𝑥 = 𝑏, we have
𝑢󸀠󸀠 (𝑏) = 𝑢󸀠󸀠 (𝑎) + 𝑢󸀠󸀠󸀠 (𝑎) (𝑏 − 𝑎)

+ [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]
𝑥=𝑏

− [ RL𝐽𝛼−2𝑎 (𝑁𝑢)]
𝑥=𝑏

,
𝑢󸀠󸀠󸀠 (𝑏) = 𝑢󸀠󸀠󸀠 (𝑎) + [ RL𝐽𝛼−3𝑎 (𝑔 (𝑥))]

𝑥=𝑏

− [ RL𝐽𝛼−3𝑎 (𝑁𝑢)]
𝑥=𝑏

.

(56)

Insertion of (56) into (51) gives the following relation:

𝑟𝑢󸀠󸀠 (𝑎) + (𝑟 (𝑏 − 𝑎) + 𝑠) 𝑢󸀠󸀠󸀠 (𝑎)
= 𝛾 + 𝑟 ([ RL𝐽𝛼−2𝑎 (𝑁𝑢)]

𝑥=𝑏
− [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]

𝑥=𝑏
)

+ 𝑠 ([ RL𝐽𝛼−3𝑎 (𝑁𝑢)]
𝑥=𝑏

− [ RL𝐽𝛼−3𝑎 (𝑔 (𝑥))]
𝑥=𝑏

) .
(57)

It is possible to solve the system consisting of the second
condition of (50) and (57) for the two remaining undeter-
mined coefficients 𝑢󸀠󸀠(𝑎) and 𝑢󸀠󸀠󸀠(𝑎) if the determinant of the
coefficient matrix denoted by Δ is not zero, that is, if

Δ = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 −𝑞
𝑟 𝑟 (𝑏 − 𝑎) + 𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑝𝑠 + 𝑞𝑟 + 𝑝𝑟 (𝑏 − 𝑎) ̸= 0. (58)

For Δ ̸= 0, the values of 𝑢󸀠󸀠(𝑎) and 𝑢󸀠󸀠󸀠(𝑎) can be expressed in
terms of the specified values of the system parameters 𝑎, 𝑏, 𝛽,𝛾, 𝑝, 𝑞, 𝑟, and 𝑠 as follows:
𝑢󸀠󸀠 (𝑎) = 1Δ [𝑟𝛽 (𝑏 − 𝑎) + 𝑠𝛽 + 𝑞𝛾

+ 𝑞𝑟 ([RL𝐽𝛼−2𝑎 (𝑁𝑢)]
𝑥=𝑏

− [RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]
𝑥=𝑏

)
+ 𝑞𝑠 ([RL𝐽𝛼−3𝑎 (𝑁𝑢)]

𝑥=𝑏
− [RL𝐽𝛼−3𝑎 (𝑔 (𝑥))]

𝑥=𝑏
)] ,

𝑢󸀠󸀠󸀠 (𝑎) = 1Δ [𝑝𝛾 − 𝑟𝛽
+ 𝑝𝑟 ([ RL𝐽𝛼−2𝑎 (𝑁𝑢)]

𝑥=𝑏
− [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]

𝑥=𝑏
)

+ 𝑝𝑠 ([ RL𝐽𝛼−3𝑎 (𝑁𝑢)]
𝑥=𝑏

− [ RL𝐽𝛼−3𝑎 (𝑔 (𝑥))]
𝑥=𝑏

)] .

(59)

Substituting (59) for 𝑢󸀠󸀠(𝑎) and 𝑢󸀠󸀠󸀠(𝑎) into (54) and then
solving the resulting equation for 𝑢󸀠(𝑎), we obtain the value
of 𝑢󸀠(𝑎) as follows:

𝑢󸀠 (𝑎) = 1𝑏 − 𝑎 [𝜎 − 𝜌 − [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏
+ [ RL𝐽𝛼𝑎 (𝑁𝑢)]

𝑥=𝑏
− (𝑏 − 𝑎)22Δ (𝑟𝛽 (𝑏 − 𝑎) + 𝑠𝛽

+ 𝑞𝛾 + 𝑞𝑟 ([ RL𝐽𝛼−2𝑎 (𝑁𝑢)]
𝑥=𝑏

− [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]
𝑥=𝑏

) + 𝑞𝑠 ([ RL𝐽𝛼−3𝑎 (𝑁𝑢)]
𝑥=𝑏

− [ RL𝐽𝛼−3𝑎 (𝑔 (𝑥))]
𝑥=𝑏

)) + (𝑏 − 𝑎)36Δ (𝑟𝛽 − 𝑝𝛾
+ 𝑝𝑟 ([ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]

𝑥=𝑏
− [ RL𝐽𝛼−2𝑎 (𝑁𝑢)]

𝑥=𝑏
)

+ 𝑝𝑠 ([ RL𝐽𝛼−3𝑎 (𝑔 (𝑥))]
𝑥=𝑏

− [ RL𝐽𝛼−3𝑎 (𝑁𝑢)]
𝑥=𝑏

))] .

(60)

For the computational convenience, we set

Δ = 𝑝𝑠 + 𝑞𝑟 + 𝑝𝑟 (𝑏 − 𝑎) ,
𝜅 = 2𝑟𝛽 + 𝑝𝛾,
𝜆 = 𝑠𝛽 + 𝑞𝛾,
𝜇 = 2𝑏𝑟𝛽 + 𝑏𝑝𝛾,
] = 𝑝𝛾 − 𝑟𝛽,
𝜔 = 3𝑞 + 𝑏𝑝 − 2𝑎𝑝.

(61)

Then we substitute (60) and (59) into (53) to obtain the
following equivalent nonlinear Fredholm-Volterra integral
equation:

𝑢 (𝑥) = 𝜌 − (𝑥 − 𝑎)6 (𝑏 − 𝑎) Δ (𝜅 (𝑏3 − 𝑎3) + 3𝜆𝑏2
+ 3 (𝜆 + 𝜇) 𝑎2 − 3 (2𝜆 + 𝜇) 𝑎𝑏 + 6 (𝜌 − 𝜎) Δ)
+ (𝑥 − 𝑎)22Δ (𝑟𝛽 (𝑏 − 𝑎) + 𝜆) + (𝑥 − 𝑎)36Δ ]

− (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑝𝑥 + 𝜔)
6Δ (𝑠 [ RL𝐽𝛼−3𝑎 (𝑔 (𝑥))]

𝑥=𝑏

+ 𝑟 [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]
𝑥=𝑏

)
− (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏 + RL𝐽𝛼𝑎 (𝑔 (𝑥))
+ (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑝𝑥 + 𝜔)

6Δ (𝑠 [ RL𝐽𝛼−3𝑎 (𝑁𝑢)]
𝑥=𝑏

197New Modified Adomian Decomposition Recursion Schemes for Solving Certain Types of Nonlinear Fractional...

__________________________ WORLD TECHNOLOGIES __________________________



WT

+ 𝑟 [ RL𝐽𝛼−2𝑎 (𝑁𝑢)]
𝑥=𝑏

) + (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝑁𝑢)]
𝑥=𝑏

− RL𝐽𝛼𝑎 (𝑁𝑢) ,
(62)

where RL𝐽𝛼𝑎(⋅) is the Riemann-Liouville fractional integral
operator of order 𝛼 and where [ RL𝐽𝛼𝑎(⋅)]𝑥=𝑏, [ RL𝐽𝛼−2𝑎 (⋅)]𝑥=𝑏,
and [ RL𝐽𝛼−3a (⋅)]𝑥=𝑏 are the operators of orders 𝛼, 𝛼 − 2, and𝛼 − 3 evaluated at 𝑥 = 𝑏.

Substituting the equations in (37) into (62), we can deter-
mine the solution components from the following modified
recursion scheme:

𝑢0 (𝑥) = 𝜌 − (𝑥 − 𝑎)6 (𝑏 − 𝑎) Δ (𝜅 (𝑏3 − 𝑎3) + 3𝜆𝑏2
+ 3 (𝜆 + 𝜇) 𝑎2 − 3 (2𝜆 + 𝜇) 𝑎𝑏 + 6 (𝜌 − 𝜎) Δ)
+ (𝑥 − 𝑎)22Δ (𝑟𝛽 (𝑏 − 𝑎) + 𝜆) + (𝑥 − 𝑎)36Δ ]

− (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑝𝑥 + 𝜔)
6Δ (𝑠 [ RL𝐽𝛼−3𝑎 (𝑔 (𝑥))]

𝑥=𝑏

+ 𝑟 [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]
𝑥=𝑏

)
− (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏 + RL𝐽𝛼𝑎 (𝑔 (𝑥)) ,

𝑢𝑛+1 (𝑥)
= (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑝𝑥 + 𝜔)

6Δ (𝑠 [ RL𝐽𝛼−3𝑎 (𝐴𝑛)]𝑥=𝑏
+ 𝑟 [ RL𝐽𝛼−2𝑎 (𝐴𝑛)]𝑥=𝑏) + (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝐴𝑛)]𝑥=𝑏
− [ RL𝐽𝛼𝑎 (𝐴𝑛)] , 𝑛 ≥ 0,

(63)

where the resulting integrals are assumed to exist.The 𝑛-term
approximation of the solution to the BVP can be obtained
using (16). In addition, other techniques such as partitioning
initial terms into two appropriate terms [39, 43, 44] or using
Duan’s convergence parameter [40–42] can be incorporated,
if necessary, into the recursion scheme (63) for solving the
BVP described in (49)–(51).

Using the general formulas derived in (62) and (63),
we can derive the equivalent nonlinear Fredholm-Volterra
integral equations and their associated recursion schemes for
(49) for the special cases of the boundary conditions in (50)
and (51). The results are as follows.

Case 1. The nonlinear fractional BVP consists of (49) and the
following two-point boundary conditions:

𝑢 (𝑎) = 𝜌,
𝑢󸀠󸀠 (𝑎) = 𝛽,
𝑢 (𝑏) = 𝜎,

𝑢󸀠󸀠 (𝑏) = 𝛾.
(64)

The derivative boundary conditions (64) correspond to the
case of 𝑝 = 𝑟 = 1 and 𝑞 = 𝑠 = 0 in (50) and (51). Thus (62) is
then reduced to

𝑢 (𝑥) = 𝜌 − (𝑥 − 𝑎)6 (𝑏 − 𝑎) Δ (𝜅 (𝑏3 − 𝑎3) + 3𝜇𝑎2 − 3𝜇𝑎𝑏

+ 6 (𝜌 − 𝜎) Δ) + 𝛽2 (𝑥 − 𝑎)2 + (𝑥 − 𝑎)36Δ ]

− (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑥 + 𝜔)6Δ [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]
𝑥=𝑏

− (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏 + RL𝐽𝛼𝑎 (𝑔 (𝑥))
+ (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑥 + 𝜔)6Δ [ RL𝐽𝛼−2𝑎 (𝑁𝑢)]

𝑥=𝑏

+ (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝑁𝑢)]
𝑥=𝑏

− RL𝐽𝛼𝑎 (𝑁𝑢) ,

(65)

whereΔ = 𝑏−𝑎 ̸= 0, 𝜅 = 2𝛽+𝛾, 𝜆 = 0, 𝜇 = 2𝑏𝛽+𝑏𝛾, ] = 𝛾−𝛽,
and 𝜔 = 𝑏 − 2𝑎 and where RL𝐽𝛼𝑎(⋅) is the Riemann-Liouville
fractional integral operator of order 𝛼 and [ RL𝐽𝛼𝑎(⋅)]𝑥=𝑏 and[ RL𝐽𝛼−2𝑎 (⋅)]𝑥=𝑏 are the operators of orders𝛼 and𝛼−2 evaluated
at 𝑥 = 𝑏.

Insertion of (37) into (65) gives the following modified
recursion scheme for solution components:

𝑢0 (𝑥) = 𝜌 − (𝑥 − 𝑎)6 (𝑏 − 𝑎) Δ (𝜅 (𝑏3 − 𝑎3) + 3𝜇𝑎2 − 3𝜇𝑎𝑏

+ 6 (𝜌 − 𝜎) Δ) + 𝛽2 (𝑥 − 𝑎)2 + (𝑥 − 𝑎)36Δ ]

− (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑥 + 𝜔)6Δ [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]
𝑥=𝑏

− (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏 + RL𝐽𝛼𝑎 (𝑔 (𝑥)) ,
𝑢𝑛+1 (𝑥) = (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑥 + 𝜔)6Δ [ RL𝐽𝛼−2𝑎 (𝐴𝑛)]𝑥=𝑏

+ (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝐴𝑛)]𝑥=𝑏 − RL𝐽𝛼𝑎 (𝐴𝑛) , 𝑛 ≥ 0,

(66)

where we assume the resulting integrals exist.

Case 2. Thenonlinear fractional BVP consists of (49) and the
following two-point boundary conditions:

𝑢 (𝑎) = 𝜌,
−𝑢󸀠󸀠󸀠 (𝑎) = 𝛽,

𝑢 (𝑏) = 𝜎,
𝑢󸀠󸀠 (𝑏) = 𝛾.

(67)
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The derivative boundary conditions (67) correspond to the
case of 𝑝 = 𝑠 = 0 and 𝑞 = 𝑟 = 1 in (50) and (51).Thus we haveΔ = 1 ̸= 0 and 𝜔 = 3 and then (62) is reduced to

𝑢 (𝑥) = 𝜌 − (𝑥 − 𝑎)6 (𝑏 − 𝑎) (𝜅 (𝑏3 − 𝑎3) + 3𝜆𝑏2
+ 3 (𝜆 + 𝜇) 𝑎2 − 3 (2𝜆 + 𝜇) 𝑎𝑏 + 6 (𝜌 − 𝜎))
+ (𝑥 − 𝑎)22 (𝛽 (𝑏 − 𝑎) + 𝜆) + (𝑥 − 𝑎)36 ]

− (𝑥 − 𝑎) (𝑥 − 𝑏)2 [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]
𝑥=𝑏

− (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏 + RL𝐽𝛼𝑎 (𝑔 (𝑥))
+ (𝑥 − 𝑎) (𝑥 − 𝑏)2 [ RL𝐽𝛼−2𝑎 (𝑁𝑢)]

𝑥=𝑏

+ (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝑁𝑢)]
𝑥=𝑏

− RL𝐽𝛼𝑎 (𝑁𝑢) ,

(68)

where 𝜅 = 2𝛽, 𝜆 = 𝛾, 𝜇 = 2𝑏𝛽, and ] = −𝛽 and where RL𝐽𝛼𝑎(⋅)
is the Riemann-Liouville fractional integral operator of order𝛼 and where [ RL𝐽𝛼𝑎(⋅)]𝑥=𝑏 and [ RL𝐽𝛼−2𝑎 (⋅)]𝑥=𝑏 are the operators
of orders 𝛼 and 𝛼 − 2 evaluated at 𝑥 = 𝑏.

Insertion of (37) into (68) gives the following modified
recursion scheme for solution components:

𝑢0 (𝑥) = 𝜌 − (𝑥 − 𝑎)6 (𝑏 − 𝑎) (𝜅 (𝑏3 − 𝑎3) + 3𝜆𝑏2
+ 3 (𝜆 + 𝜇) 𝑎2 − 3 (2𝜆 + 𝜇) 𝑎𝑏 + 6 (𝜌 − 𝜎))
+ (𝑥 − 𝑎)22 (𝛽 (𝑏 − 𝑎) + 𝜆) + (𝑥 − 𝑎)36 ]

− (𝑥 − 𝑎) (𝑥 − 𝑏)2 [ RL𝐽𝛼−2𝑎 (𝑔 (𝑥))]
𝑥=𝑏

− (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝑔 (𝑥))]𝑥=𝑏 + RL𝐽𝛼𝑎 (𝑔 (𝑥)) ,
𝑢𝑛+1 (𝑥) = (𝑥 − 𝑎) (𝑥 − 𝑏)2 [ RL𝐽𝛼−2𝑎 (𝐴𝑛)]𝑥=𝑏

+ (𝑥 − 𝑎)(𝑏 − 𝑎) [ RL𝐽𝛼𝑎 (𝐴𝑛)]𝑥=𝑏 − RL𝐽𝛼𝑎 (𝐴𝑛) , 𝑛 ≥ 0,

(69)

where we assume the resulting integrals exist.

4. Numerical Examples

In this section, we demonstrate a use of the proposed
recursion schemes in Section 3 derived from the Duan-
Rach modified decomposition method to analytically and
numerically solve nonlinear fractional BVPs. Several non-
linear fractional BVPs presented in this section correspond
to the problems and their formulas described in Section 3
and some of these problems include physical and engineering

problems such as problems of the Bratu type, a problem of
the periodic base temperature in convective longitudinal fins,
and an elastic beam problem. Numerical results obtained
by the method are demonstrated graphically. Moreover, if
the presented nonlinear fractional BVPs have their exact
solutions then we will compute their corresponding maximal
errors. Otherwise, we will investigate the error remainder
function for the remaining problems.

In general, we consider a nonlinear fractional BVP:
𝐶𝐷𝛼𝑎𝑢(𝑥) + 𝑁𝑢 = 𝑔(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, where 𝛼 is a fractional
order of the equation imposed by some boundary conditions.
If the exact solution 𝑢∗(𝑥) of the problem is known then we
can examine the convergence of the 𝑛-term approximation𝜑𝑛(𝑥) = ∑𝑛−1𝑘=0 𝑢𝑘(𝑥) from the error functions expressed as

𝐸𝑛 (𝑥) = 𝜑𝑛 (𝑥) − 𝑢∗ (𝑥) (70)

and the maximal errors defined as

ME𝑛 = max
𝑎≤𝑥≤𝑏

󵄨󵄨󵄨󵄨𝐸𝑛 (𝑥)󵄨󵄨󵄨󵄨 . (71)

For each value of 𝑛, we can calculate ME𝑛 using the
MATHEMATICA command “NMaximize” over an interval
of interest. Then the logarithmic plot of these values of
ME𝑛 can be made using the MATHEMATICA command
“ListLogPlot”; however, if the exact solution 𝑢∗(𝑥) of such
a problem is unknown, we compute the error remainder
functions defined as

ER𝑛 (𝑥) = 𝐶𝐷𝛼𝑎𝜑𝑛 (𝑥) + 𝑁𝜑𝑛 (𝑥) − 𝑔 (𝑥) ,
𝑎 ≤ 𝑥 ≤ 𝑏. (72)

We observe that ER𝑛 is the indicator for measuring how
well the approximation 𝜑𝑛(𝑥) satisfies the original nonlinear
fractional differential equation.

Example 1. Consider the Bratu-type fractional BVP which is
modified from the Bratu-type second-order equation in [12,
26, 45, 46] as follows:

𝐶𝐷𝛼0𝑢 + 𝑒𝑢 = 0, 0 ≤ 𝑥 ≤ 1, 1 < 𝛼 ≤ 2,
𝑢 (0) = 𝑢 (1) = 0. (73)

For 𝛼 = 2, it can be easily verified that the exact solution of
the BVP is

𝑢∗ (𝑥) = −2 ln cosh ((𝑥 − 1/2) (𝐶/2))
cosh (𝐶/4) ,

where 𝐶 satisfies 𝐶 = √2 cosh(𝐶4 ) .
(74)

Fundamentally, we decompose the solution 𝑢 and the nonlin-
earity 𝑁𝑢 = 𝑒𝑢 as 𝑢(𝑥) = ∑∞𝑛=0 𝑢𝑛(𝑥) and 𝑁𝑢 = ∑∞𝑛=0 𝐴𝑛(𝑥),
where 𝑢𝑛 are the solution components and 𝐴𝑛 are the
Adomian polynomials. We will show computational details
for the proposed method, that is, the Duan-Rach modified
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ADM. We here list the first four Adomian polynomials for
the nonlinear term𝑁𝑢 as follows:

𝐴0 = 𝑒𝑢0 ,
𝐴1 = 𝑒𝑢0𝑢1,
𝐴2 = 12𝑒𝑢0 (𝑢21 + 2𝑢2) ,
𝐴3 = 16𝑒𝑢0 (𝑢31 + 6𝑢1𝑢2 + 6𝑢3) .

(75)

TheDuan-RachModified ADM. We can apply the formulas in
(41) and (42) in Section 3.1 to this BVP. We have 𝑎 = 0, 𝑏 = 1,𝑝 = 1, 𝑞 = 0, 𝑟 = 1, 𝑠 = 0, 𝛽 = 0, 𝛾 = 0, and Δ = 1. Equation
(41) turns out to be

𝑢 (𝑥) = 𝑥 [ RL𝐽𝛼0 (𝑁𝑢)]
𝑥=1

− RL𝐽𝛼0 (𝑁𝑢) , (76)

where 𝑁𝑢 = 𝑒𝑢. Using (42) and Duan’s convergence
parameter technique, we obtain the following parametrized
recursion scheme:

𝑢0 (𝑥) = 𝑐,
𝑢1 (𝑥) = −𝑐 + 𝑥 [ RL𝐽𝛼0 (𝐴0)]𝑥=1 − RL𝐽𝛼0 (𝐴0) ,

𝑢𝑛+1 (𝑥) = 𝑥 [ RL𝐽𝛼0 (𝐴𝑛)]𝑥=1 − RL𝐽𝛼0 (𝐴𝑛) , 𝑛 ≥ 1.
(77)

Since the expressions of the solution components 𝑢4(𝑥),𝑢5(𝑥), 𝑢6(𝑥), . . . are very long, we show only the solution
components 𝑢1(𝑥), 𝑢2(𝑥), and 𝑢3(𝑥) using the Adomian
polynomials 𝐴0, 𝐴1, and 𝐴2 in (75) as follows:

𝑢1 (𝑥) = −𝑐 + 𝑒𝑐Γ (𝛼 + 1)𝑥 − 𝑒𝑐Γ (𝛼 + 1)𝑥𝛼,
𝑢2 (𝑥)

= 4−𝛼𝑒𝑐 (4𝛼Γ (𝛼 + 1/2) (𝑒𝑐 − 𝑐Γ (𝛼 + 2)) − √𝜋𝑒𝑐Γ (𝛼 + 2))
𝛼Γ (𝛼) Γ (𝛼 + 1/2) Γ (𝛼 + 2)

⋅ 𝑥 + 𝑐𝑒𝑐Γ (𝛼 + 1)𝑥𝛼 − 𝑒2𝑐Γ (𝛼 + 1) Γ (𝛼 + 2)𝑥𝛼+1 + 𝑒2𝑐Γ (2𝛼 + 1)
⋅ 𝑥2𝛼,

𝑢3 (𝑥) = 𝑒𝑐2 (2𝑒𝑐 ( 2𝑐Γ (2𝛼 + 1)
+ (𝛼 + 1) ((2𝛼 + 3) 𝑒𝑐 − 2𝑐Γ (𝛼 + 3))

Γ2 (𝛼 + 2) Γ (𝛼 + 3)
− (𝛼 (𝛼 + 5) + 3) 𝑒𝑐Γ (𝛼 + 2) Γ (2𝛼 + 2) + 𝑒𝑐Γ (3𝛼 + 1)) + 𝑐2Γ (𝛼 + 1)
+ 4𝛼𝑒2𝑐Γ (𝛼 + 1/2)√𝜋Γ (3𝛼 + 1) Γ (𝛼 + 1)) 𝑥 − 𝑐2𝑒𝑐2Γ (𝛼 + 1)𝑥𝛼
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Figure 1: 𝜑𝑛(𝑥) when 𝑛 = 10 obtained by the Duan-Rach modified
ADM for 𝛼 = 1.2 (dot-dash), 𝛼 = 1.4 (dot line), 𝛼 = 1.6 (dot-dot-
dash), 𝛼 = 1.8 (dash line), and 𝛼 = 2 (solid line).

+ 𝑒2𝑐Γ3 (𝛼 + 2) (− (𝛼 + 1) 𝑒𝑐 + 𝑒𝑐Γ2 (𝛼 + 2)Γ (2𝛼 + 1) + 2 (𝛼 + 1) 𝑐Γ (𝛼
+ 2)) 𝑥𝛼+1 − 𝑒3𝑐Γ2 (𝛼 + 1) Γ (𝛼 + 3)𝑥𝛼+2 − 2𝑐𝑒2𝑐Γ (2𝛼 + 1)𝑥2𝛼

+ (𝛼 + 2) 𝑒3𝑐Γ (𝛼 + 1) Γ (2𝛼 + 2)𝑥2𝛼+1

− 12Γ (𝛼 + 1) Γ (3𝛼 + 1) (2𝛼𝑒3𝑐Γ (𝛼) + 4𝛼𝑒3𝑐Γ (𝛼 + 1/2)√𝜋 )
⋅ 𝑥3𝛼.

(78)

Here we select 𝑐 = 0.1 for the above recursion scheme
for the following values of 𝛼 = 1.2, 1.4, 1.6, 1.8, 2. We can
compute the approximate solution 𝜑𝑛(𝑥) = ∑𝑛−1𝑘=0 𝑢𝑘(𝑥) from
the solution components 𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥), . . . , 𝑢𝑛−1(𝑥). In
particular, we compute 𝜑10(𝑥) for each selected value of 𝛼.
Figure 1 shows curves of the approximation solutions 𝜑10(𝑥)
for 𝛼 = 1.2, 1.4, 1.6, 1.8, 2.

For each specified value of 𝛼 ̸= 2, since the exact solution
to this BVP is not known, we calculate the corresponding
error remainder function ER𝑛(𝑥) for 𝑛 = 10. Figure 2 displays
the graphs of ER10(𝑥) for the specified values of 𝛼. We can
deduce from the graphs in Figure 2 that the approximations𝜑10(𝑥) obtained by this method give remarkable accuracy, as
expected, since when 𝑛 is sufficiently large the magnitude of
each function ER𝑛(𝑥) approaches zero.

For 𝛼 = 2, it is possible to compute both the error
function 𝐸𝑛(𝑥) and the maximal errors ME𝑛; however, we
only compute the values of ME𝑛 for 𝑛 = 2, 3, . . . , 9 listed in
Table 1. We show the logarithmic plots of ME𝑛 versus 𝑛 for𝑛 = 2, 3, . . . , 9 in Figure 3. We can observe in Figure 3 that
all of the data points after 𝑛 = 2 lie almost on a straight line
which demonstrates that themaximal errorsME𝑛 are reduced
approximately at an exponential rate.

Example 2. Consider the following nonlinear fractional
order BVP which is developed from the second-order
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Figure 2: ER𝑛(𝑥)when 𝑛 = 10 obtained by theDuan-Rachmodified
ADM for 𝛼 = 1.2 (dot-dash), 𝛼 = 1.4 (dot line), 𝛼 = 1.6 (dot-dot-
dash), and 𝛼 = 1.8 (dash line).
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Figure 3: Logarithmic plots of the maximal errors ME𝑛 versus 𝑛 for𝑛 = 2 through 9 obtained by the Duan-Rach modified ADM.

homogeneous partial differential equation of the engineering
model in [47] as follows:

𝜕𝛼𝑢 (𝑥, 𝑡)𝜕𝑥𝛼 + 𝜀1 + 𝜀𝑢 (𝑥, 𝑡) (𝜕𝑢 (𝑥, 𝑡)𝜕𝑥 )2

− 𝐾2 𝑢 (𝑥, 𝑡)1 + 𝜀𝑢 (𝑥, 𝑡) − ( 11 + 𝜀𝑢 (𝑥, 𝑡)) 𝜕𝑢 (𝑥, 𝑡)𝜕𝑡
= 0,

(79)

where the notation 𝜕𝛼/𝜕𝑥𝛼 in (79) represents a fractional
partial derivative with respect to the space 𝑥 in the Caputo
sense with the fractional order 𝛼 ∈ (1, 2] and where 𝑢(𝑥, 𝑡)
has the domain of definition 𝑥 ∈ [0, 1] and 𝑡 ∈ [0,∞). The
physical variables 𝑢, 𝑥, 𝑡 are the dimensionless temperature,
distance, and time, respectively. For (79), the followingmixed
set of homogeneousNeumann and inhomogeneousDirichlet
boundary conditions is given as

𝑢𝑥 (0, 𝑡) = 0,
𝑢 (1, 𝑡) = 1 + 𝑆 cos (𝐵𝑡) . (80)

Table 1: For 𝑐 = 0.1 and 𝛼 = 2, maximal errors ME𝑛 for 𝑛 = 2, 3,. . . , 9 obtained by the Duan-Rach modified ADM.

𝑛 ME𝑛
2 0.00239285
3 0.000303804
4 0.0000401907
5 5.53739 × 10−6
6 7.91736 × 10−7
7 1.16592 × 10−7
8 1.75801 × 10−8
9 2.70207 × 10−9

Theabove conditions consist of a sinusoidally varying bound-
ary value. The parameters 𝜀, 𝐾, 𝑆, and 𝐵 in (79) and (80)
represent thermal conductivity parameter, fin parameter,
amplitude of oscillation, and frequency of oscillation, respec-
tively. The BVP in (79) and (80) describes physically the
periodic base temperature in convective longitudinal fins.

The BVP in (79) and (80) has the same form as the BVP
defined in (25) and (43) in Section 3.1. Thus, we have the
nonlinearity𝑁𝑢 as follows:

𝑁𝑢 = 𝜀1 + 𝜀𝑢 (𝑥, 𝑡) (𝑢𝑥 (𝑥, 𝑡))2 − 𝐾2 𝑢 (𝑥, 𝑡)1 + 𝜀𝑢 (𝑥, 𝑡)
− 𝑢𝑡 (𝑥, 𝑡)1 + 𝜀𝑢 (𝑥, 𝑡)

(81)

and the source term 𝑔(𝑥, 𝑡) = 0. We decompose the
solution 𝑢 and the nonlinearity𝑁𝑢 as 𝑢(𝑥, 𝑡) = ∑∞𝑛=0 𝑢𝑛(𝑥, 𝑡)
and 𝑁𝑢(𝑥, 𝑡) = ∑∞𝑛=0 𝐴𝑛(𝑥, 𝑡), where 𝑢𝑛 are the solution
components and 𝐴𝑛 are the Adomian polynomials. Using
(81), we list the first two Adomian polynomials for this
nonlinear term as follows:

𝐴0 = − 𝐾2𝑢0𝜀𝑢0 + 1 + 𝜀 (𝑢(1,0)0 )2
𝜀𝑢0 + 1 − 𝑢0(0,1)𝜀𝑢0 + 1 ,

𝐴1 = 𝜀𝐾2𝑢0𝑢1(𝜀𝑢0 + 1)2 −
𝐾2𝑢1𝜀𝑢0 + 1 − 𝜀2𝑢1 (𝑢0(1,0))2

(𝜀𝑢0 + 1)2
+ 𝜀𝑢1𝑢0(0,1)(𝜀𝑢0 + 1)2 +

2𝜀𝑢0(1,0)𝑢1(1,0)𝜀𝑢0 + 1 − 𝑢1(0,1)𝜀𝑢0 + 1 ,

(82)

where the superscript (1, 0) denotes the differentiation with
respect to 𝑥, while the superscript (0, 1) denotes the differen-
tiation with respect to 𝑡 and so forth.

We employ the Duan-Rach modified ADM for the above
BVP to which (44)-(45) are applied. Comparing with (43),
we have 𝑎 = 0, 𝑏 = 1, 𝛽 = 0, 𝛾 = 1 + 𝑆 cos(𝐵𝑡), 𝑝 = 𝑠 = 0,𝑞 = 𝑟 = 1, and Δ = −1. Then (44) becomes

𝑢 (𝑥, 𝑡) = 1 + 𝑆 cos (𝐵𝑡) + [ RL𝐽𝛼0 (𝑁𝑢)]
𝑥=1

− RL𝐽𝛼0 (𝑁𝑢) . (83)
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Using (45), we obtain the following recursion scheme:

𝑢0 (𝑥, 𝑡) = 1 + 𝑆 cos (𝐵𝑡) ,
𝑢𝑛+1 (𝑥, 𝑡) = [ RL𝐽𝛼0 (𝐴𝑛)]𝑥=1 − RL𝐽𝛼0 (𝐴𝑛) . (84)

Since the expressions of the solution components 𝑢3(𝑥),𝑢4(𝑥), 𝑢5(𝑥), . . . are complicated, we show only the solution
components 𝑢0(𝑥), 𝑢1(𝑥), and 𝑢2(𝑥) using the Adomian
polynomials 𝐴0 and 𝐴1 in (82) as follows:

𝑢0 (𝑥, 𝑡) = 1 + 𝑆 cos (𝐵𝑡) ,
𝑢1 (𝑥, 𝑡) = (𝑥𝛼 − 1) (𝐾2𝑆 cos (𝐵𝑡) − 𝐵𝑆 sin (𝐵𝑡) + 𝐾2)

Γ (𝛼 + 1) (𝜀𝑆 cos (𝐵𝑡) + 𝜀 + 1) ,
𝑢2 (𝑥, 𝑡) = (𝑥𝛼 − 1) (√𝜋Γ (𝛼 + 1) (𝑥𝛼 + 1) − 4𝛼Γ (𝛼 + 1/2))

2√𝜋Γ (𝛼 + 1) Γ (2𝛼 + 1) (𝜀𝑆 cos (𝐵𝑡) + 𝜀 + 1)3 (−2𝑆 (𝐵2 (𝜀 + 1) − 𝐾4) cos (𝐵𝑡) − 3𝐵2𝜀𝑆2 + 2𝐾4
+ 𝐵𝑆 (2𝐾2 sin (𝐵𝑡) (𝜀𝑆 cos (𝐵𝑡) + 𝜀 − 2) + 𝐵𝜀𝑆 cos (2𝐵𝑡))) .

(85)

We can compute the approximate solution 𝜑𝑛(𝑥, 𝑡) =∑𝑛−1𝑘=0 𝑢𝑘(𝑥, 𝑡) from the solution components 𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡),𝑢2(𝑥, 𝑡), . . . , 𝑢𝑛−1(𝑥, 𝑡). Since the time consumed for comput-
ing 𝜑𝑛(𝑥, 𝑡) is long, we choose to calculate the approximate
solution 𝜑5(𝑥, 𝑡). Here we take 𝜀 = 0.2, 𝐾 = 0.5, 𝑆 = 0.1, and𝐵 = 1 which are used to plot the approximate solutions and
the error surfaces for 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑡 ≤ 4𝜋. The three-
dimensional approximate solutions 𝜑5(𝑥, 𝑡) for the values of𝛼 = 1.2, 1.4, 1.6, 1.8, 2 are plotted in Figures 4(a) and 4(b)
with various orientations. Figures 4(c)–4(e) show the cross
sections of the approximate solutions 𝜑5(𝑥, 𝑡) at 𝑥 = 0.2,𝑥 = 0.5, and 𝑥 = 0.8, respectively, for 𝛼 = 1.2, 1.4, 1.6, 1.8, 2.

Since we do not yet know what the exact solution is for
this BVP for each specified value of 𝛼, the corresponding
error remainder function

ER𝑛 (𝑥, 𝑡) = 𝜕𝛼𝜑𝑛 (𝑥, 𝑡)𝜕𝑥𝛼
+ 𝜀1 + 𝜀𝜑𝑛 (𝑥, 𝑡) (

𝜕𝜑𝑛 (𝑥, 𝑡)𝜕𝑥 )2

− 𝐾2 𝜑𝑛 (𝑥, 𝑡)1 + 𝜀𝜑𝑛 (𝑥, 𝑡)
− ( 11 + 𝜀𝜑𝑛 (𝑥, 𝑡))

𝜕𝜑𝑛 (𝑥, 𝑡)𝜕𝑡

(86)

is computed. Here we choose to compute ER𝑛(𝑥, 𝑡) for only𝛼 = 1.8 by varying 𝑛 = 2, 3, 4, 5. Figures 5(a)–5(d) display the
surfaces of the absolute error remainder functions |ER𝑛(𝑥, 𝑡)|
for 𝑛 = 2, 3, 4, 5. We can deduce from Figures 5(a)–5(d)
that for 𝛼 = 1.8 the approximations 𝜑𝑛(𝑥, 𝑡) obtained by
this method provide the greater accuracy for larger 𝑛; that is,
the maximum values of |ER𝑛(𝑥, 𝑡)| decrease significantly as 𝑛
increases.

Example 3. The following nonlinear fractional BVP is modi-
fied from the nonlinear second-order BVP in [27] with the
sum of an exponential nonlinearity in the solution and a
quadratic nonlinearity in the derivative of the solution and

subject to a set of Robin boundary conditions. The modified
BVP can be expressed as follows:

𝐶𝐷𝛼0𝑢 (𝑥) = −18 (𝑒−2𝑢 + 4 (𝑢󸀠)2) ,
0 ≤ 𝑥 ≤ 1, 1 < 𝛼 ≤ 2,

(87)

subject to the following set of Robin boundary conditions:

𝑢 (0) − 2𝑢󸀠 (0) = −1,
𝑢 (1) + 2𝑢󸀠 (1) = 23 + ln(32) .

(88)

Here we can rewrite (87) as

𝐶𝐷𝛼0𝑢 (𝑥) + 18 (𝑒−2𝑢 + 4 (𝑢󸀠)2) = 0, (89)

with the nonlinearity and the source term as follows:

𝑁𝑢 = 18 (𝑒−2𝑢 + 4 (𝑢󸀠)2) ,
𝑔 (𝑥) = 0.

(90)

For𝛼 = 2, it can be easily verified that the exact solution of
the BVP is 𝑢∗(𝑥) = ln((2 + 𝑥)/2); however, the exact solution
to this BVP is not known for 1 < 𝛼 < 2. Next we decompose
the solution 𝑢 and the nonlinearity𝑁𝑢 as 𝑢(𝑥) = ∑∞𝑛=0 𝑢𝑛(𝑥)
and𝑁𝑢 = ∑∞𝑛=0 𝐴𝑛(𝑥), where 𝑢𝑛 are the solution components
and 𝐴𝑛 are the Adomian polynomials. We here list the first
four Adomian polynomials for the nonlinear term as follows:

𝐴0 = 18 (𝑒−2𝑢0 + 4 (𝑢󸀠0)2) ,
𝐴1 = −14𝑒−2𝑢0𝑢1 + 𝑢󸀠0𝑢󸀠1,
𝐴2 = 14𝑒−2𝑢0 (𝑢21 − 𝑢2 + 2𝑒2𝑢0 ((𝑢󸀠1)2 + 2𝑢󸀠0𝑢󸀠2)) ,
𝐴3 = 112𝑒−2𝑢0 (−2𝑢31 + 6𝑢1𝑢2

− 3 (𝑢3 − 4𝑒2𝑢0 (𝑢󸀠1𝑢󸀠2 + 𝑢󸀠0𝑢󸀠3))) .

(91)
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Figure 4: ((a)-(b)) Surfaces of approximate solutions 𝜑5(𝑥, 𝑡) for the values of 𝛼 = 1.2, 1.4, 1.6, 1.8, 2 with different angles of view. ((c)–(e))
Cross sections of the surfaces of 𝜑5(𝑥, 𝑡) at 𝑥 = 0.2, 𝑥 = 0.5, and 𝑥 = 0.8, respectively, for 𝛼 = 1.2 (dot-dash), 𝛼 = 1.4 (dot line), 𝛼 = 1.6
(dot-dot-dash), 𝛼 = 1.8 (dash line), and 𝛼 = 2 (solid line).
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The Duan-Rach Modified ADM. We can now apply the
formulas in (36) and (38) in Section 3.1 to this BVP. For the
parameters described in such a section, we have 𝑎 = 0, 𝑏 = 1,𝑝 = 1, 𝑞 = −2, 𝑟 = 1, 𝑠 = 2, 𝛽 = −1, 𝛾 = 2/3 + ln(3/2), andΔ = 5. Equation (36) turns out to be

𝑢 (𝑥) = 15 [(−53 + 2 ln(32)) + (53 + ln(32)) 𝑥
+ (2𝑥 + 4) [ RL𝐽𝛼−10 (𝑁𝑢)]

𝑥=1

+ (𝑥 + 2) [ RL𝐽𝛼0 (𝑁𝑢)]
𝑥=1

] − RL𝐽𝛼0 (𝑁𝑢) .
(92)

Using (38) and Duan’s convergence parameter technique, we
obtain the following parametrized recursion scheme:

𝑢0 (𝑥) = 𝑐,
𝑢1 (𝑥) = −𝑐 + 15 (−53 + 2 ln(32))

+ 15 (53 + ln(32)) 𝑥
+ (2𝑥 + 4)5 [ RL𝐽𝛼−10 (𝐴0)]𝑥=1
+ (𝑥 + 2)5 [ RL𝐽𝛼0 (𝐴0)]𝑥=1
− RL𝐽𝛼0 (𝐴0) ,

𝑢𝑛+1 (𝑥) = (2𝑥 + 4)5 [ RL𝐽𝛼−10 (𝐴𝑛)]𝑥=1
+ (𝑥 + 2)5 [ RL𝐽𝛼0 (𝐴𝑛)]𝑥=1
− RL𝐽𝛼0 (𝐴𝑛) , 𝑛 ≥ 1.

(93)

Since the expressions of the solution components 𝑢𝑛(𝑥),𝑛 ≥ 2, are quite long, we show only the first two solution
components 𝑢1(𝑥) and 𝑢2(𝑥) computed using the Adomian
polynomials 𝐴0 and 𝐴1 in (91) as follows:

𝑢1 (𝑥) = −𝑐 − 13 + 25 ln(32) + (2𝛼 + 1) 𝑒−2𝑐20Γ (𝛼 + 1) + (13 + 15 ln(32) + (2𝛼 + 1) 𝑒−2𝑐40Γ (𝛼 + 1) ) 𝑥 − 𝑒−2𝑐8Γ (𝛼 + 1)𝑥𝛼,

𝑢2 (𝑥) = 𝑒−4𝑐1200 ( 60𝛼 + 15Γ (2𝛼 + 1) − 3 (𝛼 + 1) (2𝛼 + 1) (4𝛼 (𝛼 + 2) + 5)Γ2 (𝛼 + 2)
+ 8𝑒2𝑐 (𝛼 (2𝛼 (5 − 6 ln (3) + ln (64)) + 5 − 48 coth−1 (5)) + 15 (𝛼 + 1) (2𝛼 + 1) 𝑐 − 10 (1 + 3 coth−1 (5)))

Γ (𝛼 + 2) )

+ 𝑒−4𝑐2400 ( 60𝛼 + 15Γ (2𝛼 + 1) − 3 (𝛼 + 1) (2𝛼 + 1) (4𝛼 (𝛼 + 2) + 5)Γ2 (𝛼 + 2)
+ 8𝑒2𝑐 (𝛼 (2𝛼 (5 − 6 ln (3) + ln (64)) + 5 − 48 coth−1 (5)) + 15 (𝛼 + 1) (2𝛼 + 1) 𝑐 − 10 (1 + 3 coth−1 (5)))

Γ (𝛼 + 2) )𝑥

+ 𝑒−4𝑐 (6𝛼2 + 9𝛼 − 4𝑒2𝑐Γ (𝛼 + 2) (15𝑐 + 5 − 6 ln (3) + ln (64)) + 3)
240𝛼Γ (𝛼) Γ (𝛼 + 2) 𝑥𝛼

+ 𝑒−4𝑐 (3 (𝛼 + 1) (2𝛼 + 1) + 8𝑒2𝑐 (5 + ln (27/8)) Γ (𝛼 + 2))
480Γ2 (𝛼 + 2) 𝑥𝛼+1 − 𝑒−4𝑐32Γ (2𝛼 + 1)𝑥2𝛼.

(94)

Throughout this method, we use 𝑐 = 0.5 and the
following values of 𝛼 = 1.2, 1.4, 1.6, 1.8, 2 for the recursion
scheme in (93). We can compute the approximate solution𝜑𝑛(𝑥) = ∑𝑛−1𝑘=0 𝑢𝑘(𝑥) from the solution components 𝑢0(𝑥),𝑢1(𝑥), 𝑢2(𝑥), . . . , 𝑢𝑛−1(𝑥). In particular, we calculate𝜑15(𝑥) for
each selected value of𝛼using theDuan-RachmodifiedADM.
Figure 6 shows curves of the approximate solutions 𝜑15(𝑥) for𝛼 = 1.2, 1.4, 1.6, 1.8, 2.

For each specified value of 𝛼 ̸= 2, since the exact solution
to this BVP is not known, we calculate the corresponding
error remainder functions ER𝑛(𝑥) for 𝑛 = 15. Figure 7

displays the graphs of ER15(𝑥) for the specified values of𝛼. We can deduce from the graphs in Figure 7 that the
approximations 𝜑15(𝑥) obtained by this method give the
remarkable accuracy as expected that when 𝑛 is sufficiently
large then themagnitude of each function ER𝑛(𝑥) approaches
zero.

For 𝛼 = 2, it is possible to compute both of the error
functions 𝐸𝑛(𝑥) and the maximal errors ME𝑛; however, we
only compute the values of ME𝑛 for 𝑛 = 2, 3, . . . , 15 listed
in Table 2. We show the logarithmic plots of ME𝑛 versus 𝑛
for 𝑛 = 2, 3, . . . , 15 in Figure 8. We can observe in Figure 8
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Figure 5: Surfaces of the absolute error remainder functions for 𝛼 = 1.8, (a) |ER2(𝑥, 𝑡)|, (b) |ER3(𝑥, 𝑡)|, (c) |ER4(𝑥, 𝑡)|, and (d) |ER5(𝑥, 𝑡)|.
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Figure 6: 𝜑𝑛(𝑥) when 𝑛 = 15 obtained by the Duan-Rach modified
ADM for 𝛼 = 1.2 (dot-dash), 𝛼 = 1.4 (dot line), 𝛼 = 1.6 (dot-dot-
dash), 𝛼 = 1.8 (dash line), and 𝛼 = 2 (solid line).

that all of the data points after 𝑛 = 7 lie almost on a straight
line which demonstrates themaximal errorsME𝑛 are reduced
approximately at an exponential rate.

Example 4. Consider the beam-type fractional boundary
value problem

𝐶𝐷𝛼0𝑢 − 2𝑢󸀠󸀠 + 𝑢 = 𝑔 (𝑥) , 0 ≤ 𝑥 ≤ 1, 3 < 𝛼 ≤ 4,
𝑢 (0) = 0,

𝑢󸀠󸀠 (0) = 0,
𝑢 (1) = 0,

𝑢󸀠󸀠 (1) = −12,

(95)

where 𝑔(𝑥) = −24 + 𝑥 + 24𝑥2 − 𝑥4. For 𝛼 = 4, it can be
easily verified that the exact solution of the BVP is 𝑢∗(𝑥) =𝑥(1 − 𝑥3). Fundamentally, we decompose the solution 𝑢 and
the nonlinearity 𝑁𝑢 = 𝑢 − 2𝑢󸀠󸀠 as 𝑢(𝑥) = ∑∞𝑛=0 𝑢𝑛(𝑥) and𝑁𝑢 = ∑∞𝑛=0 𝐴𝑛(𝑥), where 𝑢𝑛 are the solution components and𝐴𝑛 are the Adomian polynomials. We here list the first four
Adomian polynomials for this nonlinear term as follows:

𝐴0 = 𝑢0 − 2𝑢󸀠󸀠0 ,
𝐴1 = 𝑢1 − 2𝑢󸀠󸀠1 ,
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𝐴2 = 𝑢2 − 2𝑢󸀠󸀠2 ,
𝐴3 = 𝑢3 − 2𝑢󸀠󸀠3 .

(96)

TheDuan-RachModified ADM. We can apply the formulas in
(65) and (66) in Section 3.2 to this BVP.We have 𝑎 = 0, 𝑏 = 1,𝑝 = 1, 𝑞 = 0, 𝑟 = 1, 𝑠 = 0, 𝜌 = 0, 𝜎 = 0, 𝛽 = 0, 𝛾 = −12, andΔ = 1. Then, we have 𝜅 = −12, 𝜆 = 0, 𝜇 = −12, ] = −12, and𝜔 = 1. Thus, (65) turns out to be

𝑢 (𝑥) = 2𝑥 − 2𝑥3 − 16 (𝑥3 − 𝑥) [ RL𝐽𝛼−20 (𝑔 (𝑥))]
𝑥=1

− 𝑥 [ RL𝐽𝛼0 (𝑔 (𝑥))]𝑥=1 + RL𝐽𝛼0 (𝑔 (𝑥))
+ 16 (𝑥3 − 𝑥) [ RL𝐽𝛼−20 (𝑁𝑢)]

𝑥=1

+ 𝑥 [ RL𝐽𝛼0 (𝑁𝑢)]
𝑥=1

− RL𝐽𝛼0 (𝑁𝑢) ,

(97)

where 𝑁𝑢 is given as above. Using (66), we obtain the
following recursion scheme:

𝑢0 (𝑥) = 2𝑥 − 2𝑥3
− 16 (𝑥3 − 𝑥) [ RL𝐽𝛼−20 (𝑔 (𝑥))]

𝑥=1

− 𝑥 [ RL𝐽𝛼0 (𝑔 (𝑥))]𝑥=1 + RL𝐽𝛼0 (𝑔 (𝑥)) ,
𝑢𝑛+1 (𝑥) = 16 (𝑥3 − 𝑥) [ RL𝐽𝛼−20 (𝐴𝑛)]𝑥=1

+ 𝑥 [ RL𝐽𝛼0 (𝐴𝑛)]𝑥=1 − RL𝐽𝛼0 (𝐴𝑛) ,
𝑛 ≥ 0.

(98)

Since the expressions of the solution components 𝑢2(𝑥),𝑢3(𝑥), 𝑢4(𝑥), . . . are very long, we show only the first two
solution components 𝑢0(𝑥) and 𝑢1(𝑥) as follows:

𝑢0 (𝑥) = (2 + −24𝛼6 − 215𝛼5 − 398𝛼4 + 1589𝛼3 + 7028𝛼2 + 7860𝛼 + 8646Γ (𝛼 + 5) ) 𝑥 + (−2
+ 24𝛼4 + 47𝛼3 − 75𝛼2 − 194𝛼 − 726Γ (𝛼 + 3) ) 𝑥3 − 24Γ (𝛼 + 1)𝑥𝛼 + 𝑥𝛼+1Γ (𝛼 + 2) + 48Γ (𝛼 + 3)𝑥𝛼+2 − 24Γ (𝛼 + 5)𝑥𝛼+4,

𝑢1 (𝑥) = 136 (432/Γ (𝛼 + 3) + 72Γ (𝛼 + 2) − 156𝛼4 + 936𝛼3 + 780𝛼2 − 3744𝛼 − 5184Γ (𝛼 + 4)
+ 312𝛼9 + 3731𝛼8 + 13895𝛼7 + 755𝛼6 − 111451𝛼5 − 216262𝛼4 + 64052𝛼3 + 576816𝛼2 + 544464𝛼 + 124416Γ (𝛼 + 3) Γ (𝛼 + 5)
− 73728𝛼8 + 145920𝛼7 − 420096𝛼6 − 1221312𝛼5 − 655872𝛼4 + 576432𝛼3 + 897120𝛼2 + 474480𝛼 + 74304Γ (2𝛼 + 5) )𝑥
+ (4𝛼4 + 8𝛼3 − 12𝛼2 − 32𝛼 − 2Γ (𝛼 + 3) − 12Γ (𝛼 + 2) Γ (𝛼 + 3) + 1536𝛼6 − 2336𝛼5 − 2880𝛼4 + 1964𝛼3 + 822𝛼2 − 54𝛼 + 843Γ (2𝛼 + 3)
+ 1336Γ2 (𝛼) + −26𝛼6 − 234𝛼5 − 586𝛼4 + 249𝛼3 + 2857𝛼2 + 3448𝛼 + 13Γ (𝛼 + 5) + 9243Γ (𝛼) Γ (𝛼 + 5) ) 𝑥3

+ (312𝛼6 + 2795𝛼5 + 6902𝛼4 − 3449𝛼3 − 34988𝛼2 − 41844𝛼 − 156Γ (𝛼 + 5) − 11232)
6Γ (𝛼 + 2) Γ (𝛼 + 5) 𝑥𝛼+1

+ (−24𝛼4 − 47𝛼3 + 75𝛼2 + 194𝛼 + 12Γ (𝛼 + 3) + 72)
Γ (𝛼 + 3) Γ (𝛼 + 4) 𝑥𝛼+3 − 48Γ (2𝛼 − 1)𝑥2𝛼−2 + 2Γ (2𝛼)𝑥2𝛼−1 + 120Γ (2𝛼 + 1)𝑥2𝛼

− 𝑥2𝛼+1Γ (2𝛼 + 2) − 96Γ (2𝛼 + 3)𝑥2𝛼+2 + 24Γ (2𝛼 + 5)𝑥2𝛼+4.

(99)

In particular, we calculate 𝜑10(𝑥) for 𝛼 = 3.2, 3.4, 3.6, 3.8,4. Figure 9 shows curves of the approximate solutions 𝜑10(𝑥)
for the selected values of 𝛼.

For 𝛼 = 3.2, 3.4, 3.6, 3.8, we do not know what the exacts
solutions are, and thus we calculate the error remainder
functions ER𝑛(𝑥) = 𝐶𝐷𝛼0𝜑𝑛(𝑥) − 2𝜑󸀠󸀠𝑛 (𝑥) + 𝜑𝑛(𝑥) − 𝑔(𝑥),

0 ≤ 𝑥 ≤ 1, for each value of 𝛼. We display the functions
ER𝑛(𝑥) for 𝑛 = 10 in Figure 10. The approximations of this
order give significant accuracy, as expected, since the limit of
the functions ER𝑛(𝑥) approaches zero.

For 𝛼 = 4, it is possible to compute the error functions 𝐸𝑛
in (70) as 𝐸𝑛 = 𝜑𝑛(𝑥) − 𝑢∗(𝑥) and the maximal errors ME𝑛 in
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Figure 7: ER𝑛(𝑥)when 𝑛 = 15 obtained by theDuan-Rachmodified
ADM for 𝛼 = 1.2 (dot-dash), 𝛼 = 1.4 (dot line), 𝛼 = 1.6 (dot-dot-
dash), 𝛼 = 1.8 (dash line), and 𝛼 = 2 (solid line).
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Figure 8: Logarithmic plots of the maximal errors ME𝑛 versus 𝑛 for𝑛 = 2 through 15 obtained by the Duan-Rach modified ADM.

(71) as ME𝑛 = max0≤𝑥≤1|𝐸𝑛(𝑥)|. However, we only compute
the values of ME𝑛 for 𝑛 = 2, 3, 4, . . . , 9 listed in Table 3. In
Figure 11 we show the logarithmic plots of ME𝑛 versus 𝑛 for𝑛 = 2, 3, 4, . . . , 9 obtained by the method. All of the data
points lie almost on a straight line so the maximal errors are
decreasing approximately at an exponential rate.

5. Conclusions

We have established new recursion schemes using the Duan-
Rach modified decomposition method to solve a variety of
nonlinear fractional BVPs. The obtained recursion schemes
have been derived for solving the nonlinear fractional BVPs
with a set of Robin boundary conditions (order 1 < 𝛼 ≤ 2)
and with separated boundary conditions (order 3 < 𝛼 ≤4). We have applied the new recursion schemes to four
numerical expository examples. Example 1 is a nonlinear
Dirichlet fractional BVP of order 1 < 𝛼 ≤ 2 with the
exponential nonlinearity. Example 2 is a nonlinear Neumann
and Dirichlet fractional BVP of order 1 < 𝛼 ≤ 2 with the
first derivative nonlinearity. Example 3 is a fractional BVP
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Figure 9: 𝜑𝑛(𝑥) when 𝑛 = 10 obtained by the Duan-Rach modified
ADM for 𝛼 = 3.2 (dot-dash), 𝛼 = 3.4 (dot line), 𝛼 = 3.6 (dot-dot-
dash), 𝛼 = 3.8 (dash line), and 𝛼 = 4 (solid line).
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Figure 10: ER𝑛(𝑥) when 𝑛 = 10 obtained by the Duan-Rach
modified ADM for 𝛼 = 3.2 (dot-dash), 𝛼 = 3.4 (dot line), 𝛼 = 3.6
(dot-dot-dash), and 𝛼 = 3.8 (dash line).

Table 2: For 𝑐 = 0.5 and 𝛼 = 2, maximal errors ME𝑛 for 𝑛 =2, 3, . . . , 15 obtained by the Duan-Rach modified ADM.

𝑛 ME𝑛
2 0.0734942
3 0.0830039
4 0.0203679
5 0.00633962
6 0.00186625
7 0.00192242
8 0.00155408
9 0.000886808
10 0.000608945
11 0.000445665
12 0.000313388
13 0.00021568
14 0.00015314
15 0.000111835

with the sum of an exponential nonlinearity in the solution
and a quadratic nonlinearity in the derivative of the solution
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Figure 11: Logarithmic plots of themaximal errorsME𝑛 versus 𝑛 for𝑛 = 2 through 9 obtained by the Duan-Rach modified ADM.

Table 3: For 𝛼 = 4, maximal errors ME𝑛 for 𝑛 = 2, 3, . . . , 9 obtained
by the Duan-Rach modified ADM.

𝑛 ME𝑛
2 0.0208592
3 0.00444248
4 0.000945886
5 0.000201388
6 0.0000428772
7 9.12892 × 10−6
8 1.94362 × 10−6
9 4.13814 × 10−7
which is imposed with a set of Robin boundary conditions.
The beam-type fractional BVP of order 3 < 𝛼 ≤ 4 with
separated boundary conditions and the product nonlinearity
is provided in Example 4. Besides the obtained approximate
solutions, we also provided the maximal errors (ME𝑛) and
the error remainder functions (ER𝑛(𝑥)) for each problem
if possible. The results for all examples shown confirm that
increasing the number of solution components (i.e., the value
of 𝑛) reduces the errors in the numerical solutions. Further-
more, unlike the method of undetermined coefficients in
the ADM, the Duan-Rach modified decomposition method
does not require solving a system of nonlinear algebraic
equations obtained from using the 𝑛-term approximation𝜑𝑛(𝑥) for the remaining unknown constants of integration,
which are sometimes multiple roots or nonphysical roots.
Hence, the method is very efficient and has provided very
accurate approximate solutions when compared with the
exact solutions (if any).
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An alternative block method for solving fifth-order initial value problems (IVPs) is proposed with an adaptive strategy of
implementing variable step size. The derived method is designed to compute four solutions simultaneously without reducing the
problem to a system of first-order IVPs. To validate the proposed method, the consistency and zero stability are also discussed.
The improved performance of the developed method is demonstrated by comparing it with the existing methods and the results
showed that the 4-point block method is suitable for solving fifth-order IVPs.

1. Introduction

Many natural processes or real-world problems can be trans-
lated into the language of mathematics [1–4]. The mathe-
matical formulation of physical phenomena in science and
engineering often leads to a differential equation, which can
be categorized as an ordinary differential equation (ODE)
and a partial differential equation (PDE). This formulation
will explain the behavior of the phenomenon in detail.
The search for solutions of real-world problems requires
solving ODEs and thus has been an important aspect of
mathematical study. For many interesting applications, an
exact solution may be unattainable, or it may not give the
answer in a convenient form. The reliability of numerical
approximation techniques in solving such problems has been
proven bymany researchers as the role of numerical methods
in engineering problems solving has increased dramatically
in recent years.Thus a numerical approachhas been chosen as
an alternative tool for approximating the solutions consistent
with the advancement in technology.

Commonly, the formulation of real-world problems will
take the form of a higher order differential equation asso-
ciated with its initial or boundary conditions [4]. In the
literature, a mathematical model in the form of a fifth-order
differential equation, known as Korteweg-de Vries (KdV)
equation, has been used to describe several wave phenomena
depending on the values of its parameters [2, 3, 5, 6]. The
KdV equation is a PDE and researchers have tackled the
problem analytically and numerically. It is also noted that in
certain cases by using different approaches the KdVmight be
transformed into a higher order ODE [7]. To date, there are
a number of studies that have proposed solving fifth-order
ODEdirectly [8, 9].Hence, the purpose of the present paper is
to solve directly the fifth-order IVPs with the implementation
of a variable step size strategy. The fifth-order IVP with its
initial conditions is defined as

𝑦
v
= 𝑓 (𝑥, 𝑦, 𝑦

󸀠
, 𝑦

󸀠󸀠
, 𝑦

󸀠󸀠󸀠
, 𝑦

iv
) , 𝑦 (𝑎) = 𝑦0, 𝑦

󸀠
(𝑎) = 𝑦1, 𝑦

󸀠󸀠
(𝑎) = 𝑦2, 𝑦

󸀠󸀠󸀠
(𝑎) = 𝑦3, 𝑦

iv
(𝑎) = 𝑦4, 𝑥 ∈ [𝑎, 𝑏] . (1)
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Conventionally, (1) will be converted to a system of first-
order ODEs by a simple change of variables. However, it
will increase the computational cost in terms of function
evaluation and thus will affect the computational time. This
drawback is obviously seen when dealing with a higher order
problem. Furthermore, [10] also has remarked that the block
method is far more cost-effective when it is implemented
in direct integration. Hence, several researchers [11–16] have
shown an interest in the development of direct integration
methods. A direct integration method of variable order and
step size for solving systems of nonstiff higher order ODEs
has been discussed in [11] whereby [12] has proposed an
algorithm based on collocation of the differential system at
selected grid points for direct solution of general second-
order ODEs. In addition, [13] has used the Gaussian method
in order to solve fourth-order differential equations directly.
However, it requires a tedious computation as well, since it
consists of higher order partial derivatives of Taylor series
algorithm which supplies the starting values. Jator and Li
[15] have proposed the linear multistep method (LMM)
for solving general second-order IVPs directly. The method
is self-starting, so it involves less computational time by
avoiding incorporating subroutines to supply the starting
values.

Thus far, a number of researchers have concerned them-
selves with developing a numerical method based on block
features, and the characteristic feature of the block method
is that in each application it generates a set of solutions
concurrently [10]. Rosser [10] also has remarked that the
implementation of block method in numerical computa-
tion will reduce the computational cost by reducing the
number of function evaluations. Shampine and Watts [17]
have constructed an𝐴-stable implicit one-step block method
and Cash [18] has studied block methods based upon the
Runge-Kutta method for the numerical solution of nonstiff
IVPs. Furthermore [19] has used the self-starting LMM
to solve second-order ODEs in a block-by-block fashion
and recently [20] has constructed a predictor-corrector
scheme 3-point block method with the implementation of
variable step size. This research is an extension of the
work in [20] in which the solution is computed at three
points concurrently and it shows the satisfactory numer-
ical results obtained when solving general higher order
ODEs.

An increasing amount of literature is devoted to vari-
able step size implementations of numerical methods [11,
21, 22]. The practicality of varying the step size for block
method has been justified by [10]. This strategy is an attempt
to reduce the computational cost as well as maintaining
the accuracy. The Falkner method with variable step size
implementation for the numerical solution of second-order
IVPs has been employed in [21]. Although the implemen-
tation of the method involves varying the step size and
solving directly, the computation is still tedious since the
coefficients of the formulae must be calculated every time
the step size is changed. On the contrary, the present
work will store all the integration coefficients in the code
in order to avoid the tedious calculations of the divided
differences.

qh qh qh rh rh rh rh h h h h

xn−7 xn−6 xn−5 xn−4 xn−3 xn−2 xn−1 xn xn+1 xn+2 xn+3 xn+4

Figure 1: 4-point block method.

2. Methodology

2.1. Derivation of 4-Point Block Method. The basic approach
of numerical methods for integration is performed by sub-
dividing the interval of integration into certain subintervals.
The proposedmethodwas based on concurrent computation;
hence the closed finite interval was subdivided into a series
of blocks and each block contains four equal subintervals as
illustrated in Figure 1.

Initially, (1) was integrated five times over the corre-
sponding interval: [𝑥𝑛, 𝑥𝑛+1], [𝑥𝑛, 𝑥𝑛+2], [𝑥𝑛, 𝑥𝑛+3], [𝑥𝑛, 𝑥𝑛+4]

for first, second, third, and fourth point, respectively.
The integration was started by replacing the function
𝑓(𝑥, 𝑦, 𝑦

󸀠
, 𝑦

󸀠󸀠
, 𝑦

󸀠󸀠󸀠
, 𝑦

iv
)with the interpolating function which

was generated from Lagrange polynomials. A set of points
{(𝑥𝑛−7, 𝑓𝑛−7), . . . , (𝑥𝑛, 𝑓𝑛)}, {(𝑥𝑛−4, 𝑓𝑛−4), . . . , (𝑥𝑛+4, 𝑓𝑛+4)} was
interpolated for deriving predictor and corrector formulae,
respectively. Let the Lagrange polynomial, 𝑃𝑤(𝑥), be written
as

𝑃𝑤 (𝑥) = 𝐿𝑤,0 (𝑥) 𝑓 (𝑥𝑛+4) + 𝐿𝑤,1𝑓 (𝑥𝑛+3) + ⋅ ⋅ ⋅

+ 𝐿𝑤,𝑤𝑓 (𝑥𝑛+4−𝑤) =

𝑤

∑

𝑗=0

𝐿𝑤,𝑗 (𝑥) 𝑓 (𝑥𝑛+4−𝑗) ,

(2)

where

𝐿𝑤,𝑗 (𝑥) =

𝑤

∏

𝑖=0
𝑖 ̸=𝑗

(𝑥 − 𝑥𝑛+4−𝑖)

(𝑥𝑛+4−𝑗 − 𝑥𝑛+4−𝑖)

for each 𝑗 = 0, 1, . . . , 𝑤.

(3)

Nine points were interpolated in (2) with 𝑤 set to be
eight for deriving the corrector and thus one point less for
the predictor formula. Then, the integration process was
proceeded by substituting 𝑧 = (𝑥 − 𝑥𝑛+4)/ℎ and 𝑑𝑥 = ℎ𝑑𝑧

in (2). Consistent with the number of interpolation points
involved in deriving the formulae, predictor and corrector
formulae were obtained in terms of variables 𝑟 and 𝑞. The
variables 𝑟 and 𝑞 refer to the distance ratio between current
and previous point as a result of implementation variable step
size strategy in the proposed method.

In this work, the selection of the next step size could be
increased by a factor of (𝑟 = 0.5, 𝑞 = 0.5) or maintained
by ((𝑟 = 1, 𝑞 = 1), (𝑟 = 1, 𝑞 = 2), (𝑟 = 1, 𝑞 = 0.5)) and
(𝑟 = 2, 𝑞 = 2) for halving the current step size. This step
size changing technique was limited in order to minimize
the number of coefficients to be stored as well as reducing
the computational storage. The increment of step size was
also limited to doubling in order to control the accuracy of
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the computation [10].The compact form of the 4-point block
method is presented in

𝑦
(v−𝑔)

𝑛+𝑑 =

𝑔−1

∑

𝑘=0

(𝑑ℎ)
𝑘

𝑘!
𝑦

(v−𝑔+𝑘)
𝑛 +

ℎ
𝑔

(𝑔 − 1)!

𝑡

∑

𝑗=𝑠

𝛾
𝑔

𝑑,𝑗𝑓𝑛+𝑗, (4)

where 𝛾𝑔

𝑑,𝑗 are the coefficients of the formulae to be calculated,
𝑑 is the number of points (𝑑 = 1, 2, 3, 4), 𝑔 is the number
of times (1) will be integrated, and 𝑘 is the number of terms
when the equation is integrated. The values of 𝑠 = −7, 𝑡 =
0 and 𝑠 = −4, 𝑡 = 4 were considered for deriving the
predictor and corrector formulae, respectively. After further
simplification, the associated corrector formulae of the 4-
point block method when 𝑟 = 1 are represented below.

Integrate once:

[
[
[
[
[

[

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
iv
𝑛+4

𝑦
iv
𝑛+3

𝑦
iv
𝑛+2

𝑦
iv
𝑛+1

]
]
]
]
]
]

]

=

[
[
[
[
[

[

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
iv
𝑛

𝑦
iv
𝑛−1

𝑦
iv
𝑛−2

𝑦
iv
𝑛−3

]
]
]
]
]
]

]

+
ℎ

3628800
(

[
[
[
[
[

[

−3233 36394 −216014 1909858

4064 −63232 1422272 4541696

−29889 1312362 4667058 2789154

1040128 5779456 62464 8384512

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛+4

𝑓𝑛+3

𝑓𝑛+2

𝑓𝑛+1

]
]
]
]
]

]

+

[
[
[
[
[

[

2224480 −425762 126286 −25706

1391360 −27904 −15808 5888

2708640 −782946 278478 −63018

−2324480 2363392 −1012736 249856

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛

𝑓𝑛−1

𝑓𝑛−2

𝑓𝑛−3

]
]
]
]
]

]

+

[
[
[
[
[

[

2497 0 0 0

−736 0 0 0

6561 0 0 0

−27392 0 0 0

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛−4

𝑓𝑛−5

𝑓𝑛−6

𝑓𝑛−7

]
]
]
]
]

]

).

(5)

Integrate twice:

[
[
[
[
[

[

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠󸀠󸀠
𝑛+4

𝑦
󸀠󸀠󸀠
𝑛+3

𝑦
󸀠󸀠󸀠
𝑛+2

𝑦
󸀠󸀠󸀠
𝑛+1

]
]
]
]
]
]

]

=

[
[
[
[
[

[

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠󸀠󸀠
𝑛

𝑦
󸀠󸀠󸀠
𝑛−1

𝑦
󸀠󸀠󸀠
𝑛−2

𝑦
󸀠󸀠󸀠
𝑛−3

]
]
]
]
]
]

]

+ ℎ

[
[
[
[
[

[

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
iv
𝑛

𝑦
iv
𝑛−1

𝑦
iv
𝑛−2

𝑦
iv
𝑛−3

]
]
]
]
]
]

]

+
ℎ

2

7257600
(

[
[
[
[
[

[

−3057 34208 −197216 1258488

−3008 20480 370944 8341504

−22599 659016 7027560 15769728

433152 8093696 12378112 26050560

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛+4

𝑓𝑛+3

𝑓𝑛+2

𝑓𝑛+1

]
]
]
]
]

]

+

[
[
[
[
[

[

2875850 −444560 128472 −25864

6492800 −909312 244480 −47104

10485450 −1650456 478224 −97200

11724800 −622592 −24576 32768

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛

𝑓𝑛−1

𝑓𝑛−2

𝑓𝑛−3

]
]
]
]
]

]

+

[
[
[
[
[

[

2497 0 0 0

4416 0 0 0

9477 0 0 0

−5120 0 0 0

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛−4

𝑓𝑛−5

𝑓𝑛−6

𝑓𝑛−7

]
]
]
]
]

]

).

(6)
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Integrate thrice:

[
[
[
[
[

[

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠󸀠
𝑛+4

𝑦
󸀠󸀠
𝑛+3

𝑦
󸀠󸀠
𝑛+2

𝑦
󸀠󸀠
𝑛+1

]
]
]
]
]
]

]

=

[
[
[
[
[

[

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠󸀠
𝑛

𝑦
󸀠󸀠
𝑛−1

𝑦
󸀠󸀠
𝑛−2

𝑦
󸀠󸀠
𝑛−3

]
]
]
]
]
]

]

+ ℎ

[
[
[
[
[

[

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠󸀠󸀠
𝑛

𝑦
󸀠󸀠󸀠
𝑛−1

𝑦
󸀠󸀠󸀠
𝑛−2

𝑦
󸀠󸀠󸀠
𝑛−3

]
]
]
]
]
]

]

+
ℎ

2

2

[
[
[
[
[

[

1 0 0 0

4 0 0 0

9 0 0 0

16 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
iv
𝑛

𝑦
iv
𝑛−1

𝑦
iv
𝑛−2

𝑦
iv
𝑛−3

]
]
]
]
]
]

]

+
ℎ

3

19958400
(

[
[
[
[
[

[

−4872 53782 −304397 1693482

−29632 313088 −1292928 25524992

−63423 1004562 15809823 93765438

218112 20512768 74186752 202702848

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛+4

𝑓𝑛+3

𝑓𝑛+2

𝑓𝑛+1

]
]
]
]
]

]

+

[
[
[
[
[

[

5791735 −751598 213153 −42578

32478080 −4915968 1396352 −278272

77715045 −11123082 3059613 −599238

144240640 −20774912 5701632 −1114112

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛

𝑓𝑛−1

𝑓𝑛−2

𝑓𝑛−3

]
]
]
]
]

]

+

[
[
[
[
[

[

4093 0 0 0

26688 0 0 0

56862 0 0 0

105472 0 0 0

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛−4

𝑓𝑛−5

𝑓𝑛−6

𝑓𝑛−7

]
]
]
]
]

]

).

(7)

Integrate four times:

[
[
[
[
[

[

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠
𝑛+4

𝑦
󸀠
𝑛+3

𝑦
󸀠
𝑛+2

𝑦
󸀠
𝑛+1

]
]
]
]
]
]

]

=

[
[
[
[
[

[

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠
𝑛

𝑦
󸀠
𝑛−1

𝑦
󸀠
𝑛−2

𝑦
󸀠
𝑛−3

]
]
]
]
]
]

]

+ ℎ

[
[
[
[
[

[

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠󸀠
𝑛

𝑦
󸀠󸀠
𝑛−1

𝑦
󸀠󸀠
𝑛−2

𝑦
󸀠󸀠
𝑛−3

]
]
]
]
]
]

]

+
ℎ

2

2

[
[
[
[
[

[

1 0 0 0

4 0 0 0

9 0 0 0

16 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠󸀠󸀠
𝑛

𝑦
󸀠󸀠󸀠
𝑛−1

𝑦
󸀠󸀠󸀠
𝑛−2

𝑦
󸀠󸀠󸀠
𝑛−3

]
]
]
]
]
]

]

+
ℎ

3

6

⋅

[
[
[
[
[

[

1 0 0 0

8 0 0 0

27 0 0 0

64 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
iv
𝑛

𝑦
iv
𝑛−1

𝑦
iv
𝑛−2

𝑦
iv
𝑛−3

]
]
]
]
]
]

]

+
ℎ

4

159667200
(

[
[
[
[
[

[

−25143 276056 −1542812 7955976

−437504 4788224 −25525248 255250432

−1358127 14924088 74244276 1604715624

−3342336 190840832 1093402624 5052039168

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛+4

𝑓𝑛+3

𝑓𝑛+2

𝑓𝑛+1

]
]
]
]
]

]

+

[
[
[
[
[

[

679888370 −66798970 18463200 −3649810

455836160 −15732736 19158016 −3837952

1734575310 −251470008 70150212 −13839336

4381736960 −643825664 180092928 −35651584

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛

𝑓𝑛−1

𝑓𝑛−2

𝑓𝑛−3

]
]
]
]
]

]

+

[
[
[
[
[

[

21649 0 0 0

369408 0 0 0

1318761 0 0 0

3407872 0 0 0

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛−4

𝑓𝑛−5

𝑓𝑛−6

𝑓𝑛−7

]
]
]
]
]

]

).

(8)
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Integrate five times:

[
[
[
[
[

[

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[

[

𝑦𝑛+4

𝑦𝑛+3

𝑦𝑛+2

𝑦𝑛+1

]
]
]
]
]

]

=

[
[
[
[
[

[

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

]
]
]
]
]

]

[
[
[
[
[

[

𝑦𝑛

𝑦𝑛−1

𝑦𝑛−2

𝑦𝑛−3

]
]
]
]
]

]

+ ℎ

[
[
[
[
[

[

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠
𝑛

𝑦
󸀠
𝑛−1

𝑦
󸀠
𝑛−2

𝑦
󸀠
𝑛−3

]
]
]
]
]
]

]

+
ℎ

2

2

[
[
[
[
[

[

1 0 0 0

4 0 0 0

9 0 0 0

16 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠󸀠
𝑛

𝑦
󸀠󸀠
𝑛−1

𝑦
󸀠󸀠
𝑛−2

𝑦
󸀠󸀠
𝑛−3

]
]
]
]
]
]

]

+
ℎ

3

6

⋅

[
[
[
[
[

[

1 0 0 0

8 0 0 0

27 0 0 0

64 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
󸀠󸀠󸀠
𝑛

𝑦
󸀠󸀠󸀠
𝑛−1

𝑦
󸀠󸀠󸀠
𝑛−2

𝑦
󸀠󸀠󸀠
𝑛−3

]
]
]
]
]
]

]

+
ℎ

4

24

[
[
[
[
[

[

1 0 0 0

16 0 0 0

81 0 0 0

256 0 0 0

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
iv
𝑛

𝑦
iv
𝑛−1

𝑦
iv
𝑛−2

𝑦
iv
𝑛−3

]
]
]
]
]
]

]

+
ℎ

5

3632428800
(

[
[
[
[
[

[

−397695 4349090 −24084760 118367466

−16628480 183347200 −1022977536 7852902400

−93592665 995920434 −1796664240 79986003930

−329908224 6980894720 40512389120 363276533800

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛+4

𝑓𝑛+3

𝑓𝑛+2

𝑓𝑛+1

]
]
]
]
]

]

+

[
[
[
[
[

[

679888370 −66798970 18463200 −3649810

18183101440 −2522204160 720401920 −144287744

109670461100 −15912327690 4493865096 −893148930

375644487700 −54760308740 1534525440 −3038248960

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛

𝑓𝑛−1

𝑓𝑛−2

𝑓𝑛−3

]
]
]
]
]

]

+

[
[
[
[
[

[

348869 0 0 0

13889280 0 0 0

85522635 0 0 0

1095172096 0 0 0

]
]
]
]
]

]

[
[
[
[
[

[

𝑓𝑛−4

𝑓𝑛−5

𝑓𝑛−6

𝑓𝑛−7

]
]
]
]
]

]

).

(9)

2.2. Order and Convergence of the Method. Thematrix differ-
ential equation of the derived method is given as

𝛼𝑌𝑚 = ℎ𝛽𝑌
󸀠
𝑚 + ℎ

2
𝜆𝑌

󸀠󸀠
𝑚 + ℎ

3
𝜇𝑌

󸀠󸀠󸀠
𝑚 + ℎ

4
𝜎𝑌

iv
𝑚 + ℎ

5
𝜃𝐹𝑚, (10)

where 𝛼, 𝛽, 𝜆, 𝜇, 𝜎, and 𝜃 are the coefficients of the developed
method. Consequently, the order of 4-point block method
can be determined using the following formulae:

𝐶0 =

19

∑

𝑗=0

𝛼𝑗,

𝐶1 =

19

∑

𝑗=0

(𝑗𝛼𝑗 − 𝛽𝑗) ,

𝐶2 =

19

∑

𝑗=0

(
𝑗

2

2!
𝛼𝑗 − 𝑗𝛽𝑗 − 𝜆𝑗) ,

.

.

.

𝐶𝑞 =

19

∑

𝑗=0

(
𝑗

𝑞

𝑞!
𝛼𝑗 −

𝑗
𝑞−1

(𝑞 − 1)!
𝛽𝑗 −

𝑗
𝑞−2

(𝑞 − 2)!
𝜆𝑗

−
𝑗

𝑞−3

(𝑞 − 3)!
𝜇𝑗 −

𝑗
𝑞−4

(𝑞 − 4)!
𝜎𝑗 −

𝑗
𝑞−5

(𝑞 − 5)!
𝜃𝑗) .

(11)

As a result, a 4-point blockmethod of order nine is developed
with 𝐶𝑝+5 ̸= 0 and the error constant obtained is given as

𝐶14 = [
2497

7257600
,

40321

239500800
,

47357

479001600
,

2818273

43589145600
,

164971

3632428800
, −

23

113400
,

481

1871100
,

1187

1871100
,
95143

85135050
,
8753

4729725
,
113

89600
,
689

985600
,

2559

1971200
,
683073

179379200
,
497799

44844800
, −

94

14175
,

−
568

467775
,
1088

467775
,
429568

42567525
,
532736

14189175
]

𝑇

.

(12)

Hence, the consistency of 4-point block method is proven
according to the definition in [23]. The analysis of zero
stability for the developed method is tested using a similar
approach as presented in [24] and the first characteristic
polynomial obtained is 𝜌(𝑅) = 𝑅3

(𝑅−1) = 0. It is clearly seen
that the roots are 0 and 1. Thus fromTheorem 2.1 in [23], the
convergence of the proposed method is asserted.

3. Implementation

Throughout this section, the implementation of 4-point block
method for solving fifth-order IVPs will be explained in
detail. The code starts by finding the values of 𝑦 in the initial
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Table 1: Numerical results for solving Problem 1.

TOL MTD TS MAXE AVERR FC

10−2

ode45 11 1.743 (−6) 2.244 (−6) 67
4P1FI 23 1.640 (−4) 5.346 (−7) 210

4PHODE 20 9.031 (−9) 1.611 (−10) 186

10−4

ode45 11 1.641 (−6) 2.186 (−6) 67
4P1FI 37 9.727 (−7) 6.988 (−9) 339

4PHODE 27 7.059 (−10) 1.092 (−11) 243

10−6

ode45 18 5.234 (−7) 8.596 (−7) 109
4P1FI 50 5.582 (−9) 5.727 (−11) 447

4PHODE 35 1.009 (−9) 3.401 (−11) 307

10−8

ode45 44 5.485 (−9) 9.472 (−9) 265
4P1FI 96 7.597 (−11) 2.881 (−13) 799

4PHODE 42 1.838 (−10) 2.619 (−12) 363

10−10

ode45 108 5.552 (−11) 9.551 (−11) 649
4P1FI 788 1.834 (−14) 2.554 (−15) 6331

4PHODE 50 1.023 (−10) 3.443 (−12) 439
KAYODE (a) Not stated 1.638 (−6) Not stated Not stated
KAYODE (b) 100 5.082 (−7) Not stated Not stated

block using Euler method. However, it should be noted that
Euler method will act only as a fundamental building block.
Then the 4-point block method will be applied until the end
of the interval. As stated earlier, the proposed method is
implemented in the mode of predicting and correcting. In
order to preserve the accuracy, the step will succeed if the
local truncation error (LTE) is less than the specified error
tolerance (TOL) such that

LTE = 󵄨󵄨󵄨󵄨󵄨𝑦
𝑡
𝑛+4 − 𝑦

𝑡−1
𝑛+4

󵄨󵄨󵄨󵄨󵄨
< TOL, (13)

where 𝑦𝑡
𝑛+4 and 𝑦𝑡−1

𝑛+4 are the corrector value of 𝑦 at the last
point for each block with 𝑡 iterations. If (13) is satisfied, the
new step size will be calculated via the step size increment
formula. Otherwise, the current step size will be reduced by
half. The step size increment formula is defined as

ℎnew = 𝛿 × ℎold × (
TOL
2 × LTE

)

1/𝑚

, (14)

where ℎnew and ℎold denote the current and previous step size,
respectively, with value of 0.5 for safety factor (𝛿) and 𝑚 is
the order of corrector formulae. To show the accuracy and
efficiency of the proposed method, the computational errors
will be reported, equal to

𝐸𝑖 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦𝑖 − 𝑦 (𝑥𝑖)

𝐴 + 𝐵 (𝑦 (𝑥𝑖))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (15)

Different values of 𝐴 and 𝐵 represent the type of error test
which will be considered; namely, 𝐴 = 1, 𝐵 = 0 are for the
absolute error test; 𝐴 = 1, 𝐵 = 1 represent the mixed error
test; and 𝐴 = 0, 𝐵 = 1 correspond to the relative error test.
Here we will use the mixed error test and the maximum error
is calculated by

MAXE = max
1≤𝑖≤4

(𝐸𝑖) . (16)

4. Numerical Results

To illustrate the technique proposed in the preceding sec-
tions, two test problems are solved and the results obtained
compared with the method proposed in [8, 9, 25] and the
ODE solver in MATLAB ode45. The work done by [25]
involved the solving of the first-order ODEs using 4-point
block method using variable step size. This means that (1)
needs to be reduced into a system of first-order IVPs whereby
themethods proposed by [8, 9] are for solving (1) directlywith
the implementation of constant step size. The notations used
in Tables 1 and 2 are listed below:

TOL: error tolerance limit;

MTD: method used;

TS: total steps taken;

MAXE: maximum error of the computed solution;

AVERR: average error of the computed solution;

FC: total function calls;

ode45: Runge-Kutta-Dormand-Prince ODE solver;

4PHODE: implementation of the 4-point block
method in this research;

4P1FI: numerical results in [25];

KAYODE (a): numerical results in [8];

KAYODE (b): numerical results in [9].
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Table 2: Numerical results for solving Problem 2.

TOL MTD TS MAXE AVERR FC

10−2

ode45 11 5.027 (−3) 3.806 (−3) 67
4P1FI 58 2.528 (−7) 3.002 (−8) 490

4PHODE 28 5.537 (−6) 2.245 (−7) 250

10−4

ode45 13 1.967 (−4) 1.253 (−4) 79
4P1FI 68 9.819 (−9) 1.117 (−9) 571

4PHODE 36 4.193 (−7) 1.432 (−8) 315

10−6

ode45 25 4.592 (−7) 1.870 (−7) 151
4P1FI 86 1.219 (−10) 9.992 (−12) 715

4PHODE 46 1.003 (−7) 4.290 (−9) 395

10−8

ode45 58 1.861 (−9) 1.006 (−9) 349
4P1FI 135 1.363 (−12) 1.597 (−13) 1107

4PHODE 56 2.413 (−8) 1.012 (−9) 475

10−10

ode45 142 4.555 (−11) 2.026 (−11) 853
4P1FI 807 5.630 (−14) 1.250 (−14) 6483

4PHODE 71 1.949 (−10) 7.564 (−12) 595
KAYODE (a) Not stated 2.225 (−7) Not stated Not stated
KAYODE (b) 10 3.156 (−4) Not stated Not stated

Problem 1. Consider the following:

𝑦
(v)
= 2𝑦

󸀠
𝑦

󸀠󸀠
− 𝑦𝑦

(iv)
− 𝑦

󸀠
𝑦

󸀠󸀠󸀠
− 8𝑥 + (𝑥

2
− 2𝑥 − 3) 𝑒

𝑥
,

𝑥 ∈ [0, 2] , 𝑦 (0) = 1, 𝑦
󸀠
(0) = 1, 𝑦

󸀠󸀠
(0) = 3, 𝑦

󸀠󸀠󸀠
(0) = 1, 𝑦

(iv)
(0) = 1.

(17)

Solution is as follows: 𝑦(𝑥) = 𝑒𝑥 + 𝑥2. Source is [8].

Problem 2. Consider the following:

𝑦
(v)
= 6 (2 (𝑦

󸀠
)

3
+ 6𝑦𝑦

󸀠
𝑦

󸀠󸀠
+ 𝑦

2
𝑦

󸀠󸀠󸀠
) , 𝑥 ∈ [1, 3] , 𝑦 (1) = 1, 𝑦

󸀠
(1) = −1, 𝑦

󸀠󸀠
(1) = 2, 𝑦

󸀠󸀠󸀠
(1) = −6, 𝑦

(iv)
(1) = 24. (18)

Solution is as follows: 𝑦(𝑥) = 1/𝑥.
Source is [8].

5. Discussion

In this section the performances of 4PHODE, ode45, 4P1FI,
KAYODE (a), and KAYODE (b) are discussed in terms of
three parameters, namely, total steps taken, accuracy, and
total function evaluations. It is apparent from these tables,
mostly at tolerances 10−2, 10−4, and 10−6, that 4PHODE gives
better accuracy compared to ode45, whereas at tolerances
10

−8 and 10−10, ode45 is one decimalmore accurate compared
to 4PHODE for both problems. As both tables show, the
total steps taken by the 4PHODE reduce by nearly half to
ode45 at tolerance 10−10. Although, at other tolerance, ode45
requires lesser steps to compute the solution, this result may
be explained by the fact that the initial step size generated by

4PHODE is extremely small in order for the method control
of the accuracy. From the data in Tables 1 and 2, it is apparent
that the number of function calls is likely to be related to the
number of steps taken.

In the comparison of block-by-blockmethod, the numer-
ical results obtained in Tables 1 and 2 demonstrate that
the proposed method 4PHODE always requires fewer steps
in converging to the exact solution compared to 4P1FI.
This gain becomes more obvious as the tolerance decreases.
However, the 4P1FI achieves better accuracy than 4PHODE.
Even so, the maximum error for 4PHODE is still within the
specified tolerance. Another issue that had to be addressed
was the total number of function evaluations used by each
method.The 4PHODE solved all the problems at much lower
cost than 4P1FI and this superiority is most apparent at
finer tolerance. This result is in agreement with [10] which
states the drawback of using the reduction approach in the
implementation of simultaneous computations.
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Comparing the results with the method proposed by
KAYODE (a) and KAYODE (b), for Problem 1, 4PHODE
outperformed both KAYODE (a) and KAYODE (b) in terms
of accuracy and total steps taken. While, for Problem 2,
KAYODE (b) has lesser total steps taken, however, 4PHODE
still has superiority in terms of accuracy.

6. Conclusion

The overall performance revealed that the 4-point block
method is best to be implemented in a direct integration
approach as it required much less storage than the reduc-
tion method while still maintaining an acceptable accuracy.
Besides that, the results of this study also indicate that the
developed method has better accuracy compared to the
existing methods. Hence it can be said that 4PHODE is one
of the alternative methods that can be used for solving fifth-
order ODEs.
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