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Preface

The mathematical study of continuous change is known as calculus. There are two major divisions of 
calculus, known as differential calculus and integral calculus. The instantaneous rates of change and 
the slope of curves is studied under differential calculus. Integral calculus deals with accumulation of 
quantities and areas between and under the curves. The link between these two branches is known as 
the fundamental theorem of calculus. This theorem states that differentiation and integration are inverse 
operations. Calculus finds its application in every field where a problem can be mathematically modeled 
and where an optimal solution is sought. Therefore, it is used in all branches of physical science, actuarial 
science, computer science, statistics, engineering and a variety of other disciplines. The topics covered in 
this extensive book deal with the core aspects of calculus. It is appropriate for students seeking detailed 
information in this area as well as for experts. The book will serve as a valuable source of reference for 
graduate and post graduate students.

To facilitate a deeper understanding of the contents of this book a short introduction of every chapter 
is written below:

Chapter 1- The branch of mathematics which is involved in the study of continuous change is known 
as calculus. It has two major branches, namely, differential calculus and integral calculus. This is an 
introductory chapter which will introduce briefly all the significant aspects of calculus such as limits 
and continuity, and vector calculus.

Chapter 2- The derivative of a function of a real variable is used to measure the sensitivity to change of 
the function value in relation to a change in its input value. Some of the concepts studied in relation to 
derivatives are local extrema of functions and rules for finding derivatives. This chapter closely examines 
these key concepts of derivatives to provide an extensive understanding of the subject.

Chapter 3- Integral is an operation of calculus which assigns numbers to functions such that it describes 
displacement, area, volume, and other concepts which occur due to combination of infinitesimal data. 
The various techniques used within integration are integration by substitution, integration by parts and 
integration by trignometric substitution. This chapter discusses in detail these techniques of integration.

Chapter 4- The elements of vector space are known as vectors. There are a number of important areas 
of study related to vectors such as vector functions, gradient, curl and divergence. The chapter closely 
examines these key concepts related to vectors to provide an extensive understanding of the subject.

Chapter 5- The field of calculus uses a number of theorems such as Rolle’s theorem, divergence theorem, 
gradient theorem, Stokes’ theorem, Green’s theorem and mean value theorem. The diverse applications 
of these theorems have been thoroughly discussed in this chapter.

I would like to share the credit of this book with my editorial team who worked tirelessly on this 
book. I owe the completion of this book to the never-ending support of my family, who supported me 
throughout the project.

Megan Baker
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1
Introduction to Calculus
The branch of mathematics which is involved in the study of continuous change is known as cal-
culus. It has two major branches, namely, differential calculus and integral calculus. This is an in-
troductory chapter which will introduce briefly all the significant aspects of calculus such as limits 
and continuity, and vector calculus.

Calculus is a branch of Mathematics that deals with the study of limits, functions, derivatives, 
integrals and infinite series. The subject comes under the most important branches of applied 
Mathematics, and it serves as the basis for all the advanced mathematics calculations and engi-
neering applications.

Categories of Calculus

There are two major categories of Calculus:

•	 Differential Calculus

•	 Integral Calculus

Functions

A function is defined by three elements:

1.	 A domain: A subset of . The numbers which may be “fed into the machine”. 

2.	 A range: Another subset of .  Numbers that may be “emitted by the machine”. We do not 
exclude the possibility that some of these numbers may never be returned. We only require 
that every number returned by the function belongs to its range. 

3.	 A transformation rule: The crucial point is that to every number in its domain corresponds 
one and only one number in its range.

We normally denote functions by letters, like we do for real numbers (and for any other mathemat-
ical entity). To avoid ambiguities, the function has to be defined properly. For example, we may 
denote a function by the letter f. If A ⊆   is its domain, and B ⊆   is its range, we write f: A → B (f 
maps the set A into the set B). The transformation rule has to specify what number in B is assigned 
by the function to each number x ∈ A. We denote the assignment by f(x) (the function f evaluated 
at x). That the assignment rule is “assign f(x) to x” is denoted by f: x 7 → f(x) (pronounced “f maps 
x to f(x)”).

________________________ WORLD TECHNOLOGIES ________________________
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Let f: A → B be a function. Its image is the subset of B of numbers that are actually assigned by the 
function. That is,

( ) ( ){ }Image f   y B : x A :  f x   y .= ∈ ∃ ∈ =

The function f is said to be onto B if B is its image. f is said to be one-to-one if to each number in its 
image corresponds a unique number in its domain, i.e.,

( )( )( ) ( )( )y Image f !x A  :  f x   y .∀ ∈ ∃ ∈ =

Examples: A function that assigns to every real number its square. If we denote the function by f, 
then:

2f :    and      :   f x x→ → 

We may also write ( ) 2  f x x=

We should not say, however, that “the function 2 is f x ”. In particular, we may use any letter other 

than x as an argument for f. Thus, the functions f:   →  , defined by the transformation rules: 

( ) ( ) ( )2 2 2  ,    ,    f x x f t t f= = =α α  and ( ) 2  f ξ ξ=  are identical.

Also, it turns out that the function f only returns non-negative numbers. There is however  
nothing wrong with the definition of the range as the whole of. We could limit the range to be 
the set [0, ∞), but not to the set.

A function that assigns to every w, ±1 the number (w3 + 3w + 5)/(w2 − 1). If we denote this function 
by g, then, 

{ } :   \  1   g ± → 
 and 

3

2

3 5: .
1

w wg w
w
+ +

→
−

A function that assigns to every − 17 ≤ x ≤ π/3 its square. This function differs from the function in 
the first example because the two functions do not have the same domain (different “syntax” but 
same “routine”).

A function that assigns to every real number the value zero if it is irrational and one if it is rational. 

This function is known as the Dirichlet function. We have { } :    0,  1f → ,

With,

0 is irrational
:

1  is rational.
x

f x
x







A function defined on the domain,

{ } { }2  2,  17,   /17,  36 /      2  :  ,    A a b a bπ π= ∪ + ∈ 
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such that,

2

5 2
36 / 17

28 /17 or 36 /
16

x
x

x
x

=
 =
 =




π
π π

Otherwise the range may be taken to be , but the image is {6, 16, 28, 36/π}.

A function defined on   \ Q (the irrational numbers), which assigns to x the number of 7’s in its 
decimal expansion, if this number is finite. If this number is infinite, then it returns −π. This exam-
ple differs from the previous ones in that we do not have an assignment rule in closed form (how 
the heck do we compute f(x)?). Nevertheless it provides a legal assignment rule.

For every n ∈ N we may define the nth power function :  nf →  , by  :  n
nf x x→ . Here again, 

we will avoid referring to “the function x n”. The function 1  :   f x x  is known as the identity 
function, often denoted by Id, namely:

Id :    ,   :   .Id x x→  

There are many functions that you all know since high school, such as the sine, the cosine, the 
exponential, and the logarithm. These functions require a careful, sometimes complicated, defi-
nition. It is our choice in the present course to assume that the meaning of these functions (along 
with their domains and ranges) is well-understood.

Given several functions, they can be combined together to form new functions. For example, func-
tions form a vector space over the reals. Let  :    f A →   and  :    g B →   be given functions, 
and a, b ∈ . We may define a new function.

( ) ( )     :           :      a f b g A B a f b g x af x bg x+ ∩ → + + 

This is a vector field whose zero element is the zero function,  0x ; given a function f , its inverse 
is ( )  1 .f f− = −

Moreover, functions form algebra. We may define the product of two functions,

 ·  :      ,  f g A B∩ → 

( ) ( ) ·  :    ,f g x f x g x

as well as their quotient,

( ){ }/ :      :    0   ,f g A z B g z∩ ∈ ≠ →  ( ) ( )/  :   7  /f g x f x g x

A third operation that combines two functions is composition. Let f: A → B and g: B → C. We define:

   :    ,g f A C→ ( )( )   :   .g f x g f x 
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For example, if f is the sine function and g is the square function, then:

2   :   sin  g f ξ ξ   and 2   :    sin  .f g ζ ζ 

i.e., composition is non-commutative. On the other hand, composition is associative, namely,

( ) ( )          .f g h f g h=   

Note that for every function f,

        ,Id f f Id f= = 

so that the identity is the neutral element with respect to function composition. This should not be 
confused with the fact that   1x   is the neutral element with respect to function multiplication.

Example: Consider the function f that assigns the rule:

2 2

2

sin:
sin sin

x x x xf x
x x x
+ + +

+
 .

This function can be written as,

( )sin
sin sin sin

Id Id Id Id Id Id
f

Id Id
+ ⋅ + ⋅ ⋅

=
⋅ + ⋅ ⋅



.

Example: Recall the n-th power functions nf . A function P is called a polynomial of degree n if 

there exist real numbers ( ) 0
,n

i i
a

=
 with an, 0, such that,

0
.

n

k k
k

P a f
=

=∑

The union over all n’s of polynomials of degree n is the set of polynomials. A function is called ra-
tional if it is the ratio of two polynomials.

Graph of Functions

Definition If f is a function with domain A, then the graph of f is the set of all ordered pairs

( )( ){ },  |   ,x f x x A∈

That is, the graph of f is the set of all points (x, y) such that y = f(x). This is the same as the graph 
of the equation y = f(x).

The graph of a function allows us to translate between algebra and pictures or geometry.

A function of the form f(x) = mx + b is called a linear function because the graph of the corre-
sponding equation y = mx + b is a line. A function of the form f(x) = c where c is a real number (a 
constant) is called a constant function since its value does not vary as x varies.

________________________ WORLD TECHNOLOGIES ________________________
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Example: Draw the graphs of the functions:

( ) ( ) 2,    2  1.f x g x x= = +

Graphing functions, as you progress through calculus, your ability to picture the graph of a func-
tion will increase using sophisticated tools such as limits and derivatives. The most basic method 
of getting a picture of the graph of a function is to use the join-the-dots method. Basically, you pick 
a few values of x and calculate the corresponding values of y or f(x), plot the resulting points {(x, 
f(x)} and join the dots.

Example: Fill in the tables shown below for the functions,

( ) ( ) ( )2 3 ,    ,    f x x g x x h x x= = =

And plot the corresponding points on the Cartesian plane. Join the dots to get a picture of the 
graph of each function.

( ) 2

3
2
1
0
1
2
3

f x xx =

−
−
−

  

( ) 3

3
2
1
0
1
2
3

g x xx =

−
−
−

  

( )
0
1
4
9
16
25
36

h x xx =

Graph of f(x) = 1/x:

( ) 1/
100
10
1
0
1
10
100

f x xx =

−
−
−

  

( ) 1/
1/1
1/100
1/1000
0
1/1000
1/100
1/10

f x xx =

−
−
−

Domain and Range on Graph

The domain of the function f is the set of all values of x for which f is defined and this corresponds 
to all of the x-values on the graph in the xy-plane. The range of the function f is the set of all values 
f(x) which corresponds to the y values on the graph in the xy-plane.

________________________ WORLD TECHNOLOGIES ________________________
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Example: Use the graph shown below to find the domain and range of the function:

( ) 23 1 4 .f x x= −

�1.0 �0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0
y � 3 1 � 4 x2

Graphing Piecewise Defined Functions

Recall that a piecewise defined function is typically defined by different formulas on different parts 
of its domain. The graph therefore consists of separate pieces as in the example shown below: 

( )

2

3 3
3 5

0 5
5 7

1 7
10

x x
x x

k x x
x x

x
x

 − < <
 ≤ <


= =
 < ≤

>
−

________________________ WORLD TECHNOLOGIES ________________________
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•	 We use a solid point at the end of a piece to emphasize that that point is on the graph. For 
example, the point (3, 3) is on the graph whereas the point above it, (3, 9), at the end of the 
portion of the graph of y = x2 is not.

•	 We use a circle to denote that a point is excluded. For example the value of this function at 
5 is 0, therefore the point (5, 0) is on the graph as indicated with the solid dot. The point 
above it on the line y = x, (5, 5), is not on the graph and is excluded from the graph. We 
indicate this with a circle at the point (5, 5).

•	 Note that the formula 
1
10

y
x

=
−

 does not make sense when x = 10. Therefore x = 10 is not 

in the domain of this function. As the values of x get closer and closer to 10 from above, the 

values of 
1
10x −

 get larger and larger. Therefore the y values on the graph approach +∞ as 

we approach x = 10 from the right. On the other hand the y values on the graph approach 
−∞ as x approaches 10 from the left. Although there is no point on the graph at x = 10, the 
(computer generated) graph shows a vertical line at x = 10. This line is called a vertical as-
ymptote to the graph.

Example: Graph the piecewise defined function:

( )
2

1
2 1 2
1 2

2

x x
x x

f x
x

x x

−∞ < ≤
 < <
 =
 >

Example: Graph the absolute value function:

( )
0
0

x x
g x

x x
− <
 ≥

Graphs of Equations: Vertical Line Test

It is important in calculus to distinguish between the graph of a function and graphs of equations 
which are not the graphs of functions. We will develop a technique called implicit differentiation to 
allow us to compute derivatives at (some) points on the graphs of equations which are not graphs 
of functions. It is therefore important to be fully aware of the relationship between graphs of equa-
tions and graphs of functions.

Recall that the defining characteristic of a function is that for every point in the domain, we get 
exactly one corresponding point in the range. This translates to a geometric property of the graph 
of the function y = f(x), namely that for each x value on the graph we have a unique corresponding 
y value. This in turn is equivalent to the statement that if a vertical line of the form x = a cuts the 
graph of y = f(x), it cuts it exactly once. Therefore we get a geometric property which characterizes 
the graphs of functions: Vertical Line Property A curve in the xy-plane is the graph of a function if 
and only if no vertical line intersects the curve more than once.

________________________ WORLD TECHNOLOGIES ________________________
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Recall that the graph of an equation in x and y is the set of all points (x, y) in the plane which satisfy 
the equation. For example the graph of the equation x2 + y2 = 1 is the unit circle (circle of radius 1 
centered at the origin).

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0
x2 � y2 � 1

If we can solve for y uniquely in terms of x in the given equation, we can rearrange the equation to 
look like y = f(x) for some function of x. Rearranging the equation does not change the set of points 
which satisfy the equation, that is, it does not alter the graph of the equation. So being able to solve 
for y uniquely in terms of x is the algebraic equivalent of the graph of the equation being the graph 
of a function. This is equivalent to the graph of the equation having the vertical line property given 
above. Vertical Line Test The graph of an equation is the graph of a function (or equivalently if we 
can solve for y uniquely in terms of x) if no vertical line cuts the curve more than once.

More generally, this applies to graphs given in pieces which may be the graph of a piecewise de-
fined function. One or several curves in the xy plane form the graph of a function (possibly piece-
wise defined) if no vertical line cuts the collection of curves more than once.

Example: Which of the following curves are graphs of functions?

 

�4 �2 2 4

�1.5

�1.0

�0.5

0.5

1.0

1.5
2�x2 � y2�2 � 25�x2 � y2�

 

�10 �5 5 10

�1

1

2

3

4

5
2�x � y3� � 25�x2 � y3�

Let us see what happens if we try to solve for y in an equation which describes a curve which not 
pass the vertical line tests. If we try to solve for y in terms of x in the equation:

2 2 25x y+ =

________________________ WORLD TECHNOLOGIES ________________________
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We get 2 new equations,

225y x= −  and 225 .y x= − −

The graph of the equation x2 + y2 = 25 is a circle centered at the origin (0, 0) with radius 5 and the 
above two equations describe the upper and lower halves of the circle respectively.

6

4

2

–2

–4

–5 5

x2 + y2 = 25

4

2

–2

–4

–6

–5 5 10

g x( ) = – 25 – x2

    

6

4

2

–2

–4

–6

–5 5 10

f x( ) = 25 – x2

The graphs of the upper and lower halves of the circle are the graphs of functions, but the circle 
itself is not. Here is a catalogue of basic functions, the graphs of which you should memorize for 
future reference:

Lines

Vertical Horizontal General
x � a

a

y � a

a

y � mx � b

b

________________________ WORLD TECHNOLOGIES ________________________
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Power Functions

y � x2

0

y � x3

0

Root Functions
y � x

0

y � x
3

0

Absolute Value Function y = 1/x
y � �x�

0

y � 1�x

0

Limits and Continuity

Formal Definition of a Limit

To be able to prove results about limits and capture the concept logically, we need a formal defi-
nition of what we mean by a limit. We will only look here at the precise meaning of ( )lim ,

x
f x L

→∞
=  

but there is a similar definition for the limit at a point.

In words, the statement ( )lim ,
x

f x L
→∞

=  says that f(x) gets (and stays) as close as we please to L, 

provided we take sufficiently large x. We now try to pin down this notion of closeness.

________________________ WORLD TECHNOLOGIES ________________________
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Another way of expressing the statement above is that, if we are given any small positive number ε 
(the Greek letter epsilon), then the distance between f (x) and L is less than ε provided we make x 
large enough. We can use absolute value to measure the distance between f (x) and L as |f (x) − L|.

How large does x have to be? Well, that depends on how small ε is.

The formal definition of ( )lim ,
x

f x L
→∞

=  is that, given any ε > 0, there is a number M such that, if we 

take x to be larger than M, then the distance |f (x) − L| is less than ε.

y

x
0 M

L + ε

L

L – ε

The value of f (x) stays within ε of L from the point x = M onwards.

For example, consider the function ( ) 1.xf x
x
+

=
 
We know from our basic work on limits that

( )lim 1.
x

f x
→∞

=
 
For x > 0, the distance is,

( ) 1 11 1 .xf x
x x
+

− = − =

So, given any positive real number ε, we need to find a real number M such that, if x > M, then 
1
x

ε< For x > 0, this inequality can be rearranged to give 
1 .x
ε

> Hence we can choose M to be 
1
ε

.

y

x
0

1 + ε

1 – ε

1

M = 1
ε

Let x > M we have | f (x)−2| < ε. Conclude

While the formal definition can be difficult to apply in some instances, it does give a very precise 
framework in which mathematicians can properly analyse limits and be certain about what they 
are doing.

________________________ WORLD TECHNOLOGIES ________________________
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Pinching Theorem

One very useful argument used to find limits is called the pinching theorem. It essentially says that 
if we can ‘pinch’ our limit between two other limits which have a common value, then this common 
value is the value of our limit.

Thus, if we have:

( ) ( ) ( )      ,g x f x h x≤ ≤ for all x,

and	 ( ) ( ) ( )lim lim , then lim .
x a x a x a

g x h x L f x L
→ → →

= = =

Here is a simple example of this,

To find 
!lim ,nn

n
n→∞

we can write:

! 1 2 3 2 1.....

1 11 1 1 ..... 1 1 ,

n

n n n n
n n n n n n n

n n

− −
= × × × × ×

≤ × × × × × × =

Where we replaced every fraction by 1 except the last. Thus we have 
! 10 .n

n
n n

≤ ≤
 
Since 

1lim 0,
n n→∞

=

we can conclude using the pinching theorem that 
!lim 0,nn

n
n→∞

=

In particular, the very important limit,

1 0Sin x as x
x

→ →

(Where x is expressed in radians).

Finding Limits Using Areas

One beautiful extension of the pinching theorem is to bound a limit using areas. We begin by look-

ing at the area under the curve 
1y
x

= from x = 1 to 
11 .x
n

= +

y

x
0 1 1 + 1

n

1
x

f(x) =

________________________ WORLD TECHNOLOGIES ________________________
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The area under the curve is bounded above and below by areas of rectangles, so we have:

11

1

1 1 1 1.11
n dx

n n
n

+
× ≤ ≤ ×

+
∫

Hence,

1 1 1log 1 .
1 en n n

 ≤ + ≤ +  

Now multiplying by n, we have:

1log 1 1.
1 e

n n
n n

 ≤ + ≤ +  

Hence, if we take limits as n → ∞, we conclude by the pinching theorem that,

1 1log 1 1 log 1 1

11

n

e e

n

n
n n

e
n

   + → ⇒ + →   
   

 ⇒ + → 
 

That is,

1lim 1 .
n

n
e

n→∞

 + = 
 

Limit of a Sequence

Consider the sequence whose terms begin,

1 1 11, , , ,.....
2 3 4

And whose general term is 
1 .
n  

As we take more and more terms, each term is getting smaller in 

size. Indeed, we can make the terms as small as we like, provided we go far enough along the se-
quence. Thus, although no term in the sequence is 0, the terms can be made as close as we like to 
0 by going far enough.

We say that the limit of the sequence 
1 : 1,2,3,....n
n

 = 
   

is 0 and we write,

1lim 0.
n n→∞

=
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It is important to emphasise that we are not putting n equal to ∞ in the sequence, since infinity is 
not a number — it should be thought of as a convenient idea. The statement above says that the 

terms in the sequence 
1
n

get as close to 0 as we please (and continue to be close to 0), by allowing 
n to be large enough.

y

n
0 1

1

2 3 4 5

✖

✖
✖

✖
✖

Graph of the sequence 
1 .
n

In a similar spirit, it is true that we can write,

1lim 0,an n→∞
=

For any positive real number a. We can use this, and some algebra, to find more complicated limits.

Example: Find,

2

2

3 2 1lim .
2n

n n
n→∞

+ +
−

Solution: Intuitively, we can argue that, if n is very large, then the largest term (sometimes called the 
dominant term) in the numerator is 3n2, while the dominant term in the denominator is n2. Thus, 

ignoring the other terms for the moment, for very large n the expression 
2

2

3 2 1
2

n n
n
+ +
−

is close to 3.

The best method of writing this algebraically is to divide by the highest power of n in the 
denominator:

2 2

2

2

2 133 2 1lim lim .22 1
x n

n n n n
n

n
→∞ →∞

+ ++ +
=

− −

Now, as n becomes as large as we like, the terms 2 2

2 1 2,  and 
n n n

approach 0, so we can complete the 
calculation and write,

2 2

2

2

2 133 2 1lim lim 22 1
n n

n n n n
n

n
→∞ →∞

+ ++ +
=

− −
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2

2

2 1lim 3

2lim 1

3 3.
1

n

n

n n

n

→∞

→∞

 + + 
 =
 − 
 

= =

Limiting Sums

A full study of infinite series is beyond the scope of the secondary school curriculum. But one in-
finite series, which was studied in antiquity, is of particular importance here.

Suppose we take a unit length and divide it into two equal pieces. Now repeat the process on the 
second of the two pieces, and continue in this way as long as you like.

1

1
2

1
4

1
8

1
16

Dividing a unit length into smaller and smaller pieces.

This generates the sequence,

1 1 1 1, , , .......
2 4 8 16

Intuitively, the sum of all these pieces should be 1.

After n steps, the distance from 1 is 
1 .

2n  
This can be written as,

1 1 1 1 1.... 1 .
2 4 8 2 2n n+ + + + = −

The value of the sum approaches 1 as n becomes larger and larger. We can write this as,

1 1 1 1.... 1 as n 
2 4 8 2n+ + + + → →∞

We also write this as,

1 1 1 .... 1.
2 4 8
+ + + =

This is an example of an infinite geometric series.

A series is simply the sum of the terms in a sequence. A geometric sequence is one in which each 
term is a constant multiple of the previous one, and the sum of such a sequence is called a geomet-
ric series. In the example considered above, each term is 1/2 times the previous term.
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A typical geometric sequence has the form,

2 3  1, , , , ..., na ar ar ar ar −

Where   0.r ≠  Here a is the first term, r is the constant multiplier (often called the common ratio) 
and n is the number of terms.

2 3 1         ···   .nSn a ar ar ar ar −= + + + + +

We can easily find a simple formula for Sn. First multiply equation 2 3  1, , , , ..., na ar ar ar ar −  by r to 
obtain,

2 3       ···  .n
nr S ar ar ar ar= + + + +

Subtracting equation 2 3       ···  .n
nr S ar ar ar ar= + + + +

From equation 2 3 1         ···   .nSn a ar ar ar ar −= + + + + +

Gives,

    n
n nS r S a ar− = −

From which we have,

( )1
1.

1

n

n

a r
S for r

r
−

= ≠
−

Now, if the common ratio r is less than 1 in magnitude, the term rn will become very small as n be-
comes very large. This produces a limiting sum, sometimes written as S∞. Thus, if |r | < 1,

lim nn
S S∞ →∞

=

( )1
lim .

1 1

n

n

a r a
r r→∞

−
= =

− −

In the example considered at the start of this section, we have 
1
2

a =
 

and 
1 ,
2

r = hence the value 

of the limiting sum is 

1
2

11
2

−
=1, as expected.

Limit of a Function at Infinity

Just as we examined the limit of a sequence, we can apply the same idea to examine the behaviour 
of a function f (x) as x becomes very large. 
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For example, the following diagram shows the graph of ( ) 1 ,f x
x

=  for x > 0. The value of the func-
tion f(x) becomes very small as x becomes very large.

y

x
0

1
x

f(x) =    , x > 0

We write, 

1lim 0.
x x→∞

=

One of the steps involved in sketching the graph of a function is to consider the behaviour of the 
function for large values of x. 

The following graph is of the function ( )
2

2

2 .
1

xf x
x

=
+

We can see that, as x becomes very large, the 

graph levels out and approaches, but does not reach, a height of 2.

f(x)

x
0

2

We can analyse this behaviour in terms of limits. we divide the numerator and denominator by x2 :

2

2

2

2 2lim lim 2.11 1
x x

x
x

x
→∞ →∞

= =
+ +

Note that as x goes to negative infinity we obtain the same limit. That is,

2

2

2lim 2.
1x

x
x→∞

=
+
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This means that the function approaches, but does not reach, the value 2 as x becomes very large. 
The line y = 2 is called a horizontal asymptote for the function.

Examining the long-term behaviour of a function is a very important idea. For example, an object 
moving up and down under gravity on a spring, taking account of the inelasticity of the spring, is 
sometimes referred to as damped simple harmonic motion. The displacement, x(t), of the object 
from the centre of motion at time t can be shown to have the form,

( )  sin ,tx t Ae t−= α β

Where A, α and β are positive constants. The factor Ae−αt gives the amplitude of the motion. As t 
increases, this factor Ae−αt diminishes, as we would expect. Since the factor sin βt remains bound-
ed, we can write,

( )lim lim sin 0.t

t t
x t Ae tα β−

→∞ →∞
= =

In the long term, the object returns to its original position.

Limit at a Point

As well as looking at the values of a function for large values of x, we can also look at what is hap-
pening to a function near a particular point.

For example, as x gets close to the real number 2, the value of the function ( ) 2  f x x=  gets close 
to 4. Hence we write,

2lim 4.
x

x
→∞

=

Sometimes we are given a function which is defined piecewise, such as:

( )
3 2

2.
x if x

f x
x if x
+ ≤

=  >

The graph of this function is as follows:

y

x
0 1 2 3 4 5

1

–1

–2

–3

–4

–1–2–3–4–5

2

3

4

5
(2,5)

(2,2)
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We can see from the ‘jump’ in the graph that the function does not have a limit at 2:

•	 As the x-values get closer to 2 from the left, the y-values approach 5. 

•	 But as the x-values get closer to 2 from the right, the y-values do not approach the same 
number 5 (instead they approach 2).

In this case, we say that, ( )
2

lim
x

f x
→

 does not exist.

Sometimes we are asked to analyse the limit of a function at a point which is not in the domain of 

the function. For example, the value x = 3 is not part of the domain of the function ( )
2 9 .

3
xf x
x
−

=
−

 

However, if 3x ≠ , we can simplify the function by using the difference of two squares and cancel-

ling the (non-zero) factor x − 3:

( ) ( )( )2 3 29 3, for 3.
3 3

x xxf x x x
x x

− +−
= = = + ≠

− −

Now, when x is near the value 3, the value of f (x) is near 3 + 3 = 6. Hence, near the x-value 3, the 
function takes values near 6. We can write this as,

2

3

9lim 6.
3x

x
x→

−
=

−

The graph of the function ( )
2 9

3
xf x
x
−

=
−

 is a straight line with a hole at the point (3, 6).

y

x
0 3–3

6 (3,6)

Example: Find, 

2

22

3 2lim .
4x

x x
x→

− +
−

Solution: We cannot substitute x = 2, as this produces 0 in the denominator. We therefore factorise 
and cancel the factor x −2:
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( )( )
( )( )

2

22 2

2

2 13 2lim lim
4 2 2

1 1lim .
2 4

x x

x

x xx x
x x x
x
x

→ →

→

− −− +
=

− − +

−
= =

+

Even where the limit of a function at a point does not exist, we may be able to obtain useful infor-
mation regarding the behaviour of the function near that point, which can assist us in drawing its 
graph.

For example, the function:

( ) 2
1

f x
x

=
−

It is not defined at the point x = 1. As x takes values close to, but greater than 1, the values of f (x) 
are very large and positive, while if x takes values close to, but less than 1, the values of f (x) are very 
large and negative. We can write this as,

2 2as 1 and as 1
1 1

x x
x x

+ −→∞ → →−∞ →
− −

The notation x → 1+ means that ‘x approaches 1 from above’ and x → 1− means ‘x approaches 1 from 
below’.

Thus, the function ( ) 2
1

f x
x

=
−

 has a vertical asymptote at x = 1, and the limit as x → 1 does not 

exist. The following diagram shows the graph of the function f (x). The line y = 0 is a horizontal 
asymptote.

y

x
0 1

y = 2
x–1

Further Examples

There are some examples of limits that require some ‘tricks’. For example, consider the limit,

2

20

4 2lim .
x

x
x→

+ −
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We cannot substitute x = 0, since then the denominator will be 0. To find this limit, we need to 
rationalise the numerator:

( )
( )

2 2 2

2 2 20 0

2

0 2 2

20

4 2 4 2 4 2lim lim
4 2

4 4
lim

4 2

1 1lim .
44 2

x x

x

x

x x x
x x x

x

x x

x

→ →

→

→

 + − + − + +
= ×  + + 

+ −

+ +

=
+ +

We have implicitly assumed the following facts — none of which we can prove without a more for-
mal definition of limit.

Limits of Algebra

Suppose that f (x) and g (x) are functions and that a and k are real numbers. If both ( )lim
x a

f x
→

and 

( )lim
x a

g x
→

 exist, then,

a)	 ( ) ( )( ) ( ) ( )lim lim lim
x a x a x a

f x g x f x g x
→ → →

+ = +

b)	 ( ) ( )lim lim
x a x a

k f x k f x
→ →

=

c)	 ( ) ( ) ( )( ) ( )( )lim lim lim
x a x a x a

f x g x f x g x
→ → →

=

d)	 ( )
( )

( )
( ) ( )

lim
lim ,provided lim is not equal to0.

lim
x a

x a x a
x a

f xf x
g x

g x g x
→

→ →
→

=

Continuity

When first showing students the graph of y = x2, we generally calculate the squares of a number of 
x-values and plot the ordered pairs (x, y) to get the basic shape of the curve. We then ‘join the dots’ 
to produce a connected curve.

We can justify this either by plotting intermediary points to show that our plot is reasonable or 
by using technology to plot the graph. That we can ‘join the dots’ is really the consequence of the 
mathematical notion of continuity.

A formal definition of continuity is not usually covered in secondary school mathematics. For most 
students, a sufficient understanding of continuity will simply be that they can draw the graph of 
a continuous function without taking their pen off the page. So, in particular, for a function to be 
continuous at a point a, it must be defined at that point.

Almost all of the functions encountered in secondary school are continuous everywhere, unless 

they have a good reason not to be. For example, the function ( ) 1f x
x

=  is continuous everywhere, 
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except at the point x = 0, where the function is not defined. A point at which a given function is not 
continuous is called a discontinuity of that function.

Here are more examples of functions that are continuous everywhere they are defined:

•	 Polynomials for instance, 23 2 1,x x+ −

•	 The trigonometric functions sinx, cosx and tanx,

•	 The exponential function ax and logarithmic function logb x (for any bases a > 0 and b > 1).

Starting from two such functions, we can build a more complicated function by either adding, 
subtracting, multiplying, dividing or composing them: the new function will also be continuous 
everywhere it is defined.

Example: Where is the function ( ) 2

1
16

f x
x

=
−

 continuous?

Solution: The function ( ) 2

1
16

f x
x

=
−

 is a quotient of two polynomials. So this function is contin-

uous everywhere, except at the points x = 4 and x = −4, where it is not defined.

Continuity of Piecewise-defined Functions

Since functions are often used to model real-world phenomena, sometimes a function may arise 
which consists of two separate pieces joined together. Questions of continuity can arise in these 
case at the point where the two functions are joined. For example, consider the function:

( )
2 9 3

3 3.
6

x if x
f x x if x

 − ≠
− =

This function is continuous everywhere, except possibly at x = 3. We can see whether or not this 
function is continuous at x = 3 by looking at the limit as x approaches 3. 

We can write,

( )( )2

3

3 39lim lim 6.
3 3x x

x xx
x x→ →∞

− +−
= =

− −

Since 6 is also the value of the function at x = 3, we see that this function is continuous. Indeed, this 
function is identical with the function f (x) = x + 3, for all x.

Now consider the function,

( )
2 9 3

3 3.
7

x if x
g x x if x

 − ≠
− =
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The value of the function at x = 3 is different from the limit of the function as we approach 3, and 
hence this function is not continuous at x = 3. We can see the discontinuity at x = 3 in the following 
graph of g (x).

y

x
0 3–3

7

3

(3,7)

We can thus give a slightly more precise definition of a function f (x) being continuous at a point a. 
We can say that f (x) is continuous at x = a.

•	 f (a) is defined, and

•	 ( ) ( )lim .
x a

f x f a
→

=

Example: Examine whether or not the function:

( )
3 22 1

23 2
if xx x

f x
if xx

≤ − +
 >− 

It is continuous at x = 2.

Solution: Notice that f (2) = 23 −2 × 2 + 1 = 5. We need to look at the limit from the right-hand side 
at x = 2. For x > 2, the function is given by 3x −2 and so,

( ) ( )
2 2

lim lim 3 2 4.
x x

f x x
+ +→ →

− =

In this case, the limit from the right at x = 2 does not equal the function value, and so the function 
is not continuous at x = 2 (although it is continuous everywhere else).

y

x
0 1 2 3

1

–1

–2

–3

–4

–1–2–3

2

3

4

5
(2,5)

(2,4)
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Differential Calculus

Differential Calculus is a branch of mathematics that studies derivatives and differentials of func-
tions and their use in the investigation of functions.

The development of differential calculus into an independent mathematical discipline is asso-
ciated with the names of I. Newton and G. von Leibniz (the second half of the 17th century), 
who formulated the basic propositions of differential calculus and clearly indicated the mu-
tually inverse nature of the operations of differentiation and integration. Since that time dif-
ferential calculus has developed with integral calculus. The (differential and integral) calculus 
forms the main part of mathematical analysis. The creation of the calculus launched a new era 
in the development of mathematics. It resulted in the appearance of a number of mathemati-
cal disciplines: the theory of series, the theory of differential equations, differential geometry, 
and the calculus of variations. The methods of mathematical analysis have found application 
in all divisions of mathematics. The number of applications of mathematics to problems of  
natural science and technology has expanded immeasurably. “Only differential calculus makes 
it possible for natural science to depict mathematically not only states, but also processes: 
motion”.

Differential calculus is based on the following fundamental concepts of mathematics: real num-
bers (the number line), function, limit, and continuity. All these concepts have become crystal-
lized and have obtained their present content in the course of the development and substantiation 
of the calculus. The basic idea of the differential calculus consists in studying functions locally. 
To be more precise, the differential calculus supplies the apparatus for studying functions whose 
behavior in a sufficiently small neighborhood of each point is close to the behavior of a linear 
function or polynomial. The central concepts of the differential calculus, the derivative and the 
differential, serve as such an apparatus. The concept of a derivative developed out of a large num-
ber of problems of natural science and mathematics, all of which reduced to calculating limits 
of the same type. The most important of these problems were the determination of the velocity 
of rectilinear motion of a point and the construction of a tangent to a curve. The concept of a 
differential is the mathematical expression of the proximity of a function to a linear function in 
a small neighborhood of the point being examined. In contrast to a derivative, the concept of a 
differential is easily carried over to mappings of one Euclidian space into another and to map-
pings of arbitrary normed vector spaces and is one of the principal concepts of modern nonlinear 
functional analysis.

Derivative

Let a function ( )y f x=  be defined in some neighbourhood of a point 0x0. Let 0x∆ ≠  denote the 

increment of the argument and let ( ) ( )0 0y f x x f x∆ = + ∆ −  denote the corresponding increment 

of the value of the function. If there exists a (finite or infinite) limit.

0
lim .
x

y
x∆ →

∆
∆
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Then this limit is said to be the derivative of the function f at 0x ; it is denoted by ( )0'f x  

( )0 / , ', ' , / .df x dx y y x dy dx  Thus, by definition,

( ) ( ) ( )0 0
0 0 0

' lim lim
x x

f x x f xyf x
x x∆ → ∆ →

+ ∆ −∆
= =

∆ ∆

The operation of calculating the derivative is called differentiation. If ( )0'f x  is finite, the function 

f is called differentiable at the point 0x . A function which is differentiable at each point of some 

interval is called differentiable in the interval.

Geometric Interpretation of the Derivative

Let C be the plane curve defined in an orthogonal coordinate system by the equation ( )y f x= , where 

f is defined and is continuous in some interval J; let ( )0 0,M x y  be a fixed point on C, let ( ),P x y  

( )x J∈  be an arbitrary point of the curve C and let MP be the secant. An oriented straight line MT 

(T a variable point with abscissa 0x x+ ∆ ) is called the tangent to the curve C at the point M if the 

angle φ  between the secant MP and the oriented straight line tends to zero as φ  (in other words, 

as the point P C∈  arbitrarily tends to the point M). If such a tangent exists, it is unique. Putting 

( ) ( )0 0 0,x x x y f x x f x= + ∆ ∆ = + ∆ −  one obtains the equation tan /y xβ = ∆ ∆  for the angle β  

between MP and the positive direction of the x-axis.

The curve C has a tangent at the point M if and only if 0lim /x y x∆ → ∆ ∆  exists, i.e. if ( )0'f x  exists. 

The equation ( )0tan 'f xα =  is valid for the angle a between the tangent and the positive direc-

tion of the x-axis. If ( )0'f x  is finite, the tangent forms an acute angle with the positive x-axis, 

i.e. / 2 / 2;π α π− < < ; if ( )0' ,f x = ∞  the tangent forms a right angle with that axis.
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Thus, the derivative of a continuous function f at a point 0x  is identical to the slope tan α  of the 

tangent to the curve defined by the equation ( )y f x=  at its point with abscissa 0x .

Mechanical Interpretation of the Derivative

Let a point M move in a straight line in accordance with the law ( )s f t= . During time t∆  the point 

M becomes displaced by ( ) ( ).s f t t f t∆ = + ∆ −  The ratio / .s t∆ ∆  represents the average velocity 

avv  during the time t∆ . If the motion is non-uniform, avv  is not constant. The instantaneous veloc-

ity at the moment t is the limit of the average velocity as 0,t∆ →  i.e. ( )'v f t=  (on the assumption 
that this derivative in fact exists).

Thus, the concept of derivative constitutes the general solution of the problem of constructing tan-
gents to plane curves, and of the problem of calculating the velocity of a rectilinear motion. These 
two problems served as the main motivation for formulating the concept of derivative.

A function which has a finite derivative at a point 0x  is continuous at this point. A continuous 
function need not have a finite or an infinite derivative. There exist continuous functions having 
no derivative at any point of their domain of definition.

The formulas given below are valid for the derivatives of the fundamental elementary functions at 
any point of their domain of definition (exceptions are stated):

•	 if ( ) const, then '( ) ' 0;f x C f x C= = = =

•	 if ( ) , then '( ) 1;f x x f x= =

•	 1( ) ' , const ( 0, if 1);x x xα αα α α−= = ≠ ≤

•	 ( ) ' ln , const 0, 1; in particular, ( )' ;x x x xe e= = > ≠ =α α α α α

•	 (log ) ' (log ) / 1/ ( In ), const 0, 1, (ln ) ' 1/ ;x e x x x x= = = > ≠ =α α α α α

•	 (sin ) ' cos ;x x=
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•	 (cos ) ' sin ;x x= −

•	 2(tan ) ' 1/ cos ;x x=

•	 2(cotan ) ' 1/ sin ;x x= −

•	 2(arcsin ) ' 1/ 1 , 1;x x x= − ≠ ±

•	 2(arccos ) ' 1/ 1 , 1;x x x= − − ≠ ±

•	 2(arctan ) ' 1/ (1 );x x= +

•	 2(arccotan ) ' 1/ (1 );x x= − +

•	 (sinh ) ' cosh ;x x=

•	 (cosh ) ' sinh ;x x=

•	 2(tanh ) ' 1/ cosh ;x x=

•	 2(cotanh ) ' 1 / sinh .x x= −

The following laws of differentiation are valid:

If two functions u  and v  are differentiable at a point 0x  then the functions:

(where c = const), , , ( 0)ucu u v uv v
v

± ≠

They are also differentiable at that point, and

2

( ) ' ',
( )' ' ',
( )' ' ',

' ' ' .

cu cu
u v u v
uv u v uv
u u v uv
v v

=
± = ±
= +

−  = 
 

Theorem on the derivative of a composite function: If the function ( )y f u=  is differentiable at 

a point 0u , while the function ( )xφ  is differentiable at a point 0x , and if 0 0( )u xφ= , then the 

composite function ( )( )y f xφ=  is differentiable at 0x , and '
0 0'( ) ' ( )xy f u xφ=  or, using another 

notation, / ( / )( / )dy dx dy du du dx= .

Theorem on the derivative of the inverse function: If ( )y f x=  and ( )x g y=  are two mutually 
inverse increasing (or decreasing) functions, defined on certain intervals, and if 0'( ) 0f x ≠  exists 
(i.e. is not infinite), then at the point 0 0( )y f x=  the derivative 0 0'( ) 1/ '( )g y f x=  exists, or, in a 

different notation, / 1 / ( / )dx dy dy dx= . This theorem may be extended: If the other conditions 

hold and if also 0'( ) 0f x =  or 0'( )f x = ∞, then, respectively, 0' ( )g y = ∞  or 0' ( ) 0g y = .
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One-sided Derivatives

 If at a point 0x  the limit,

0
lim

x

y
x∆ ↓

∆
∆

exists, it is called the right-hand derivative of the function ( )y f x=  at 0x  (in such a case the 
function need not be defined everywhere in a certain neighbourhood of the point 0x ; this require-
ment may then be restricted to 0x x≥ ). The left-hand derivative is defined in the same way, as:

0
lim

x

y
x∆ ↑

∆
∆

.

A function f  has a derivative at a point 0x  if and only if equal right-hand and left-hand derivatives 
exist at that point. If the function is continuous, the existence of a right-hand (left-hand) derivative 
at a point is equivalent to the existence, at the corresponding point of its graph, of a right (left) 
one-sided semi-tangent with slope equal to the value of this one-sided derivative. Points at which 
the semi-tangents do not form a straight line are called angular points or cusps.

Derivatives of Higher Orders

Let a function ( )y f x=  have a finite derivative ' '( )y f x=  at all points of some interval; this 

derivative is also known as the first derivative, or the derivative of the first order, which, being a 
function of x, may in its turn have a derivative '' ''( )y f x= , known as the second derivative, or the 

derivative of the second order, of the function f , etc. In general, the n-th derivative, or the de-

rivative of order n, is defined by induction by the equation 1( ) 'n ny y −= , on the assumption that 
1ny −  is defined on some interval. The notations employed along with ny  are nf , ( ) /n nd f x dx , 

and, if 2,3,n =  also "y , "( )f x , '''y , "'( )f x .

The second derivative has a mechanical interpretation: It is the acceleration 2 2/ "( )w d s dt f t= =  
of a point in rectilinear motion according to the law ( )s f t= .

Differential

Let a function ( )y f x=  be defined in some neighbourhood of a point x and let there exist a number 
A  such that the increment y∆  may be represented as y A x ω∆ = ∆ +  with / 0xω ∆ →  as 0x∆ → . 
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The term A x∆  in this sum is denoted by the symbol dy  or df  and is named the differential of 
the function ( )f x  (with respect to the variable x) at x. The differential is the principal linear part 

of increment of the function (its geometrical expression is the segment LT  in figure, where MT  is 
the tangent to ( )y f x=  at the point 0 0( , )x y  under consideration).

The function ( )y f x=  has a differential at x  if and only if it has a finite derivative:

0
'( ) lim

x

yf x A
x∆ →

∆
= =

∆

At this point. A function for which a differential exists is called differentiable at the point in ques-
tion. Thus, the differentiability of a function implies the existence of both the differential and the 
finite derivative, and ( ) '( )dy df x f x x= = ∆ . For the independent variable x  one puts dx x= ∆ , and 

one may accordingly write '( )dy f x dx= , i.e. the derivative is equal to the ratio of the differentials:

'( ) dyf x
dx

=

The formulas and the rules for computing derivatives lead to corresponding formulas and rules for 
calculating differentials. In particular, the theorem on the differential of a composite function is 
valid: If a function ( )y f u=  is differentiable at a point 0u , while a function ( )xφ  is differentiable 
at a point 0x  and 0 0( )u xφ= , then the composite function ( ( ))y f xφ=  is differentiable at the point 

0x  and 0'( )dy f u du= , where 0'( )du x dxφ= . The differential of a composite function has exactly 
the form it would have if the variable u  were an independent variable. This property is known the 
invariance of the form of the differential. However, if u  is an independent variable, du u= ∆  is an 
arbitrary increment, but if u  is a function, du  is the differential of this function which, in general, 
is not identical with its increment.

Differentials of Higher Orders

The differential dy  is also known as the first differential, or differential of the first order. Let ( )y f x=  

have a differential '( )dy f x dx=  at each point of some interval. Here dx x= ∆  is some number 
independent of x  and one may say, therefore, that constdx = . The differential dy  is a function of 
x  alone, and may in turn have a differential, known as the second differential, or the differential 
of the second order, of f , etc. In general, the n -th differential, or the differential of order n, is de-

fined by induction by the equality 1( )n nd y d d y−= , on the assumption that the differential 1nd y−  is 

defined on some interval and that the value of dx  is identical at all steps. The invariance condition for 
2 3, , ,d y d y   is generally not satisfied (with the exception ( )y f u=  where u  is a linear function).

The repeated differential of dy  has the form,

( ) ''( )dy f x dx xδ δ=

And the value of ( )dyδ  for dx xδ=  is the second differential.
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Principal Theorems and Applications of Differential Calculus

The fundamental theorems of differential calculus for functions of a single variable are usually 
considered to include the Rolle theorem, the Legendre theorem (on finite variation), the Cauchy 
theorem, and the Taylor formula. These theorems underlie the most important applications of dif-
ferential calculus to the study of properties of functions — such as increasing and decreasing func-
tions, convex and concave graphs, finding the extrema, points of inflection, and the asymptotes 
of a graph (Extremum; Point of inflection; Asymptote). Differential calculus makes it possible to 
compute the limits of a function in many cases when this is not feasible by the simplest limit theo-
rems (indefinite limits and expressions, evaluations of). Differential calculus is extensively applied 
in many fields of mathematics, in particular in geometry.

Differential Calculus of Functions in Several Variables

Let a function ( , )z f x y=  be given in a certain neighbourhood of a point 0 0( , )x y  and let the value 

0y y=  be fixed. 0( , )f x y  will then be a function of x  alone. If it has a derivative with respect to x  

at 0x , this derivative is called the partial derivative of f  with respect to x  at 0 0( , )x y ; it is denoted 

by '
0 0( , )xf x y , 0 0( , ) /f x y x∂ ∂ , /f x∂ ∂ , '

xz , /z x∂ ∂ , or 0 0( , )xf x y . Thus, by definition,

' 0 0 0 0
0 0 0 0

( , ) ( , )( , ) lim lim ,x
x x x

z f x x y f x yf x y
x x∆ → ∆ →

∆ + ∆ −
= =

∆ ∆

Where 0 0 0 0( , ) ( , )x z f x x y f x y∆ = + ∆ −  is the partial increment of the function with respect to x  

(in the general case, /z x∂ ∂  must not be regarded as a fraction; / x∂ ∂  is the symbol of an operation).

The partial derivative with respect to y  is defined in a similar manner:

' 0 0 0 0
0 0 0 0

( , ) ( , )( , ) lim lim ,y
y y y

z f x y y f x yf x y
y y∆ → ∆ →

∆ + ∆ −
= =

∆ ∆

Where y z∆  is the partial increment of the function with respect to y z∆ . Other notations include 

0 0( , ) /f x y y∂ ∂ , /f y∂ ∂ , '
yz , /z y∂ ∂ , and 0 0( , )yf x y . Partial derivatives are calculated according to 

the rules of differentiation of functions of a single variable (in computing '
xz  one assumes consty =  

while if '
yz  is calculated, one assumes constx = ).

The partial differentials of ( , )z f x y=  at 0 0( , )x y  are, respectively,

' '
0 0 0 0( , ) ; ( , ) ,x x y yd z f x y dx d z f x y dy= =

Where, as in the case of a single variable, ,dx x dy y= ∆ = ∆  denote the increments of the indepen-
dent variables.

The first partial derivatives '/ ( , )xz x f x y∂ ∂ =  and '/ ( , )yz y f x y∂ ∂ = , or the partial derivatives of the 

first order, are functions of x  and y , and may in their turn have partial derivatives with respect to 
x  and y. These are named, with respect to the function ( , )z f x y= , the partial derivatives of the 
second order, or second partial derivatives. 
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It is assumed that,

2 2

2 , ,z z z z
x x x y x x y
∂ ∂ ∂ ∂ ∂ ∂   = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

2 2

2, .z z z z
x y y x y x y
 ∂ ∂ ∂ ∂ ∂ ∂ = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂  

The following notations are also used instead of 2 2/z x∂ ∂ :

2 2

2 2
" " " "

2 2

( , ) , , ( , ), ( , ), ( , );xx xx xxx x

f x y fz z f x y f x y f x y
x x

∂ ∂
∂ ∂

and instead of 2 /z x y∂ ∂ ∂ :

2 2
" "( , ), , , ( , ), ( , ),xy xy xy

f x y fz f x y f x y
x y x y

∂ ∂
∂ ∂ ∂ ∂

One can introduce in the same manner partial derivatives of the third and higher orders, together 

with the respective notations: /n nz x∂ ∂  means that the function  is to be differentiated n  times 

with respect to x; /n p qz x y∂ ∂ ∂  where n p q= +  means that the function z  is differentiated p  

times with respect to x  and q  times with respect to y. The partial derivatives of second and higher 
orders obtained by differentiation with respect to different variables are known as mixed partial 
derivatives.

To each partial derivative corresponds some partial differential, obtained by its multiplication by 
the differentials of the independent variables taken to the powers equal to the number of differen-
tiations with respect to the respective variable. In this way one obtains the n -th partial differen-
tials, or the partial differentials of order n

, .
n n

n p q
n p q

z zn dx dx dy
x x y
∂ ∂
∂ ∂ ∂

The following important theorem on derivatives is valid: If, in a certain neighbourhood of a point 
0 0( , )x y , a function ( , )z f x y=  has mixed partial derivatives " ( , )xyf x y  and " ( , )yxf x y , and if these 

derivatives are continuous at the point 0 0( , )x y , then they coincide at this point.

A function ( , )z f x y=  is called differentiable at a point 0 0( , )x y  with respect to both variables x  
and y  if it is defined in some neighbourhood of this point, and if its total increment:

0 0 0 0( , ) ( , )z f x x y y f x y∆ = + ∆ + ∆ −

may be represented in the form,

,z A x B y ω∆ = ∆ + ∆ +
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Where A  and B  are certain numbers and / 0ω ρ →  for 2 2( ) ( ) 0x yρ = ∆ + ∆ →  (provided that 
the point 0 0( , )x x y y+ ∆ + ∆  lies in this neighbourhood). In this context, the expression,

0 0( , ) .dz df x y A x B y= = ∆ + ∆

It is called the total differential (of the first order) of f  at 0 0( , )x y ; this is the principal linear part 

of increment. A function which is differentiable at a point is continuous at that point (the converse 
proposition is not always true). Moreover, differentiability entails the existence of finite partial 
derivatives:

' '
0 0 0 00 0

( , ) lim , ( , ) lim .yx
x yx y

zzf x y A f x y B
x y∆ → ∆ →

∆∆
= = = =

∆ ∆

Thus, for a function which is differentiable at 0 0( , )x y ,

' '
0 0 0 0 0 0( , ) ( , ) ( , ) ,x ydz d f x y f x y x f x y y= = ∆ + ∆

or

' '
0 0 0 0 0 0( , ) ( , ) ( , ) ,x ydz d f x y f x y dx f x y dy= = +

If, as in the case of a single variable, one puts, for the independent variables, dx x= ∆ , dy y= ∆ .

The existence of finite partial derivatives does not, in the general case, entail differentiability (un-
like in the case of functions in a single variable). The following is a sufficient criterion of the dif-
ferentiability of a function in two variables: If, in a certain neighbourhood of a point 0 0( , )x y , a 
function f  has finite partial derivatives '

xf  and '
yf  which are continuous at 0 0( , )x y , then f  is dif-

ferentiable at this point. Geometrically, the total differential 0 0( , )d f x y  is the increment of the ap-

plicate of the tangent plane to the surface ( , )z f x y=  at the point 0 0 0( , , )x y z , where 0 0 0( , ).z f x y=

Total differentials of higher orders are, as in the case of functions of one variable, introduced by 
induction, by the equation,

1( ),n nd z d d z−=
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on the assumption that the differential 1nd z−  is defined in some neighbourhood of the point under 
consideration, and that equal increments of the arguments dx , dy  are taken at all steps. Repeated 
differentials are defined in a similar manner.

Derivatives and Differentials of Composite Functions

Let 1( , , )mw f u u=   be a function in m  variables which is differentiable at each point 
of an open domain D  of the m -dimensional Euclidean space mR , and let m  functions 

1 1 1( , , ) , , ( , , )n m m nu x x u x xφ φ= =    in n  variables be defined in an open domain G  of the 

n -dimensional Euclidean space nR . Finally, let the point 1( , , )mu u , corresponding to a point 

1( , , )nx x G∈ , be contained in D. The following theorems then hold:

A) If the functions 1 , , mφ φ  have finite partial derivatives with respect to 1 , , nx x , the com-
posite function 1( , , )mw f u u=   in 1 , , nx x  also has finite partial derivatives with respect to 

1 , , nx x , and

1

1 1 1 1

1

,

,

n

n

n

n n n n n

uuw f f
x u x u x

uuw f f
x u x u x

∂∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂

∂∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂





B) If the functions 1 , , mφ φ  are differentiable with respect to all variables at a point 1( , , )nx x G∈ , 

then the composite function 1( , , )mw f u u=   is also differentiable at that point, and

1
1

,n
n

f fdw du du
u u
∂ ∂

= + +
∂ ∂



where 1 , , mdu du  are the differentials of the functions 1 , , .mu u  Thus, the property of invariance 

of the first differential also applies to functions in several variables. It does not usually apply to 
differentials of the second or higher orders.

Differential calculus is also employed in the study of the properties of functions in several vari-
ables: finding extrema, the study of functions defined by one or more implicit equations, the theory 
of surfaces, etc. One of the principal tools for such purposes is the Taylor formula.

The concepts of derivative and differential and their simplest properties, connected with arithmeti-
cal operations over functions and superposition of functions, including the property of invariance 
of the first differential, are extended, practically unchanged, to complex-valued functions in one 
or more variables, to real-valued and complex-valued vector functions in one or several real vari-
ables, and to complex-valued functions and vector functions in one or several complex variables. 
In functional analysis the ideas of the derivative and the differential are extended to functions of 
the points in an abstract space.
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Integral Calculus

Integral Calculus is a branch of calculus that studies the properties of and methods of computing 
integrals and their applications. The integral calculus is closely connected with the differential 
calculus and together with the latter constitutes one of the fundamental parts of mathematical 
analysis (or the analysis of infinitesimals). Central to the integral calculus are the concepts of the 
definite integral and indefinite integral of a function of a single real variable.

The fundamental concepts and theory of integral and differential calculus, primarily the relation-
ship between differentiation and integration, as well as their application to the solution of applied 
problems, were developed in the works of P. de Fermat, I. Newton and G. Leibniz at the end of 
the 17th century. Their investigations were the beginning of an intensive development of mathe-
matical analysis. The works of L. Euler, Jacob and Johann Bernoulli and J.L. Lagrange played an 
essential role in its creation in the 18th century. In the 19th century, in connection with the ap-
pearance of the notion of a limit, integral calculus achieved a logically complete form (in the works 
of A.L. Cauchy, B. Riemann and others). The development of the theory and methods of integral 
calculus took place at the end of 19th century and in the 20th century simultaneously with research 
into measure theory, which plays an essential role in integral calculus.

By means of integral calculus it became possible to solve by a unified method many theoretical 
and applied problems, both new ones which earlier had not been amenable to solution, and 
old ones that had previously required special artificial techniques. The basic notions of integral 
calculus are two closely related notions of the integral, namely the indefinite and the definite 
integral.

The indefinite integral of a given real-valued function on an interval on the real axis is defined as 
the collection of all its primitives on that interval, that is, functions whose derivatives are the given 
function. The indefinite integral of a function f  is denoted by ( )f x dx∫ . If F  is some primitive of 

f then any other primitive of it has the form F C+ , where C  is an arbitrary constant; one there-
fore writes,

( ) ( )f x dx F x C= +∫
The operation of finding an indefinite integral is called integration. Integration is the operation 
inverse to that of differentiation:

'( ) ( ) , ( ) ( ) .f x dx F x C d f x dx f x dx= + =∫ ∫
The operation of integration is linear: If on some interval the indefinite integrals exist, then for any 

real numbers 1λ  and 2λ , the following integral exists on this interval:

1 2( ) and ( )f x dx f x dx∫ ∫
1 1 2 2[ ( ) ( )]f x f x dxλ λ+∫
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And equals,

1 1 2 2( ) ( ) .f x dx f x dxλ λ+∫ ∫
For indefinite integrals, the formula of integration by parts holds: If two functions u and v are dif-

ferentiable on some interval and if the integral du∫  exists, then so does the integral udu∫ , and 
the following formula holds:

udv uv vdu= −∫ ∫
The formula for change of variables holds: If for two functions f  and φ  defined on certain in-
tervals, the composite function f φ  makes sense and the function φ  is differentiable, then the 
integral,

[ ( )] ' ( )f t t dtφ φ∫
Exists and equals,

( ) .f x dx∫
A function that is continuous on some bounded interval has a primitive on it and hence an in-
definite integral exists for it. The problem of actually finding the indefinite integral of a specified 
function is complicated by the fact that the indefinite integral of an elementary function is not an 
elementary function, in general. Many classes of functions are known for which it proves possible 
to express their indefinite integrals in terms of elementary functions. 

The simplest examples of these are integrals that are obtained from a table of derivatives of the 
basic elementary functions:

1

2

2

1) , 1;
1

2) ln | | ;

3) , 0, 1; in particular, ;
ln

4) sin cos ;

5) cos sin ;

6) tan ;
cos

7) cotan ;
sin

8) sinh cosh ;

9) cosh sinh ;

10

x
x x x

xx dx C

dx x C
x

dx C e dx e C

x dx x C

x dx x C

dx x C
x

dx x C
x
xdx x C

x dx x C

α
α α

α

αα α α
α

+

= + ≠ −
+

= +

= + > ≠ = +

= − +

= +

= +

= − +

= +

= +

∫

∫

∫ ∫

∫
∫

∫

∫
∫
∫

2

2

2 2

2 2

2 2

2 2 2 2

2 2

) tanh ;
cosh

11) cotanh ;
sinh

1 112) arctan arccotan ;

113) ln ;
2

14) arcsin arccos , | | |;

15) ln | | (when is under the sq

dx x C
x

dx x C
x

dx x xC C
x

dx x C
x x

dx x xC C x
x

dx x x C x
x

α α α α α
α

α α α

α
α αα

α α
α

= +

= +

= + = − + ′
+

−
= +

− +

= + = − + ′ <
−

= + ± + −
±

∫

∫

∫

∫

∫

∫ uare root, it is assumed that | | | |).x α>
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2

2

2 2

2 2

2 2

2 2 2 2

2 2

10) tanh ;
cosh

11) cotanh ;
sinh

1 112) arctan arccotan ;

113) ln ;
2

14) arcsin arccos , | | |;

15) ln | | (when is under th

dx x C
x

dx x C
x

dx x xC C
x

dx x C
x x

dx x xC C x
x

dx x x C x
x

= +

= − +

= + = − + ′
+

−
= +

− +

= + = − + ′ <
−

= + ± + −
±

∫

∫

∫

∫

∫

∫

α α α α α
α

α α α

α
α αα

α α
α

e square root, it is assumed that | | | |).x > α

If the denominator of the integrand vanishes at some point, then these formulas are valid only for 
those intervals inside which the denominator does not vanish.

The indefinite integral of a rational function over any interval on which the denominator does not 
vanish is a composition of rational functions, arctangents and natural logarithms. Finding the 
algebraic part of the indefinite integral of a rational function can be achieved by the Ostrogradski 
method. Integrals of the following types can be reduced by means of substitution and integration 
by parts to integration of rational functions:

1

, ,.., ,
mr rx b x bR x dx

cx b cx b
α α + +   

    + +     
∫

Where 1,.., mr r  are rational numbers; integrals of the form,

2( , )R x ax bx c dx+ +∫
Certain cases of integrals of differential binomials; integrals of the form,

(sin , cos ) , (sinh , cosh )R x x dx R x x dx∫ ∫
(Where 1( , , )nR y y  are rational functions); the integrals,

cos , sin ,

cos , sin ,

arcsin , arccos ,

arctan , arccotan , 0,1,...,

x x

n n

n n

n n

e xdx e xdx

x x dx x x dx

x x dx x x dx

x xdx x xdx n

α αβ β

α α

=

∫ ∫
∫ ∫
∫ ∫

∫ ∫
And many others. In contrast, for example, the integrals,

sin cos, , , 1, 2 , ,
x

n n n

e x xdx dx dx n
x x x

=∫ ∫ ∫ 
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It cannot be expressed in terms of elementary functions.

The definite integral:

( )
b

f x dx
α
∫

It is a function f  defined on an interval [ , ]a b  is the limit of integral sums of a specific type. If this 

limit exists, f is said to be Cauchy, Riemann, Lebesgue, etc. integrable.

The geometrical meaning of the integral is tied up with the notion of area: If the function 0f ≥  is 
continuous on the interval [ , ]a b , then the value of the integral,

( )
b

f x dx
α
∫

It is equal to the area of the curvilinear trapezium formed by the graph of the function, that is, the 
set whose boundary consists of the graph of f , the segment [ , ]a b  and the two segments on the 
lines x a=  and x b=  making the figure closed, which may degenerate to points.

The calculation of many quantities encountered in practice reduces to the problem of calculating 
the limit of integral sums; in other words, finding a definite integral; for example, areas of figures 
and surfaces, volumes of bodies, work done by force, the coordinates of the centre of gravity, the 
values of the moments of inertia of various bodies, etc.

The definite integral is linear: If two functions 1f  and 2f  are integrable on an interval, then for any 
real numbers 1λ  and 2λ  the function:

1 1 2 2f fλ λ+

is also integrable on this interval and,

[ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) .
b b b

f x f x dx f x dx f x dx
α α α

λ λ λ λ+ = +∫ ∫ ∫

Integration of a function over an interval has the property of monotonicity: If the function f  is 
integrable on the interval [ , ]a b  and if [ , ] [ , ]c d a b⊂ , then f  is integrable on [ , ]c d  as well. The 
integral is also additive with respect to the intervals over which the integration is carried out: If 
a c b< <  and the function f  is integrable on the intervals [ , ]a c  and [ , ]c d , then it is integrable 
on [ , ]a b , and
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( ) ( ) ( ) .
b c b

c

f x dx f x dx f x dx
α α

= +∫ ∫ ∫

If f  and g  are Riemann integrable, then their product is also Riemann integrable. If f g≥  on 

[ , ]a b , then,

( ) ( ) .
b b

f x dx g x dx
α α

≥∫ ∫

If f  is integrable on [ , ]a b , then the absolute value | |f  is also integrable on [ , ]a b  if a b− ∞ < < ∞ , 
and

( ) | ( )| .
b b

f x dx f x dx
α α

≤∫ ∫

By definition one sets,

( ) 0 and ( ) ( ) , .
b

b

f x dx f x dx f x dx a b
α α

α α

= = − <∫ ∫ ∫

A mean-value theorem holds for integrals. For example, if f  and g  are Riemann integrable on an 
interval [ , ]a b , if ( )m f x M≤ ≤ , [ , ]x a b∈ , and if g  does not change sign on [ , ]a b , that is, it is ei-
ther non-negative or non-positive throughout this interval, then there exists a number m Mµ≤ ≤  
for which,

( ) ( ) ( ) .
b b

f x g x dx g x dx
α α

µ=∫ ∫

Under the additional hypothesis that f  is continuous on [ , ]a b , there exists in ( , )a b  a point ξ  
for which,

( ) ( ) ( ) ( ) .
b b

f x g x dx f g x dx
α α

ξ=∫ ∫

In particular, if ( ) 1g x ≡ , then:

( ) ( )( ).
b

f x dx f b
α

ξ α= −∫

Integrals with a Variable Upper Limit

If a function f  is Riemann integrable on an interval [ , ]a b , then the function F  defined by:

( ) ( ) , ,
x

F x f t dt a x b
α

= ≤ ≤∫
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is continuous on this interval. If, in addition, f  is continuous at a point 0x , then F  is differentiable 
at this point and 0 0' ( ) ( )F x f x= . In other words, at the points of continuity of a function the fol-

lowing formula holds:

( ) ( )
xd f t dt f x

dx α

=∫ .

Consequently, this formula holds for every Riemann-integrable function on an interval [ , ]a b , 
except perhaps at a set of points having Lebesgue measure zero, since if a function is Riemann 
integrable on some interval, then its set of points of discontinuity has measure zero. Thus, if the 
function f  is continuous on [ , ]a b , then the function F  defined by,

( ) ( )
x

F x f t dt
α

= ∫

It is a primitive of f  on this interval. This theorem shows that the operation of differentiation is 

inverse to that of taking the definite integral with a variable upper limit, and in this way a relation-
ship is established between definite and indefinite integrals:

( ) ( )
x

f x dx f t dt C
α

= +∫ ∫

The geometric meaning of this relationship is that the problem of finding the tangent to a curve 
and the calculation of the area of plane figures are inverse operations in the above sense.

The following Newton–Leibniz formula holds for any primitive F  of an integrable function f  on 
an interval [ , ]a b :

( ) ( ) ( )
b

f x dx F b F a
α

= −∫

It shows that the definite integral of a continuous function over some interval is equal to the dif-
ference of the values at the end points of this interval of any primitive of it. This formula is some-

times taken as the definition of the definite integral. Then it is proved that the integral ( )
b

f x dx
α∫  

introduced in this way is equal to the limit of the corresponding integral sums.

For definite integrals, the formulas for change of variables and integration by parts hold. Suppose, for 

example, that the function f  is continuous on the interval ( , )a b  and that φ  is continuous together 

with its derivative 'φ  on the interval (α β, ), where (α β, )  is mapped by  into ( , )a b : ( )a t bφ< <  

for tα β< < , so that the composite f φ  is meaningful in ((α β, )). Then, for 0 0, (α β α β∈ , ), the 

following formulas for change of variables holds:

0 0

0 0

( )

( )

( ) [ ( )] ' ( ) .f x dx f t t dt
φ β β

φ α α

φ φ=∫ ∫
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The formula for integration by parts is:

( ) ( ) ( ) ( ) | ( ) ( )
b b

x b
x a

a a

u x dv x u x v x v x du x=
== −∫ ∫

Where the functions u  and v  have Riemann-integrable derivatives on [ , ]a b .

The Newton–Leibniz formula reduces the calculation of an indefinite integral to finding the values 
of its primitive. Since the problem of finding a primitive is intrinsically a difficult one, other meth-
ods of finding definite integrals are of great importance, among which one should mention the 
method of residues and the method of differentiation or integration with respect to the parameter 
of a parameter-dependent integral. Numerical methods for the approximate computation of inte-
grals have also been developed.

Generalizing the notion of an integral to the case of unbounded functions and to the case of an un-
bounded interval leads to the notion of the improper integral, which is defined by yet one more limit 
transition. The notions of the indefinite and the definite integral carry over to complex-valued func-
tions. The representation of any holomorphic function of a complex variable in the form of a Cauchy 
integral over a contour played an important role in the development of the theory of analytic functions.

The generalization of the notion of the definite integral of a function of a single variable to the case 
of a function of several variables leads to the notion of a multiple integral.

For unbounded sets and unbounded functions of several variables, one is led to the notion of the 
improper integral, as in the one-dimensional case.

The extension of the practical applications of integral calculus necessitated the introduction of the 
notions of the curvilinear integral, i.e. the integral along a curve, the surface integral, i.e. the integral 
over a surface, and more generally, the integral over a manifold, which are reducible in some sense to 
a definite integral (the curvilinear integral reduces to an integral over an interval, the surface integral 
to an integral over a (plane) region, the integral over an n-dimensional manifold to an integral over 
an n-dimensional region). Integrals over manifolds, in particular curvilinear and surface integrals, 
play an important role in the integral calculus of functions of several variables; by this means a rela-
tionship is established between integration over a region and integration over its boundary or, in the 
general case, over a manifold and its boundary. This relationship is established by the Stokes formula 
which is a generalization of the Newton–Leibniz formula to the multi-dimensional case.

Multiple, curvilinear and surface integrals find direct application in mathematical physics, par-
ticularly in field theory. Multiple integrals and concepts related to them are widely used in the 
solution of specific applied problems. The theory of cubature formulas has been developed for the 
numerical calculation of multiple integrals.

The theory and methods of integral calculus of real- or complex-valued functions of a finite num-
ber of real or complex variables carry over to more general objects. For example, the theory of in-
tegration of functions whose values lie in a normed linear space, functions defined on topological 
groups, generalized functions, and functions of an infinite number of variables (integrals over tra-
jectories). Finally, a new direction in integral calculus is related to the emergence and development 
of constructive mathematics.
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Integral calculus is applied in many branches of mathematics (in the theory of differential and 
integral equations, in probability theory and mathematical statistics, in the theory of optimal pro-
cesses, etc.), and in applications of it. 

Vector Calculus

It is a field of mathematics concerned with multivariate real analysis of vectors in an inner product 
space of two or more dimensions; some results are those that involve the cross product can only 
be applied to three dimensions.

Vector Calculus

( )f , ,x y z∂ = Scalar Field

( ), ,F x y z∆∂ =


Vector Field

i j k
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

  

Del

( )F grad ϕ ϕ= = ∇


Gradient

( ) ( )div F Fϕ = = ∇⋅
 

Divergence

( )Curl F F= ∇×
 

Curl

( )2ϕ ϕ ϕ∇ = ∇ = ∇⋅ ∇ Laplacian

( )
v m

F dV F d S∇⋅ = ⋅∫∫∫ ∫∫
  

Dibergence theorem

Vector Calculus is concerned with scalar fields, which associate a scalar to every point in space, and 
vector fields, which associate a vector to every point in space. For example, the temperature of a 
swimming pool is a scalar field: to each point we associate a scalar value of temperature. The water 
flow in the same pool is a vector field: to each point we associate a velocity vector. Vector fields are 
often used to model, for example, the speed and direction of a moving fluid throughout space, or 
the strength and direction of some force, such as the magnetic or gravitational force, as it changes 
from point to point.

Vector Algebra

A vector is a directed line segment, that is, a segment whose beginning (also called the vector’s 
point of application) and end are indicated. The length of the directed line segment, which rep-
resents a vector, is called its length or magnitude. The length of vector a is denoted by |a|. Vectors 
are called collinear if they lie either on the same line or on parallel lines. Two vectors are said to be 
equal if they are collinear and have the same length and direction. All zero vectors are considered 
to be equal. Vector calculus, deals with free vectors.
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An important role in vector algebra is played by linear operations on vectors: adding vectors and 
multiplying them by real numbers. The sum a + b of vectors a and b is the vector extending from 
the beginning of vector a to the end of vector b such that the beginning of vector b is joined to the 
end of vector a. The derivation of this rule is related to the parallelogram rule of vector addition, 
whose source is the experimental fact of the addition of forces (vector magnitudes) according to 
this rule. The construction of the sum of several vectors is clear from figure. The product α a of 
vector a and the number α is a vector that is collinear with vector a and has a length |α|· |a| and 
a direction that coincides with the direction of a when α>0 and is opposite to that of a when α<0. 
Vector -1 · a is the inverse vector of a and is denoted by -a. 

      

1)	 a + b = b + a

2)	 (a + b) + c = a + (b + c)

3)	 a + 0 = a

4)	 a + (-a) = 0

5)	 1· a = a

6)	 α(βa) = (αβ)a

7)	 α(a + b) = αa + αb

8)	 (α + β)a = αa + βa.

The concept of linearly dependent and linearly independent vectors is often encountered in vector 
algebra. Vectors a1, a2,….…an are called linearly dependent if there exist such numbers α1, α2,……
αn, of which at least one of them differs from zero, that the linear combination α1a1 + · · · +αnan of 
these vectors is equal to zero. Vectors a1, a2,……….…an that are not linearly dependent are called 
linearly independent. Let us note that any three nonzero vectors not lying in one plane are linearly 
independent.
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The vectors of Euclidean space have the following property: there exist three linearly indepen-
dent vectors, and any arbitrary four vectors are linearly dependent. This property characteriz-
es the three-dimensionality of the set of vectors under consideration. In conjunction with the 
properties listed above, the indicated property implies that the set of all vectors of Euclide-
an space forms a so called vector space. The linearly independent vectors e1, e2, and e3 form 
a basis. Any vector a can be uniquely resolved in terms of basis vectors: a = X e1+ Y e2 + Z 
e3 the coefficients X, Y, and Z are called the coordinates (components) of vector a in the giv-
en basis. If vector a has coordinates X, Y, and Z, this can be written as a = {X, Y, Z}.Three 
mutually orthogonal (perpendicular) vectors, whose lengths are equal to one and which are 
usually denoted by i, j, and k, form a socalled orthonormalized basis. If these vectors are lo-
cated with their initial points at one point O, they form a rectangular Cartesian coordinate sys-
tem in space. The coordinates X, Y, Z of any point M in this system are defined as the coor-
dinates of the vector O M. The linear operations on vectors, indicated previously, correspond 
to analogous operations on their coordinates: if the coordinates of vectors a and b are {Xl, 
Y1, Z1} and X, Y2, Z2} respectively, then the coordinates of the sum a + b of these vectors are  
{Xl + X2, Yl + Y2, Z1 + Z2} the coordinates of vector λa are {λX1, λY1, λZ1}.

The development and application of vector algebra is closely connected with various types of prod-
ucts of vectors: scalar, vector, and mixed. The concept of the scalar product of vectors arises, for 
example, in examining the work performed by a force F along a given path S: the work is equal to 
|F||S| cos φ, where φ is the angle between vectors F and S. Mathematically, the scalar product of 
vectors a and b is defined as the number denoted by (a, b) and equal to the product of the magni-
tudes of these vectors and of the cosine of the angle between them:

(a, b) = |a| |bx| cos φ

The quantity |b| cos φ is called the projection of vector b on the axis determined by vector a and 
is denoted by projab. Therefore, (a, b) =| a | projab. In particular, if a is a unit vector (|a| = 1), then  
(a, b). The following properties of the scalar product are obvious:

•	 (a, b) = (b, a);

•	 (λa,b) = φ(a,b);

•	 (a + b,c) = (a,c) + (b,c);

•	 (a, a) ≥ 0).
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Where equality with zero occurs only for a = 0. If vectors a and b have the coordinates {X1, Y1, Z1} 
and {X2, Y2, Z2} respectively, in an orthonormalized basis i, j, k, then,

( ) 1 2 1 2 1 2

2 2 2
1 1 1

1 2 1 2 1 2
2 2 2 2 2 2

1 1 1 2 2 2

a, b

cos

X X YY Z Z

a X Y Z
X X YY Z Z

X Y Z X Y Z
ϕ

= + +

= + +

+ +
=

+ + + +

The definition of a vector product requires use of the concept of a left- and right-handed ordering 
of three vectors. The ordered triplet of vectors a, b, c (a is the first vector, b, the second, and c, the 
third), starting at the same point and not lying in one plane, is called right-handed (left-handed) if 
the vectors are situated in the same way as the thumb, index, and middle fingers, respectively, of 
the right (left) hand. Figure shows right-handed (on the right) and left-handed (on the left) triplets 
of vectors.

The vector product of vectors a and b is the vector denoted by [a, b] and satisfying the following 
requirements: (1) the length of vector [a, b] is equal to the product of the lengths of vectors a and 
and of the sine of the angle φ between them (thus, if a and b are collinear, then [a, b] = 0); and 
(2) if a and b are noncollinear, then [a, b] is perpendicular to both vectors a and b and is direct-
ed so that the triplet of vectors a, b, [a, b] is right-handed. The vector product has the following 
properties:

•	 [a, b] = [b, a]

•	 [(λa), b] = [a, b]

•	 [c, (a + b)] = [c, a] + [c, b]

•	 [a, [b, c]] = b (a, c) - c(a, b)

•	 ([a, b], [c, d]) = (a, c )(b, d) - (a, d)(b, c)

If, in an orthonormalized basis i, j, k forming a right handed triplet, vectors a and b have the coor-
dinates {X1Y1Z1} and {X2Y2Z2}, respectively, then [a, b] ={Y1Z2 - Y2Z1, Z1X2 - Z2X1, X1Y2 - X2Y1}. 

The concept of vector product is connected with various problems in mechanics and physics. For 
example, the velocity v of a point M of an object rotating around an axis/with an angular velocity 
of ω is [ω,r], where r = OM.

________________________ WORLD TECHNOLOGIES ________________________



WT

Introduction to Calculus	 45 

The mixed product of vectors a, b, and c is the scalar product of vector [a, b] and vector c: ([a, b], 
c). It is denoted by abc. The mixed product of vectors a, b, and c that are not parallel to the same 
plane is numerically equal to the volume of the parallelepiped formed by bringing the vectors a, b, 
and c to a common initial point; its sign is positive if the triplet a, b, c is right handed and negative 
if the Triplet is left-handed.

If vectors a, b, and c are parallel to the same plane, then abc = 0. The property that abc = bca = 
cab also holds true. If the coordinates of vectors a, b, and c in an orthonormalized basis i, j, k, 
which forms a right-handed triplet, are respectively equal to {X1, Y1. Z1}, {X2, Y2, Z2}, and {X3, Y3, Z3}, 
then:

1 1 1

2 2 2

3 3 3

X Y Z
abc X Y Z

X Y Z
=

Vector functions of scalar arguments in mechanics, physics, and differential geometry frequent 
use is made of the concept of a vector function of one or several scalar arguments. If a definite 
vector r is in correspondence to every value of a variable t of a certain set {t} according to a known 
law, then one says that a vector function r = r(t) is specified by the set {t}. Since vector r is defined 
by coordinates {x , y , z}, the specification of the vector function r = r(t) is equivalent to the spec-
ification of three scalar functions: x = x(t) , y = y(t) , and z = z(t). The concept of vector function 
becomes particularly obvious if it is converted to a so-called hodograph of this function, that is, to 
the locus of the ends of all vectors r(t) joined to the coordinate origin O. If, in this case, one consid-
ers the argument t to be time, then the vector function r(t) represents the law of motion of point M 
moving along curve L—the hodograph of r(t).

The concept of derivative plays an important role in the study of vector functions. This concept is 
introduced in the following way: to the argument t is added the increment Δt ≠ 0 and the vector Δr 
= r(t + Δt) - r(t) (the increment Δr is vector Vector MP



 in figure) is multiplied by 1/Δt. The limit of 
the expression Δr/Δt as Δt → 0 is called the derivative of the vector function and is denoted by r′(t) 
or dr/dt. The derivative is the vector that is tangent to the hodograph L at the given point M. If the 
vector function is regarded as the law of motion of a point along the curve L, then the derivative 
r’(t) is equal to the velocity of this point’s motion. The rules for computing the derivatives of vari-
ous products of vector functions are similar to the rules of finding the derivatives of the products 
of ordinary functions. For example,
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1 2 1 2 1 2

1 2 1 2 1 2

( ,  ) '   ( ',  )  ( ,  ')
[ ,  ] '   [ ',  ]  [ ,  ']
r r r r r r
r r r r r r

= +
= +

In differential geometry the vector functions of one argument are used for the definition of curves. 
Vector functions of two arguments are used for the specification of surfaces.

Vector Analysis

In mechanics, physics, and geometry the concepts of scalar and vector fields are frequently used. 
The temperature of a non-uniformly heated plate and the density of a nonhomogeneous body are 
physical examples of plane and three-dimensional scalar fields, respectively. A vector field is a set 
of all the velocity vectors of particles of a steady flow of fluid. Other examples of vector fields are 
the gravitational force field and the electrical and magnetic potentials of an electromagnetic field.

For the mathematical specification of scalar and vector fields, scalar and vector functions are 
used, respectively. It is clear that the density of an object is a scalar point-function and that the 
velocity field of the particles of steady liquid flow is a vector point-function. The mathematical 
apparatus of field theory is usually called vector analysis. For the geometric characterization of a 
scalar field one uses the concepts of contour lines and equipotential surfaces. The contour line of 
a plane scalar field is a line on which the function that defines the field has a constant value. The 
equipotential surface of a spatial field is defined in an analogous way. An example of a contour 
line is an isotherm—the contour line of the scalar temperature field of a no uniformly heated 
plate.

We now consider equipotential surfaces (lines) of a scalar field which pass through a given point 
M. The maximum change of the function f which defines the field at this point, occurs along a nor-
mal to this surface (line) at the point M. This change is characterized by the gradient of the scalar 
field. The gradient is a vector that is directed along the normal to the equipotential surface (line) 
at point M in the direction of the increasing ƒ at this point. The magnitude of the gradient is equal 
to the derivative of ƒ in the indicated direction. The gradient is denoted by the symbol grad ƒ. If 

the basis is i, j, k, then grad f has the coordinates{ }, ,fl x fl y fl z∂ ∂ ∂ ∂ ∂ ∂ for a plane field the gradient 

coordinates are { }, ,fl x fl y∂ ∂ ∂ ∂ the gradient of a scalar field is a vector field.

A number of concepts are introduced to characterize vector fields: vector lines, vector tubes, cir-
culations of a vector field, and divergence and curl (rotor) of a vector field. In some region Ω, let a 
vector field be denoted by the vector function a(M) of a variable point M of Ω. A line L in the region 
Ω is called a vector line if the vector tangent at each of its points M is directed along vector a(M).
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If the field a(M) is a velocity field of the particles of a steady flow of a fluid, then the vector lines 
of this field are the trajectories of the fluid particles. The part of space in Ω that consists of vector 
lines is called a vector tube. If one is dealing with the vector field of velocities of the particles of a 
steady flow of a fluid, then the vector tube is the part of space that a certain fixed volume of fluid 
“sweeps out” in its motion.

Let AB be a smooth curve in Ω, l the length of arc AB measured from point A to the variable point 
M of this line, and t the unit vector tangent to AB at M. The circulation of the field a(M) along the 
curve AB is the expression,

AB (a, t)dt∫

If a(M) is a force field, then the circulation of a along AB is the work performed by this field along 
the path AB.

The divergence of vector field a(M) which has the coordinates P, Q, R in the basis i, j, k, is defined 
as the sum / / /p x Q y R z∂ ∂ + ∂ ∂ + ∂ ∂  and is denoted by the symbol div a. For example, the diver-
gence of the gravitational field created by a certain mass distribution is equal to the density (volu-
metric) ρ(x, y, z) of this field multiplied by 4π.

The curl (or rot) of vector field a(M) is a vector characterizing the “rotational component” of this 
field. The curl of field a is denoted by rot a or curl a. If P, Q, R are the coordinates of a in the basis 
i, j, k, then:

, ,R Q P R Q Prot a
y z z x x y

 ∂ ∂ ∂ ∂ ∂ ∂
= − − − ∂ ∂ ∂ ∂ ∂ ∂ 

Let field a be the velocity field of a fluid flow. We place a small wheel with vanes at a given point 
of the flow and orient its axis in the direction of rot a at this point. Then the flowrate will be a 
maximum, and its value will be ½[rot a]. The gradient of a scalar field and the divergence and curl 
of a vector field are usually called the fundamental differential operations of vector analysis. The 
following equations, relating these operations, hold true:

•	 grad (fh) = f grad h + h grad f

•	 div (fa) = (a, grad f) + f div a

•	 rot (fa) = f rot a + [grad f , a]

•	 div [a, b] = (b, rot a) - (a, rot b)

Vector field a(M) is called potential if it is the gradient of some scalar field f(M). In this case, the 
field f(M) is called the potential of vector field a. In order that the field a, whose coordinates P, Q, R 
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have continuous partial derivatives, be a potential field, it is necessary and sufficient that the curl 
of this field vanish. If a potential field is given in a simply connected region Ω, then the potential 
f(M) of this field can be found from the formula:

f = ∫AM (a, t) dl

where AM is any smooth curve connecting a fixed point A of Ω with point M, t is the unit vector 
tangent to the curve AM, and l is the length of arc AM measured from point A.

Vector field a(M) is called solenoidal or tubular if it is the curl of some field b(M). Field b(M) is 
called the vector potential of field a. In order that a be solenoidal, it is necessary and sufficient 
that the divergence of this field vanish. An important role in vector analysis is played by integral 
relations: Ostrogradskii’s formula, also designated the fundamental formula of vector analysis, 
and Stokes’ formula. Let V be a region whose boundary T consists of a finite number of pieces 
of smooth surfaces and n be the unit vector of the exterior normal to T. Let vector field a(M) be 
given in the region V such that div a is a continuous function. Then the following holds true:

(1)      ( , ) v div adv r a n dσ=∫∫∫ ∫∫
This is known as Ostrogradskii’s formula.

If a is the velocity field of a steady flow of incompressible fluid, then (a, n) dσ is the volume of fluid 
that passes through an area dσ on the boundary r in a unit of time. Therefore, the right-hand side 
of equation above is the flow of fluid through the boundary r of body V per unit time. Because, in 
the case being considered, div a characterizes the intensity of the fluid sources, Ostrogradskii’s 
formula expresses the following obvious fact: the flow of fluid through a closed surface r is equal to 
the amount of fluid generated by all the sources inside r. Let a continuous and differentiable vector 
field which has a continuous curl rot a be assigned in a region Ω. Let r be an orientable surface 
consisting of a finite number of pieces of smooth surface, n the unit normal to r, t the unit vector 
tangent to the edge y of the surface r, and l the length of the arc y. The following relation, called 
Stokes’ formula, holds true:

( ) ( ) ( )2 , ,r rn rot a d a b dlσ =∫∫ ∫
Equation ( ) ( ), ,r rn rot a d a b dlσ =∫∫ ∫  expresses the following physical fact: the intensity of the 

curl of a vector field a through the surface r is equal to the circulation of this field along the curve 
y. Ostrogradskii’s formula is the source of the invariant (independent of the coordinate system) 
definition of the fundamental operations of vector analysis. For example, from this formula, it 
follows that: 

( )
0

,
lim r

v

a n d
div a

V

σ
→

= ∫∫

Because the expression:

( ),r a n dσ∫∫
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is the flow of fluid through r and,

( )1 ,a n d
V

σ∫∫

is the magnitude of this flow per unit volume, the definition of div a by means of equation 

( )
0

,
lim r

v

a n d
div a

V

σ
→

= ∫∫  indicates that div a characterizes the flux of the source at a given point.

Applications of Vector Calculus

For a continuously differentiable function of several real variables, a point P, that is a set of values 
for the input variables, which is viewed as a point in Rn, which is critical if all of the partial deriva-
tives of the function are zero at P or equivalently, if it’s gradient is zero. The critical values are the 
values of the function at the critical points.

Vectors sounds are complicated, but they are common when giving directions. For example, 
telling someone to walk to the end of a street before turning left and walking five more blocks  
is an example of using vectors to give directions. Navigating by air and by boat is generally 
done using vectors. Planes are given a vector to travel, and they use their speed to determine 
how far they need to go before turning or landing. Flight plans are made using a series of 
vectors.

Sports instructions are based on using vectors. Wide receivers playing American football, for 
example, might run a route where they run seven yards down the field before turning left 45 
degrees and running in that direction. Sports commentary also depends on vectors. Only a 
few sports have fields with grids, so discussions revolve around the direction and speed of the 
player.

Multivariable Calculus

Multivariable calculus is a branch of calculus in one variable to calculus with functions of more 
than one variable. In single variable calculus, we study the function of single variable whereas in 
multivariable calculus we study with two or more variables. 
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Partial Derivatives

It is derivative of a function of two or more variables with respect to one of those variables, with the 
other held constant. It is used in vector calculus and differential geometry.

Let’s assume F(x, y) to be a function with two variables. By keeping y constant and differentiable F 
(assuming F is differentiable) with respect to variable x. What we obtain is the partial derivative of 
F with respect to x and is denoted by ∂F/∂x or Fx.

In the same way, partial derivative of F with respect to y is denoted by ∂F/∂y OR Fy

Critical Point of Function of Two Variables

Critical point of a function with two variables is a point where the partial derivative of first order 
are equal to 0. To find a critical point we must first take the derivative of the function. Then set that 
derivative equal to 0 and solve for x. Each value of x that w get is known as the critical number.

Let’s find the critical point of function F defined by F(x, y)= x2 + y2. We start with finding the first 
order partial derivative.

•	 Fx(x, y)= 2x

•	 Fy(x, y)= 2y

Now we will solve the equation Fx(x, y)=0 and Fy(x, y)= 0 simultaneously.

•	 Fx(x, y) = 2x = 0

•	 Fy(x, y) = 2y = 0
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The solution of the above equation is the ordered pair (0, 0). The graph of F(x, y)= x2 + y2 states 
that at the critical point (0, 0) f has a minimum value.

Maxima and Minima of Functions of Two Variable

After getting the critical point we do the second derivative test to determine if a critical point is a 
relative maximum or relative minimum. The meaning of maximum and minimum dose not state 
that the relative maximum or minimum is the largest/smallest value that the function will ever 
take. It just states that in some region around point (a, b) the function will always be smaller/larger 
than F(a, b). It is possible for the function to be larger/smaller outside of that region.

Firstly, we need to figure out how many second derivatives we have, 

2

2

2

2

2

2

xx

xy
x

yx

yy

F F
x

FF
y

F F
y x
F F

y

∂
=

∂
∂

=
∂ ∂

∂
=

∂ ∂

∂
=

∂

It is interesting to note that,

2 2

xy yx
x y

F FF F
y x

∂ ∂
= = =
∂ ∂ ∂ ∂

The second derivative test states that when we have a critical point (x0, y0) of Function of two vari-
ables and have to calculate the partial derivative,

Let A = ( ) ( ) ( )0 0 0 0 0 0, , , ,xx xy xyF x y B F x y C F x y= =

If AC – B2 > 0 and A > 0 then it is the minimum and when A < 0 is the maximum. When, AC – B2 
< 0 then it is called the saddle point.
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And when, AC – B²= 0 then we cannot conclude whether it will be the minimum, maximum or the 
saddle point.

Optimization problems involve optimizing functions in two variables using first and second order.

Let us look at some problems closely.

Example: F(x, y) = x2 + 2y2 – x2y

Solution: Critical point occurs where Fx and Fy are simultaneously 0.

Fx = 2x – 2xy = 2x(1-y)

Fy = 4y – x2

Fx = 0 if x = 0 or y = 1

Using this in the equation Fy = 0

If x = 0, y = 0

If y = 1 then 4 – x2 = 0

Therefore, we have (0,0), (2,1), and (-2,1)

Now using the second partial test to classify, D = Fxx
. Fyy – (Fxy)

2 = (2 – 2y).(4) – (-2x)2

•	 At (0,0) D= 8 and Fxx = 2 therefore we have a minimum.

•	 At (2,1) D = -16 is the saddle point.

•	 At (-2,1) D = -16 = 0 therefore is a saddle point.

Application of Multivariable Calculus

Multivariable calculus is useful considering that most natural phenomenon are non-linear and 
can be best described by using multivariable calculus and differential equation. For example re-
lationship between speed, position and acceleration can be defined by multivariable calculus and 
differential equation.
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The Derivative
The derivative of a function of a real variable is used to measure the sensitivity to change of the 
function value in relation to a change in its input value. Some of the concepts studied in relation 
to derivatives are local extrema of functions and rules for finding derivatives. This chapter closely 
examines these key concepts of derivatives to provide an extensive understanding of the subject.

In Calculus, derivative is the rate of change of a function with respect to a variable. Derivatives are 
fundamental to the solution of problems in calculus and differential equations. In general, scien-
tists observe changing systems (dynamical systems) to obtain the rate of change of some variable 
of interest, incorporate this information into some differential equation, and use integration tech-
niques to obtain a function that can be used to predict the behaviour of the original system under 
diverse conditions.

Geometrically, the derivative of a function can be interpreted as the slope of the graph of the func-
tion or, more precisely, as the slope of the tangent line at a point. Its calculation, in fact, derives 
from the slope formula for a straight line, except that a limiting process must be used for curves. 
The slope is often expressed as the “rise” over the “run,” or, in Cartesian terms, the ratio of the 
change in y to the change in x. For the straight line shown in the figure, the formula for the slope is 
(y1 − y0)/(x1 − x0). Another way to express this formula is [f(x0 + h) − f(x0)]/h, if h is used for x1 − x0 
and f(x) for y. This change in notation is useful for advancing from the idea of the slope of a line to 
the more general concept of the derivative of a function.

The slope, or instantaneous rate of change, for a curve at a particular point (x0, f(x0)) can be determined by  
observing the limit of the average rate of change as a second point (x0 + h, f(x0 + h)) approaches the original point.

For a curve, this ratio depends on where the points are chosen, reflecting the fact that curves do 
not have a constant slope. To find the slope at a desired point, the choice of the second point need-
ed to calculate the ratio represents a difficulty because, in general, the ratio will represent only 
an average slope between the points, rather than the actual slope at either point. To get around 
this difficulty, a limiting process is used whereby the second point is not fixed but specified by a 
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variable, as h in the ratio for the straight line above. Finding the limit in this case is a process of 
finding a number that the ratio approaches as h approaches 0, so that the limiting ratio will rep-
resent the actual slope at the given point. Some manipulations must be done on the quotient [f(x0 
+ h) − f(x0)]/h so that it can be rewritten in a form in which the limit as h approaches 0 can be 
seen more directly. Consider, for example, the parabola given by x2. In finding the derivative of x2 
when x is 2, the quotient is [(2 + h)2 − 22]/h. By expanding the numerator, the quotient becomes 
(4 + 4h + h2 − 4)/h = (4h + h2)/h. Both numerator and denominator still approach 0, but if h is not 
actually zero but only very close to it, then h can be divided out, giving 4 + h, which is easily seen 
to approach 4 as h approaches 0.

To sum up, the derivative of f(x) at x0, written as f′(x0), (df/dx)(x0), or Df(x0), is defined as,

( ) ( )0 00
lim /
h

f x h f x h
→

+ −  

if this limit exists.

Derivative of Function

The derivative of a function f at a point x, written f '(x) is given by:

( ) ( ) ( )
0

' lim
x

f x x f x
f x

x∆ →

+ ∆ −
=

∆

if this limit exists.

Graphically, the derivative of a function corresponds to the slope of its tangent line at one specific 
point. The following illustration allows us to visualise the tangent line (in blue) of a given function 
at two distinct points. Note that the slope of the tangent line varies from one point to the next. The 
value of the derivative of a function therefore depends on the point in which we decide to evaluate 
it. 

 

 
 
 
 
 

                             

 

Notation

Here, we represent the derivative of a function by a prime symbol. For example, writing ƒ′(x) rep-
resents the derivative of the function ƒ evaluated at point x. Similarly, writing (3x + 2)′ indicates 
we are carrying out the derivative of the function 3x + 2. The prime symbol disappears as soon as 
the derivative has been calculated.
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Derivatives of Usual Functions

Below you will find a list of the most important derivatives. Although these formulas can be for-
mally proven, we will only state them here. 

Constant Function

Let ƒ(x) = k, where k is some real constant. 

Then,

ƒ′(x) = (k)′ = 0

Examples:

(8)′ = 0

(—5)′ = 0

(0,2321)′ = 0

The identity function f(x) = x

Let ƒ(x) = x, the identity function of x. 

Then,

ƒ′(x) = (x)′ = 1

A function of the form xn.

Let ƒ(x) = xn, a function of x, and n a real constant. We have,

ƒ(x) = (xn) = nxn–1

Examples:

( )

( )
( )

4 4 1 3

1 11/2 1/22

2 2 1 3

1 1 41
3 3 3

' 4 4

' 1/ 2 1/ 2

' 2 2

' 1 1
3 3

x x x

x x x

x x x

x x x

−

− −

− − − −

− − − −

= =

= =

= − = −

     = − = −     
    

(xn)' = n xn–1 Rule

•	 The rule mentioned above applies to all types of exponents (natural, whole, and fractional). 
It is however essential that this exponent is constant. Another rule will need to be studied 
for exponential functions (of type ax).
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•	 The identity function is a particular case of the functions of form xn (with n = 1) and follows 
the same derivation rule: (x) = (x1) = 1 x1–1 = 1 x0 = 1.

•	 It is often the case that a function satisfies this form but requires a bit of reformulation 
before proceeding to the derivative. It is the case of roots (square, cubic, etc.) representing 
fractional exponents.

Examples:

( ) ( ) ( )

( ) ( )

11 1
1/2 1/222

1 1
1/3 1/3 2/333 3

1 1' '
2 2

1 1' '
3 3

x x x x x x

x x x x x x

 −  − 

 −  − 

 
= → = = = 

 

= → = = =

•	 Beware of rational functions. For example, the function 4

1
x

cannot be differentiated in the 

same manner as the function x4. You must first reformulate the function so that “x” is a 
numerator, forcing us to change its exponent’s sign.

Examples:

( )4 4 4 1 5
4 4 5

3 3 5
3/2 2 2 2

53/2 3/2
2

1 1 4' ' 4 4

1 1 3 3 3''
2 2 2

x x x x
x x x

x x x x
x x x

− − − − −

− − −−

   = → = = − = − = −   
   

  = → = = − = − = −  
   

•	 Finally, a derivate can greatly be simplified by proceeding first, if possible, to an algebraic 
simplification.

Example:

2 2
2 3 1/ 2 3/ 2

3 1/ 23

x x x x
x xx x

− − −= = =

That is how the derivative of 
2

3

x
x x

is greatly facilitated by carrying out the derivative of 3/2.x−

3 3 52 1
2 2 2

3

3 3''
2 2

x x x x
x x

− − − −  
= = − = −  

   

Exponential Function

It is very easy to confuse the exponential function as with a function of the form xn since both 
have exponents. They are, however, quite different. In an exponential function, the exponent is a 
variable.
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Given the exponential function ƒ(x) = ax where a Σ0. We have:

ƒ'(x) = (ax)' = ax ln(a)

Examples:

( ) ( )'3 3 ln 3

'1 1 1ln
2 2 2

x x

x x

=

      =             

Function ex

Let the function ƒ(x) = ex. 

Then,

ƒ(x) = (ex) = ex

Here is a special case of the previous rule since the function ƒ(x) = ex is an exponential function 
with: a = e.

Therefore, ƒ'(x) = (ex)' = ex ln(e) = ex(1) = ex.

Logarithmic Function ln x

Given the logarithmic function ƒ(x) = ln x. 

We have:

( ) ( ) 1''f x In x
x

= =

Basic Derivation Rules

We will generally have to confront not only the functions presented above, but also combinations 
of these: multiples, sums, products, quotients and composite functions. We therefore need to pres-
ent the rules that allow us to derive these more complex cases.

Constant Multiples

Let k be a real constant and ƒ(x) any given function. 

Then,

(k ƒ(x))′ = k ƒ′(x).

In other words, we can forget the constant which will remain unchanged and only derive the func-
tion of x.
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Examples:

( ) ( ) ( )
( ) ( )
( ) ( )

2 2' '4 4 4 2 8

'5 5 5

1 12' '12 12 12

x x x

x x x x

e e e

ln x ln x
x x

= = =

− = − = −

 = = = 
 

Addition and Subtraction of Functions

Let ƒ(x) and g(x) be two functions. 

Then,

(ƒ(x) ± g(x))′ = ƒ′(x) ± g′(x).

When we derive a sum or a subtraction of two functions, the previous rule states that the functions 
can be individually derived without changing the operation linking them.

Example:

( ) ( ) ( )5 5 4' '' 5x x xe x e x e x+ = + = +

Example:

( ) ( ) ( )

( )

2
2

3

3

'1 ''8 8

1 2 0

1 2

ln x ln x x
x

x
x

x x

−

−

 − + = − + 
 

= − − +

= +

Example:

( ) ( ) ( )

( ) ( )

( ) ( )

1/ 2 1

1
12

1
22

1
22

8 ' '' '3 2 3 2 8

' ''3 2 8

13 2 1 8
2

3 2 8
2

x x x x x
x

x x x

x x

x x

−

−

− −

− −

 + − = + − 
 

 
= + − 

 
 

= + − − 
 

= + +

Product Rule

Let ƒ(x) and g(x) be two functions. Then the derivate of the product:

(ƒ(x) g(x) )′ = ƒ′(x) g(x) + ƒ(x) g′(x)
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Examples:

( ) ( ) ( )3 3 3

2 3

'' '

3

x x x

x x

x e x e x e

x e x e

= +

= +

( ) ( ) ( )

( )
1
2

1 1
2

1 1
2 2

' ''3 3 3

'3 3

1 13 3
2

3 3
2

x ln x x ln x x ln x

x ln x x ln x

x ln x x
x

x ln x x

−

− −

= +

 
= + 

 
 

= + 
 

= +

Quotient Rule

Let ƒ(x) and g(x) be two functions. Then the derivative of the quotient:

( )
( )

( ) ( ) ( ) ( )
( ) 2

' ''f x f x g x f x g x
g x g x

  −
=       

Examples:

( ) ( )
( )

( )
( )

( )
( )

3 33

2

2 3

2

2

2

2

' ''

3

3

3

x x

x

x

x

x

x

x e x ex
e ex

x ex x ex

e

x e x

e

x x
e

− 
= 

 

−
=

−
=

−
=

( ) ( )
( )

( )

( )

1
2

2 2

' '3 3' '3 3'3
x ln x x ln xz ln x x Inxx

ln x lnx ln x

 
− −   = =  

 

( ) ( )

( )

( )

1 1
2

2 2

2

'1 1 1 13 3 3 62 2 2
2

13 2
2

2

x ln x x x lnx xx

ln x ln x

x ln x

lnx

− 
−  − − −

 = =

− −
=
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Derivative of Composite Functions

A composite function is a function with form ƒ(g(x)). A composite function is in fact a function that 
contains another function. If you have a function that can be broken down into many parts, where 
each part is in it a function and where these parts are not linked by addition, subtraction, product 
or division, you usually have a composite function.

For example, the function ƒ(x) = ex3
 is a composite function. We can write it as ƒ(g(x)) where g(x) = x3.

Unlike the function f(x) = x3 ex which is not a composite function. It is only the product of functions.

Here are a few examples of composite functions:

•	 ( ) ( )2 2 1f x ln x x= + +

	 We can write this function as ( )( ) ( )( ) ( ) 2where 2 1f g x ln g x g x x x= = + + ;

•	 ( ) 3 5xf x e −=

	 We can write this function as ( )( ) ( ) ( )where 3 5g xf g x e g x x= = − ;

•	 ( ) ( )( )4
3 xf x ln x x e= + −

	 We can write this function as ( )( ) ( )( )4
f g x g x= where,

	 ( ) ( ) 3 .xg x ln x x e= + −

Chain Rule

Let ƒ and g be two functions. Then the derivative of the composite function ƒ(g(x)) is:

(ƒ(g(x)) )′ = ƒ′(g(x)) g′(x)

 (ƒ(u))′ = ƒ′(u) u′ , where: u = g(x).

The chain rule states that when we derive a composite function, we must first derive the external 
function (the one which contains all others) by keeping the internal function as is and then multi-
plying it with the derivative of the internal function. If the latter is also composite, the process is 
repeated. Be alert as the internal function could also be a product, a quotient.

Chain Derivatives of Usual Functions

In concrete terms, we can express the chain rule for the most important functions as follows:

If u = g(x) represents any given function of x, 

•	 ( ) 1' 'n nu n u u−=

•	 ( ) ( )' 'u ua a ln a u=

•	 ( ) ' 'u ue e u=

•	 ( ) 1 ''ln u u
u

= ×
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Examples:

( ) ( )

( )

2 2
2

2

2

1 ''2 1 2 1
2 1

1 2 2
2 1

2 2
2 1

ln x x x x
x x

x
x x

x
x x

 + + = + +  + +

= +
+ +
+

=
+ +

( ) ( ) ( )

( )

( ) ( )

4 3

3

3 5 3 5

3 5

' '3 4 3 3

14 3 3

'' 3 5
.3

x x x

x x

x x

x

ln x e ln x x e ln x x e

ln x x e e
x

e e x

e

− −

−

 + − = + − + −  
 = + − + − 
 

= −

=

Below are additional examples that demonstrate that many rules may be necessary for one 
derivative.

Examples:

( )( ) ( ) ( )

( ) ( )

( ) ( )

3 23 3 3

23 3
3

23 2
3

' '3 9 3 3 9 . 3 9

1 '3 3 9 . . 3 9
3 9

13 3 9 . . 9 9
3 9

x x x

x x
x

x x
x

ln x e ln x e ln x e

ln x e x e
x e

ln x e e e
x e

     − = − −     

 = − −  −

 = − −  −

( )
( ) ( ) ( )

( )

ln ln

ln

ln

ln

' '. ln

' ' Product rule

11. .

1

x x x x

x x

x x

x x

e e x x

e x ln x x ln x

e ln x x
x

e ln x

  = 
= +  

 = + 
 

= +

( )

( ) ( ) ( ) ( )

( )

1 1
2 22 2

2

1 21
2 2

''' 1 . 2 1 1 . 2 1
1

2 1 2 1

x x x x
x

x x

 + + − + +   +    =
   +  +    

( )quotient rule

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1
22 2

1 1
22 2

11 1
2 22 2

1 1
22 2

'
2 . 2 1 1 . 2 1

=
2 1

1 '2 . 2 1 1 . 2 1 . 2 1
2

2 1

2 . 2 1 1 . 2 1 .2
2 1

2 . 2 1 1 . 2 1
2 1

x x x x

x

x x x x x

x

x x x x
x

x x x x
x

−

−

−

 + − + +  
+

+ − + + +
=

+

+ − + +
=

+

+ − + +
=

+
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1
22 2

1 1
22 2

1 1
22 2

1 '2 . 2 1 1 . 2 1 . 2 1
2

2 1
12 . 2 1 1 . 2 1 .2
2

2 1

2 . 2 1 1 . 2 1
2 1

x x x x x

x

x x x x

x

x x x x
x

−

−

−

+ − + + +
=

+

+ − + +
=

+

+ − + +
=

+

Evaluation of the Slope of the Tangent at One Point

As we mentioned at the very beginning, the derivative function ƒ′(x) represents the slope of the 
tangent line at ƒ(x) at all points x. We will often have to evaluate this slope at a specific point.

To evaluate the slope of the tangent of the function ƒ(x) at the point x = 1 for example, we most 
certainly cannot calculate ƒ(1) and derive this value. We would then obtain a slope of 0 since ƒ(1) 
is a constant. Instead, we need to find the derivative ƒ′(x) at all points and then evaluate it at  
x = 1. We will use the notation ƒ′(a) to represent the derivative of the function ƒ evaluated at the 
point x = a.

Example: Evaluate the slope of the functionƒ(x) = x3 es at the point x = 0.

We are looking to calculate ƒ′(0). We must first find the derivative at all points, ƒ′(x). Yet earlier 
we demonstrated that ƒ′(x) = (x3 es)′ = 3x2 es + x3 es.

Evaluated at x = 0, we obtain ƒ′(0) = 3. 02 e0 + 03 e0 = 0. The slope of the function ƒ(x) = x3esis 
therefore zero at x = 0. We will let you verify that this is not the case at point x = 1.

Increasing and Decreasing Functions

There is a direct relationship between the growth and decline of a function and the value of its 
derivative at one point:

•	 If the value of the derivative is negative at a given point, this indicates that the function is 
decreasing at that point.

•	 If the value of the derivative is positive at a given point, this indicates that the function is 
increasing at that point.

Example:

•	 Find the derivative of the function ƒ(x) = (x2 – 4)3.

•	 What is the slope of the tangent of ƒ(x) at the point = 1?

•	 Is the function ƒ(x) increasing or decreasing at the point x = 1?

•	 Find all points where the slope of ƒ(x) is 0.
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Solution:

•	 We need to derive the composite function u3, where u = x2 – 4. Consequently, we need to 
use the chain derivative.

( ) ( )
( ) ( )
( )
( )

32

22 2

22

22

'' 4

'3 4 . 4

3 4 .2

6 4

f x x

x x

x x

x x

 = −  

= − −

= −

= −

•	 At point x = 1, the slope of the tangent of the function f is:

( ) ( )( ) ( )( )2 22' 1 6 1 1 4 6 1 3 54f = − = − =

•	 Since the slope is positive at x = 1, the function f(x) is increasing at this point.

•	 The slope is 0 at points like f(x) = 0. We therefore need to find the values of x so that,

( )226 4 0x x − =

x = 0, x = —2 and x = 2 are the values sought.

Local Extrema of Functions

Let a function y = f(x) be defined in a δ-neighborhood of a point x0, where δ > 0. The function f(x) 
is said to have a local (or relative) maximum at the point x0, if for all points x ≠ x0 belonging to the 
neighborhood (x0 − δ, x0 + δ) the following inequality holds:

( ) ( )0 .f x f x≤

If the strict inequality holds for all points x ≠ x0 in some neighborhood of x0:

( ) ( )0 .f x f x<

Then the point x0 is a strict local maximum point.

Similarly, we define a local (or relative) minimum of the function f(x). In this case, the following 
inequality is valid for all points x ≠ x0 of the δ-neighborhood (x0 − δ, x0 + δ) of the point x0.

( ) ( )0 .f x f x≥
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Accordingly, a strict local minimum is described by the inequality,

( ) ( )0 .f x f x>

The concepts of local maximum and local minimum are united under the general term local ex-
tremum. The word “local” is often ommitted for brevity, so it is said simply about maxima and 
minima of functions.

Figure schematically shows the different extrema points. The point A(x1) is a strict local mini-
mum point, since there exists a δ-neighborhood (x1 − δ, x1 + δ), in which the following inequality 
holds:

( ) ( ) ( )1 1 1,f x f x x x xδ δ> ∀ ∈ − +

Similarly, the point B(x2) is a strict local maximum point. At this point, we have the inequality,

( ) ( ) ( )2 2 2,f x f x x x xδ δ> ∀ ∈ − +

the number δ at each point may be different.

The subsequent points are classified as follows:

•	 C (x3) is a strict minimum point;

•	 D (x4) is a non-strict maximum point;

•	 E (x5) is a non-strict maximum or minimum point;

•	 F (x6) is a non-strict maximum point;

•	 G (x7) is a non-strict minimum point;

•	 H (x8) is a non-strict maximum or minimum point;

•	 I (x9) is a non-strict maximum point;

•	 J (x10) − there is no extremum.
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Necessary Condition for an Extremum

The points at which the derivative of the function f(x) is equal to zero are called the stationary 
points.

The points at which the derivative of the function f(x) is equal to zero or does not exist are called 
the critical points of the function. Consequently, the stationary points are a subset of the set of 
critical points.

A necessary condition for an extremum is formulated as, If the point x0 is an extremum point of the 
function f(x), then the derivative at this point either is zero or does not exist. In other words, the 
extrema of a function are contained among its critical points.

The proof of the necessary condition follows from Fermat’s theorem.

The necessary condition does not guarantee the existence of an extremum. A classic illustration 
here is the cubic function f(x) = x3. Despite the fact that the derivative of the function at the point 
x=0 is zero: f′(x = 0) = 0, this point is not an extremum.

Local extrema of differentiable functions exist when the sufficient conditions are satisfied. These 
conditions are based on the use of the first-, second-, or higher-order derivative. Respectively, 3 
sufficient conditions for local extrema are considered. Now we turn to their formulation and proof.

First Derivative Test

Let the function f(x) be differentiable in a neighborhood of the point x0, except perhaps at the point 
x0 itself, in which, however, the function is continuous. 

Then:

•	 The derivative f′(x) changes sign from minus to plus when passing through the point x0 
(from left to right), then x0 is a strict minimum point. In other words, in this case there 
exists a number δ > 0 such that,

	

( ) ( )
( ) ( )

0 0

0 0

', 0,
', 0,

x x x f x

x x x f x

δ

δ

∀ ∈ − ⇒ <

∀ ∈ + ⇒ >
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•	 If the derivative f′(x), on the contrary, changes sign from plus to minus when passing 
through the point x0, then x0 is a strict maximum point. In other words, there exists a num-
ber δ > 0 such that:

( ) ( )
( ) ( )

0 0

0 0

', 0,
', 0,

x x x f x

x x x f x

δ

δ

∀ ∈ − ⇒ >

∀ ∈ + ⇒ <

Proof: We confine ourselves to the case of the minimum. Suppose that the derivative f′(x) changes 
sign from minus to plus when passing through the point x0. To the left from the point x0, the fol-
lowing condition is satisfied:

( ) ( )0 0
', 0,x x x f xδ∀ ∈ − ⇒ <

By Lagrange’s theorem, the difference of the values of the function at the points x and x0 is written 
as,

( ) ( ) ( )( )0 0
' ,f x f x f c x x− = −

Where the point c belongs to the interval (x0 − δ, x0), in which the derivative is negative, i.e. f′(c) < 
0. Since x – x0 < 0 to the left of the point x0, then,

( ) ( ) ( )0 0 00 for all , .f x f x x x xδ− > ∈ −

Likewise, it is established that,

( ) ( ) ( )0 0 00 for all , .f x f x x x x δ− > ∈ +

to the right of the point x0.

Based on the definition, we conclude that x0 is a strict minimum point of the function f(x). Simi-
larly, we can prove the first derivative test for a strict maximum.

The first derivative test does not require the function to be differentiable at the point x0. If the de-
rivative at this point is infinite or does not exist (i.e. the point x0 is critical, but not stationary), the 
first derivative test can still be used to investigate the local extrema of the function.
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Second Derivative Test

Let the first derivative of a function f(x) at the pointx0 be equal to zero: f(x0) = 0, that is x0 is 
a stationary point of f(x). Suppose also that there exists the second derivative f′′ (x0) at this 
point. 

Then,

•	 If f′′(x0) > 0, then x0 is a strict minimum point of the function f(x);

•	 If f′′(x0) < 0, then x0 is a strict maximum point of the function f(x).

Proof: In the case of a strict minimum f′′(x0) > 0. Then the first derivative is an increasing function 
at the point x0. Consequently, there exists a number δ > 0 such that,

( ) ( ) ( )
( ) ( ) ( )

0 0 0

0 0 0

'', ,
'', ,

x x x f x f x

x x x f x f x

δ

δ

∀ ∈ − ⇒ >

∀ ∈ + ⇒ >

Since f′′(x0) = 0 (because x0 is a stationary point), therefore the first derivative is negative in the 
δ-neighborhood to the left of the point x0, and is positive to the right, i.e. the derivative changes 
sign from minus to plus when passing through the point x0. By the first derivative test, this means 
that x0 is a strict minimum point.

The case of the maximum can be considered in a similar way.

The second derivative test is convenient to use when calculation of the first derivatives in the 
neighborhood of a stationary point is difficult. On the other hand, the second test may be used 
only for stationary points (where the first derivative is zero) − in contrast to the first derivative test, 
which is applicable to any critical points.

Third Derivative Test

Let the function f(x) have derivatives at the point x0 up to the nth order inclusively. 

Then if,

( ) ( ) ( ) ( ) ( ) ( )1
0 0 0 0''' ..... 0 and  0,n nf x f x f x f x−= = = = ≠

The point x0 for even n is:

•	 A strict minimum point if f(n) (x0) > 0, and

•	 A strict maximum point if f(n) (x0) > 0.

For odd n, the extremum at x0 does not exist.

It is clear that for n = 2, we obtain as a special case the second derivative test for local extrema 
considered above. To avoid such a transition, the third derivative test implies that n > 2.
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Proof: Expand the function f(x) at the point x0 in a Taylor series:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )

20 0
0 0 0

1
10 0

0 0 0

' ''
....

1! 2!

1 ! !

n n
n n n

f x f x
f x f x x x x x

f x f x
x x x x o x x

n n

−
−

= + − + − +

+ − + − + −
−

Since, by assumption, all of the first derivatives up to the (n−1)th order are equal to zero, we obtain:

( ) ( )
( ) ( ) ( ) ( )( )0

0 0 0 ,
!

n
n nf x

f x f x x x o x x
n

− = − + −

Where the remainder term ο ((x − x0)n) has a higher order of smallness than n. As a result, the sign 

of the difference f(x) − f(x0) in the δ-neighborhood of the point x0 will be determined by the sign of 

the nth term in the Taylor series:

( ) ( )
( ) ( ) ( )0

0 0!

n
nf x

sign f x f x sign x x
n

 
− = −    

  

Or 

( ) ( ) ( ) ( ) ( )0 0 0
nnsign f x f x sign f x x x − = −    

If n is an even number (n = 2k), then,

( ) ( )2
0 0 0, 0kx x x x xδ δ∀ ∈ − + ⇒ − >

Consequently, in this case,

( ) ( ) ( ) ( )0 0 .nsign f x f x sign f x− =  

If f(n) (x 0) > 0 in the δ-neighborhood of the point x0, then the following inequality holds:

( ) ( )0 0.f x f x− >

By definition, this means that x0 is a strict minimum point of the function f(x). Similarly, if f(n) (x0) 
< 0 in the δ-neighborhood of the point x0, we have the inequality,

( ) ( )0 0.f x f x− <

That corresponds to a strict maximum point.

If n is an odd number (n = 2k + 1), the degree of (x − x0) 2k + 1 will change sign when passing through 
the point x0. Then it follows from the formula: 

( ) ( ) ( ) ( ) ( )2 1
0 0 0

knsign f x f x sign f x x x + − = −    
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that the difference f(x) − f(x0) also changes sign when passing through x0. In this case, the extre-
mum at the point x0 does not exist.

Rules for Finding Derivatives

It is tedious to compute a limit every time we need to know the derivative of a function. Fortunate-
ly, we can develop a small collection of examples and rules that allow us to compute the derivative 
of almost any function we are likely to encounter. Many functions involve quantities raised to a 
constant power, such as polynomials and more complicated combinations like y = (sin x)4. 

Power Rule

We start with the derivative of a power function, f(x) = xn. Here n is a number of any kind integer 

rational, positive, negative, even irrational, as in .xπ  

1.n nd x nx
dx

−=

It is not easy to show this is true for any n. We will do some of the easier cases now, and discuss 
the rest later.

The easiest, and most common, is the case that n is a positive integer. To compute the derivative 
we need to compute the following limit:

( )
0

lim .
n

n

x

x x xd x
dx x∆ →

+ ∆ −
=

∆

For a specific, fairly small value of n, we could do this by straightforward algebra.

Example: Find the derivative of ( ) 3.f x x=

( )3 3
3

0

3 2 2 3 3

0

2 2 3

2 2 2

.
lim

3 3 2lim

3 3lim

lim 3 3 3 .

x

x

x

x

x x xd x
dx x

x x x x x x x
x

x x x x x
x

x x x x x

∆ →

∆ →

→∞

∆ →∞

+ ∆ −
=

∆
+ ∆ + ∆ + ∆ −

=
∆

∆ + ∆ + ∆
∆

+ ∆ + ∆ =

The general case is really not much harder as long as we don’t try to do too much. The key is un-
derstanding what happens when (x + ∆ x)n is multiplied out:

( ) 1 1 2 1
2 1....... .n n n n n n

nx x x nx x a x x a x x x− − −
−+ ∆ = + ∆ + ∆ + + + ∆ + ∆
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We know that multiplying out will give a large number of terms all of the form xi ∆ xj, and in fact 
that I + j = n in every term. One way to see this is to understand that one method for multiplying 
out (x+ ∆ x)n is the following: In every (x + ∆ x) factor, pick either the x or the x, then multiply the 
n choices together; do this in all possible ways. For example, for (x + ∆ x)3, there are eight possible 
ways to do this:

3 2 2 2

2 2 2 3

3 2 2 3

(   )(   )(   )        
       
      
       
  3   3   

x x x x x x xxx xx x x xx x x x
xxx xx x x xx x x x

x x x x x x x
x x x x x x x
x x x x x x

+ ∆ + ∆ + ∆ = + ∆ + ∆ + ∆ ∆
+ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆ ∆

= + ∆ + ∆ + ∆

+ ∆ + ∆ + ∆ + ∆

= + ∆ + ∆ + ∆

No matter what n is, there are n ways to pick ∆ x in one factor and x in the remaining n−1 factors; 
this means one term is nxn−1∆ x. The other coefficients are somewhat harder to understand, but we 
don’t really need them, so in the formula above they have simply been called a2, a3, and so on. We 
know that every one of these terms contains ∆ x to at least the power 2. Now let’s look at the limit:

( )
0

1 2 2 1
2 1

0

1 2 2 1
2 1

0

2 2 1 1
1 2 10

lim

.....lim

...lim

lim ... .

n n
n

x

n n n n n n
n

x

n n n n
n

x

n n n n
n nx

x x xd x
dx x

x nx x ax x x a x x x x
x

nx x a x x a x x x
x

nx a x x a x x nx

∆ →

− − −
−

∆ →

− − −
−

∆ →

− − − −
− −∆ →

+ ∆ −
=

∆
+ ∆ + ∆ + + ∆ + ∆ −

=
∆

∆ + ∆ + + ∆ + ∆
=

∆
= + ∆ + + ∆ + ∆

Now without much trouble we can verify the formula for negative integers. 

Example: Find the derivative of y = x−3. Using the formula, y’ = −3x−3−1 = −3x−4.

Here is the general computation. Suppose n is a negative integer; the algebra is easier to follow if 
we use n = −m in the computation, where m is a positive integer.

( )

( )

( )
( )

( )
( )

( )

0

0

0

1 2 2 1
2 1

0

1 2 2 1
2 1

0

1

lim

1 1

lim

lim

....
lim

....lim

m m
n m

x

m m

x

mm

m mx

m m m m m m
m

m mx

m m m m
m

m mx

m

m

x x xd dx x
dx dx x

xx x
x

x x x
x x x x

x x mx x a x x a x x x

x x x x

mx a x x a x x x
x x x x

mx
x x

− −
−

∆ →

∆ →

∆ →

− − −
−

∆ →

− − − −
−

∆ →

−

+ ∆ −
= =

∆

−
+ ∆

=
∆

− + ∆
=

+ ∆ ∆

− + ∆ + ∆ + + ∆ + ∆
=

+ ∆ ∆

− − ∆ − ∆ −∆
=

+ ∆ ∆

−
=

1
1 2 1 1

2 .
m

m m m n
m

mx mx nx m nx
x m

−
− − − −−

= = − ∆ = = =
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( )

( )

( )
( )

( )
( )

( )

0

0

0

1 2 2 1
2 1

0

1 2 2 1
2 1

0

1

lim

1 1

lim

lim

....
lim

....lim

m m
n m

x

m m

x

mm

m mx

m m m m m m
m

m mx

m m m m
m

m mx

m

m

x x xd dx x
dx dx x

xx x
x

x x x
x x x x

x x mx x a x x a x x x

x x x x

mx a x x a x x x
x x x x

mx
x x

− −
−

∆ →

∆ →

∆ →

− − −
−

∆ →

− − − −
−

∆ →

−

+ ∆ −
= =

∆

−
+ ∆

=
∆

− + ∆
=

+ ∆ ∆

− + ∆ + ∆ + + ∆ + ∆
=

+ ∆ ∆

− − ∆ − ∆ −∆
=

+ ∆ ∆

−
=

1
1 2 1 1

2 .
m

m m m n
m

mx mx nx m nx
x m

−
− − − −−

= = − ∆ = = =

Let’s note here a simple case in which the power rule applies, or almost applies, but is not real-
ly needed. Suppose that f(x) = 1; remember that this “1” is a function, not “merely” a number,  
and that f(x) = 1 has a graph that is a horizontal line, with slope zero everywhere. So we know that 
f′(x) = 0. We might also write f(x) = x0, though there is some question about just what this means 
at x = 0. If we apply the power rule, we get f′(x) = 0x−1 = 0/x = 0, again noting that there is a prob-
lem at x = 0. So the power rule “works” in this case, but it’s really best to just remember that the 
derivative of any constant function is zero.

Linearity of the Derivative

An operation is linear if it behaves “nicely” with respect to multiplication by a constant and addi-
tion. The name comes from the equation of a line through the origin, f(x) = mx, and the follow-
ing two properties of this equation. First, f(cx) = m(cx) = c(mx) = cf(x), so the constant c can be 
“moved outside” or “moved through” the function f. Second, f(x + y) = m(x + y) = mx + my = f(x) 
+ f(y), so the addition symbol likewise can be moved through the function.

The corresponding properties for the derivative are:

( )( ) ( ) ( ) ( )d dc f x cf x c f x cf x
dx dx

= =

And 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )' '' .d d df x g x f x g x f x g x f x g x
dx dx dx

+ = + = + = +

It is easy to see, or at least to believe, that these are true by thinking of the distance/speed inter-
pretation of derivatives. If one object is at position f(t) at time t, we know its speed is given by f’(t). 
Suppose another object is at position 5f(t) at time t, namely, that it is always 5 times as far along 
the route as the first object. Then it “must” be going 5 times as fast at all times.

The second rule is somewhat more complicated, but here is one way to picture it. Suppose a flatbed 
railroad car is at position f(t) at time t, so the car is traveling at a speed of f’(t) (to be specific, let’s 
say that f(t) gives the position on the track of the rear end of the car). Suppose that an ant is crawl-
ing from the back of the car to the front so that its position on the car is g’(t) and its speed relative 
to the car is g′(t). Then in reality, at time t, the ant is at position f(t) + g(t) along the track, and its 
speed is “obviously” f’(t) + g’(t).

Let’s see how to verify these rules by computation. We’ll do one and leave the other for the 
exercises.
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( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

0

0

0

0 0

lim

lim

lim

lim

lim lim

' '

x

x

x

x

x x

f x x g x x f x g xd f x g x
dx x

f x x g x x f x g x
x

f x x f x g x x g x
x

f x x f x g x x g x
x x

f x x f x g x x g x
x x

f x g x

∆ →

∆ →

∆ →

∆ →

∆ → ∆ →

+ ∆ + + ∆ − +
+ =

∆
+ ∆ + + ∆ − −

=
∆

+ ∆ − + + ∆ −
=

∆
+ ∆ − + ∆ − 

= = + ∆ ∆ 
+ ∆ − + ∆ −

= +
∆ ∆

= +

This is sometimes called the sum rule for derivatives.

Example: Find the derivative of f(x) = x5 + 5x2. We have to invoke linearity twice here,

( ) ( ) ( )5 2 5 2 4 1 4' 5 5 5 5 2 5 10 .d d df x x x x x x x x x
dx dx dx

= + = + = + ⋅ = +

Because it is so easy with a little practice, we can usually combine all uses of linearity into a single 
step. The following example shows an acceptably detailed computation.

Example: Find the derivative of ( ) 4 23 / 2 6 7.f x x x x= − + −

( ) ( )2 4 2 5
4

3' 2 6 7 3 2 6 7 12 4 6.d df x x x x x x x x
dx x dx

− − = − + − = − − = − − + 
 

Product Rule

Consider the product of two simple functions, say f(x) = (x2 + 1)(x3 − 3x). An obvious guess for 
the derivative of f is the product of the derivatives of the constituent functions: (2x) (3x2 – 3) = 6x 

3− 6x. Is this correct? We can easily check, by rewriting f and doing the calculation in a way that is 
known to work. First, f(x) = x5 − 3x3 +x3 − 3x = x5 − 2x3 − 3x, and then f’(x) = 5x 4 − 6x2 − 3.

So the derivative of f(x)g(x) is not as simple as f’(x)g’(x). Surely there is some rule for such a sit-
uation? There is, and it is instructive to “discover” it by trying to do the general calculation even 
without knowing the answer in advance.

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0 0

0 0

lim

lim

lim lim

lim lim

' '

x

x

x x

x x

f x x g x x f x g xd f x g x
dx x

f x x g x x f x x g x f x x g x f x g x
x

f x x g x x f x x g x f x x g x f x g x
x x

g x x g x f x x f x
f x x g x

x x
f x g x f x g x

∆ →

∆ →

∆ → ∆ →

∆ → ∆ →

+ ∆ + ∆ −
=

∆
+ ∆ + ∆ − + ∆ + + ∆ −

=
∆

+ ∆ + ∆ − + ∆ + ∆ −
= +

∆ ∆
+ ∆ − + ∆ −

= + ∆ +
∆ ∆

= +
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( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0 0

0 0

lim

lim

lim lim

lim lim

' '

x

x

x x

x x

f x x g x x f x g xd f x g x
dx x

f x x g x x f x x g x f x x g x f x g x
x

f x x g x x f x x g x f x x g x f x g x
x x

g x x g x f x x f x
f x x g x

x x
f x g x f x g x

∆ →

∆ →

∆ → ∆ →

∆ → ∆ →

+ ∆ + ∆ −
=

∆
+ ∆ + ∆ − + ∆ + + ∆ −

=
∆

+ ∆ + ∆ − + ∆ + ∆ −
= +

∆ ∆
+ ∆ − + ∆ −

= + ∆ +
∆ ∆

= +

A couple of items here need discussion. First, we used a standard trick, “add and subtract the same 
thing”, to transform what we had into a more useful form. After some rewriting, we realize that we 
have two limits that produce f’(x) and g’(x). Of course, f’(x) and g’(x) must actually exist for this to 

make sense. We also replaced ( )
0

lim
x

f x x
∆ →

+ ∆  with f(x)—why is this justified?

What we really need to know here is that ( ) ( )
0

lim ,
x

f x x f x
∆ →

+ ∆ =  r, that f is continuous at x. We 

already know that f’(x) exists (or the whole approach, writing the derivative of fg in terms of f’ and 
g’, doesn’t make sense). This turns out to imply that f is continuous as well. 

Here’s why:

( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

lim lim

lim lim

'

x x

x x

f x x f x x f x f x

f x x f x
x f x

x
f x f x f x

∆ → ∆ →

∆ → ∆ →

+ ∆ = + ∆ − +

+ ∆ −
∆ +

∆
+ =

To summarize: the product rule says that,

( ) ( )( ) ( ) ( ) ( ) ( )' ' .d f x g x f x g x f x g x
dx

= +

Returning to the example we started with, let f(x) = (x2 + 1) (x3 − 3x). Then f’(x) = (x2 + 1) (3x2 − 3) 
+ (2x) (x3 − 3x) = 3x4 − 3x2 + 3x2 − 3 + 2x4 − 6x2 = 5x4 − 6x2 − 3, as before. In this case it is probably 
simpler to multiply f(x) out first, and then compute the derivative; here’s an example for which we 
really need the product rule.

Example: Compute the derivative of f(x) 2 2625 .x x= −

We have already computed 2

2
625 .

625
d xx
dx x

−
− =

−
Now,

( ) ( )3 2 3
2 2

2 2 2

2 625 3 1250' 2 625 .
625 625 625

x x xx x xf x x x x
x x x

− + −− − +
+ − = =

− − −
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Quotient Rule

What is the derivative of (x2 + 1)/(x3 − 3x)? More generally, we’d like to have a formula to compute 
the derivative of f(x)/g(x) if we already know f’(x) and g’(x). Instead of attacking this problem 
head-on, let’s notice that we’ve already done part of the problem: f(x)/g(x) = f(x) . (1/g(x)), that is, 
this is “really” a product, and we can compute the derivative if we know f′(x) and (1/g(x))’. So really 
the only new bit of information we need is (1/g(x))’ in terms of g’(x). 

As with the product rule, let’s set this up and see how far we can get:

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( )
( )

0

0

0

2

1 1
1 lim

lim

lim

1lim

'

x

x

x

x

g x x g xd
dx g x x

g x g x x
g x x g x

x
g x g x x
g x x g x x

g x x g x
x g x x g x

g x
g x

∆ →

∆ →

∆ →

→∞

−
+ ∆

=
∆

− + ∆
+ ∆

=
∆

− + ∆
=

+ ∆ ∆

+ ∆ −
−

∆ + ∆

= −

Now we can put this together with the product rule:

( )
( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )2 2 2

' ' ' ''1'x g x f x g x f x g x f x g x f x g xd f f x f x
dx g x g xg x g x g x

− − + −
= + = =

Example: Compute the derivative of ( ) ( )2 31 / 3x x x+ − .

( ) ( )( )
( ) ( )

3 2 22 4 2

2 23 3 3

2 3 1 3 31 6 3.
3 3 3

x x x x xd x x x
dx x x x x x x

− − + −+ − − +
= =

− − −

It is often possible to calculate derivatives in more than one way, as we have already seen. Since 
every quotient can be written as a product, it is always possible to use the product rule to compute 
the derivative, though it is not always simpler.

Example: Find the derivative of 2625 /x x−  in two ways: using the quotient rule, and using the 
product rule.

Quotient rule:

( ) ( )2 2
2 / 625 625 .1/ 2625 .

x x x x xd x
dx xx

− − − −−
=
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Note that we have used 1/ 2x x=  to compute the derivative of x  by the power rule.

Product rule:

2 1/ 2 2 3/ 2 1/ 2

2

1625 625
2 625

d xx x x x x
dx x

− − −− −
− = − +

−

With a bit of algebra, both of these simplify to,

2

2 3/ 2

625
2 625

x
x x

+
−

−

Occasionally you will need to compute the derivative of a quotient with a constant numerator, like 
10/x2. Of course you can use the quotient rule, but it is usually not the easiest method. If we do use 
it here, we get:

2

2 4 3

10 0 10 2 20 ,d x x
dx x x x

⋅ − ⋅ −
= =

 Since the derivative of 10 is 0. But it is simpler to do this:

2 3
2

10 10 20 .d d x x
dx x dx

− −= = −

Admittedly, x2 is a particularly simple denominator, but we will see that a similar calculation is 
usually possible. Another approach is to remember that,

( )
( )

( )2

'1 ,
g xd

dx g x g x
−

=

But this requires extra memorization. Using this formula,

2 4

10 210d x
dx x x

−
= −

Note that we first use linearity of the derivative to pull the 10 out in front.

Chain Rule

So far we have seen how to compute the derivative of a function built up from other functions by 
addition, subtraction, multiplication and division. There is another very important way that we 
combine simple functions to make more complicated functions: function composition. For exam-

ple, consider 2625 .x−  This function has many simpler components, like 625 and x2, and then 

there is that square root symbol, so the square root function 1/ 2x x=  is involved. The obvious 
question is: can we compute the derivative using the derivatives of the constituents 625− x2 and 

?x  We can indeed. In general, if f(x) and g(x) are functions, we can compute the derivatives of 
f(g(x)) and g(f(x)) in terms of f’(x) and g’(x).
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Example: Form the two possible compositions of f(x) = x  and g(x) = 625 − x2 and compute the 

derivatives. First, f(g(x)) = 2625 ,x−  and the derivative is 2625x x− −  as we have seen. Sec-

ond, ( )( ) ( )2
625 625g f x x x= − = −  with derivative −1. Of course, these calculations do not use 

anything new, and in particular the derivative of f(g(x)) was somewhat tedious to compute from 
the definition.

Suppose we want the derivative of f(g(x)). Again, let’s set up the derivative and play some algebraic 
tricks:

( )( ) ( )( ) ( )( )

( )( ) ( )( )
( ) ( )

( ) ( )
0

0

lim
x

lim
x

x

x

f g x x f g xd f g x
dx

f g x x f g x g x x g x
g x x g x

∆ →

∆ →

+ ∆ −
=

∆
+ ∆ − + ∆ −

=
+ ∆ − ∆

Now we see immediately that the second fraction turns into g’(x) when we take the limit. The first 
fraction is more complicated, but it too looks something like a derivative. The denominator, g(x + 
∆ x) − g(x), is a change in the value of g, so let’s abbreviate it as, 

( ) ( ) ,g g x x g x∆ = + ∆ −

Which also means? ( ) ( ) ( ) .g x x g x x g x g+ ∆ = + ∆ = + ∆  

Goes to g(x). So we can rewrite this limit as, 

( )( ) ( )( )
0

lim .
g

f g x g f g x
g∆ →

+ ∆ −

∆

Now this looks exactly like a derivative, namely f’(g(x)), that is, the function f’(x) with x replaced by 
g(x). If this all withstands scrutiny, we then get:

( )( ) ( )( ) ( )' ' .d f g x f g x g x
dx

=

Unfortunately, there is a small flaw in the argument. Recall that what we mean by lim∆ x→0 involves 
what happens when ∆ x is close to 0 but not equal to 0. The qualification is very important, since 
we must be able to divide by ∆ x. But when ∆ x is close to 0 but not equal to 0, ∆ g = g(x + ∆ x)) ∆  
g(x) is close to 0 and possibly equal to 0. This means it doesn’t really make sense to divide by ∆ g. 
Note that many functions g do have the property that g(x + ∆ x) ≠  g(x) 6 = 0 when ∆ x is small, 
and for these functions the argument above is fine.

The chain rule has a particularly simple expression if we use the Leibniz notation for the deriva-
tive. The quantity f’(g(x)) is the derivative of f with x replaced by g; this can be written df/dg. As 
usual, g’(x) = dg/dx. Then the chain rule becomes,

.df df dg
dx dg dx

=
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This looks like trivial arithmetic, but it is not: dg/dx is not a fraction, that is, not literal division, but 
a single symbol that means g’(x). Nevertheless, it turns out that what looks like trivial arithmetic, 
and is therefore easy to remember, is really true.

It will take a bit of practice to make the use of the chain rule come naturally—it is more complicated 
than the earlier differentiation rules we have seen.

Example: Compute the derivative of 2625 .x−  We already know that the answer is 2625 ,x x− −  

computed directly from the limit. In the context of the chain rule, we have ( ) ( ) 2, 625 .f x x g x x= = −  

We know that f′(x) = (1/2)x −1/2, so ( )( ) ( )( ) 1/22' 1/ 2 625 .f g x x
−

= −  Note that this is a two-step 

computation: first compute f’(x), then replace x by g(x). 

Since g’(x) = −2x we have,

( )( ) ( ) ( )
2 2

1' ' 2
2 625 625

xf g x g x x
x x

−
= − =

− −

Example: Compute the derivative of 21/ 625 .x−  This is a quotient with a constant numerator, so 

we could use the quotient rule, but it is simpler to use the chain rule. The function is ( ) 1/ 22625 x
−

−  

the composition of f(x) = x−1/2 and g(x) = 625 − x2. We compute f′(x) = (−1/2)x −3/2 using the power 
rule, and then,

( )( ) ( )
( )

( )
( )3/ 2 3/ 22 2

1'' 2 .
2 625 625

xf g x g x x
x x

−
= − =

− −

In practice, of course, you will need to use more than one of the rules we have developed to com-
pute the derivative of a complicated function.

Example: Compute the derivative of,

( )
2

2

1 .
1

xf x
x x

−
=

+

The “last” operation here is division, so to get started we need to use the quotient rule first. This 
gives,

( )
( ) ( )( )

( )
( )( )
( )

2 2 2 2

2 2

2 2 2 2

2 2

''1 1 1 1
'

1

'2 1 1 1

1

x x x x x x
f x

x x

x x x x x

x x

− + − − +
=

+

+ − − +
=

+
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Now we need to compute the derivative of 2 1.x x +  This is a product, so we use the product rule:

2 2 21 1 1.d dx x x x x
dx dx

+ = + + +

Finally, we use the chain rule:

( ) ( ) ( )1/ 2 1/ 22 2 2

2

11 1 1 2 .
2 1

d d xx x x x
dx dx x

−
+ = + = + =

+

And putting it all together:

( )
( )( )
( )

( )
( )

2 2 2 2

2 2

2 2 2 2

2

2 2

'2 1 1 1
'

1

2 1 1 1
1 .

1

x x x x x
f x

x x

xx x x x x
x

x x

+ − − +
=

+

 
+ − − + + 

+ =
+

This can be simplified of course, but we have done all the calculus, so that only algebra is left. 

Example: Compute the derivative of 1 1 .x+ +  Here we have a more complicated chain 

of compositions, so we use the chain rule twice. At the outermost “layer” we have the function 

( ) 1 1g x x= + +  plugged into ( ) .f x x=  

So applying the chain rule once gives:

( ) ( )1/ 211 1 1 1 1 1 .
2

d dx x x
dx dx

−

+ + = + + + +

Now we need the derivative of 1 x+ . Using the chain rule again:

( ) 1/ 2
1/ 21 11 1

2 2
d x x x
dx

−
−+ = +

So the original derivative is:

( ) ( )
1/ 2 1/ 2

1/ 21 1 11 1 1 1 1 .
2 2 2

1

8 1 1 1

d x x x x
dx

x x x

− −
−+ + = + + +

=
+ +

Using the chain rule, the power rule, and the product rule, it is possible to avoid using the quotient 
rule entirely.
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Example: Compute the derivative of ( )
3

2 .
1

xf x
x

=
+

 Write f(x) = x3 (x2 + 1)−1,

( ) ( ) ( )
( )( ) ( ) ( )

( ) ( )

( )

( )
( )

( )

( ) ( )

1 13 2 2 2

2 13 2 2 2

2 14 2 2 2

4 2

2 22

2 24

2 22 2

4 4 2 4 2

2 22 2

' 1 3 1

1 1 2 3 1

2 1 3 1

2 3
11

3 12

1 1

2 3 3 3

1 1

df x x x x x
dx

x x x x x

x x x x

x x
xx

x xx

x x

x x x x x

x x

− −

− −

− −

= + + +

= − + + +

= − + + +

−
= +

++

+−
= +

+ +

− + + +
= =

+ +

We already had the derivative on the second line; all the rest is simplification. It is easier to get to 
this answer by using the quotient rule.

Rates of Change and Applications to Motion

Average Rates of Change

Suppose s(t) = 2t3 represents the position of a race car along a straight track, measured in feet 
from the starting line at time t seconds. What is the average rate of change of s(t) from t = 2 to t 
= 3?

The average rate of change is equal to the total change in position divided by the total change in 
time:

( ) ( )

Avg Rate =

3 2
3 2

54 16
1

38ft per second

s
t

s s

∆
∆

−
=

−
−

=

=

In physics, velocity is the rate of change of position. Thus, 38 feet per second is the average velocity 
of the car between times t = 2 and t = 3.
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Instantaneous Rates of Change

What is the instantaneous rate of change of the same race car at time t = 2? The instantaneous rate 
of change measures the rate of change, or slope, of a curve at a certain instant. Thus, the instanta-
neous rate of change is given by the derivative. In this case, the instantaneous rate is s’(2).

s’(t) = 6t2

s’(2) = 6(2)2 = 24 feet per second

Thus, the derivative shows that the race car had an instantaneous velocity of 24 feet per second at 
time t = 2.

Rectilinear Motion

Rectilinear Motion refers to the motion of an object in a straight line. Such motion can be depicted 
as a point which moves forwards and/or backwards on a number line.

General Motion Equations

If s(t) represents the position of the object on the number line at time t, then v(t), the (instanta-
neous) velocity, is equal to s’(t), and a(t), the (instantaneous) acceleration, is equal to v’(t), which 
is s’’(t).

Thus, velocity is the rate of change of position, and acceleration is the rate of change of velocity.

Example: If s(t) = t2 - 5t, what is the position, velocity and acceleration at t = 2? Assume s is in feet 
and t is in seconds, and interpret these results.

s(t) = t2 - 5t + 3

v(t) = s’(t) = 2t - 5

a(t) = v’(t) = 2

s(2) = 2

v(2) = - 1

a(2) = 2.

So, at t = 2, the object is located at +2 feet from the start. The velocity is -1 foot per second. The 
negative sign indicates that it is headed in the negative direction, and it is moving backwards at a 
rate of one foot per second. The acceleration is 2, which means that at that instant, its velocity is 
increasing by a rate of 2 feet per second each second.

Vector and Scalar Quantities

Position, velocity, and acceleration are all vector quantities because they contain both a direction 
and a magnitude. For example, if the velocity of an object is -3 feet per second, then that object is 
moving backwards (direction) at a rate of 3 feet per second (magnitude). Similarly, if an object has 
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a position of -3 feet, then is located 3 feet from the starting point (magnitude), but on the negative 
side (direction).

The vector quantities of position and velocity both have corresponding scalar quantities that only 
have a magnitude. The scalar analog of position is distance. Although the position of an object with 
respect to the start line may be -3 feet, its distance from that start line is simply 3 feet, because 
distance is always a positive quantity. Thus, distance is the absolute value of position.

Similarly, the scalar analog of velocity is speed. Whether an object’s velocity is -5 feet per second, 
or + 5 feet per second, its speed is still simply 5 feet per second, because speed is always a posi-
tive quantity that contains no information about direction. Thus, speed is the absolute value of 
velocity.

Motion with Constant Acceleration

This is the special case of rectilinear motion in which the acceleration is constant. In cases where 
the acceleration is constant, a(t) can be represented simply by the constant a, and both velocity and 
position can be found by using the following formulas:

0

2
0 0

( )  
( )    

1( )    
2

a t a
v t v at

s t s v t at

=
= +

= + + +

Where v0 is the initial velocity at time t = 0 and s0 is the initial position at time t = 0. Note that these 
formulas are in compliance with the relations v(t) = s’(t) and a(t) = v’(t).

A ball dropped vertically from a height travels in this fashion, because it is accelerated by gravity 
at a constant rate of 9.8 meters per second per second.
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The Integral
Integral is an operation of calculus which assigns numbers to functions such that it describes displace-
ment, area, volume, and other concepts which occur due to combination of infinitesimal data. The var-
ious techniques used within integration are integration by substitution, integration by parts and inte-
gration by trigonometric substitution. This chapter discusses in detail these techniques of integration. 

In Calculus, Integral is either a numerical value equal to the area under the graph of a function 
for some interval (definite integral) or a new function the derivative of which is the original func-
tion (indefinite integral). These two meanings are related by the fact that a definite integral of any 
function that can be integrated can be found using the indefinite integral and a corollary to the 
fundamental theorem of calculus. The definite integral (also called Riemann integral) of a function 
f(x) is denoted as,

( )
b

a
f x dx∫

and is equal to the area of the region bounded by the curve (if the function is positive between  
x = a and x = b) y = f(x), the x-axis, and the lines x = a and x = b. An indefinite integral, sometimes 
called an antiderivative, of a function f(x), denoted by,

( ) .f x dx∫
is a function the derivative of which is f(x). Because the derivative of a constant is zero, the indefi-
nite integral is not unique. The process of finding an indefinite integral is called integration.

The Indefinite Integral

The indefinite integral (also called the antiderivative, and sometimes the primitive integral) is 
related to the definite integral through the fundamental theorem of calculus. We know that the 
definite integral will give us the area of the region under a curve for a continuous function over 
a closed interval. As such, it evaluates to a number. The indefinite integral does not evaluate to a 
number. Rather, the indefinite integral is a function. In fact, it is an entire family of functions with 
an infinite number of members.

The name antiderivative actually describes the nature of the indefinite integral quite well. It is, in 
essence, the opposite of the derivative. Suppose we have a function ƒ(x) for which we want to find the 
indefinite integral. We have already established that we are looking for a function. It turns out that 
ƒ(x) is actually the derivative of the function we are looking for. Let’s look at an example. Suppose we 
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want to find the indefinite integral of the function ƒ(x) = x 2 + 2x. We know that ƒ(x) is the derivative 
of the function we are looking for, but how do we reverse the process of differentiation in order to 
get the indefinite integral? Let’s think about what we had to do to get the derivative in the first place.

Consider the term x 2. When we differentiate a power of x, we multiply the coefficient of x by the 
exponent to which x is raised, and then decrement the exponent by one. To reverse the process, we 
need to increment the exponent by one, and divide the coefficient of x by the new exponent. The 
new exponent of x will therefore be three, and the new coefficient of x will be one third (1/3). The 
integral of x 2 is thus 1/3 x

 3. Applying the same procedure to the term 2x, we see that the integral of 
2x must be x 2. 

The function we are looking for - which we’ll call F(x) - will therefore be:

3 2( ) 1/ 3  F x x x= +

If this is correct, then finding the derivative of this function should give us the original function 
ƒ(x) = x 2 + 2x. Applying the basic rules of differentiation to F(x) will confirm that this is the case:

F ′(x) = x 2 + 2x

In general terms, we can define the indefinite integral of ƒ(x) as any function F(x) such that:

F ′(x) = ƒ(x)

There is a potential problem here, however. Consider the following possibilities for F(x):

•	 F(x) = 1/3 x
 3 + x 2 + 5

•	 F(x) = 1/3 x
 3 + x 2 + √86

•	 F(x) = 1/3 x
 3 + x 2 + π

•	 F(x) = 1/3 x
 3 + x 2 + e 2

Now think about what the derivative will be for each of these functions. You will of course find that 
they will all have the same derivative, i.e.

F ′(x) = x 2 + 2x

Because the last term in every case is a constant. Whenever we differentiate a constant, we get zero. 
It therefore doesn’t really matter what constant term we have at the end of a function when differ-
entiating. Any collection of functions that only differ from one another by a constant term will all 
have the same derivative. When you think about it, this is perfectly logical. Because the derivative 
of a function simply gives us the slope of that function for a given value of x. Adding a constant 
value to a function does not change its slope, merely its vertical orientation. 

There are in fact an infinite number of functions that will give us exactly the same derivative. The 
only difference between them will be the constant term. 

We could therefore perhaps write the indefinite integral of the function ƒ(x) = x 2 + 2x as follows:

F(x) = 1/3 x
 3 + x 2 +?
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Adding a constant term to a function does not alter its slope.

Where the question mark represents the unknown constant value. We’ll come back to the question 
of how we deal with this unknown value shortly. Meanwhile, let’s turn our attention to the notation 
we should be using here for the indefinite integral. You probably remember how to write a definite 
integral for a function ƒ(x):

( )
b

a
f x dx∫

The integral symbol (that’s the long ‘s’ character over on the left-hand side) tells us that we are 
looking at an integral, and the subscripted and superscripted characters a and b immediately to 
the right of the integration symbol are the lower and upper limits of integration respectively. The 
function ƒ(x) is the integrand (i.e. the thing we are integrating), and the dx at the end tells us that 
x is our variable of integration (it can also be seen as representing infinitesimally small increments 
of x). Now look at how we write the indefinite integral of ƒ(x):

( )f x dx∫
At first glance, this looks the same as the notation for a definite integral. Note, however, that the 
upper and lower limits of integration are missing. This is because there is no domain of inte-
gration. Whereas the definite integral leads us to a number that represents the area of a bound-
ed region under the graph of a function, the indefinite integral is simply another function - the 
function we get, in fact, by reversing the process of differentiation that gave us the function ƒ(x). 
This process, which is the inverse of differentiation, is called antidifferentiation (or indefinite 
integration).

We still need to do something about the constant term that was lost when we carried out our dif-
ferentiation (to simplify things, we will work on the assumption that there was a constant term, 
even if there wasn’t). There is of course no way to determine the value of the constant term. Once 
it has been eliminated in the differentiation process, it is gone for good. But how do we show this 
missing constant in our notation? The answer is actually very simple. We just use the letter C as a 
placeholder. Here is how we write the indefinite integral of the function ƒ(x) = x 2 + 2x:

2 3 22 1/ 3x xdx x x C+ = + +∫
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The letter C represents all possible values of the missing constant, including zero. We call C the 
constant of integration. The dx that follows the integrand is a differential. In fact, you should al-
ready be quite familiar with it from your study of differential calculus. It is very important, and 
must never be omitted. Why? Well for one thing, it tells us where the expression to be integrated 
(the integrand) ends. In the above example, its absence would not really cause a problem, but con-
sider the following indefinite integral:

2 3 23 2  3   3x x dx x x C+ + = + + +∫
Suppose we forgot to include the dx on the left-hand side of the equation? Obviously, our notation 
would be incorrect. Of far more importance, though, is the fact that we would get the wrong an-
swer, i.e.

2 3 23 2 3  3x x x x x C+ + = + + +∫
There are other good reasons for always including the differential. For example, it tells us which 
variable we are integrating for (i.e. whether we are integrating for x, or for some other vari-
able). This is particularly important if we wish to venture into the realms of multivariable cal-
culus. Even if we never go further than single-variable calculus, we will inevitably encounter 
integration problems far more complex than the examples we have looked at so far. This will 
often involve manipulating equations using algebraic operations that rely on the presence of 
the differential.

Putting everything we have learnt so far together, we can now express the indefinite integral of a 
function ƒ(x) as follows:

( ) ( )f x dx F x C= +∫
Where F(x) satisfies the condition that:

F ′(x) = ƒ(x)

Although we will talk about the fundamental theorem of calculus in much more detail else-
where, it is worth briefly outlining the theorem here in order to give you an idea of how inte-
gration and differentiation are related, and why the indefinite integral can help us to calculate 
a definite integral for an integrable function. The theorem itself is in two parts. The first part, 
which is sometimes called the first fundamental theorem of calculus, essentially just tells us 
that integration and differentiation are the inverse of one another. The second part, which is 
sometimes called the second fundamental theorem of calculus, tells us that we can calculate a 
definite integral for a function using one of its indefinite integrals (of which, remember, there 
are an infinite number).

We have already seen an example of how we can apply the first part of the theorem to find the 
indefinite integral of a function, simply by applying the power rule for integration. This rule is es-
sentially the inverse of the power rule used in differentiation. It is based on Cavalieri’s quadrature 
formula, which is named after the seventeenth century Italian mathematician Bonaventura Fran-
cesco Cavalieri. The integration power rule formula is as follows:
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1

1

n
n xax dx a C

n

+

= +
+∫

Note that n must not be equal to minus one (n ≠ –1) because this would put a zero in the denomi-
nator on the right hand side of the formula. The letters a and C represent the constant coefficient 
of x, and the constant of integration respectively. This rule on its own enables us to integrate all 
polynomial functions of one variable. As with differentiation, we integrate each term separately, 
and the plus or minus sign in front of each term does not change. More complex functions will 
require additional rules. Integration has no equivalents for the product and quotient rules used in 
differentiation. If we encounter a product or a quotient in an integration problem, we need to find 
other ways of dealing with them.

The most important consequence of the second fundamental theorem of calculus is that it gives 
us a relatively straightforward way of evaluating a definite integral for a function. In a nutshell, it 
tells us that if a function is continuous over some closed interval, then the definite integral for that 
interval (or domain of integration) can be calculated by finding the values of the indefinite integral 
(which is a function, remember) at each end of the interval. The definite integral will be the differ-
ence between these two values. In other words, if the function F(x) is the indefinite integral of the 
function ƒ(x), and ƒ(x) is continuous over the closed interval [a, b], then:

( ) ( ) ( )
b

a
f x dx F b F a= −∫

Let’s try an example. We’ll find the definite integral for the function ƒ(x) = 2x 5 - 10x 3 + 5 for -2 ≤ 
x ≤ 2. The graph of this function is shown below. The definite integral will have both positive and 
negative components.

The graph of the function ƒ(x) = 2x 5 - 10x 3 + 5 for -2 ≤ x ≤ 2.

Applying the power rule for integration to each term of the function in turn, we get the following:

6
5 6

4
3 4

12 2
6 3

510 10
4 2

5 5 5
1

xx dx x

xx dx x

xdx x

= =

− = − = −

= =

∫

∫

∫
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The indefinite integral F(x) for the function ƒ(x) = 2x 5 - 10x 3 + 5 is therefore given by:

( ) 5 3 6 42 10 5 1/ 3 5 / 2 5F x x x dx x x x= − + = − +∫
And the definite integral for the function ƒ(x) = 2x 5 - 10x 3 + 5 for -2 ≤ x ≤ 2 will be:

( ) ( )
2 5 3

2
2 10 5 2 2x x dx F f

−
− + = − −∫

= (211/3 - 40 + 10) - (211/3 - 40 - 10)

= -82/3 + 282/3 = 20

Basic Properties of Indefinite Integrals

Since integration is the reverse process of differentiation, we can derive some basic properties of 
indefinite integrals from differentiation.

•	 ( ) ( ) ,kf x dx k f x dx=∫ ∫ Where k is a constant.

•	 ( ) ( ) ( ) ( ) .f x g x dx f x dx g x dx± = ±∫ ∫ ∫
Proof: Suppose F(x) is the antiderivative of f(x), i.e., ( ) ( ).d F x f x

dx
=

( ) ( )

( )

d dkF x k F x
dx dx

kf x

=  

=

By the definition of indefinite integral,

( ) ( ) 1.kf x dx kF x C= +∫
On the other hand,

( ) ( )
( ) 2.

k f x dx k F x C

kF x C

= +  
= +
∫

Since C1 and C2 are arbitary constants,

( ) ( ) .kf x dx k f x dx=∫ ∫
Proof: Suppose F(x) and G(x) are the antiderivative of f(x) and g(x) respectively.

i.e.,	 ( ) ( ).d G x g x
dx

=

( ) ( ) ( ) ( )

( ) ( )

d d dF x G x F x G x
dx dx dx

f x g x

± = ±  

= ±
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By the definition of indefinite integral, 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

1 2

.

f x g x dx F x G x C

F x C G x C

f x dx g x dx

± = ± +  
= + ± +

= ±

∫

∫ ∫

Basic Integrals-elementary Integrals

( )

( )

2 3

3/ 2

1

2

2

1

2 2

1. 1

13.
3
25.
3
17. 1

1
19. sin cos

111. sec tan

113. sec tan

115. sin 0

117.

119. sin

r r

ax ax

dx x C

x dx x C

xdx x C

x dx x C r
r

ax dx ax C
a

ax dx ax C
a

ax dx ax C
a

xdx C a
aa x

e dx e C
a

Cosh ax dx h ax C
a

+

−

= +

= +

= +

= + ≠ −
+

= − +

= +

= +

= + >
−

= +

= +

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫
    

2

2

2

1
2 2

12.
2

1 14.

16. 2

18. | |

110. cos sin

112.

114. cot

1 116. tan

118.

220. sinh cosh

ax ax

x dx x C

dx C
x x

dx x C
x

dx ln x C
x

ax dx ax C
a

esc ax dx cse ax C
a

cse ax ax dx cse ax C
a

x C
a x a a

b dx b C
a in b

ax dx ax C
a

−

= +

= − +

= +

= +

= +

= − +

= − +

= +
+

+

= +

∫

∫

∫

∫

∫

∫

∫

∫

∫

∫

Example: Find 
32 .x dx
x

 − 
 ∫

1
2

1
2 2

32 2 3

3 12
2

x dx xdx x dx
x

x x C

− − = − 
 

 
  

= − +  
   

 

∫ ∫ ∫

Example: Find 
2

2

6 .x dx
x
+

∫
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( )

2

2 2

2

6 61

1 6

6

x dx dx
x x

x dx

x C
x

−

+  = + 
 

= +

= − +

∫ ∫

∫

Example: Find ( )sec cos tan .x x x dx+∫
( ) ( )

( )

sec cos tan sec cos tan

1 sec tan

sec

x x x dx x x x dx

x x dx

x x C

+ =

= +

= + +

∫ ∫
∫

Example: Find 2 16 .xx e dx
x

 + − 
 ∫

3
2

3

16 6 | |
3

2 | |

x x

x

xx e dx In x e C
x

x In x e C

  + − = + − +  
   

= + +

∫

Example: Find 2

1 .
1 sin

dx
x−∫

2 2

2

1 1
1 sin cos

sec

tan

dx dx
x x

x dx

x C

=
−

=

= +

∫ ∫
∫

Example: Find 
1 cos
1 cos

dθ θ
θ

+
−∫

( )
( )

2

2

2 2

2

1 cos 1 cos 1 cos
1 cos 1 cos 1 cos

1 2cos cos
sin

csc 2cot csc cot

cot 2csc csc 1

2cot 2csc

d d

d

d

d

C

θ θ θθ θ
θ θ θ

θ θ θ
θ

θ θ θ θ θ

θ θ θ θ

θ θ θ

+ + +
= ×

− + +

+ +
=

= + +

= − − + −

= − − − +

∫ ∫

∫
∫

∫
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The Definite Integral

If a function is continuous over some defined interval, it is said to be integrable, because we can 
find its definite integral. Suppose we have a continuous function ƒ(x) defined on an interval [a, 
b]. We can informally define the definite integral as the signed area of the region bounded by the 
graph of ƒ(x), the x axis, and the vertical lines intersecting the x axis at a and b. The area of any part 
of the region above the x axis is positive, while the area of any part of the region below the x axis is 
negative. The definite integral is the net area between a function and the x axis. 

There are various methods we could use to get an approximation of the area. The illustration below 
shows the function ƒ(x) = x 2 defined on the interval [0, 1]. The region under the curve is divided 
into eight subintervals of equal width. The rectangles that we see inscribed within each subinterval 
have the same width as the subinterval, and a height equal to the smallest value taken by ƒ(x) over 
the subinterval.

Approximating the area under ƒ(x) = x 2 for 0 ≤ x ≤ 1 using inscribed rectangles.

If we add together the areas of the rectangles, we will get the left end point approximation for the 
area of the region under the curve (so called because each rectangle is drawn so that its top left-
hand corner lies on the curve of the graph). Because the function is increasing over the interval, 
none of the rectangles cover the entire region under the graph contained within their subinterval. 
The approximation will therefore be an underestimate of the actual area. Suppose, for the sake 
of comparison, we make another approximation using rectangles. Everything will be exactly the 
same, except that this time we’ll make the height of the rectangle drawn within each subinterval 
equal to the largest value taken by ƒ(x) over the subinterval.

Approximating the area under ƒ(x) = x 2 for 0 ≤ x ≤ 1 using circumscribed rectangles.
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This time, when we add together the areas of the rectangles, we get the right end point approxima-
tion for the area of the region under the curve (so called because each rectangle is drawn so that 
its top right-hand corner lies on the curve of the graph). Because the function is increasing over 
the interval, all of the rectangles cover the entire region under the graph contained within their 
subinterval, plus a small portion of the space above the graph. The approximation will therefore be 
an overestimate of the actual area.

With both of these approximations, increasing the number of subintervals will give us a more ac-
curate result. When our approximation produces an over estimate of the area under the graph, we 
call it an upper Riemann sum. When an under estimate is produced, we call it a lower Riemann 
sum. If we keep increasing the number of subintervals used, the upper and lower Riemann sums 
get closer and closer together, as they approach the same limit. This limit is of course the actual 
area under the curve, sometimes called the Riemann integral. We will use the term definite inte-
gral here.

The concept of integration is based on the idea that, if we had an infinite number of rectangles, 
each of infinitesimal width, then adding together the areas of those rectangles would give us the 
exact area under the graph. 

We can express this idea quite concisely using the following mathematical notation:

( )
b

a
f x dx∫

In case you are unfamiliar with the notation used here, we’ll briefly explain what it means. The 
strange-looking symbol at the beginning is the integration symbol. It is based on the long ‘s’ char-
acter, which is often mistaken for an ‘f’, and which can often be found in very old texts (for exam-
ple, in the United States Bill of Rights, where it appears in the word “Congress”). This letter was 
chosen by the German mathematician Gottfried Wilhelm Leibniz to represent integration, because 
he thought of the integral as an infinite sum.

The subscripted and superscripted characters a and b immediately to the right of the integration 
symbol represent the lower and upper bounds respectively of the interval over which the function 
is defined, and over which we are integrating. This interval is also known as the domain of integra-
tion, with a as the lower limit of integration and b as the upper limit of integration. Next, we see 
the expression to be integrated - in this case the function ƒ(x) - which we call the integrand (the 
integrand is usually, though not always, a function). Last but not least we have the term dx, which 
tells us that we are integrating over x, which we refer to as the variable of integration. It can also be 
seen as representing an infinitesimally small increment of x.

Let’s take things a step further. Suppose we have a continuous function ƒ(x) defined on the interval 
[a, b]. We will divide the interval into n subintervals of equal width. We’ll call the width of each 
subinterval Δx, and we will use the letter i as an index when referring to a particular sub interval. 
Within each subinterval, we choose a distinguished point on the x axis, which we’ll label xi*. The 
value of ƒ(xi*) will give us the height of the rectangle for each subinterval. The area of the rectangle 
within a given subinterval will therefore be:

ƒ(xi*) Δx
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The Riemann sum (which we get by adding together the areas of the rectangles in all of the subin-
tervals) will thus be:

( )*

1

n

i
i

S f x x
=

= ∆∑

However, the ultimate goal of integration is to get away from this idea of adding together the areas 
of a finite number of rectangles. Instead, we should be thinking about the sum of an infinite num-
ber of rectangles of infinitesimal width. To that end, we can express the definite integral of ƒ(x) 
over the interval [a, b] as:

( ) ( )*

1
lim

nb

ia n i
f x dx f x x

→∞
=

= ∆∑∫

The definite integral (or Riemann interval) is thus the limit of the sum of ƒ(xi *) Δx for i = 1 to n, as 
n tends to infinity and Δx tends to zero. Note that the question of choosing a distinguished point 
within each interval at which to evaluate ƒ(x) becomes somewhat redundant, since Δx tends to 
zero anyway. All of which is all very interesting, of course, but we still need to be able to find the in-
definite integral without having to calculate, and sum together, an infinite number of terms! Let’s 
have a look at how we might do this. We’ll start off by looking at a somewhat trivial example. The 
illustration below shows the graph of the function ƒ(x) = x for 0 ≤ x ≤ 1.

The graph of the function ƒ(x) = x for 0 ≤ x ≤ 1.

Obviously, we can easily find the area under the graph in this case, since it will simply be the area 
of a right-angled triangle in which both legs are one unit in length. We are going to ignore that mi-
nor detail, however, and instead apply what we have learnt so far about the definite integral. Let’s 
suppose that we are going to subdivide the interval [0, 1] into n subintervals. The width of each 
subinterval will therefore be given by:

1 0 1x
n n
−

∆ = =

Although the choice of distinguished point within each subinterval is essentially unimportant, let’s 
assume for the sake of argument that we are calculating a right-handed Riemann sum. The values 
of x taken by ƒ(x) in each subinterval will therefore be:
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*
i

1x ii x i
n n

= ∆ = =

We can now formulate our Riemann sum:

( ) 2
1 1 1

1 1n n n

i
i i i

iS f x x i
n n n= = =

= ∆ = ⋅ =∑ ∑ ∑

The last term in our Riemann sum is now simply the sum of consecutive integers, for which there 
is a well-known formula:

( )
1

1
2

n

i

n n
i

=

+
=∑

If we substitute this expression into our Riemann sum, we get:

( )
2

11 1.
2 2

n n nS
n n

+ +
= =

So the definite integral of ƒ(x) = x for 0 ≤ x ≤ 1, if we take the limit as n tends to infinity, is:

( )
1

0

1 1lim
2 2n

nf x dx
n→∞

+
= =∫

We could of course have arrived at the same answer by calculating the area of the triangular region 
under the graph (base multiplied by height, all over two), but we wanted to demonstrate a point, 
which is that the definite integral can be calculated algebraically as the limit of a Riemann sum. In 
order to persuade ourselves that this will work for non-linear functions as well, let’s look at another 
example. This time we’ll find the area under the graph of the function ƒ(x) = x 2 for 0 ≤ x ≤ 2. The 
graph is shown below:

The graph of the function ƒ(x) = x 2 for 0 ≤ x ≤ 2.

As before, we are going to subdivide the interval [0, 2] into n subintervals, so the width of each 
subinterval is given by:

2 0 2x
n n
−

∆ = =
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Once again, although the choice of distinguished point within each subinterval is unimportant, 
let’s assume that we are calculating a right-handed Riemann sum. The values of x taken by ƒ(x) in 
each subinterval will therefore be:

* 2 2
i

ix i x i
n n

= ∆ = =

Our Riemann sum will be as follows:

( ) 2
3

1 1 1

2 2 82
n n n

i
i i i

iS f x x i
n n n= = =

 = ∆ = ⋅ = 
 

∑ ∑ ∑

The last term in our Riemann sum is now the sum of the squares of consecutive integers. Just as 
there is a well-known formula for the sum of consecutive integers, there is also a well-known for-
mula for the sum of the squares of consecutive integers:

( )( )2

1

1 2 1
6

n

i

n n
i

=

+ +
=∑

If we substitute this expression into our Riemann sum, we get:

( )( ) 2

3 2

1 2 18 8 12 4.
6 3

n n n n nS
n n

+ + + +
= =

So the definite integral of ƒ(x) for 0 ≤ x ≤ 2, if we take the limit as n tends to infinity, is:

( )
22

20

8 12 4 8lim
3 3n

n nf x dx
n→∞

+ +
= =∫

This is the correct answer, and we have now demonstrated that it is possible to calculate the area 
under the graph of a non-linear function algebraically. In case you still need convincing, let’s try 
one more example. This time we’ll find the area under the graph of the function ƒ(x) = x 3 + 1 for  
0 ≤ x ≤ 1. The graph is shown below:

The graph of the function ƒ(x) = x 3 + 1 for 0 ≤ x ≤ 1.
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As with the previous examples, we’ll subdivide the interval [0, 1] into n subintervals, so the width 
of each subinterval is given by,

1 0 1x
n n
−

∆ = =

Although we have pretty much established that the choice of distinguished point within each sub-
interval is unimportant, we will assume that we are calculating a right-handed Riemann sum. The 
values of x taken by ƒ(x) in each subinterval will therefore be,

* 1
i

ix i x i
n n

= ∆ = =

Our Riemann sum is formulated as follows:

( ) 3
4

1 1 1

1 13 1 .
n n n

i
i i i

iS f x x i
n n n= = =

  = ∆ = + =    
∑ ∑ ∑

We now have a term in the Riemann sum that is the sum of consecutive integers cubed (i.e. raised 
to the power of three). Fortunately for us, there is also a (maybe not quite so well-known) formula 
for the sum of consecutive powers of three,

( )22
3

1

1
4

n

i

n n
i

=

+
=∑

If we substitute this expression into our Riemann sum, we get,

( ) ( )2 22

4 2

1 11 . 1 1
4 4

n n n
S

n n
+ +

= + = +

So the definite integral of ƒ(x) = x 3 + 1 for 0 ≤ x ≤ 1, if we take the limit as n tends to infinity, are:

( ) ( )22
1

20

4 1 5lim
4 4n

n n
f x dx

n→∞

+ +
= =∫

Once again, we can confirm that this is the correct answer. We now know that it is at least possible 
to calculate the area under the graph of a non-linear function algebraically, but the way we have 
been doing it seems like an awful lot of work. In fact, we have been fortunate with the examples 
shown in the sense that, in each case, there was a handy summation formula available that we 
could plug in to our calculation to make life easier. This will not always be the case - most of the 
time we need to work a lot harder to solve integral calculus problems algebraically.

Properties of Definite Integral

Property: The definite integral of the sum of two functions is equal to the sum of the definite inte-
grals of these functions:
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( ) ( ) ( ) ( ) .
b b b

a a a

f x g x dx f x dx g x dx+ = +  ∫ ∫ ∫

Proof: By the definition of the definite integral,

( ) ( ) ( ) ( )
0 1

lim
b n

k k k
ka

I f x g x dx f f x
λ

ξ ξ
→

=

= + = + ∆      ∑∫

Removing the square brackets under the sum and taking into account that the sum does not de-
pend on the order of summation, we obtain:

( ) ( ) ( )
0 1 1

lim
n n

k k k k k
k k

I f x g g x
λ

ξ ξ ξ
→

= =

 = ∆ + + ∆  
∑ ∑

The limit of the sum equals to the sum of the limits, i.e.

( ) ( )
0 01 1

1lim lim
2

n n

k k k k
k k

I f x g x
λ λ

ξ ξ
→ →

= =

= ∆ + ∆∑ ∑

By the definition of the definite integral these limits are the definite integrals on the right side.

Property: The constant coefficient c can be factored out:

( ) ( ) ( ) ( )
b b b

a a a

f x g x dx f x dx g x dx− −  ∫ ∫ ∫

Proof: It follows from the first and the second property. Writing f(x) − g(x) = f(x) + (−1)g(x) gives,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
b b b b

a a a a

f x g x dx f x g x dx f x dx g x dx− = + − + −      ∫ ∫ ∫ ∫

Which is we wanted to prove.

Property: If f(x) ≥ 0 for any x ∈ [a; b], then:

( ) 0
b

a

f x dx ≥∫

Proof: If f(x) ≥ 0 on [a; b], then f(x) ≥ 0 on any subinterval [xk−1; xk], k = 1, 2,... , n. Thus, for ξk ∈ 
[xk−1 ; xk] also f(ξk) ≥ 0. Multiplying the last inequality by the length of the kth subinterval gives f(ξk) 
Δ xk ≥ 0, k = 1, 2,... , n.

Adding n nonnegative quantities, we obtain nonnegative quantity,

( )
1

0
n

k k
k

f xξ
=

∆ ≥∑
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By the limit theorem the limit of the nonnegative quantity as λ → 0 is nonnegative, which proves 
the property.

If f(x) ≤ g(x) for any x ∈ [a; b], then:

( ) ( )
b b

a a

f x dx g x dx≤∫ ∫

Proof: By assumption g(x) − f(x) ≥ 0. Hence, by the Property:

( ) ( ) 0
b

a

g x f x dx− ≥  ∫

( ) ( ) 0
b b

a a

g x dx f x dx− ≥∫ ∫

Which proves the statement.

Property: The absolute value of the definite integral of the function f(x) is less than, or equal to, the 
definite integral of the absolute value of this function:

( ) ( )| |
b b

a a

f x dx f x dx≤∫ ∫

Proof: Here we use the property of the absolute value of the sum |a + b| ≤ |a| + |b| for n addends. 
By the definition of the definite integral,

( ) ( ) ( )

( ) ( ) ( )

0 0 1

0 01 1

lim lim

lim lim

b n

k k k k
ka

bn n

k k k k
k k a

f x dx f x f x

f x f x f x dx

λ λ

λ λ

ξ ξ

ξ ξ

→ →
=

→ →
= =

= ∆ = ∆ ≤

≤ ∆ = ∆ =

∑∫

∑ ∑ ∫

Property: If we change the limits of integration, then the sign of the integral changes:

( ) ( )
a b

b a

f x dx f x dx−∫ ∫

Proof: If we define the definite integral ( ) ,
a

b

f x dx∫ then the start point is b. If we assume that the 

definite integrals in this property exist, the limit does not depend on the partition. So in both defi-
nitions we can use the same partition. As well we can use in both definitions the same arbitrarily 
chosen points ξ1, ξ2,... , ξk−1, ξk,... , ξn, because the limit does not depend on the choice of these 
points. If we move in direction from b to a, then the first partition point is xn = b, next xn−1,..., xk, 
xk−1,..., x0 = a. The start point of the kth subinterval xk and the endpoint xk−1. By the definition of the 
definite integral,
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( ) ( )( )
1

10
lim

b

k k k
k na

f x dx f x x
λ

ξ −→
=

= −∑∫

The integral sum in this definition is,

( )( ) ( )( ) ( )
1 1 1

1k k k k k k k
k n k n k n

f x x f x f xξ ξ ξ−
= = =

− = −∆ = − ∆∑ ∑ ∑

and, because the sum does not depend on the order of addition,

( )( ) ( )
1

1
1

n

k k k k k
k n k

f x x f xξ ξ−
= =

= − = − ∆∑ ∑

The limit of the left side of this equality as λ → 0 is ( )
a

b

f x∫ and the limit of the right side is ( ) .
b

a

f x dx−∫
If the lower and upper limit of the definite integral is equal, then the definite integral equals to 
zero:

( ) 0
a

a

f x dx =∫

Proof: Changing the limits of integration, we have by Property,

( ) ( )
a a

a a

f x dx f x dx= −∫ ∫

Or 

( )2 0
a

a

f x dx =∫

Which yields the assertion.

Property: Additivity property of the definite integral,

( ) ( ) ( )
b c b

a a c

f x dx f x dx f x dx= +∫ ∫ ∫

Proof: First we assume that c is in the interval [a; b], i.e. a < c < b. Defining the integral on the left 
side of this equality, we choose an arbitrary partition of the interval [a; b], so that the first partition 
point is c. The further arbitrary partition of [a; b] produces an arbitrary partition of the intervals 
[a; c] and [c; b]. Thus, the integral sum for the whole interval [a; b] can be written as the sum of 
the two integral sums,

( )
[ ]

( )
[ ]

( )
[ ]; ; ;

k k k k k k
a b a c c b

f x f x f xξ ξ ξ∆ = ∆ + ∆∑ ∑ ∑
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If the greatest length of the subintervals of [a; b] λ → 0, then the greatest lengths of the subinter-
vals of [a; c] and [c; b] approach zero as well. Therefore, taking the limits as λ → 0 on both sides 
completes the proof.

If c is outside the interval [a; b], suppose c > b > a, then,

( ) ( ) ( )
c b c

a a b

f x dx f x dx f x dx= +∫ ∫ ∫

It follows, 

( ) ( ) ( )
b c c

a a b

f x dx f x dx f x dx= −∫ ∫ ∫

and changing the limits we have,

( ) ( ) ( )
b c b

a a c

f x dx f x dx f x dx= +∫ ∫ ∫

In similar way we can prove that this property holds if c < a.

Property: If m is the least value of f (x) and M is the greatest value of f (x) on the interval [a; b], 
then:

( ) ( ) ( )
b

a

m b a f x dx M b a− ≤ ≤ −∫

Proof: The proofs of these two inequalities are similar and we prove only the right hand inequality.

As assumed, the greatest value of the function f(x) on [a; b] is M. Thus, f(ξk) ≤ M for any arbitrarily 
chosen ξk ∈ [xk−1 ; xk] for each k = 1, 2,... , n. Multiplying this inequality by Δ xk gives,

( )k k kf x M xξ ∆ ≤ ∆

Adding these products, we obtain:

( )
1 1

n n

k k k
k k

f x M xξ
= =

∆ ≤ ∆ =∑ ∑

1 0 2 1 3 2 -1 ( -     -    -    . . .   -  )  (  -  ),n nM x x x x x x x x M b a= + + + + =

because x0 = a and xn = b.

( ) ( )
1

n

k k
k

f x M b aξ
=

∆ ≤ −∑

and taking the limit on both sides of this inequality as λ → 0 gives the assertion.
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Property: If the function f (x) is continuous on [a; b], then there exists at least one point ξ ∈ [a; b] 
such that:

( ) ( )( )
b

a

f x dx f b aξ= −∫

Proof: The function continuous in the closed interval has the least value m and the greatest value 
M on this interval, hence, there holds the Property. Dividing the both sides of the both inequalities 
by the length of the interval of integration b − a gives,

( )1 b

a

m f x dx M
b a

≤ ≤
− ∫

Consequently,

( )1 b

a

f x dx
b a− ∫

is between the least and the greatest value. The function continuous on [a; b] has any value be-
tween the least and the greatest. Therefore, there exists at least one point ξ ∈ [a; b], where the 
function obtains this value, that is,

( ) ( )1 .
b

a

f f x dx
b a

ξ =
− ∫

The multiplication of both sides of this equality by b−a completes the proof. The value f (ξ) is called 
the mean value of the function f (x) on the interval [a; b]. 

Computation of Definite Integral: Newton-Leibnitz Formula

Suppose f (x) is defined on [a; b]. Let us define on [a; b] the function of the upper limit of the defi-
nite integral, 

( ) ( )
x

a

x f t dtΦ ∫

Theorem: If the function f (x) is continuous on [a; b], then Φ(x) is differentiable on (a; b) and Φ’(x) 
= f (x).

Proof: We use the definition of the derivative of Φ(x),

( ) ( ) ( )
0

' lim
x

x x x
x

x∆ →

Φ + ∆ −Φ
Φ =

∆
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By additivity property of the definite integral,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

x x x

a a
b x x x x x

a a a a

x x x f t dt d t dt

f t dt f t dt f t dt f t dt

+∆

+∆ +∆

Φ + ∆ −Φ = − =

+ − =

∫ ∫

∫ ∫ ∫ ∫

As assumed, the function f (x) is continuous on [a; b]. Hence, by the mean value property, there 
exists ξ ∈ [x; x + Δx] such that,

( ) ( ) ( )( ) ( )x x x f x x x f xξ ξΦ + ∆ −Φ = + ∆ − = ∆

Consequently,

( ) ( ) ( )x x x
f

x
ξ

Φ + ∆ −Φ
=

∆

In the definition of the derivative Δx → 0. It follows that x + Δx → x and since ξ is a point between 
x and x + Δx, then ξ → x also. Thus,

( ) ( ) ( )
0

' lim lim
x x

x f f
ξ

ξ ξ
∆ → →

Φ = =

and the third condition of continuity of f(x) gives Φ ’(x) = f(x), which is we wanted to prove.

By theorem, the function Φ  (x) is an antiderivative of f(x). If F(x) is the known antiderivative of 
f(x) (by the table of integrals or by some technique of integration), then by Corollary antideriva-
tives Φ  (x) and F(x) differ at most by a constant, i.e. Φ  (x) = F(x) + C. According to the definition 
of Φ  (x),

( ) ( ) .
x

a

F x C f t dt+ = ∫

Taking in this equality x = a, we obtain by, 

( ) ( ) 0
a

a

F a C f t dt+ = =∫

Which yields C = −F(a):

( ) ( ) ( )
x

a

F x F a f t dt− = ∫

And taking in the last equality x = b, we obtain,

( ) ( ) ( ) .
b

a

F b F a f t dt− = ∫
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Consequently, the antiderivative familiar from the indefinite integral is the appropriate tool to 
evaluate the definite integral. Now we take for the variable of integration x again. To facilitate the 
computation we use the notation,

( ) ( ) ( ) |baF b F a F x− =

Finally, we formulate the result obtained as a theorem.

Theorem: If the function f(x) is continuous on [a; b] and F(x) is the antiderivative of f(x), then:

( ) ( ) ( ) ( )| ,
b

b
a

a

f x dx F x F b F a= = −∫

Example:

1| 1 1
e

e

a

dx ln x ln e ln
x
= = − =∫

Example:

1

2
0 1

xdx
x+

∫

For the integration we use the equality d(1 + x2) = 2xdx and find:

( )21 1 1

2 2 2
0 0 0

11 2 1
2 21 1 1

d xxdx xdx
x x x

+
= =

+ + +
∫ ∫ ∫

1
2

0

1 .2 1 2 1.
2

x= + = −

Example: Compute the mean value of the function f(x) = x2 on [1; 3]. By the mean value formula, 
we find,

33 3
2

1 1

1 1 1 27 1 13 14
3 1 2 3 2 3 3 3 3

xx dx  = = − = = −  ∫

Change of Variable in Definite Integral

The choice of the new variable depends on the function to be integrated. These principals are fa-
miliar from the indefinite integral.

If we compute the definite integral, we are interested in its value, not in the antiderivative of the 
initial function. This is because after the integration by change of variable in the definite integral 
we don’t re-substitute the initial variable. Instead of it we compute the limits of integration for the 
new variable.
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Changing the variable x = ϕ (t) in the definite integral,

( )
b

a

f x dx∫

We find dx = φ’(t)dt. The equation φ(t) = a gives the lower limit for the new variable t = α and the 
equation φ(t) = b gives the upper limit t = β. The change of variable formula is,

( ) ( )( ) ( )'
b

a a

f x dx f t t dt
β

ϕ ϕ =  ∫ ∫

Example: Compute 
2

2

0

8 .I x dx= −∫  To remove the irrationality we change the variable 2 2 sinx t= .

Then 2 2 cosdx t dt=

2 2 28 8 8sin 8cos 2 2 cosx t t t− = − = =

We determine the limits for the new variable t. If x = 0, then sin t = 0, it follows t = 0. If x = 2, then:

2 2 sin t = 2 or sin t = 
2

2
, hence, .

4
t π
=

Thus, 

( ) ( )

4 4
2

4 4 4

4 4
0 0

2 2 cos .2 2 cos 8 cos

4 1 cos 2 4 2 cos 2 2

4 sin 2 2.

a a

a a a

I t t dt t dt

t dt dt td t

t t

= =

= + = +

= + = +

∫ ∫

∫ ∫ ∫

π π

π π π

π π

π

Improper Integral Over Infinite Interval

Both of these are integrals that are called improper integrals. In the first kind of improper integrals 
one or both of the limits of integration are infinity.

Let the function f(x) be defined and continuous on the infinite interval [a; ∞ ). If for any N ∈ [a; ∞ ) 

there exists the definite integral ( )
N

a

f x dx∫ and there exists the limit ( )lim ,
N

N
a

f x dx
→∞ ∫ then this limit is 

called the improper integral with the infinite upper limit and denoted ( ) .
a

f x dx
∞

∫

( ) ( )lim
N

N
a a

f x dx f x dx
∞

→∞
=∫ ∫

If the limit exists and is a finite number, then the improper integral is said to be convergent. If the 
limit does not exist or the limit is infinite, then the improper integral is said to be divergent.
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Thus, to compute the improper integral, we first have to compute the definite integral over [a ; N] 
and next find the limit of this result as N →∞ .

Example: Evaluate 21a

dx
x

∞

+∫

( )2 2 0
0

lim lim  archan lim arctan archtan 0
1 1 2

N
N

N N N
a

dx dx x N
x x

π∞

→∞ →∞ →∞
= = = − =

+ +∫ ∫

So, this improper integral is convergent.

Let the function f(x) be defined and continuous on the infinite integral (−∞; b]. If for any M ∈ (−∞; b] 

there exists ( )
b

M

f x dx∫  and there exists the limit ( )lim ,
b

M
M

f x dx
→−∞ ∫ then this limit is called the im-

proper integral with the infinite lower limit and denoted ( ) .
b

f x dx
−∞
∫

( ) ( )lim
b b

M
M

f x dx f x dx
→−∞

−∞

=∫ ∫

The convergence and divergence of this improper integral are defined in the same way as in the 
previous case.

If the function f(x) is defined and continuous in (−∞ ;∞ ), then the improper integral over (−∞ ;∞ ) 
is defined as,

( ) ( ) ( )
c

c

f x dx f x dx f x dx
∞ ∞

−∞ −∞

= +∫ ∫ ∫

Where c is any finite real number.

If both of the improper integrals on the right side of this equality are convergent, then this improp-
er integral is said to be convergent. If at least one of the improper integrals on the right side of this 
equality is divergent, then this improper integral is said to be divergent.

Example: Let a > 0 and let us decide for which values of α the improper integral 
b

a

dx
xα∫ is convergent 

and for which values of α it is divergent. Denote this improper integral by I and find,

lim
N

a aN
a a

dx dxI
x x

∞

→∞
= =∫ ∫

If 1,α ≠  then:

1 1 1

lim lim
1 1 1

N

N N
a

x N aI
α α α

α α α

− + − + − +

→∞ →∞

 
= = − − + − + − + 
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If α > 1, then:

( ) ( ) ( )1 1 1

1 1 1lim
1 1 1N Nα α αα α α α α− − −→∞

 
− =  − − − 

That means, the improper integral is convergent. If α < 1, then:

( )
1 1

lim
1 1N

N α αα
α α

− −

→∞

 
− = ∞  − − 

That is, the improper integral is divergent.

If α = 1, then:

( )lim limN

aN N
a

dx ln x ln N ln
x

∞

→∞ →∞
= = − = ∞∫ α

Thus, the improper integral is divergent again.

Consequently, the improper integral 
a

dx
xα

∞

∫  is convergent, if α > 1 and divergent, if α ≤  1.

In many cases we are rather interested in the convergence of the improper integral than in the 
actual value of this integral. Moreover, sometimes an improper integral is too difficult to evaluate, 
but we still need to know, is it convergent or not. One technique is to compare it with a known 
integral. The theorems below, called the comparison theorems, enable us to decide whether the 
improper integral is convergent or divergent. We formulate these theorems for the improper inte-
gral with infinite upper limit. These theorems hold as well for the improper integrals with infinite 
lower limit and in case, if both limits are infinite.

We assume, that we know whether the improper integral ( )
a

x dxϕ
∞

∫ is convergent or divergent.

Theorem: Suppose that f(x) and φ(x) are two continuous on [a; ∞ ) functions such that 0 ≤  f(x) ≤  
φ(x) on this interval. Then the convergence of the improper integral,

( )
a

x dxϕ
∞

∫

Yields the convergence of the improper integral,

( )
a

f x dx
∞

∫

Suppose that f(x) and φ(x) are two continuous on [a; ∞ ) functions such that 0 ≤  φ(x) ≤  f(x) on 
this interval. Then the divergence of the improper integral yields. 
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Theorem: Suppose that two continuous on [a;∞) functions f(x) and φ(x) are equivalent in the lim-
iting process x → ∞. 

The improper integral is called absolutely convergent, if the improper integral, 

( )| |
a

f x dx
∞

∫

is convergent.

Theorem: The absolute convergence of yields the convergence of this improper integral.

Example: Decide on the convergence or divergence of,

2
1

arctan
1

xdc
x

∞

+∫

In the half-interval [0; ∞) there holds arctan .
2

x π
≤

By example, the improper integral 
2

1 1
dx

x

∞

+∫ is convergent. Applying theorem for ( ) ( )2 2

arctan 1and .
1 2 1

xf x x
x x

πϕ= =
+ + 

and

( ) 2

1.x
2 1 x
π

ϕ =
+

, we conclude that the given improper integral is convergent.

Example: Decide on the convergence or divergence of 
2

.
1

dx
x

∞

−∫

In the limiting process x → ∞, the functions ( ) ( )1 1and 
1

f x x
x x

ϕ= =
−

are equivalent because:

1
1lim lim 11 1x x

xx
x

x
→∞ →∞

− = =
−

By example the improper integral 
2

dx
x

∞

∫ is divergent. Thus, by theorem, the given improper integral 
is also divergent.

Example: Decide on the convergence or divergence of 
2

1

sin x dr
x

∞

∫

For any x ∈   there holds 2 2

sin 1 .x
x x

≤ By example the improper integral 2
2

dx
x

∞

∫ is convergent. By 

theorem this improper integral is absolutely convergent.

Improper Integrals of Unbounded Functions

Suppose that the function f (x) is unbounded in a neighborhood of the right endpoint b of the in-
terval [a; b].
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If for any ε > 0 there exists the definite integral ( )
b

a

f x dx
ε−

∫ and there exists the limit ( )
0

lim
b

a

f x dx
ε

ε

−

→ ∫
then this limit is called the improper integral of the unbounded function at the upper limit and 

denoted ( )
b

a

f x dx∫ .

We evaluate the improper integral of the unbounded function in the neighborhood of the upper 
limit b, using the formula,

( ) ( )
0

lim
b b

a a

f x dx f x dx
ε

ε

−

→
=∫ ∫

Improper integrals are often written symbolically just like standard definite integrals.

Suppose that the function f(x) is unbounded in a neighborhood of the left endpoint a of the interval 
[a; b].

If for any ε > 0 there exists the definite integral ( )
b

a

f x dx
ε+
∫ and there exists the limit ( )

0
lim

b

a

f x dx
ε

ε
→

+
∫ , 

then this limit is called the improper integral of the unbounded function at the lower limit and 

denoted ( ) .
b

a

f x dx∫

By definition the improper integral of the unbounded function at the lower limit a we evaluate by 
the formula,

( ) ( )
0

lim
b b

a a

f x dx f x dx
ε

ε
→

+

=∫ ∫

If the function f(x) is unbounded in some interior point c of [a; b], then we use the additivity prop-
erty on the integral and write,

( ) ( ) ( )
b c b

a a c

f x dx f x dx f x dx=∫ ∫ ∫

and evaluate the first addend.

If the limits are finite, then the improper integral is said to be convergent. If these limits either 
does not exist or are infinite, then this improper integral is said to be divergent.

The improper integral of the unbounded function is said to be absolutely convergent if the improp-
er integral,

( )
b

a

f x dx∫

is convergent.
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Example: Let us find how the convergence or divergence of,

( )

b

a

dx
b x α−∫

depends on the exponent α.

The integrand 
( )

1
b x α−

is unbounded in the neighborhood of the upper limit b:

( ) ( )0
lim

b b

a a

dx dx
b x b x

ε

α αε

−

→
=

− −∫ ∫

Suppose α ≠  1. Using the equality of the differentials d(b − x) = − dx, 

We obtain,

( )
( ) ( ) ( )

( ) ( )

1

0 0 0

1 11 1

0 0

lim lim lim
1

lim lim
1 1 1 1

b
b b

a a a

b xdx b x d b x
b x

b a b a

εαε ε
α

αε ε ε

α αα α

ε ε

α

ε ε
α α α α

−− +− −
−

→ → →

− + −− + −

→ →

−
= − − − = − =

− +−

   − −
= − − = −   

− + − + − −      

∫ ∫

If α > 1, then α − 1 > 0 and Hence,

( )
1

10 0

1lim lim
1 1

α

αε ε

ε
α α ε

−

−→ →
= = ∞

− −

that means the improper integral is divergent.

If α < 1, then 1 − α > 0 and 1

0
lim 0,α

ε
ε −

→
= thus,

( ) ( )1 11

0
lim

1 1 1
b a b aα αα

ε

ε
α α α

− −−

→

 − −
− = 

− − −  
,

That is, the improper integral is convergent.

If α = 1, then:

( )
( )

( )
0 0 0

0

lim lim lim

lim ,

b b
b

a
a a

d b xdx In b x
b xb x

In b a In

ε ε
ε

αε ε ε

ε
ε

− −
−

→ → →

→

−
= = − − =

−−

= − − = ∞

∫ ∫

That is, the improper integral is divergent.

Consequently, the improper integral is convergent if α < 1ja and divergent if α ≥ 1.
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For the improper integrals of unbounded functions there hold the analogous theorems as for the 
improper integrals over unbounded intervals.

Theorem: If the functions f(x) and φ(x) continuous in the half interval [a; b) satisfy the condition 
0 ≤ f(x) ≤ φ(x) then the convergence of the improper integral,

( )
b

a

x dxϕ∫

Yields the convergence of the improper integral,

( )
b

a

f x dx∫

Theorem: If the functions f (x) and φ(x) continuous in the half interval [a; b) are equivalent in the 
limiting process x → b then the convergence. The absolute convergence of the improper integral 
yields the convergence of that integral.

Approximate Computation of Definite Integral

Applying the Newton-Leibnitz formula to evaluate the definite integral, we have to find the antide-
rivative of the integrand. A lot of quite a simple functions, for instance:

2 sin 1, and
In x

x xe
x

−

Don’t have antiderivative among elementary functions. Thus, the Newton-Leibnitz formula is not 
applicable. In this case we use the approximate formulas to evaluate the definite integral. One of 
those approximate formulas is called trapezoidal rule.

Let us have an integral ( )
b

a

f x dx∫ for a continuous function f(x) ≥ 0. We divide the interval [a; b] 

into n subintervals of equal width. So we obtain a partition:

0 1 2 -1  ,  ,  ,  . . . ,  ,  . . . ,    k k na x x x x x x b= =

Hence, xk − xk − 1 = h for any k = 1, 2,. ….. n and the dividing points are x0 = a, x1 = a + h, x2 = a + 
2h,..., xk = a + kh,..., xn = a + nh = b.

The vertical lines x = xk, k = 1, 2…... n−1 divide the area ab BA under the graph into n areas PQRS. 
If we substitute the curve between R and S by the straight line RS, we obtain the trapezoid PQRS, 
whose parallel sides PS and QR have the lengths f(xk − 1) and f(xk), respectively. The length of one 
subdivision h is the height of trapezoid PQRS and the area of this trapezoid is:

( ) ( )1 .
2

k k
k

f x f x
S h− +

=
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The sum of the areas of n trapezoids PQRS equals approximately to the area under the graph abBA. 
If n is increasing, then the accuracy of this, 

yk

yk−1

xk−1 xka b
P Q

R

S

y = f(x)

x

y

Approximation becomes higher. The area under the graph is the value of the definite integral. 
Thus, the definite integral equals approximately to the sum of the areas of trapezoids PQRS:

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 1
1 2 ...... . . ..... .

2 2 2

b
n n

n
a

f x f x f x f x f f x
f x dx S S S h h h−+ + +

≈ + + + = + + +∫

Factoring out
2
h

, we have the approximate formula,

( ) ( ) ( ) ( ) ( ) ( )( )0 1 2 12 2 .... 2
2

b

n n
a

hf x dx f x f x f x f x f x−≈ + + + + +∫

Which is called trapezoidal rule, Notice that all the values of the function are multiplied by 2, ex-
cept the values at the endpoints y0 = f(a) and yn = f(b).

Example: Compute by trapezoidal rule 
2

2

0

.x dx∫

To compare the result with exact value, we calculate first this definite integral by Newton-Leibnitz 

formula 
22 3

2

0 0

8 2.
3 3
xx dx = = =∫

Now we compute this definite integral by trapezoidal formula. First we divide the interval of in-
tegration into four four equal parts [0; 2], that means n = 4. The length of one subdivision is 

2 0 0,5
4

h −
= = and dividing points are x0 = 0, x1 = 0, 5, x2 = 1, x3 = 1, 5 and x4 = 2.

Evaluating the function f(x) = x2 at these points, we have f(x0) = 0, f(x1) = 0, 25, f(x2) = 1, f(x3) = 2, 
25 and f(x4) = 4:

( )
2

2

0

~ 0,25 0 2 0,25 2 1 2 2,25 4 2,75x dx ≈ + ⋅ + ⋅ + ⋅ + =∫
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Next we compute this integral by trapezoidal rule again, dividing the interval of integration [0; 2] 
into eight equal parts. Then the length of one subdivision is h = 0, 25 and the dividing points are  
x0 = 0, x1 = 0, 25, x2 = 0, 5, x3 = 0, 75, x4 = 1, x5 = 1, 25, x6 = 1, 5, x7 = 1, 75 and x8 = 2.

The values of the function f(x) = x2 at these points are f(x0) = 0, f(x1) = 0, 0625, f(x2) = 0, 25, f(x3) = 
0, 5625, f(x4) = 1, f(x5) = 1, 5625, f(x6) = 2, 25, f(x7) = 3, 0625 and f(x8) = 4. 

( )
2

2

0

0,125 0 2 0,0625 2 0,5625 2 1 2 1,5625 2 2,25 2 3,0625 4 2,6875.x dx ≈ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + =∫

Techniques of Integration

Integration by Substitution

Integration by substitution, sometimes called u-substitution, is one such method. the chain rule 
gave us a formula that allowed us to differentiate composite functions. A composite function is a 
function in which one function (the outer function) is applied to the output of another function 
(the inner function). The chain rule works by allowing us to substitute a simple variable for the in-
ner function so that we can differentiate the outer function first, without worrying about the inner 
function. The substitution rule performs a similar role for integration. It simplifies a composite 
function and makes it easier for us to integrate.

Let’s start with a relatively straightforward example. 

Consider the following integral:

( )54x dx+∫
Before we proceed, consider for a moment how we would calculate the following integral:

5x dx∫
This is simply a matter of applying the power rule for integration, which is:

1

1

n
n xax dx a C

n

+

= +
+∫

Remembering that in this case the constant coefficient a is one, we get:

6
5

6
xx dx C= +∫

Applying power,

( ) ( )6
5 4

4
6

x
x dx C

+
+ = +∫
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The result is in fact correct, because we deliberately chose an example that would work, but it 
would be very dangerous to assume that we can use the power rule to solve this type of problem. 
Things are not as simple as they might seem. Let’s see what happens when we use substitution 
here. In this case, it is relatively obvious that we need to substitute a variable for x + 4. The vari-
able name used by convention is u. That’s why integration by substitution is often called “u-sub-
stitution”. The original integrand (x + 4) 5 now becomes u 5. However, this changes things, because 
the variable of integration is now u and not x. We therefore need to make a substitution for the 
term dx as well.

Remember that dx and du are both differentials. We can find du in terms of dx as follows:

dudu dx
dx

 =  
 

Differentiating x will always give us one. In this case, because u = x + 4, we can see that differenti-
ating u will also give us one, so du will be equal to dx. Our substitutions will therefore give us the 
following:

( )
6

5 54
6
ux dx u du C+ = = +∫ ∫

We can now substitute x + 4 back in for u to give us the following:

( ) ( )6
5 4

4
6

x
x dx C

+
+ = +∫

Consider the following integral:

( )32 5x dx+∫
On the face of it, this problem is just like the one we solved in the previous example. If we apply 
the power rule, however, we get:

( ) ( )4
3 2 5

2 5
4

x
x dx C

+
+ = +∫

Is this correct? Let’s use u-substitution and see what happens. Once again, we’ll substitute the 
variable u for the expression inside the brackets, i.e.

  2   5u x= +

Remember that because the variable of integration is now u and not x, we need to make a sub-
stitution for dx as well. Differentiating x will, as always, give us one. This time, though, because  
u = 2x + 5, differentiating u will give us two. In terms of dx, therefore, du is given by:

2dudu dx dx
dx

 = = 
 
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For this example, therefore, our substitutions will give us the following:

( )
4

3 3 12 5
2 8

ux dx u du C+ = = +∫ ∫

We can now substitute 2x + 5 back in for u (we call this back substitution) to give us the following:

( ) ( )4
3 2 5

2 5
8

x
x dx C

+
+ = +∫

This is, of course, not the same answer we got using the power rule, which demonstrates why we 
can’t simply use the power rule to solve this type of problem.

The substitutions we make when attempting to solve integration problems often take the general 
form:

    u ax b= +

Where a is a constant coefficient, x is a variable, and b is a constant value. Let’s look at an-
other example where this kind of substitution is used. Suppose we want to find the following 
integral:

( )cos 5 3x dx+∫
The obvious substitution here will be u = 5x + 3. As before, we have:

dudu dx
dx

 =  
 

Differentiating x always gives us one, and differentiating 5x + 3 will give us five, so:

5du
dx

=

And

5dudu dx dx
dx

 = = 
 

Although we deal with the integrals of trigonometric functions elsewhere in this section, it shouldn’t 
come as too much of a surprise to learn that the integral of cos (x) is sin (x), since we have by now 
established that integration and differentiation are inverse operations, and from your work on 
differential calculus you may recall that the derivative of sin (x) is cos (x). The solution to this 
problem is therefore as follows:

( ) ( ) ( )1 1cos 5 3 cos sin
5 5

x dx u du u C+ = = +∫ ∫
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We can now substitute 5x + 3 back in for u to give us the following:

( ) ( )sin 5 3
cos 5 3

5
x

x dx C
+

+ = +∫
We can in fact generalise this result to find the integral of any expression in the form cos (ax + b). We 
simply use the general form of the substitution, i.e. u = ax + b, which gives us the following result:

( ) ( )

( )

( )

1cos cos

1 sin

1 sin

ax b dx u du
a

u C
a

ax b C
a

+ =

= +

= + +

∫ ∫

Integrating the Product of Two Functions

As we have said previously, integration does not have a direct equivalent of the product rule we 
use to find the derivative of the product of two (or more) functions. Fortunately, there are a range 
of methods we can use to deal with problems of this sort, some of which will involve integration by 
substitution. Integration by substitution does for integration what the chain rule does for differen-
tiation. It gives us a way to integrate composite functions. We can express the notion of integration 
by substitution somewhat more formally using the substitution rule:

( )( ) ( ) ( )'f g x g x dx f u du=∫ ∫
where,

( )u g x=

and,

( )'du g x dx=

We’re in luck! It should be fairly obvious that we will be substituting u for the inner function x 2. 
And, if we differentiate x 2, we get 2x. Our integral now simply becomes:

( ) ( )sin cosu du u C= − +∫
And substituting back in for u we get:

( ) ( )2 2sin 2 cosx x dx x C= − +∫
Of course, not all of the integral problems we come across are going to be in such a convenient for-
mat, as we have seen. In fact, it’s reasonable to assume that most of them certainly won’t be. Let’s 
make life ever so slightly more complicated. Consider the following integral:

( )2sin 8x x dx∫
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This is almost the same as the previous problem, except that we now have 8x instead of 2x, which 
rather messes things up. Well, not really. All we really need to do is to rearrange things a little, like 
this:

( )24 sin 2x x dx∫
We can do this because, as you may recall, the constant coefficient rule (or constant multiple rule) 
tells us that the indefinite integral of c. ƒ(x), where ƒ(x) is some function and c represents a con-
stant coefficient, is equal to the indefinite integral of ƒ(x) multiplied by c. In this case, we have 
pulled four out as our constant coefficient, which leaves us with exactly the same integrand that 
we had in the previous example. We will once again substitute u for the inner function x 2, so our 
integral becomes:

( ) ( )4 sin 4cosu du u C= − +∫
And substituting back in for u we get:

( ) ( )2 2sin 8 4cosx x dx x C= − +∫
Let’s look at another example where we can do something similar. Consider the following integral:

( )4 5sinx x dx∫
If we let u = x 5, then du will be 5x 4. We have x 4 as part of the integral, which is not quite what we 
want. We can get around the problem as, however, by rearranging things a little:

( )4 51 5 sin
5

x x dx∫

We can now make our substitutions and perform the integration:

( ) ( )1 1sin cos
5 5

u du u C= − +∫

Substituting x 5 back in for u, we can now rewrite our integral as:

( ) ( )4 5 51sin cos
5

x x dx x C= − +∫

Let’s look at one more example of this type. Consider the following integral:

( )22 1x x dx√ +∫
Don’t be too worried by the fact that we have a root in the integrand. Things are not as complicated 
as they might appear. In fact, you may well have already realised that the obvious candidate for 
the substitution is the expression under the root (x 2 + 1), and that the term in front of the radical 
symbol (√) is its derivative, 2x.
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We can therefore make our substitutions and integrate as follows:

( )

( )

1/2

3/22

2 1

2 1
3

x x dx u du

u du

x C

2√ + = √

=

= + +

∫ ∫
∫

Note that we rewrote the root function as a power to enable us to use the power rule for integra-
tion. Apart from that, we didn’t have to rearrange things at all, since our integral was already in 
the form:

( )( ) ( )'f g x g x dx∫
What we are looking at here is an integrand that is the product of two functions. The first function 
is a composite function. The second function is the derivative of the composite function’s inner 
function (if the second function happens instead to be a multiple or submultiple of this derivative, 
we will simply remove the offending multiplier and put it in front of the integral symbol). Once we 
have our integrand in the required format, we just need to substitute u for g(x) and du for g′(x) dx 
so that we are left with:

( )f u du∫
We can then carry out integration with respect to u, and finish things off by back substituting for u 
in order to get our answer in terms of x.

Integrating the Quotient of Two Functions

When differentiating the quotient of two functions, we can call on the quotient rule. Unfortunately, 
there is no direct equivalent of this rule when it comes to integrating the quotient of two functions, 
but we do have several ways of dealing with problems of this nature, some of which involve inte-
gration by substitution. Let’s start by looking at an example. Consider the following integral:

2 1
x dx

x +∫

Let’s assume that we are going to substitute u for x 2 + 1. The derivative of x 2 + 1 is 2x, so by rear-
ranging things a little bit we can write:

2

1 2
2 1

x dx
x +∫

We can now make our substitutions (we will need to rearrange things again slightly):

1 1
2

du
u∫
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Following is the simple rule to find the reciprocal of a variable,

( )1 dx ln x C
x

= +∫
Applying this to our current problem, we get:

( )1 1 1
2 2

du ln u C
u

= +∫

And back substituting x 2 + 1 for u we get:

( )2
2

1 1
1 2

x dx ln x C
x

= + +
+∫

While we’re on the subject of reciprocals, consider the following integral:

1
1 2

dx
x−∫

We will substitute u for 1 - 2x. Since the derivative of 1 - 2x is -2, we need to rearrange things slight-
ly to give us the following integral:

1 1
2

du
u

− ∫
Now we integrate:

( )1 1 1
2 2

du ln u C
u

− = − +∫
Back substituting for u gives us:

( )1 1 1 2
1 2 2

dx ln x C
x

= − − +
−∫

The interesting thing about this result is that we can generalise it to enable us to find a solution for 
any integral in the form:

1 dx
ax b+∫

The substitution u = ax + b will leave us with the integral:

1 1 du
a u∫

Which evaluates to,

( )1 ln ax b C
a

+ +
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This means that, given any integration problem in this format, we can write down the solution 
immediately without having to carry out any intermediate steps. For example, given the following 
integral:

1
5 9

dx
x +∫

We can immediately write the following result:

( )1 1 5 9
5 9 5

dx ln x C
x

= + +
+∫

Let’s look at one more example involving the quotient of two functions. Suppose we want to eval-
uate the following:

( )2

4
2 1

x dx
x√ +∫

Remember that, as always, we are trying to get our integral into the form:

( )( ) ( )'f g x g x dx∫

The obvious substitution here is u = 2x 2 + 1, and since the derivative of u = 2x 2 + 1 is 4x, we can get 
our integral into the required format by rearranging it as follows:

( )2

1 4
2 1

x dx
x√ +∫

For the sake of clarity, note that ƒ(u), i.e. ƒ(g(x)), will give us the reciprocal of √u. We can now 
make our substitutions and evaluate the integral:

1/ 2

1/ 2

1

2

du u du
u

u C

−

−

=
√

= +

∫ ∫

Back substituting for u gives us:

( ) ( )1/ 22
2

4 2 2 1
2 1

x dx x C
x

= + +
√ +∫

Or alternatively:

( ) ( )2
2

4 2 2 1
2 1

x dx x C
x

= √ + +
√ +∫
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Using Substitution to Evaluate Definite Integrals

Remember that when we want to evaluate a definite integral, we still need to find the indefinite 
integral of an expression. Once we have the indefinite integral, however, we will use it to evaluate 
the value of the resulting function at both the upper and lower limits of integration. The difference 
between these two values gives us the definite integral, which usually represents the area under 
the curve of the graph of the function we are integrating between the upper and lower limits of 
integration.

The limits of integration with respect to the integrand in its original form are values of x. When 
we undertake u-substitution, we can evaluate the definite integral using the limits of integration 
without carrying out any back substitution, but we must remember that the limits of integration 
we use will be expressed in terms of u and not x. Putting this another way, the endpoints we use to 
evaluate the definite integral will be different. How this works should become clearer once we have 
looked at a couple of examples.

Consider the following definite integral:

( )
5 2

1
7x dx+∫

Clearly, the substitution we need to make here will be u = x + 7. 

dudu dx
dx

 =  
 

Since dx always evaluates to one, and the derivative of x + 7 also evaluates to one, we have:

1du
dx

=

And therefore:

dudu dx dx
dx

 = = 
 

Our integral can now be rewritten as:

5 2

1

x

x
u du

=

=∫
We have explicitly written the upper and lower limits of integration to show that they are ex-
pressed in terms of x. It is good practice to do this when dealing with problems of this type, and 
avoids confusion. In order to express the limits of integration in terms of u, we simply apply the 
substitution to each, as follows:

Upper limit: 7 + x = 7 + 5 = 12;

Lower limit: 7 + x = 7 + 1 = 8.

________________________ WORLD TECHNOLOGIES ________________________



WT

The Integral	 121 

Now we can rewrite our integral with the limits of integration expressed in terms of u:

12 2

8

u

u
u du

=

=∫
Integrating will give us:

( )

12
12 2 2

8
8

3 3

1
2

1 12 8
3

1216
3

u

u
u du u

=

=

 =   

= −

=

∫

Let’s try another example. Consider the following integral:

( )2 2

0
cos 1x x dx+∫

Suppose we make the substitution u = x 2 + 1. Since the derivative of x 2 + 1 is 2x. 

we have:

du = 2x dx

Our integral can therefore be rewritten as follows:

( )
5

1

1 cos
2

u

u
u du

=

=∫

Integrating will give us:

( ) ( )

( ) ( )( )

5 5

11

1 1cos cos
2 2

1 cos 5 cos 1
2

u

u
u du u

=

=
=   

= −

∫

Integration by Parts

In calculus, and more generally in mathematical analysis, integration by parts or partial integra-
tion is a process that finds the integral of a product of functions in terms of the integral of the 
product of their derivative and antiderivative. It is frequently used to transform the antiderivative 
of a product of functions into an antiderivative for which a solution can be more easily found. The 
rule can be thought of as an integral version of the product rule of differentiation. 

If u = u(x) and du = u’(x) dx, while v = v(x) and dv = v’(x) dx, then integration by parts states 
that: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

[ ] bb b
aa a

b

a

u x v x dx u x v x u x v x dx

u b v b u a v a u x v x dx

′ ′= −

′= − −

∫ ∫
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

[ ] bb b
aa a

b

a

u x v x dx u x v x u x v x dx

u b v b u a v a u x v x dx

′ ′= −

′= − −

∫ ∫

∫

Or more compactly: 

.udv uv vdu= −∫ ∫
Mathematician Brook Taylor discovered integration by parts, first publishing the idea in 1715. 

More general formulations of integration by parts exist for the Riemann–Stieltjes and Lebesgue–
Stieltjes integrals. The discrete analogue for sequences is called summation by parts. 

Theorem

Product of Two Functions

The theorem can be derived as follows. For two continuously differentiable functions u(x) and 
v(x), the product rule states: 

( ) ( ) ( ) ( ) ( ) ( ).( )u x v x v x u x u x v x′ ′ ′= +

Integrating both sides with respect to x, 

( ) ( ) ( ) ( ) ( ) ( ) ,( )u x v x dx u x v x dx u x v x dx′ ′ ′= +∫ ∫ ∫
And noting that an indefinite integral is an antiderivative gives: 

( ) ( ) ( ) ( ) ( ) ( ) ,u x v x u x v x dx u x v x dx′ ′= +∫ ∫
Where we neglect writing the constant of integration. This yields the formula for integration by 
parts: 

( ) ( ) ( ) ( ) ( ) ( ) ,u x v x dx u x v x u x v x dx′ ′= −∫ ∫
or in terms of the differentials ( ) , ( ) ,du u x dx dv v x dx′ ′= =

( ) ( ) ( ) ( ) .u x dv u x v x v x du= −∫ ∫
This is to be understood as an equality of functions with an unspecified constant added to each 
side. Taking the difference of each side between two values x = a and x = b and applying the fun-
damental theorem of calculus gives the definite integral version:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
b b

aa
u x v x dx u b v b u a v a u x v x dx′ ′= − −∫ ∫

The original integral ∫uv′ dx contains the derivative v′; to apply the theorem, one must find v, the 
antiderivative of v’, then evaluate the resulting integral ∫vu′ dx. 
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Validity for Less Smooth Functions

It is not necessary for u and v to be continuously differentiable. Integration by parts works if u is 
absolutely continuous and the function designated v′ is Lebesgue integrable (but not necessarily 
continuous). (If v′ has a point of discontinuity then its antiderivative v may not have a derivative 
at that point). 

If the interval of integration is not compact, then it is not necessary for u to be absolutely con-
tinuous in the whole interval or for v′ to be Lebesgue integrable in the interval, as a couple of 
examples (in which u and v are continuous and continuously differentiable) will show. For 
instance,

2( ) exp( ) / , ( ) exp( )u x x x v x x′= = −

u is not absolutely continuous on the interval [1, ∞), but nevertheless, 

11 1
( ) ( ) ( ) ( ) ( ) ( )[ ]u x v x dx u x v x u x v x dx

∞ ∞∞′ ′= −∫ ∫

So long as [ ]1( ) ( )u x v x ∞
is taken to mean the limit of ( ) ( ) (1) (1)u L v L u v− as L →∞ and so long as the 

two terms on the right-hand side are finite. This is only true if we choose ( ) exp( ).v x x= − −

Similarly, if: 

1( ) exp( ), ( ) sin( )u x x v x x x−′= − =

v′ is not Lebesgue integrable on the interval [1, ∞), but nevertheless:

1 11
( ) ( ) ( ) ( ) ( ) ( )[ ]u x v x dx u x v x u x v x dx

∞ ∞
∞′ ′= −∫ ∫

With the same interpretation. 

One can also easily come up with similar examples in which u and v are not continuously differ-
entiable. Further, if ( )f x is a function of bounded variation on the segment [ , ],a b and ( )xϕ is 
differentiable on [ , ],a b then: 

[ , ]( ) ( ) ( ) ( ( ) ( )),
b

a ba
f x x dx x d x f x

∞

∞
ϕ ϕ χ′

−
= −∫ ∫ 

 

Where [ , ]( ( ) ( ))a bd x f xχ denotes the signed measure corresponding to the function of bounded 

variation [ , ] ( ) ( )a b x f xχ , and functions ,f ϕ  are extensions of ,f ϕ to , which are respectively of 

bounded variation and differentiable.
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Product of Many Functions

Integrating the product rule for three multiplied functions, u(x), v(x), w(x), gives a similar result: 

.[ ]b b bb
aa a a

uv dw uvw uwdv vw du= − −∫ ∫ ∫

In general, for n factors: 

11

( ) ( ) ( ),
n nn

i i j
ji i j

u x u x u x
′

′

== ≠

 
= 

 
∑∏ ∏

Which leads to, 

11

( ) ( ) ( ),
b bn nn

i i j
ji i jaa

u x u x u x′

== ≠

 
= 

 
∑∏ ∏∫

Where the product is of all functions except for the one differentiated in the same term. 

Visualization

Graphical interpretation of the theorem: The pictured curve is parametrized by the variable t.

Consider a parametric curve by (x, y) = (f(t), g(t)). Assuming that the curve is locally one-to-one 
and integrable, we can define: 

1

1

( ) ( ( ))
( ) ( ( ))

x y f g y
y x g f x

−

−

=

=

The area of the blue region is, 

2

1
1 ( )

y

y
A x y dy= ∫
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Similarly, the area of the red region is, 

2

1
2 ( )

x

x
A y x dx= ∫

The total area A1 + A2 is equal to the area of the bigger rectangle, x2y2, minus the area of the smaller 
one, x1 y1: 

1 2

2 2
2 2

1 111

( ) ( ) ( ) ( ) .| |
A A

y x
x y
x yxy

x y dy y x dx x y x y x y+ = ⋅ = ⋅∫ ∫

 

Or, in terms of t, 

22
2

11 1

( ) ( ) ( ) ( ) . ( ) ( ) |tt
t
tt t

x t dy t y t dx t x t y t+ =∫ ∫

Or, in terms of indefinite integrals, this can be written as, 

xdy ydx xy+ =∫ ∫
Rearranging: 

xdy xy ydx= −∫ ∫
Thus integration by parts may be thought of as deriving the area of the blue region from the area 
of rectangles and that of the red region. 

This visualization also explains why integration by parts may help find the integral of an inverse func-
tion 1( )f x−  when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are in-
verses, and the integral ∫x dy may be calculated as above from knowing the integral ∫y dx. In particular, 
this explains use of integration by parts to integrate logarithm and inverse trigonometric functions. 

Applications

Finding Antiderivatives

Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; 
given a single function to integrate, the typical strategy is to carefully separate this single function 
into a product of two functions u(x)v(x) such that the residual integral from the integration by 
parts formula is easier to evaluate than the single function. The following form is useful in illus-
trating the best strategy to take: 

( ) .uv dx u v dx u v dx dx′= −∫ ∫ ∫ ∫
On the right-hand side, u is differentiated and v is integrated; consequently it is useful to choose u 
as a function that simplifies when differentiated, or to choose v as a function that simplifies when 
integrated. As a simple example, consider: 
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2

ln( ) .x dx
x∫

Since the derivative of ln(x) is 
1
x

, one makes (ln(x)) part u; since the antiderivative of 2

1
x

 is 
1
x

− , 

one makes 2

1
x

 dx part dv. The formula now yields: 

2

ln( ) ln( ) 1 1 .( )( )x xdx dx
x x x x

= − − −∫ ∫

The antiderivative of 2

1
x

− can be found with the power rule and is
1
x

. 

Alternatively, one may choose u and v such that the product u′ (∫v dx) simplifies due to cancella-
tion. For example, suppose one wish to integrate:

2sec ( ) ln sin( ) .(| |)x x dx⋅∫
If we choose u(x) = ln(|sin(x)|) and v(x) = sec2x, then u differentiates to 1/ tan x using the chain 
rule and v integrates to tan x; so the formula gives: 

2 1sec ( ) ln(| sin( ) |) tan( ) ln(| sin( ) |) tan( )  .
tan( )

x x dx x x x dx
x

⋅ = ⋅ − ⋅∫ ∫

The integrand simplifies to 1, so the antiderivative is x. Finding a simplifying combination fre-
quently involves experimentation. 

In some applications, it may not be necessary to ensure that the integral produced by integration 
by parts has a simple form; for example, in numerical analysis, it may suffice that it has small mag-
nitude and so contributes only a small error term. 

Polynomials and Trigonometric Functions

In order to calculate:

cos( ) ,I x x dx= ∫
Let,

cos( ) cos( ) sin( )

u x du dx

dv x dx v x dx x

= ⇒ =

= ⇒ = =∫
Then,

cos( )

sin( ) sin( )

sin( ) cos( ) ,

x x dx u dv

u v vdu

x x x dx

x x x C

=

= ⋅ −

= −

= + +

∫ ∫
∫
∫

Where C is a constant of integration. 
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For higher powers of x in the form: 

, sin( ) , cos( ) ,n x n nx e dx x x dx x x dx∫ ∫ ∫
Repeatedly using integration by parts can evaluate integrals such as these; each application of the 
theorem lowers the power of x by one. 

Exponentials and Trigonometric Functions

An example commonly used to examine the workings of integration by parts is, 

cos( ) .xI e x dx= ∫
Here, integration by parts is performed twice. 

First let, 

cos( ) sin( )

    x x x

u x du x dx

dv e dx v e dx e

= ⇒ = −

= ⇒ = =∫
Then,

cos( ) cos( ) sin( ) .x x xe x dx e x e x dx= +∫ ∫
Now, to evaluate the remaining integral, we use integration by parts again, with: 

sin( ) cos( )

    .x x x

u x du x dx

dv e dx v e dx e

= ⇒ =

= ⇒ = =∫
Then,

sin( ) sin( ) cos( ) .x x xe x dx e x e x dx= −∫ ∫
Putting these together, 

cos( ) cos( ) sin( ) cos( ) .x x x xe x dx e x e x e x dx= + −∫ ∫
The same integral shows up on both sides of this equation. The integral can simply be added to 
both sides to get, 

2 cos( ) sin( ) cos( )( )x xe x dx e x x C= + +∫
which rearranges to,

sin( ) cos( )
cos( )

2
( )x

x e x x
e x dx C

+
′= +∫
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Where again C (and C′ = C/2) is a constant of integration. A similar method is used to find the 
integral of secant cubed. 

Functions Multiplied by Unity

Two other well-known examples are when integration by parts is applied to a function expressed 
as a product of 1 and itself. This works if the derivative of the function is known, and the integral 
of this derivative times x is also known. 

The first example is ∫ ln(x) dx. We write this as: 

ln( ) 1 .I x dx= ⋅∫
Let, 

ln( )

  

dxu x du
x

dv dx v x

= ⇒ =

= ⇒ =

Then,

ln( ) ln( )

ln( ) 1

ln( )

xx dx x x dx
x

x x dx

x x x C

= −

= −

= − +

∫ ∫
∫

where C is the constant of integration. 

The second example is the inverse tangent function arctan(x): 

arctan( ) ..I x dx= ∫
Rewrite this as, 

arctan( ) 1x dx⋅∫
Now let,

2arctan( )
1

  

dxu x du
x

dv dx v x

= ⇒ =
+

= ⇒ =

Then, 

2

2

arctan( ) arctan( ) [8 ]
1

ln(1 )arctan( )
2

xx dx x x dx pt
x

xx x C

= −
+

+
= − +

∫ ∫

using a combination of the inverse chain rule method and the natural logarithm integral condition. 
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LIATE Rule

A rule of thumb has been proposed, consisting of choosing as u the function that comes first in the 
following list:

•	 L – logarithmic functions: ln( ), log ( )bx x etc.

•	 I – inverse trigonometric functions: arctan( ), arcsec( ),x x etc.

•	 A – algebraic functions: 2 50, 3 ,x x etc.

•	 T – trigonometric functions: sin( ), tan( ),x x etc.

•	 E – exponential functions: ,19 ,x xe etc.

The function which is to be dv is whichever comes last in the list: functions lower on the list have 
easier antiderivatives than the functions above them. The rule is sometimes written as “DETAIL” 
where D stands for dv. 

To demonstrate the LIATE rule, consider the integral, 

cos( ) .x x dx⋅∫
Following the LIATE rule, u = x, and dv = cos(x) dx, hence du = dx, and v = sin(x), which makes 
the integral become,

· sin( ) 1sin( ) ,x x x dx− ∫
which equals, 

·sin( ) cos( ) .x x x C+ +

In general, one tries to choose u and dv such that du is simpler than u and dv is easy to integrate. 
If instead cos(x) was chosen as u, and xdx as dv, we would have the integral, 

2 2

cos( ) sin( ) ,
2 2
x xx x dx+ ∫

which, after recursive application of the integration by parts formula, would clearly result in an 
infinite recursion and lead nowhere. 

Although a useful rule of thumb, there are exceptions to the LIATE rule. A common alternative is 
to consider the rules in the “ILATE” order instead. Also, in some cases, polynomial terms need to 
be split in non-trivial ways. For example, to integrate:

23 ,xx e dx∫
One would set, 

22 , · ,xu x dv x e dx= =
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so that, 
2

2 , .
2

xedu xdx v= =

Then, 
2

2 2 2
2

3 2( )( ) .
2

x
x x xx ex e dx x xe dx udv uv vdu xe dx= = = − = −∫ ∫ ∫ ∫ ∫

Finally, this results in: 
2

2
2

3 ( 1) .
2

x
x e xx e dx C−

= +∫

Integration by parts is often used as a tool to prove theorems in mathematical analysis. 

Gamma Function Identity

The gamma function is an example of a special function, defined as an improper integral for z > 0. 
Integration by parts illustrates it to be an extension of the factorial: 

( )

( )

( )

1

0

1

0

1 1

0 0

2

0

( )

0 1

( 1) ( 1).

x z

z x

x z x z

z x

z e x dx

x d e

e x e d x

z x e dx

z z

∞
− −

∞
− −

∞∞− − − −

∞
− −

Γ =

= −

 = − + 

= + −

= − Γ −

∫

∫

∫

∫

Since, 

0

(1) 1,xe dx−Γ = =∫
∞

for integer z, applying this formula repeatedly gives the factorial: 

( 1) !z zΓ + =

Use in Harmonic Analysis

Integration by parts is often used in harmonic analysis, particularly Fourier analysis, to show that 
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quickly oscillating integrals with sufficiently smooth integrands decay quickly. The most common 
example of this is its use in showing that the decay of function’s Fourier transform depends on the 
smoothness of that function. 

Fourier Transform of Derivative

If f is a k-times continuously differentiable function and all derivatives up to the kth one decay to 
zero at infinity, then its Fourier transform satisfies, 

( )( )( ) (2 ) ( ),k kf i fξ π ξ ξ= 

Where f(k) is the kth derivative of f. (The exact constant on the right depends on the convention of 
the Fourier transform used.) This is proved by noting that: 

2 22 ,iy iyd e i e
dy

π ξ π ξπ ξ− −= −

So using integration by parts on the Fourier transform of the derivative we get, 

2

2 2

2

( )

[ ( )] ( 2 ) ( )

2 ( )

2 ( ).

iy

iy iy

iy

e f y dy

e f y i e f y dy

i e f y dy

i f

∞ π ξ

∞

∞
π ξ ∞ π ξ

∞
∞

∞
π ξ

∞

π ξ

π ξ

π ξ ξ

− ′

−

− −
−

−

−

−

=

= − −

=

=

∫

∫

∫


Applying this inductively gives the result for general k. A similar method can be used to find the 
Laplace transform of a derivative of a function. 

Decay of Fourier Transform

The above result tells us about the decay of the Fourier transform, since it follows that if f and f(k) 
are integrable then: 

( )( )| ( ) | ,  where ( ) | ( ) | | ( ) | .
1 | 2 |

( )k
k

I ff I f f y f y dy
∞

−∞
≤ = +

+ ∫ξ
πξ



In other words, if f satisfies these conditions then its Fourier transform decays at infinity at least as 
quickly as 1/|ξ|k. In particular, if k ≥ 2 then the Fourier transform is integrable. 

The proof uses the fact, which is immediate from the definition of the Fourier transform, that, 

| ( ) | | ( ) | .f f y dy
∞

−∞
≤ ∫ξ
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Using the same idea on the equality stated at the start of this subsection gives, 

( )| (2 ) ( ) | | ( ) | .k ki f f y dy
∞

−∞
≤ ∫π ξ ξ

Summing these two inequalities and then dividing by 1 + |2π ξk| gives the stated inequality. 

Use in Operator Theory

One use of integration by parts in operator theory is that it shows that the −∆ (where ∆ is the La-
place operator) is a positive operator on L2. If f is smooth and compactly supported then, using 
integration by parts we have, 

2

2

, ( ) ( )

( ) ( ) ( ) ( )

'( ) | 0.

L
f f f x f x dx

f x f x f x f x dx

f x dx

∞

−∞

∞∞

−∞ −∞

∞

−∞

′′〈−∆ 〉 = −

 ′ ′ ′= − + 

≥

∫

∫

∫

Other Applications

•	 Determining boundary conditions in Sturm–Liouville theory.

•	 Deriving the Euler–Lagrange equation in the calculus of variations.

Repeated Integration by Parts

Considering a second derivative of v in the integral on the LHS of the formula for partial integra-
tion suggests a repeated application to the integral on the RHS: 

( ).uv dx uv u v dx uv u v u vdx′′ ′ ′ ′ ′ ′ ′′= − = − −∫ ∫ ∫
Extending this concept of repeated partial integration to derivatives of degree n leads to:

(0) ( ) (0) ( 1) (1) ( 2) (2) ( 3) 1 ( 1) (0) ( ) (0)

1
( ) ( 1 ) ( ) (0)

0

( 1) ( 1) .

( 1) ( 1) .

n n n n n n n n

n
k k n k n n

k

u v dx u v u v u v u v u v dx

u v u v dx

− − − − −

−
− −

=

= − + − + − + −

= − + −

∫ ∫

∑ ∫



This concept may be useful when the successive integrals of ( )nv are readily available (e.g., plain 
exponentials or sine and cosine, as in Laplace or Fourier transforms), and when the nth derivative 
of u vanishes (e.g., as a polynomial function with degree ( )1) .n − The latter condition stops the re-
peating of partial integration, because the RHS-integral vanishes. 

In the course of the above repetition of partial integrations the integrals: 
(0) ( )nu v dx∫  and ( ) ( ) andnu v dx−∫  

( ) ( )  for 1 ,m n mu v dx m n− ≤ ≤∫ 
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get related. This may be interpreted as arbitrarily “shifting” derivatives between v and u within the 
integrand, and proves useful, too. 

Tabular Integration by Parts

The essential process of the above formula can be summarized in a table; the resulting method is 
called “tabular integration” and was featured in the film Stand and Deliver.

For example, consider the integral: 

3 cosx xdx∫  and take (0) 3 ( ), cos .nu x v x= =

Begin to list in column A the function (0) 3u x= and its subsequent derivatives ( )iu until zero is 

reached. Then list in column B the function ( ) cosnv x= and its subsequent integrals ( )n iv − until the 
size of column B is the same as that of column A. The result is as follows: 

i Sign A: derivatives u(i) B: integrals v(n−i) 

0 + 3x cos x

1 − 23x sin x

2 + 6x cos x−

3 − 6 sin x−

4 + 0 cos x

The product of the entries in row i of columns A and B together with the respective sign give the 
relevant integrals in step i in the course of repeated integration by parts. Step i = 0 yields the orig-
inal integral. For the complete result in step i > 0 the ith integral must be added to all the previous 
products (0 ≤ j < i) of the jth entry of column A and the (j + 1)st entry of column B (i.e., multiply the 
1st entry of column A with the 2nd entry of column B, the 2nd entry of column A with the 3rd entry 
of column B, etc....) with the given jth sign. This process comes to a natural halt, when the product, 
which yields the integral, is zero (i = 4 in the example). The complete result is the following (with 
the alternating signs in each term): 

3 2

0 1 2 3 4:

( 1)( )(sin ) ( 1)(3 )( cos ) ( 1)(6 )( sin ) ( 1)(6)(cos ) ( 1)(0)(cos )
j j j j i C

x x x x x x x x dx
= = = = = →

+ − − + + −+ + − + +∫
   









 

This yields, 

3 3 2

step 0

cos sin 3 cos 6 sin 6cos .x xdx x x x x x x x C= + − − +∫


The repeated partial integration also turns out useful, when in the course of respectively differen-
tiating and integrating the functions ( )iu and ( )n iv − their product results in a multiple of the original 
integrand. In this case the repetition may also be terminated with this index i. This can happen, 
expectably, with exponentials and trigonometric functions. As an example consider, 

cos .xe xdx∫
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i Sign A: derivatives u(i) B: integrals v(n−i) 

0 + xe cos x

1 − xe sin x

2 + xe cos x−

In this case the product of the terms in columns A and B with the appropriate sign for index i = 2 
yields the negative of the original integrand (compare rows i = 0 and i = 2). 

0 1step 0 2

cos ( 1)( )(sin ) ( 1)( )( cos ) ( 1)( )( cos ) .x x x x

j j i

e xdx e x e x e x dx
= = =

= + + − − + + −∫ ∫
 

 

Observing that the integral on the RHS can have its own constant of integration C′, and bringing 
the abstract integral to the other side, gives:

2 cos sin cos ,x x xe xdx e x e x C′= + +∫
And finally,

1cos ( (sin cos )) ,
2

x xe xdx e x x C∫ = + +

where C = C′/2. 

Higher Dimensions

Integration by parts can be extended to functions of several variables by applying a version of the 
fundamental theorem of calculus to an appropriate product rule. There are several such pairings 
possible in multivariate calculus, involving a scalar-valued function u and vector-valued function 
(vector field) V.

The product rule for divergence states: 

· ( V) ·V · V.u u u∇ = ∇ + ∇

Suppose Ω is an open bounded subset of n with a piecewise smooth boundary .Γ = ∂Ω  Integrat-
ing over Ωwith respect to the standard volume form dΩ , and applying the divergence theorem, 
gives: 

V·n · ( V) · V ·V ,u d u d u d u d
ΩΩΩ

Γ

Γ = ∇ Ω = ∇ Ω + ∇ Ω∫ ∫ ∫ ∫

where n is the outward unit normal vector to the boundary, integrated with respect to its standard 
Riemannian volume form .dΓ  Rearranging gives: 

·V V· n · V ,u d u d u d
ΩΩ Γ

∇ Ω = Γ − ∇ Ω∫ ∫ ∫
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Or in other words:

div (V) V · n grad( )·V .u d u d u d
Γ ΩΩ

Ω = Γ − Ω∫ ∫ ∫

The regularity requirements of the theorem can be relaxed. For instance, the boundary Γ = ∂Ω  
need only be Lipschitz continuous, and the functions u, v need only lie in the Sobolev space 
H1(Ω). 

First Green’s Identity

Consider the continuously differentiable vector fields 1 1U e en nu u= + + and 1e , , e ,nv v…  where iu
is the i-th standard basis vector for 1, , .i n= … . Now apply the above integration by parts to each iu  
times the vector field eiv :

e · n .i
i i i

i i

uvu d u v d vd
x xΩ Γ Ω

∂∂
Ω = Γ − Ω

∂ ∂∫ ∫ ∫
Summing over i gives a new integration by parts formula: 

· U·n · U .U vd d v d
Ω Γ Ω

∇ Ω = Γ − ∇ Ω∫ ∫ ∫
The case U ,u= ∇ , where 2 ( ),u C∈ Ω , is known as the first Green’s identity: 



2· · n .u vd u d v uv d
Γ Ω

Ω

∇ ∇ Ω = ∇ Γ − ∇ Ω∫ ∫ ∫

Integration by Trogonometric Substitution

The following integration problems use the method of trigonometric (trig) substitution. It is a 
method for finding antiderivatives of functions which contain square roots of quadratic expres-

sions or rational powers of the form 
2
n

 (where n is an integer) of quadratic expressions. Examples 
of such expressions are:

( )3/ 22 24 1x and x− +

The method of trig substitution may be called upon when other more common and easier-to-use 
methods of integration have failed. Trig substitution assumes that you are familiar with standard 
trigonometric identies, the use of differential notation, integration using u-substitution, and the 
integration of trigonometric functions:

( ),
'( ) 

x f
dx f d
=
=

θ
θ θ

For example, if:

x = sec θ,
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Then, 

sec tan  dx dθ θ θ=

The goal of trig substitution will be to replace square roots of quadratic expressions or rational 

powers of the form 
2
n

 (where n is an integer) of quadratic expressions, which may be impossible 

to integrate using other methods of integration, with integer powers of trig functions, which are 
more easily integrated. For example, if we start with the expression:

24 x−

and let,

2sin ,x θ=

Then,

( )

( )

22

2

2

2

4 4 2sin

4 4sin

4 1 sin

4 1 sin

x θ

θ

θ

θ

− = −

= −

= −

= ⋅ −

Recall that cos2θ + sin2θ = 1 cos2 θ + sin2θ = 1 so that 1 − sin2 θ = cos2 θ 1 − sin2 θ = cos2 θ.

22 cos
2 cos

θ
θ

= ⋅

= ⋅

Assume that 
2 2
π πθ− ≤ ≤  so that cos θ ≥ 0 cos θ ≥ 0.

= 2 cos θ

and

2cos  dx dθ θ=

Thus,

24 x dx−∫
Could be rewritten as,

2 24 2cos 2cos 4 cosx dx d dθ θ θ θ θ− = ⋅ =∫ ∫ ∫
Recall that 2cos 2 2cos 1 θ θ= − so that ( )2 1cos 1 cos 2 .

2
θ θ= +
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( )

( )

14 1 cos 2
2

2 1 cos 2

12 sin 2
2

2 sin 2

d

d

C

C

θ θ

θ θ

θ θ

θ θ

= +

= +

 = + + 
 

= + +

∫
∫

Recall that sin 2θ = 2 sin θ cos θ.

2 2sin cos Cθ θ θ= + +

We need to write our final answer in terms of x. Since x = 2 sin θ, it follows that:

sin
2
x opposite

hypotenuse
θ = =

and

arcsin
2
xθ  =  

 

Using the given right triangle and the Pythagorean Theorem, we can determine any trig value of θ.

θ

x2

2 2 2 2( ) ( ) (2)   4adjacent x adjacent x+ = → = − →

Since,
2 2 2( ) ( ) ( )  adjacent opposite hypotenuse+ = →

2 2 2 2( ) ( ) (2)   4adjacent x adjacent x+ = → = − →

24cos
2

adjacent x
hypotenuse

θ −
=

Then,

2

2

42 2sin cos 2arcsin 2
2 2 2

12arcsin 4
2 2

x x xC

x x x C

θ θ θ − + + = + ⋅ ⋅ 
 

 = + ⋅ − + 
 
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When using the method of trig substitution, we will always use one of the following three well-
known trig identities:

2 2

2 2

1- sin cos
1 tan sec  
sec 2 1 tan 2

and
θ θ

θ θ
θ θ

=

+ =
− =

For the expression,

2 2a x−

we use equation 2 21- sin cosθ θ= and let,

x = a sin θ

Assume that 
2 2
π πθ− ≤ ≤ so that cos 0.θ ≥  This allows for both positive and negative values of x.

Then,

( )

2 2 2 2 2

2 2

2 2

2 2

sin

1 sin

cos

cos
cos
cos

a x a a

a

a

a
a
a

θ

θ

θ

θ
θ
θ

− = −

= −

=

=

=

=

and

cos  dx a dθ θ=

For the expression,

2 2a x+

we use equation 2 21 tan sec  θ θ+ = and let,

tanx a θ=

Assume that 
2 2
π πθ− ≤ ≤ so that cos θ > 0 and sec θ > 0. This allows for both positive and negative 

value of x.

Then,

( )

2 2 2 2 2

2 2

2 2

2

tan

1 tan

sec

sec
sec
sec

a x a a

a

a

a
a
a

θ

θ

θ

θ
θ
θ

+ = +

= +

=

=

=

=
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( )

2 2 2 2 2

2 2

2 2

2

tan

1 tan

sec

sec
sec
sec

a x a a

a

a

a
a
a

θ

θ

θ

θ
θ
θ

+ = +

= +

=

=

=

=

and,
2secdx a dθ θ=

For the expression,
2 2x a−

we use equation sec 2 1 tan 2θ θ− = and let,

secx a θ=

Assume that 0 ,
2
πθ≤ < so that tan 0.θ ≥ This allows for only positive values of x. If the integral 

includes negative values of x, you must use 
2
π θ π< ≤ with 2tan tan .θ θ= −

Then,

( )

2 2 2 2 2

2 2

2 2

2

sec

sec 1

sec 1

tan
tan
tan

x a a a

a

a

a
a
a

θ

θ

θ

θ
θ
θ

+ = −

= −

= −

=

=

=

and,
sec tan  dx a dθ θ θ=

Recall the following well-known, basic indefinite trigonometric integral formulas:

2

2

cos sin

sin cos

sec tan

csc cot

sec tan sec

csc cot csc

tan sec

cot sin

sec sec tan

csc csc cot

x dx x C

x dx x C

x dx x C

x dx x C

x x dx x C

x x dx x C

x dx In x C

s dx In x C

x dx In x x C

x dx In x x C

= +

= − +

= +

= − +

= +

= − +

= +

= +

= + +

= − +

∫
∫
∫
∫
∫
∫
∫
∫
∫
∫
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tan sec

cot sin

sec sec tan

csc csc cot

x dx ln x C

s dx ln x C

x dx ln x x C

x dx ln x x C

= +

= +

= + +

= − +

∫
∫
∫
∫

Most of the following problems are average. A few are somewhat challenging. Make careful and pre-
cise use of the differential notation dx and dθ and be careful when arithmetically and algebraically 
simplifying expressions. You should be proficient integrating various powers and rational functions 
involving trig functions. You may need to use the following additional well-known trig identities.

( )

( )

2 2 2 2

2 2 2

2 2 2

2 2 2 2

sin 2 2sin cos
1cos 2cos 1 so that cos 1 cos 2
2

1cos 1 2sin so that sin 1 cos 2
2

cos cos sin
1 + cot csc so that cot csc 1

x x x

x x x x

x x x x

x x x
x x x x

=

= − = +

= − = −

= −

= = −

Problem: Integrate 21 x dx−∫
Solution: To integrate 21 x dx−∫ use the trig substitution: X = sin θ

so that, dx = cos θ d θ

Substitute into the original problem, replacing all forms of x, getting,

2 2

2

2

1 1 sin cos

cos cos

cos cos

cos

x dx d

d

d

du

θ θ θ

θ θ θ

θ θ θ

θ

− = −

=

=

=

∫ ∫
∫
∫
∫

(Recall that cos2 θ = 2cos2θ − 1 so that cos2 θ ( )1 1 cos 2
2

θ= +

( )

( )

1 1 cos 2
2

1 1 cos 2
2
1 1 sin 2
2 2

du

du

C

θ

θ

θ θ

= +

= +

 = + + 
 

∫

∫
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Recall that sin 2 θ = 2 sin θ cos θ.

( )

1 1 2sin cos
2 2
1 sin cos
2

C

C

θ θ θ

θ θ θ

 = + + 
 

= + +

We need to write our final answer in terms of x.

θ

x1

2 2 2 2( ) ( ) (1)    1adjacent x adjacent x+ = → = − →

Since,

sin
1
x oppositex

hypotenuse
θ = = =

It follows that θ = arc sin x, and from the Pythagorean Theorem that,

2 2 2( ) ( ) ( )  adjacent opposite hypotenuse+ = →

2 2 2 2( ) ( ) (1)    1adjacent x adjacent x+ = → = − →

2
21cos 1

1
adjacent x x

hypotenuse
θ −
= = = − )

( )21 arcsin 1
2

x x x C= + − +

Problem: Integrate 
( )3/ 22 1

.
x

dx
x
−

∫

Solution: To integrate 
( )3/ 22 1x

dx
x
−

∫ use the trig substitution,

X = sec θ

so that,

dx = sec θ tan θ dθ
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Substitute into the original problem, replacing all forms of x, getting:

( ) ( )

( )

3/ 2 3/ 22 2

3/ 22

3

4

2 2

1 sec 1
sec tan

sec

tan
sec tan

sec
tan sec tan
sec

tan

tan tan

x
dx d

x

d

d

d

d

θ
θ θ θ

θ

θ
θ θ θ

θ

θ θ θ θ
θ

θ θ

θ θ θ

− −
=

=

=

=

=

∫ ∫

∫

∫

∫
∫

Recall that tan2 θ = sec2 θ – 1:

( )
( )

( )( )
( )

2 2

2 2 2

2 2 2

2 2 2

2 2

tan sec 1

tan sec tan

tan sec sec 1

tan sec sec 1

tan sec tan

d

d

d

d

d C

= −

= −

= − −

= − +

= − − + +

∫
∫
∫
∫
∫

θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ θ

Now let u = tanθ ⟶ du = sec2 θ dθ:

( )

2

3

3

tan

tan
3
tan

tan
3

u du C

u C

C

θ θ

θ θ

θ
θ θ

= − + +

= − + +

= − + +

∫

We need to write our final answer in terms of x. 

θ

x

1

2 2 2 2(1) ( ) ( )   1  opposite x opposite x+ = → = − →
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Since x = sec θ it follows that θ = arc sec x and

sec
1
x hypotenuse

adjacent
θ = =

And from the Pythagorean Theorem that,
2 2 2( ) ( ) ( )  adjacent opposite hypotenuse+ = →

2 2 2 2(1) ( ) ( )   1  opposite x opposite x+ = → = − →
2 1tan
1

opposite x
adjacent

θ −
= = )

( )
( )

3
2 2

3/ 22 2

1 1 1 sec
3
1 1 1 sec
3

x x arc x C

x x arc x C

= − − − + +

= − − − + +

Problem: Integrate 
( )3/ 22

1

1 x−
∫ dx.

Solution: To integrate 
( )3/22

1

1
dx

x−
∫ use the trig substitution:

X = sin θ

so that,

dx = cos θ dθ

Substitute into the original problem, replacing all forms of x, getting:

( ) ( )

( )

3/ 2 3/ 22 2

3/ 22

3

2

1 1 cos
1 1 sin

1 cos
cos

1
cos

sec
tan

dx d
x

d

d

d
C

θ θ
θ

θ θ
θ

θ
θ

θ θ
θ

=
− −

=

=

=
= +

∫ ∫

∫

∫

θ

x1

2 2 2 2( ) ( ) (1)    1adjacent x adjacent x+ = → = − →
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Since x = sin θ it follows that,

sin
1
x opposite

hypotenuse
θ = =

And from the Pythagorean Theorem that,

2 2 2( ) ( ) ( )  adjacent opposite hypotenuse+ = →

2 2 2 2( ) ( ) (1)    1adjacent x adjacent x+ = → = − →

2
tan .

1
opposite x
adjacent x

θ = =
−

21
x C

x
= +

−

Problem: Integrate 
( )3/ 22

1 .
1

dx
x−

∫

Solution: To integrate 
( )3/ 22

1

1
dx

x−
∫  use the trig substitution,

X = tan θ

So that,

dx = sec2 θ dθ

Substitute into the original problem, replacing all forms of x, getting:

( )

2 2
2

2
2

2

3

2

2

1 tan 1 sec
tan

sec sec
tan

sec sec
tan
sec
tan
sec sec

tan
sec 1 tan

tan

x dx d
x

d

d

d

d

d

θ θ θ
θ

θ θ θ
θ

θ θ θ
θ
θ θ
θ
θ θ θ

θ
θ θ

θ
θ

+ +
=

=

=

=

=

+
=

∫ ∫

∫

∫

∫

∫

∫
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( )

( )

2

2

2

2

2

2

cos 1. . 1 tan
sin cos
1 tan

sin
1 sin1

sin cos

1 sin1
sin cos

1 sin
sin cos

1 sincsc .
cos cos

csc sec tan

d

d

d

d

d

d

d

= +

+
=

  = +     
 

= + 
 

 = + 
 
 = + 
 

= +

∫

∫

∫

∫

∫

∫

∫

θ θ θ
θ θ

θ θ
θ

θ θ
θ θ

θ θ
θ θ

θ θ
θ θ

θθ θ
θ θ

θ θ θ θ

csc csc cot and sec tan sec .d ln C d C= − + = +∫ ∫θ θ θ θ θ θ θ θ

csc cot secln C= − + +θ θ θ

θ

x

1

2 2 2 2(1) ( ) ( )   1x hypotenuse hypotenuse x+ = → = + →

Since x = tan θ it follows that,

tan
1
x opposite

adjacent
θ = =

and from the Pythagorean Theorem that,
2 2 2( ) ( ) ( )adjacent opposite hypotenuse+ = →

2 2 2 2(1) ( ) ( )   1x hypotenuse hypotenuse x+ = → = + →

2

2

1sec ,
1

1csc ,

hypotenuse x
adjacent

hypotenuse x
opposite x

θ

θ

+
= =

+
= =
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And, 

1cot .hypotenuse
opposite x

θ = = )

2
21 1 1xln x C

x x
+

= − + + +

Problem: Integrate 3 24 9 .x x dx−∫

Solution: To integrate ( )( ) ( )( )23 2 3 2 34 9 4 1 9 / 4 2 1 3 / 2x x dx x x dx x x dx− = − = −∫ ∫ ∫ use the 
trig substitution,

X = (2/3) sin θ

So that,

dx = (2/3) cos θ dθ

Substitute into the original problem, replacing all forms of x, getting:

( )( ) ( )( ) ( ) ( )( )( ) ( )

( )

22 33 2

3 3 2

3

3 2

2 1 3/ 2 2 2 / 3 sin 1 3/ 2 2 / 3 sin 2 / 3 cos

4 / 3 2 / 3 sin 1 sin cos

32 / 81 sin cos cos

32 / 81 sin cos

x x dx d

d

d

d

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ

− = −

= −

=

=

∫ ∫
∫
∫
∫

Recall that sin2θ = 1 − cos2 θ.

( )
( )

2

2 2

2 4

32 / 81 sin sin cos

32 / 81 sin 1 cos cos

32 / 81 sin cos cos

d

d

d

θ θ θ θ

θ θ θ θ

θ θ θ θ

=

= − −

= −

∫
∫
∫

Now let u = cosθ ⟶ du = − sinθ ⟶ − du = sinθ.

( )

( ) ( )

2 4

3 5

3 5

32 / 81

32
81 3 5

cos cos32
81 3

u u d

u u C

C

θ

θ θ
θ

= − −

 
= − − + 

 
 

= − − + 
 
 

∫

We need to write our final answer in terms of x.
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θ

3×2

2 2 2 2( ) (3 ) (2)  4 9adjacent x adjacent x+ = → = − →

Since x = (2/3) sin θ it follows that:

3sin
2
x opposite

hypotenuse
θ = =

And from the Pythagorean Theorem that,

2 2 2( ) ( ) ( )adjacent opposite hypotenuse+ = →

2 2 2 2( ) (3 ) (2)  4 9adjacent x adjacent x+ = → = − →

24 9cos .
2

adjacent x
hypotenuse

θ −
= =

3 5
2 232 1 4 9 1 4 9

81 3 2 5 2
x x C

     − −  = − − +              

( ) ( )

( ) ( )

3/ 2 5/ 22 2

3/ 2 5/ 22 2

32 1 1 1 1. 4 9 . 4 9
81 3 8 5 32
4 14 9 4 9

243 405

x x C

x x C

 = − − − − + 
 

= − − + − +

Integration by Partial Fraction

Partial fractions are the name given to a technique of integration that may be used to integrate any 
ratio of polynomials. A ratio of polynomials is called a rational function. Suppose that N(x) and 

D(x) are polynomials. The basic strategy is to write 
( )
( )

N x
D x

 as a sum of very simple, easy to integrate 
rational functions, namely:

•	 Polynomials (which are needed only if the degree1 of N(x) is equal to or strictly bigger 
than the degree of D(x)).

•	 Rational functions of the particularly simple form 
( )n

A
ax b+

. 

•	 Rational functions of the form 
( )2

.m
Ax B

ax bx c

+

+ +
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That is, to find the integral of the rational function on the far right hand side of:

( )( ) ( ) ( )
( )( )

3

2

1 1 1 11 1
1 1 1 1 1

x x x x x x xx
x x x x x

+ − + − + + +
+ + = =

+ − + − −

You rewrite it as the left hand side and then integrate x and 
1

1x +
and 

1
1x −

 So the main problem 

is to write a complicated rational function as a sum of simple pieces.

•	 The denominators on the left hand side are the factors of the denominator x2 − 1 = (x − 1)
(x + 1).

•	 Use P(x) to denote the polynomial on the left hand side (i.e. P(x) = x) and N(x) to denote the 
numerator of the right hand side (i.e. N(x) = x3 + x) and D(x) to denote the denominator of the 
right hand side (i.e. D(x) = x2 − 1). Then highest degree term in N(x) is x3. It came from multi-
plying P(x) by D(x). In particular the degree of N(x) is the sum of the degree P(x) and the degree 
of D(x). The presence of a polynomial on the left hand side is signalled on the right hand side by 
the fact that the degree of the numerator is at least as large as the degree of the denominator.

Example: 2

3
3 2

x dx
x x

− 
 − + ∫

In this example, we integrate 
( )
( ) 2

3 .
3 2

N x x
D x x x

−
=

− +

Step 1: We first check to see if the degree of the numerator, N(x), is strictly smaller than the degree 
of the denominator D(x). In this example, the numerator, x − 3, has degree one and that is indeed 
strictly smaller than the degree of the denominator, x2 − 3x + 2, which is two. In this case, the first 
step is not needed and we move on to step 2. 

Step 2: The second step is to factor the denominator,

x2 − 3x + 2 = (x − 1)(x − 2)

Step 3: The third step is to write 2

3
3 2

x
x x

−
− −

 in the form,

2

3
3 2 1 2

x A B
x x x x

−
= +

− + − −

For some constants A and B. To determine the values of the constants A, B, we put the right hand 
side back over the common denominator (x − 1)(x − 2).

( ) ( )
( )( )2

2 13
3 2 1 2 1 2

A x B xx A B
x x x x x x

− + −−
= + =

− + − − − −

The fraction on the far left is the same as the fraction on the far right if and only if their numerators 
are the same,

  3  (   2)  (   1)x A x B x− = − + −
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There is a couple of different ways to determine the values of A and B from this equation.

The conceptually clearest procedure is to write the right hand side as a polynomial in standard 
form (i.e. collect up all x terms and all constant terms):

  3  (   )   ( 2   )x A B x A B− = + + − −

For these two polynomials to be the same, the coefficient of x on the left hand side and the coeffi-
cient of x on the right hand side must be the same. Similarly the coefficients of x0 (i.e. the constant 
terms) must match. This gives us a system of two equations.

    1  2     3A B A B+ = − − = −

in the two unknowns A,B. We can solve this system by using the first equation, namely A + B = 1, 
to determine A in terms of B: A = 1−B. Substituting this into the remaining equation eliminates the 
A from second equation, leaving one equation in the one unknown B.

  1   2     3
2(1  )    3
  1  1    1  ( 1)  2

A B A B
B B

B A B

= − − − = −
⇒ − − − = −
⇒ = − = − = − − =

There is also a second, more efficient, procedure for determining A and B from:

x − 3 = A (x − 2) + B (x − 1).

This equation must be true for all values of x. In particular, it must be true for x = 1. When x = 1, 
the factor (x − 1) multiplying B is exactly zero. So B disappears from the equation, leaving us with 
an easy equation to solve for A:

( ) ( )1 1 1
3 2 1 2 2.

x x x
x A x B x A A

= = =
− = − + − ⇒ − = − ⇒ =

Similarly, when x = 2, the factor (x − 2) multiplying A is exactly zero. So A disappears from the 
equation, leaving us with an easy equation to solve for B:

( ) ( )2 2 2
3 2 1 1 1.

x x x
x A x B x B B

= = =
− = − + − ⇒ − = − ⇒ = −

Step 4: The final step is to integrate,

2

3 2 1 2 1 2 .
3 2 1 2

x dx dx dx ln x ln x C
x x x x

− −
= + = − − − +

− + − −∫ ∫ ∫
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Vectors
The elements of vector space are known as vectors. There are a number of important areas of 
study related to vectors such as vector functions, gradient, curl and divergence. The chapter close-
ly examines these key concepts of related to vectors to provide an extensive understanding of the 
subject.

A vector is an object that has both a magnitude and a direction. Geometrically, we can picture a 
vector as a directed line segment, whose length is the magnitude of the vector and with an arrow 
indicating the direction. The direction of the vector is from its tail to its head.

Two vectors are the same if they have the same magnitude and direction. This means that if we 
take a vector and translate it to a new position (without rotating it), then the vector we obtain at 
the end of this process is the same vector we had in the beginning.

Two examples of vectors are those that represent force and velocity. Both force and velocity are in 
a particular direction. The magnitude of the vector would indicate the strength of the force or the 
speed associated with the velocity.

We denote vectors using boldface as in a or b. Especially when writing by hand where one cannot 
easily write in boldface, people will sometimes denote vectors using arrows as in a



 or b


, or they 
use other markings. We won’t need to use arrows here. We denote the magnitude of the vector 
aa by ∥a∥∥a∥. When we want to refer to a number and stress that it is not a vector, we can call the 
number a scalar. We will denote scalars with italics, as in a or b.

You can explore the concept of the magnitude and direction of a vector using the below figure. Note 
that moving the vector around doesn’t change the vector, as the position of the vector doesn’t affect 
the magnitude or the direction. But if you stretch or turn the vector by moving just its head or its 
tail, the magnitude or direction will change. 

The magnitude and direction of a vector: The blue arrow represents a vector a. The two defining 
properties of a vector, magnitude and direction, are illustrated by a red bar and a green arrow, re-
spectively. The length of the red bar is the magnitude ∥a∥ of the vector a. The green arrow always 
has length one, but its direction is the direction of the vector a. The one exception is when a is the 
zero vector (the only vector with zero magnitude), for which the direction is not defined. You can 
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change either end of a by dragging it with your mouse. You can also move a by dragging the middle 
of the vector; however, changing the position of the a in this way does not change the vector, as its 
magnitude and direction remain unchanged.

There is one important exception to vectors having a direction. The zero vector, denoted by a 
boldface 0, is the vector of zero length. Since it has no length, it is not pointing in any particular 
direction. There is only one vector of zero length, so we can speak of the zero vector.

Operations on Vectors

We can define a number of operations on vectors geometrically without reference to any coordi-
nate system. Here we define addition, subtraction, and multiplication by a scalar. 

Addition of Vectors

Given two vectors a and b, we form their sum a + b, as follows. We translate the vector bb until 
its tail coincides with the head of a. (Recall such translation does not change a vector.) Then, the 
directed line segment from the tail of a to the head of bb is the vector a +b.

The vector addition is the way forces and velocities combine. For example, if a car is travelling 
due north at 20 miles per hour and a child in the back seat behind the driver throws an object at 
20 miles per hour toward his sibling who is sitting due east of him, then the velocity of the object 
(relative to the ground!) will be in a north-easterly direction. The velocity vectors form a right tri-
angle, where the total velocity is the hypotenuse. Therefore, the total speed of the object (i.e., the 

magnitude of the velocity vector) is 2 220 20 20 2+ = miles per hour relative to the ground.

Addition of vectors satisfies two important properties:

1.	 The commutative law, which states the order of addition doesn’t matter:

a + b = b + a.
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	 This law is also called the parallelogram law, as illustrated in the below image. Two of the 
edges of the parallelogram define a + b, and the other pair of edges define b + a. But, both 
sums are equal to the same diagonal of the parallelogram.

2.	 The associative law, which states that the sum of three vectors does not depend on which 
pair of vectors is added first:

(a + b) + c = a + (b + c).

You can explore the properties of vector addition with the following figure. 

The sum of two vectors: The sum a + b of the vector a (blue arrow) and the vector b (red arrow) is 
shown by the green arrow. As vectors are independent of their starting position, both blue arrows 
represent the same vector a and both red arrows represent the same vector b. The sum a + b can be 
formed by placing the tail of the vector b at the head of the vector a. Equivalently, it can be formed 
by placing the tail of the vector a at the head of the vector b. Both constructions together form a par-
allelogram, with the sum a + b being a diagonal. (For this reason, the commutative law a + b = b + 
a is sometimes called the parallelogram law.) You can change a and b by dragging the yellow points.

Vector Subtraction

Before we define subtraction, we define the vector −a, which is the opposite of a. The vector −a is 
the vector with the same magnitude as a but that is pointed in the opposite direction.
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We define subtraction as addition with the opposite of a vector:

b − a = b + ( − a).

This is equivalent to turning vector a around in the applying the above rules for addition. Can you 
see how the vector x in the below figure is equal to b − a? Notice how this is the same as stating that 
a + x = b, just like with subtraction of scalar numbers.

Scalar Multiplication

Given a vector a and a real number (scalar) λ, we can form the vector λa as follows. If λ is positive, 
then λa is the vector whose direction is the same as the direction of a and whose length is λ times 
the length of a. In this case, multiplication by λ simply stretches (if λ > 1) or compresses (if 0 < λ < 
1) the vector a.

If, on the other hand, λ is negative, then we have to take the opposite of a before stretching or com-
pressing it. In other words, the vector λa points in the opposite direction of a, and the length of λa 
is |λ| times the length of a. No matter the sign of λ, we observe that the magnitude of λa is |λ| times 
the magnitude of a: ∥λa∥=|λ|∥a∥. Scalar multiplications satisfies many of the same properties as 
the usual multiplication.

1.	 s(a + b) = sa + sb (distributive law, form 1)

2.	 (s + t) a = sa + ta (distributive law, form 2)

3.	 1a = a 

4.	 ( − 1) a = − a

5.	 0 a = 0

In the last formula, the zero on the left is the number 0, while the zero on the right is the vector 0, 
which is the unique vector whose length is zero.

If a = λb for some scalar λ, then we say that the vectors a and b are parallel. 

Vector Functions

A vector function covers a set of multidimensional vectors at the intersection of the domains of f, 
g, and h.

Vector valued functions, also called vector functions, allow you to express the position of a point 
in multiple dimensions within a single function. These can be expressed in an infinite number of 
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dimensions, but are most often expressed in two or three. The input into a vector valued function 
can be a vector or a scalar. In this atom we are going to introduce the properties and uses of the 
vector valued functions.

Properties of Vector Valued Functions

A vector valued function allows you to represent the position of a particle in one or more dimen-
sions. A three-dimensional vector valued function requires three functions, one for each dimen-
sion. In Cartesian form with standard unit vectors (i, j, k), a vector valued function can be repre-
sented in either of the following ways:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ), ,

r t f t i g t j h t k

r t f t g t h t

= + +

=

Where, t is being used as the variable. This is a three dimensional vector valued function. The 
graph shows a visual representation of,

r(t) = ⟨2cos(t), 4sin (t),t⟩.

Vector-Valued Function: This graph of a parametric curve (a simple vector-valued function with a  
single parameter of dimension 11). The graph is of the curve: ⟨2cos(t), 4sin(t),t⟩  

where t goes from 0 to 8π.

This can be broken down into three separate functions called component functions:

x(t) = 2cos(t)y(t) = 4sin(t)z(t) = t.

If you were to take a cross section, with the cut perpendicular to any of the three axes, you would 
see the graph of that function. For example, if you were to slice the three-dimensional shape per-
pendicular to the z-axis, the graph you would see would be of the function z(t) = t. The domain of 
a vector valued function is a domain that satisfies all of the component functions. It can be found 
by taking the intersection of the individual component function domains. The vector valued func-
tions can be manipulated in the same way as a vector; they can be added, subtracted, and the dot 
product and the cross product can be found.
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Example: For this example, we will use time as our parameter. The following vector valued func-
tion represents time, t:

r(t) = f(t)i + g(t)j + h(t)k

This function is representing a position. Therefore, if we take the derivative of this function, we 
will get the velocity:

 

( ) ( ) ( ) ( )

( )

' ''dr t
f t i g t j h t k

dt
v t

= + +

=

If we differentiate a second time, we will be left with acceleration:

( ) ( )dv t
a t

dt
=

Arc Length and Speed

Arc length and speed are, respectively, a function of position and its derivative with respect to time.

Since length is a magnitude that involves position, it is easy to deduce that the derivative of a 
length, or position, will give you the velocity—also known as speed—of a function. This is because 
a derivative gives you a rate of change with respect to a parameter. Velocity is the rate of change of 
a position with respect to time. Let’s start this atom by looking at arc length with calculus.

Arc Length

The arc length is the length you would get if you took a curve, straightened it out, and then mea-
sured the length of that line. The arc length can be found using geometry, but for the sake of this 
atom, we are going to use integration. The arc length is approximated by connecting a finite num-
ber of points along and curve, connecting those lines to create a string of very small straight lines, 
and adding them together. To find this using integration, we should start out by using the Pythag-
orean Theorem for length of the different sides of a triangle:

( )

2
2 2 2

2

2

2

2

2

2

1

1 .

1 ' .
b

a

dsds dx dy
dx

dy ds
dx

dy dx
dx

f x dx

= +

= +

= +

= +∫

where s is the arc length. If x = X(t) and y = Y(t),
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( )

( ) ( )

2

2

2 2

2 2

1 ' ....

' ' ....

...

b

a

b

a
b

a

b

a

s f x dx

X t Y t dt

dx dy

dx dy dt
dt dt

= +

= +      

= +

= +

∫

∫
∫

∫

Since this is a function of position and is defined by x, we need to have a derivative that is in respect 
to x:

2

1 *
b

a

dy dx
dx

+∫

r = f(θ)

Curves and the Pythagorean Theorem: For a small piece of curve, ∆s can be  
approximated with the Pythagorean theorem.

Arc Speed

Now that the hard part is over, we can easily find the speed along this curve. Since speed is in rela-
tion to time and not position, we need to revert back to the arc length with respect to time:

2 2

.
b

a

dx dy dt
dt dt

+∫

Then, differentiate with respect to time:

( ) ( ) ( )2 2'' 'v t s X t Y t= = +      

Calculus of Vector-valued Functions

A vector function is a function that can behave as a group of individual vectors and can perform 
differential and integral operations.
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A vector-valued function, also referred to as a vector function, is a mathematical function of one or 
more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. 
The input of a vector-valued function could be a scalar or a vector. The dimension of the domain is 
not defined by the dimension of the range.

A common example of a vector valued function is one that depends on a single real number pa-
rameter t, often representing time, producing a vector v(t) as the result. In terms of the standard 
unit vectors i, j, k of Cartesian 3-space, these specific type of vector-valued functions are given by 
expressions such as:

r(t) = f(t) I + g(t) j + h (t)k

where f(t), g(t), and h(t) are the coordinate functions of the parameter t. The vector v(t) has its tail 
at the origin and its head at the coordinates evaluated by the function.

Vector functions can also be referred to in a different notation:

r(t) = ⟨f(t), g(t), h(t)⟩

Vector valued function: This graph is a visual representation of the three-dimensional  
vector-valued function r(t) = ⟨2cos(t), 4sin(t),t⟩. This can be broken down into three separate  

functions called component functions: x(t) = 2cos (t)y (t) = 4sin(t)z(t) = t.

Vector calculus is a branch of mathematics that covers differentiation and integration of vector 
fields in any number of dimensions. Because vector functions behave like individual vectors, you 
can manipulate them the same way you can a vector. Vector calculus is used extensively through-
out physics and engineering, mostly with regard to electromagnetic fields, gravitational fields, and 
fluid flow. When taking the derivative of a vector function, the function should be treated as a 
group of individual functions.

Vector functions are used in a number of differential operations, such as gradient (measures the 
rate and direction of change in a scalar field), curl (measures the tendency of the vector function 
to rotate about a point in a vector field), and divergence (measures the magnitude of a source at a 
given point in a vector field).
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Arc Length and Curvature

The curvature of an object is the degree to which it deviates from being flat and can be found using 
arc length.

Arc Curvature

The curvature of an arc is a value that represents the direction and sharpness of a curve. On any 
curve, there is a center of curvature, C. This is the intersection point of two infinitely close normal 
to this curve. The radius, R, is the distance from this intersection point to the center of curvature.

Curvature: Curvature is the amount an object deviates from being flat. 

Given any curve C and a point P on it, there is a unique circle or line which most closely approxi-
mates the curve near P. The curvature of C at P is then defined to be the curvature of that circle or 
line. The radius of curvature is defined as the reciprocal of the curvature.

In order to find the value of the curvature, we need to take the parameter time, s, and the unit tan-
gent vector, which in this case is the same as the unit velocity vector, T, which is also a function of 
time. The curvature is a magnitude of the rate of change of the tangent vector, T:

dTk
ds

Where κ is the curvature and 
dT
ds

 is the acceleration vector (the rate of change of the velocity 
vector over time).

Relation between Curvature and Arc Length

The curvature can also be approximated using limits. Given the points P and Q on the curve, lets 
call the arc length s(P,Q), and the linear distance from P to Q will be denoted as d(P,Q). The curva-
ture of the arc at point P can be found by obtaining the limit:

( ) ( ) ( )( )
( )3

24* , ,lim
,

s P Q d P Q
P

Q P s P Q
κ

−
=

→
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In order to use this formula, you must first obtain the arc length of the curve from points P to Q and 
length of the linear segment that connect points P and Q. In Cartesian coordinates:

2

1 *
b

a

dy dx
dx

+∫

Tangent Vectors and Normal Vectors

A vector is normal to another vector if the intersection of the two form a 90-degree angle at the 
tangent point.

In order for a vector to be normal to an object or vector, it must be perpendicular with the direc-
tional vector of the tangent point. The intersection formed by the two objects must be a right angle.

Normal Vectors

An object is normal to another object if it is perpendicular to the point of reference. That means 
that the intersection of the two objects forms a right angle. Usually, these vectors are denoted as n.

Normal Vector: These vectors are normal to the plane because the intersection between  
them and the plane makes a right angle.

Not only can vectors be ‘normal’ to objects, but planes can also be normal.

Dot Product

Normal Plane: A plane can be determined as normal to the object if the directional vector of  
the plane makes a right angle with the object at its tangent point. This plane is normal to the point on  

the sphere to which it is tangent. Each point on the sphere will have a unique normal plane.
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As we covered in another atom, one of the manipulations of vectors is called the Dot Product. 
When you take the dot product of two vectors, your answer is in the form of a single value,not a 
vector. In order for two vectors to be normal to each other, the dot product has to be zero.

1 1 2 2 3 3

0

cos

a b
a b a b a b
a b

⋅ =
= + +

= θ

Tangent Vectors

Tangent vectors are almost exactly like normal vectors, except they are tangent instead of normal 
to the other vector or object. These vectors can be found by obtaining the derivative of the refer-
ence vector, r(t):

r(t) = f(t) i + g (t)j + h (t)k

Gradient

The gradient of a function w = f(x, y, z) is the vector function:

( ) ( ) ( ), , , , , , , ,f f ff grad f x y z x y z x y z
x y z
∂ ∂ ∂

∇ = =< >
∂ ∂ ∂

For a function of two variables z = f(x, y), the gradient is the two-dimensional vector < f_x 
(x, y), f_y (x, y)>. This definition generalizes in a natural way to functions of more than three 
variables.

Examples: For the function z = f(x, y) = 4x ^2 + y ^2. The gradient is,

8 ,2 .grad f x y=< >

For the function w = g(x, y, z) = exp(x y z) + sin(xy), the gradient is:

( ) ( )cos , cos ,xyz xyz xyzgrad g yze y xy xze x xy xye=< + + >

Geometric Description of the Gradient Vector

There is a nice way to describe the gradient geometrically. Consider z = f(x, y) = 4x2 + y2. The sur-
face defined by this function is an elliptical paraboloid. This is a bowl-shaped surface. The bottom 
of the bowl lies at the origin. The figure below shows the level curves, defined by f(x, y) = c, of the 
surface. The level curves are the ellipses 4x2 + y2= c.

The gradient vector <8x, 2y> is plotted at the 3 points (sqrt(1.25), 0), (1, 1), (0, sqrt(5)). As the plot 
shows, the gradient vector at (x, y) is normal to the level curve through (x, y). the gradient vector 
points in the direction of greatest rate of increase of f(x, y).
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In three dimensions the level curves are level surfaces. Again, the gradient vector at (x, y, z) is nor-
mal to level surface through (x, y, z).

Directional Derivatives

For a function z = f(x, y), the partial derivative with respect to x gives the rate of change of f in the x 
direction and the partial derivative with respect to y gives the rate of change of f in the y direction. 
How do we compute the rate of change of f in an arbitrary direction?

The rate of change of a function of several variables in the direction u is called the directional de-
rivative in the direction u. Here u is assumed to be a unit vector. Assuming w = f(x, y, z) and u = 
<u_1, u_2, u_3 > we have,

1 2 3. .u
f f fD f grad f u u u u
x y z
∂ ∂ ∂

= = + +
∂ ∂ ∂

Hence, the directional derivative is the dot product of the gradient and the vector u. Note that if u 
is a unit vector in the x direction, u = <1, 0, 0>, then the directional derivative is simply the partial 
derivative with respect to x. For a general direction, the directional derivative is a combination of 
the all three partial derivatives.

Example: What is the directional derivative in the direction <1, 2> of the function z = f(x, y)= 4x2 + 
y2 at the point x = 1 and y = 1. The gradient is <8x, 2y>, which is <8, 2> at the point x = 1 and y = 1. 
The direction u is <2, 1>. Converting this to a unit vector, we have <2, 1>/sqrt(5). Hence,

2 1 188,2 , .
5 5 5

Duf grad f u= ⋅ =< > ⋅ >=

Directions of Greatest Increase and Decrease

The directional derivative can also be written:

| || | cosDu f grad f u grad f u θ= ⋅ =
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where theta is the angle between the gradient vector and u. The directional derivative takes on its 
greatest positive value if theta = 0. Hence, the direction of greatest increase of f is the same direction 
as the gradient vector. The directional derivative takes on its greatest negative value if theta = pi (or 
180 degrees). Hence, the direction of greatest decrease of f is the direction opposite to the gradient 
vector.

Curl

The curl of a vector field, denoted curl(F) or del ∇ x F (the notation used in this work), is defined 
as the vector field having magnitude equal to the maximum “circulation” at each point and to be 
oriented perpendicularly to this plane of circulation for each point. More precisely, the magnitude 
of ∇x F is the limiting value of circulation per unit area. Written explicitly,

( ) 
0

F lim .C

A

F ds
n

A→

⋅
∇× ⋅ = ∫

where the right side is a line integral around an infinitesimal region of area Â that is allowed to 

shrink to zero via a limiting process and n  is the unit normal vector to this region. If 0F∇× =
, then the field is said to be an irrotational field. The symbol ∇  is variously known as “nabla” or 
“del.”

The physical significance of the curl of a vector field is the amount of “rotation” or angular momen-
tum of the contents of given region of space. It arises in fluid mechanics and elasticity theory. It 
is also fundamental in the theory of electromagnetism, where it arises in two of the four Maxwell 
equations,

0 0 0 ,

BE
t

EB J
t

µ ε µ

∂
∇× =

∂
∂

∇× = +
∂

where MKS units have been used here, E denotes the electric field, B is the magnetic field, 0µ  is a 
constant of proportionality known as the permeability of free space, J is the current density, and 

0ε  is another constant of proportionality known as the permittivity of free space. Together with 

the two other of the Maxwell equations, these formulas describe virtually all classical and relativ-
istic properties of electromagnetism.

In Cartesian coordinates, the curl is defined by,

  .y yx xz z

z

F FF FF FF x y z
y z x x y

∂ ∂   ∂ ∂∂ ∂ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    


This provides the motivation behind the adoption of the symbol ∇×  for the curl, since interpreting 
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∇  as the gradient operator ( )/ , / , / ,x y z∇ = ∂ ∂ ∂ ∂ ∂ ∂  the “cross product” of the gradient operator 
with F is given by,

 

x zy

x y z

F
x y z

F FF

∂ ∂ ∂
∇× =

∂ ∂ ∂



which is precisely equation   .y yx xz z

z

F FF FF FF x y z
y z x x y

∂ ∂   ∂ ∂∂ ∂ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
  A somewhat 

more elegant formulation of the curl is given by the matrix operator equation,

0

0

0

z y

F F
z x

xy

∂ ∂
−
∂ ∂

∂ ∂
∇× = −

∂ ∂
∂∂

−
∂∂

The curl can be similarly defined in arbitrary orthogonal curvilinear coordinates using,

  

1 2 31 2 3F F u F u F u≡ + +

and defining,

,i
i

rh
u
∂

≡
∂

as,
  

( ) ( ) 

( ) ( )  ( ) ( ) 

1 2 31 2 3

1 2 3 1 2

3 31 1 2 2

13 3 2 2
2 3 2 3 1 3

2 31 1 3 3 1 2 1 1
3 1 1 2 1 2

1
3

1 1

1 .

h u h u h u

F
h h h u u u

h Fh F h F

h F h F u
h h u u h h

h F h F u h F h F u
u u h h u u

∂ ∂ ∂
∇× ≡

∂ ∂ ∂

 ∂ ∂
− + ∂ ∂ 

   ∂ ∂ ∂ ∂
− + −   ∂ ∂ ∂ ∂  

The curl can be generalized from a vector field to a tensor field as,

( ) , ,
v

v uA Aα α∇× =∈

where i j kε  is the permutation tensor and “;” denotes a covariant derivative.

________________________ WORLD TECHNOLOGIES ________________________



WT

164 	 Calculus: The Basics

Divergence

Divergence measures the change in density of a fluid flowing according to a given vector field.

Notation and Formula for Divergence

The notation for divergence uses the same symbol “∇ ”. As with the gradient, we think of this sym-
bol loosely as representing a vector of partial derivative symbols.

x

y

∂ 
 ∂ 

∂ ∇ =  ∂
 
 
  



We write the divergence of a vector-valued function v


 (x, y, …), with, vector, on top, left parenthe-
sis, x, comma, y, comma, dots, space, right parenthesis like this,

Divergencev of v∇⋅ ←
 

This is mildly nonsensical since ∇  isn’t really a vector. Its entries are operators, not numbers. 
Nevertheless, using this dot product notation is super helpful for remembering how to compute 
divergence, just take a look:

( ) ( )

2

2

2

2

2 2

x yxv
y

y

x y y
x y

y

∂ 
  − ∂ ∇ ⋅ = ⋅  ∂   
 ∂ 

∂ ∂
= − +
∂ ∂

= +



More generally, the divergence can apply to vector-fields of any dimension. This means v


, with, 
vector, on top can have any number of input variables, as long as its output has the same dimen-
sions. Otherwise, it couldn’t represent a vector field. If we write v



, with, vector, on top compo-
nent-wise like this:

( )
( )

( )

1 1

1

1

,...,
,...,

,...,

n

n

n n

v x x
v x x

v x x

 
 =  
  




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Then the divergence of v


, on top looks like this:

1 1
1

1

. ..... n

n
n

n

x v
vvv

x x
v

x

∂ 
 ∂    ∂∂ ∇ ⋅ = = + +    ∂ ∂   ∂   
 ∂ 



 

Let’s summarize this with a quick diagram:

A useful mnemonic is to imagine taking this dot product. This is the reason for the “∇” notation.

Interpretation of Divergence

Let’s say you evaluate the divergence of a function v


at some point (x0, y0) and it comes out negative.

( )0 0, 0v x y∇⋅ <


This means a fluid flowing along the vector field defined by v


 would tend to become more Dense 
at the point (x0, y0). For example, the following animation shows a vector field with negative diver-
gence at the origin.

On the other hand, if the divergence at a point (x0, y0) is positive,

( )0 0, 0v x y∇⋅ >


The fluid flowing along the vector field becomes less dense around (x0, y0).
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Finally, the concept of zero-divergence is very important in fluid dynamics and electrodynamics. It 
indicates that even though a fluid flows freely, its density stays constant. This is particularly handy 
when modeling incompressible fluids, such as water. In fact, the very idea that a fluid is incom-
pressible can be tightly communicated with the following equation:

0v∇⋅ =


Such vector fields are called “divergence-free.” 

Sources and Sinks

Sometimes, for points with negative divergence, instead of thinking about a fluid getting more 
dense after a momentary fluid motion, some people imagine the fluid draining at that point while 
the fluid flows constantly. Here’s what this might look like: As such, points of negative divergence 
are often called “sinks.”

Likewise, instead of thinking of points with positive divergence as becoming less dense during 
a momentary motion, these points might be thought of as “sources” constantly generating more 
fluid particles.
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5
Theorems used in Calculus
The field of calculus uses a number of theorems such as Rolle's Theorem, divergence theorem, 
gradient theorem, Stokes' theorem, Green's theorem and mean value theorem. The diverse appli-
cations of these theorems have been thoroughly discussed in this chapter.

Rolle’s Theorem

Suppose that a function f(x) is continuous on the closed interval [a, b] and differentiable on the 
open interval (a, b). Then if f(a) = f(b), then there exists at least one point c in the open interval  
(a, b) for which f′(c) = 0.

Geometric Interpretation

There is a point c on the interval (a, b) where the tangent to the graph of the function is horizontal.

All 3 conditions of Rolle’s theorem are necessary for the theorem to be true:

1.	 f(x) is continuous on the closed interval [a, b];

2.	 f(x) is differentiable on the open interval (a, b);

3.	 f(a) = f(b).

Some Counter-examples

Consider f(x) = {x} ({x} is the fractional part function) on the closed interval [0, 1]. The derivative 
of the function on the open interval (0, 1) is everywhere equal to 1. In this case, the Rolle’s theorem 
fails because the function f(x) has a discontinuity at x = 1 (that is, it is not continuous everywhere 
on the closed interval [0, 1]).
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Consider f(x) = |x| (where |x| is the absolute value of x) on the closed interval [−1, 1]. This function 
does not have derivative at x = 0. Though f(x) is continuous on the closed interval [−1, 1], there is 
no point inside the interval (−1, 1) at which the derivative is equal to zero. The Rolle’s theorem fails 
here because f(x) is not differentiable over the whole interval (−1, 1).

The linear function f(x) = x is continuous on the closed interval [0,1] and differentiable on the open 
interval (0, 1). The derivative of the function is everywhere equal to 1 on the interval. So the Rolle’s 
theorem fails here. This is explained by the fact that the 3rd condition is not satisfied (since f(0) ≠ 
f(1).)

In modern mathematics, the proof of Rolle’s theorem is based on two other theorems − the Weier-
strass extreme value theorem and Fermat’s theorem. They are formulated as follows:
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Weierstrass Extreme Value Theorem

If a function f(x) is continuous on a closed interval [a, b], then it attains the least upper and great-
est lower bounds on this interval.

Fermat’s Theorem

Let a function f(x) be defined in a neighborhood of the point x0 and differentiable at this point. 
Then, if the function f(x) has a local extremum at x0 then,

f′(x0) = 0.

Consider now Rolle’s theorem in a more rigorous presentation. Let a function y = f(x) be continu-
ous on a closed interval [a, b], differentiable on the open interval (a, b), and takes the same values 
at the ends of the segment:

f(a) = f(b).

Then on the interval (a, b) there exists at least one point c∈(a, b), in which the derivative of the 
function f(x) is zero:

f′(c) = 0.

Proof: If the function f(x) is constant on the interval [a, b], then the derivative is zero at any point 
of the interval (a, b), i.e. in this case the statement is true.

If the function f(x) is not constant on the interval [a, b], then by the Weierstrass theorem, it reaches 
its greatest or least value at some point c of the interval (a, b), i.e. there exists a local extremum at 
the point c. Then by Fermat’s theorem, the derivative at this point is equal to zero:

f′(c) = 0.

Physical Interpretation

Rolle’s theorem has a clear physical meaning. Suppose that a body moves along a straight line, and 
after a certain period of time returns to the starting point. Then, in this period of time there is a 
moment, in which the instantaneous velocity of the body is equal to zero.

Example: Let f(x) = x2 + 2x. Find all values of c in the interval [−2, 0] such that f′(c) = 0.

Solution: First of all, we need to check that the function f(x) satisfies all the conditions of Rolle’s 
theorem.

f(x) is continuous in [−2,0] as a quadratic function;

It is differentiable everywhere over the open interval (−2,0);

Finally,

( ) ( ) ( )
( )

( ) ( )

2

2

2 2 2 2 0,

0 0 2.0 0,

2 0 .

f

f

f f

− = − + ⋅ − =

= + =

⇒ − =
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So we can use Rolle’s theorem.

To find the point c we calculate the derivative,

f′(x) = (x2 + 2x)′ = 2x + 2

and solve the equation f′(c) = 0:

f′(c) = 2c + 2 = 0, ⇒ c = −1.

Thus,	 f′(c) = 0 for c = −1.

Example: Given the function f(x) = x2 − 6x + 5. Find all values of c in the open interval (2, 4) such 
that f′(c) = 0.

Solution: First we determine whether Rolle’s theorem can be applied to f(x) on the closed interval.

The function is continuous on the closed interval.

The function is differentiable on the open interval. Its derivative is,

The function has equal values at the endpoints of the interval:
f(2) = 22 – 6 ⋅ 2 + 5 = − 3,
f(4) = 42 – 6 ⋅ 4 + 5 = − 3.

This means that we can apply Rolle’s theorem. Solve the equation to find the point c:

f′(c) = 0,⇒2c – 6 = 0, ⇒ c = 3.

Divergence Theorem

The divergence theorem is about closed surfaces, so let’s start there. By a closed surface S we will mean 
a surface consisting of one connected piece which doesn’t intersect itself, and which completely enclos-
es a single finite region D of space called its interior. The closed surface S is then said to be the boundary 
of D; we include S in D. A sphere, cube, and torus (an inflated bicycle inner tube) are all examples of 
closed surfaces. On the other hand, these are not closed surfaces: a plane, a sphere with one point re-
moved, a tin can whose cross-section looks like a figure (it intersects itself), an infinite cylinder.

A closed surface always has two sides, and it has a natural positive direction — the one for which n 
points away from the interior, i.e., points toward the outside. We shall always understand that the 
closed surface has been oriented this way, unless otherwise specified.

D 

S 

n 
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We now generalize to 3-space the normal form of Green’s theorem.

Definition: Let F(x, y, z) = M i + N j + P k be a vector field differentiable in some region D. By the 
divergence of F we mean the scalar function div F of three variables defined in D by,

.M N Pdiv F
x y z

∂ ∂ ∂
= + +

∂ ∂ ∂

The divergence theorem: Let S be a positively-oriented closed surface with interior D, and let F be 
a vector field continuously differentiable in a domain contatining D. Then,

S D
F dS div F dV⋅ =∫∫ ∫∫∫

We write dV on the right side, rather than dx dy dz since the triple integral is often calculated 
in other coordinate systems, particularly spherical coordinates. The theorem is sometimes called 
Gauss’ theorem.

Physically, the divergence theorem is interpreted just like the normal form for Green’s the-
orem. Think of F as a three-dimensional flow field. The surface integral represents the mass 
transport rate across the closed surface S, with flow out of S considered as positive, flow into 
S as negative.

Proof of the Divergence Theorem

Let F  be a smooth vector field defined on a solid region V with boundary surface A oriented out-
ward. We wish to show that,

.
A V

F d A div F dV⋅ =∫ ∫
  

For the Divergence Theorem, we use the same approach as we used for Green’s Theorem; first prove 
the theorem for rectangular regions, then use the change of variables formula to prove it for regions 
parameterized by rectangular regions, and finally paste such regions together to form general regions.

Proof for Rectangular Solids with Sides Parallel to the Axes

Consider a smooth vector field F  defined on the rectangular solid V : a ≤ x ≤ b, c ≤ y ≤ d, e ≤ z ≤ f. 

We start by computing the flux of F  through the two faces of V perpendicular to the x-axis, A1 and 
A2, both oriented outward:

( ) ( )

( ) ( )( )
1

1 12

1 1

, , , ,

, , , , .

f d f d

A A e c c c

f d

c c

F d A F d A F a y z dy dz F b y z dy dz

F b y z F a y z dy dz

⋅ + ⋅ = − +

= −

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

   

By the Fundamental Theorem of Calculus,

( ) ( ) 1
1 1, , , , ,

b

a

FF b y z F a y z dx
x

∂
− =

∂∫
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So, 

1 2

1 1 .
f d b

A A e c a V

F FF d A F d A dx dy dz dV
x x

∂ ∂
⋅ + ⋅ = =

∂ ∂∫ ∫ ∫ ∫ ∫ ∫
   

By a similar argument, we can show:

3 4

2
A A V

FF d A F d A dV
y

∂
⋅ + ⋅ =

∂∫ ∫ ∫
   

 and 
5 6

3 .
A A V

FF d A F d A dV
z

∂
⋅ + ⋅ =

∂∫ ∫ ∫
   

Adding these we get,

31 2 .
A V V

FF FF d A dV div F dV
x y z

 ∂∂ ∂
⋅ = + + = ∂ ∂ ∂ 

∫ ∫ ∫
  

This is the Divergence Theorem for the region V.
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Rectangular solid V in xyz-space.
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�
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�

A1 (back)

A2

A6
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A rectangular solid W in stu-space and the corresponding curved solid V in xyz-space.

Proof for Regions Parameterized by Rectangular Solids

Now suppose we have a smooth change of coordinates,

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u).

Consider a curved solid V in xyz-space corresponding to a rectangular solid W in stu-space. We 
suppose that the change of coordinates is one-to-one on the interior of W, and that its Jacobian 
determinant is positive on W. We prove the Divergence Theorem for V using the Divergence The-
orem for W.
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Let A be the boundary of V. To prove the Divergence Theorem for V, we must show that,

.
A V

F d A div F dV⋅ =∫ ∫
  

First we express the flux through A as a flux integral in stu-space over S, the boundary of the rect-
angular region W. In vector notation the change of coordinates is,

( ) ( ) ( ) ( ), , , , , , , , .r r s t u x s t u i y s t u j z s t u k= = + +
    

The face A1 of V is parameterized by,

( ), , , , ,r r a t u c t d e u f= ≤ ≤ ≤ ≤
 

so on this face,

.r rd A dt du
t u

∂ ∂
= ± ×

∂ ∂

 



In fact, in order to make d A


 point outward, we must choose the negative sign. Thus, if S1 is the 
face s = a of W,

1 1

.
A s

r rF d A F dt du
t u

∂ ∂
⋅ = − ⋅ ×

∂ ∂∫ ∫
 

  

The outward pointing area element on S1 is S i= −
 

 dt du. Therefore, if we choose a vector field G


 
on stu-space whose component in the s-direction is,

1 ,r rG F
t u

∂ ∂
= ⋅ ×

∂ ∂

 



We have,

1 1

.
A S

F d A G d S⋅ = ⋅∫ ∫
   

Similarly, if we define the t and u components of G


 by,

2 3 ,r r r rG F and G F
u s s t
∂ ∂ ∂ ∂

= ⋅ × = ⋅ ×
∂ ∂ ∂ ∂

   

 

Then,

, 2,...,6.
i iA S
F d A G d S i⋅ = ⋅ =∫ ∫
   

Adding the integrals for all the faces, we find that,

.
A S

F d A G d S⋅ = ⋅∫ ∫
   

________________________ WORLD TECHNOLOGIES ________________________



WT

174 	 Calculus: The Basics

Since we have already proved the Divergence Theorem for the rectangular region W we have,

,
S W
G d S div G dW⋅ =∫ ∫
  

Where,

31 2 .GG Gdiv G
s t u

∂∂ ∂
= + +

∂ ∂ ∂



( )
( )

3 31 2 1 2, ,
.

, ,
x y zG FG G F F

s t u s t u x y x
∂  ∂ ∂∂ ∂ ∂ ∂

+ + = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

So, by the three-variable change of variables formula,

( )
( )

31 2

31 2

31 2

, ,
, ,

.

V V

W

W

W

FF Fdiv F dV dx dy dz
x y z

x y zFF F ds dt du
x y z s t u

GF G ds dt du
s t u

divG dW

 ∂∂ ∂
= + + ∂ ∂ ∂ 

∂ ∂∂ ∂
= + + ∂ ∂ ∂ ∂ 

∂∂ ∂ = + + ∂ ∂ ∂ 

=

∫ ∫

∫

∫

∫





In summary, we have shown that,

A S
F d A G d S⋅ = ⋅∫ ∫
   

and

.
V V

div F dV divG dW=∫ ∫
 

By the Divergence Theorem for rectangular solids, the right-hand sides of these equations are 
equal, so the left-hand sides are equal also. This proves the Divergence Theorem for the curved 
region V.

Pasting Regions Together

As in the proof of Green’s Theorem, we prove the Divergence Theorem for more general regions 
by pasting smaller regions together along common faces. Suppose the solid region V is formed by 
pasting together solids V1 and V2 along a common face, as in figure.

The surface A which bounds V is formed by joining the surfaces A1 and A2 which bound V1 and 

V2, and then deleting the common face. The outward flux integral of a vector field F


 through A1 
includes the integral across the common face, and the outward flux integral of F



 through A2 in-
cludes the integral over the same face, but oriented in the opposite direction.
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�

Common face

V1

V2

Region V formed by pasting together V1 and V2.

Thus, when we add the integrals together, the contributions from the common face cancel, and we 
get the flux integral through A. Thus we have:

1 2

.
A A A

F d A F d A F d A⋅ = ⋅ + ⋅∫ ∫ ∫
     

But we also have,

1 2

.
V V V

div F dV F dV F dV= +∫ ∫ ∫
  

So the Divergence Theorem for V follows from the Divergence Theorem for V1 and V2. Hence we 
have proved the Divergence Theorem for any region formed by pasting together regions that can 
be smoothly parameterized by rectangular solids.

Example: Let V be a spherical ball of radius 2, centered at the origin, with a concentric ball of ra-
dius 1 removed. Using spherical coordinates, show that the proof of the Divergence Theorem we 
have given applies to V.

Solution: We cut V into two hollowed hemispheres like the one shown in figure, W. In spherical co-
ordinates, W is the rectangle 1 ≤ ρ ≤ 2, 0 ≤ φ ≤ π, 0 ≤ θ ≤ π. Each face of this rectangle becomes part 
of the boundary of W. The faces ρ = 1 and ρ = 2 become the inner and outer hemispherical surfaces 
that form part of the boundary of W. The faces θ = 0 and θ = π become the two halves of the flat 
part of the boundary of W. The faces φ = 0 and φ = π become line segments along the z-axis. We 
can form V by pasting together two solid regions like W along the flat surfaces where θ = constant. 

x

y

z

�ρ = 1

�ρ = 2

�

θ = 0

�θ = π

�
φ = π

�

φ = π

ρ

θ

φ

π

1

2

π

The hollow hemisphere W and the corresponding rectangular region in ρθφ – space.
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Gradient Theorem

In one-variable calculus, the fundamental theorem of calculus was a useful tool for evaluating in-
tegrals. If you are integrating a function g(t) and it turns out that the function is the derivative of 
another function g(t) = G′(t), then integrating the function g(t) is simple. The integral of g is just 
the difference in the values of G(t) at the endpoints. We could write the result as:

( ) ( ) ( )
b

a
G' t .dt G b G a= −∫

For line integrals of vector fields, there is a similar fundamental theorem. In some cases, we can 
reduce the line integral of a vector field F along a curve C to the difference in the values of another 
function f evaluated at the endpoints of C,

( ) ( ) ,
C

F ds f Q f P⋅ −∫
where C starts at the point P and ends at the point Q. If we let F : Rn → Rn be a n-dimensional vector 
field, then it must be that f : Rn → R is a scalar-valued function, as the line integral evaluates to a 
single number.

This sounds good, but there is an important catch: it will only work for integrating specials kinds 

of vector fields. Clearly, equation ( ) ( ) ,
C

F ds f Q f P⋅ −∫  could possibly be true only if the line 

integral along C depends only on the endpoints of C and doesn’t depend on the particular path 

the C takes. In other words, we can hope for a similar fundamental theorem for line integrals 
only if the vector field is conservative (also called path-independent). If the vector field F is 
path-dependent, then it will be impossible to reduce its line integral to values of a function at 
the path endpoints.

We can easily derive what a conservative vector field should look like and in the process obtain 
our fundamental theorem for line integrals. Let the curve C from point P to Q be parametrized 

by c(t) for a < t < b. This means P = c(a), Q = c(b), and the line integral
C

F ds⋅∫ can be writ-

ten as ( )( ) ( )'b

a
F c t c t dt⋅∫ . The desired relaationship between F and f described by equation 

( ) ( ) ,
C

F ds f Q f P⋅ −∫  can be rewritten as,

( )( ) ( ) ( )( ) ( )( )' .
b

a
F c t c t dt f c b f c a⋅ = −∫

In this form, equation ( )( ) ( ) ( )( ) ( )( )' .
b

a
F c t c t dt f c b f c a⋅ = −∫  is starting to look like our orig-

inal equation ( ) ( ) ( )
b

a
G' t dt G b G a= −∫  

for the fundamental theorem of calculus. If we let G(t) 

= f(c(t)), then the right hand side of equation ( )( ) ( ) ( )( ) ( )( )' .
b

a
F c t c t dt f c b f c a⋅ = −∫  is indeed 
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G(b) − G(a). For equation ( )( ) ( ) ( )( ) ( )( )' .
b

a
F c t c t dt f c b f c a⋅ = −∫  to be valid, we just need, 

F(c(t)) ⋅ c′(t) to be equal to G′(t).

Since G(t) = f(c(t)) is a composition of functions, we can compute its derivative using the chain 
rule. For c : R → Rn and f : Rn → R, the chain rule can be written as,

G′(t) = Df(c(t))Dc(t) = ∇f(c(t)) ⋅ c′(t).

The gradient vector ∇f is just the vector form of the 1×n derivative matrix Df, and the derivative of 
a parametrized curve is the tangent vector c′(t).

The expression for G′(t) is in exactly the form we need. G′(t) will be equal to F(c(t)) ⋅ c′(t) 
under the condition that we find a function f so that the vector field F is the gradient ∇f. 
Let’s assume that F=∇f. Then, finally, by the one-variable fundamental theorem of calcu-

lus of equation ( ) ( ) ( )
b

a
G' t .dt G b G a= −∫  We know that the desired relationship of equation 

( )( ) ( ) ( )( ) ( )( )' .
b

a
F c t c t dt f c b f c a⋅ = −∫  is valid in the form,

( )( ) ( ) ( )( ) ( )( )' .
b

a
f c t c t dt f c b f c a∇ ⋅ = −∫

Rewriting this expression in terms of the original curve C from point P to point Q, we obtain the 
gradient theorem for line integrals:

( ) ( ).
C

f ds f Q f P∇ ⋅ = −∫
This theorem is also called the fundamental theorem for line integrals, as it is a generalization of 

the one variable fundamental theorem of calculus of equation ( ) ( ) ( )
b

a
G' t .dt G b G a= −∫  to line 

integrals along a curve.

Using the Gradient Theorem

The gradient theorem makes evaluating line integrals 
C

F ds⋅∫ very simple, if we happen to 

know that F = ∇f. The function f is called the potential function of F. Typically, though you just 
have the vector field F, and the trick is to know if a potential function exists and, if so, how find 
it.

It is clear from the above function that a vector field has a potential function only if it is conserva-
tive (or path-independent). It turns out the converse is true as well, so that a potential function f 
exists satisfying ∇f=F if and only if F is conservative. So, the two steps for using the gradient theo-

rem to evaluate a line integral 
C

F ds⋅∫ are,

•	 Determine if F is conservative, and

•	 Find the potential function f if F is conservative.
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With the potential function f in hand, evaluating 
C

F ds⋅∫  is as simple as calculating the val-

ues of f at the endpoints of C and subtracting, according to the gradient theorem of equation 

( ) ( ).
C

f ds f Q f P∇ ⋅ = −∫

Example of Using the Gradient Theorem

If a vector field F is a gradient field, meaning F = ∇f for some scalar-valued function f, then we can 
compute the line integral of F along a curve C from some point a to some other point b as,

( ) ( ).
C

F ds f b f a⋅ = −∫
This integral does not depend on the entire curve C; it depends on only the endpoints a and b. If 
we replaced C by another curve with the same endpoints, the integral would be unchanged. Hence 
F is conservative (also called path-independent).

As an example, consider f(x, y) = xy2, and let F(x, y) = ∇f (x, y) = (y2, 2xy). Since we wrote F as a 
gradient, we know that F must be conservative.

What is 
C

F ds⋅∫ where C is the path c(t) = (t2, 2(t − 2)3) for 1 ≤ t ≤ 3? The starting point is a = c(1) 

= (1,−2), and the ending pont is b = c(3) = (9, 2). Hence the integral must be,

( ) ( )

( ) ( )22

9, 2 1, 2

9 2 1 2 36 4 32.
C

F ds f f⋅ = − −

= − − = − =

∫

We could also compute 
C

F ds⋅∫  the direct way using the parametrization c(t). The integral isn’t 

difficult as it is just a polynomial, but it is messy, so we’ll skip the details.

( )( ) ( )

( )( ) ( )( )
( )( ) ( ) ( )( )
( ) ( )( )

( )

3 3 22

1

23 3 3 22

1

3 6 52

1
32 3 4 5 6 7 2
1

'

, 2 2 2 ,6 2

2 2 ,2 2 2 2 ,6 2

8 2 3 2

8 32 96 120 80 30 6 / 2

36 4 32,

b

C a
F ds F c t c t dt

F t t t t dt

t t t t t dt

t t t t dt

t t t t t t t

⋅ = ⋅

= − ⋅ −

 = − − ⋅ − 
 

= − + −

= − + − + − +

= − =

∫ ∫
∫

∫

∫

which agrees with the first answer.

We should get the same answer for any path from (1, −2) to (9, 2). Since (9, 2) − (1, −2) = (8, 4), 
we let the curve B be the straight line path parametrized by p(t) = (1, −2) + t(8, 4) = (1 + 8t, 4t − 2) 
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for 0 ≤ t ≤ 1. This change is not a reparametrization of C. The curve C was not a straight line, so B 
is a completely different curve, as you can see in the below figure, where C is shown in blue and B 
is shown in green.

The integral along B is,

( )( ) ( )

( ) ( )

( ) ( )( )( ) ( )

( ) ( )

( )
( )

1

0
1

0
1 2

0

1 2 2

0
1 2

0
12 3

0

'

1 8 ,4 2 8,4

4 2 ,2 4 2 1 8 8, 4

4 16 16 , 4 24 64 8,4

16 1 14 24

16 7 8 32.

B
F ds F p t p t dt

F t t dt

t t t dt

t t t t dt

t t dt

t t t

⋅ = ⋅

= + − ⋅

= − − + ⋅

= − + − − + ⋅

= − +

= − + =

∫ ∫
∫
∫

∫
∫

Indeed, we got the same answer again.

Stokes’ Theorem

Stokes’ Theorem states that the line integral of a closed path is equal to the surface integral of any 
capping surface for that path, provided that the surface normal vectors point in the same general 
direction as the right-hand direction for the contour:

( ) ,
C S

F dr F d S⋅ = ∇× ⋅∫ ∫∫
   



Intuitively, imagine a “capping surface” that is nearly flat with the contour. The curl is the micro-
scopic circulation of the function on tiny loops within that surface, and their sum or integral results 
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in canceling out all the internal circulation paths, leaving only the integration over the outer-most 
path. This remains true no matter how the capping surface is expanded, provided that the contour 
remains as its boundary.

Sometimes the circulation (the left side above) is easier to compute; other times the express-
es the surface integral of the curl of vector field is easier to computer (particularly when it is 
zero).

Stated another way, Stokes’ Theorem equates the line integral of a vector fields to a surface inte-
gral of the same vector field. For this identity to be true, the direction of the vector normal n must 
obey the right-hand rule for the direction of the contour, i.e., when walking along the contour the 
surface must be on your left.

This is an extension of Green’s Theorem to surface integrals, and is also the analog in two dimen-
sions of the Divergence Theorem. The above formulation is also called as the “Curl Theorem,” to 
distinguish it from the more general form of the Stokes’ Theorem described below.

Stokes’ Theorem is useful in calculating circulation in mechanical engineering. A conservative field 
has a circulation (line integral on a simple, closed curve) of zero, and application of the Stokes’ 
Theorem to such a field proves that the curl of a conservative field over the enclosed surface must 
also be zero.

General Form

In its most general form, this theorem is the fundamental theorem of Exterior Calculus, and is a 
generalization of the Fundamental Theorem of Calculus. It states that if M is an oriented piecewise 
smooth manifold of dimension k and ω  is a smooth (k − 1)-form with compact support on M, and 
∂M denotes the boundary of M with its induced orientation then,

.
m M

dω ω
∂

=∫ ∫
where d is the exterior derivative.

There are a number of well-known special cases of Stokes’ theorem, including one that is re-
ferred to simply as “Stokes’ theorem” in less advanced treatments of mathematics, physics, and 
engineering:

•	 When k = 1, and the terms appearing in the theorem are translated into their simpler form, 
this is just the Fundamental Theorem of Calculus.

•	 When k = 3, this is often called Gauss’ Theorem or the Divergence Theorem and is useful in 
vector calculus:

( )R S
dV d Aω ω∇⋅ = ⋅∫∫∫ ∫∫

  

Where R is some region of 3-space, S is the boundary surface of R, the triple integral denotes vol-
ume integration over R with dV as the volume element, and the double integral denotes surface 
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integration over S with d A


 as the oriented normal of the surface element. The ∇  on the left side 
is the divergence operator, and the . on the right side is the vector dot product.

•	 When k=2, this is often just called Stokes’ Theorem:

	
( )S E

d A dlω ω∇⋅ ⋅ = ⋅∫∫ ∫
   



Here S is a surface, E is the boundary path of S, and the single integral denotes path integration 
around E with dl



 as the length element. The ∇×  on the left side is the curl operator.

These last two examples (and Stokes’ theorem in general) are the subject of vector calculus. They 
play important roles in electrodynamics. The divergence and curl operations are cornerstones of 
Maxwell’s Equations.

Stokes’ Theorem is a lower-dimension version of the Divergence Theorem, and a higher-dimen-
sion version of Green’s Theorem.

Example: Let C be the closed curve illustrated below.

For F(x, y, z) = (y, z, x), compute,

C
F ds⋅∫

using Stokes’ Theorem.

Solution: Since we are given a line integral and told to use Stokes’ theorem, we need to compute a 
surface integral,

C
curl F ds⋅∫ ∫

where S is a surface with boundary C. We have freedom to choose any surface S, as long as we ori-
ent it so that C is a positively oriented boundary.

In this case, the simplest choice for S is clear. Let S be the quarter disk in the yz-plane.

Given the orientation of the curve C, we need to choose the surface normal vector n to point in 
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which direction? By the right hand rule criterion, the normal vector should point toward the neg-
ative side of the x-axis.

We need to calculate the curl of F. We can calculate the curl as using the notation,

( ) ( ) ( )
( )

( ) ( , , )

1 1 1

1, 1, 1

curl F F y z x

i j k

x y z
y xz

i x z j x y
y z x z

k z y
x y

i j k

= ∇× = ∇×

∂ ∂ ∂
=
∂ ∂ ∂

 ∂ ∂ ∂ ∂ = − − −   ∂ ∂ ∂ ∂  
 ∂ ∂

+ − ∂ ∂ 
= − − + −

= − − −

Next, parameterize the surface (the quarter disk) by,

( , ) (0, cos , sin )r r rθ θ θΦ =

for 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π/2.

Calculate the normal vector (we don’t need to normalize it to the unit normal vector n):

( )

( )

( )2 2

0,cos ,sin

0, sin , cos

cos sin

r

r r

i r r ri
r

θ θ

θ θ
θ

θ θ
θ

∂Φ
=

∂
∂Φ

= −
∂
∂Φ ∂Φ

× = + =
∂ ∂

Is the surface oriented properly? The normal vector points in the positive x-direction. But we need 
it to point it negative x-direction. Therefore, the surface is not oriented properly if we were to 
choose this normal vector.

To orient the surface properly, we must instead use the normal vector,

.ri
rθ

∂Φ ∂Φ
= = −

∂ ∂

At this point, we can already see that the integral 
S

F dS⋅∫∫  should be positive. The vector field 

curl F = (−1, −1, −1) and the normal vector (−r, 0, 0) are pointing in a similar direction.
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Now, we have all pieces together to compute the integral.

( )( ) ( ) ( )

( ) ( )

1 /2

0 0

1 /2

0 0

1 /2

0 0

, , ,

1, 1, 1 ,0,0

4

C S
F ds curl F dS

curl F r r r d dr
r

r d dr

r d dr

π

π

π

θ θ θ θ
θ

θ

πθ

⋅ = ⋅

∂Φ ∂Φ = Φ ⋅ × ∂ ∂ 

= − − − ⋅ −

= =

∫ ∫∫

∫ ∫

∫ ∫

∫ ∫

Double-check example: Just for verification, we can compute the line 
C

F dS⋅∫  directly.

We need to parametrize C. We’ll do it by dividing C into three parts.

We’ll use the fact that,

1 2 3C C C C
F dS F dS F dS F dS⋅ = ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫

Recall F(x, y, z) = (y, z, x)

First we’ll compute the integral over C1. Parameterize it by,

c(t) = (0, 0, t), 0 ≤ t ≤ 1.

Since c′(t) = (0, 0, 1), we compute that,

( ( ))· '( ) (0,0, )·(0,0,1)
(0, ,0)·(0,0,1)
0

F c t c t F t
t

=
=
=

Therefore,
1

0
( ( ))· '( ) 0.

C
F dS F c t c t dt⋅ = =∫ ∫

The integral for C3 is similar.

3

0
C

F dS⋅ =∫
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Last, we’ll compute the integral over C2. Parameterize C2 as,

c(t) = (0, sint, cost), 0 ≤ t ≤ π/2,

so that c′(t) = (0, cos t, −sin t). We then compute,

( )( ) ( )
3

/ 2

0

/ 2

2
/ 2

2
/ 2 2

2

/ 2

2

/ 2

0

'

(0,sin ,cos )·(0,cos , sin )

(sin ,cos ,0) · (0,cos , sin )

cos   

1 cos 2
2

sin 2 .
2 4 4

C
F dS F c t c t dt

F t t t t dt

t t t t dt

t dt

t dt

t t

π

π

π

π

π

π π

⋅ = ⋅

= −

= −

=

+
=

= + =

∫ ∫

∫
∫
∫

∫

Therefore,

3

.
4C

F dS π
⋅ =∫

in agreement with our Stokes’ theorem answer.

Example: We often present Stoke’s theorem problems as we did above. We give a curve C and expect 
you to compute the surface integral over some surface S with boundary C. In general, one can pick 
many surfaces. But, sometimes, there is a surface that is “obviously” the best one.

One special case where this is relatively easy is when C lies in a plane. This is especially easy when 
that plane is parallel to a coordinate plane, as in the following example.

Let’s say you want to use Stokes’ theorem to compute 
3C
F dS⋅∫  where C is polygon path connect-

ing the following points: (1, 1, 0), (3, 1, 4), (1, 1, 5), ( – 1, 1, 1).

Does this curve lie in a plane? Yes, in the plane y = 1. The figure below is just the plane y = 1.
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If one coordinate is constant, then curve is parallel to a coordinate plane. (The xz-plane for above 
example). For Stokes’ theorem, use the surface in that plane. For our example, the natural choice 
for S is the surface whose x and z components are inside the above rectangle and whose y compo-
nent is 1.

Example: In other cases, a surface is given explicitly in the problem.

Compute
3C
F dS⋅∫ , where C is the curve in which the cone z2 = x2 + y2 intersects the plane z = 1. 

(Oriented counter clockwise viewed from positive z-axis).

3C S
F dS curl F dS⋅ = ⋅∫ ∫∫

for what surface S?

In this case, there are two natural choices for the surface. You could use the portion of the plane or 
the portion of the cone illustrated below.

  

Let P be the portion of the plane z = 1 with x2 + y2 < 1 with upward pointing normal. Let Q be the 
portion of the cone z2 = x2 + y2 with 0 < z < 1 with upward angling normal.

How do   
P
curl F dS⋅∫∫  and   

Q
curl F dS⋅∫∫  compare? They are the same. For both surfaces, C is a 

positive oriented boundary.

Continue example: Let,

( )
3 3

, , sin ,cos ,
3 3
y xF x y z x y xyz

 
= − + 
 
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Compute .
C

F dS⋅∫
One can show that curl (F) = (xz, − yz, x2 + y2).

Use surface P, parameterized by,

(r, )=(r cos , r sin , 1)θ θ θΦ

for 0 ≤ r ≤ 1,0 ≤ θ ≤ 2π. Then normal vector is,

( )0,0, ,r
r θ

∂Φ ∂Φ
× =

∂ ∂

which points in the correct direction, as mentioned above.

( )( ) ( )

( ) ( )

1 2

0 0
1 2 2

0 0
1 2 3

0 0

1 3

0

cos , sin ,1 0,0,

cos , sin , 0,0,

2
2

P
curl F dS curl F r r r d dr

r r r r d dr

r d dr

r dr

π

π

π

θ θ θ

θ θ θ

θ

ππ

⋅ = ⋅

= − ⋅

=

= =

∫∫ ∫ ∫
∫ ∫
∫ ∫

∫

Proper Orientation for Stokes’ Theorem

One important subtlety of Stokes’ theorem is orientation. We need to be careful about orientating 
the surface (which is specified by the normal vector n) properly with respect to the orientation of 
the boundary (which is specified by the tangent vector). Remember, changing the orientation of 
the surface changes the sign of the surface integral. If we choose the wrong n (i.e., the wrong ori-
entation), we could be off by a minus sign.

Look at the below image from the Stokes’ theorem introduction, where the “microscopic circula-
tion” is sketched by green circles on the surface. Notice how the arrows on the little green circles 
(indicating the “microscopic circulation”) are aligned with the red arrow indicating the direction 
of the curve C. If, for example, the arrows on the green circles were going the other direction, the 
green circles and the red curve wouldn’t match, and we’d be off by a minus sign.
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Macroscopic and microscopic circulation in three dimensions: The relationship between the 
macroscopic circulation of a vector field F around a curve (red boundary of surface) and the 
microscopic circulation of F (illustrated by small green circles) along a surface in three dimen-
sions must hold for any surface whose boundary is the curve. No matter which surface you 
choose (change by dragging the green point on the top slider), the total microscopic circulation 
of F along the surface must equal the circulation of F around the curve. (We assume that the 
vector field F is defined everywhere on the surface.) You can change the curve to a more com-
plicated shape by dragging the blue point on the bottom slider, and the relationship between 
the macroscopic and total microscopic circulation still holds. The surface is oriented by the 
shown normal vector (moveable cyan arrow on surface), and the curve is oriented by the red 
arrow.

Looking from the positive z-axis, both the green circles and the red curve indicate counter clock-
wise circulation. To define the orientation for Green’s theorem, this was sufficient. We simply in-
sisted that you orient the curve C in the counter clockwise fashion. For Stokes’ theorem, we cannot 
just say “counter clockwise,” since the orientation that is counter clockwise depends on the direc-
tion from which you are looking. If you take the image and rotate it 180° so that you are looking at 
it from the negative z-axis, the same curve would look like it was oriented in the clockwise fashion. 
Since the green circles would also look like they are oriented in a clockwise fashion, you can still 
see that the green circles and the red curve match.

Remember, too, that the curve C can be floating or twisted in any direction. It doesn’t have to 
look as simple as in the above examples. Thankfully, choosing the correct orientation doesn’t 
have to be too difficult if you remember the right hand rule. If you look at your right hand from 
the side of your thumb, your fingers curl in the counter clockwise direction. Think of your 
thumb as the normal vector n of a surface. If your thumb points to the positive side of the sur-
face, your fingers indicate the circulation corresponding to curl F⋅ n. In the image, the normal 
vector corresponding to the orientation of the green circles is shown as a cyan arrow. If you 
place the thumb of your right hand so that it points in the direction of the cyan normal vector, 
the fingers of your right hand curl in the direction corresponding to the orientation of the green 
circles.

With your thumb oriented corresponding to the cyan normal vector, move your hand along the 
surface toward its edges. When your fingers are next to the boundary of the surface, the red curve 
C must be oriented (by red arrow) to go around the same direction your fingers are pointing. If the 
relationship between the normal vector n and the orientation of C doesn’t match the relationship 
between the thumb and fingers of your right hand, you’ll be off by a minus sign when trying to 
apply Stokes’ theorem.

Another way of thinking about the proper orientation is the following. Imagine that you are walk-
ing on the positive side of the surface (i.e, the side with the cyan normal vector in the image). If 
you walk near the edge of the surface in the direction corresponding to the orientation of C, then 
surface must be to your left and the edge C must be to your right.

When the curve C and the surface S are oriented as described above so that Stokes’ theorem ap-
plies, we say that C is a positively oriented boundary of S.
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Green’s Theorem

Green’s theorem states that a line integral around the boundary of a plane region D can be com-
puted as a double integral over D. More precisely, if D is a “nice” region in the plane and C is the 
boundary of D with C oriented so that D is always on the left-hand side as one goes around C (this 
is the positive orientation of C) then,

C D

Q PP dx Qdy dx dy
x y

 ∂ ∂
+ = − ∂ ∂ 

∫ ∫∫

If the partial derivatives of P and Q are continuous on D.

Regions that are simultaneously of type I and II are “nice” regions, i.e., Green’s theorem is true for 
such regions. The next two propositions prove this.

Theorem: If D is a region of type I then,

.
C D

PP dx dx dy
y

∂
=

∂∫ ∫∫

Proof: If D = {(x, y) | a ≤ x ≤ b, f(x) ≤ y ≤ g(x)} with f(x), g(x) continuous on a ≤ x ≤ b, we have C = 
C1 + C2 + C3 + C4, where C1, C2, C3, C4 are as shown below.

Since the region is of type I, we have:

( )( ) ( )( ), , .
b

D a

P dx dy P x g x P x f x dx
y

∂  = − ∂∫∫ ∫
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Using the standard parametrizations of C1 and C3, we have:

( )( ) ( )( )
1 3

, , ,
b b

a c a C
P x f x dx P dx P x g x dx P dx= = −∫ ∫ ∫ ∫

We thus obtain,

1 3

,
D c C C

P dx dy P dx Pdx P dx
y

∂
= =

∂∫∫ ∫ ∫ ∫

since the line integral of P dx is zero on C2 and C4 as x is constant there.

Theorem: If D is a region of type II then,

.
C D

QQ dy dx dy
x

∂
=

∂∫ ∫∫

Proof: If D = {(x, y) | h(y) ≤ x ≤ k(y), c ≤ y ≤ d} with h(y), k(y) continuous on c ≤ y ≤ d, we have  
C = C1 + C2 + C3 + C4, where C1, C2, C3, C4 are as shown below.

Since the region is of type II, we have:

( )( ) ( )( ), , .
d

D c

Q dx dy Q k y y Q h y y dy
x

∂  = − ∂∫∫ ∫

Using the standard parametrizations of C2 and C4, we have:

( )( ) ( )( )
2 4

, , ,
d d

c C c C
Q k y y dy Q dy Q h y y dx Q dy= = −∫ ∫ ∫ ∫

We thus obtain,

2 4D C C C

Q dx dy Q dy Q dy Q dy
x

∂
= + =

∂∫∫ ∫ ∫ ∫

since the line integral of Q dx is zero on C1 and C3 as y is constant there. Putting these two theorems 
together, we obtain:

Theorem: If D is a region of the plane that is simultaneously type I and type II then,
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.
C D

Q PPdx Qdy dx dy
x y

 ∂ ∂
+ = − ∂ ∂ 

∫ ∫∫

Green’ Theorem can easily be extended to any region that can be decomposed into a finite number 
of regions with are both type I and type II. Such regions we call ”nice”. Fortunately, most regions 
are nice. For example, consider the region below.

Since D is the union of D1, D2 and D3, we have:

1 2 3

.
D D D D
= + +∫∫ ∫∫ ∫∫ ∫∫

Since the regions D1, D2, D3 are all type I and type II and the positively oriented boundaries of D1, 
D2 D3 are respectively C1 − E2 − E1, E1 + C2, E2 + C2, we have:

1 1 2

2 1 2

3 2 2

D C E E

D E C

D E C

D P dx dy P dx Qdy P dx Q dy P dx Q dy
x y

Q P dx dy P dx Q dy P dx Q dy
x y

Q P dx dy P dx Q dy P dx Q dy
x y

 ∂ ∂
− = + − + − + ∂ ∂ 
 ∂ ∂

− = + + + ∂ ∂ 
 ∂ ∂

− = + + + ∂ ∂ 

∫∫ ∫ ∫ ∫

∫∫ ∫ ∫

∫∫ ∫ ∫

Adding these equations, we get:

1 2 3

,
D C C C

D P dx dy CP dx Qdy P dx Q dy P dx Q dy P dx Q dy
x y

 ∂ ∂
− = + + + + + = + ∂ ∂ 

∫∫ ∫ ∫ ∫ ∫

where C = C1 + C2 + C3 is the positively oriented boundary of D. This yields Green’s Theorem for D.

The reader is invited to prove Green’s Theorem for the region below using the given decomposition 
into regions which are type I and type II.
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Flux Form of Green’s Theorem

Let R be a region for which Green’s Theorem holds and let C be the positively oriented boundary 

of R. For each point P on C let T


 be the unit tangent vector at P and let N T=
 

 × k


, where k


 is the 
unit normal to the x, y-plane.

Theorem: If F


 = Pi


 + Q j


is a twice continuously differentiable vector field on R then,

.
C R

P QF N ds dx dy
x y

 ∂ ∂
⋅ = + ∂ ∂ 

∫ ∫∫
 

Proof: Since ( )( )u v w w u v⋅ × = × ⋅
     

, we have:

( ) ( ) .
C C C R

P QF T k ds k F T ds Q dx P dy dx dy
x y

 ∂ ∂
⋅ × ⋅ = × ⋅ = − + = + ∂ ∂ 

∫ ∫ ∫ ∫∫
     

This theorem is called the flux form of Green’s Theorem since,

C
F N ds⋅∫
 

is the flux of F


across C. The function 
P Q
x y

∂ ∂
+

∂ ∂
is called the divergence of the vector field 

F Pi Q j= +
  

and is denoted by div ( )F


. For this reason, Theorem is also called the 2-dimensional 

Divergence Theorem. Note that, if ,i j
x y
∂ ∂

∇ = +
∂ ∂

 

we have,

( ) .div F F= ∇⋅
 

The vector field 
Q PF k
x y

 ∂ ∂
∇× = − ∂ ∂ 

 

is the called the curl of the vector field F


and is also denoted

by curl ( )F


. The first form of Green’s Theorem can be stated as,

( ) .
C R

F T ds curl F k dx dy⋅ = ⋅∫ ∫∫
   

These two equivalent forms of Green’s Theorem in the plane give rise to two distinct theorems in 
three dimensions. The usual form of Green’s Theorem corresponds to Stokes’ Theorem and the 
flux form of Green’s Theorem to Gauss’ Theorem, also called the Divergence Theorem. 

Green’s Theorem can be used to give a physical interpretation of the curl in the case F


 is the veloc-

ity field v


 of a flow. If Cr is a circle of radius r with center P, then the average value of the angular 

velocity ωr = v


 · T


/r on Cr is,

2

1 .
2 r

r
C

v T ds
r

ω
π

= ⋅∫
 
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If Dr is the closed disk with boundary Cr, the average value of curl ( v


)· k


 on Dr is:

( )2

1 2 2 .
r

T
rD

vcurl v k dx dy
r r

ω
π

⋅ = =∫∫
 

Taking the limit as r → 0, we find that that the angular velocity of the flow around P is:

( )( )
0

1lim
2rr

curl v P kω ω
→

= = ⋅
 

and hence that curl ( v


 )(P) = 2ω k


. For this reason, we sometimes denote curl( v


) by rot( v


). The 

vector field v


 is said to be irrotational if curl( v


) = 0.

Using the flux form of Green’s Theorem we can, in the same way, give a physical interpretation of 

div( v


 )(P). The flux of v


 across Cr per unit area of Dr is:

( ) ( )( )2 2

1 1
r r

rC D
v T ds div v dx dy div v Q

r rπ π
⋅ = =∫ ∫∫
   

for some point Qr in Dr. Taking the limit as r → 0, we find that div( v


) (P) measures the rate of 
change of the quantity of fluid or gas flowing from P per unit area. For this reason, P since called a 

source if div( v


) (P) > 0 and a sink if div( v


) (P) < 0. The vector field v


 is said to be incompressible 

if div ( v


 ) = 0.

Mean Value Theorem

Graphical Meaning of Mean Value Theorem.

Let f(x) be a continuous function on the interval [a, b] and differentiable on the open interval  
(a, b). Then there is at least one value c of x in the interval (a, b) such that,

f ‘(c) = [ f(b) - f(a) ] /(b - a)
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Or

f(b) - f(a) = f’ (c) (b - a)

In other words, the tangent line to the graph of f at c and the secant through points (a, f(a)) and  
(b, f(b)) have equal slopes and are therefore parallel.

Examples on the Applications of the Mean Value Theorem

Example: Use the mean value theorem to find the value c of x in the interval [1 , 5] such that the 
tangent at the point (c , f(c)) to the of curve f(x) = - x2 + 7 x - 6 is parallel to the secant through the 
points (1 , f(1)) and (5 , f(5)).

Solution to example: The slope of the tangent at point (c , f(c)) is given by, f ’(x) where f ’ is the first 
derivative.

The slope of the secant through (1 , f(1)) and (5 , f(5)) is given by,

[ f(5) - f(1) ] /(5 - 1)

For the tangent to be parallel to the secant their slope have to be equal hence,

f ’(c) = [ f(5) - f(1) ] /(5 - 1)

Function f is a polynomial (quadratic) function and is therefore continuous and differentiable of 
the interval [1, 5] hence the mean value theorem predicts that there is a least one value of x (= c) 
such that the above equality is true.

The slope of the tangent is given by the value of the first derivative at x = c.

The first derivative : f’ (x) = - 2 x + 7

slope m1 of the tangent to the curve at x = c is equal to m1 = f’ (c) = - 2 c + 7.

The slope m2 of the secant through the points (1, f(1)) and (5, f(5)) is given by,

m2 = (f(5) - f(1)) / (5 - 1) = (4 - 0) / ( 4 ) = 1

m1 = m2 gives the equation

- 2 c + 7 = 1

c = 3

Point of tangency at x = c is given by (3, f(3)) = (3, 6):

Equation of tangent:

y - 6 = (x - 3)

y = x + 3

In figure are shown the graphs of the given function and the graph of the tangent to the curve of f. 
The tangent and secant have equal slopes and are therefore parallel.
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Mean Value Theorem.

There may be more that one value of x ( = c) that satisfies the mean value theorem below.

Example: Use the mean value theorem to find all values of x in the interval [0 , 3] such that the tan-
gent at the points (c , f(c)) to the of curve f(x) = x3 - 5 x2 + 7 x + 1 is parallel to the secant through 
the point (0, f(0)) and (3, f(3)).

Solution to example: Function f is a polynomial function and is therefore continuous and differ-
entiable of the interval [1, 3] and therefore the mean value theorem predicts that there is at least 
one value of x ( = c) such that the tangent to the curve of f at x = c and the secant are parallel and 
therefore their slopes are equal.

The first derivative : f’ (x) = 3 x 2 - 10 x + 7.

The slope m1 of the tangent at x = c is equal to m1 = f’ (c) = 3 c 2 - 10 c + 7.

The slope m2 of the secant through the points (0 , f(0)) and (3 , f(3)).

m2 = (f(3) - f(0)) / (3 - 0) = (4 - 1) / (3 - 0) = 1.

For the tangent to the curve at x = c and the secant through (0 , f(0)) and (3 , f(3)) to be parallel, 
their slopes have to be equal.

3 c 2 - 10 c + 7 = 1

which may be written as,

3 c 2 - 10 c + 6 = 0

Solve using quadratic formulas to obtain two solutions,

c1 = (5 - √7) / 3 ≈ 0.78 and c2 = (5 + √7) / 3 ≈ 2.55
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In figure are shown the graphs of the given function and the graph of the two tangents to the curve 
of f parallel to the secant through the points A(0, f(0)) and B(3, f(3)).
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Real Variable, 34, 54
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S
Saddle Point, 51-52
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