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PREFACE

The field of bioinformatics is concerned with the development of methods and software tools used to 
understand biological data. It is an interdisciplinary field that encompasses techniques and concepts 
from biology, computer science, statistics, mathematics and information engineering for analyzing and 
interpreting biological data. Some of the applications of this field are identifying genes and single 
nucleotide polymorphisms. This helps in understanding the genetic basis of diseases, unique adaptations 
and differences between populations. It also tries to understand the principles of protein sequences. 
Some of the major areas of interest within this field are sequence analysis, gene and protein expression 
and cellular organization. This book elucidates the concepts and innovative models around prospective 
developments with respect to bioinformatics. Some of the diverse topics covered in this book address 
the varied aspects of this field. It is appropriate for those seeking detailed information in bioinformatics.

A detailed account of the significant topics covered in this book is provided below:

Chapter 1- Bioinformatics is a multidisciplinary field which is involved in the development of methods 
and software tools for understanding biological data. It deals with sequence analysis such as DNA 
sequencing, comparative genomics analysis, sequence assembly, etc. This is an introductory chapter 
which will introduce briefly all these significant aspects of bioinformatics.

Chapter 2- Computation biology is a domain that is concerned with the development and application 
of data-analytical and theoretical methods, computational simulation techniques and mathematical 
modelling, to study biological, ecological, behavioural and social systems. These applications of 
computational methods have been thoroughly discussed in this chapter.

Chapter 3- There are several branches of bioinformatics such as translational bioinformatics, integrative 
bioinformatics and structural bioinformatics. The topics elaborated in this chapter will help in gaining 
a better perspective about these branches of bioinformatics and their applications.

Chapter 4- Sequence analysis seeks to understand the structure, feature and function of a DNA, RNA 
or peptide sequence using a broad range of analytical methods. Gene prediction, DNA sequencing and 
whole genome sequencing are some of the fields of study within this discipline. The chapter closely 
examines these key concepts of gene and DNA sequence analysis to provide an extensive understanding 
of the subject.

Chapter 5- The methods of determining the amino acid sequence of protein or peptide is known as 
protein sequencing. The entire set of proteins which can be expressed by an organism is known as 
proteome. Its identification as well as quantification is called proteomic analysis. This chapter discusses 
in detail the theories and methodologies related to proteome and protein sequence analysis.

Chapter 6- There are a variety of different software which are used in the field of bioinformatics, such 
as EMBOSS, eProbalign and geWorkbench. The diverse applications of these bioinformatics software 
have been thoroughly discussed in this chapter.
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Chapter 1
Understanding Bioinformatics
Bioinformatics is a multidisciplinary field which is involved in the development of methods and 
software tools for understanding biological data. It deals with sequence analysis such as DNA se-
quencing, comparative genomics analysis, sequence assembly, etc. This is an introductory chapter 
which will introduce briefly all these significant aspects of bioinformatics.

Bioinformatics involves the integration of computers, software tools, and databases in an effort to 
address biological questions. Bioinformatics approaches are often used for major initiatives that 
generate large data sets. Two important large-scale activities that use bioinformatics are genomics 
and proteomics. Genomics refers to the analysis of genomes. A genome can be thought of as the 
complete set of DNA sequences that codes for the hereditary material that is passed on from gener-
ation to generation. These DNA sequences include all of the genes (the functional and physical unit 
of heredity passed from parent to offspring) and transcripts (the RNA copies that are the initial 
step in decoding the genetic information) included within the genome. Thus, genomics refers to 
the sequencing and analysis of all of these genomic entities, including genes and transcripts, in an 
organism. Proteomics, on the other hand, refers to the analysis of the complete set of proteins or 
proteome. In addition to genomics and proteomics, there are many more areas of biology where 
bioinformatics is being applied (i.e., metabolomics, transcriptomics). Each of these important ar-
eas in bioinformatics aims to understand complex biological systems.

Many scientists today refer to the next wave in bioinformatics as systems biology, an approach to 
tackle new and complex biological questions. Systems biology involves the integration of genomics, 
proteomics, and bioinformatics information to create a whole system view of a biological entity.

Figure: The Wheel of Biological Understanding. System biology strives to understand all aspects of an  
organism and its environment through the combination of a variety of scientific fields.

For instance, how a signaling pathway works in a cell can be addressed through systems biology. 
The genes involved in the pathway, how they interact, and how modifications change the outcomes 
downstream, can all be modeled using systems biology. Any system where the information can be 
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represented digitally offers a potential application for bioinformatics. Thus bioinformatics can be 
applied from single cells to whole ecosystems. By understanding the complete “parts lists” in a ge-
nome, scientists are gaining a better understanding of complex biological systems. Understanding 
the interactions that occur between all of these parts in a genome or proteome represents the next 
level of complexity in the system. Through these approaches, bioinformatics has the potential to 
offer key insights into our understanding and modeling of how specific human diseases or healthy 
states manifest themselves.

The beginning of bioinformatics can be traced back to Margaret Dayhoff in 1968 and her collec-
tion of protein sequences known as the Atlas of Protein Sequence and Structure. One of the early 
significant experiments in bioinformatics was the application of a sequence similarity searching 
program to the identification of the origins of a viral gene. In this study, scientists used one of the 
first sequence similarity searching computer programs (called FASTP), to determine that the con-
tents of v-sis, a cancer-causing viral sequence, were most similar to the well-characterized cellular 
PDGF gene. This surprising result provided important mechanistic insights for biologists working 
on how this viral sequence causes cancer. From this first initial application of computers to biolo-
gy, the field of bioinformatics has exploded. The growth of bioinformatics is parallel to the devel-
opment of DNA sequencing technology. In the same way that the development of the microscope 
in the late 1600’s revolutionized biological sciences by allowing Anton Van Leeuwenhoek to look at 
cells for the first time, DNA sequencing technology has revolutionized the field of bioinformatics. 
The rapid growth of bioinformatics can be illustrated by the growth of DNA sequences contained 
in the public repository of nucleotide sequences called GenBank.

Figure: The Use of Computers to Process Biological Information. The wealth of genome sequencing information 
has required the design of software and the use of computers to process this information.

Genome sequencing projects have become the flagships of many bioinformatics initiatives. The 
human genome sequencing project is an example of a successful genome sequencing project but 
many other genomes have also been sequenced and are being sequenced. In fact, the first genomes 
to be sequenced were of viruses (i.e., the phage MS2) and bacteria, with the genome of Haemoph-
ilus influenzae Rd being the first genome of a free living organism to be deposited into the public 
sequence databanks. This accomplishment was received with less fanfare than the completion of 
the human genome but it is becoming clear that the sequencing of other genomes is an import-
ant step for bioinformatics today. However, genome sequence by itself has limited information. 
To interpret genomic information, comparative analysis of sequences needs to be done and an 
important reagent for these analyses are the publicly accessible sequence databases. Without the 
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databases of sequences (such as GenBank), in which biologists have captured information about 
their sequence of interest, much of the rich information obtained from genome sequencing proj-
ects would not be available.

The same way developments in microscopy foreshadowed discoveries in cell biology, new discov-
eries in information technology and molecular biology are foreshadowing discoveries in bioinfor-
matics. In fact, an important part of the field of bioinformatics is the development of new tech-
nology that enables the science of bioinformatics to proceed at a very fast pace. On the computer 
side, the Internet, new software developments, new algorithms, and the development of computer 
cluster technology has enabled bioinformatics to make great leaps in terms of the amount of data 
which can be efficiently analyzed. On the laboratory side, new technologies and methods such as 
DNA sequencing, serial analysis of gene expression (SAGE), microarrays, and new mass spectrom-
etry chemistries have developed at an equally blistering pace enabling scientists to produce data 
for analyses at an incredible rate. Bioinformatics provides both the platform technologies that en-
able scientists to deal with the large amounts of data produced through genomics and proteomics 
initiatives as well as the approach to interpret these data. In many ways, bioinformatics provides 
the tools for applying scientific method to large-scale data and should be seen as a scientific ap-
proach for asking many new and different types of biological questions.

Figure: Potential Types of Bioinformatic Data. Computer based databases of biological information enables  
scientist to generate all sorts of data, from generating protein sequence and predicting protein  

domains to even producing 3D structures of proteins.

The word bioinformatics has become a very popular “buzz” word in science. Many scientists find 
bioinformatics exciting because it holds the potential to dive into a whole new world of uncharted 
territory. Bioinformatics is a new science and a new way of thinking that could potentially lead to 
many relevant biological discoveries. Although technology enables bioinformatics, bioinformatics 
is still very much about biology. Biological questions drive all bioinformatics experiments. Import-
ant biological questions can be addressed by bioinformatics and include understanding the geno-
type-phenotype connection for human disease, understanding structure to function relationships 
for proteins, and understanding biological networks. Bioinformaticians often find that the re-
agents necessary to answer these interesting biological questions do not exist. Thus, a large part 
of a bioinformatician’s job is building tools and technologies as part of the process of asking the 
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question. For many, bioinformatics is very popular because scientists can apply both their biology 
and computer skills to developing reagents for bioinformatics research. Many scientists are find-
ing that bioinformatics is an exciting new territory of scientific questioning with great potential to 
benefit human health and society.

The future of bioinformatics is integration. For example, integration of a wide variety of data sourc-
es such as clinical and genomic data will allow us to use disease symptoms to predict genetic muta-
tions and vice versa. The integration of GIS data, such as maps, weather systems, with crop health 
and genotype data, will allow us to predict successful outcomes of agriculture experiments. Anoth-
er future area of research in bioinformatics is large-scale comparative genomics. For example, the 
development of tools that can do 10-way comparisons of genomes will push forward the discovery 
rate in this field of bioinformatics. Along these lines, the modeling and visualization of full net-
works of complex systems could be used in the future to predict how the system (or cell) reacts, to 
a drug, for example. A technical set of challenges faces bioinformatics and is being addressed by 
faster computers, technological advances in disk storage space, and increased bandwidth, but by 
far one of the biggest hurdles facing bioinformatics today, is the small number of researchers in the 
field. This is changing as bioinformatics moves to the forefront of research but this lag in exper-
tise has lead to real gaps in the knowledge of bioinformatics in the research community. Finally, 
a key research question for the future of bioinformatics will be how to computationally compare 
complex biological observations, such as gene expression patterns and protein networks. Bioin-
formatics is about converting biological observations to a model that a computer will understand. 
This is a very challenging task since biology can be very complex. This problem of how to digitize 
phenotypic data such as behavior, electrocardiograms, and crop health into a computer readable 
form offers exciting challenges for future bioinformaticians.

Ontologies for Bioinformatics

Ontologies are a concept imported from computing science to describe different conceptual 
frameworks that guide the collection, organization and publication of biological data. An on-
tology is similar to a paradigm but has very strict implications for formatting and meaning in 
a computational context. The use of ontologies is a means of communicating and resolving 
semantic and organizational differences between biological databases in order to enhance their 
integration. The purpose of interoperability (or sharing between divergent storage and seman-
tic protocols) is to allow scientists from around the world to share and communicate with each 
other.

During the 1960s, there was a simultaneous evolution of digital protein and taxonomic invento-
ries. By the 1980s, these had matured and were institutionalized with an attendant proliferation 
of biological data. These datasets were, however, maintained in closely-guarded proprietary re-
positories or ‘silos’ with little or no communication between them. The 1990s were marked by a 
shift in emphasis from accumulating vast volumes of data to reducing overlap between databases 
and making use of extant data across various repository locations. This process of increasing com-
munication between databases is known as interoperability—the focus of which is to enable data 
sharing and comparison.

Bioinformatics
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As the cumulative body of biological knowledge increases, generating a comprehensive and con-
sistent account of biology hinges upon the ability of scientists to draw upon and synthesize vast 
datasets across distributed digital resources. The ultimate objective of biodiversity informatics is 
to generate a “global inventory of [all] life on Earth”, and is premised on the seamless digital ac-
cumulation of distributed taxonomies. Because contemporary biological—particularly ‘omics’ and 
model organism—databases stress data at the molecular scale, they do not adequately represent 
the physiology they describe. There is thus a need to compile the cellular features of those organ-
isms into discernible representations of those organisms themselves.

The rise of ‘omics’ science—genomics, proteomics, and metabolomics for the identification and 
prediction of genetic product components, signatures, and processes has contributed the molecu-
lar-level information upon which a systems view of biology is predicated. Certainly the complexity 
of biology resides at the level of gene products. In this way biodiversity can be understood as the 
compendium of the biology of organisms. In a computational environment, biodiversity is the he-
reditary information encapsulated within genetic products and identified via the collective of map-
pings of several model organism genomes. While the maturation of ‘omics’ has been facilitated in 
large part by the capacity to seamlessly make divergent data sources interoperable, it has present-
ed a new set of engineering challenges. These include the need to integrate diverse and remote data 
sources as well as to extract knowledge from digital information post-integration.

The paradigm shift the ‘omics’ revolution has created within biology is best exemplified by gene 
prediction (also known as gene finding), and functional prediction tasks. New technologies such as 
micro arrays generate huge and ever-changing volumes of data. The rapid growth of genome map-
ping necessitates the ability to automate gene-calling, or the identification of the individual genes 
of a genome. Gene finding involves algorithms for the identification of biologically functional re-
gions—or exons—of sequences which explicitly code for proteins. These are referred to as coding 
regions. The objective of automated gene prediction is thus to determine the “coding potential” of 
genetic sequences. This process uses self-learning algorithms which predict unique signatures of 
the genetic spectrum that indicate distinct clusters of material. Where genes have been located, 
the biological functions of many protein sequences are as yet undetermined. Gene finding and 
functional prediction go hand in hand and are rarely treated separately as researchers often desire 
to discern the roles of newly identified gene products. The potential for predicting protein function 
similarly rests on its inference over incompletely annotated sequences on the basis of homologues 
in other species. However, neither is an easy feat as the coding regions of eukaryotic organisms 
are both sparse and small, making the identification of exon/intron boundaries—and thereby the 
identification of protein function—difficult, resulting in erroneous gene annotation. In the present 
era of functional genomics, knowledge production is however dependent on the ability to recover 
genes and proteins on the basis of their (correctly) annotated functionality, pathways, and/or pro-
tein-protein interactions. This is no trivial task; indeed it necessitates the resolution of semantics, 
or differences in meaning and naming conventions between distributed data resources.

Unlike systems architectures, the integration of which constitutes an ‘IT problem’, data are not 
semantically transparent. Although a structural linkage can now be easily defined between data 
sources such that a user can retrieve data on the basis of standardized queries across data sources 
with conflicting database schemas, this does not render the results of those queries meaningful. 
A prime example is the notion of ‘gene’—the primitive of modern biology. While the concept of 
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‘gene’ is still evolving, two dominant concepts exist: the Human Genome Database defines a gene 
as a DNA fragment that can be interpreted as (analogous to) a protein; whereas GenBank and the 
Genome Sequence Database (GSDB) consider a gene to be a “region of biological interest with 
a name and that carries a genetic trait”. Two databases can be developed based on different un-
derstandings of ‘gene’. As a result, retrieving data from semantically orthogonal databases on the 
basis of a ‘gene’ keyword search can initiate error propagation—in this case in the form of false 
analogues—in the analysis and subsequent results. The complexity of biological terms exacerbates 
this problem. Even where two variables in disparate databases are semantically equivalent, their 
relations to other knowledge objects in the data repository may not be. This is referred to as sche-
matic incompatibility and refers to the relative position of the term in a taxonomic hierarchy.

In order to accommodate both semantic and schematic differences between biological databas-
es, ‘omics’ research requires a method of expressing the contexts from which biological concepts 
emerge—at the database level. This is because functional prediction hinges upon the identification 
not just of sequence homologues but similar cellular components participating in a similar biologi-
cal process. The component cellular, molecular, and biological details are often located in separate 
data sources, a function of the narrow scope of biological information produced by any given labo-
ratory. Exploiting the vast digital resources of biological data for prediction services requires that 
the cellular, molecular, and biological contexts of proteins be adequately encoded and furthermore 
machine-readable.

Ontologies—or the use of a singular taxonomic and knowledge representation schema—are a way 
of resolving these semantic issues between databases. The bioinformatics literature has been heav-
ily promoting ontologies as an operational solution for biological interoperability since the turn 
of the millennium. Much of this literature assumes that the reader has a prior understanding of 
computing and is delivered in impenetrable technical language or emphasizes a singular aspect of 
ontologies in biology.

The power of ontologies lies in their capacity to provide context for biological semantics.

Ontology has traditionally been understood to be the essence of being—or what something re-
ally is. In the information sciences, an ontology is a fixed universe of discourse in which each 
element (e.g. field name or column in a database) is precisely defined. In addition, each pos-
sible relationship between data elements is parametized or constrained. For example, DNA 
may comprise chromosomes but not the reverse. In an ontology, these relationships are made 
explicit formally.

The prefix ‘formal’ refers to the property of machine-readability. In other words, a formal ontology 
is a machine-readable model of the objects allowed into a formal universe and their associations 
or relationships between them upon which some automated reasoning tasks can be performed. In 
a formal environment, an ontology constitutes a surrogate of knowledge abstracted from the real 
world—in this case, the cumulative body of biological science—in a coded form that can be trans-
lated into a programming language.

Scientific or systems ontologies contain three levels of formalization. The first is the conceptual, 
which is then translated into a formal model of the data elements in the ontology (e.g. proteins) 
and the possible relationships between them. The final stage or level is the development of code 
that can be run by computers. Ontologies are structured much like a biological taxonomy with 

Bioinformatics
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general concepts appearing at the top of the tree and becoming more general as one traverses 
down. The hierarchical schema, however, is only a ‘shell’ that can accommodate the concepts and 
their relations particular to a domain. It must be populated by domain knowledge expressed in 
a formal semantics—a computing syntax such as a markup language—that allows all entities de-
clared into the ontology to be precisely defined and their interrelationships given strict parameters 
with the goal of enabling realistic biological models.

Formal semantics permit the distinction of concepts declared into the model. To satisfy the strict 
criteria of formal ontology building, the formal semantics used to instantiate an ontology should be 
premised on a formal logics particular to some logical algebra —such as description logics (DL)—
which contain predetermined rules for “when two concepts are the same, when one is a kind an-
other, or how they differ”. These rules must furthermore be expressed in some machine-readable 
syntax—in this case, a knowledge representation language such as the Web Ontology Language 
(OWL). Such rules govern the expression and processing of relations between concepts in the 
hierarchy. Relational expressions are the implementation basis for all subsequent computing and 
modeling tasks in a software environment. illustrates the progress from concept to code. Formal-
ization is the basis for the transition from a conceptual entity to a machine-readableform.

 

The formalization process. Moving from a concept of a particular gene to its encoded reification 
and ontological representation. Note how the entity (fruit fly) becomes increasingly represented in 
digital database format as it is formalized, or abstracted from its real-world form. The entity loses 
dimensionality, while researchers gain the advantage of computational function. Figure illustrates 
in more detail the role that entity descriptions—or annotations—play in creating a larger standard-
ized digital knowledge environment for bioinformatics. Note that any gene product many have 
more than one annotation in the same branch, and can be annotated in three different branches of 
GO (Cellular Component, Biological Process, and Molecular Function

The ability to define relationships between concepts distinguishes formal ontologies from earlier 
integration and interoperability approaches. How they are expressed are detailed in the subse-
quent sections on the GO and OBO efforts. Relationships are an expression of the context—akin to 
usage in natural language—in which concepts are used or from which they emerge. The utility of 
capturing relationships between concepts is thus that they convey semantics; content semantics 
are expressed by identifying how concepts relate to each other in the hierarchical knowledge space. 
This hierarchical knowledge space is a parent-child structure that conveys the semantic granulari-
ty of the relation between any two concepts by rendering entities to be either more specific of more 
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general than each other. This formal ontological structure implies at least one kind of relation: a 
hyponymic (is-a) relationship is implied by the hierarchical nesting of terms and denoted by their 
position relative to each other in the family tree on the basis of their subsumption (where a con-
cept is a subclass or member of another) and specialization (where one concept is the superclass 
of or contains another). Additional relationships can be asserted between concepts as a directional 
association (i.e. the relationship proceeds from one concept to another). Relationships—referred 
to as properties—are akin to ‘semantic edges’ which depict the meaning of data elements by pro-
viding the context of their usage (where context is analogous to how concepts participate in class 
membership).

Formal ontological expressions are stated as propositional triplets consisting of concepts (real-
world entities that populate the model), their properties (or relationships between said entities), 
and instances(particular occurrences of a concept; for example, a particular gene with its own 
unique identifier in a database) in a hierarchical model. A triplet (concept + property + instance) 
constitutes a proposition, or “definitive statement about (part of) the world”. Where an ontology 
is formal in the sense that it is underwritten on an axiomatic logic such as Desription Logics (DL), 
the axioms of the logic can be applied to impose restrictions that define conditions under which 
concepts in a domain logically participate in relationships with each other. For example, we can 
impose a cardinality restriction to specify that, following the series of generic examples provided 
by, a “man” must have at least one testes.

In a strict definition of formal ontology, the axiomatic logics serve to underwrite a formal no-
tation for content specification. For example, DL comprise the logical semantics for knowledge 
representation which constitute the basis of ontological encoding specifically designed for a group 
of knowledge representation languages which include OWL, the standard language for ontologies 
over the Web. The eXtensible Markup Language provides the tag-based syntax for OWL, where-
as its schema is defined by the Resource Description Framework (RDF), which specifies what 
the ‘triplet’ structure (concepts + properties + instances described above) of ontological expres-
sion. A standard schema ensures that when OWL statements are parsed or transformed into 
the component data structure of the target formal ontology, the parser knows which part of the 
expression constitutes the concept, which section the relation, and which the instance. It is this 
structure which makes the grammar of an ontology meaningful—in the case of bioinformatics, for 
example, it anchors annotations to the gene products they characterize.

This structure moreover makes the ontological model amenable to implementation in a software 
environment in order to allow for the kind of intelligence described using the example of a cardi-
nality restriction in the instance, ‘a man must have at least one tests’. The taxonomic structure of 
formal ontologies captured using logical notation and expressed in a knowledge representation 
language allows the semantics of concepts to be computed on the basis of concept inheritance. 
This is known as reasoning, where an application infers non-explicit (not directly stated) rela-
tionships between concepts. For example, where two proteins identified using different unique 
identifiers in disparate databases are described as participating in the same biological function, 
being part of the same sequence, having the same cellular location, etc., they can be recognized 
as referring to the same concept and can thus be extracted from separate databases on the basis 
of these functional characteristics rather than nominal IDs. The ability for each term to relate to 
every other term in the hierarchy is a way of capturing—and expressing—the complexity of biology. 

Bioinformatics
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Reasoning can therefore be thought of as supporting both inference and query. Inference consists 
of computing the hierarchy—for example, it will reveal multiple inheritance amongst classes as 
mentioned aboved. Query consists of the ability to interrogate the concept hierarchy on the basis of 
object associations or, conversely, to reveal object associations amongst selected concepts or class-
es. Imposing the above cardinality restriction therefore has two implications. The first is that any 
data object labeled or identified “man” in a data repository mapped to an ontology with the above 
property restriction imposed upon the man-testes relation will be recognized as a (likely person) 
with at least one testes. Conversely, the execution of reasoning tasks on the ontology or any data 
structure mapped to it will compute whether all instances of man are consistent with (a person) 
having at least one testes.

Ontologies—with their hierarchical structures—capture the semantic granularity of biological da-
tabases. The property of inheritance allows the computer to process, for example, that the concepts 
used to annotate two respective sequences are both ‘children’ of the same meta-concepts (i.e. they 
are a kind or part of a the same overarching concept; alternatively, members of the came class). 
This permits researchers to locate regions of exact correspondence as well as those with a high 
degree of similarity. Entities may relate but are not synonymous—for example, where ‘protein’ is a 
subclass of another concept, ‘gene products’. This does not dictate that proteins and genetic prod-
ucts are one and the same, but rather allows the expression of a membership relation at a much 
finer semantic resolution such that proteins can be understood as one, but not the sole, kind of 
gene product (which also includes RNA).

The problem of semantic and schematic heterogeneity and introduced ontologies as a means of 
mitigating the problem. 

GO: Ontology in Practice

The use of ontologies for bioinformatics is being driven by the proliferation of genome-scale da-
ta-sets and the diffusion of the Internet and its protocols for data sharing and exchange. Bio-on-
tologies fulfill two central functions for the biological domain—first, they “clarify scientific dis-
cussions” by providing the vocabulary and terms under—and with which—such discussions take 
place, and second, they enable data discovery across distributed data resources. The pre-eminent 
bio-ontology is the (GO), a Web-based, open source knowledge resource for bioinformatics and 
the second-most cited biological data resource after UniProt.

The GO project evolved as a joint endeavor between three model organism databases: FlyBase, 
Mouse Genome Informatics Database (MGI), and the Saccharymyces (yeast) Genome Database 
in 1999. The formation of the Gene Ontology Consortium (GOC) coincided with the successful 
completion of the mappings of several eukaryotic genomes. The key to associating these model 
databases was the genetic structure of organisms. A potential problem lay in that these databases 
had been designed and populated with competing concepts for gene. Moreover, there was still 
limited understanding as to how the located genes were controlled and more importantly what 
functions many of these served. As there is a high degree of functional conservation in homologous 
organisms, gene function can be reasonably inferred through probable genetic orthologues. In 
other words, rather than ‘reinventing the wheel’, biologists and bioinformaticians could transfer 
functional attributes describing the cellular behaviors of gene products between these databases 
thereby significantly reducing workload.
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The chief impediment to this task were not the unique identifiers for the gene products themselves 
as researchers had been tapping into protein and gene databases such as GenBank and Swiss-Prot, 
TrEMBL and PIR for decades (the latter three joined to form the Universal Protein or UniProt pro-
tein repository in 2002). Because sequences are unique, they could be easily accessed on the basis 
of sequence characteristics (though there was sequence redundancy between protein repositories). 
Computationally, because sequences can be quantified, this is a trivial integration task that sim-
ply requires the normalization of unique codes. Rather, it was the functional descriptions of gene 
products that proved challenging. Integration had to proceed within the context of the molecular 
and biological characteristics of each gene product identified. In an attempt to solve the problem, 
informatics experts from the three original participating model organism databases devised func-
tional classification systems in the hopes that these precursors to the GO would facilitate interop-
erability. What soon became apparent, however, was that these functional classifications were not 
common between organisms.

In other words, the annotation was not consistent from one database to the next. Gene annota-
tion is defined as the “task of adding layers of analysis and interpretation to raw sequences”. This 
includes information about their function, position relative to coding/non-coding boundaries, 
participating process, etc. Annotations constitute a set of metadata, or ‘data about data’ Histori-
cally, annotation has been stored as free-text or at best semi-structured descriptions semantically 
particular to the terminological or classification systems unique to many of the databases. There 
were two challenges. First the use of competing nomenclatures precluded the linear association 
of database semantics. Second, the expression of these annotations in natural language provided 
little context for data mining because they were not machine-readable. Returning to the example 
of functional prediction, protein functions are inherently dependent upon context, particularly 
cellular context. This is exacerbated in the case of proteins particularly as many sequences often 
have multiple functions.

The GO Consortium formed as a response to the pervasive semantic heterogeneity of biomedical 
data and its lack of formality. Indeed the GO was designed for making historically free-text based 
annotations tractable. The three participating database programs agreed to work in concert to 
provide the biological community with a consensus-driven framework to guide the annotation of 
gene products such that their structure (e.g. how molecular function is described and which part 
of the description occurs in what syntactic order) and semantics (the terms and concepts) are con-
sistent. The result was the GO—a “structured, precisely defined, common, controlled vocabulary 
for describing the roles of genes and gene products in any organism”. The GO is not a taxonomy or 
index of all known proteins and gene products, but rather provides a standardized set of names for 
genes and proteins and the terms for characterizing—or ‘annotating’—their behaviors.

Gene product semantics are organized into three categories which capture the primary ‘aspects’ of 
genes: i) biological process, which captures the larger process in which the gene product is active; 
ii) molecular function, the biochemical function a gene product contributes to that process, and iii) 
cellular component, the location in the cell where that particular function is fulfilled or expressed. 
Concepts or terms constitute nodes, and vectors referred to as edges represent relationships be-
tween concepts. These three sub-ontologies are maintained independently because the one-to-
many relationships between process, function and cellular location would make a singular graph 
representation intractable. Annotations for the same term in each ‘view’ are cross-referenced on 
the basis of a unique identifier or serial number assigned to each term in the GO. Increasingly, 
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these identifiers are being used to refer to concepts in other protein and gene-oriented databases 
and constitute a linear and direct means of mapping databases to the GO. A 2005 figure estimates 
the GO as consisting of more than 17, 500 terms distributed amongst the three subgraphs. All pos-
sible annotations for a protein can be represented using these concepts.

Each of these three separate annotation categories—biological process, molecular function, and 
cellular component—is represented as its own directed acylic graph, or DAG. A DAG is a data 
structure similar to a tree which represents knowledge hierarchically, mirroring the taxonomic 
structure of biological knowledge. Any entity can point to any other entity in the mathematical 
space; this is, however, a direction, and non-recursive, encoding. In other words, concepts can 
point to other entities in the model, but those entities do not ‘point back’ as in OWL. Indeed the 
DAG can be considered to be the native knowledge representation (KR) language of the GO. Unlike 
the KR languages introduced above, however, DAG semantics are not predicated on a formal logic 
as they are in the case of OWL. Rather, machine readability is instructed by the directional links 
between pairs of concepts. Semantic ‘edges’ (relationships) in the DAG are simply “ordered pairs 
of nodes”. Pointers are like edges in the sense that their semantics are directed, and are labeled 
with the relationship that associates related classes. These associations are of only two relations: 
is-a, which denotes that concepts are kinds of entities, and part-of, which can signify the participa-
tion or contribution of a concept in a sequence or process.

The DAG is available in many file formats—XML, OWL—but the most common formal notation 
in which GO ontologies are rendered is the Open Biomedical Ontology flat file structure which is 
underwritten by a modified subset of Web Ontology Language (OWL) description logics (DL) con-
cepts for content specification.

Like OWL, OBO is an ontology language, and standard ‘file format’ for GO annotations. It is how-
ever less expressive than OWL. These relations are unidirectional and linear as per the DAG data 
model and do not require the recursive relational declarations (where the reciprocal or inverse of a 
relationship is also encoded) characteristic of OWL statements. Thus a flat file structure that only 
supports sequential reading is appropriate for the GO because relations are read from broader or 
general to more specific or precise concepts.

At the level of the database, the GO is represented as a structured vocabulary; more specifically, as 
gene product annotations expressed using concepts and their tripartite (biological, molecular, and 
cellular) structure defined in the GO. The GO is not considered an informatics ontology in the full 
sense of the term because it has not been designed to be deployed within software environments 
which execute semantic inference on the basis of logical semantics. Moreover it does not fulfill the 
conditions of formality identified by. Rather it is considered and referred to by its engineers as a 
“controlled vocabulary” The nevertheless has many of the characteristics of a formal ontology: 
machine-readability, formal notation, a hierarchical knowledge structure, and relational associa-
tions between concepts. In other words, the GO may be considered a partial implementation that 
uses many concepts of formal ontology. Part of the reason, however, that the GO is only a partial 
implementation is that it was designed to be operational within existing infrastructures, requiring 
no changes to existing architectures.

Not with standing, the GO provides the standard vocabulary for semantic integration and auto-
mated tasks for bioinformatics. As such it is more than merely a sophisticated data dictionary. 

Understanding Bioinformatics	

________________________ WORLD TECHNOLOGIES ________________________



WT

12 	

Whereas controlled vocabularies or data dictionaries provide a definition of the terms used by a 
community of practice and these may indeed be machine-readable and thereby formal, a nomen-
clature does not capture the hierarchical representation of knowledge nor the corresponding rela-
tions between all concepts in the data space, and thereby does not support computational reason-
ing. Several terminological systems such as SNOMED (Systematized Nomenclature for Medicine) 
and MeSH (Medical Subject Headings) have, however, been mapped to the GO.

The GO is a global ontology. In other words, it is a central knowledge proxy to which other ontol-
ogies or knowledge representations may be aligned. Ontology mapping is the process of defining 
associations between ontologies. This involves the formal declaration of relational links between 
entities, much like that involved in relating concepts in a hierarchical ontological structure. On-
tologies can either be aligned whereby the formalisms remain separate entities but are related, or 
merged wherein a singular ontology is generated from the crossproducts of two input ontologies. 
‘Mapping’ is thus unidirectional and always from the constituent database to the GO. illustrates 
the role that GO plays in development of global biological ontology and the mechanics involved.

The Gene Ontology as a global ontology for bioinformatics. Smaller scale bioinformatics ontol-
ogies almost invariably map to the GO (a). Several large databases, such as FlyBase (b), con-
tribute annotation to the GO using its semantics such that there is a direct mapping between 
genes/gene products at the database level and their participation in the ontology. (FlyBase an-
notation is explained in greater detail in Figure). Where annotation is unique to the database, 
a translation program can transform annotation into a tractable GO representation (c). The GO 
provides a standardized vocabulary for the description of genes and gene product across not 
only databases but also in emerging bioinformatics infrastructures, such as WikiProteins (d). 
The consistency of semantics reduces ambiguity in the query of bioinformatics resources, and 
allows genes and gene products to be retrieved on the basis of common biology rather than lex-
ical coincidence (e).

A global ontology paradigm is appropriate for the domain because there is a finite, though as yet 
not fully discovered or known, body of genetic information shared between all life on Earth. Ac-
cordingly there is no need to build local ontologies each capturing a competing account or version 
of a biological universe. Such a scenario would be much more intensive, requiring the definition of 
linkages between each participating ontology. A global ontology serves as a proxy context which 
interfaces all participating knowledge formalisms are translated to the unique semantic points of 
the proxy and then compared on the basis of this translation.
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The alignment of currently non-compatible ontologies to the GO is one avenue for its curation or 
the process of developing and contributing content or adding value to digital knowledge represen-
tation systems such as databases or ontologies. For the GO to serve as a comprehensive knowl-
edge resource for the biological community, it must reflect the continuously increasing body of 
biological, specifically genetic-level, knowledge. In other words, it must expand to keep pace with 
the identification of new genes, sequences, functional determinations, etc. Rather than being the 
responsibility of the Consortium, GO curation has been user driven from inception GO expansion 
efforts are supported by the scientific publication process, with several leading periodicals and 
sequencing initiatives mandating that newly identified sequences be deposited into GO-compliant 
databases and any new annotations be added to the GO. Early curation was characteristically on 
a need-be basis with concepts added to the GO when authors were annotating genes, etc. Such ad 
hocpractices, however, resulted in logical problems in the DAG and indeed soon became inefficient 
as the scope and scale of the GO has steadily grown. Increasingly, methods for contributing anno-
tations to the GO are based on the automatic generation of annotation concept definitions on the 
basis of cross-products between databases (as local ontologies) and the GO itself.

The GO was designed specifically to account for molecular function, biological process, and cellular 
components of gene products. It lacks the semantics to describe the physical attributes of genes, 
to describe a protein family, or to account for experimental processes and diagnostic procedures. 
There are both proprietary and open ontologies with richer semantics for more specific description 
tasks for biology either being developed or presently available The majority, however, are designed 
with mapping to the GO in mind.

Ontologies in Support of Bioinformatics

The largest public contributor of annotations to the GO project is the Gene Ontology Annotation 
Database (GOA). While annotation is the central organizing principle and raison d’etre of the GO, 
the potential of their ontological encoding is not to have a hierarchically structured record of con-
cepts used to annotate the data of biology, but rather to exploit the ontology for a series of bioin-
formatics services which remove the burden of data-intensive tasks from molecular biologists and 
moreover produce knowledge over and above facilitating its reuse. 

One of the primary objectives for bioinformatics to realize is the automation of annotating 
cross-matches between databases. The electronic generation of annotations based on homology 
is particularly desirable as the manual curation of gene-oriented databases is time consuming and 
non-trivial for humans. The GO facilitates the automatic annotation of gene products at the data-
base level. GOA for instance uses GO terms to generate annotations for the UniProt Knowledge-
base (The consortium of SwissProt, TrEMBL, and PIR-PSD protein databases). Existing data held 
in UniProt are electronically associated with or translated into GO terms on the basis of a defined 
mapping file used to facilitate the conversion of keywords in the constituent databases to tractable 
GO representations. Once the semantics are consistent between data sources, biologists who have 
identified a new sequence, for example, can navigate the GO via an interface known as an ontology 
browser on the basis of these common data elements and indeed use the existing GO annotations 
to not only discover sequence similarity but to also automatically populate or their own database 
using the existing annotations for homologues from other curated data sources. Thus the ontology 
functions as a ‘translation schema’ This is possible because GO is underwritten by a structured 
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grammatical framework (e.g. RDF) that predetermines the occurrence or sequence of description 
types in a proposition, allows the expression to be parsed and correctly broken-down such that it 
can be stored according to the structure of the target database.

The GO can be used to automate the following services: database annotation, GO extension (au-
tomating the transfer of new annotation concepts to the GO), prediction services, and database 
population. Prediction services supported by ontologies yield new biological knowledge. Gene lo-
cation using current generation algorithms uses data from a pair of genomes to locate areas of 
genetic affinity; these areas of ‘overlap’ are often the sites of new genes. The success of this is based 
on the semantic consistency of annotations for the input genomes. In addition, the GO supports 
nuanced data exploration and query. The hierarchical structure of knowledge afforded by ontology 
allows the isolation of the appropriate concept for query on the basis of its context or position rel-
ative to other entities in the data space. This allows users to formulate searches using conventional 
keywords, but resolves the meanings of those keywords.

Once the protein or gene of interest is isolated, its location confers more information than a binary 
indication of its absence or presence in a database. Not only do we know about the occurrence of 
a protein, for example, but we are told something about it. The proprietary EnsemblGO Brows-
er is an interface which compiles annotations to generate reports or summaries centered on the 
biological entities isolated in the GO such that, for instance, “the previously unconnected classes 
Antigen, Immunogen, and Adjuvant are now recognized as being objects (for example, Proteins), 
which participate in a certain role (as Immunogens) in a specific process (such as Immunization)”.

Ontologies can further be used as a basis for exploring datasets. We have devised a methodolo-
gy called ontology-based metadata which uses ontologies as a component in a metadata-based 
framework for the comparison of a series of eight ‘near’ but non-equivalent terms that have been 
identified as an obstacle to integrating perinatal (pregnancy and antepartum) health data regis-
tries across Canada. Our objective is to provide health researchers and data stewards with a basis 
for drawing meaningful parallels between data elements to enable the legitimate integration of 
peri-natal data registries. Ontology-based metadata for each term is first collected via a series of 
electronic forms which standardize the description of each concept. Each constituent database 
is responsible for detailing how these terms are used in their particular jurisdiction—or context. 
This includes a specification of the classification standard used (e.g. ICD-10), the identification 
of thresholds for measurement specifications, and space for free-text descriptions of any policy 
constraints which may influence how the term is used in a given jurisdiction. In addition to these 
‘annotations’, we encode each perinatal database as a formal ontology in OWL. These ontologies 
capture the semantic structure of database terms. These are then merged into a single ontology, 
with the relationships between each and every concept defined in the product tree. Both the on-
tology-based metadata and the ontologies are inputs to a semantic data discovery portal where re-
searchers specify which terms in two respective databases are to be compared via a graphical user 
interface (GUI). The application returns to the user both the encoded relationship between the 
concepts extracted from the OWL code—for example, where pregnancy-induced hypertension is a 
KIND-OF hypertension complicating pregnancy—and the ontology-based metadata for each term 
in the selected databases. Thus the researcher is provided with both a marker for the granularity 
of the semantic relationship between two concepts, as well as valuable metadata which are used to 
inform perinatal database decisions.
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The gestational hypertension/hypertension example above would indicate that hypertension ex-
perienced during pregnancy is a more general concept which includes gestational hypertension 
but also encompass pre-existing hypertension. In some databases, hypertension and pregnancy-in-
duced or gestational hypertension are not differentiated from chronic or pre-existing incidences of 
disease. Alternatively, in other databases, these concepts are distinguished from each other on the 
basis of the periodicity of disease onset such that chronic hypertension and pregnancy-induced or 
gestational hypertension are disjoint (database A). In yet other registries, any form of hypertension 
presenting during pregnancy is considered gestational such that a pre-existing condition which first 
manifests itself during pregnancy is still encoded as pregnancy-related (database B). There is thus 
a semantic incommensurability between what ‘gestational hypertension’ represents in databases 
A and B, precluding a direct mapping between these concepts indicating semantic equivalence. 
Rather, ‘gestational hypertension’ in database A would be a kind of gestational hypertension as 
the concept is reified in database B. If a researcher were to query ‘gestational hypertension’ across 
both databases, she would logically accept them as referring to the same concept on the basis of 
lexical coincidence. However, the lack of an encoded equivalence between these two concepts would 
preclude their conflation. Thus our this approach not only provides information regarding how 
concepts should be associated, but also uses formal ontologies to restrict which concepts may be 
legitimately compared. This nesting of relationships between semantic terms is described .

Ontology mapping. An ontology for hypertension resulting from the merging of hypertension con-
cepts in the British Columbia Reproductive Care Program Perinatal Database Registry (BCRCP 
PRD) and the Canadian Perinatal Database Minimum Dataset. The resulting output ontology 
shows the hirerarchical nesting of hypertension semantics originating in respective databases in 
relation to each other.

Another instantiation of the ontology-based metadata concept similar to our implementation is 
WikiProteins, a structured semantic space for capturing the context—biological, physiological, 
chemical, etc.—of proteins and then sharing that collaborative knowledge with other biologists in 
real-time Historically, the problem with metadata has been that it is so labor intensive and never 
updated WikiProteins provides a mechanism for sharing the labor and ongoing maintenance by 
participants. This collaborative Web-based workspace facilitates the open curation of protein-spe-
cific information by providing biologists and bioinformaticians with a means of contributing to the 
cumulative body of biological knowledge. At the moment, it serves UniProt and GO descriptions 
for the annotation of proteins via a series of standardized forms or ‘slots’ for their description. 
This consists of definitions, attribute-value relations (e.g. a protein can be given the attribute “tis-
sue” with the value “expressed in muscle fibers”) and provisions for disambiguating sequences or 
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instances of proteins by identifying synonyms, disjoint concepts, alternate spellings, etc. Curators 
can link their descriptions or proteins to other citations, references, and publications indexed in 
PubMed. Moreover, the wiki concept ensures that these annotations are self-validating. Other us-
ers can go in and add or revise the annotations. For example, using the “tissue” example above, a 
subsequent curator can reify this protein as “expressed in muscle fibers and the brain” 

Similar to our ontology-based metadata approach, it combines both free-text fields for open descrip-
tion and more restrictive means of disambiguating proteins and protein concepts. For instance, it 
extends the ability to identify whether these synonyms are instances of equivalent meaning, or if 
they are different. If the latter is the case, curators can further annotate—or describe—specifically 
where these differences lie. WikiProteins is but one example of where the GO is being deployed to 
provide a standardized vocabulary for annotation across distributed data resources.

As our non-automated method for data discovery and WikiProteins for protein knowledge exchange il-
lustrate, ontologies are not standalone solutions for interoperability but rather comprise a component 
of or input to large-scale interoperability infrastructures. Indeed ontologies are knowledge represen-
tations and not software applications, having no innate functionality. As such they must be deployed 
within digital architectures where constituent programs can exploit the hierarchical structure of formal 
ontologies to facilitate data sharing at the level of semantics. Many such cyber-infrastructures exist 
for biology and biomedicine. A notable example is the Cancer Biomedical Informatics Grid (caBIG), 
a Web-based National Institutes of Health (NIH) data consortium for cancer research. caBIG is built 
on an open grid architecture similar to a federated database environment where users are presented 
with a central interface which seamlessly integrates participating databases, but with the addition of 
Web services that provide tools and applications. The emphasis of caBIG is on the provision of ser-
vices—such as data analysis tools, applications, scripts, algorithms, etc.—relevant to cancer research. 
The grid is organized into a series of “workspaces” or virtual communities where participants can both 
access, revise, and upload new technologies to that specific sub-domain of application or interest. The 
emphasis of caBIG is on services, with participants notifying each other of the constituent services 
they make available by means of UML (Unified Modeling Language) metadata wherein the services 
are described using standardized DL-annotated concepts from a vocabulary service which defines 
terms and concepts in biomedical vocabularies. Here, ontologies are utilized as a standardized set of 
concepts and terms across applications and services for their uniform description such that research-
ers can locate and access the appropriate technologies on a need-be basis. This provides interopera-
bility across distributed cancer research centers at the level of services.

Sequence Analysis

Sequence Analysis is considered a standard way to analyze next generation sequencing (NGS) data 
for finding a genetic cause for Mendelian disorders. Standard sequence analysis enables detection 
of aberrant nucleotide order, most commonly single nucleotide variation (e.g. point mutations) 
causing either synonymous or non-synonymous change at amino acid level. Non-synonymous 
changes can be either missense variants (amino acid substitution by another) or nonsense variants 
(generation of premature stop codons). Standard sequence analysis also detects small insertions, 
deletions and their combinations, indels, up to 50 base pairs.
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Sequence Alignment and Analysis

In general, the more similar two sequences are, the more similar should their functions be and 
more phylogenetically close they should be. The sequences for the same gene in a group of species 
will be more different the more distant phylogenetically they are. Sequences will get mutations 
over time, so the more time has passed since two species split, the more mutations will have their 
sequences and the more different their sequences will be. Mutations can be residue (nucleotide or 
aminoacid) substitutions, insertions or deletions.

Biological Science

Biological sequences are similar, usually, because they are homologous, because they share a com-
mon ancestor. Homology is not a quantitative concept, two sequences can be homologous or not, 
but they cannot be 50% homologous. They either share a common ancestor or they don’t.

How do we know that two sequences are homologous? Usually we infer it from their similarity. If two 
biological sequences are similar we tend to infer that they are similar because they are homologous.

Usefulness

Alignments could be used to:

•	 Quantify the phylogenetic distance between two sequences.

•	 Look for functional domains.
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•	 Compare a mRNA with its genomic region.

•	 Identify polymorphisms and mutations between sequences.

Sequence Alignment

The first step to compare two sequences is, usually, to align them.

No alignment

 CGATGCTAGCGTATCGTAGTCTATCGTAC

              |     ||

 ACGATGCTAGCGTTTCGTATCATCGTA

Alignned

 -CGATGCTAGCGTATCGTAGTCTATCGTAC

  |||||||||||| |||||||||||||||

 ACGATGCTAGCGTTTCGTA-TC-ATCGTA-

There could be substitutions, changes of one residue with another, or gaps. Gaps are missing resi-
dues and could be due to a deletion in one sequence or an insertion in the other sequence.

Gaps complicate the alignments. Algorithms should take into account the possibility of introduc-
ing gaps and once we allow them to create gaps several alignments can be constructed between 
two sequences.

No gaps (10 matches)

 a:  ATATTGCTACGTATATCAT

         ||||||||||

 b: ATATATGCTACGTATCAT

With one gap (14 matches)

 a: ATAT-TGCTACGTATATCAT

    |||| ||||||||||

 b: ATATATGCTACGTATCAT

With two gaps (16 matches)

 a: ATAT-TGCTACGTATATCAT

    |||| |||||||  ||||||

 b: ATATATGCTACG--TATCAT

The objective of a sequence alignment is, usually, to align the homologous positions of the two 
sequences. The homologous positions are the ones that come from the same position in the ances-
tral sequence. We don’t know the ancestral sequence, so we won’t be completely sure that we have 
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succeeded. Another complementary objective could be to align protein regions that have the same 
structure or function.

Aligning similar sequences by any algorithm usually creates alignments that are usually correct, 
but when sequences are very different aligning them could be a challenge. Once a long time has 
passed since the split of the species the sequences can be so changed by the mutations that any 
meaningful similarities could have been lost an creating a meaningful alignment could be very 
difficult.

Evaluating the Alignments

To be able to compare the different possible alignments we can score them. We can create a scor-
ing system that gives more points to alignments that are biologically more reasonable. Ideally we 
would create a scoring system that gives more points to the alignments that align the homologous 
positions.

A naive scoring system could be to count the number of matching positions, or the number of 
matching positions along 100 residues. Usually the scoring systems also take into account the 
number of gaps. They penalize the alignments depending on the number and the length of the gaps 
present. So the main features taken into account to create an scoring system are usually:

•	 Number of matching residues (taking into account the similarity if they are aminoacids)

•	 Number of missmatches

•	 Number of gaps

•	 Length of the gaps

We can devise different scoring schemes with those measures. For instances:

•	 Scoring schema 1: match +1, mismatch: 0, gap creation: -1 gap extension: -1

•	 Scoring schema 1: match +1, mismatch: -1, gap creation: -1 gap extension: 0

Of course, one alignment will have a different score under different scoring schemes. Speaking 
of the score of an alignment it is meaningless if we do not take into account the scoring schema 
used. It also has no sense to compare the scores of different alignments done under different 
schemes.

Once we have decided which scoring schema to use, the alignment algorithm should try to create 
the alignment that obtains the maximum score under that particular scoring schema.

Every software implementation of an algorithm will usually have some default values for its param-
eters. These default values have been calibrated by the software creator to work well in a particular 
problem. The bioinformatician should be aware of how well those values apply to the particular 
problem at hand. Usually, if the problem is similar to the one that motivated the creation of the 
software the default value will work OK because the original creator of the software usually knows 
how to optimize his software for that task. When our problem is different from the original one we 
have to be aware of the changes to adapt the software to our needs.
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Gobal and Local Alignments

We could divide the alignment algorithms in two types: global and local. The global algorithms 
try to create an alignment that covers completely both sequences adding whatever gaps necessary. 
The local algorithms try to align only the most similar regions. If removing a region from one end 
of a sequence improves the alignment score they will do it.

Local alignments are usually the best option unless we are sure that the sequences are similar in 
all its extension. Besides, the local alignment algorithms will create a global alignment with both 
sequences covered if they are similar enough.

Global

  TACGGGGCTAGCTA-TCGTAG

  ||||    |||    ||||||

  TAGC----TAG----TCGTAG

Local

    TAGCTA-TCGTAG

    |||||| ||||||

    TAGCTAGTCGTAG

The main practical problem with local alignment algorithms is that they are computationally more 
demanding that its gobal equivalents. Global alignments are usually only used within the multiple 
alignment algorithms (alignments with more than two sequences).

Alignment Methods

Dot Plot or Dot matrix

This alignment method creates a graphical representation of the alignment. It creates intuitive 
representations and it has the advantage that it will show different alternative alignments between 
two sequences. Other, more standard, alignment methods usually give back only one alignment, 
the best one, unless instructed otherwise.

Dot plot methods are quite good to study the structure of the sequences involved. They can show 
repetitions, insertions and deletions clearly.

Once we have identified the regions that match between two sequences we could use another 
method to create a more conventional text based alignment.

To create a dot plot alignment one sequence is put in the horizontal axis and the other in vertical 
one. The matches between both sequences are shown as marks in the corresponding position.

CATGCT

 A  x

 T   x  x
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 G    x

 C x   x

The alignment is shown as a diagonal in the plot.

There are different programs to create dot plots. An example is dotmatcher from the emboss suite.

It is easy to detect big insertions, deletions and forward and reverse repeats.

Tandem duplication
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And we can do a genome wide analysis

One limitation of the dotplot method is that although we detect similar regions we do not obtain 
the alignment.

Sensitivity and Specificity

A variation of the dot plot algorithm can compare windows of several residues instead of individual 
residues. In that case a similarity threshold is set to mark a position as similar. These parameters 
will influence the sensitivity and specificity of the analysis. If we increase the threshold for a giv-
en window size or we decrease the window size for a given threshold we will obtain less spurious 
signals.
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The more stringent the parameters the less noise we will detect, but the more real alignments we 
will loose. This is related with two very important concepts that can be applied to many bioinfor-
matic and statistical analyses: sensitivity and specificity.

In a dotplot analysis we can draw a dot when two homologous positions match. That would be a 
true positive. But, if we draw a dot when the two positions are similar but they are not homologous 
we have a false negative.

With the negatives we have a similar problem. In the dotplot case a negative is a position with no 
dot. We can have true negatives, positions that does not have a dot and that are not homologous 
and false negatives, positions that do not have a dot, but that are in fact homologous.

The sentitivity, also called recall, is the proportion of positives that are called positives by the anal-
ysis. It is the true positive rate. Ideally we would like to have a 100% percent sensitivity, we would 
like to mark as positives in the analysis all the true positives.

The specificity is the proportion of true negatives that are called negative by our analysis. It is also 
know as true negative rate. Ideally we would like to call all true negatives as negatives.

In practice most of the time we will miss some positives, so the sensitivity will be lower than 100% 
and we will detect signals for some negatives. In the dotplot case a false positive would be a region 
that is marked as similar, but that it is not homologous and a false negative it is a region that is not 
marked as similar, but that it really is.

Different analysis or different parameter sets will have different sensitivities and specificities. 
These are very important characteristics of the analyses.
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Smith and Waterman Algorithm

There are plenty of algorithms to create text based pairwise sequence alignments.

These algorithms are based on creating a matrix equivalent to the 2D representation created by 
the dot plot. In those matrices the fragments that will constitute the alignments can be seen as 
diagonals.

Dotplot diagonals suggest paths in the space of possible alignments. Each of these paths are a pos-
sible fragment of the final alignment.

A general approach to detect the path through these diagonals is call dinamic programing. One 
of the first algorithms implemented following these philosophy was the Needleman-Wunsch al-
gorithm. This algorithm creates global alignments of two sequences given a scoring schema. It is 
implemented in several programs, one of them is needle from the EMBOSS suite.

########################################

# Program:  needle

# Rundate:  Tue Oct 02 10:58:05 2007

# Align_format: srspair

# Report_file: /ebi/extserv/old-work/needle-20071002-10580428983041.output

########################################

#=======================================

#

# Aligned_sequences: 2

# 1: SNAK_DROME

# 2: PCE_TACTR

# Matrix: EBLOSUM62

# Gap_penalty: 10.0

# Extend_penalty: 0.5
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#

# Length: 462

# Identity:     126/462 (27.3%)

# Similarity:   184/462 (39.8%)

# Gaps:         114/462 (24.7%)

# Score: 440.5

#

#

#=======================================

SNAK_DROME         1 MIILWSLIVH--LQLTCLHLILQTPNLEALDALEIINYQTTKYTIPEVWK     48

                           ::|:  ..|.|..|::.......|      :.|..::..|    

PCE_TACTR          1       MLVNNVFSLLCFPLLMSVVRCSTL------SRQRRQFVFP----     34

SNAK_DROME        49 EQPVATIGEDVDDQDTEDEESYLKFGDDAEVRTSVSEGLHEGAFCRRSFD     98

                                      |||.                      .|...|.

PCE_TACTR         35 -----------------DEEE----------------------LCSNRFT     45

SNAK_DROME        99 GRSGYCILAYQCLHVIREYRVHGTRIDICTHRNNVPVICCPLADKHVLAQ    148

                      ..|.|.....|..::::...:..:..||......|.:||| ...||   

PCE_TACTR         46 -EEGTCKNVLDCRILLQKNDYNLLKESICGFEGITPKVCCP-KSSHV---     90

SNAK_DROME       149 RISATKCQEYNAAARRLHLTDTGRTFSGKQCVPSVP-----------LIV    187

                      ||:|:.........|          ..||..|::|           .|:

PCE_TACTR         91 -ISSTQAPPETTTTER----------PPKQIPPNLPEVCGIHNTTTTRII    129

SNAK_DROME       188 GGTPTRHGLFPHMAALGWTQGSGSKDQDIKWGCGGALVSELYVLTAAHCA    237

                     ||.....|.:|.|.|:...||.....|     ||||||:..:|:||:||.

PCE_TACTR        130 GGREAPIGAWPWMTAVYIKQGGIRSVQ-----CGGALVTNRHVITASHCV    174

SNAK_DROME       238 TSGS----KPPDM--VRLGARQLNET--SATQQDIKILIIVLHPKYRSSA    279

                     .:.:    .|.|:  ||||...|..|  .:...|..:..:..|..:..:.

PCE_TACTR        175 VNSAGTDVMPADVFSVRLGEHNLYSTDDDSNPIDFAVTSVKHHEHFVLAT    224

SNAK_DROME       280 YYHDIALLKLTRRVKFSEQVRPACL----WQLPELQIPTVVAAGWGRTEF    325

                     |.:|||:|.|...|.|::::||.||    .:..:|.:......|||.|.|

PCE_TACTR        225 YLNDIAILTLNDTVTFTDRIRPICLPYRKLRYDDLAMRKPFITGWGTTAF    274

SNAK_DROME       326 LGAKSNALRQVDLDVVPQMTCKQIYRKERRLPRGIIEGQFCAGYLPGGRD    375

                     .|..|..||:|.|.:.....|:|.|.|:    ..|.....|||:..||:|
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PCE_TACTR        275 NGPSSAVLREVQLPIWEHEACRQAYEKD----LNITNVYMCAGFADGGKD    320

SNAK_DROME       376 TCQGDSGGPIHALLPEYNCVAFVVGITSFGKFCAAPNAPGVYTRLYSYLD    425

                     .||||||||:  :||......:::||.||||.||.|..|||||::..:||

PCE_TACTR        321 ACQGDSGGPM--MLPVKTGEFYLIGIVSFGKKCALPGFPGVYTKVTEFLD    368

SNAK_DROME       426 WIEKIAFKQH      435

                     ||     .:|  

PCE_TACTR        369 WI-----AEHMV    375

The main limitation of the Needleman–Wunsch algorithm is that it is global, so we should only use 
it if we know beforehand that both sequences are similar in all its extension.

Smith and Waterman proposed a variation of the algorithm that is capable of generating local 
alignments. This approach gives better results because it does not force the sequences to be simi-
lar in all its extension. If the best, higher scoring alignment, is a global one that aligns completely 
both sequences the Smith-Waterman algorithm will create it, otherwise it will generate a local 
alignment.

This algorithm has multiple implementations, one of them is the water program in the EMBOSS 
suite.

########################################

  # Program:  water

  # Rundate:  Tue Oct 02 11:00:39 2007

  # Align_format: srspair

  # Report_file: /ebi/extserv/old-work/water-20071002-11003873398600.output

  ########################################

  #=======================================

  #

  # Aligned_sequences: 2

  # 1: SNAK_DROME

  # 2: PCE_TACTR

  # Matrix: EBLOSUM62

  # Gap_penalty: 10.0

  # Extend_penalty: 0.5

  #

  # Length: 362

  # Identity:     116/362 (32.0%)
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  # Similarity:   165/362 (45.6%)

  # Gaps:          50/362 (13.8%)

  # Score: 452.0

  #

  #

  #=======================================

  SNAK_DROME        89 EGAFCRRSFDGRSGYCILAYQCLHVIREYRVHGTRIDICTHRNNVPVICC    138

                       |...|...|. ..|.|.....|..::::...:..:..||......|.:||

  PCE_TACTR         36 EEELCSNRFT-EEGTCKNVLDCRILLQKNDYNLLKESICGFEGITPKVCC     84

  SNAK_DROME       139 PLADKHVLAQRISATKCQEYNAAARRLHLTDTGRTFSGKQCVPSVP----    184

                       | ...||    ||:|:.........|          ..||..|::|    

  PCE_TACTR         85 P-KSSHV----ISSTQAPPETTTTER----------PPKQIPPNLPEVCG    119

  SNAK_DROME       185 -------LIVGGTPTRHGLFPHMAALGWTQGSGSKDQDIKWGCGGALVSE    227

                              .|:||.....|.:|.|.|:...||.....|     ||||||:.

  PCE_TACTR        120 IHNTTTTRIIGGREAPIGAWPWMTAVYIKQGGIRSVQ-----CGGALVTN    164

  SNAK_DROME       228 LYVLTAAHCATSGS----KPPDM--VRLGARQLNET--SATQQDIKILII    269

                       .:|:||:||..:.:    .|.|:  ||||...|..|  .:...|..:..:

  PCE_TACTR        165 RHVITASHCVVNSAGTDVMPADVFSVRLGEHNLYSTDDDSNPIDFAVTSV    214

  SNAK_DROME       270 VLHPKYRSSAYYHDIALLKLTRRVKFSEQVRPACL----WQLPELQIPTV    315

                       ..|..:..:.|.:|||:|.|...|.|::::||.||    .:..:|.:...

  PCE_TACTR        215 KHHEHFVLATYLNDIAILTLNDTVTFTDRIRPICLPYRKLRYDDLAMRKP    264

  SNAK_DROME       316 VAAGWGRTEFLGAKSNALRQVDLDVVPQMTCKQIYRKERRLPRGIIEGQF    365

                       ...|||.|.|.|..|..||:|.|.:.....|:|.|.|:    ..|.....

  PCE_TACTR        265 FITGWGTTAFNGPSSAVLREVQLPIWEHEACRQAYEKD----LNITNVYM    310

  SNAK_DROME       366 CAGYLPGGRDTCQGDSGGPIHALLPEYNCVAFVVGITSFGKFCAAPNAPG    415

                       |||:..||:|.||||||||:  :||......:::||.||||.||.|..||

  PCE_TACTR        311 CAGFADGGKDACQGDSGGPM--MLPVKTGEFYLIGIVSFGKKCALPGFPG    358

  SNAK_DROME       416 VYTRLYSYLDWI    427

                       |||::..:||||

  PCE_TACTR        359 VYTKVTEFLDWI    370

Of course, the result will depend not only on the sequences, but on the scoring schema. For in-
stance, if we use a higher penalty for creating gaps we will obtain alignments with fewer gaps.
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The nicest property of the Smith-Waterman alignment is that it has been demonstrated that it will 
generate the optimal alignment, the one with the highest score, given two sequences and a scoring 
schema. So, if we could, it would be advisable to use always this algorithm. Take into account that 
several alignments could have the same score, so we can have several alignments with the highest 
score.

The main problem with the Smith-Waterman algorithm is its slowness. It works very well with 
small sequences, but it is not practical when the sequences are large. The time it takes to create the 
scoring matrix for a naive Smith-Waterman implementation depends of m x n (being m and n the 
length of the sequences).

More than one Alignment

In the dotplot graphical results we saw that some time there could be no just one but several valid 
alignments. Usually the alignment software that implements the Smith-Waterman algorithm will 
only print just one alignment by default, the higher scoring one. If there a multiple alignments we 
will miss them unless we instruct the software otherwise.

Aminoacid Substitution Matrices

When scoring a position of an alignment between two nucleotide sequences we can consider a 
match if the nucleotide match and a mismatch if the nucleotides are different. 

ACGT        ACGT

  |

ACGT        ACAT

  ^           ^

  match       mismatch

With the aminoacids we can be more subtle because there are aminoacids that are chemically or 
functionally similar. For instance, we could score higher a substitution of a hydrophobic amino-
acid (like Alanine) with another hydrophic aminoacid (like Valine) than with a polar one (like 
Glutamine).

But if we decide to use such an scoring schema, how should we decided which are the scores 
to use for each possible aminoacid substitution? A possible way of creating such an aminoacid 
subtitution scoring matrix would be to count how many times each pair the possible aminoacid 
substitutions are found at homologous positions in alignments of homologous proteins. The pairs 
that tend to appear at the same positions could be considered functionally equivalent and scored 
higher than the ones that in few instances are found at the same positions. Following this method 
we could create a substitution matrix for all possible aminoacid substitutions.

A series of matrices built in such a way are the PAM matrices. There are several PAM matrices and 
not just one because they are built from comparison of sequences that are closer or further appart 
in evolutionary time. They are named by the number of aminoacid mutations for every 100 ami-
noacids that differentiate the sequences compared to create the matrices. There are, for instance 
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PAM100, PAM160 and PAM200 matrices. Take into account that a substitution can underlie sev-
eral mutations, hence there could be more than 100 mutations in 100 aminoacids. A higher num-
ber is related with a longer evolutionary time.

Another commonly used set of matrices are the BLOSUM matrices. They are based on the same 
idea, but instead of being built with complete alignments they are built by using highly conserved 
blocks. This allows the BLOSUM matrices to cover longer evolutionary times than the PAM matri-
ces because aligning very distant sequences in all their extension can be challenging, but aligning 
the most conserved blocks of those sequences could be easier. In the BLOSUM matrices the num-
ber reflects the minimum percentage of identity allowed between the sequences so BLOSUM 70 
used sequences that were more similar than BLOSUM 50.

We will see that a very related concept, the nucleotide evolution model, is used in the phylogenetic 
analyses, but they are seldom used by the alignment software.

Statistical Significance of the Alignments

One general problem with the bioinformatic algorithms is that they usually generate a result, but 
some times that result could be meaningless. For instance, we could generate two random se-
quences and align them. The Smith-Waterman algorithm would generate an alignment, but de-
spite being its optimal alignment it would be meaningless.

In the DNA alignments is quite easy to decide with alignments are meaningful because the spuri-
ous ones tend to be very short. In the protein alignments it is usually not that clear because we are 
allowing to aminoacid to be similar and not just identical and that tends to produce longer align-
ments even when they are meaningless.

The solution to this problem is to calculate some statistic that reflect the significance of the solu-
tion obtained. As we will see there is software that calculate these kind of statistical significance 
measures, like BLAST.

Multiple Sequence Alignment

A Multiple Sequence Alignment is an alignment of more than two sequences. We could align sev-
eral DNA or protein sequences.

Some of the most usual uses of the multiple alignments are:

•	 Phylogenetic analysis.

•	 Conserved domains.
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•	 Protein structure comparison and prediction.

•	 Conserved regions in promoteres.

The multiple sequence alignment asumes that the sequences are homologous, they descend from a 
common ancestor. The algorithms will try to align homologous positions or regions with the same 
structure or function.

Multiple Alignment Algorithm

Multiple alignments are computationally much more difficult than pair-wise alignments. It would 
be ideal to use an analog of the Smith & Waterman algorithm capable of looking for optimal align-
ments in the diagonals of a multidimensional matrix given a scoring schema. This algorithm would 
had to create a multidimensional matrix with one dimension for each sequence. The memory and 
time required for solving the problem would increase geometrically with the lenght of every se-
quence. Given the number of sequences usually involved no algorithm is capable of doing that. 
Every algorithm available reverts to a heuristic capable of solving the problem in a much faster 
time. The drawback is that the result might not be optimal.

Usually the multiple sequence algorithms assume that the sequences are similar in all its length 
and they behave like global alignment algorithms. They also assume that thre are not many long 
insertions and delections. Thus the algorithms will work for some sequences, but not for others.

These algorithms can deal with sequences that are quite different, but, as in the pair-wise case, 
when the sequences are very different they might have problems creating good algorithm. A good al-
gorithm should align the homologous positions or the positions with the same structure or function.

It we are trying to align two homologous proteins from two species that are phylogenetically very 
distant we might align quite easily the more conserved regions, like the conserved domains, but 
we will have problems aligning the more different regions. This was also the case in the pair-wise 
case, but remember that the multiple alignment algorithms are not guaranteed to give back the 
best possible alignment.

These algorithms are not design to align sequences that do not cover the whole region, like the 
reads from a sequencing project. There are other algorithms to assemble sequencing projects.

Progressive Contruction Algorithms

In Multiple Sequence Alignment it is quite common that the algorithms use a progressive align-
ment strategy. These methods are fast and allow to align thousands of sequences.

Before starting the alignemnt, as in the pair-wise case, we have to decide which is the scoring sche-
ma that we are going to use for the matches, gaps and gap extensions. The aim of the alignment 
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would be to get the multiple sequence alignment with the highest score possible. In the multiple 
alignment case we do not have any practical algorithm that guarantees that it going to get the op-
timal solution, but we hope that the solution will be close enough if the sequences comply with the 
restrictions assumed by the algorithm.

The idea behind the progressive construction algorithm is to build the pair-wise alignments of 
the more closely related sequences, that should be easier to build, and to align progressively 
these alignments once we have them. To do it we need first to determine which are the closest 
sequence pairs. One rough and fast way of determining which are the closest sequence pairs is 
to align all the possible pairs and look at the scores of those alignments. The pair-wise align-
ments with the highest scores should be the ones between the more similar sequences. So the 
first step in the algorithm is to create all the pair-wise alignments and to create a matrix with 
the scores between the pairs. These matrix will include the similarity relations between all 
sequences.

Once we have this matrix we can determine the hierarchical relation between the sequences, which 
are the closest pairs and how those pairs are related and so on, by creating a hierarchical cluster-
ing, a tree. We can create these threes by using different fast algorithms like UPGMA or Neighbor 
joining. These trees are usually known as guide trees.

An example:
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Another example:

Secuences:

    IMPRESIONANTE

    INCUESTIONABLE

    IMPRESO

    Scores:

  	 IMPRESIONANTE X IMPRESO 7/13

  	 IMPRESIONANTE X INCUESTIONABLE 10/14

  	 INCUESTIONABLE X IMPRESO 4/14

    Scoring pair-wise matrix:

                    IMPRESIONANTE   INCUESTIONABLE   IMPRESO

    IMPRESIONANTE        1              10/14          7/13

    INCUESTIONABLE     10/14              1            4/14

    IMPRESO             7/13             4/14           1

    Guide Tree:

           |--- IMPRESIONANTE

       |---|--- INCUESTIONABLE

       |

       |----- IMPRESO    

    The first alignment would be: IMPRESIONANTE x INCUESTIONABLE

  	 IMPRES-IONABLE

  	 INCUESTIANABLE

    Now we align IMPRESO to the previous alignment.

  	 IMPRES-IONANTE

  	 INCUESTIONABLE

  	 IMPRES--O-----

We have no guarantee that the final is the one with the highest score.

The main problem of these progressive alignment algorithms is that the errors introduced at any 
point in the process are not revised in the following phases to speed up the process. For instance, 
if we introduce one gap in the first pair-wise alignment this gap will be propagated to all the fol-
lowing alingments. If the gap was correct that is fine, but if it was not optimal it won’t be fixed. 
These methods are specially prone to fail when the sequences are very different or phylogenetically 
distant.
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Sequences to align already in the order given by a guide tree:

Seq A  GARFIELD THE LAST FAT CAT

Seq B  GARFIELD THE FAST CAT

Seq C  GARFIELD THE VERY FAST CAT

Seq D  THE FAT CAT

Step 1

Seq A  GARFIELD THE LAST FAT CAT

Seq B  GARFIELD THE FAST CAT

Step 2

Seq A  GARFIELD THE LAST FA-T CAT

Seq B  GARFIELD THE FAST CA-T

Seq C  GARFIELD THE VERY FAST CAT

Step 3

Seq A  GARFIELD THE LAST FA-T CAT

Seq B  GARFIELD THE FAST CA-T

Seq C  GARFIELD THE VERY FAST CAT

Seq D  -------- THE ---- FA-T CAT

Historically the most used of the progressive multiple alignment algorithms was CLUSTALW. 
Nowadays CLUSTALW is not one of the recommended algorithms anymore because there are oth-
er algorithms that create better alignments like Clustal Omega or MAFFT. MAFFT was one of the 
best contenders in a multiple alignment software comparison.

T-Coffee is another progressive algorithm. T-Coffee tries to solve the errors introduced by the 
progressive methods by taking into account the pair-wise alignments. First it creates a library of 
all the possible pair-wise alignments plus a multiple alignment using an algorithm similar to the 
CLUSTALW one. To this library we can add more alignments based on extra information like the 
protein structure or the protein domain composition. Then it creates a progressive alignment, but 
it takes into accounts all the alignments in the library that relate to the sequences aligned at that 
step to avoid errors. The T-Coffe algorithm follows the steps:

•	 Create the pair-wise alignments

•	 Calculate the similirity matrix

•	 Create the guide tree

Build the multiple progressive alignment following the tree, but taking into account the informa-
tion from the pair-wise alignments.

T-Coffee is usually better than CLUSTALW and performs well even with very different sequences, 
specially if we feed it more information, like: domains, structures or secondary structure. T-Coffee 
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is slower than CLUSTALW and that is one of its main limitations, it can not work with more than 
few hundred sequences.

Iterative Algorithms

These methods are similar to the progressive ones, but in each step the previous alignments are 
reevaluated. Some of the most popular iterative methods are: Muscle and MAFFT are two popular 
examples of these algorithms.

Hidden Markov Models

The most advanced algorithms to date are based on Hidden Markov Models and they have im-
provements in the guide tree construction, like the sequence embedding, that reduce the compu-
tation time.

Clustal Omega is one of these algorithms and can create alignments as accurate of the T-Coffee, 
but with many thousands of sequences.

Alignment Evaluation

Once we have created our Multiple Sequence Alignment we should check that the result is OK. We 
could open the multiple alignment in a viewer to assess the quality of the different regions of the 
aligment or we could automate this assesment. Usually not all the regions have an alignment of the 
same quality. The more conserved regions will be more easily aligned than the more variable ones.

It is quite usual to remove the regions that are not well aligned before doing any further analysis, 
like a phylogenetic reconstruction. We can remove those regions manually or we can use an espe-
cialized algorithm like trimAl.

Software for Multiple Alignments

There are different software packages that implement the described algorithms. These softwares 
include CLI and GUI programs as well as web services.

One package usually employed is MEGA. MEGA is a multiplatform software focused on phyloge-
netic analyses.

Jalview and STRAP a multiple alignment editor and viewer. Another old software, that has been 
abandoned by its developer is BioEdit.

In the EBI web server have some services to run several algorithms like: Clustal Omega, Kalign, 
MAFFT, and Muscle.

Bloom Filters for Bioinformatics

The Bloom filter was originally developed by Burton H. Bloom back in the seventies and for long 
time it was there without any major application. To making Bloom filter popular again. Only after 
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the Google used Bloom filters for their BigTable database system, the idea started grabbing the 
attention of larger and diverse audience.

Bloom filter is an extremely space-efficient probabilistic data structure which enables the quick 
and easy membership tests. On positive side, in order to test whether or not an element is a mem-
ber of a set, Bloom filters need less memory than any other data structure such as hash tables, 
simple arrays or linked lists. On downside, the risk of false positives is higher.

Any task that require checking two sets of data against each other can be performed in an efficient 
way using Bloom filter. For instance, one can use Bloom filter to do spell-checking against a dic-
tionary of correct words.

Recently Bioinformatics community started using Bloom filters for large scale gene sequence anal-
ysis. Comparing sequences to test similarity is a common task in bioinformatics.

Stranneheim et. al describe a novel Bloom filters based algorithm, FACS (Fast and Accurate Clas-
sification of Sequences) for accurate and rapid classification of DNA sequences as belonging or 
not belonging to a reference DNA sequence. In this case reference DNA sequence can be as large 
as the whole genome. This kind of rapid classification method can be a boon for metagenomic 
studies where one need to classify sequences as ‘novel’, or belonging to a well known genome.

A comparative study using metagenomic data sets suggest that FACS method is at least 21 times 
faster compared to algorithms such as BLAT and SSAHA2 with nearly same accuracy. The FACS 
algorithm is implemented as PERL module and it can be downloaded from CPAN.

Similarly Malde and O’Sullivan have developed some interesting bloom filter based sequence anal-
ysis applications in Haskell. In their analysis they matched randomly selected ESTs against the E. 
coli genome which is relatively small compared to human genome.

In terms of memory consumption their Bloom filter application was using a mere 20MB, of which 
the Bloom filter itself needed only 2MB compared to the set based implementations those allocat-
ed 160-190MB of memory for a small test case.

Bloom Filter

Dot-plots

Dot plots are a data analysis tool to scrutinise symbol sequences. Arrangement recurrences, simi-
larities and inherent structures are visualised in two-dimensional plots. Repetitions of individual 
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symbols, as well as motifs being similar appear as characteristic lines, rectangles, textures or com-
binations thereof. Through visualisation such structures can intuitively be distinguished from 
background noise and conceived by human eye. For two arbitrary sequences dot plot algorithms 
completely enumerate substrings of defined length. Each substring of the first sequence is aligned 
with each of the second. For each alignment a score for pairwise matching symbols among the two 
substrings is computed and visualised by colour mapping. The substring positions in the sequence 
determine the position in the dot plot and result in a concise representation of similarities among 
sequences.

Background

In the field of genetics, the tools most commonly used today are alignment-based methods. How-
ever, alignment-based methods generally interpret incongruent character states in relation to sur-
rounding identities, as the result of punctual deletion, insertion and alteration of character state. 
Consequently, they tend to perform poorly when the actual evolutionary process violates these im-
plicit assumptions, e.g. when reversal or relocation of parts of a sequence took place. In addition, 
by way of their quest to present a single solution of positional homology, alignment algorithms 
are not designed to identify simple sequence repeats. To address this task dot plots are a powerful 
approach. Beside perfect motif repetition dot plots also reveal particular information on imperfect 
repetitions.

The dot plot technique dates back to the late 1960’s and early 1970’s and was developed in the field 
of genetics. Today, the most powerful application for dot plots is still the domain where they initial-
ly emerged from. Since the early approaches more sophisticated software tools have been designed 
and continuing technological progress allows for increasingly faster and more complex analyses. 
Several state of the art programs have implemented dot plot modules for homology comparisons 
and pattern recurrence detection. Dot plot applications are particularly useful in the identification 
of interspersed repeats such as transposons and tandem-repeat motifs such as microsatellites. 
Furthermore, loss or gain of whole motifs can easily be spotted in different types of domains, a trait 
useful in characterising the evolution of certain protein families. Dot plots are also employed in 
the investigation of properties of protein coding sequences by predicting secondary structures, like 
stem-loop formation or structural RNA domains. In the field of DNA based watermarks adopted 
algorithms can support identification of patent infringements of genetically modified organisms 
during routine screening.

Although the main application of dot plot lays in genetics the method itself is context indepen-
dent. Therefore it can be applied to any sequences where symbols represent items or tokenised 
objects. Thus, the method allows to investigate patterns in texts or chronological events and has a 
broad application field when one requires scrutinising sequences for such patterns. Dot plots have 
also been applied in software development, to identify redundant code and to ease maintenance 
of design patterns among releases. Historians and literary scientists can use dot plots to follow 
transcriptions and semantics over time. Comparing sequences of different origin they allow visual 
identification of source insertions, deletions or homologies, culminating in plagiarism detection. 
In highly volatile text systems, like websites, they have proven to support tracking of evolutionary 
modification processes. In translations they allow a more effective organisation of workflows and 
help institutions to reduce expenses.

Bioinformatics

________________________ WORLD TECHNOLOGIES ________________________



WT

37 

Algorithmic Implementation

Initial Example

As an initial example for dot plots one can imagine the same sequence written onto two strips of 
chequered paper. Every symbol of the sequence is written consecutively into one chequer, with its 
index number next to it. By overlaying a frame containing a window that allows viewing exactly one 
symbol of each strip at a time symbols are compared in pairs. Whenever symbols in the observing 
windows match, a bright dot is placed in a grid at the respective indices. The resulting rectangular 
graphical representation is a dot plot. It thus represents all possible comparisons of characters in 
either sequences and is colour-coded with two colours indicating a match or mismatch between 
any two characters. The resulting rectangular graphical representation is a dot-plot.

A generalised description of how to create a simple dot plot based on two copies of a sequence with 
an underlying alphabet of 27 different symbols (26 symbols plus space) written onto two paper 
strips. By moving the two strips SEQ1 and SEQ2 under the frame with a window of the width of 
one symbol, it is possible to iterate every possible pairing. Every time the symbols in the window 
of the frame match, a white dot is placed at the respective indices. Conversely, a black dot is placed 
on the grid when symbols mismatch.

The dot plot result of comparing all symbols with each other can be represented by a matrix hereaf-
ter named M. The two sequences are furthermore referred to as T1 and T2. In this initial example is 
T1=T2. In the following we respect the formal convention that the first index refers to the row, the 
second the column; M(row, column). As the first sequence is normally presented on the horizontal 
axis processing of T1 is assigned to column and T2 to the row indices.

Detection of Signal and Noise in Dot Plots

Here, the sequence was compared against itself and results in a self-similarity dot-plot. The emerg-
ing dot plot shows a pronounced diagonal with a symmetric distribution of several points on both 
sides of it. The diagonal marks the comparison of each symbol with itself and thus appears as a 
distinct and continuous line. The recurrent appearance of the motif ‘THE’ followed by a space is 
a second pattern creating a four dots long line. As this repetition has the same reading direction 
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within the sequence, the line is parallel to the diagonal. The horizontal and vertical offset along the 
axes is equal to the respective distance in the sequence. In addition to recurrences of individual 
symbols whole motifs can be found as reverted copies within larger sequences and result in at least 
partially palindromic structures. The term palindrome defines motifs of individual symbols that 
read the same from both directions.

Single bright dots in the plot indicate positions where other symbols match. As these points are 
scattered on both sides of the diagonal and show no regular organisation, they can be assumed to 
represent random matches. Random matches are a function of sequence length and alphabet size. 
The stochastic probability of random pattern repetitions decreases with increasing alphabet sizes, 
while the total number increases with sequence length. In this example a relatively short sequence 
with a large alphabet of 27 symbols (characters ‘A’ to ‘Z’ and the space character) was used. This 
reduces the number of random matches, which appear as random, off-diagonal noise in the dot 
plot.

 
Two identity dot plots of the DNA sequence EU127468.1 compared against itself. Upper panel: Char-by-char  

comparison (window size w = 1) and two colours. Lower panel: Window size of w = 16 characters and a  
linear colour mapping. Note different scaling due to fewer alignments

Investigating sequences of nucleic acids an alphabet size of four symbols and sequence lengths 
of several hundreds to thousands characters are common. This entails more background noise 
as compared to a dot plot of amino acid sequences. The probability of a random match between 
any two nucleic acids is 0.25 whereas it is 0.05 for amino acids with an alphabet size of 20. Using 
a window size of one symbol for the analysis of the arbitrary gene sequence EU127468.1 the plot 
has a high level of background noise and is of minor use, when interested in large scale patterns or 
structures. This effect is even more pronounced, when applying dot plots to sequences of binary 
information. Consequently, filters are required to emphasise regions with a number of consecu-
tively matching symbols. Therefore window size is enlarged to compare pairs of more than one 
consecutive symbols for each dot in the plot.
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Table: Genetic microsatellite sequence EU127468 of the marine, benthic isopod Serolis paradoxa 
Spa04. Two regions with an imperfect (AC)x microsatellite are printed in bold. Sequence is broken 
into pieces of 40 nucleic acids.

GCTGAGCTTACGAACAAAACTGCAGCAGTGATGTAAATAT

ACGTACGGTATTTTAGGCTTGTACACCCCTCTATTACACA

TACACACACGCACACACACACACACACACCTGAGGTTACT

GAAGTAAGGTTGGAGACGGTACTTGTCTATCTCCCAGCCG

AAGTGGTCTTCCGCTGAGCAGAGTTCCTTTGCCACCCTGA

ATCATGGCTGTTGGTTCAGTATGAAGGTGTTGTACCCAGT

AGCGCTGTTTTACAGACACACACACAAACGGGCACACACA

CATATACACACAGATACACACACACACACTAGGTAACTTA

TTCTTTGAACTTTTCTATCT

Identity dot plots compare substrings of defined length starting from every position on the re-
spective strands. As alignments within the windows are only performed in reading direction the 
detection of reverted structures and palindromes is reduced with window sizes larger than one. 
Beside literal palindromes palindromic structures also play an important role in genetic sequenc-
es, where definition is slightly different. The DNA double helix is formed by two complementary 
paired strands. Biological reading direction follows the chemical enumeration of the phosphate 
linked ribose backbone from the 5’ to 3’ end and is oppositely oriented on the two strands. The base 
pairing between strands is determined by the two complementary base pairs adenine and thymine 
(A-T), as well as cytosine and guanine (G-C). Such sequences, or parts of it are palindromic when 
the first strand reads the same as its reverse complement in the respective reading direction. To 
overcome limitations of the identity dot plot, a parallel analysis needs to be included, to detect 
structures like the motif 5’-TATAGCTATA-3’, which is palindromic to its reverse complement. 
Thus, the detection of reverted motifs on the complement strand in particular for larger window 
sizes is of major interest. Therefore sequence are also compared with reverted copies or in case of 
a genetic sequence with its reverse complement of the opposite strand.

Colour Mapping

The elements of the result matrix M are ordinal numbers representing the number of pairwise 
matches for the respective substrings. These ordinals can be directly used as indices pointing at 
entries in a colours palette array. The size of the colour map is the maximum number of possible 
matches plus one colour for the background; equivalent to #colour = 1+w. By using a grey-scale 
palette areas appear gradually highlighted by their number of consecutively matching symbols. 
Additionally, one colour can be assigned to more than one element of the colour map and thus to 
more than one ordinal. Black is often used for a range of low numbers, to fade out regions of low 
similarity or complexity. Assigning bright colours to more ranks than the highest these structures 
are emphasised. 
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Features of Window Size

The chosen window size is of eminental importance in the visualisation process as it determines 
the criteria by which imperfect matches are distinguished as geometric figures from the back-
ground. Larger values allow finer colour graduations and focus on larger structures of consecu-
tively matching symbols. In palindromes of even length each symbol appears at least twice, while 
odd lengths may have a unique central character. Thus, window sizes of one symbol impede iden-
tification of such patterns. For dot plots including reverted analyses appropriate window sizes are 
generally larger than three.

 
Figure: Two dot plots of the DNA sequence EU127468.1 compared against itself. 

Window size for both plots is w=16 and colour mapping assigns black to cells where counts are 7 
or less. Upper panel:  Identity dot plot. Lower panel: Dot plot including the reverse complement. 
Comparing upper and lower panel it can be seen that also similarities with the reverted strand exist.

Features of Algorithms

Comparing two different sequences the dot plot matrix needs to be entirely calculated. Investigat-
ing the algorithms it is found that runtime is a function of l*k*w for source code 1 and l*k*2w for 
source code 2. It is easily seen that runtime increases with increasing w, as often required for al-
ready larger sequences. Compared to fast pattern matching algorithms, like Knuth-Morris-Pratt or 
Boyer Moore, dot plots have the disadvantage that symbols within the windows need to be evaluated 
completely, but have the major advantage that they allow distinguishing similarities from imper-
fections. Thus, optimisation of match evaluation in the sliding window is a limiting factor. Sonn-
hammer and Durbin introduced a method with vectors, initialised for pairwise matches whenever 
the sliding window moves over a matching position in the sequences. Each vector contributes to 
the result as long as its position lays within the window. The outermost vector is discarded, when 
the window shifts one position towards the next position to compare. Huang & Zhang introduced a 
method creating look-up tables and initial tokenising of possible symbol combinations to increase 
calculation speed for DNA/RNA dot plot applications. The initial table setup requires time paying 
off with larger sequences. Small alphabets of the four nucleotides agree with this method. However, 
tables grow exponentially when forming words of certain lengths including e.g. the complete set of 
DNA IUPAC symbols.
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To reduce memory consumption for larger sequences compressions are used to focus on large 
scale structures. Therefore the plot is split into rectangles of equal size. Within these rectangles 
scores are evaluated completely. In the compressed plot each rectangle is represented by a single 
dot giving a proxy value for the rectangle. The disadvantage is that calculations need to be per-
formed twice when zooming into a plot.

To reduce stack load results of substring comparison can be directly passed to a visualisation rou-
tine and not returned as complete l´k matrix. When a sequence is compared with itself less than 
half of the result matrix needs to be calculated. In this case it can be made use of the fact that 
M(i, j) = M(j, i) and M(i, i) = w.

Comparing a sequence simultaneously with a couple of others it is possible to overlay results. 
To identify common similarities further methods are available to analyse dot plots for motif and 
alignment recognition and to classify sequences by multivariate analyses of dot plots.

For some applications it may also be interesting to create dot plots that display lowest instead of 
highest counts to visualise matches being different from zero. Additionally one might be interest-
ed in different ways of counting or evaluating sequence substrings, to weigh matches differently 
or to return a normalised substring similarity (q%= 1 / w * #matches) for subsequent numerical 
processing.

Interpreting Dot Plots

The upper left corner of a dot plot normally shows the comparison of the first substring set from 
the two sequences. Down- and rightward indices of alignments increase. Especially in older publi-
cations origins of sequences is sometimes found in the lower left corner, increasing up- and right-
ward. The operating direction of a software package can be easily identified by plotting a sequence 
against itself. In this case dots on the main diagonal represent substrings from the positions i=j. 
This is equal to compare a substring with itself and results in a pronounced main diagonal where 
the number of matches is equal to the windows size w (figure a). The plot is then square and sym-
metric across the main diagonal. Patterns off the main diagonal indicate structural similarities 
among different parts of the sequences. Lines off the main diagonal indicate that the different re-
gions on the sequences are have a high similarity, maybe due to repetition (figure b). The location 
of these repetitions is equal to the axis intercepts in the plot (D1, and D2 in figure b). When D1 and D2 
intersect on the same axis, regions in the respective strand are present that bear self-similarities. 
Including the reverted or complementary strand in the analysis, sequence similarities of reverted 
motifs are indicated by lines orthogonal to the main diagonal (c, d). In genetics many transposable 
elements are characterised by short duplicated regions or terminal inverted sequence repeats that 
can be identified by their typical structure in dot plots (figure d). Tandem repeats, such as micro-
satellites (figure e) and minisatellites (microsatellites = repeat unit 1-6 base pairs, minisatellites 
= repeat unit of 10-50 base pairs) are characterised by parallel lines forming a rectangular shape. 
If two different sequences are compared against each other (figure g, h) gaps in the main diagonal 
indicate deviations. If the main diagonal shows a break (figure h) this point indicates the location 
of a fragment in one strand that was deleted or inserted in the other one (so called ‘indel’). This 
is also a common feature when plotting cDNA sequences of a gene against the unspliced genomic 
sequence.
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Figure : Schematic overview of characteristic patterns appearing in dot plots. a-f) are self similiarity  

dot plots (T1=T2). g-h) are dot plots comparing two different sequences of simlar length.

a)	 A continuous main diagonal shows perfect similarity for symbols with the same indices.

b)	 Parallels to the main diagonal indicate repeated regions in the same reading direction on 
different parts of the sequences. In this case a region D is found twice in the sequence (D1, 
D2, so called ‘duplications’).

c)	 Lines perpendicular to the main diagonal indicate palindromic areas. In this case the se-
quence is completely palindromic in the displayed area. As an example the latin sentence 
‘sator arepo tenet opera rotas’ might be consulted.

d)	 Partially palindromic sequence (For DNA sequences this refers to a perfect match of the 
normal strand with its reverse complement, which is frequently found for many transpos-
able elements.

e)	 Bold blocks on the main diagonal indicate repetition of the same symbol in both sequences, 
e.g. (G)50, so called microsatellite repeats.

f)	 Parallel lines indicate tandem repeats of a larger motif in both sequences, e.g. (AGCTCT-
GAC)20, so called minisatellite patterns. The distance between the diagonals equals the 
distance of the motif.

g)	 When the diagonal is a discontinuous line this indicates that the sequences T1 and T2 share 
a common source. In literal analyses we may have to deal with plagiarism or in DNA anal-
yses sequences may be homologous because of a common ancestor. The number of inter-
ruptions increases with modifications on the text or the time of independent evolution and 
mutation rate.

h)	 Partial deletion in sequence 1 or insertion in sequence 2, so called ‘indel’. In protein 
coding sequences this can be often observed for many different types of domains, which 
got lost or substituted during evolution. Also comparing mRNA (cDNA) sequences 
without introns (T1) against the unspliced DNA sequence (T2) generally yields this pic-
ture.

Analysing the identity dot plot (T1=T2) of the sequence EU127468.1 the continuous main diagonal 
is found. Additionally, four bright rectangular patterns can be seen. Two of them are square and 
located on the main diagonal approximately between positions 65-95 and 245-290. They represent 
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regions of high self similarity due to local microsatellite repetition of short (AC)x tandems. The 
rectangular patterns off the diagonal indicate similarity between the two repeat regions on the 
diagonal to which they are located perpendicular. This results from high similarity that is not only 
found around position T1[i]/T2[i] and T1[j]/T2[j] but also between T1[i]/T2[j] and T1[j]/T2[i] and 
makes up the four symmetric rectangles recognized. the lengths of the sides of the rectangles are 
equal to the outlines of the opposite squares on the diagonal and interconnected with these by 
broad dark streaks. They indicate the reduced probability of random matches between the tandem 
repeats and non-repeat regions.

Application of Dot Plot in Genetic Research

A concise application for dot plots is genetic probe design and comparsion of evolutionary altered 
sequences. Here, the advent of the polymerase chain reaction paved the way for a variety of appli-
cations that rely on identifying and amplifying specific genomic regions. Selected probes often fail 
to amplify the specified regions or amplify multiple genomic regions. While several probe-design 
programs aid the process of design and optimisation according to thermodynamic rules, amplifi-
cation can fail as probes might hybridise to regions in the complementary strand unnoticed by the 
primer design program, as the motif is completely different. Dot plots including reverse comple-
ment analysis allow identification of such sites. For microsatellite analyses in population genetic or 
mapping studies the aim is to specifically amplify highly variable genomic regions using conserved 
flanking regions. Flanking regions are often much less conserved and an integral part of higher-or-
der repeats. Dot plots allow the identification of these super-order structures and avoid locating 
probes within them.

If a priming site is duplicated or even duplicated further obscured due to inversions, successful 
and specific hybridization or amplification of single sites can be counteracted. High numbers of 
sequences from the enrichment procedure can be screened. While appropriate tools for the identi-
fication of tandem repeats exist the detection of higher-order or highly degenerated repeats, which 
should be avoided as candidate markers, still pose a complicated issue. Additionally, appropriate 
primer sites should not be located within duplicated regions, counteracting amplification success 
or leading to the amplification of paralogous gene copies. Dot plots greatly facilitate testing for the 
presence of such sites and proved to be helpful tools for the de novo development of appropriate 
microsatellite markers.

 
Figure: Dot plot of a partial sequence of the cytochrome c oxidase, subunit 1 of Homo sapiens  

(T1, GenBank accession number EF568637) against that of the unicellular dinoflagellate  
Alexandrium tamarense (T2, GenBank accession number EF036567). 
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Window size for both plots is w=12 and colour mapping assigns black to cells where counts for 
pairwise substring matches are 5 or less. While only few conspicuous similarities are recognized 
on DNA level (upper panel), shared similarity is much more conserved on protein level (lower 
panel).

Comparative genomic and phylogenetic studies compare DNA regions with the same ancestry and 
analyse the amount of accumulated differences. With growing phylogenetic distance differences 
increase, so that inherited similarities are difficult to detect using standard alignment methods. 
This holds true in particular if rearrangements of sequence domains have occurred. Here, dot plots 
are a powerful tool to visualise similarities and deviations. Cytochrome c oxidase is a small protein 
in mitochondrial membranes. Comparing a partial DNA sequence from Homo sapiens with that of 
the distantly related dinoflagellate Alexandrium tamarense few similarities are found. The result-
ing dot plot, including reverse complement analysis, shows a disrupted main diagonal as a result 
of several substitutions. Additionally several motifs exist, which are palindromic in the opposite 
sequence. However, when the translated amino acid sequences is compared a much higher conser-
vation level is found due to the degenerated genetic code at DNA level.

Examples and Interpretations of Dot Plots

Contrary to simple sequence alignments dot plots can be a very useful tool for spotting various 
evolutionary events which may have happened to the sequences of interest.

Below is shown some examples of dot plots where sequence insertions, low complexity regions, 
inverted repeats etc. can be identified visually.

Similar Sequences

The most simple example of a dot plot is obtained by plotting two homologous sequences of inter-
est. If very similar or identical sequences are plotted against each other a diagonal line will occur.

The dot plot in two related sequences of the Influenza A virus nucleoproteins infecting ducks and 
chickens. Accession numbers from the two sequences are: DQ232610 and DQ023146.  

 
Figure: Dot plot of DQ232610 vs. DQ023146 (Influenza A virus nucleoproteins) showing and overall similarity
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Repeated Regions

Sequence repeats can also be identified using dot plots. A repeat region will typically show up as 
lines parallel to the diagonal line.

 
Figure: Direct and inverted repeats shown on an amino acid sequence  

generated for demonstration purposes.

If the dot plot shows more than one diagonal in the same region of a sequence, the regions depend-
ing to the other sequence are repeated. In figure you can see a sequence with repeats.

 
Figure: The dot plot of a sequence showing repeated elements.

Frame Shifts

Frame shifts in a nucleotide sequence can occur due to insertions, deletions or mutations. Such 
frame shifts can be visualized in a dot plot as seen in figure. In this figure, three frame shifts for the 
sequence on the y-axis are found.

•	 Deletion of nucleotides

•	 Insertion of nucleotides

•	 Mutation (out of frame)

 
Figure: This dot plot show various frame shifts in the sequence.
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Sequence Inversions

In dot plots you can see an inversion of sequence as contrary diagonal to the diagonal showing 
similarity. In figure you can see a dot plot (window length is 3) with an inversion.

 
Figure: The dot plot showing an inversion in a sequence.

Low-complexity Regions

Low-complexity regions in sequences can be found as regions around the diagonal all obtaining 
a high score. Low complexity regions are calculated from the redundancy of amino acids within a 
limited region. These are most often seen as short regions of only a few different amino acids. In 
the middle is a square shows the low-complexity region of this sequence.

 
Figure: The dot plot showing a low-complexity region in the sequence. The sequence is  

artificial and low complexity regions do not always show as a square.

Structural Annotation

A DNA sequence, for instance a genome sequence, has much more value if we can annotate were 
are the different features like promoters, exons, introns, CDSs, transposons, etc. The annotation 
of those regions in a sequence is the structural annotation. This structural annotation is usually 
acompanied by a further functional annotation that will try to show the functions for these differ-
ent regions. These annotations are very helpful for the users of the genomic sequence. Let’s sup-
pose that we link a disease to a region of a genome. If we have a poor annotation or we just have 
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no annotation at all we won’t know which genes are located close to that region or even if we have 
any gene at all. Having a good quality annotation allow us to make sense of the region under study.

We can base the structural annotation on experimental data, like ESTs, or we can do bioinformatic 
analyses in the sequence itself. These later annotations that start with just the sequence to be an-
notated are usually refered to as ab initio annotations.

There are different bioinformatic analyses that we can use to predict the gene structure (promoter, 
exons and introns), the alternative splicing, the coded protein, etc.

We have to take into account that we can have different degrees of confidence in these annotations. 
They can be supported by different amounts of experimental evidence and the methods used to 
create them can have different degrees of sensitivity and specificity.

Restriction Maps

A restriction map is a kind of physical map that shows the location of the restriction sites within a 
DNA sequence.

To create a restriction map we need a database with the restriction enzyme sites. One popular op-
tion is to use Rebase. Then a software programe can be used to look for the restriction sites in the 
nucleotide sequence. remap from EMBOSS is one of the options.

A restriction map can be used to map the sequences against a bigger physical map. Nowadays is 
quite common to use the maps created by the Bionano company for that porpose.

Translating a DNA Sequence

Predicting which peptide can be encoded by a DNA sequence is quite straightforward. We need the 
DNA sequence, the genetic code and the location of the start codon.

A DNA sequence is transcribed to RNA and translated to a peptide by using the genetic code.

DNA AGG TTT ACA TGT AGA GGA TGA

RNA AGG UUU ACA UGU AGA GGA UGA

PROT Arg Phe Thr Cys Arg Ala Fin

Although the RNA uses Uracil instead of Thymine it is very uncommon to have sequence files that 
correspond to RNA sequences with Us. The standard is to use in the sequence files T for both DNA 
and RNA.
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To translate a nucleotide sequence we need to decide which genetic code to use. All known life 
uses a very similar genetic code. The genetic code is said to be universal, but it is in fact almost 
universal, there are slight changes in the code. For instance, the human mithocondria uses a slight 
variation of the genetic code.

A nucleotide sequence has six possible translations, three in the forward direction and six in the 
reverse and complementary strand.

Forward

    DNA:  AGGTTTACATGTAGAGGA

    1fr:  ArgPheThrCysArgGly

    2fr:   GlyLeuHisValGlu

    3fr:    ValTyrMetAm*Arg

    Reverse and complementary

    DNA:  TCCTCTACATGTAAACCT

    1fr:  SerSerThrCysLysPro

    2fr:   ProLeuHisValAsn

    3fr:    LeuTyrMetOc*Thr

EMBOSS has two programs to get the six possible translations transeq and sixpack.

Backtranslation

We can also backtranslate a peptide sequence to a nucleotide sequence. In this case, due the de-
generacy of the genetic code we will get many nucleotide uncertanities.

> peptide

    ACDEFGHIKLMNPQRSTVWY*

    >reverse translation

    gcntgygaygarttyggncayathaarytnatgaayccncarmgnwsnacngtntggtaytrr
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You can backtranslate a peptide sequence in EMBOSS with backtranseq. There is also the possi-
bility of infering the most probable codons for the backtranslation by using a codon usage table. 
EMBOSS can do it with the program backtranambig

Codon Usage Tables

There is a codon usage bias, not all synonymous codons are used in the same frequency. Different 
organisms have different biases. They tend to prefer one codon over others to code for a particular 
aminoacid.

By counting how many times an aminoacid is used in the proteins coded by an organism nucleo-
tide sequences a Codon Usage Table can be compiled for every species.

ORFs

An Open Reading Frame (ORF) is the strecth of a reading frame that do not contain a stop codon. 
An AUG codon in a ORF might indicate the translation start.

There is software in EMBOSS to show the ORFs (plotorf) and to get their translations (showorf).

CDS Prediction

Long ORFs might indicate the presence of a coding sequence and of a corresponding gene. In the 
procaryotes it is easier to detect long ORFs because they are not broken by the introns. In the eu-
caryotes the ORFs will be fragmented in multiple regions and they will be harder to detect. To be 
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able to detect the CDSs in th eeucaryotes we need also to infer the gene structure, the location of 
exons and introns and the splicing variants.

A nucleotide sequence can have several open reading frames. There are several confusing factors:

•	 The start codon might be outside the sequence.

•	 There might be sequencing errors that create artifactual stop codong or that shift the frame.

There are different hints that can point to the ORF that corresponds to the real CDS.

The codon use table for the species can be used to detect the real CDS. The real CDS will tend to use 
the codond prefered by the species, while the other ORFs will use codons at random. From these 
fact the coding likelihood of all six frames of a nucleotide sequence can be calculated.

Even if we don’t have the codon use table for the species we can still use the codon bias to help 
with the detection of the CDSs. The codon bias will create a bias in the nucleotide frequencies of 
the third base. We can plot the GC content of the third base of the codons along a window for all 
six possible frames and detect biases there.

Another hint that can be used to detect CDSs is the protein conservation. Most proteins have sim-
ilar proteins from other organisms in the database. BLAST can translate the six frames and can do 
a search aginst the known proteins. A similarity in a fragment of a frame with a known protein is 
an indication that that fragment is part of a real CDS.

Sequencing erros might produce frame shifts. Also, in the eucaryotes, the CDS will be split by the 
introns and can be divided in different jump. There are software that integrates the codon usage 
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bias, the presence of start and stop codons and the sequences required by the splice sites to cal-
culate a probability of any region of a nucleotide sequence being a coding region. One example of 
such software is GeneMark.

Promoter Prediction

It would be very valuable to locate the promoter union sites for the standard proteins of the tran-
scription process and the union sites for the transcription factors. Locating a promoter region in a 
genomic sequence is not a straightforward task. Transcription factor targets have several charac-
teristics that difficult their location, they are:

•	 Small

•	 Not very conserved

Small sequences can be found just by chance locating such a sequence is not a guarantee that we 
have found a real transcription factor union site. Also their variability might let us think that there 
are many union sites, but most of them won’t be real. Just by looking at those small sequences will 
create a lot of false positives.

Another factor that has been demonstrated to influence the gene expression is the histone location. 
A DNA region heavily coiled around the histones will have less chances to get accessed by the pro-
teins involved in the transcription. Histone location can be influence by the DNA composition, by the 
methilation or by other factors that do not depend of the DNA sequences, so it is difficult to predict it.

Typical Promoter Sequences

There are sequences that are typically found in most promoters. Their composition depend on the 
species.

In bacteria there is a Pribnow box. Its consensus sequence is TATAAT and it is located at -10 up-
stream of the transcription starting site. A similar sequence to this one will be found in most pro-
moters, but the sequence might be slighty different in some of them.

The Pribnow box has a similar function to the TATA box found in eucaryotes and archea, it is rec-
ognized by the RNA polimerase during the initiation of the transcription.

There is also a TTGACA usually found at -35 in bacteria and other less conserved regions.

Understanding Bioinformatics	

________________________ WORLD TECHNOLOGIES ________________________



WT

52 	

In eucaryotes and archea the TATA box is located usually between -20 or -35 relative to the tran-
scription starting site. The TATA box has a core conserved core of TATAAA which is usually fol-
lowed by three or more adenines.

There are also in eucaryotes other sequences found that are not as conserved, like the CCAAT box 
and the GC box. The GC box is usually located 110 bases upstream of the transcription starting site 
and its consensus sequence is GGGCGG.

The CCAAT box is usually located 60 to 100 bases upstream of the transcription starting site and 
its consensus sequence is GGCCAATCT.

Transcription Factor Sites

There are many DNA motifs recognized by the transcript factors. Each transcription factor recog-
nizes some particular sequences different from the other ones. These sequences are usually small 
and the transcription factor, in most cases, can lock to them even if they chage a little, so they can 
ve more or less conserved between different promoters.

Every gene is controlled by different transcription factors and the location of the sequences recog-
nized by the factors can be quite variable and can be far appart from the transcrition initiation site.

Describing the Sites

The sites which are binded by the transcription factors are variable, but we have to describe them. 
We can use different ways to describe those sites.

We can use a consensus sequence. A consensus sequence shows the most abundant nucleotide for 
each position and ignores the rest of the variation. For instance, TATAAT is the consensus sequence 
for the Pribnow box, but that does not mean that all the Pribnow boxes have these sequence.

Sequence patterns. We can show all possible nucleotides for each position. Like TATAAW or 
TATAA(A/T). These patterns will match with all Pribnow boxes. The problem with them is that 
they do not include information about the sequence. Maybe one of the alternative nucleotides is 
found many more times the others. It could be well the case that TATAAA is more common than 
TATAAT, but that information is lost in the sequence pattern.

Position-specific scoring matrix. They include the frequency of all the residues for every position.
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Detecting Transcription Factor Sites

There are different computational methods to predict the biding sites for the transcription factors, 
but none of them can do highly accurate predictions. The best of them are capable of recognizing 
at most 60% of the promoters, and they product many false positives. There are several programs 
to do the transcription site an promoter detection like: tfscan, jaspscan or GrailEXP.

We can also align the promoter regions from very close species. The sites binded by the transcrip-
tion factors will tend to be more consereved than the rest of the promoter because they have more 
functional relevance.

Gene Structure Prediction

The gene structure prediction is the process of predicting the location of the genes in a genomic 
sequence as well as its elements like promoters, exons, introns and coding regions.

These genes can be protein coding or RNA coding.

CDSs and ORFs

In procaryotes the problem of looking for protein coding genes is easier because the CDSs won’t be 
fragmented in pieces by the introns and the appearance of long ORFs will be a strong indication of 
their presence. In eucaryotes the problem is harder to solve because the introns split the CDSs and the 
ORFs won’t be as informative. Also, the size of the non-coding regions can be quite large, specially the 
introns. In locating genes that do not code for proteins we won’t be able to use any ORF hints.

Alignment with ESTs or cDNAs

We can use the information provided by the ESTs or cDNA to locate regions expressed in the ge-
nome. These regions will tend to be genes. We can also use this information to build the structure 
of the different mRNAs that a gene can produce.
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We can use the programs est2genome and esim4 from EMBOSS to do these alignments.

To be able to use these method of detecting genes we need to have transcriptomic sequence data. 
Even with these data at hand we should consider different limitations:

•	 We can have low expressed genes that are not represented in our transcriptomic data.

•	 We could have some mRNAs not completely covered.

•	 We have to infer the mRNA structure from the fragmented ESTs and that is not a trivial task.

•	 We can have ESTs that correspond to spurious expression like non-mature mRNAs or 
transposable expression in the introns or intergenic regions.

Comparison with Proteins from other Species

We can compare our genome to a protein database by using BLAST.

If we detect a match in a genome to a protein sequence from other species we have a hint that that 
genomic sequence might be part of a gene. Of course these method has also some limitations:

•	 There might be no proteins similar to some of the genes in our species.

•	 We can have pseudogenes that could match with some protein despite not being real genes.

Combining Different Evidences

There are different programs that try to predict the gene structure by taking into account the dif-
ferent evidences. They take into account:

•	 The codon usage

•	 Splicing sites

•	 ORFs

•	 The GC content. Gene regions tend to have a higher GC content.

•	 EST and cDNA alignment

•	 Comparisons with sequence database

Different programs will create different predictions even when the same evidence is considered. 
So the prediction will depend on the program and the evidence used. Of course, the more evidence 
and the higher quality that evidence is the easier will be to infer the real gene structure.
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Role of Statistical Methods in Bioinformatics

Data analysis is seen as the largest and possibly the most important area of microarray bio-
informatics. Statistical analyses for differentially expressed genes are best carried out via hy-
pothesis tests rather than using a simple fold ratio threshold. More complex data may require 
analysis via ANOVA or general linear models and may be also include bootstrapping. Princi-
pal Component Analysis (PCA) and Multidimensional Scaling (MDS) provide a good way to 
visualise data without imposing any hierarchy on them. Hierarchical clustering can be used 
to identify related genes or samples and portray the usage of dendrogram. There are several 
methods for classifying samples, each with advantages and disadvantages, including: K-near-
est neighbour, centroid classification, linear discriminant analysis, neural network, support 
vector machines.

It was well understood that computing would play a vital role in the future progress of statistics. 
Access to elaborate algorithms on computers increased the awareness of more recent method-
ological developments in statistics. According to the definition proposed by A. Westlake: “Com-
putational statistics is related to the advance of statistical theory and methods through the use 
of computational methods. This includes both the use of computation to explore the impact of 
theories and methods, and development of algorithms to make these ideas available to users.” 
Computation in statistics is based on algorithms which originate in numerical mathematics or 
in computer science. The core topics of numerical mathematics are numerical linear algebra and 
optimization techniques but practically all areas of modern numerical analysis may be useful. The 
group of algorithms highly relevant for computational statistics from computer science is machine 
learning, artificial intelligence (AI), and knowledge discovery in data bases or data mining. These 
developments have given rise to a new research area on the borderline between statistics and 
computer science. Besides the difficulties resulting from new problems in various research areas, 
for example analysis of microarrays in biology, the following three interwoven challenges for com-
putational statistics: handling of problems stemming from new data capture techniques, from the 
complexity of data structures, and from the size of data. The summary of the different subjects of 
science interrelationship. 

Figure: The interrelationship of the different subjects of sciences

Bioinformatics has grown into a large topic, but still one of the most widely used tools in 
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bioinformatics is that for searching a sequence database for all sequences similar to a given query 
sequence. There are three main bioinformatics problems: 

1.	 Connection with “Dogma”: sequence, structure and function. 

2.	 Connection with data: keeping, access and analysis. 

3.	 Biological process simulation: protein structure, (molecular dynamics), biological net-
works.

Data Mining Techniques and Statistical Methods Comparison 

A variety of techniques have been developed over the years to explore for and extract information 
from large data sets. At the end of the 1980s a new discipline, named data mining, emerged. Tradi-
tional data analysis techniques often fail to process large amounts of data efficiently. Data mining 
is the process of discovering valid, previously unknown, and ultimately comprehensible informa-
tion from large stores of data. Data Mining is the process of extracting knowledge hidden in large 
volumes of raw data. Data mining automates the process of finding relationships and patterns in 
raw data and delivers results that can be either utilized in an automated decision support system 
or assessed by a human analyst. Modern computer data mining systems self-learn from the previ-
ous history of the investigated system, formulating and testing hypotheses about the rules which 
this system obeys. In general, data mining techniques can be divided into two broad categories: 
predictive data mining and discovery data mining.

Predictive data mining is applied to a range of techniques that find relationship between a specific 
variable (called target variable) and the other variables in your data. The following are examples of 
predictive mining techniques: 

•	 Classification is about assigning data records into pre-defined categories. In this case the 
target variable is the category and the techniques discover the relationship between the 
other variables and the category.  

•	 Regression is about predicting the value of a continuous variable from the other variables 
in a data record. The most familiar value prediction techniques include linear and polyno-
mial regression. Discovery data mining is applied to range of techniques that find patterns 
inside your data without any prior knowledge of what patterns exist. The following are 
examples of discovery mining techniques: 

◦◦ Clustering is the term for range of techniques, which attempts to group data records on 
the basis of how similar they are. 

◦◦ Association and sequence analysis describes a family of techniques that determines 
relationship between data records.

The particularity of contemporary requirements for the data processing is the following: the data 
have the unlimited quantity, the data differ (quantitative, qualitative and textual), the results 
should be particular and comprehensible and the tools for the processing of raw data should be 
easy to use. The modern technology of Data Mining (discovery-driven data mining) is based on the 
concept of patterns, reflecting fragments of polydimensional relationships within the data. These 
patterns are regularities, which are characteristic to the data sub-retrievals that can be reflected 
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compactly in the form, which is easy to comprehend for the human. The search for the patterns is 
carried out by means of techniques, which are not limited by a priori proposals about the structure 
of retrieval and type of the value distribution of indicators to be analyzed.

The traditional mathematical statistics, for a long time applying for the role of the basic tool of data 
analysis, clearly gave up in front of the problems coming into existence. The main reason – the 
concept of the mean of retrieval that leads to the operations on the fictitious values. The techniques 
of mathematical statistics proved to be useful mainly for the verification of preliminary defined 
hypotheses (verification-driven data mining) and for the ‘rough’ research analysis that forms the 
basis of operative analytical data processing (online analytical processing, OLAP). At the same 
time the strong correlation exists between data mining and statistical methods, because statis-
tical methods can be divided into the similar categories as data mining techniques: dependence 
methods and interdependence methods. The objective of the dependence methods is to determine 
whether the set of independent variables affects the set of dependent variables individually and/or 
jointly. That is, statistical techniques only test for the presence or absence of relationships between 
the two sets of variables. At the same time there exist such data sets for which it is impossible to 
designate conceptually the set of variables as dependent or independent. For these types of data 
sets the objectives are to identify how and why the variables are related among themselves. Sta-
tistical methods for analyzing these types of data sets are called interdependence methods. The 
classification of the data mining and statistical methods is the following:

•	 Data Mining 

◦◦ Predictive techniques: Classification, Regression. 

◦◦ Discovery techniques: Association Analysis, Sequence Analysis, 

•	 Clustering.

•	 Statistical methods:

◦◦ Dependence methods: Discriminant analysis, Logistic regression. 

◦◦ Interdependence methods: Correlation analysis, Correspondence analysis, Cluster 
analysis.

Introduction to Random Variables and Probability Distributions

Firstly, we need to make some informal definitions for key phrases which will be used liberally 
throughout this course.

•	 Random experiment - Experiments for which the outcome cannot be predicted with cer-
tainty.

•	 Random variable - The outcome of a random experiment. Conventionally written with up-
percase symbols e.g.: X,Y, etc.

•	 Discrete random variable - A numerical quantity that randomly assumes a value drawn 
from a finite set of possible outcomes. For example, the outcome of a dice throw is a dis-
crete random variable with a solution space: {1,2,3,4,5,6}.
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•	 Continuous random variable - Similar to the discrete case, but this time the solution space 
consist of a range of possible values, with (in principle) infinite resolution.

•	 Probability distribution - This is a function, PX(x) over the solution space of the random 
variable, yielding the probability of occurence for each potential outcome. Again this can 
be differentiated into discrete and continuous instances. Probability distributions are con-
strained by the following condition:

( ) 1Xx
P x dx =∫

For a discrete random variable X, the probability distribution is often represented in the form of a 
table containing all possible values which the variable can take, accompanied by the corresponding 
probabilities. In the conventional view, these are interpreted as the relative frequencies of occurence 
of the various values. An alternative perspective known as the Bayesian framework, in which the prob-
abilities are treated as subjective measures of belief in certain outcomes of the random experiment.

Figure : Probability distribution for coin toss experiment

A good example is the result of a coin toss experiment, which is performed by tossing a fair coin 
twice, and recording the number of heads observed. Assuming this experiment is performed a 
large number of times, we can expect that the results will occur approximately according to the 
following frequencies:

Number of heads (X) Relative frequency

0 0.25

1 0.5

2 0.25

Clearly, the most straightforward way in which the probability distribution may be obtained is by 
repeating an experiment a large number of times, then compiling and tabulating the results. These 
may then be presented as a histogram depicting the probabilities of each of the outcomes. For our 
experiment above, an idealised graph.

Probability Distribution Functions

A probability distribution function or PDF is simply a function defined over the entire solution 
space (i.e. the space of all possible values which the random variable is able to return) which allows 
the probability or probability density at each potential solution to be determined analytically.
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Many such functions have been proposed, corresponding to a variety of theorised situations. How-
ever, in real life experimental conditions such conditions are rarely achieved exactly, which means 
that the actual distributions from which real-life data is sampled often deviate from these idealised 
distribution functions. Nevertheless, for practical reasons and mathematical tractability, it is the 
accepted practice to model real life distributions by fitting one of the existing classes of distribu-
tion functions to match the data.

One Bernoulli Trial

A Bernoulli trial is a single trial with two possible outcomes, often called “success” and “failure”. 
The probability of success is denoted by p and the probabilty of failure, q, is simply given by 1-p, 
since there are no other possible outcomes of the experiment.

Hence, if we label a “success” as a 1 and a “failure” as a 0, we obtain the following formula for the 
outcome of a bernoulli trial:

( ) ( )11 , {0,1}xx
XP x p x x−= − = ( ) ( )11 , {0,1}xx

XP x p x x−= − =

The Binomial Distribution

A Binomial random variable is the number of successes obtained after repeating a given Bernoulli 
trial n number of times, where the probabilities p and q are fixed for the duration of the exper-
iment. There is also the added condition that the outcome of the successive Bernoulli trials be 
independent of one another.

For a Binomial random variable X, the probability distribution PX is given by:

( ) ( )1 , 1,2...,n xn x
X rP x C p p x n−= − =

where nCr is the combination operator, which gives the number of ways in which you can select r 
items from a collection of n. Note that the distribution is described by two parameters, n and p, 
which together determine the characteristics of the resulting distribution function.

In the case where n = 20 and p = 0.5, the resulting binomial distribution.

The Poisson Distribution 

One commonly encountered scenario is where the event of interest occurs a finite number of times 
within a given time interval.  

Figure: Binomial distribution with n = 20 and p = 0.5
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Commonly quoted examples are the number of car accidents during a fixed period, the number of 
phone calls received, and so on. In such cases, while there is an infinitesimally small probability of 
the event occurring at a particular time instant, the actual number of time “instants” is extremely 
large (as the time duration is continuous, the number of instants is effectively infinite). Hence, it 
is often sufficient just to know the mean number of occurrences in a fixed time interval. The prob-
ability distribution for the number of occurrences can then be well approximated by the Poisson 
distribution, given by the following function:

( )
otherwise

!
.

0 for 0,1,2,...
xe

xf x x
λλ

λ
−= =



Where λ is the mean number of occurrences in the time period of interest, and x is the actual num-
ber of occurrences. Clearly in this expression, eλ serves as a normalising factor (since it does not 

depend on x), and the value of the probability is determined by the expression 
!

x

x
λ .

The Uniform Distribution

Perhaps the most straightforward distribution function is the uniform distribution. A random 
variable is said to have a uniform distribution if the density function is constant over a given range 
(and zero elsewhere), i.e. all possible values within the accepted range of values have equal proba-
bility. For the range a ≥ x ≥ b, this is expressed as: 

( )
1 for

0 otherwise.

 ≥ ≥= −


a x b
P x a b

Figure: Poisson distribution with λ = 5

The Normal Distribution 

By far the most common, and certainly the most important probability distribution that we will be 
studying is the normal or Gaussian distribution, shown in figure. A continuous random variable X 
drawn from a normal distribution has a density function:

( )
( )2

221
2

x

XP x e
µ

σ

πσ

−
−

=

The density function is parameterised by the quantities σ and µ which represent the standard de-
viation and mean of the distribution respectively.
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For a number of reasons, both theoretical and practical, the gaussian is the distribution of choice 
for many applications. However, two factors in particular account for its pre-eminence:

1.	 The mathematical properties of the density function for the normal distribution make it 
extremely easy to work with. The mean and variance of the distribution are immediately 
evident from the function - as a matter of fact, a gaussian is completely described by the 
mean and variance. Higher order cumulants of the distribution are zero

2.	 Many naturally occurring phemomena often have distributions that are approximately 
normal. This is a direct consequence of the central limit theorem which states that the 
composite distribution resulting from the combination of a large number of independent 
random variables will converge to a normal distribution.

Characteristics of a Random Variable 

The distribution of a random variable X contains all the information regarding the stochastic prop-
erties of X. However, in many cases, it is difficult to represent this information as the PDFs of 
real random variables can often be complex and not easily characterised by one of the existing 
families of analytical distributions. In this section we study ways by which a distribution may be 
“summarised” to give a general idea of its key properties without having to describe the entire 
distribution.

Figure: Histograms for samples drawn from a zero mean, unit variance normal distribution

Expectation

One of the most commonly invoked quantities is the expectation of a random variable. Denoted by 
E[x], this is defined as:

( ) ( ).
∞

=−∞
= ∫ Xx

EX x x P x dx

The number E[x] is also called the expected value of X or often simply the mean of X. Note that it 
is analogous to the centre of gravity of a physical object. Effectively, the mean is the centre of mass 
of the probability density function.

From this discussion it is evident that the mean should in fact be distinguished from the arithmetic 
average of a sample of points, also known as the sample mean. For a sample size n, this is:
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( )1 2
1 , ,...,n nX X X X
n

=

The mean is related to the actual underlying distribution from which the data is sampled, whereas 
the average is a statistical measure that is derived from the samples themselves. In fact, it can be 
proven that if a collection of populations were drawn from a given distribution, the averages of the 
individual populations would themselves be distributed according to a normal distribution, with 
a mean and variance determined by the number of points in the samples. In fact, the exact values 
for these parameters may be easily determined thus:

( )

[ ]

1 2
1 ...

1 .

n n

i

E X E x x x
n

nE X
n
µ

   = + + +    

=

=

The variance of the sample means can be predicted in a similar fashion thus:

( )

( )( )

2
1

2
1

2
2

2

1

1 ' are independent ofone another

1 .

n

n i
i

n

i
i

Var X Var x
n
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n

n
n

n

σ

σ

=

=

 
=  

 

=

=

=

∑

∑

What these these two results tell us is that, while the expected value of the sample mean will be the 
mean of the underlying distribution, this is only an estimate and varies with a given variance which is 
inversely proportional to the sample size (i.e. the larger the sample size, the more accurate the estimate).

Moments of a Distribution

The mean and variance are special cases of the moments of a probability distribution.

For a random variable X, the rth moment Mr (where r is any positive integer, is defined as:

( )

r
r X

r

M E x

x Px x d
∞

−∞

 =  

= ∫

It is also cannot be assumed that a certain moment of a given distribution exists. If a distribution 
is bounded (i.e.: if the PDF integrates out to one), then it is necessarily true that all moments exist. 
However, while it is possible for all moments to exist even if the PDF is not bounded, this is not 
necessarily true. It can be shown that if the rth moment of X exists, then all moments of lower 
order must also exist.
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Moment Generating Functions

Given the density function, how can find the moments of a distribution? In many cases, this can 
be obtained directly but often it can be quite challenging. One approach by which a given moment 
may sometimes be conveniently calculated is via a moment generating function.

Distribution Functions of more than One Random Variable

It is possible to combine PDFs from separate random variables to form composite distributions. In 
such cases, it is useful to be able to classify these according to their respective functions. These help 
to clarify what a distribution function says about a pair (or more) of random variable. In particular, 
we identify three common classes into which composite PDFs may fall.

Joint Distributions

For this, and all proceeding examples in this section, we will concentrate on the case where there 
are two random variables, X and Y, which are not necessarily independent. All examples can easily 
be generalised to the case of multiple random variables.

Consider the case where we sample simultaneously from X and Y, i.e. we conduct a joint experi-
ment. What is the probability of observing a particular pair of outcomes? In this case, we can for-
mulate the answer as a new composite distribution function which extends over the combination 
of the solution spaces of the two random variables.

To help visualise this, let us assume that X and Y are two discrete random variables with the solu-
tion space defined by X, Y ∈ {1, 2, 3, 4, 5}. In this case, the possible combinations of values which 
the joint random variable (X, Y ) can assume are shown in figure. For each of the points in the grid, 
we can now assign a probability of the corresponding outcome of the joint experiment. These prob-
ability values are denoted by P(X, Y ), and are given by the joint probability distribution of X and Y. 

Conditional Distributions

Figure: Possible combinations of values for discrete random variables X and Y

Suppose that we already know the outcome of experiment Y. Clearly this would greatly limit 
the number of possible outcomes in the joint solution space. In our current example, since we 
are only dealing with two variables, this effectively reduces the solution space to one dimen-
sional. It is clear that, for any given value of Y, the corresponding probability for a particular 
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value of X can be obtained simply by reading along the particular row corresponding to the 
incident value of Y. 

We call this new distribution the conditional distribution of X given Y. Equivalently, it is normal to 
speak of the probability of X conditional upon a certain value of Y. Mathematically, this is written 
as P(X|Y ), and is derived from:

( ) ( )
( )

,P X Y
P X Y

P Y
=

Note how it can easily be seen from figure that this corresponds to the joint distribution values for 
the required values of X (along the row corresponding to the incident value of Y ), normalised by 
the sum of all the joint probability values along the row.

Marginal Distributions

In the final example, consider the situation where we are not interested in the outcome for exper-
iment Y, i.e.: we are only interested in the outcome of X. For a given Xn = x, we can obtain the un-
conditional probability by summing over P(X, Y ) for all the possible values of Y. This is a process 
called marginalisation and is written as follows:

( ) ( ),
Y

P X P X Y=∑

The resulting distribution, P(X), is then called the marginal distribution.

Independent Random Variables

Before proceeding further, this is a suitable point for the introduction of the concept of statistical 
independence when applied to random variables. In many cases, “independence” as used in sta-
tistics corresponds well with the general meaning of the word, as used in everyday situations. i.e., 
a given random experiment is independent of another random experiment if the associated ran-
dom variables do not depend on each other in any way. For example, the result of two successive 
coin-tosses occur completely randomly and are independent of one another.

However, it is still useful for a formal definition be given. We say that two random variables X and 
X are considered statistically independent if, and only if, the joint distribution of the two variables 
is equal to the product of the two marginal distributions, written as:

( ) ( ) ( ),P X Y P X P Y=

In such a case, the grid in figure becomes a multiplication matrix - where the values associated 
with the vertices can be found from the product of the unconditional probabilities ( )P X  and 
( )P Y

Estimation Theory 

So far, we have covered some of the basic concepts of probability which provide the basis upon 
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which the study of statistics is built. In particular, we would like to consider real world data as ob-
servations of some underlying generator. As was mentioned earlier in the notes, it is almost always 
impossible to study this underlying generator directly. However, what is commonly possible is to 
learn about its properties based on indirect observations.

We have seen that one way in which we can reason about this underlying probability distribution 
in a sensible way is if we assume some parametric distribution for it. For example, if we want 
to learn about the distribution of heights in the population of Malaysia, we can assume that it is 
drawn from a gaussian distribution (and in fact, it does, approximately!). The process by which 
we learn about the mean and variance of this distribution is a crucial activity in statistics and is 
widely referred to as estimation. As a loose guide, an estimator is some function or algorithm by 
which the realisations of a random variable are mapped to an estimate of the parameters of the 
underlying generator. Simply averaging a dataset provides a good example of an estimator that 
is very commonly used. It can be shown that the arithmetical average of a set of data provides 
an unbiased estimate of the expectation of the underlying distribution from which the data was 
drawn.

Maximum Likelihood Estimation

Broadly speaking, there are two approaches to statistics which, while actually sharing a lot of com-
mon ground, are widely regarded as being from opposing camps. One on hand, there is the “Fre-
quentist” position, and on the other we have the Bayesian framework.

One popular method taken from the frequentist camp, is that maximum likelihood estimation. 
This is the procedure for estimating the parameters of the unknown model, by maximising the 
likelihood of the observed data. That is to say we would like to find:

( )arg maxML P Yθθ θ =  

Here, θ represents the parameters of the model which we would like to estimate, whereas Y de-
notes the available observations.

Example: Linear Regression

Suppose we have a set of paired values, x and y, which we assume are linearly correlated. Ac-
cordingly, we assume that the two are related by the expression y = Mx. Hence, we would like to 
estimate the value of the parameter M, which in this case is the gradient of the line obtained by 
plotting x vs y on an x − y plane. Finally, to obtain a maximum likelihood solution, we also need to 
assume some kind of noise model. This is necessary because real data is never exact - otherwise, 
we can obtain M simply by evaluating:

1 2

1 2

y yM
x x
−

=
−

A commonly used assumption is that of gaussian noise. That is to say,

y Mx v= +
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where ν ∼ N(µ, σ). Hence, the distribution of y conditional upon x is given by:

( ) ( )
2

,

p

| ~

ex

P y x N Mx

y Mx

σ

σ

 − ∝   
   

To simplify the maximisation of the likelihood, we now take the logarithm of the expression above. 
Note that this is acceptable since logarithm is a monotonic function - i.e.: it only increases in one 
direction, such that log(x1) > log(x2) necessarily implies that x1 > x2. Taking the logarithm of P(y|x) 
yields the log-likelihood term:

( )
2

|log y MxP y x
σ
− − = − 

 

We take the negative log likelihood - the reason for this will become clear shortly. We can now 
easily differentiate this with respect to M, and set to zero, to obtain:

( )
( )

( )

2

1

2|log
. 0

T T

T T

d P y x
y Mx x

dm
x y x xM

M x x x y

σ

−

 −  = − =

∴ =

∴ =

The final left hand expression, (xT x) −1xT. This is called the pseudoinverse of x, and is commonly 
denoted as x. The evaluation of the pseudoinverse of a matrix is a common function which is widely 
available in statistics/mathematical packages - enabling maximum likelihood fitting of this sort to 
be performed with great ease. Nevertheless, it is useful and conceptually important to be aware of 
the underlying model - i.e. linear regression is actually equivalent to fitting a linear gaussian noise 
observation model to the data.

Bayesian Framework

The maximum likelihood method discussed above has proved very useful for many applications. 
However, it also has some shortcomings. In particular, by maximising over the parameter space, 
it is discarding all the possible model parameters in favour of one “optimal” solution. While this 
is a practical strategy in many instances it is also sensitive to the shape of the likelihood function. 
Take, for example, the likelihood function depicted in figure. This is an example of a bimodal dis-
tribution - in fact a mixture of two gaussian distributions. However, one of the density functions 
has a much smaller variance and as such is a lot more peaked. In fact however, the probability 
mass of the first distribution is only half that of the flatter distribution. This means that, while the 
maximum likelihood solution will be the peak of the first distribution, it is far more likelihood that 
the “optimal” parameters will lie somewhere in the region defined by the second distribution.

The Bayesian framework helps to overcome this problem by attempting to consider the entire PDF 
of the solution space, rather than just the mode. It is based on Bayes’ theorem, which is given by:

( ) ( ) ( )
( )

P Y X P X
P X Y

P Y
=

Bioinformatics

________________________ WORLD TECHNOLOGIES ________________________



WT

67 

What this provides, in very general terms, is a means by which the conditional probability of a 
given model, X, given the available data, can be linked to the conditional probability of observing 
the data if the model were correct. In practice, the significance of this is that it gives a broad re-
lationship for estimating the parameters θ of a proposed model provided based on observations 
derived from the true model. This is because it is much easier to estimate P(Y |X) than the other 
way around.

Figure : PDF consisting of a mixture of two gaussian distributions with µ1 = 5 and  
µ2 = 15 and σ1 = 0.1 and σ2 = 1 respectively

In Bayesian terminology, the terms in equation are often referred to as follows:

1.	 In common with frequentist terminology, P(Y|X) is called the likelihood function. This is 
basically the probability of observing the experimental data, given the proposed model,

2.	 P(X) is the prior distribution for the model. This terms allows any prior information re-
garding the model parameters to be incorporated into the inference. If no prior informa-
tion is available, a suitable “initial guess” can be provided,

3.	 P(X|Y) is the posterior distribution. This reflects the knowledge we have regarding the 
model after having incorporated information contained in the observations, 

4.	 Finally, the P(Y ) in the denominator on the right hand side is called the evidence term. 
This is obtained by marginalising out X - and is thus constant for all values of X. Hence, its 
main function is as a normalising term.

The key concept in Bayesian analysis is that the distributions described above are constantly up-
dated, to reflect the increase in our knowledge about the system being studied as new observations 
become available (it is also possible that very noisy observations will actually increase the degree 
of uncertainty by “spreading” the distributions). However, in general, the process of updating the 
distributions accompanies an increase in our knowledge of the system.

The general process of Bayesian learning is as follows:

1.	 Start by making an initial guess on the state of the system. This is the prior distribution 
P(X),

2.	 When we receive (or make) an observation, Y, we can calculate the likelihood P(Y|X) using 
the model X that we have assumed,

Understanding Bioinformatics	

________________________ WORLD TECHNOLOGIES ________________________



WT

68 	

3.	 The combination of prior and likelihood can then be used to calculate the updated distribu-
tion for X, i.e. the posterior distribution P(X|Y ),

4.	 The whole process can be repeated whenever a new observation (or set of observations) is 
obtained. However, at each step, the posterior of the previous step is used as the new prior 
distribution.

In this way, the Bayesian methodology also carries certain philosophical implications as well. In 
particular, it describes a systematic framework in which we may explicitly specify our belief in the 
parameters of a model, and a procedure through which this belief may be updated by comparison 
with observed data.

Markovian Dynamics

Hitherto, we have looked at probability distributions that do not change in time. The models that 
have been examined in the preceeding sections specify a static density function over the solution 
space, and it is assumed that observations may be made indefinitely without changing the proba-
bilistic structure of the data.

In this section we introduce a modelling paradigm which allows for changes in the statistical prop-
erties of the data over time. Such dynamic models allow a much more general range of phenomena 
to be modelled.

Dynamical Processes

A dynamical process is basically one which changes over time. Essentially, these processes are 
regarded as being composed of an underlying “state” which evolves in time according to some dy-
namic evolution rule, often containing stochastic components. This is illustrated in figure, where 
xt represents the state of the system at time t, and yt the observation (also at time t).

Figure: Block diagram depicting the evolution of a generic dynamical process through time

Markov Processes 

The key elements in this model are the two functions f(.) and g(.). The function f(.) is known as the 
transition or evolution function and determines how the system changes over time. In general we 
would like to model cases where the following two relationships hold true:

( )
( )

1 , andt t

t

x f x

y g yt
−=

=
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( )1 ,t tx f x −= is of particular significance as it indicates that the state of the system at time t is de-
pendent only on the state of the system at time t − 1. This is known as the Markov property and 
any system in which this applies is a Markov process. Equation defines the relationship between 
the state of the system and the observations generated from it. Again, note that the observations at 
time t only depend on the state of the system at time t.

Biological Databases

A biological database is a collection of data that is organized so that its contents can easily be ac-
cessed, managed and updated.

There are two main functions of biological databases:

1.	 Make biological data available to scientists. 

As much as possible of a particular type of information should be available in one single 
place (book, site, database). Published data may be difficult to find or access, and collecting 
it from the literature is very time-consuming. 

2.	 To make biological data available in computer-readable form. 

Since analysis of biological data almost always involves computers, having the data in com-
puter-readable form (rather than printed on paper) is a necessary first step.

The computer became the storage medium of choice as soon as it was accessible to ordinary sci-
entists. Databases were distributed on tape, and later on various kinds of disks. When universi-
ties and academic institutes were connected to the Internet or its precursors (national computer 
networks), it is easy to understand why it became the medium of choice. And it is even easier to 
see why the World Wide Web (WWW, based on the Internet protocol HTTP) since the begin-
ning of the 1990s is the standard method of communication and access for nearly all biological 
databases.

As biology has increasingly turned into a data-rich science, the need for storing and communicat-
ing large datasets has grown tremendously. The obvious examples are the nucleotide sequences, 
the protein sequences, and the 3D structural data produced by X-ray crystallography and mac-
romolecular NMR. An new field of science dealing with issues, challenges and new possibilities 
created by these databases has emerged: bioinformatics. Other types of data that are or will soon 
be available in databases are metabolic pathways, gene expression data (microarrays) and other 
types of data relating to biological function and processes.

One very important issue is the frequency and type of errors that the entries in a database have. 
Naturally, this depends strongly on the type of data, and whether the database is curated (modified 
by a defined group of people) or not. For the sequence databases, the errors may be either in the 
sequence itself (misprint, wrong on entry, genuine experimental error) or in the annotation (mis-
taken features, errors in references,). In the 3D structure database (PDB), structures have been 
deposited which were later discovered to contain severe errors. The error handling policy differs 
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considerably between databases. If one needs to use any particular database heavily, then the im-
plications of its particular policy need to be considered.

The data repositories more relevant to the biological sciences include:

•	 Nucleotide and protein sequences

•	 Protein structures

•	 Genomes

•	 Genetic expression

Main sequence databases:

•	 NCBI

•	 EMBL

Main protein databases:

•	 Uniprot

•	 PDB

•	 MMDB

Some genome databases:

•	 ENSEMBL (Human, mouse and others)

•	 SGD (Yeast)

•	 TAIR (Arabidopsis)

Human diseases:

•	 OMIM

Metabolic pathways:

•	 KEGG

Sequence Databases

A sequence database is a collection of DNA or protein sequences with some extra relevant infor-
mation. The main sequence databases are Genbank and EMBL. Originally they were just sequence 
collections, but they have grown to store different biological databases heavily interconnected and 
they provide powerful interfaces to search and browse the stored information.

The sequences submitted to any of those databases are shared between them, so any sequence 
could be retrieved in the european or the american database. But they differ in the tools to search 
and browse the data and in some databases that provide extra information to the raw sequences 
like: mutations, coded proteins, bibliographical references, etc.
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These databases are growing at an ever increasing fast pace. In June of 2007 there were 73 million 
sequences in Genbank and in August of 2015 there were 187 millions.

The sequences are split in these databases in different sections to ease the search. Among others, 
there are sections for mRNAs, publised nucleotide sequences, genomes, and genes.

Genbank

Genbank is a public collection of annotated sequences hosted by the NCBI. Among other kinds of 
sequences Genbank includes messenger RNAs, genomic DNAs and ribosomic RNA.

Some characteristics:

•	 It is a public repository, any one can send sequences to it.

•	 There are sequences of different qualities, anything submitted is stored.

•	 There could be multiple sequences for the same gene or for the same mRNA

•	 A sequence can have several versions that represent the modifications done by the authors.

Due to the huge amount of sequences stored to ease the search the databases are split in different 
divisions. These divisions follow two criteria: the species and type of sequence. Among the taxo-
nomical divisions you can find: primate, rodent, other mammalian, invertebrate an others. The 
other divisions are related to the kind of sequences like: EST, WGS, HTGS, and many others. If you 
are looking for reads comming from the Next Generation Sequencing Technologies they are stored 
in a special division called SRA.
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RefSeq

In RefSeq there are only well annotated and good quality sequences. It stores genomic, transcript 
and protein sequences and links the sequences that belong to a gene. It just has one representative 
sequence for each mRNA in a particular organism and, thus, it will have as many sequences as 
different transcripts and proteins coded for a particular gene in a particular organism.

It is not the aim of ReqSeq to have any sequence, but just to have a collection of well curated se-
quences. It is a secondary database. Since RefSeq requires extra curation work it is not available 
for all organisms, but only for those with good quality sequences. As of July of 2016 it has 65M 
proteins and 15M transcripts for 60K organisms.

UniProt

UniProt is a protein database that includes information divided in two sections: Swiss-Prot and 
TrEMBL. UniProt aims to store sequence and functional information for the proteins.

TrEMBL is automatically annotated while Swiss-Prot is reviewed manually by humans that add 
information by reviewing the literature. Due to this effort Swiss-Prot has information of a higher 
quality, but it has less sequences than TrEMBL.

UniProt also hosts Uniref. This database aims to store one representative sequence for each 
protein without taking into account the species of origin. It clusters all the similar proteins and 
picks one for every cluster as a representative. There are clusters created at 100%, 90% and 50% 
identities.

PubMed

PubMed is a bibliographical database that comprises biomedical literature (MEDLINE), life science 
journals and on-line books. It is a good collection of publications related to biochemistry, cellular 
biology and medicine. As of 2016 PubMed stores 26 million citations.

For each record it stores:

•	 Title

•	 Authors

•	 Abstract

There is a related database named PubMed Cental (PMC) that only includes citations of Free Ac-
cess Journals. These citations include the complete text for the papers stored.

PDB, Protein Data Bank

PDB stores 3D structures for proteins and nucleic acids.

Access to the Information in Genbank

Every database provides one or more methods to search and query the data. It is quite common to 
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provide a web interface in which to do text searches with some keyword, author, ID or any other 
text. Genbank has a powerful query web interface.

Each database shows the results in one or several formats. For instance, the Genbank sequences 
can be obtained in several formats.

Genbank format:

LOCUS       EC750390                 558 bp    mRNA    linear   EST 	 03-JUL-2006

DEFINITION  POE00005652 PL(light) Polytomella parva cDNA similar to frataxin protein

                  -related, mRNA sequence.

ACCESSION   EC750390

VERSION     EC750390.1  GI:110064507

KEYWORDS    EST.

SOURCE      Polytomella parva

ORGANISM    Polytomella parva

            Eukaryota; Viridiplantae; Chlorophyta; Chlorophyceae;Chlamydomonadales;

                  Chlamydomonadaceae; Polytomella.

REFERENCE   1  (bases 1 to 558)

  AUTHORS   Lee,R.W. and Borza,T.

  TITLE     The colorless plastid of the green alga Polytomella parva: a repertoire of 
its functions

  JOURNAL   Unpublished (2006)

COMMENT     Contact: TBestDB

            Departement de Biochimie, Universite de Montreal

            Montreal, Canada

            Email: tbestdb-curator@bch.umontreal.ca

            Plate: 4065.

FEATURES             Location/Qualifiers

     source          1..558

                     /organism=”Polytomella parva”
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                     /mol_type=”mRNA”

                     /db_xref=”taxon:51329”

                     /clone_lib=”PL(light)”

ORIGIN

        1 gcggccgctt tttttttttt tttttttttt ttttcgtccg ttatttcttt tttaagaatg

       61 cagtcatctg tacatcgtca agtattcgga gtgttatctc gttttgtggg aaacaaagcg

      121 ggtattttta caaagcataa tcatggtgtc tcaaggttgt cttcatgcac ttcgtcatgc

      181 gtaaagatgt atactagcaa caaggccccc gaggatcttc aaacgttcca ccggcaagca

      241 gacgaaactc tagagcaagt cactgaagcc cttgaaaact atgtagatga gcatgaagtg

      301 gaaggcagcg acattgagca tacgcaagga gtgcttacta ttaagcttgg aactcttgga

      361 agttatgtaa ttaataaaca gactcctaat aagcagatat ggttatcctc tcccgtcagt

      421 ggacccttcc gatatgatct taaagaaggt gcctgggttt atgaacgggc tggcgaggct

      481 cggcgcgagc ttatttctca attagaaaca gaaatttcgg atttagttgg tgtcgaatta

      541 aagataagta actgaacg

EMBL format:

ID   EC750390; SV 1; linear; mRNA; EST; PLN; 558 BP.

XX

AC   EC750390;

XX

DT   04-JUL-2006 (Rel. 88, Created)

DT   04-JUL-2006 (Rel. 88, Last updated, Version 1)

XX

DE   POE00005652 PL(light) Polytomella parva cDNA similar to frataxin

DE   protein-related, mRNA sequence.

XX

KW   EST.

XX

OS   Polytomella parva

OC   Eukaryota; Viridiplantae; Chlorophyta; Chlorophyceae; Chlamydomonadales;

OC   Chlamydomonadaceae; Polytomella.

XX

RN   [1]
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RP   1-558

RA   Lee R.W., Borza T.;

RT   “The colorless plastid of the green alga Polytomella parva: a repertoire of

RT   its functions”;

RL   Unpublished.

XX

DR   UNILIB; 42732; 19932.

XX

CC   Contact: TBestDB

CC   Departement de Biochimie, Universite de Montrealhttp://es.wikipedia.org/wiki/Base_
de_datos

CC   Montreal, Canada

CC   Email: tbestdb-curator@bch.umontreal.ca

CC   Plate: 4065.

XX

FH   Key             Location/Qualifiers

FH

FT   source          1..558

FT                   /organism=”Polytomella parva”

FT                   /mol_type=”mRNA”

FT                   /clone_lib=”PL(light)”

FT                   /db_xref=”taxon:51329”

FT                   /db_xref=”UNILIB:42732”

XX

SQ   Sequence 558 BP; 153 A; 105 C; 127 G; 173 T; 0 other;

     gcggccgctt tttttttttt tttttttttt ttttcgtccg ttatttcttt tttaagaatg        60

     cagtcatctg tacatcgtca agtattcgga gtgttatctc gttttgtggg aaacaaagcg       120

     ggtattttta caaagcataa tcatggtgtc tcaaggttgt cttcatgcac ttcgtcatgc       180

     gtaaagatgt atactagcaa caaggccccc gaggatcttc aaacgttcca ccggcaagca       240

     gacgaaactc tagagcaagt cactgaagcc cttgaaaact atgtagatga gcatgaagtg       300

     gaaggcagcg acattgagca tacgcaagga gtgcttacta ttaagcttgg aactcttgga       360

     agttatgtaa ttaataaaca gactcctaat aagcagatat ggttatcctc tcccgtcagt       420
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     ggacccttcc gatatgatct taaagaaggt gcctgggttt atgaacgggc tggcgaggct       480

     cggcgcgagc ttatttctca attagaaaca gaaatttcgg atttagttgg tgtcgaatta       540

     aagataagta actgaacg                                                     558

Main fields in the Genbank format.

Field Description Search in Entrez

Locus name Unique sequence name [ACCN]

Sequence length Sequence Length [SLEN]

Molecule Type DNA, genomic, mRNA, etc. [PROP]

Genbank Division Division for the sequence [PROP]

Modification Date Date for the last edit [MDAT]

Definition Brief description [TITL]

Accession Unique accession ID. It does not changes with modifications [ACCN]

Version Version number of the sequence All fields

Keywords keywords that describe the sequence [KYWD]

Source Common name for the source species [ORGN]

Organism Oficial name for the source species [ORGN]

Reference Related publications [TITL] [AUTH] [JOUR]

Features Regions of interest [FKEY]

CDS Coding Sequence [FKEY]

The Accession is the unique identifier for a sequence record. An accession number applies to the 
complete record and is usually a combination of a letter(s) and numbers, such as a single letter 
followed by five digits (e.g., U12345) or two letters followed by six digits (e.g., AF123456).

The records in GenBank can be updated by an author request, accession numbers do not change, 
even if information in the record is changed. So, a sequence can have several versions in GenBank. 
Versionis an unique identifier that represents a single, specific sequence in the GenBank database. 
If there is any change to the sequence data (even a single base), the version number will be in-
creased, e.g., U12345.1 → U12345.2, but the accession portion will remain stable.

Features holds information about genes and gene products, as well as regions of biological 
significance reported in the sequence. These can include regions of the sequence that code for 
proteins and RNA molecules.

Features example:

FEATURES             Location/Qualifiers

 source          1..12401

                 /organism=”Homo sapiens”

                 /mol_type=”genomic DNA”
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                 /db_xref=”taxon:9606”

                 /chromosome=”17”

                 /map=”17q24.3”

 gene            complement(<1..4774)

                 /gene=”SOX9-AS1”

                 /note=”SOX9 antisense RNA 1”

                 /db_xref=”GeneID:400618”

                 /db_xref=”HGNC:HGNC:49321”

 ncRNA           complement(<4744..4774)

                 /ncRNA_class=”lncRNA”

                 /gene=”SOX9-AS1”

                 /product=”SOX9 antisense RNA 1, transcript variant 2”

                 /inference=”similar to RNA sequence (same

                 species):RefSeq:NR_103737.1”

                 /exception=”annotated by transcript or proteomic data”

                 /transcript_id=”NR_103737.1”

                 /db_xref=”GeneID:400618”

                 /db_xref=”HGNC:HGNC:49321”

 gene            5001..10401

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”

                 /note=”SRY-box 9”

                 /db_xref=”GeneID:6662”

                 /db_xref=”HGNC:HGNC:11204”

                 /db_xref=”MIM:608160”

 mRNA            join(5001..5803,6700..6953,7524..10401)

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”

                 /product=”SRY-box 9”

                 /transcript_id=”NM_000346.3”

                 /db_xref=”GeneID:6662”

                 /db_xref=”HGNC:HGNC:11204”
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                 /db_xref=”MIM:608160”

 exon            5001..5803

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”

                 /inference=”alignment:Splign:2.1.0”

                 /number=1

 CDS             join(5373..5803,6700..6953,7524..8368)

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”

                 /note=”SRY (sex-determining region Y)-box 9 protein;

                 SRY-related HMG-box, gene 9; SRY (sex determining region

                 Y)-box9”

                 /codon_start=1

                 /product=”transcription factor SOX-9”

                 /protein_id=”NP_000337.1”

                 /db_xref=”CCDS:CCDS11689.1”

                 /db_xref=”GeneID:6662”

                 /db_xref=”HGNC:HGNC:11204”

                 /db_xref=”MIM:608160”

                 /translation=”MNLLDPFMKMTDEQEKGLSGAPSPTMSEDSAGSPCPSGSGSDTE

                 NTRPQENTFPKGEPDLKKESEEDKFPVCIREAVSQVLKGYDWTLVPMPVRVNGSSKNK

                 PHVKRPMNAFMVWAQAARRKLADQYPHLHNAELSKTLGKLWRLLNESEKRPFVEEAER

                 LRVQHKKDHPDYKYQPRRRKSVKNGQAEAEEATEQTHISPNAIFKALQADSPHSSSGM

                 SEVHSPGEHSGQSQGPPTPPTTPKTDVQPGKADLKREGRPLPEGGRQPPIDFRDVDIG

                 ELSSDVISNIETFDVNEFDQYLPPNGHPGVPATHGQVTYTGSYGISSTAATPASAGHV

                 WMSKQQAPPPPPQQPPQAPPAPQAPPQPQAAPPQQPAAPPQQPQAHTLTTLSSEPGQS

                 QRTHIKTEQLSPSHYSEQQQHSPQQIAYSPFNLPHYSPSYPPITRSQYDYTDHQNSSS

                 YYSHAAGQGTGLYSTFTYMNPAQRPMYTPIADTSGVPSIPQTHSPQHWEQPVYTQLTR

                 P”

 STS             5374..5670

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”
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                 /standard_name=”PMC34415P1”

                 /db_xref=”UniSTS:273201”

 exon            6700..6953

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”

                 /inference=”alignment:Splign:2.1.0”

                 /number=2

 STS             6765..7647

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”

                 /standard_name=”PMC351321P1”

                 /db_xref=”UniSTS:273242”

 STS             6771..7605

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”

                 /standard_name=”MARC_71570-71571:1249593890:3”

                 /db_xref=”UniSTS:528379”

 STS             6876..8104

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”

                 /standard_name=”Sox9”

                 /db_xref=”UniSTS:502689”

 exon            7524..10401

                 /gene=”SOX9”

                 /gene_synonym=”CMD1; CMPD1; SRA1; SRXX2; SRXY10”

                 /inference=”alignment:Splign:2.1.0”

                 /number=3

Sequence Formats

Text Files

There are different formats to store sequences in a text file. Text files should only include Plain 
text. Graphics or any other binary information are not allowed in text files.
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Microsoft Word files are not text files, they are binary files that happen to represent documents. 
These documents can include text among many other things like images, charts or formats.

Sequences in Plain Files

We could store the sequence in a text file by just writing the sequence. This files would had to in-
clude only IUPAC characters.

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCCCCTGGAGGGTAC

GGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGCCTCCTGACTTTCCTCGCTTGGT

AGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGGAAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCC

ATCCGCGCGCCGGGACAGAATGCCCTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAA

This kind of file is seldom used because it lacks any metadata to identify the sequence.

Fasta Format

The Fasta file includes a name for the sequence and, optionally, some description. The sequence 
should be preceded by a line that starts with the symbol >. The name will be written after that 
symbol. Spaces are not allowed in the sequence name. If there is a description it will be found after 
a space in the same line.

Several sequences can be included in the same file.

It is one of the most common formats.

>sequence1_name description

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC

CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC

CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG

AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC

CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGC

>sequence2_name description

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC

CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGA

If we want to include more information we could use the GenBank or EMBL formats. It is also very 
common in the sequences that come directly from a sequencing machine to include the quality 
information, for that purpose the most common format is FASTQ.
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Chapter 2
Computational Methods in  
Bioinformatics
Computation biology is a domain that is concerned with the development and application of da-
ta-analytical and theoretical methods, computational simulation techniques and mathematical 
modelling, to study biological, ecological, behavioural and social systems. These applications of 
computational methods have been thoroughly discussed in this chapter.

Application of Machine Learning Methods in  
Bioinformatics

Machine learning is closely related to computational statistics, which also focuses on predic-
tion-making through the use of computers. It has strong ties to mathematical optimization, which 
delivers methods, theory and application domains to the field. Machine learning is sometimes con-
flated with data mining, where the latter subfield focuses more on exploratory data analysis and is 
known as unsupervised learning. Machine learning can also be unsupervised and be used to learn 
and establish biology database and help find laws in gene sequences.

Principal Component Analysis 

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transforma-
tion to convert a set of observations of possibly correlated variables into a set of values of linearly 
uncorrelated variables called principal components. Principal component analysis is a statistical 
method. Through orthogonal transformation, a set of variables that may have correlation is trans-
formed into a set of linearly uncorrelated variables. The transformed set of variables is called prin-
cipal component. The goal of PCA is to find r, which is used when analyzing complex cubes. When 
the number of variables is greater than the number of samples, the PCA can minimize the sample 
dimension to the number of samples without losing the amount of information. It can be seen as a 
step in the preparation of complex experimental data.The process of PCA is as follows:

•	 Go to the average, that is, subtract the average for each feature. 

•	 Calculate the covariance matrix. 

•	 Calculate the eigenvalues and eigenvectors of the covariance matrix. 

•	 Sort eigenvalues from largest to smallest.

•	 Keep the largest number of eigenvectors. 

•	 Transform the data into a new space constructed by a feature vector.
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With the help of the machine learning algorithm PCA, we identify five kinds of differentiated alve-
olar cells and this is shown in figure.

Figure: Distinguish five kinds of cells by the first and third PCA

Back Error Propagation Algotithm

Artificial neural network is a hot research field in recent years. It has always been one of the im-
portant research contents in the field of artificial neural network. The basic principle of BP network 
model processing information is the input signal Xi acts on the output node through an interme-
diate node (hidden layer point).After nonlinear transformation, it generates an output signal Yk. 
Each sample trained by the network includes an input vector X and a desired output t, the network 
output Y, a desired output t by the adjustment of the input node,hidden layer node connection 
strength Wij value, the hidden layer node, the output node connection strength Tjk and threshold, 
so that the error along the gradient direction is the least. After repeated learning and training to 
determine, the minimum error corresponding to the network parameters (weights and thresholds) 
and the training stops. At this point, the trained neural network can process the non-linear trans-
formed information with the smallest output error on the input information. The principle of back 
error propagation is shown in figure.

Figure: The principle of BP

In neural networks, neurons receive input signals from other neurons, which are multiplied by 
weights and added to the total input values received by the neurons, then compared with the cur-
rent neurons’ thresholds and then processed by an activation function, as a result, it generate 
neuron output. The ideal activation function is a step function, “0” corresponds to neuron depres-
sion, and “1” corresponds to neuron excitation. However, the shortcoming of step function is dis-
continuous, non-conductive and unsmooth, so the sigmoid function is often used as an activation 
function instead of a step function.

Figure: Sigmoid function
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Protein secondary structure prediction is based on the known primary structure, the prediction 
methods and techniques to achieve the classification of secondary structure prediction. For BP 
neural network, the input is the primary sequence of known as the protein, the output is the sec-
ondary structure type. In this paper, a 3-layer BP neural network is used as a classifier to predict 
the protein secondary structure. Design, the BP network input layer is designed to slide along the 
amino acid sequence of the window, the window position is symmetrical. The disadvantage of this 
algorithm is that it can be overfit and needs lots of tricks.

Neural Networks

Neural neworks are typically organized in layers. Layers are made up of a number of interconnect-
ed ‘nodes’ which contain an ‘activation function’. Patterns are presented to the network via the 
‘input layer’, which communicates to one or more ‘hidden layers’ where the actual processing is 
done via a system of weighted ‘connections’. The hidden layers then link to an ‘output layer’ where 
the answer is output as shown in the graphic below.

Most ANNs contain some form of ‘learning rule’ which modifies the weights of the connections 
according to the input patterns that it is presented with. In a sense, ANNs learn by example as do 
their biological counterparts; a child learns to recognize dogs from examples of dogs.

Although there are many different kinds of learning rules used by neural networks, this demon-
stration is concerned only with one; the delta rule. The delta rule is often utilized by the most 
common class of ANNs called ‘backpropagational neural networks’ (BPNNs). Backpropagation is 
an abbreviation for the backwards propagation of error.

With the delta rule, as with other types of backpropagation, ‘learning’ is a supervised process that occurs 
with each cycle or ‘epoch’ (i.e. each time the network is presented with a new input pattern) through a 
forward activation flow of outputs, and the backwards error propagation of weight adjustments. More 
simply, when a neural network is initially presented with a pattern it makes a random ‘guess’ as to what 
it might be. It then sees how far its answer was from the actual one and makes an appropriate adjust-
ment to its connection weights. More graphically, the process looks something like this:

Bioinformatics
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That within each hidden layer node is a sigmoidal activation function which polarizes network 
activity and helps it to stablize.

Backpropagation performs a gradient descent within the solution’s vector space towards a ‘global 
minimum’ along the steepest vector of the error surface. The global minimum is that theoretical 
solution with the lowest possible error. The error surface itself is a hyperparaboloid but is seldom 
‘smooth’ as is depicted in the graphic below. Indeed, in most problems, the solution space is quite 
irregular with numerous ‘pits’ and ‘hills’ which may cause the network to settle down in a local.

Minum’ which is not the best overall solution

Since the nature of the error space can not be known a prioi, neural network analysis often requires 
a large number of individual runs to determine the best solution. Most learning rules have built-in 
mathematical terms to assist in this process which control the ‘speed’ (Beta-coefficient) and the 
‘momentum’ of the learning. The speed of learning is actually the rate of convergence between the 
current solution and the global minimum. Momentum helps the network to overcome obstacles 
(local minima) in the error surface and settle down at or near the global miniumum.

Once a neural network is ‘trained’ to a satisfactory level it may be used as an analytical tool on oth-
er data. To do this, the user no longer specifies any training runs and instead allows the network 
to work in forward propagation mode only. New inputs are presented to the input pattern where 
they filter into and are processed by the middle layers as though training were taking place, how-
ever, at this point the output is retained and no backpropagation occurs. The output of a forward 
propagation run is the predicted model for the data which can then be used for further analysis 
and interpretation.

It is also possible to over-train a neural network, which means that the network has been trained 
exactly to respond to only one type of input; which is much like rote memorization. If this should 
happen then learning can no longer occur and the network is refered to as having been “grand-
mothered” in neural network jargon. In real-world applications this situation is not very useful 
since one would need a separate grandmothered network for each new kind of input.

How do Neural Networks Differ from Conventional Computing?

To better understand artificial neural computing it is important to know first how a conventional 
‘serial’ computer and it’s software process information. A serial computer has a central processor 
that can address an array of memory locations where data and instructions are stored. Computa-
tions are made by the processor reading an instruction as well as any data the instruction requires 
from memory addresses, the instruction is then executed and the results are saved in a specified 
memory location as required. In a serial system (and a standard parallel one as well) the compu-
tational steps are deterministic, sequential and logical, and the state of a given variable can be 
tracked from one operation to another.
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In comparison, ANNs are not sequential or necessarily deterministic. There are no complex cen-
tral processors, rather there are many simple ones which generally do nothing more than take the 
weighted sum of their inputs from other processors. ANNs do not execute programed instructions; 
they respond in parallel (either simulated or actual) to the pattern of inputs presented to it. There 
are also no separate memory addresses for storing data. Instead, information is contained in the 
overall activation ‘state’ of the network. ‘Knowledge’ is thus represented by the network itself, 
which is quite literally more than the sum of its individual components.

What Applications Should Neural Networks be used for?

Neural networks are universal approximators, and they work best if the system you are using them 
to model has a high tolerance to error. One would therefore not be advised to use a neural network 
to balance one’s cheque book. However they work very well for:

•	 Capturing associations or discovering regularities within a set of patterns;

•	 Where the volume, number of variables or diversity of the data is very great;

•	 The relationships between variables are vaguely understood; or,

•	 The relationships are difficult to describe adequately with conventional approaches.

What are their Limitations?

There are some specific issues potential users should be aware of:

•	 Backpropagational neural networks (and many other types of networks) are in a sense the 
ultimate ‘black boxes’. Apart from defining the general archetecture of a network and per-
haps initially seeding it with a random numbers, the user has no other role than to feed it 
input and watch it train and await the output. In fact, it has been said that with backpropa-
gation, “you almost don’t know what you’re doing”. Some software freely available software 
packages (NevProp, bp, Mactivation) do allow the user to sample the networks ‘progress’ 
at regular time intervals, but the learning itself progresses on its own. The final product of 
this activity is a trained network that provides no equations or coefficients defining a rela-
tionship (as in regression) beyond it’s own internal mathematics. The network ‘IS’ the final 
equation of the relationship.

•	 Backpropagational networks also tend to be slower to train than other types of networks 
and sometimes require thousands of epochs. If run on a truly parallel computer system 
this issue is not really a problem, but if the BPNN is being simulated on a standard serial 
machine (i.e. a single SPARC, Mac or PC) training can take some time. This is because the 
machines CPU must compute the function of each node and connection separately, which 
can be problematic in very large networks with a large amount of data. However, the speed 
of most current machines is such that this is typically not much of an issue.

What are their Advantages over Conventional Techniques?

Depending on the nature of the application and the strength of the internal data patterns you can 
generally expect a network to train quite well. This applies to problems where the relationships 
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may be quite dynamic or non-linear. ANNs provide an analytical alternative to conventional tech-
niques which are often limited by strict assumptions of normality, linearity, variable independence 
etc. Because an ANN can capture many kinds of relationships it allows the user to quickly and 
relatively easily model phenomena which otherwise may have been very difficult or imposible to 
explain otherwise.

Deep Neural Networks

The basic structure of DNNs consists of an input layer, multiple hidden layers, and an output 
layer. Once input data are given to the DNNs, output values are computed sequentially along the 
layers of the network. At each layer, the input vector comprising the output values of each unit 
in the layer below is multiplied by the weight vector for each unit in the current layer to produce 
the weighted sum. Then, a nonlinear function, such as a sigmoid, hyperbolic tangent, or rectified 
linear unit (ReLU), is applied to the weighted sum to compute the output values of the layer. The 
computation in each layer transforms the representations in the layer below into slightly more ab-
stract representations. Based on the types of layers used in DNNs and the corresponding learning 
method, DNNs can be classified as MLP, SAE, or DBN.

MLP has a similar structure to the usual neural networks but includes more stacked layers. It is 
trained in a purely supervised manner that uses only labeled data. Since the training method is a 
process of optimization in high-dimensional parameter space, MLP is typically used when a large 
number of labeled data are available.

SAE and DBN use AEs and RBMs as building blocks of the architectures, respectively. The main dif-
ference between these and MLP is that training is executed in two phases: unsupervised pre-train-
ing and supervised fine-tuning. First, in unsupervised pre-training, the layers are stacked sequen-
tially and trained in a layer-wise manner as an AE or RBM using unlabeled data. Afterwards, in 
supervised fine-tuning, an output classifier layer is stacked, and the whole neural network is op-
timized by retraining with labeled data. Since both SAE and DBN exploit unlabeled data and can 
help avoid overfitting, researchers are able to obtain fairly regularized results, even when labeled 
data are insufficient as is common in the real world.
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DNNs are renowned for their suitability in analyzing high-dimensional data. Given that bioinfor-
matics data are typically complex and high-dimensional, DNNs have great promise for bioinfor-
matics research. We believe DNNs, as hierarchical representation learning methods, can discover 
previously unknown highly abstract patterns and correlations to provide insight to better under-
stand the nature of the data. However, it has occurred to us that the capabilities of DNNs have not 
yet fully been exploited. Although the key characteristic of DNNs is that hierarchical features are 
learned solely from data, human designed features have often been given as inputs instead of raw 
data forms. We expect that the future progress of DNNs in bioinformatics will come from investi-
gations into proper ways to encode raw data and learn suitable features from them.

Convolutional Neural Networks

CNNs are designed to process multiple data types, especially two-dimensional images, and are 
directly inspired by the visual cortex of the brain. In the visual cortex, there is a hierarchy of two 
basic cell types:simple cells and complex cells. Simple cells react to primitive patterns in sub-re-
gions of visual stimuli, and complex cells synthesize the information from simple cells to identify 
more intricate forms. Since the visual cortex is such a powerful and natural visual processing sys-
tem, CNNs are applied to imitate three key ideas: local connectivity, invariance to location, and 
invariance to local transition.

The basic structure of CNNs consists of convolution layers, nonlinear layers, and pooling layers. To 
use highly correlated sub-regions of data, groups of local weighted sums, called feature maps, are 
obtained at each convolution layer by computing convolutions between local patches and weight 
vectors called filters. Furthermore, since identical patterns can appear.

Regardless of the location in the data, filters are applied repeatedly across the entire dataset, which 
also improves training efficiency by reducing the number of parameters to learn. Then nonlinear 
layers increase the nonlinear properties of feature maps. At each pooling layer, maximum or aver-
age subsampling of non-overlapping regions in feature maps is performed. This non-overlapping 
subsampling enables CNNs to handle somewhat different but semantically similar features and 
thus aggregate local features to identify more complex features.

Currently, CNNs are one of the most successful deep learning architectures owing to their out-
standing capacity to analyze spatial information. Thanks to their developments in the field of 
object recognition, we believe the primary research achievements in bioinformatics will come 
from the biomedical imaging domain. Despite the different data characteristics between normal 
and biomedical imaging, CNN will nonetheless offer straightforward applications compared to 
other domains. Indeed, CNNs also have great potential in omics and biomedical signal process-
ing. The three keys ideas of CNNs can be applied not only in a one-dimensional grid to discover 
meaningful recurring patterns with small variance, such as genomic sequence motifs, but also in 

Bioinformatics

________________________ WORLD TECHNOLOGIES ________________________



WT

Computational Methods in Bioinformatics 	 89 

two-dimensional grids, such as interactions within omics data and in timefrequency matrices of 
biomedical signals. Thus, we believe the popularity and promise of CNNs in bioinformatics appli-
cations will continue in the years ahead.

Recurrent Neural Networks

RNNs, which are designed to utilize sequential information, have a basic structure with a cyclic 
connection. Since input data are processed sequentially, recurrent computation is performed in 
the hidden units where cyclic connection exists. Therefore, past information is implicitly stored in 
the hidden units called state vectors, and output for the current input is computed considering all 
previous inputs using these state vectors. Since there are many cases where both past and future 
inputs affect output for the current input (e.g., in speech recognition), bidirectional recurrent neu-
ral networks (BRNNs) have also been designed and used widely.

Although RNNs do not seem to be deep as DNNs or CNNs in terms of the number of layers, they can 
be regarded as an even deeper structure if unrolled in time. Therefore, for a long time, researchers 
struggled against vanishing gradient problems while training RNNs, and learning long-term de-
pendency among data was difficult. Fortunately, substituting the simple perceptron hidden units 
with more complex units such as LSTM or GRU , which function as memory cells, significantly 
helps to prevent the problem. More recently, RNNs have been used successfully in many areas 
including natural language processing and language translation.

Even though RNNs have been explored less than DNNs and CNNs, they still provide very powerful 
analysis methods for sequential information. Since omics data and biomedical signals are typically 
sequential and often considered languages of nature, the capabilities of RNNs for mapping a vari-
able-length input sequence to another sequence or fixed-size prediction are promising for bioin-
formatics research. With regard to biomedical imaging, RNNs are currently not the first choice of 
many researchers. Nevertheless, we believe that dissemination of dynamic CT and MRI would lead 
to the incorporation of RNNs and CNNs and elevate their importance in the long term. Further-
more, we expect that their successes in natural language processing will lead RNNs to be applied 
in biomedical text analysis and that employing an attention mechanism will improve performance 
and extract more relevant information from bioinformatics data.
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Emergent Architectures

Emergent architectures refer to deep learning architectures besides DNNs, CNNs, and RNNs. In 
this review, we introduce three emergent architectures (i.e., DST-NNs, MD-RNNs, and CAEs) and 
their applications in bioinformatics.

DST-NNs are designed to learn multi-dimensional output targets through progressive refinement. 
The basic structure of DST-NNs consists of multi-dimensional hidden layers. The key aspect of the 
structure, progressive refinement, considers local correlations and is performed via input feature 
compositions in each layer: spatial features and temporal features. Spatial features refer to the 
original inputs for the whole DST-NN and are used identically in every layer. However, temporal 
features are gradually altered so as to progress to the upper layers. Except for the first layer, to 
compute each hidden unit in the current layer, only the adjacent hidden units of the same coordi-
nate in the layer below are used so that local correlations are reflected progressively.

MD-RNNs are designed to apply the capabilities of RNNs to non-sequential multidimensional 
data by treating them as groups of sequential data. For instance, two-dimensional data are treat-
ed as groups of horizontal and vertical sequence data. Similar to BRNNs which use contexts in 
both directions in one-dimensional data, MD-RNNs use contexts in all possible directions in the 
multi-dimensional data. In the example of a two-dimensional dataset, four contexts that vary with 
the order of data processing are reflected in the computation of four hidden units for each position 
in the hidden layer. The hidden units are connected to a single output layer, and the final results 
are computed with consideration of all possible contexts.

CAEs are designed to utilize the advantages of both AE and CNNs so that it can learn good hi-
erarchical representations of data reflecting spatial information and be well regularized by 
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unsupervised training. In training of AEs, reconstruction error is minimized using an encoder and 
decoder, which extract feature vectors from input data and recreate the data from the feature vec-
tors, respectively. In CNNs, convolution and pooling layers can be regarded as a type of encoder. 
Therefore, the CNN encoder and decoder consisting of deconvolution and unpooling layers are 
integrated to form a CAE and are trained in the same manner as in AE.

Deep learning is a rapidly growing research area, and a plethora of new deep learning architecture 
is being proposed but awaits wide applications in bioinformatics. Newly proposed architectures 
have different advantages from existing architectures, so we expect them to produce promising 
results in various research areas. For example, the progressive refinement of DST-NNs fits the dy-
namic folding process of proteins and can be effectively utilized in protein structure prediction; the 
capabilities of MD-RNNs are suitable for segmentation of biomedical images since segmentation 
requires interpretation of local and global contexts; the unsupervised representation learning with 
consideration of spatial information in CAEs can provide great advantages in discovering recur-
ring patterns in limited and imbalanced bioinformatics data.

Artificial Neural Networks

ANN stands for Artificial Neural Networks. Basically, it’s a computational model. That is based on 
structures and functions of biological neural networks. Although, the structure of the ANN affect-
ed by a flow of information. Hence, neural network changes were based on input and output.

Basically, we can consider ANN as nonlinear statistical data. That means complex relationship 
defines between input and output. As a result, we found different patterns. Also, we call the ANN 
as a neural network.

Structure of Artificial Neural Network

Generally, the working of a human brain by making the right connections is the idea behind ANNs. 
That was limited to use of silicon and wires as living neurons and dendrites.

Here, neurons, part of human brain. That was composed of 86 billion nerve cells. Also, connected to 
other thousands of cells by Axons. Although, there are various inputs from sensory organs. That was 
accepted by dendrites. As a result, it creates electric impulses. That is used to travel through the Arti-
ficial neural network. Thus, to handle the different issues, neuron send a message to another neuron.

Basic Structure of Artificial Neural Network
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As a result, we can say that ANNs are composed of multiple nodes. That imitate biological neurons 
of the human brain. Although, we connect these neurons by links. Also, they interact with each 
other. Although, nodes are used to take input data. Further, perform simple operations on the 
data. As a result, these operations are passed to other neurons. Also, output at each node is called 
its activation or node value.

As each link is associated with weight. Also, they are capable of learning. That takes place by alter-
ing weight values. Hence, the following illustration shows a simple ANN.

Artificial Neural Network Structure

Types of Artificial Neural Networks

Generally, there are two types of ANN. Such as FeedForward and Feedback.

a. FeedForward ANN

In this network flow of information is unidirectional. A unit used to send information to another 
unit that does not receive any information. Also, no feedback loops are present in this. Although, 
used in recognition of a pattern. As they contain fixed inputs and outputs.

Types of Artificial Neural Networks – FeedForward ANN

b. FeedBack ANN

In this particular Artificial Neural Network, it allows feedback loops. Also, used in content ad-
dressable memories.

Bioinformatics
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Types of Artificial Neural Networks – FeedBack ANN

How Does Artificial Neural Networks Works?

In this topology diagrams, you will learn everything in a detailed manner.

In this, each arrow represents a connection between two neurons. Also, they used to indicate the 
pathway for the flow of information. As it was noticed that each connection has a weight, an integer 
number. That used to controls the signal between the two neurons.

If the output is good that was generated by the network then we don’t require to adjust the weights. 
Although, if poor output generated. Then surely system will alter the weight to improve results.

Machine Learning in ANNs

As there are too many Machine learning strategies are present, let’s see them one by one:

a. Supervised Learning: Generally, in this learning a teacher is present to teach. That teacher must 
be aware of ANN. For example: The teacher feeds only example data. That teacher already knows 
the answers.

b. Unsupervised Learning: If there is present no data set. Then we need this learning technique.

c. Reinforcement Learning: As this Machine learning technique is based on the observation. Al-
though, if it’s negative the networks need to adjust its weights. That is able to make a different 
required decision the next time.

Back Propagation Algorithm

Generally, we use to call it as training and learning algorithm. As these networks are ideal for sim-
ple Pattern Recognition and Mapping Task.

Bayesian Networks

Basically, we use to call it as graphical structures. Generally, we use this network to represent 
probabilistic representation. This represents among a set of random variables. Also, we used to call 
this network as Belief networks or Bayes Nets.

In these networks, each node represents a random variable with specific propositions.
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In this only constraint arcs present in BN. Thus, doesn’t need to return node by following directed 
arcs. Hence, we can say BNs are known as Directed Acyclic Graphs (DAGs). Hence, we use BNs to 
handle multivalued variables simultaneously.

Range of Prepositions

Probability assigned to each of the prepositions.

Artificial Neural Networks Applications

Artificial Neural Network used to perform a various task. Also, this task performs that are busy 
with humans but difficult for a machine.

a. Aerospace: Generally, we use ANN a for Autopilot aircrafts. They used for aircraft fault detec-
tion.

b. Military: In various ways, we use ANN an in the military. Such as Weapon orientation and steer-
ing, target tracking.

c. Electronics: Basically, we use an Artificial neural network in electronics in many ways. That are 
code sequence prediction, IC chip layout, and chip failure analysis.

d. Medical: As medical has too many machines. That use in various ways. Such as cancer cell anal-
ysis, EEG and ECG analysis.

e. Speech: We use ANN in speech recognition and speech classification.

f. Telecommunications: Generally, it has different applications. Thus, we use an Artificial neural 
network in many ways. Such as image and data compression, automated information services.

g. Transportation: Generally, we use an Artificial neural network in transportation in many ways. 
That are truck Brake system diagnosis and vehicle scheduling, routing systems.

h. Software: It also uses an ANN in pattern Recognition. Such as in facial recognition, optical char-
acter recognition, etc.

i. Time Series Prediction: We use an Artificial neural network to predict time. Also, we use ANNs 
to make predictions on stocks and natural calamities.

Bioinformatics Algorithms

Genetic Algorithm

When it comes to bioinformatics algorithms, Genetic algorithms top the list of most used and talk-
ed about algorithms in bioinformatics. Understanding the Genetic algorithm is important not only 
because it helps you to reduce the computational time taken to get a result but also because it is 
inspired by how nature works.

Bioinformatics
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Genetic Algorithm was developed by John Holland. It uses the concepts of Natural Selection and 
Genetic Inheritance and tries to mimic the biological evolution. It falls under the category of algo-
rithms known as Evolutionary Algorithms. It can be used to find a solution to the hard problems 
where we don’t know much about the search space.

Let us understand how a genetic algorithm works. For this, let us consider a cancer-associated 
gene expression matrix. This matrix contains all the known genes found in human being and their 
level of expression.

•	 For a given problem, the genetic algorithm works by maintaining a set of candidate solu-
tions and then applies three operators over them – Selection, Recombination, and Muta-
tion, which are collectively known as the stochastic operators.

•	 Selection: In nature, if an organism is adapted to the environment, its population will grow 
relative to its quality of adaptation. This is referred to as selection. It means if a solution 
meets the conditional constraints, it is replicated at a rate which is proportional to the rel-
ative quality.

•	 Recombination: In nature, two similar chromosomes of the surviving individual ex-
change genes during sexual reproduction in a process known as Crossing Over. In 
GA we decompose two distinct solutions and randomly mix their parts to form novel 
solutions.

•	 Mutation: Random changes in an existing chromosome may lead to some fitter individual. 
This concept is utilized to randomly perturbs a candidate solution:

1.	 produce an initial population of individuals

2.	 evaluate the fitness of all individuals

3.	 while termination condition not met do

4.	 select fitter individuals for reproduction

5.	 recombine between individuals

6.	 mutate individuals

7.	 evaluate the fitness of the modified individuals
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8.	 generate a new population

9.	 End while

The Program

We are going to implement the Genetic Algorithm and write a program in Perl for it. Although not 
purely applicable to a real-life problem, it should be sufficient to familiarize you with the Genetic 
Algorithm.

Suppose that you had a set of Gene expression data. The data is for all 25000 genes in the human 
genome and you want to find out what are the five values among all 25000 values whose sum can 
give you the highest number.

For the purpose of this program we will require four subroutines:

•	 Generate: It will generate chromosomes containing 5 values(specified in variable 
$GeneNumberConstraint) selected at random at positions.

•	 Mutate: It mutates a chromosome at random position with a random value less than spec-
ified in $HighestMutationValue.

•	 Survival Check: It checks if the newly formed chromosome is viable. i.e. It has a value that 
is up to a minimum specification. (Checking for fitness).

•	 Recombine: It will form new combinations from the existing chromosome by crossing 
them over with each other.

The Code

So here is the final code implementing Genetic Algorithm in Perl:

$CurrentHighest=0;

@GeneExpressionData = (1,3,8,5,2,4,46,6,78,7,9,9

,0,1,1,1,5,59,9,97,7,6,5,45

,4,3,23,2,22,2,2,4,5,5,6,54);

@SolutionSpace = ();

$HighestMutationValue = 110;

$GeneNumberConstraint = 5;

$InitialThreshold  = 10;

$genes	= scalar @GeneExpressionData;

@chromosome = ();

 $sum = 0;

$steps= 10;

print “The Total Genes are: $genes\n”;

Bioinformatics
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generate();

$steps = 10;

for($p=0;$p&lt;=$steps;$p++){

 generate();

 SurvivalCheck();

 mutate();

 SurvivalCheck();

 recombine();

 SurvivalCheck();

}

print “\n\n Genetic Algorithm Result

\n\n\n\t\tHighest Detected: $CurrentHighest in $steps Steps\n\n”;

sub mutate{

 $randpos = int(rand($gene));

 $n = int(rand($HighestMutationValue));

 $chromosome[$randpos] = $n;

 print “\n Mutation Took Place in Chromosome @chromosome “;

}

sub recombine

{

  print “\nRecombining\n\n”;

  @chromosome1 = $SolutionSpace[int rand($p)];

  @chromosome2 =  $SolutionSpace[int rand($p)];

  print “Random Sequence Chromosome from Solution Space: @chromosome1 and @chromosome2”;

  for($i=0; $i&lt;=$GeneNumberConstraint/2; $i++){ my $random_number = int(rand(3)) + 
1; $pos1 = int(rand($GeneNumberConstraint)); $pos1 = int(rand($GeneNumberConstraint)); 
$swap = $chromosome1[$pos1]; $chromosome1[$pos1] = $chromosome2[$pos2]; $chromosome2[$-
pos2] = $swap; } print “The Recombination led to @chromosome”; @chromosome = (); @chro-
mosome = @chromosome1; } sub SurvivalCheck{ $sum = 0; foreach $val (@chromosome){ $sum 
+= $val; } if($sum&gt;$CurrentHighest){

   $CurrentHighest = $sum;

   push @SolutionSpace, @chromosome;

   print “\nIndividual is alive! \nCurrent Highest Expression: $CurrentHighest”;		
return 1;

 }

 else{

  print “\nSpecies Didn’t Survive! \n”; 

________________________ WORLD TECHNOLOGIES ________________________



WT

98 	

  return 0;

 }

}

sub generate{

 @chromosome = ();

 for($i=1;$i&lt;=$GeneNumberConstraint;$i++){

  $n = int(rand($genes));

  push @chromosome, $GeneExpressionData[$n];

  $sum += $GeneExpressionData[$n];		

 }

 print “\n\n\nGenerated Chromosome: @chromosome \n”;

}

Smith-Waterman Algorithm

The Smith–Waterman algorithm is a well-known algorithm for performing local sequence 
alignment; that is, for determining similar regions between two nucleotide or protein sequenc-
es. Instead of looking at the total sequence, the Smith–Waterman algorithm compares seg-
ments of all possible lengths and optimizes the similarity measure. This algorithm is a variation 
of Needleman-Wunsch Algorithm developed by Temple F. Smith and Michael S. Waterman 
in 1981, it is also a dynamic programming algorithm to find the optimal local alignment with 
respect to the scoring system being used. The major difference from Needleman-Wunsch algo-
rithm includes:

•	 In order to highlight the best local alignments; negative scoring matrix cells are set to zero.

•	 Traceback procedure starts at the highest scoring matrix cell and proceeds until a cell with 
score zero is encountered.

This algorithm was designed to sensitively detect similarities in highly diverged sequences. For the 
purpose of explanation, first summarizing the algorithm in to simple steps and then you will be 
move forwards with examples and explanations.

Algorithm is similar to global alignment with modified boundary conditions and recurrence rules,

1.	 The top row and left column are now filled with 0

2.	 If the (sub-)alignment score becomes negative, restart the search:

( ) ( ) ( )
( )
( )

0,

1, 1 , ,
, max

1, ,
, 1 .

i jF i j s x y
F i j

F i j d
F i j d




− − += 
− −

 − −
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1.	 Traceback is from the maximum of F (i, j) in the whole matrix to the first 0.

2.	 Example: the optimal local alignment between HEAGAWGHEE and PAWHEAE is AW-
GHE::AW-HE.

3.	 Issue: In gapped alignments, the expected score for a random match may be positive

Example of Smith–Waterman Algorithm:

1.	 Start with a N × N integer matrix where N is sequence length (both s and t). Compute M[i 
][j ] based on Score Matrix and optimum score compute so far (DP).

2.	 Understanding the matrix

•	 Alignment
t : - - - - - - - -
s : c c c t a g g t

•	 Alignment
t : c g g g t a t... 
s : - - - - - - -... 
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3.	 Computing cell scores: Finding m[i][j]: There are three ways to finish the alignment of s0..i 
and t0 j:

4.	 Scoring process: Element Computation M[i ][j ]:

Bioinformatics
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[ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ]
[ ][ ]
[ ][ ]

i j

i

j

i 0 0 0 0

0

1 1 if s t
0 max

1 if s ,
i 1 if t ,

i j

M M j

M i j S s t
M j

M i j d
M j d

= =




 − − +  = 
− −

 − −

5.	 Backtracking Process: For finding the BEST local alignment, find the highest score and 
then traceback to first 0.

Scoring used in this example:

•	 Diag - the letters from two sequences are aligned

•	 Left - a gap is introduced in the left sequence

•	 Up - a gap is introduced in the top sequence
N

opt i. j 1
Score max M[i][ j]

=
=
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Probabilistic Model for Sequence Analysis

A probabilistic model is a model that produces different outcomes with different probabilities – it 
can simulate a whole class of objects, assigning each an associated probability. In bioinformatics, 
the objects usually are DNA or protein sequences and a model might describe a family of related 
sequences.

A DNA sequence is a succession of the letters A, C, T and G. The sequences are any combination 
of these letters. A physical or mathematical model of a system produces a sequence of symbols 
according to a certain probability associated with them. This is known as a stochastic process, 
that is, it is a mathematical model for a biological system which is governed by a set of probability 
measure. The occurrence of the letters can lead us to the further study of genetic disorder. The 
stochastic process is also known mathematically as Discrete Markov Process. There are different 
ways to use probabilities for depicting the DNA sequences. One scheme is where each occurrence 
of a letter is independent of the occurrence of any other letter. That is, the probability of occur-
rence of a letter does not depend on the occurrence of the previous one. In yet another scheme, the 
occurrence of a letter depends on the occurrence of the previous one. The earlier one is termed in 
as unsuccessive probability and the later one is termed as successive probability. From this study 
we can further show the relationship between sequence and genetic variations. It can also lead to a 
more powerful test for identifying particular classes of genes or proteins which has been illustrated 
by an example.

DNA Sequence

DNA sequences is a succession of letters representing the primary structure of a real or hypotheti-
cal DNA molecule or strand, with the capacity to carry information as described by the central dog-
ma of molecular biology. There are 4 nucleotide bases (A – Adenine, C – Cytosine, G – Guanine, T 
– Thymine). DNA sequencing is the process of determining the exact order of the bases A, T, C and 
G in a piece of DNA. In essence, the DNA is used as a template to generate a set of fragments that 
differ in length from each other by a single base. The fragments are then separated by size, and the 
bases at the end are identified, recreating the original sequence of the DNA. The most commonly 
used method of sequencing DNA the dideoxy or chain termination method was developed by Fred 
Sanger in 1977 (for which he won his second Nobel Prize). The key to the method is the use of 
modified bases called dideoxy bases; when a piece of DNA is being replicated and a dideoxy base is 
incorporated into the new chain, it stops the replication reaction.

Bioinformatics
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Most DNA sequencing is carried out using the chain termination method. This involves the synthesis 
of new DNA strands on a single standard template and the random incorporation of chain-terminating 
nucleotide analogues. The chain termination method produces a set of DNA molecules differing in 
length by one nucleotide. The last base in each molecule can be identified by way of a unique label. Sep-
aration of these DNA molecules according to size places them in correct order to read off the sequence.

Different Probabilistic Approaches for Sequence Representation

A DNA sequence is essentially represented as a string of four characters A, C, T, G and looks some-
thing like ACCTGACCTTACG. These strings can also be represented in terms of some probability 
measures and using these measures it can depicted graphically as well. This graphical represen-
tation matches the Markov Hidden Model. Some of these schemes are presented in this paper. A 
physical or mathematical model of a system produces a sequence of symbols according to a certain 
probability associated with them. This is known as a stochastic process. There are different ways 
to use probabilities for depicting the DNA sequences.

Unsuccessive Probability

In this representation scheme the probability of the next occurrence of a letter does not depend 
on the previous letter. There can be two different representation schemes in this: one which uses 
equal probability for each letter and another which assumes a fixed probability for each letter.

•	 Equal Probability - Suppose we have a 4 letter code consisting of the 4 letters A, C, T, G 
which can be chosen each with equal probability 0.25, successive choices being indepen-
dent. This would lead to a sequence of which the following is a typical example

ACCATGGACTTAGCTACTGG

•	 Unequal Probability - For a DNA sequence series of length 20, where each letter has a prob-
ability of 0.3, 0.2, 0.3, 0.2 respectively, with successive choices are independent. A typical 
message from this source is:

ACTTGAAATTCGGACCTGAT

Figure: Graphical Representation of Unequal Probability Sequence

Successive Probability

This section presents two schemes for representing a DNA sequence: one where successive letter 
depends on the preceding one and in another scheme the letters are used to form words and a 
probability is associated with each word.
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•	 Letter Probability - A more complicated structure is obtained if successive symbols are not 
chosen independently but their probabilities depend on preceding letters. In the simplest 
case of this type a choice depends only on the preceding letter and not on ones before that. 
The statistical structure can then be described by a set of transition probabilities pi(j), the 
probability that a letter i is followed by letter j. The indices i and j range over all the possible 
symbols. A second equivalent way of specifying the structure is to give the “digram” prob-
abilities p(i, j), i.e., the relative frequency of the digram i j. The letter frequencies p(i), (the 
probability of letter i), the transition probabilities pi(j) and the digram probabilities p(i, j) 
are related by the following formulas:

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

,

, ,

,

, 1
i

j
j j j

i

j i i j

p i p i j p j i p j p

p i j p i p j

p j p i p i j

= = =

=

= = =

∑ ∑ ∑

∑ ∑ ∑

In the example we have used the letter probability for representing the sequence.

•	 Word Probability - A process can also be defined which produces a text consisting of a se-
quence of words. Since a DNA sequence consists of typically 4 letters A, C, T, G any word 
could be made up of these four letters. For example the typical DNA sequence may consist 
of any combination of the following words:

ACTG TACG ACGT AATC AGTG TCCA CAAG CCTG

This can be depicted graphically as in figure.

Figure: Graphical Representation of Word Probability Sequence

The various probability (transition and digram) are calculated according to the algorithm given 
below:

Algorithm

SERIES (DATA, N, LOC): Here DATA is a linear array with N elements and LOC acts as a pointer 
that keeps the record of occurrence of the nucleotide.

1.	 Initialize LOC = 0 and initialize all variables to zero.

2.	 Repeat while LOC ≠ N, 

IF DATA [LOC] = ‘A’ 

Set A = A+ 1 

Bioinformatics
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IF DATA [LOC +1 ] = ‘A’ SET AA = AA+1

IF DATA [LOC +1 ] = ‘C’ SET AC = AC+1 

IF DATA [LOC +1 ] = ‘T’ SET AT = AT+1 

IF DATA [LOC +1 ] = ‘ G’ SET AG = AG +1

Else IF DATA [LOC] = ‘ C’ Set	 C = C+1

IF DATA [ LOC + 1] = ‘A’ SET CA = CA+1 

IF DATA [LOC +1 ] = ‘ C’ SET CC = CC+1 

IF DATA [LOC +1 ] = ‘ T’ SET CT = CT+1 

IF DATA [LOC +1 ] = ‘ G’ SET CG = CG +1

Else IF DATA [LOC] = ‘T’ 

Set T = T+1

IF [LOC +1 ] = ‘A’ SET TA = TA+ 1 

IF [LOC +1 ] = ‘C’ SET TC = TC+1 

IF [LOC + 1 ] = ‘ T’ SET TT = TT + 1 

IF [LOC + 1 ] = ‘ G’ SET TG = TG +1

Else IF DATA [LOC ] = ‘ G’ 

Set G = G+1

IF DATA [LOC +1 ] = ‘A’ SET GA = GA +1

IF DATA [LOC +1] = ‘C’ SET GC = GC +1 

IF DATA [LOC +1] = ‘T’ SET GT = GT +1 IF DATA [LOC+1] = ‘G’ SET GG = GG+1

3.	 SET A’ = A/N, C’ = C/N, G’ = G/N, T’ = T / N 

AA’ = AA* A’; AC’ = AC*A’; AT ‘ = AT* A’; 

AG ‘ =AG* A’; CA’ = CC* C’ ; CC’ = CC*C’; 

CT’ = CT * C’; CG’ = CG * C’; TA’ = TA * T’; TC’ = TC * T’; TT’ =TT * T’; TG’ = TG* T’; 

GA’ = GA *G’; GC’ = GC *G’; GT’ = GT * 

G’; GG’ = GG * G’;

4.	 End

Letter Frequency

(i) P(i)

A  
C  
T  
G

No of A’S / Size of string = (A’ Say ) 
No of C’S / Size of string = ( C’ Say ) 
No of T’S / Size of string = ( T’ Say ) 
No of G‘S / Size of string = (G’ say )

Digram Probability
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P(i, j) A C T G

A 

C 

T 

G

No. of AA 
* A’ = AA’
No. of CA 
* C’ = CA’
No. of TA 
* T’ = TA’
No. of GA 
* G’ = GA’

No. of AC 
* A’ = AC’
No. of CC 
* C’ = CC’
No. of TC 
* C’ = TC’
No. of GC 
* C’ = GC’

No. of AT * 
A’ = AT’
No. of CT * 
C’ = CT’
No. of TT * 
T’ = TT’
No. of GT * 
T’ = GT’

No. of AG * 
A’ = AG’
No. of CG * 
C’ = CG’
No. of TG * T’
= TG’
No. of GG * 
G’ = GG’

Transition Probability

Pi(j) A C T G

A

C

T

G

A’ * AA’

C’ * CA’

T’ * TA’

G’ * GA’

A’ * AC’

C’ * CC’

T’ * TC’

G’ * GC’

A’ * AT’

C’ * CT’

T’ * TT’

G’ * GT’

A’ * AG’

C’ * CG’

T’ * TG’

G’ * GG’

On using the algorithm on the different H1N1 viruses we get the following transition probability 
tables:

Type 1: Table

A C T G

A 0.13 0.06 0.09 0.08

C 0.09 0.04 0.05 0.02

T 0.06 0.05 0.05 0.07

G 0.08 0.04 0.05 0.06

Type 2: Table

A C T G

A 0.13 0.06 0.09 0.08

C 0.09 0.04 0.04 0.02

T 0.06 0.05 0.06 0.07

G 0.08 0.04 0.04 0.06

Type 3: Table

A C T G

A 0. 08 0.05 0.08 0.08

C 0.08 0.03 0.03 0.02

T 0.05 0.06 0.06 0.09

G 0.08 0.06 0.06 0.07

A graphical representation for the type 1 H1N1 virus can be constructed based on the digram prob-
ability as follows:

Bioinformatics
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Figure: Graphical Representation of Type 1 H1N1 Sequence

Now if any new sequence comes which has to be categorized as any one of the three types we can 
use the transition probability table of the existing types and calculate the probability measure. For 
example consider a new sequence tggtgctggc:

Probability for Type 1: 0.07 * 0.06 * 0.05 * 0.07 * 0.04 * 0.05 * 0.07 * 0.06 * 0.04 = 4.9 × 10-12 

Probability for Type 2: 0.06 * 0.06 * 0.04 * 0.07 * 0.04 * 0.04 * 0.07 * 0.06 * 0.04 = 2.7 × 10-11 

Probability for Type 3: 0.09 * 0.07 * 0.04 * 0.09 * 0.06 * 0.06 * 0.09 * 0.07 * 0.06 = 3 × 10-11

Since the probability measure for type 3 comes out to be the greatest we can conclude that the 
chance for the new DNA sample to be the type 3 virus is more

BLAST

•	 BLAST is one of the most used algorithms in bioinformatics.

•	 BLAST includes a family of related algorithms capable of aligning a query sequence against 
all the sequences in a database in a very fast way.

•	 BLAST will produce local alignments of the query sequence against the sequences in the 
database.

•	 BLAST also generates a expect value that is related with the statistical significance of the 
alignment.

•	 BLAST can refer to the family of algorithms, to the NCBI BLAST implementation and to 
the NCBI BLASTserver.

Algorithm

BLAST uses a very fast algorithm based on words (also known as k-tuples or kmers).

BLAST is many orders of magnitude faster than any Smith & Waterman implementation. To achive 
that speed it will create less acurate alignments and it will be somewhat less sentitive. The Smith 
& Waterman algorithm is guaranteed to get always the best alignment, the best scoring one, but it 
will be much, much slower.
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BLAST uses an index of the sequence database in which the positions for all words presents in the 
sequences are stored. Let’s suppose that our database includes only one protein sequence: DS-
FASPUIVH. If we create the database index with all the three letter words we would have:

sequence: DSFASPUIVH

words:    DSF

           SFA

            FAS

             ASP

              SPU

               PUI

                UIV

                 IVH

To do the BLAST search the words for the query sequence are generated and those words are 
looked for in the database index. This process will be very fast because we have very fast indexing 
algorithms.

The sequence regions in the database in which the query words are found are known as seeds and 
will be the seed from which the alignments will be build. One drawback of this algorithm is that 
if the query and the database do not share words, if they do not share regions with exact matches 
BLAST won’t be able to detect any similiarity at all. That could be well the case with very different 
sequences. If the sequences are different enough to have no words in common BLAST won’t be 
able to find the alignment. This is the main reason why BLAST is less sentitive than Smith & Wa-
terman. But this word indexing approach is much faster.

The word length will influence the BLAST sensitivity. The shorter the word length the more senti-
tive will be the search, but the slower will be the process.

Once the seeds have been generated BLAST looks for diagonals in the similiarity matrix. From the 
seeds the alignments are extended. A query sequence and a single database sequence can generate 
several alignments. BLAST won’t force to join all these alignments into one single alignment. The 
alignment created by BLAST will not be optimal in most cases. Each alignmed is a High Scoring 
Pair (HSP) in the BLAST nomenclature. A database sequence and the query sequence can have 
several HSPs.

e-value

Once we have the alignments we should ask: are the alignments statistically significative?

Let’s try to align to random sequences:

Query= unknown

  	          (207 letters)

Bioinformatics
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unknown Length = 333 Score = 14.2 bits (25), Expect = 2.9 Identities = 4/16 (25%), Positives = 8/16 
(50%) Query: 160 PKRYDWTGKNWVYSHD 175 P ++ W +SH+ Sbjct: 146 PTKHAWQEIGKEF-
SHE 161.

So, we can obtain an alignmnet between two random sequences. That is even more problematic 
for the blast case because we are trying to align a query sequence to millions of sequences in a se-
quence database. In this case we could obtain many alignments just by chance.

One way to check if an alignment that we obtain has been obtained just by chance or if it is really 
a significative alignment is to compare its score with the scores of alignments between random se-
quences. Let’s supposee that the alignment of random sequences tend to give scores between 0 and 
30. If we obtain an alignment between the query sequence and the database of 15 we might think 
that is just a random fluke, but if we get a score of 70 we might be quite sure that the alignment is 
truly significative. You expect to get lots of random alignments with low scores, but few with high 
scores. This is the approach followed by BLAST to assertain the significance of its alignments.

BLAST creates the distribution of scores between random sequences in the database. For every 
alignment (HSP) it compares its score to the distribution of the random sequence alignments. 
The e-value (expect) is the number of hits that one can expect to see by chance in a database. The 
higher the score for an HSP the lower the e-value will be. For example, an E value of 1 assigned to 
a hit can be interpreted as meaning that in a database of the current size one might expect to see 1 
match with a similar score simply by chance.

The BLAST e-value depends of the database queried. We can not compare e-values obtained for 
different databases.

It is not possible to set a general threshold for e-values, but in real searches it is usual to find that 
significant alignments have e-values between 1e-5 and 0.

BLAST example:

Blast of sequence c15d_01-D10-M13R_c against database arabidopsis

BLASTX 2.2.10 [Oct-19-2004]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,

Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),

“Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs”,  Nucleic Acids Res. 25:3389-3402.

Query= c15d_01-D10-M13R_c

       (892 letters)

Database: tair6

           30,690 sequences; 12,653,157 total letters

Searching..................................................done

                                                                 Score    E

Sequences producing significant alignments:                      (bits) Value
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AT3G28480.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   280   6e-76

AT3G28490.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   258   3e-69

AT5G18900.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   244   4e-65

AT3G06300.1 | Symbol: AT-P4H-2 | Encodes a prolyl-4 hydroxylase ...   234   4e-62

AT1G20270.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   213   1e-55

AT4G35810.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   201   4e-52

AT2G17720.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   192   2e-49

AT5G66060.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   186   2e-47

AT4G35820.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   159   2e-39

AT4G33910.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   149   3e-36

AT2G43080.1 | Symbol: AT-P4H-1 | Encodes a prolyl-4 hydroxylase ...   147   1e-35

AT2G23096.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenas...   137   7e-33

AT4G25600.1 | Symbol: None | ShTK domain-containing protein, sim...   131   6e-31

>AT3G28480.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenase family

           protein, similar to prolyl 4-hydroxylase, alpha subunit,

           from Gallus gallus (GI:212530), Rattus norvegicus

           (GI:474940), Mus musculus (SP:Q60715); contains PF03171

           2OG-Fe(II) oxygenase superfamily domain |

           chr3:10677275-10679525 REVERSE | Aliases: MFJ20.16

          Length = 316

 Score =  280 bits (717), Expect = 6e-76

 Identities = 141/235 (60%), Positives = 174/235 (74%), Gaps = 1/235 (0%)

 Frame = +2

Query: 191 NRFPKMLLHNNDMYESVIRMKTGGSAITIDPTRVIQLSSKPRAFLYEGFLSYEECQHLIH 370

           NRF  +   +N    SVI+MKT  S+   DPTRV QLS  PR FLYEGFLS EEC H I

Sbjct: 25  NRF--LTRSSNTRDGSVIKMKTSASSFGFDPTRVTQLSWTPRVFLYEGFLSDEECDHFIK 82

Query: 371 LAKGKLRQSLVAAG-TGESVASKERTSTGMFLRKAQGKIVARIESRIAAWTFLPLDNGEP 547

           LAKGKL +S+VA   +GESV S+ RTS+GMFL K Q  IV+ +E+++AAWTFLP +NGE

Sbjct: 83  LAKGKLEKSMVADNDSGESVESEVRTSSGMFLSKRQDDIVSNVEAKLAAWTFLPEENGES 142

Query: 548 IQILRYENGQKYEPHFDFFQDPGNIAIGGHRIATILMYLSDVEKGGETVFPNSPVKLSEE 727

           +QIL YENGQKYEPHFD+F D  N+ +GGHRIAT+LMYLS+VEKGGETVFP    K ++

Sbjct: 143 MQILHYENGQKYEPHFDYFHDQANLELGGHRIATVLMYLSNVEKGGETVFPMWKGKATQL 202

Query: 728 EKGDLSECAXVGYGVRPKLGDALLFFSMNPNVTPDATSYHGSCPVIEGEKMVCTK 892

                +ECA  GY V+P+ GDALLFF+++PN T D+ S HGSCPV+EGEK   T+
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Sbjct: 203 KDDSWTECAKQGYAVKPRKGDALLFFNLHPNATTDSNSLHGSCPVVEGEKWSATR 257

>AT3G28490.1 | Symbol: None | oxidoreductase, 2OG-Fe(II) oxygenase family

           protein, similar to prolyl 4-hydroxylase, alpha subunit,

           from Caenorhabditis elegans (GI:607947), Mus musculus

           (SP:Q60715), Homo sapiens (GI:18073925); contains

           PF03171 2OG-Fe(II) oxygenase superfamily domain |

           chr3:10680286-10681891 REVERSE | Aliases: MFJ20.17

          Length = 288

 Score =  258 bits (659), Expect = 3e-69

 Identities = 128/211 (60%), Positives = 159/211 (75%), Gaps = 2/211 (0%)

 Frame = +2

Query: 266 AITIDPTRVIQLSSKPRAFLYEGFLSYEECQHLIHLAKGKLRQSLVAAG--TGESVASKE 439

             ++DPTR+ QLS  PRAFLY+GFLS EEC HLI LAKGKL +S+V A   +GES  S+

Sbjct: 24  SFSVDPTRITQLSWTPRAFLYKGFLSDEECDHLIKLAKGKLEKSMVVADVDSGESEDSEV 83

Query: 440 RTSTGMFLRKAQGKIVARIESRIAAWTFLPLDNGEPIQILRYENGQKYEPHFDFFQDPGN 619

           RTS+GMFL K Q  IVA +E+++AAWTFLP +NGE +QIL YENGQKY+PHFD+F D   

Sbjct: 84  RTSSGMFLTKRQDDIVANVEAKLAAWTFLPEENGEALQILHYENGQKYDPHFDYFYDKKA 143

Query: 620 IAIGGHRIATILMYLSDVEKGGETVFPNSPVKLSEEEKGDLSECAXVGYGVRPKLGDALL 799

             +GGHRIAT+LMYLS+V KGGETVFPN   K  + +    S+CA  GY V+P+ GDALL

Sbjct: 144 LELGGHRIATVLMYLSNVTKGGETVFPNWKGKTPQLKDDSWSKCAKQGYAVKPRKGDALL 203

Query: 800 FFSMNPNVTPDATSYHGSCPVIEGEKMVCTK 892

           FF+++ N T D  S HGSCPVIEGEK   T+

Sbjct: 204 FFNLHLNGTTDPNSLHGSCPVIEGEKWSATR 234

BLAST Programs

BLAST has different programs to compare different kinds of sequences:

•	 BLASTN compares a nucleotide sequence with a nucleotide database.

•	 BLASTP compares a protein sequence with a protein database.

•	 BLASTX compares the six translated frames of a nucleotide sequence with a protein data-
base.

•	 TBLASTN compares a protein sequence with the six frame translation of a nucleotide da-
tabase.

•	 TBLASTX compares a nucleotide sequence with a nucleotide database, but first it trans-
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lates both.

Megablast

Megablast is an algorithm derived from BLAST. It is faster than BLAST although a little bit 
less sensitive. It will be faster than BLAST, but it will miss the match if the sequences are very 
different.

BLAST 2 Sequences

It uses the BLAST algorithm to do a pairwise alignment. It does not uses a database.

It is a very fast way to get a rough alignment (not as good as a Smith and Waterman one). It has the 
advantage of trying to align both strands.

PSI-Blast and Delta-Blast

PSI-BLAST and DELTA-BLAST are two alternative algorithms to blastp that are more sensitive. 
They can be used to find distant relatives in the sequences.

PSI-BLAST (Position-Specific Iterated BLAST) is based on the use of Position-Specific Scoring 
Matrices(PSSM). A PSSM summarizes the patterns found in several sequences. It calculates the 
frequency for each nucleotide or aminoacid in every position of a multiple alignment.

seq1   A C T G   A T   G

seq2   A C T A   A C   G

PSSM A 1 0 0 0.5 1 0   0

     C 0 1 0 0   0 0.5 0

     G 0 0 0 0.5 0 0   1

     T 0 0 1 0   0 0.5 0

PSSMs describe the relevant features in the sequences and are usually used to describe conserved 
domains in the proteins or in the DNA.

PSI-BLAST uses an iterative approach. In the first steps it runs a standard blastp search. With the 
significant results it creates a mutiple alignments and from the alignment it calculates a PSSM. In 
the second iteration PSI-BLAST is able to search the database by aligning the PSSM with the da-
tabase sequences. The sequences found in this new search are used to create a new PSSM and the 
process is repeated again.

DELTA-BLAST is similar to PSI-BLAST but in the first search it uses a Conserved Domain Data-
base. With the results creates a PSSM and uses that to search in the protein database.

Needleman–Wunsch Algorithm

Needleman–Wunsch Algorithm was developed by Saul B. Needleman and Christian D. Wunsch 
in 1970. It is one of the most basic and important algorithm of bioinformatics It was designed to 

Bioinformatics

________________________ WORLD TECHNOLOGIES ________________________



WT

Computational Methods in Bioinformatics 	 113 

compare biological sequences and was one of the first applications of dynamic programming to 
the biological sequence comparison. This algorithm is usually used for global alignment of two 
sequences (nucleotide or amino acids). 

For the purpose of explanation, first summarizing the algorithm in five steps and then I will move 
forwards with examples and explanations.

1.	 Consider all the possible pairs of residues from two sequences, the best way is to generate 
a 2D matrix of two sequences. We will need 2 such matrices one for sequence and one for 
scores.

2.	 Initialize the score matrix: Scoring matrices are used to determine the relative score made 
by matching two characters in a sequence alignment. There are many flavors of scoring 
matrices for amino acid sequences, nucleotide sequences, and codon sequences, and each 
is derived from the alignment of “known” homologous sequences. These alignments are 
then used to determine the likelihood of one character being at the same position in the 
sequence as another character.

3.	 Gap penalty: Usually there are high chances of insertions and deletions (indels) in biologi-
cal sequences but one large indels is more likely rather than multiple small indels in a given 
sequences. In order to tackle this issue we give two kind of penalities ; Gap opening penalty 
(relatively higher) and gap extension penalty (relatively lower).

4.	 Calculate scores and fill the traceback matrix.

5.	 Deduce the alignment from the traceback matrix.

Now, let’s with a small example, the alignment of two sequences using BLOSUM62 substitution 
matrix. Assume sequence A as “SEND” and sequence B as “AND” and gap opening penalty of 10 
(no gap extension):

•	 The Score And Traceback Matrices: The cells of the score matrix are labelled C(i; j) where i 
= 1; 2; :::; N and j = 1; 2; :::; M.

•	 Scoring: The score matrix cells are filled by row starting from the cell C(2; 2). The score of 
any cell C(i; j) is the maximum of:

1.	 qdiag = C(i 1; j 1) + S(i; j)

2.	 qup = C(i 1; j) + g
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3.	 qleft = C(i; j 1) + g

where S(i; j) is the substitution score for letters i and j, and g is the gap penalty. The value of the 
cell C(i; j) depends only on the values of the immediately adjacent northwest diagonal, up, and left 
cells.

The Needleman-Wunsch Progression 

1.	 The first step is to calculate the value of C(2; 2).

•	 qdiag= C(1; 1) + S(S; A) = 0 + 1 = 1

•	 qup= C(1; 2) + g = 10 + (10) = 20

•	 qleft = C(2; 1) + g = 10 + (10) = 20

Where C(1; 1), C(1; 2), and C(2; 1) are read from the score matrix, and S(S; A) is the score for the S 
<-> A taken from the BLOSUM62 matrix. For the score matrix C(2; 2) =qdiag which is 1. The corre-
sponding cell of the traceback matrix is “diag”:
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2.	 The next step is to calculate C(2; 3):

•	 qdiag= C(1; 2) + S(E; A) = 10 + 1 = 11

•	 qup= C(1; 3) + g = 20 + (10) = 30

•	 qleft =C(2; 2) + g = 1 + (10) = 9

Thus C(2; 3) = 9 and the corresponding cell of the traceback matrix is “left”. After complete calcu-
lations of all cells, the score and traceback matrices are:

•	 The Traceback: Traceback is the process of deduction of the best alignment from the trace-
back matrix. The traceback always begins with the last cell to be filled with the score, i.e. the 
bottom right cell. One moves according to the traceback value written in the cell. There are 
three possible moves: diagonally (toward the top-left corner of the matrix), up, or left. The 
traceback is completed when the first, top-left cell of the matrix is reached (“done” cell). 
The traceback performed on the completed traceback matrix:

•	 The Best Alignment: The alignment is deduced from the values of cells along the traceback 
path, by taking into account the values of the cell in the traceback matrix:

1.	 Diag - the letters from two sequences are aligned

2.	 Left - a gap is introduced in the left sequence

3.	 Up - a gap is introduced in the top sequence

Sequences are aligned backwards.
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The Traceback Step-By-Step

1.	 The first cell from the traceback path is “diag” implying that the corresponding letters are 
aligned:

D

D

2.	 The second cell from the traceback path is also “diag” implying that the corresponding let-
ters are aligned:

ND 

ND

3.	 The third cell from the traceback path is “left” implying the gap in the left sequence (i.e. we 
stay on the letter A from the left sequence):

END

-ND

4.	 The fourth cell from the traceback path is also “diag” implying that the corresponding let-
ters are aligned. We consider the letter A again, this time it is aligned with S:

SEND 

A-ND

Compare with The Exhaustive Search:

•	 The best alignment via the Needleman-Wunsch algorithm: 

SEND 

A-ND

•	 The exhaustive search: 

SEND

-AND score: +1 

A-ND score: +3 the best 

AN-D score: -3 

AND- score: -8

Pros and Cons: In this example we considered very short sequences SEND and AND which are 
much easier to compare using exhaustive search but if we think of real problems that contains 
longer sequences the situation quickly turns against it. For example; two 12 residue sequences 
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would require considering ~ 1 million alignments and two 150 residue sequences would require 
considering ~ 10ˆ88 alignments (~ 10ˆ78 is the estimated number of atoms in the Universe). On 
the other hand for two 150 residue sequences the Needleman-Wunsch algorithm requires only 
filling a 150 * 150 matrix, which is not much computationally expensive. The major problem is 
Needleman-Wunsch algorithm works in the same way regardless of the length or complexity of 
sequences which provides heuristic algorithm an upper hand over this algorithm but Needle-
man-Wunsch algorithm guarantees to provide the best alignment.
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Chapter 3
Branches and Applications of  
Bioinformatics
There are several branches of bioinformatics such as translational bioinformatics, integrative bio-
informatics and structural bioinformatics. The topics elaborated in this chapter will help in gaining 
a better perspective about these branches of bioinformatics and their applications. 

Integrative Bioinformatics

Integrative Bioinformatics deals with the development of methods and tools to solve biological 
problems as well as providing a better understanding or new knowledge about biochemical phe-
nomena by means of data integration and computational experiments 

High blood pressure or hypertension is an established risk factor for a myriad of cardiovascular 
diseases. Genome-wide association studies have successfully found over nine hundred loci that 
contribute to blood pressure. However, the mechanisms through which these loci contribute to 
disease are still relatively undetermined as less than 10% of hypertension-associated variants are 
located in coding regions. Phenotypic cell-type specificity analyses and expression quantitative 
trait loci show predominant vascular and cardiac tissue involvement for blood pressure-associat-
ed variants. Maps of chromosomal conformation and expression quantitative trait loci (eQTL) in 
critical tissues identified 2,424 genes interacting with blood pressure-associated loci, of which 517 
are druggable. Integrating genome, regulome and transcriptome information in relevant cell-types 
could help to functionally annotate blood pressure associated loci and identify drug targets.

Elevated blood pressure (BP) or hypertension is a heritable chronic disorder, considered the sin-
gle largest contributing risk factor in disease burden and premature mortality. High systolic and/
or diastolic BP reflects a higher risk of cardiovascular diseases. Genome-wide association studies 
(GWAS) have found association of 905 loci to BP traits (systolic - SBP, diastolic - DBP and pulse 
pressure -PP) to date. The use of larger sample sizes has helped to identify additional variants, 
as demonstrated by the most recent study including over 1 million people that has identified 535 
novel BP loci. Still, this collective effort thus far has not entirely elucidated the complete genetic 
contribution to BP, estimated to be approximately 50–60%.

To add to this complexity, 90.7% of the 905 BP-associated index variants are located in intronic or 
intergenic regions. Causal variants are also difficult to pinpoint because of linkage disequilibrium 
(LD). There is now vast evidence that non-coding variants associated with disease interrupt the ac-
tion of regulatory elements crucial in relevant tissues for that particular disease. BP loci are not only 
linked to cardiovascular disease but also to other diseases, suggesting that BP-associated variants 
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can result in a wide range of phenotypes. Tissue specificity of genetic loci may be relevant for organ 
specific disease progression. For example, variants altering expression in heart may more likely af-
fect disease progression through heart-mediated processes rather than kidney-mediated processes, 
and some patients may suffer of left ventricular hypertrophy while others may develop nephrop-
athy. Thus, investigating the influence of BP variants in critical cell-types is essential in under-
standing disease risk and biology, and assessing the possible translation of an associated locus into 
a drug target. The public availability of regulatory annotations in several tissues by projects such 
as ENCODE, Roadmap and GTEx has enabled integration of epigenetic modifications, expression 
quantitative trait loci (eQTLs) and –omics information with GWAS data. Integrative approaches are 
useful for prioritizing genes from known GWAS loci for functional follow-up, detecting novel gene-
trait associations, inferring the directions of associations, and potential druggability.

Figure: Circos plot showing the 10 traits from the GWAS catalog (37) with the largest number of loci also  
associated to BP, as identified by PhenoScanner (38) at p < 0.05 (Supplemental Methods).  

The outer ring represents the genomic/chromosomal location (hg19). 

The following inner rings show the associations to different traits. Beige: body measurements 
(height, body mass index (BMI), weight, waist/hip ratio, hip circumference, waist circumference. N 
= 358). Red: lipids (high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, 
total cholesterol. N = 226). Yellow: coronary artery disease (CAD)/myocardial infarction (MI) (N = 
206). Blue: schizophrenia (N = 135). Orange: years of education attendance (N = 101). Light green: 
creatinine (N = 88). Light pink: rheumatoid arthritis (N = 78). Purple: type II diabetes (N = 73). 
Light turquoise: neuroticism (N = 69). Light grey: Crohn’s disease (N = 67).

Figure: Diagram of analytical steps that can be followed for variant prioritization and translation of association  
to a potential drug target. Each step is accompanied by examples of publicly available data  

(green boxes on the left) and tools (yellow boxes on the right) that can be used.
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Integrative Approaches using –Omics Data

Remarkable advances have been made recently towards a better comprehension of BP genetics, 
the biology of disease and translation towards new therapeutics, boosted by the widespread ap-
plication of high-throughput genotyping technologies. At the same time, most BP-associated vari-
ants are non-coding, making the conversion of statistical associations into target genes a great 
challenge. SIFT, PROVEAN, PolyPhen, CONDEL and more recently CADD are scoring algorithms 
developed for predicting the effect of amino acid changes. Only 98 out of the 905 lead BP-associ-
ated SNPs reflect a CADD score above 12.37, a threshold suggested by Kicher et al. as deleterious. 
However, the causal variant inside the locus might reflect a different CADD score than the lead 
SNP, and pinpointing the mechanisms disturbed by the variation remains a challenge.

New strategies that make use of regulatory annotations in disease-relevant tissues have greatly ex-
panded our ability to investigate the processes involved in BP. In particular, annotation of histone 
modifications and regions of open chromatin allow the identification of active transcription in spe-
cific-cell types. Similarly, maps of DNA variants affecting expression in a cell-type specific manner 
will be integral in BP loci interpretation. A list of cardiovascular-related cell-types researched by 
the ENCODE Project is presented by Munroe et al. Such data can be integrated with GWAS results 
using bioinformatics tools. For instance, FUMA provides extensive functional annotation for all 
SNPs in associated loci and annotates the identified genes in biological context. FunciSNP investi-
gates functional SNPs in regulatory regions of interest. Ensemble’s Variant Effect Predictor (VEP) 
determines the effect of variants on genes, transcripts, and protein sequence, as well as regulatory 
regions, also outputting SIFT, Polyphen and CADD scores for each variant, among other informa-
tion. Although such integrative tools are useful for variant prioritization and interpretation, not 
all take into consideration tissue specificity aspects. RegulomeDB, for example, is a database that 
annotates SNPs with known and predicted regulatory elements in the intergenic regions of the 
human genome, calculating a score that reflects its evidence for regulatory potential. However, 
the scoring procedure can only be performed across all available tissue types. In addition, several 
databases containing a broad range of tissues were made publicly available since the last update 
of RegulomeDB, that could be included in the tool. Together, these resources have been useful in 
prioritizing genes and variants in associated loci for functional follow-up experiments in many 
post-GWAS analyses, and can be implemented in interpretation of BP-associated loci.

Transcription Regulation: Histone Modifications and Open Chromatin

As genomic coordinates of active regulatory elements may be mapped using unique functions of 
chromatin, the characterization of chromatin changes in the genome in specific cell-types can be 
used to identify DNA variants disturbing active regulatory elements. The four core chromatin his-
tones, H2A, H2B, H3 and H4, can suffer posttranslational modifications, such as acetylation or meth-
ylation. These histone modifications indicate active (euchromatin) or repressed (heterochromatin) 
chromatin structure, defining regulation and gene transcription. Acetylation of histones H3 and 
H4, and H3 methylation at Lys4 (H3K4me3), for instance, correlate with gene transcription, whereas 
methylation at Lys9 correlates with gene silencing. These modifications provide a robust readout of 
active regulatory positions in the genome, and have been employed for annotation in several studies. 
Histone modifications influencing arterial pressure have been observed in many tissues, including 
vascular smooth muscle. An updated phenotypic cell-type specificity analysis of the 905 BP loci 
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using H3K4me3 mark in 125 tissues. The most significant cell-types are cardiovascular-related. 
Other tissues with high rank in specificity are smooth muscle, fetal adrenal gland, embryonic 
kidney cells, CD34 and stem-cell derived CD56 +mesoderm cultured cells. These results are 
consistent with anal-yses using DNase I hypersensitivity sites (DHSs), which indicate likely 
binding sites of transcription factors. These results add more evidence that BP loci are enriched on 
regions of open chromatin, regulating transcription in a broad range of tissues.

Figure: Ranked tissues after phenotypic cell-type specificity analysis of 905 BP SNPs 
using 125 H3K4me3 datasets on human tissue

Methylation

In addition to histone modifications that promote transcription, BP loci have also been studied for 
their enrichment on DNA methylation, known to have the opposite regulatory effect. The methyl-
ation of CpG sites, presented by CpG islands in promoters, affects binding of transcription factors, 
resulting in gene silencing. Abnormal CpG methylation is found in hypertension, and in many 
other complex diseases. Recently, Kato et al. identified a ~2 fold enrichment associating BP vari-
ants and local DNA methylation. The study also demonstrates that DNA methylation in blood cor-
relates with methylation in several other tissues. These observations add to previous indications 
on the function of DNA methylation in regulating BP.

Measuring the Impact of BP Risk Alleles on Gene Expression: eQTLs

Expression quantitative trait loci (eQTL) are regions harbouring nucleotides correlating with alter-
ations in gene expression. Linking transcription levels to complex traits has been a follow-up step 
adopted by many studies, driven by the increase in available data of expression patterns across 
tissues and populations. Warren et al. found that 55.1% of their identified BP-associated loci have 
SNPs with eQTLs in at least one tissue from GTex repository, with arterial tissue most frequently 
observed (29.9% of loci had eQTL in aorta and/or tibial artery). A great enrichment of eQTLs in 
artery was also observed by Evangelou et al., who identified 92 novel loci with eQTL enrichment in 
arterial tissue and 48 in adrenal tissue. In summary, these studies also suggest that BP loci exert a 
regulatory effect mostly in vascular and cardiac tissues.

Finding the Targets: Chromosome Confirmation Capture Techniques

Mapping variation to target genes is one of the greatest challenges in the post-GWAS era, and 
different strategies have been developed to this end. One approach is the use of chromosome 
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confirmation capture [3C, 4C, Hi-C ]. These techniques capture chromosome interactions, result-
ing in networks of interacting genetic loci.

Warren et al. made use of this resource to investigate the target genes of non-coding SNPs, using 
Hi-C data from endothelial cells (HUVECs). Distal potential genes were found on 21 loci, and 
these genes were enriched for regulators of cardiac hypertrophy in pathway analysis. Kraja et al. 
also explored long-range chromatin interactions using endothelial precursor cell Hi-C data, find-
ing the link between an associated loci and a gene known to affect cell growth and death. More 
recently, Evangelou et al. used chromatin interaction Hi-C data from HUVECs, neural progenitor 
cells (NPC), mesenchymal stem cells (MSC) and tissue from the aorta and adrenal gland to identify 
distal affected genes. They found 498 novel loci that contained a potential regulatory SNP, and in 
484 loci long-range interactions were found in at least one cell-type.

A list of human HiC data available on BP relevant tissues is presented. An updated version of vari-
ant to gene mapping making use of this chromatin conformation data. Promoter regions of 1,941 
genes were found to interact with the 27,649 candidate SNPs (905 BP associated SNPs and vicini-
ty). Integration with eQTL data on relevant tissues confirmed 209 of the genes mapped, and added 
additional 483 genes. One main goal of understanding biological mechanisms of GWAS associa-
tions and affected genes is to be able to therapeutically target them. Assessment of the druggability 
of a BP-associated locus depends on several factors, but overlap of these results with a recent effort 
on druggability suggests that 517 of these 2,424 genes are druggable, and 35 mapped genes are 
also predicted to interact with common drugs for treatment of hypertension. Interestingly, 1,774 
of the genes mapped are physically located outside BP-associated loci. These results support the 
hypothesis that BP GWAS loci act on tissue specific regulatory gene networks. Importantly, they 
also show that the use of long range chromatin interaction maps can reliably identify target genes 
even outside the risk locus.

Figure: Diagram illustrating the results of our integrative approach.

Translational Bioinformatics

Translational Bioinformatics (TBI) has become a key component of biomedical research in the era of 
precision medicine. Development of high-throughput technologies and electronic health records has 
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caused a paradigm shift in both healthcare and biomedical research. Novel tools and methods are 
required to convert increasingly voluminous datasets into information and actionable knowledge.

According to the American Medical Informatics Association (AMIA), translational bioinformatics 
(hereafter “TBI”) is “the development of storage, analytic, and interpretive methods to optimize 
the transformation of increasingly voluminous biomedical data, and genomic data, into proactive, 
predictive, preventive, and participatory health” Put more simply, it is the development of meth-
ods to transform massive amounts of data into health. Dr. Russ Altman from Stanford University 
delivers a year-in-review talk at AMIA’s summit on TBI. In his 2014 presentation he provided 
the following definition for TBI: “informatics methods that link biological entities (genes, pro-
teins, and small molecules) to clinical entities (diseases, symptoms, and drugs)—or vice versa” 
(gives a visual depiction of the way in which TBI fits within the bigger picture of biomedical infor-
matics and transforming data into knowledge . Along the X axis is the translational spectrum of 
bench-to-bedside, while the Y axis from top to bottom represents the central dogma of informatics, 
transforming data to information and information to knowledge. Toward the discovery end of the 
spectrum (the bench) is bioinformatics, which includes storage, management, analysis, retrieval, 
and visualization of biological data, often in model systems. The discovery end of the spectrum has 
some overlap with computational biology, particularly in the context of systems biology methods. 
Toward the clinical end of the spectrum (bedside) is health informatics. TBI fits in the middle 
of this space. On the data-to-knowledge spectrum, data collection and storage are the beginning 
steps. After that comes data processing, analysis, and then interpretation, thereby transforming 
the information that has been gleaned from the data into actual knowledge, useful in the context of 
clinical care, or for further research. In that way the data go from just being “bits”—1’s and 0’s—to 
new knowledge and actionable insights.

Figure: Translational Bioinformatics in context

The Y axis depicts the “central dogma” of informatics, converting data to information and informa-
tion to knowledge. Along the X axis is the translational spectrum from bench to bedside. Transla-
tional bioinformatics spans the data to knowledge spectrum, and bridges the gap between bench 
research and application to human health. The figure was reproduced from  with permission from 
Springer.

TBI as a field has a relatively short history. In the year 2000, the initial drafts of the human ge-
nome were released, arguably necessitating this new field of study. In 2002, AMIA held its annual 
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symposium with the name “Bio*medical Informatics: One Discipline”, meant to recognize and em-
phasize the spectrum of subdisciplines. In 2006, the term itself was actually coined by Atul Butte 
and Rong Chen at the AMIA annual symposium in a paper entitled “Finding disease-related ge-
nomic experiments within an international repository: first steps in translational bioinformatics” . 
In 2008, AMIA had its first annual AMIA summit on TBI, chaired by Dr. Butte. Year 2011 saw the 
first annual TBI Conference in Asia, held in Seoul, Korea. Finally, an online textbook on TBI was 
published in 2012 by PLoS Computational Biology, edited by Maricel Kann. Initially intended to 
be a traditional print textbook, this resource was published using an open source model, making it 
freely available on the Internet.

TBI Today

A study categorized recent themes in the field of TBI into four major categorizations: (1) clinical 
“big data”, or the use of electronic health record (EHR) data for discovery (genomic and other-
wise); (2) genomics and pharmacogenomics in routine clinical care; (3) omics for drug discovery 
and repurposing; and (4) personal genomic testing, including a number of ethical, legal, and social 
issues that arise from such services.

Big Data and Biomedicine

As technology enables us to take an increasingly comprehensive look across the genome, tran-
scriptome, proteome, etc., the resulting datasets are increasingly high-dimensional. This in turn 
requires a larger number of samples in order to achieve the statistical power needed to detect the 
true signal. The past decade or so has seen an increasing number of large-scale bio-repositories 
intended for clinical and translational research all over the world. These projects comprise both 
information and biospecimens from individual patients, enabling researchers to reclassify dis-
eases based on underlying molecular pathways, instead of the macroscopic symptoms that have 
been relied on for centuries in defining disease. These various projects involve different models 
of participation, ranging from explicit informed consent to use of de-identified biospecimens and 
their associated clinical information from EHRs (also de-identified). The informed consent is the 
most ethically rigorous model, but also the most expensive. The use of de-identified specimens and 
data is more scalable, and financially feasible. However, as complete genomic data are increasingly 
used, it is impossible to truly de-identify these data. This raises ethical issues regarding patient 
privacy and data sharing. In the United States, legislation known as the “Common Rule” addresses 
these issues. In 2015, a notice of proposed rule-making (was released to solicit feedback on some 
major revisions to the law, which was originally passed in 1991. Much has changed within biomed-
ical research in the intervening years.

In order to accrue the numbers of samples required for the “big data” discipline that biomedical re-
search is becoming, the ability to use patient data and samples in research would be of significant 
benefit. One major point addressed in the aforementioned NPRM is the ability for patients to give 
broad consent for future use of data and samples, without knowing the specifics of research studies 
ahead of time. As we move toward the learning healthcare system (LHS) model in which every en-
counter is an additional data point, explicit research registries will become less relevant. They will 
be too expensive to maintain, and larger numbers of patients/participants will be available through 
federated initiatives that allow a researcher to query across institutions regionally, nationally, and 
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even internationally. The National Patient-Centered Clinical Research Network (PCORnet) takes 
this approach, enabling clinical outcome research through federated pragmatic clinical trials. Im-
portantly, this initiative emphasizes partnership with patients and their advocates, so that they are 
empowered as collaborators, with a say in what research questions matter most.

LHS is about moving from evidence-based practice, i.e., clinical care decisions based on consci-
entious use of current best evidence, to practice-based evidence, i.e., the generation of evidence 
through collection of data in the real-world as opposed to the artificially-controlled environment 
of randomized clinical trials. In recent decades, the biomedical enterprise has strived to practice 
medicine in a way that is supported by the best possible evidence from randomized clinical trials. 
But clinical trials have their own issues. They are expensive, and they tend to be very different from 
real life scenarios. Criteria for inclusion in a trial often include the absence of common comorbid-
ities or use of common medications. Compliance tends to be high, but the cohort being studied is 
often not representative of the target population for the treatment in question. In LHS, translation 
becomes bi-directional. Research is used to inform practice, whereas data that are generated in the 
course of clinical care can in turn be used for both hypothesis generation and validation through 
pragmatic trials. Data derived from clinical care can thus inform clinical guidelines and future 
practice.

Secondary Use

Secondary use of data refers to data that are created or collected through clinical care. In addition 
to use in caring for the patient, these data may also be crucial for operations, quality improvement, 
and comparative effectiveness research. Some assert that the term “secondary use” should give 
way to the term “continuous use.” They argue against the notion that data collected at the point of 
care are solely for clinical use, and everything else is secondary. We should be maximally leverag-
ing this valuable information. Nonetheless, there is a legitimate concern about data quality. Data 
in the EHR are often sparse, incomplete, even inaccurate. This makes these data wholly unsuitable 
for certain purposes, but still sufficient for others. For instance, Frankovich et al. described a case 
in which an adolescent lupus patient was admitted with a number of complicating factors that put 
her at risk for thrombosis. The medical team considered anti-coagulation, but were concerned 
about the patient’s risk of bleeding. No guideline was available for this specific case, and a survey of 
colleagues was inconclusive. Through the institution’s electronic medical record data warehouse, 
Frankovich and colleagues were able to look at an “electronic cohort” of pediatric lupus patients 
who had been seen over a 5-year period. Of the 98 patients in the cohort, 10 patients had developed 
clots, with higher prevalence in patients with similar complications as the patient in question. 
Using this real-time analysis based on evidence generated in the course of clinical care, Frankov-
ich and colleagues were able to make an evidence-based decision to administer anti-coagulants. 
Subsequently, researchers at Stanford University have proposed a “Green Button” approach to 
formalize this model of real-time decision support derived from aggregate patient data and data 
capture to help inform future research and clinical decisions.

TBI tends to focus on molecules, newly accessible in high dimensions based on novel high-through-
put technologies. Phenotyping is a closely-related challenge, more complex than it might seem. 
Disease is not binary: even within a very specific type of cancer, a tumor’s genomic profile may 
be quite different among the precise sampling locations and sizes. There are a number of groups 
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focusing on this problem: the Electronic Medical Records and Genomics (eMERGE) Network, the 
NIH Collaboratory, PCORnet, and the MURDOCK Study, among others. The Phenotype Knowl-
edgeBase website is a knowledge base of phenotypes, offering a collaborative environment to build 
and validate phenotype definitions. The phenotypes are not (yet) computable, but it serves as a 
resource for defining patient cohorts in specific disease areas. Richesson et al. looked at type 2 dia-
betes, a phenotype that one might expect to be fairly straightforward. But defining type 2 diabetes 
mellitus (T2DM) using the International Classification of Disease version 9 (ICD9) codes, diabe-
tes-related medications, the presence of abnormal labs, or a combination of those factors resulted 
in very different counts for the number of people diagnosed with T2DM in Duke’s data warehouse. 
Using only ICD9 codes gave 18,980 patients, while using medications yielded 11,800. Using ICD9 
codes, medications, and labs all together yielded 9441 patients. Note that the issue is not just a 
matter of semantics and terminology, where if everyone could agree to a single definition and use 
the same code, then the terms would become uniform. For different purposes, different definitions 
of diabetes may be needed, depending on whether the use case involves cohort identification or ret-
rospective analysis. In different cases, one might care more about minimizing false positives (e.g., 
retrospective analysis) or maximizing true positives (e.g., surveillance or prospective recruitment).

Thousands of papers have been published describing genome-wide association studies (GWAS), 
in which researchers look across the entire genome to find SNPs that are statistically enriched for 
a given phenotype (usually a disease) compared with healthy controls. Researchers at Vanderbilt 
University turned this approach on its head, developing a method known as phenome-wide asso-
ciation studies Instead of looking at the entire genome, PheWAS evaluates the association between 
a set of genetic variants and a wide and diverse range of phenotypes, diagnoses, traits, and/or 
outcomes. This analytic approach asks, for a given variant, do we see an enrichment of a specific 
genotype in any of these phenotypes? illustrates results using this approach. In standard GWAS 
analyses, the different color bands at the bottom represent the different chromosomes. In the case 
of PheWAS, they are different disease areas, e.g., neurologic, cardiovascular, digestive, and skin. 
Pendergrass et al. used a PheWAS approach for the detection of pleiotropic effects, where one gene 
affects multiple different phenotypes. They were able to replicate 52 known associations and 26 
closely-related ones. They also found 33 potentially-novel genotype−phenotype associations with 
pleiotropic effects, for example the GALNT2 SNP that had previously been associated with HDL 
levels among European Americans. Here they detected an association between GALNT2 and hy-
pertension phenotypes in African Americans, as well as serum calcium levels and coronary heart 
disease phenotypes in European Americans.

Figure PheWAS Manhattan plot for a given SNP This plot shows the significance of association 
between SNP rs965513 and 866 different phenotypes. Along the X axis different disease groups 
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are shown in different colors. This is in contrast to an analogous plot for GWAS in which the X axis 
would represent the different chromosomes. The Y axis reflects the P value for each phenotype. 
Blue and red horizontal lines represent P value of 0.05 and Bonferroni corrected P value of 5.8 × 
10−5, respectively. PheWAS, phenome-wide association studies; GWAS, genome-wide association 
studies. The figure was reproduced from  with permission from Elsevier.

Another aspect of big data in biomedicine is the use of non-traditional data sources. These were 
well illustrated, both literally and figuratively, in a 2012 paper by Eric Schadt. A complex and 
detailed figure showed various data types that could be mined for their effects on human health: 
weather, air traffic, security, cell phones, and social media among others. But strikingly to those 
reading the paper just a few years later, the list did not include personal activity trackers, e.g., 
FitBit, Jawbone, or even the Apple watch. This omission of such a popular technology today is 
indicative of what a fast-moving field this is.

Heterogeneous and non-traditional sources of big data Technological advances have enabled 
the collection and storage of big data beyond biomedicine, including everything from credit card 
transactions to security cameras to weather. Notably absent from this 2012 figure are smart watch-
es and fitness tracking devices, which became pervasive in the years that followed. 

Genomics in Clinical Care

One sees a number of examples of how genomic data are used in clinical care in the context of 
pharmacogenomics. But molecular data, and genomic data derived from next-generation sequenc-
ing (NGS) in particular, have been used in a number of other contexts as well. One example took 
place at Stanford’s Lucile Packard Children’s Hospital, where a newborn presented with a condi-
tion known as long QT syndrome. In this specific case, the manifestation was unusually severe—
the baby’s heart stopped multiple times in the hours after its birth. Long QT syndrome can be 
caused by mutations in a number of different genes. It is necessary to know which gene harbors 
the mutation in order to know how to treat the condition. In this case, a whole-genome sequencing 
(WGS) was performed enabling identification of a previously-studied mutation, as well as a novel 
copy number variation in the TTN gene that would not otherwise have been detectable through 
targeted genotyping alone. Moreover, NGS enabled the answer to be obtained in a matter of hours 
to days instead of weeks.

Another example of DNA sequencing in clinical care involved diagnosis of infectious disease. A 
14-year-old boy with severe combined immunodeficiency (SCID) had been admitted to the hospital 
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repeatedly. He had headache, fever, weakness, nausea, and vomiting. His condition continued 
to decline to the point where he was put into a medically-induced coma. A normal diagnostic 
work up was “unrevealing” and the doctors were unable to determine the etiology of his condition. 
The patient was enrolled in a research study for pathogen detection and discovery in hospitalized 
patients. The protocol for this study involved performing NGS on the subject’s spinal fluid. The 
results included detection of 475 reads corresponding to leptospira infection. Of note, the nor-
mal test for leptospirosis involves detection of the patient’s antibody response to the infection. In 
this case, the patient’s SCID status prevents such a response, so the infection was not detectable 
through standard means. 

Cancer has been one of the most active areas for the translation of genomic discoveries into chang-
es in clinical care. One of the biggest players in this space is Foundation Medicine, which makes 
the FoundationOne test, a targeted panel that uses NGS to test all genes known to harbor muta-
tions in solid tumors. Johnson et al. looked retrospectively at approximately 100 patients who had 
undergone FoundationOne, and found that 83% of them had potentially actionable results from 
that test, of which 21% received genotype-directed treatment. Explanations for why the indicat-
ed treatment was not given in 79% of those cases included the decision to use standard therapy 
and clinical deterioration. These results indicate that application of genomic technology has tran-
scended the research domain. In many cases, the findings are clinically actionable. Mirroring this 
fact, it is worth noting that some medical insurance companies in the United States started to offer 
coverage of the FoundationOne test.

In addition to targeted panels, deep cancer sequencing can help shed light on drug sensitivity 
and resistance. Wagle et al. describe a case of a 57-year-old woman with anaplastic thyroid can-
cer. Her specific tumor was initially sensitive to everolimus, a mammalian target of rapamycin 
(mTOR) inhibitor. Her doctors were able to sequence the tumor before it became resistant, re-
vealing a mutation in TSE2, which encodes a negative regulator of mTOR. Normally mTOR is 
down-regulated by TSE2, but the mutation caused TSE2 not to down-regulate mTOR to a suf-
ficient level. Therefore, everolimus, which inhibits mTOR, was effective in treating this specific 
cancer. Later this patient’s cancer became drug-resistant, whereupon the newly drug-resistant 
part of the tumor was sequenced again. It was discovered that an mTOR mutation had cause 
mTOR not to be inhibited by allosteric inhibitors like everolimus. An allosteric inhibitor binds 
to the protein in question somewhere other than on the active site of the molecule. Knowing 
the specific cause for the newly-acquired resistance leads to other treatment options. They were 
able to switch to mTOR kinase inhibitors, in order to down-regulate the pathway through other 
mechanisms.

Despite these compelling cases, it is worth noting that at this point, tumor sequencing is the ex-
ception in clinical oncology, and not one of the routine procedures. Only after “first line” treatment 
has failed are tumors sequenced, and even that is largely confined to large academic medical cen-
ters. It will be interesting to see if, when, and how that changes.

While blood clotting and cancer are the areas where most actionable pharmacogenomics find-
ings have been made, a notable exception is work by Tang and his colleagues , in which they 
describe the identification of a genotype-based treatment for T2DM with an alpha2A-adrener-
gic receptor antagonist. A specific genetic variant causes over-expression of the alpha2A-adren-
ergic receptor, and impaired insulin secretion. They hypothesized that if they could block the 
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over-expressed receptor, they could increase insulin secretion. Those with the mutation showed 
a dose response to the drug as measured through levels of insulin. Participants without the mu-
tation showed no such response. This research is especially interesting because it goes beyond 
cancer and blood thinners, into a chronic disease that is affecting an increasing portion of the 
world’s population.

One of the earliest and best known DNA sequencing success stories was that of Nic Volker, who at 
age 2 developed severe gastro-intestinal issues resembling Crohn’s disease, for which a diagnosis 
could not be determined. After multiple life-threatening situations and a protracted diagnostic 
odyssey, Volker’s genome was sequenced to look for a causal mutation. Doing so enabled the dis-
covery of a mutation in the gene X-linked inhibitor of apoptosis (XIAP). Equally important, there 
existed a known therapeutic intervention for disorders caused by XIAP mutations. A progenitor 
cell transplant was performed and the patient’s condition improved. Though Nic is not without 
ongoing health challenges. 

There is also reason for caution regarding use of NGS sequencing in clinical care. Dewey et al. per-
formed Illumina-based WGS on 12 different participants. Confirmatory sequencing was formed 
on 9 of those participants by Complete Genomics Inc. Their findings included the fact that 10%–
19% of inherited disease genes were not covered to accepted standards for SNP discovery. For the 
genotypes that were called, concordance between the two technologies for previously-described 
single nucleotide variants was 99%–100%. However, for insertion and deletion variants, the con-
cordance rate was only 53%–59%. Approximately 15% were discordant, and approximately 30% 
of the variants could not be called by one technology or the other. In addition, inter-rater agree-
ment for whether findings should be followed up clinically was only 0.24 (“fair”) by Fleiss’ kappa 
metric. Rater agreement was even worse for cardio-metabolic diseases, with the rate at which the 
two experts agreed on the need for clinical follow-up worse than random in those cases. Notably, 
the estimated median cost for sequencing and variant interpretation was about US $15,000, plus 
the price of the computing infrastructure and data storage. This means the cost of interpretation 
is significantly more than the proverbial US $1000 genome goal, but is also significantly less than 
the US $100,000 or $1 million some had feared.

Omics for Drug Discovery and Re-purposing

Much has been said about the protracted process involved in getting a drug through the FDA ap-
proval pipeline. Estimates are that the process can take on average 12 years between lead identi-
fication and FDA approval. This makes the prospect of drug repurposing an appealing one. Drug 
repurposing refers to taking an existing, FDA-approved compound and using it to treat a disease 
or condition other than the one for which it was originally intended. In the past, inspiration for 
this type of “off label use” has been largely serendipitous. For example, Viagra was initially aimed 
at treating heart disease, and turned out to be useful for erectile dysfunction. By using a pre-ap-
proved compound, early phase clinical trials can be avoided, which can save significant time and 
money.

Computational approaches to drug repurposing may take a number of different forms as described 
in two recent reviews. One is to look for molecular signatures in disease and compare those to 
signatures observed in cells, animal models, or people who have been treated with different drugs. 
If anti-correlated signatures can be identified between diseases and drugs, administration of that 
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drug for that disease may help cure the condition, or at least to alleviate the symptoms. One of the 
prominent early examples of a computational approach to drug repositioning was the Broad In-
stitute’s Connectivity Map (CMap). The authors identified gene expression signatures for disease 
states and perturbation by small molecules and then compared those signatures. They made the 
data available as a resource intended to enable the identification of functional connections between 
drugs, genes, and diseases. Another example is work by Jahchan et al., in which they identified an-
ti-depressants as potential inhibitors of lung cancer. The authors looked at numerous disease and 
drug profiles and found an anti-correlation between gene expression seen after administration of 
anti-depressants and the pattern of expression observed in small cell lung cancer. They next trans-
planted these types of tumors into mice and found that with the drug, those tumors either shrunk 
or didn’t even grow. They also used indigenous tumors in the mouse model for this type of cancer 
and found that the anti-depressant had promising results on those tumors and for other endocrine 
tumors as well. They were able to start a clinical trial, much faster than would have been possible 
by chance or by various other traditional methods, though unfortunately that trial was ultimately 
terminated for lack of efficacy. A similar approach was used by Sirota et al. to identify the anti-ul-
cer drug cimetidine as a candidate agent to treat lung adenocarcinoma and validate this off-label 
usage in vivo using an animal model of the lung cancer.

An alternative to the largely computational methods described above is an experimental approach 
to drug repositioning. For example, Nygren et al. screened 1600 known compounds against 2 dif-
ferent colon cancer cell lines. They used Connectivity Map data to further evaluate their findings, 
and identified mebendazole (MBZ) as having potential therapeutic effect in colon cancer. Finally, 
Zhu et al. mined data from PharmGKB and leveraged the web ontology language (OWL) to per-
form semantic inference. They were able to identify potential novel uses and adverse effects of 
approved breast cancer drugs.

Personalized Genomic Testing

The year 2008 saw the founding of several companies that offered direct-to-consumer (DTC) ge-
netic testing, reporting on a variety of genes for both health and recreational purposes. As of 2016, 
23andMe was the last major player standing in the United States, with other companies having 
been acquired and changing their business models.

DTC genetic testing raises a number of interesting ethical, legal, and social issues. For several 
years, there was an open question as to whether or not these tests should be subject to govern-
ment regulation. In November 2013, the US FDA ordered 23andMe to stop advertising and of-
fering their health-related information services. The FDA considered these tests to be “medical 
devices” and as such to require formal testing and FDA approval for each test. In February 2015, it 
was announced that the FDA had approved 23andMe’s application for a test for Bloom syndrome, 
and in October 2015 it was announced that the company would once again be offering health 
information in the form of carrier status for 36 genes. Note that a 23andMe customer is able to 
download his or her raw genomic data and to use information from other websites to interpret 
the results, including Promethease, Geneticgenie, openSNP, and Interpretome for health-related 
associations.

Another important question raised by DTC genetic testing include whether the consumers are 
ready for this information. Traditionally, patients receive troubling health-related information in a 
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face-to-face conversation with their doctor. There is some concern that patients are not competent 
or well-equipped to receive potentially distressing news through an Internet link . To help miti-
gate this concern, 23andMe “locks” certain results, making them accessible only if the user clicks 
through an additional link, indicating they truly want to know.

What about the healthcare providers? Are they ready to incorporate genomic data, patient-sup-
plied or otherwise, into treatment decisions? In a case described in 2012, a 35-year-old woman 
informed her fertility care provider that her 23andMe results revealed a relatively common (1 in 
100) blood clotting mutation. She was surprised when her provider responded by saying that, 
were she to become pregnant, she would need to be put on an injectable anti-coagulant through-
out her pregnancy. With no family history of blood clotting disorders, nor personal history of re-
current miscarriage, this mutation would have gone untested, had it not been for the DTC results. 
However, when this patient did become pregnant and consulted with a specialist whose expertise 
was in blood clotting disorders in pregnant women, the anti-coagulant was indeed prescribed. 
Note that the guidelines have since changed, and the prophylactic treatment for clotting would 
not be prescribed today. It is also worth noting that in the United States, the Genetic Informa-
tion Nondiscrimination Act (GINA) prevents employers and health insurers from discriminating 
against anyone based on their genetic information. It does not, however, cover long-term care, 
disability, or life insurance. Therefore when this woman applied for life insurance after her twins 
were born, the rate she was offered was more than twice what it would have been had she not 
known about the blood clotting mutation and been treated prophylactically for the increased risk 
it conferred.

A more positive example of where genetic testing is helping patients is a case presented at the 
American Neurological Association conference in 2014. A patient had a history of Alzheimer’s 
disease on her mother’s side of the family. She did not know if she was a carrier, nor did she want 
to know. But she wanted to ensure that she did not pass that mutation to her future children. Pre-
implantation genetic diagnosis (PGD) testing enabled her doctors to select embryos that did not 
have that Alzheimer’s disease gene mutation. The patient herself was never tested, nor was she 
informed how many (if any) of the embryos contained the mutation. 

Privacy

A 2013 Science paper from the Erlich lab at Massachusetts Institute of Technology (MIT) generat-
ed much controversy when the authors demonstrated the ability to re-identify a number of individ-
uals using publicly-available genealogy databases and genetic data . The researchers used the short 
tandem repeat (STR) data from the Y chromosome, year of birth, and state of residence, combined 
with information from public genealogy websites to identify individuals. They did this by starting 
with publicly-available STRs and entering them on genealogy websites to identify matches. Note 
that their accuracy was not 100%. Though they were able to identify Craig Venter based on his ge-
nomic data, they failed to identify several other individuals, particularly those with more common 
last names. Overall, they reported a 12% success rate in recovering surnames of US males. They 
were also able to reconstruct Utah family pedigrees based on 1000 Genomes Project data and oth-
er publicly-available sources. Due to a number of cultural and historical factors, families in Utah 
tend to be large and genealogically well-documented, and an unusually high proportion of the 
Utah population has participated in scientific studies involving genomic data. It is worth noting 
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that the researchers did not release any names that were not previously public, nor did they use 
the information for any nefarious purposes. Their primary interest was to demonstrate that such 
re-identification was possible. Interestingly, and somewhat surprisingly, the terms of use for the 
datasets did not prohibit re-identification.

Where are we going? The Road Ahead

Though we cannot know what the future holds, we can make some informed guesses based on 
events to date. The author believes that in the not-too-distant future, newborns will be sequenced 
at birth, just as we currently test for a more limited number of genetic issues. With the cost of se-
quencing a genome still at or above US $1000, such widespread sequencing is not yet realistic. But 
researchers are already performing pilot studies in this area, to better understand and anticipate 
the issues that are likely to arise. As an example, the MedSeq project at Harvard University is a 
study designed both to integrate WGS into clinical care and to assess the impact of doing so In ad-
dition, the Geisinger Health System has partnered with Regeneron on a project known as MyCode, 
which aims to sequence the exomes of 250,000 patients in the Geisinger system. In late 2015, the 
project began returning results to patients for 76 genes.

Even clearer is that tumor sequencing will be performed as part of standard of care for cancer. 
Currently sequencing is performed at certain tertiary and quaternary care facilities, particularly 
for metastatic tumors. As more is discovered about the various dysregulated pathways in cancer, 
and about the therapeutic implications for different genetic variations, the blunt mallet that is che-
motherapy will be phased out in favor of far more precise and targeted therapies.

The microbiome has seen increasing attention in recent years, a trend that will certainly con-
tinue for the foreseeable future. It is not surprising that the make-up of the microbial commu-
nities that likely outnumber the cells of the human body can have significant impact on human 
health, particularly in metabolic and gastro-intestinal disease. The more surprising trend is 
the connection between the microbiome and other, more unexpected phenotypes, for example, 
anxiety, depression, and autism. This is likely to continue as this area of research continues 
to grow.

We will continue to see an increase in analyses of different “omic” types. Genomics has been by far 
the most popular area of focus to date. As technologies mature, we will continue to see biomarker 
discovery in proteomics, metabolomics, and other as-yet-unnamed “omic” modalities. We will also 
see increasingly integrated analysis, taking a systems approach to human biology where to date 
systems biology has been focused on model organisms, often single cellular ones, in which the sys-
tem can be methodologically, and ethically, perturbed. Early examples of integrative, multi-modal 
analysis include the integration of microRNAs and transcription factors to determine regulatory 
networks underlying coronary artery disease, integrative analysis of genomics and transcriptomics 
to look at cardiovascular disease, and the use of metabolomics data with GWAS to elucidate mo-
lecular pathways. 

The coming decade will see more biomarker-based research and insights into mental health 
disorders. To date, cancer and cardiology have received significant attention, to great advan-
tage. But those disease areas are, by comparison, relatively easy to identify, to distinguish, and 
even to quantify. This is not the case for neurological and psychiatric disorders. Mental health 
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is an area where diagnosis, and phenotyping more generally, is as much art as science. It is an 
area that poses enormous burdens on society, both financial and quality-of-life related, and 
is also ripe for a deeper, more physiologically-based understanding. Even if therapy is still a 
long way away, having some concrete, quantifiable biomarkers, by which we could classify 
conditions such as depression, bi-polar disorder, and manic-depressive tendencies, would be 
a great leap.

Finally, major changes will be required to effectively and efficiently train the workforce of tomor-
row. These changes will not simply entail adding a few quantitative courses into medical and grad-
uate level biomedical research training, though that too will be important.

As genomic sequencing becomes increasingly widespread, this number needs to increase both in 
the US and around the globe. Genetic counselors today may be compared to pathologists in the 
early days of the microscope, or radiologists in the early days of X-rays. The respective numbers 
will never need to be equal—except in the case of cancer, the genome need only be sequenced 
once in a person’s lifetime. Moreover, pathologists and radiologists detect and describe what is. 
Even as we learn more about our genomes, they primarily tell us what is more or less likely to 
be. Still, many genetic findings are already actionable today, and this number will continue to 
increase.

There are two areas where we need to do better, but I am less optimistic that we will see real prog-
ress in the next decade or so. The first is in adoption of data standards. We need better resources 
for understanding, navigating, and using existing standards. We also need more impactful incen-
tives for adoption, and disincentives for failure to do so. In the current landscape, standards are 
too difficult to identify and adopt, and the benefit of doing so tends to be realized by people other 
than those doing the hard work.

Lastly, we need to establish more inter-interdisciplinary coordination and collaboration. Per-
haps meta-interdisciplinary is a better term. As biomedical informaticians, we are by definition 
interdisciplinary, including training and perspectives from medicine, biology, and computer 
science. But there are a large number of different communities around the world who are work-
ing on these problems, talking mostly among themselves. The various professional societies, 
even the interdisciplinary ones, have their respective meetings. There is some cross pollination, 
and some overlap in who attends the respective events but still not enough. There could be so 
much more, and we could make significant progress, reduce redundancy, and increase return 
on investment for research funding if these groups could be more consciously and proactively 
in sync.

Structural Bioinformatics

Structural bioinformatics is the branch of bioinformatics which specifically targeting at the 
analysis or prediction for three-dimensional structure of biological systems. Structural bioin-
formatics deal with biological systems at different scales, from molecules to cellular environ-
ment. Many types of cellular compartments, for example, the organization of the cell cytoplasm 
and the structural organization of the genome in its nuclear environment could be formalized 
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by integrative structural bioinformatics analysis. Structural bioinformatics usually involves 
following steps:

•	 Collecting of biological data, either high throughput sequencing data or imaging data. 

•	 Building computational model, can be structural simulation, optimization or alignment. 

•	 Interpreting the model results from structural biology perspectives.

•	 Providing insights for next iteration of experimental design.

Recently developed technologies has enabled high throughput sequencing and imaging data col-
lection. For example, Chromosome conformation capture techniques  are used to analyze the spa-
tial organization of chromatin in a cell based on high throughput sequencing data. By quantifying 
interactions between genome loci, we are able to infer the three-dimensional folding mechanism 
of the genome. For the imaging data, Cryo-electron tomography  is an important tool to study 
structures of macromolecular complexes in close to native states based on 3D back-projection of a 
series of the projected 2D images of the structure.

Many statistical learning methods and computational algorithms could be applied towards building 
structural bioinformatics models. Molecular dynamics, for example, could be useful to simulate the 
distributions of biological molecules and the interactions among them. Clustering methods, could 
be applied to detect subtypes of conformations among population data. Convolution neural net-
works is a good fit for image processing. Graph-based learning methods is a suitable way to perform 
structural alignments. With statistical learning methods and computational algorithms, structural 
bioinformatics has the great potential to help save labor, cost and time. Moreover, it could help 
providing insights for next iteration of experimental designs so as to collect more biological data.

Applications of Bioinformatics

Varietal Information System

Bioinformatics has useful application in developing varietal information system. In connection 
with plant variety protection (PVP) Act, various terms such as extant variety, candidate variety, 
reference variety, example variety and farmer’s variety are frequently used. Hence, knowledge of 
these terms is essential. These are defined below:

•	 Extant Variety: All released, notified and unprotected varieties.

•	 Candidate Variety: A variety to be registered under Plant Variety Protection Act is referred 
to as candidate variety.

•	 Reference Variety: All released and notified extant varieties of common knowledge which 
are in seed production chain.

•	 Example Variety: A variety that is used for comparison for a particular character is called 
example variety.
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•	 Farmers Variety: A variety that has been developed by a farmer and used for commercial 
cultivation for several years is called farmers variety.

The detailed information about various types of varieties can be developed using highly heritable 
characters.

Such information can be used in various ways as given below:

1.	 For varietal identification in DUS testing.

2.	 In grouping of varieties on the basis of various highly heritable characters.

3.	 In sorting out of cultivars for use in pre-breeding and traditional breeding.

The information can be stored in the computer memory and be retrieved as and when required.

Plant Genetic Resources Data Base

The genetic material of plants which is of value for present and future generations of people is 
referred to as plant genetic resources. It is also known as gene pool, genetic stock and germplasm. 
The germplasm is evaluated for several characters such as highly heritable morphological, yield 
contributing characters, quality characters, resistance to biotic and abiotic stresses and characters 
of agronomic value.

International Plant Genetic Resources Institute (IPGRI), Rome Italy has developed descriptors 
and descriptor states for various crop plants. Such descriptors help in uniform recording of obser-
vations on germplasm of crop plants all over the world. Thus huge data is collected on crop genetic 
resources for several years. Bioinformatics plays an important role in systematic management of 
this huge data.

Bioinformatics is useful in handling such data in several ways as follows:

1.	 It maintains the data of several locations and several years in systematic way.

2.	 It permits addition, deletion and updating of information.

3.	 It helps in storage and retrieval of huge data.

4.	 It also helps in classification of PGR data based on various criteria.

5.	 It helps in retrieval of data belonging specific group such as early maturity, late maturity, 
dwarf types, tall types, resistant to biotic stresses, resistance to abiotic stresses, superior 
quality, marker genes, etc.

All such data can be easily managed by computer aided programs and can be manipulated to get 
meaningful results.

Biometrical Analysis

In crop improvement, various biometrical analyses are performed.
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1.	 Simple measures of variability such as mean, standard deviation, standard error, coeffi-
cient of variation, etc.

2.	 Correlations: It includes genotypic, phenotypic and environmental correlations. It also in-
cludes simple, partial and multiple correlations.

3.	 Path Coefficients: It includes analysis of genotypic, phenotypic and environmental paths.

4.	 Discriminant function analysis.

5.	 Metroglyph analysis and D2 statistics.

6.	 Stability analysis.

7.	 Diallel, partial diallel, line x tester triallel, quadriallel, biparental and triple test cross analysis.

8.	 Generation mean analysis, etc.

All these analyses can be easily performed through computer aided programs.

Storage and Retrieval of Data

In crop improvement, huge data is collected on the following aspects:

(i) Segregating populations:

Single plant selections are made in segregating populations and data are recorded on various char-
acters such as yield components, quality characters, resistance to biotic and abiotic stresses, etc.

(ii) Multi-location Experiments:

Such experiments are conducted mainly for identification and release of new varieties and hybrids 
and also for assessment of varietal stability.

(iii) Multi-seasonal Experiments:

Such experiments are conducted for several years (3-5 years) for identification of new varieties and 
hybrids. The above data remain in active use generally for two decades. Handling of such a huge 
data is a difficult task.

However, such data can be easily stored in various storage devices such as hard disks, compact 
disks, pen drive, data cards, etc. Storage of data in computers require less space and is very safe as 
compared to storage of data in paper registers and files.

Studies on Plant Modelling

Computers are useful tools for undertaking studies on modelling of plants. First the theoretical 
model can be prepared with the help of computer keeping in view various plant characters. Then 
such model plants can be developed through hybridization and directional selection.

This type of studies is useful in developing crop ideotypes or ideal plant types in different field 
crops. First the conceptual model is prepared and then efforts are made to achieve such model 

Bioinformatics

Important biometrical analyses that are performed in plant breeding and genetics are given below:
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by combining desirable genes from different sources into a single genotype through appropriate 
breeding procedures. Such studies have been made in field pea.

Pedigree Analysis

Computer aided studies are useful in pedigree analysis of various cultivars and hybrids. Informa-
tion about the parentage of cultivars and hybrids is entered into the computer memory which can 
be retrieved any time. The list of parents which are common in the pedigree of various cultivars 
and hybrids can be sorted out easily.

It helps in the pedigree analysis which in turn can be used in planning plant breeding programs 
especially in the selection of parents for use in hybridization programs. The study of proteomics 
also helps in pedigree analysis.

Preparation of Reports

After biometrical analysis of data, results are interpreted and various types of reports or docu-
ments are prepared.

In crop improvement following types of reports is prepared:

1.	 Research Project Report: The annual progress report of each project is prepared and sa-
lient findings are documented.

2.	 Monthly, quarterly, half yearly and annual progress reports of all the research projects are 
also prepared.

3.	 Sometimes, bulletin and booklets are prepared to document specific information for adop-
tion and benefit of farmers.

4.	 Research papers and popular articles are prepared based on research findings.

5.	 Germplasm catalogues are prepared for various characters.

Such reports can be easily be prepared with the help of computers using MS Word program. This 
information can be stored in computer memory and reused as and when required. The editing and 
updating of reports can be done any time without much extra efforts.

Updating of Information

In plant breeding and genetics, results of multi-seasonal and long term experiments require con-
tinuous updating. Computers have made this task very simple. The information related to any 
experiment which is already stored in the computer memory, can be updated any time by editing 
the concerned file. Any portion of information can be deleted or revised easily.

Diagrammatic Representation

Inclusion of diagrams makes the reports, research papers, articles, bulletins, etc. more attractive, 
informative and easily understandable.
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The following types of diagrams are made in plant breeding:

1.	 Line diagrams, bar diagrams, histograms and pie diagrams.

2.	 Cluster diagram: It is prepared when data is subjected to D2 analysis.

3.	 Path diagram: It is prepared when data is subjected to path coefficient analysis.

4.	 Vr-Wr Graph: It is prepared when data is subjected to Hayman’s graphical approach of 
diallel cross analysis.

5.	 Metroglyph Chart: It is prepared when data is subjected to Metroglyph analysis.

All these diagrams can be easily prepared with the help of computer using specific program.

Bioinformatics in Plant Breeding

Plants are the basis of life on earth. They produce the life-supporting oxygen we breathe, they are 
essential for our nutrition and health and they provide the environment for the vast biodiversity 
on earth. For centuries, humans have selected plant varieties that best fit their purposes and devel-
oped crop plants that have many advantages compared to natural (wild) plants in quality, quantity 
and farming practises. However, multifactorial traits involved in resistance and quality have prov-
en to be extremely difficult to improve, certainly in combination. The revolution in life sciences 
signalled by genomics dramatically changes the scale and scope of our experimental enquiry and 
application in plant breeding. The scale and high resolution power of genomics enables to achieve 
a broad as well as detailed genetic understanding of plant performance at multiple levels of aggre-
gation. The complex biological processes that make up the mechanisms of pathogen resistance and 
provide quality to our crops are now open for a systematic functional analysis. These analysis are 
made with specific software on the high amounts of data generated in databases and is the field of 
plant bioinformatics. 

Genome initiatives are under way for more than 60 different plant species. From the point of view 
of economics, the most important of these are those of the major feed crops – the grasses maize, 
rice, wheat, sorghum and barley; and the forage legumes soybean and alfalfa. Several of these 
genomes are so large (as result of autopolyploidization and the dramatic expansion of repetitive 
DNA) that whole genome sequencing is impractical, and efforts have instead been focused on 
comparative genome methods. Both rice and maize, however, have relatively small genomes and 
are such key elements of the agricultural economies of the developed world that complete genome 
sequences have been prioritazed.

Classification of databases in the 2004 edition of the Molecular Biology Database Collection.

Category No of databases

Genomic 164

Protein sequences 87

Bioinformatics
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Human/vertebrate genomes 77

Human genes and diseases 77

Structures 64

Nucleotide sequences 59

Microarray/gene expression 39

Metabolic and signaling pathways 33

RNA sequences 32

Proteomics 6

Other 16

The role of model organism. Over the last century, research on a small number of organisms has 
played a pivotal role in advancing our understanding of numerous biological processes. This is 
because many aspects of biology are similar in most or all organisms, but it is frequently much 
easier to study a particular aspect in one organism than in others. These much-studied organisms 
are commonly referred to as model organisms, because each has one or more characteristics that 
make it suitable for laboratory study. The most popular model organisms have strong advantages 
for experimental research, such as rapid development with short life cycles, small adult size, ready 
availability, and tractability, and become even more useful when many other scientists work on 
them. A large amount of information can then be derived from these organisms, providing valu-
able data for the analysis of normal human or crop development; gene regulation, genetic diseases, 
and evolutionary processes.

Comparison of genome sequences of rice and Arabidopsis suggests that extensive but complex 
patterns of synteny will be a useful feature of plant genomics. Medicago (alfalfa) is a true diploid 
that, along with its crucial role in the fixing soil nitrogen, constitutes a major part of forage diets. 
Other grasses and legumes are the subjects of extensive EST sequencing and high resolution 
genetic map construction, in some cases involving radiation hybrid mapping, in hopes of taking 
advantage of the expected pervasive synteny within these families. Web sites established by in-
dividual research groups integrate research efforts from around the globe. In the 1980s, there 
was a growing awareness that significant investments in studies of many different plants, such as 
corn, oilseed rape, and soybean, were diluting ef forts to fully understand the basic properties of 
all plants. Scientists began to realise that the goal of completely understanding plant physiology 
and development is so ambitious that it can best be accomplished by turning to a model plant 
species that many scientists then study. Fortunately, because all flowering plants are closely re-
lated, the complete sequencing of all the genes of a single, representative, plant species will yield 
much knowledge about all higher plants. Similarly, discovery of the functions of the proteins 
produced by a model species will offer much information about the roles of proteins in all higher 
plants.

Arabidopsis thaliana has become universally recognised as a model plant for study. It is a small 
flowering plant that belongs to the Brassica family, which includes species such as broccoli, cauli-
flower, cabbage, and radish. Although it is a non-commercial plant, it is favoured among basic sci-
entists because it develops, reproduces, and responds to stress and disease in much the same way 
as many crop plants. Scientists expect that systematic studies of Arabidopsis will offer important 
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advantages for basic research in genetics and molecular biology and will illuminate numerous 
features of plant biology, including those of significant value to agriculture, energy, environment, 
and human health. Because of several reasons Arabidopsis has become the organism of choice for 
basic studies of the molecular genetics of flowering plants.

Arabidopsis thaliana has a small genome (125 Mb total), which already has been sequenced in the 
year 2000, and it lacks the repeated, less-informative DNA sequences that complicate genome 
analysis. It has extensive genetic and physical maps of all 5 chromosomes (MapViewer); a rapid 
life cycle (about 6 weeks from germination to mature seed); prolific seed production and easy cul-
tivation in restricted space; efficient transformation merits utilising Agrobacterium tumefaciens; 
a large number of mutant lines and genomic resources (Stock Centers) and multinational research 
community of academic, government and industry laboratories.

During the Arabidopsis evolution the whole genome has duplicated once, followed by subsequent 
gene loss and extensive local gene duplications. The genome contains 25.498 genes encoding pro-
teins from 11.000 families. The genome is compared to previous sequenced genomes and ESTs, 
and as much functions of genes are predicted. This functional analysis of the Arabidopsis genome 
showed the following proportion of predicted function. As with other model organisms there is 
much more to the Arabidopsis genome project than the complete genome sequence. The Web site 
for the Arabidopsis Information Resource, TAIR, allows researchers to integrate the genome se-
quence with an extensive EST data base and with the genetic and physical maps; it provides links 
to functional and molecular genetic data and the literature for specific genes; and it shows an ever 
expanding list of mutant stocks. An alternative resource for Arbabidopsis and many other plants 
UK CropNet, uses common AceDB or WebAce platforms to coordinate genetic and molecular data

As plant model organisms also could be considered: 

•	 Medicago truncatula (commonly known as “barrel medic” because of the shape of its seed-
pods) is a forage legume commonly grown in Australia. 

•	 Tomato: The overall goal of the Tomato Genomics Project includes the development of 
an integrated set of experimental tools for use in tomato functional genomics. The re-
sources developed will be used to further expand our understanding of the molecular 
genetic events underlying fruit development and responses to pathogen infection, and 
will be made available to the research community for analysis of diverse plant biological 
phenomena.

Bioinformatics
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•	 Rice: Some desired features of future improved rice varieties are superior grain quality, 
higher yield potential, enhanced resistance to insect pests and diseases, and greater toler-
ance to stresses such as drought, cold, and nutrient deficiencies.

•	 Maize: Maize products produce about $30 billion every year, and is used for food, rubber, 
plastic, fuel, and clothing. The maize genome is about 20 times larger than the one from 
Arabidopsis. This means that it is as big as the human genome. However, it’s organisa-
tion is more complex to sequence than that of all organisms that are sequenced today. 
The genes are situated in clusters through the genome, with high amounts of repetitive 
sequences in between. The genes containing regions make up to 15% of the total genome. 
Other significant characteristics of the maize genome are that it contains multiple copies of 
most genes and the existance of jumping genes or transposons that make up a large portion 
of the genome.

•	 Wheat: Recent advances in plant genetics and genomics offer unprecedented opportunities 
for discovering the function of genes and potential for their manipulation for crop improve-
ment. Because of the large size of the wheat genome, it is unlikely that the actual base pair 
sequences of the DNA molecules will be learned completely in the near future. This project 
takes an alternative strategy to realise the benefits of new techniques for discovering genes 
and learning their function (functional genomics). Following the identification of 10,000 
wheat ESTs, they will be mapped to their physical location on the chromosomes of wheat. 
This process utilizes a unique feature of the wheat chromosomes, their ability to tolerate 
deletions of portions of the chromosomes and still produce a viable plant. The mapping 
logic is direct: if an EST is present in a plant with complete chromosomes, but absent in a 
plant missing a known part of a single chromosome, then it can be inferred that the DNA 
sequence that corresponds to that EST is located in that segment of the chromosome. By 
the end of the mapping component of this project, a most valuable tool will have been 
produced: 10,000 unique DNA sequences, likely corresponding to genes, whose physical 
location in the chromosomes of wheat are known. This sets the stage for the next phase of 
the project, the analysis of this array of mapped ESTs to determine function.

•	 Other flowering plants: Over 90 different angiosperm genome projects around the world 
are listed on the United States Department of Agriculture Web site The list includes African 
projects on beans, corn and fungal pathogens; Australian projects on cotton, wheat, pine, 
sugarcane, and nine others; at least 24 European projects that include vegetables such as 
cabbage, cucumber, and pea, and fruits such as apple, peach and plum; and over 50 North 
American projects as diverse as turf grass, chrysanthemum, almond, papaya grape and 
poplar. The common denominator among all of these projects is the assembly of genetic 
maps (and in some cases physical maps) and the placement of a common set of plant genes 
on them. For some species large EST sequencing projects are also in place with the twin ob-
jectives of enabling comparative genomic analysis (particularly in the regions of synteny) 
and QTL mapping.

Managing and Distributing Plant Genome Data 

As with many areas of science and technology genome science has benefited greatly from advances 
in computing capabilities and bioinformatics. Improved computational speed has been important 
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but a strong argument can be made that the growth of the Internet has been even more crucial for 
genome scientists. In conjunction with the maturation of modern database technology the World 
Wide Web has become the natural medium for managing and distributing genomic resources.

The emergence of the Internet allowed the creation of centralized data warehouses. Just as im-
portant, it led to the creation shared public resources for searching and analyzing the contents of 
genomic databases. Full-featured Web sites such as those at NCBI and EMBL provide immediate 
access to enormous amounts of data and analysis tools, free of charge, from anywhere of the globe. 
This is dramatic change from the situation about a decade go, when GenBank database was dis-
tributed by paid subscription in a small notebook, full of 5.25” floppy disks.

Networking advances have also been important for within laboratory data management and with 
little or no human intervention. Centralized laboratory information management systems or LIMS, 
then allow users at multiple workstations or even multiple geographic locations to browse, edit, 
analyze and annotate the data.

The core item of genomic data is a database system. Most databases can be classified as either re-
lational databases (RDB) or object-oriented data bases (OODB).

There are three primary sequence databases: GenBank (NCBI), the Nucleotide Sequence Da-
tabase (EMBL) and the DNA Databank of Japan (DDBJ). These are repositories for raw se-
quence data, but each entry is extensively annotated and has features table to highlight the 
important properties of each sequence. The three databases exchange data on a daily basis. 
Similarly, SWISS-PROT and TrEMBL are the major primary databases for the storage of pro-
tein sequences. There are also secondary databases of protein families and sequence patterns 
such as PROSITE, PRINTS and BLOCKS. These are called secondary databases because the se-
quences they contain are not raw data, but they have been derived from the data in the primary 
databases. 

The early bioinformatics databases emphasized primary data capture. GenBank, established in 
the late 1980’s began with staff at Los Alamos National Laboratoty (and later the National Center 
for Biotechnology Information) manually keying DNA sequences from published papers into the 
computer. It neither added nor removed any information from these sequences, nor did it perform 
any integration of multiple overlapping sequences. Other databases founded around this time also 
focused on a single data type: SwissProt for protein sequences and PDB for X-ray crystallographic 
structures. From the mid-1990s to the early part of this decade the emphasis shifted from data 
capture to data aggregation and integration. This was largely due to the limitations of primary data 
archives: what if one wanted to correlate DNA sequencing information with data from biochemical 
or genetic studies? Model Organism Databases (MODs), integrated repositories of all the electron-
ic information resources pertaining to a particular experimental plant or animal species, became 
the darlings of the bioinformatics world.

Now the MOD paradigm is itself giving way to new, higher level concepts, such as clade-specific 
and pathway databases. Integrating multiple types of biological data across several species, these 
resources enable researchers to make discoveries that wouldn’t be possible by examining a single 
species alone. It could be predicted that in another decade the idea of biological database devoted 
to one species will seem as quaint as the idea of a database devoted to a single type of laboratory 
data seems today.

Bioinformatics
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Though MOD are still going strong, their preeminence is now being challenged by multispecies, 
comparative-genomics databases, sometimes called clade-specific databases. These systems in-
tegrate information on multiple organisms and use comparative analysis to discover patterns 
in genome that might otherwise be missed. Well known clade specific databases include: En-
sEMBL at the European Bioinformatics Institute (EBI; Entrez at the NCBI and the Genome 
Browser at the University of California, Santa Cruz all of which relate information on the hu-
man genome to data gathered over plants, vertebrates, invertebrates and prokaryotes. Some 
years ago the Cold Spring Harbor Laboratory, New York established Gramene a comparative 
genomics resource for crop grasses. This database integrates genome sequences, genetic maps, 
mutation and trait data across rice, maize wheat and a large number of other cereals. Gramene 
gives researchers the benefit of genome sequencing even before their favorite organism actually 
has been sequenced.

The maize genome, for instance, is about the same length as the human genome, and won’t be 
fully sequenced for another several years, but rice, with a compact genome one-tenth the size of 
human’s, already is. Because the two grains are closely related evolutionarily, we have been able to 
create maps that relate maize’s genetic map to the rice genome sequence. This allows to research-
ers to follow a genetically mapped trait in maize, such as tolerance to high salt levels in the soil, 
and move into the corresponding region in the rice genome, thereby identifying candidate genes 
for salt tolerance. Similar techniques helped cattle researchers identify in 1997 a gene responsible 
for muscle growth based on the existence of a genetic mutation in a corresponding region of the 
mouse genome.

The next very important class of databases in near future could be considered as pathway data-
bases. Traditional databases are linear catalogues of sequences, genes, proteins, genomes, and 
genome-to-genome alignments. Such databases have one or a small number of central data ob-
jects, such as gene record, and all the other information hangs off that object. A typical research 
project describes the model of the series of experiments. The model usually describes the se-
ries of molecular events (the pathway) that is responsible for whatever phenomenon is studied, 
whether it be embryonic development, neuronal signaling in the brain, or the transformation 
of healthy cells into cancerous ones. These pathways are the ultimate output of biological re-
search. The initial project in pathway databases is the Reactome Current entries describe energy 
metabolism, DNA replication, RNA transformation and splicing, protein translation and cell 
cycle regulation. Each pathway is linked to the literature references that provide experimental 
support for it, and to the database records for genes, sequences and proteins that participate in 
the pathways.

A new standard in transferring metabolomics data has been developed since 2002 by several Bio-
PAX project, and financed by Department of Energy of United States. The goal of the BioPAX 
group is to develop a common exchange format for biological pathways data.

A sample pathway entry in the new standard, implemented in OWL will look like this:

Sequence Alignment Methods and Applications 

Comparing genome sequences. The development of technologies for the largescale quantification 
and identification of biological molecules combined with advances in computing technologies and 
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the internet has served to facilitate the delivery of large volumes of biological data to the scien-
tists’ desktop. By the time the human genome sequence was published in 2001, the rate of DNA 
sequencing had increased 2,000-fold since the inception of the technology in 1986. The increased 
productivity was gained through automation, miniaturization, and integration of technologies; ap-
plying this approach to the analyses of other biological molecules including mRNA, proteins, and 
metabolites has resulted in a massive increase in the generation of biological data. This data has 
been made easily accessible, in part due to publications such as the Molecular Biology Database 
Collection, an annual listing of the best databases publicly available to the biological community. 
Analysis of the collection reveals the steady growth in the quality and size of the databases with the 
2004 edition containing 548 databases classified into 11 categories.

DNA sequencing is performed using and automated version of the chain termination reaction, in 
which limiting amounts of dideoxyribonucleotides generate sets of DNA fragments with specific 
terminal bases. Four reactions are set up, one for each of the four bases in DNA, each incorporat-
ing different fluorescent label. The DNA fragments are separated by the PAGE and the sequence is 
read by a scanner as each fragment moves to the bottom of the gel. 

DNA sequences come in three major forms. Genomic DNA comes directly from the genome and 
includes extragenic material, as well as genes. In eukaryots, genomic DNA contains introns. cDNA 
is reverse transcribed from mRNA and corresponds only to expressed parts of the genome. It does 
not contain introns. Finally, recombinant DNA comes from the laboratory and comprises artificial 
DNA molecules such as cloning vectors. 

Major aim of most genome projects is to determine the DNA sequence either of the genome or of 
a larger number of transcripts. This endeavor both leads to the identification of all or most genes 
and to the characterization of various structural features of the genome. Very often the major es-
sence of the bioinformatics strategies for sequence alignment is the comparison of cDNA/EST and 
genomic sequences and annotation. The veracity of any whole genome sequence must be assessed 
at three levels: its completeness, the accuracy of the base sequence and the validity of its assembly.

In addition to whole genome sequencing, plant sequence data have been accumulating from three 
major sources: sample sequencing of bacterial artifcial chromosomes (BACs), genome survey se-
quencing (GSS) and sequencing of expressed sequence tags (ESTs).

1. Quence tags (ESTs): Sequence alignment is the arrangement of two or more amino acid or nu-
cleotide sequences from an organism or organisms in such a way as to align areas of the sequences 
sharing common properties. The degree of relatedness or homology between the sequences is pre-
dicted computationally or statistically based on weights assigned to the elements aligned between 
the sequences. This in turn can serve as a potential indicator of the genetic relatedness between 
the organisms.

2. Alignment is a computational problem: There is a certain degree of convinction, that two simi-
lar sequences can be lined up in such a way that identical bases (or amino acids) are all matched. 
However from a computers point of view the alignment process is far from trivial. If gaps are al-
lowed there are a tremendous number of of different alignments possible for any two sequences.

Dynamic programming algorithms can calculate the best alignment of two sequences. Well known 
variants for pairwise alignment are the Smith-Waterman algorithm for local alignment and the 
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Needelman-Wunsch (19) algorithm for global alignment. Local alignments are useful when se-
quences are not related over their full lengths, for example proteins sharing only certain domains, 
or DNA sequences related only in exons.

Multiple sequence alignment. Multiple alignment illustrates relationships between two or more 
sequences. When the sequences involved are diverse, the conserved residues are often key residues 
associated with maintenance of structural stability or biological function. Multiple alignments can 
reveal many clues about protein structure and function. The most commonly used alignment soft-
ware is the ClustalW package. 

Alignment scores and gap penalties. A simple alignment score measures the number of proportion 
of identically matching residues. Gap penalties are subtracted from such scores to ensure that 
alignment algorithms produce biologically sensible alignments without too many gaps. Gap pen-
alties may be constant (independent of the length of the gap), proportional (proportional to the 
length of the gap) or affine (containing gap opening and gap extension contributions). Gap penal-
ties can be varied according to the desired application. Sequence similarity can be quantified using 
score from the alignment algorithm, percentage sequence identities or more complex measures.

Sequence Similarity Searching Algorithms 

Dynamic programming algorithms are guaranteed to find the best alignment of two sequences for 
given substitution matrices and gap penalties. This is impressive, but the process is often quite 
slow, perhaps taking hours for a search of a large database. For these reason alternative methods 
have been developed. Perhaps the most used of these are FASTA Both tools BLAST and FASTA 
provide very fast searches of sequence databases. Unlike dynamic programming, they do not guar-
antee to find the best possible alignment to each database sequence, but in practice the effect of 
performance is usually minimal. Each operates by first locating short stretches of identically or 
near identically matching letters (words) that are eventually extended into longer alignments. Best 
BLAST server runs the NCBI and can be used to search many general-purpose sequence databases. 
A similar FASTA implementation is available at the EBI.

Smith-Waterman is an algorithm for local sequence alignment, using as input two sequences. The 
difference between NCBI BLAST (also considered as local alignment algorithm) and Smith-Water-
man is that a) BLAST is searching query sequence over a database of sequences; and b) BLAST is 
calculating statistically most probable alignment match, since SmithWaterman is calculating the 
exact match.

Genome Comparison Tools. MegaBlast is NCBI BLAST based algorithm for large sequence similarity 
search. MegaBlast implements a greedy algorithm for the DNA sequence gapped alignment search. 
MegaBlast is used to compare the raw genomic sequences to a database of contaminant sequences 
(including the UniVec database of vector sequences, the Escherichia coli genome, bacterial insertion 
sequences, and bacteriophage databases). Any foreign segments are removed from draft-quality se-
quence or masked in finished sequence to prevent them from participating in alignments.

Jim Kent’s BLAT (BLAST-Like Alignment Tool) is a tool which performs rapid mRNA/DNA and 
cross-species protein alignments. BLAT is more accurate, 500 times faster than popular existing 
algorithms for mRNA/DNA alignments, and 50 times faster for protein alignments at sensitivity 
settings typically used when comparing vertebrate sequences.
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Genome based multiple alignment using BlastZ. BLASTZ is a multiple sequence alignment pro-
gram basically used for the whole-genome human-mouse alignments. Blastz output can be viewed 
with the LAJ interactive alignment viewer, converted to traditional text alignments. LAJ is a tool 
for viewing and manipulating the output from pairwise alignment programs such as BLASTZ. It 
can display interactive dotplot, pip, and text representations of the alignments, a diagram showing 
the locations of exons and repeats, and annotation links to other web sites containing additional 
information about particular regions.

EST sequencing ESTs are partial gene sequences which have been generated or are in the process 
of being produced in several laboratories using different species and cultivars as well as varied tis-
sues and developmental stages. This represents an important step towards the identification of all 
expressed genes for instance in grapevine, and some members of the Rosaceae family: a large part 
of the Malus (apple) genome, raspberries/blackberries Rubus, stone fruits (Prunus), strawberry 
(Fragaria) peach, almond.

ESTs are now widely used throughout the genomics and molecular biology communities for gene 
discovery, mapping, polymorphism analysis, expression studies, and gene prediction Expressed 
sequence tags (ESTs) have applications in the discovery of new genes, mapping of the genome, and 
identification of coding regions in genomic sequences. An EST database consists of ESTs drawn 
from multiple cDNAs, and there could be potentially many ESTs drawn from each cDNA. Given 
such a database, the EST clustering problem is defined as follows: The ESTs should be partitioned 
into clusters such that ESTs from each gene are put together in a distinct cluster. A further com-
plication arises due to the fact that DNA is a double stranded molecule and a gene could be part of 
either strand.

dbEST  is a division of GenBank that contains sequence data and other information on “sin-
gle-pass” cDNA sequences, or Expressed Sequence Tags, from a number of organisms. The In-
stitute for Genomic Research (TIGR) is defining also TC as Tentative Consensi (assemblies from 
ESTs) and ET as Expressed Transcripts (both non-human) when building TIGR Gene Indices 
(TGI).

Molecular Information and Plant Breeding – A Bioinformatics Approach 

Molecular plant breeding. As the resolution of genetic maps in the major crops increases, and as 
the molecular basis for: 

•	 Number of ESTs by fruit collected in dbEST (release 040805). 

•	 dbEST release 040805. 

•	 Number of public entries: 26,605,325.

Malus x domestica 183916

Vitis vinifera 147300

Prunus armeniaca 15181

Citrus x paradisi x Poncirus trifoliata 8002

Vitis hybrid cultivar 6533

Fragaria x ananassa 5322

Bioinformatics
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Prunus dulcis 3864

Citrus reticulata 3735

Citrus unshiu 2561

Ananas comosus 1547

Fragaria vesca 1306

Citrullus lanatus 693

Citrus clementina x Citrus reticulata 74

Vitis cinerea x Vitis rupestris 61

Cucumis melo 60

specific traits or physiological responses becomes better elucidated, it will be increasingly possible 
to associate candidate genes, discovered in model species, with corresponding loci in crop plants. 
Appropriate relational databases will make it possible to freely associate across genomes with re-
spect to gene sequence, putative function, or genetic map position. Once such tools have been 
implemented, the distinction between breeding and molecular genetics will fade away. Breeders 
will routinely use computer models to formulate predictive hypotheses to create phenotypes of in-
terest from complex allele combinations, and then construct those combinations by scoring large 
populations for very large numbers of genetic markers.

The vast resource comprising breeding knowledge gathered over the last several decades will be-
come directly linked to basic plant biology, and enhance the ability to elucidate gene function in 
model organisms. For instance, traits that are poorly defined at the biochemical level but well es 
tablished as a visible phenotype can be associated by high resolution mapping with candidate 
genes. Orthologous genes in a model species, such as Arabidopsis or rice, may not have a known 
association with a quantitative trait like that seen in the crop, but might have been implicated 
in a particular pathway or signaling chain by genetic or biochemical experiments. This kind of 
cross-genome referencing will lead to a convergence of economically relevant breeding informa-
tion with basic molecular genetic information. The specific phenotypes of commercial interest that 
are expected to be dramatically improved by these advances include both the improvement of fac-
tors that traditionally limit agronomic performance (input traits) and the alteration of the amount 
and kinds of materials that crops produce (output traits). Examples include:

•	 Abiotic stress tolerance (cold, drought, salt).

•	 Biotic stress tolerance (fungal, bacterial, viral, chewing and sucking insect attack (feeding)).

•	 Nutrient use efficiency - manipulation of plant architecture and development (size, organ 
shape, number, and position, timing of development, senescence).

•	 Metabolite partitioning (redirecting of carbon flow among existing pathways, or shunting 
into new pathways).

Rational plant improvement. The implications of genomics with respect to food, feed and fibre 
production can be envisioned on many fronts. At the most fundamental level, the advances in ge-
nomics will greatly accelerate the acquisition of knowledge and that, in turn, will directly impact 
many aspects of the processes associated with plant improvement. Knowledge of the function of all 
plant genes, in conjunction with the further development of tools for modifying and interrogating 
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genomes, will lead to the development of a genuine genetic engineering paradigm in which ratio-
nal changes can be designed and modeled from first principles.

Genotype Building Experiments

Biodiversity determined by the plant genome analysis. In the recent years an increasing amount 
of information for the DNA polymorphism and sequencing was accumulated in different plant 
varieties and cultivars. Most of this information was used for the purpose of recognition of dif-
ferent cultivars as well as for their comparison – distances and similarities (22). These distances 
are measured by the polymorphism on a part of the chromosome with unknown function. This 
type of polymorphism is widely used in the genomic studies across the species. The data for the 
polymorphism are analyzed for a possible link with a quantitative trait of interest of the individual 
phenotypes. Once such a link is detected it is called indirect marker.

Indirect markers are closely linked, sometimes they may overlap, with a locus which determine 
this quantitative trait – QTL. QTLs are defined as genes or regions of chromosomes which affect 
a trait. QTLs by themselves are difficult to be recognized. In both cases this information, or as it 
is called – markers, can be used in further selection purposes. This selection process is named as 
MAS.

QTLs and mapping. The major problem is to define which populations are suitable for QTL-anal-
yses – unstructured and F2 crosses and in plant - large scale populations in order to screen for 
possible QTLs. As selection is based most on markers, higher density of mapping is important. 
The interval between marker and QTL of about 5 centiMorgans (cM) seemed sufficient for effective 
selection. The simulation studies however showed that selection accuracy dropped down to 81% 
and 74% with 2 cM and 4 cM distance compared to 1cM

How QTL information could be of use?

•	 It is assumed that some but not all loci are identified, so selection should be based on the 
combination of phenotypic and molecular information;

•	 In the process of selection the link of markers and traits could decrease so this link should 
be observed throughout the generations;

•	 In the process of selection QTLs prove simultaneous existence of the desired genes in a line;

•	 In crossbred programs QTLs could predict the productivity of untested crosses, includ-
ing their non-additive effect on the information of the parent lines and limited number of 
crosses; 

•	 Future prospective – with accumulation of molecular data genotype building programs will 
be developed which will set homozygous desirable markers; 

•	 In intrigression programs for combining the desirable traits from two lines in one; 

•	 Finally – the real world of agriculture is on the stage of accumulation of molecular data.

Analytical approaches: One of the statistical tools for performing the QTL analyses such is the me-
ta-analysis, which synthesize dense QTL information and refines the QTL position. A program of 

Bioinformatics

________________________ WORLD TECHNOLOGIES ________________________



WT

Branches and Applications of Bioinformatics 	 149 

this class is the French BioMercator. An environment with complex research opportunities is also 
PlaNet – the European plant genome database network, which is available at.

Further development and efficiency of QTLs and MAS. Further development and detailed dis-
cussion on QTLs includes the statistical aspects of MAS, setting up the threshold of significance 
of marker effects, overestimation or bias in estimation of QTL effects, optimization of selection 
programs for several generations with simultaneous utilization of MAS and phenotypic data. A 
specific feature is that detection should be made on plant specific parts – leaves, roots, fruits etc., 
as it was proved for the grapes.

Experimental results not always confirm the efficiency of MAS over the genotype building. The 
main reason is in unsufficient precision of the initial assessment of a QTL, its place and effect. 
Some QTLs also could be lost in the genotype building process. For complex productivity traits 
the epistatic lost would be a reason for changes in the magnitude of QTL effect in the parent and 
progeny generation. Then it is recommended that selection is based on the allelic combinations 
rather on the separate QTLs. It is in line with the numerous GxE interactions and with the selec-
tion within the environment of interest in the case of disease/drought resistance.

Consequently, efficiency of MAS will depend on the complexity of species/trait genetic architec-
ture, on the development of the trait in the environment and on their interaction. For complex 
traits the evaluation of QTLs should be in different environments. Phenotypic evaluation/check 
throughout the consecutive generations is also necessary. For instance: drought resistance seemed 
to be more complex trait vs. disease resistance.

From the economics point of view the use of markers will cost collection of DNA, genotyping, 
analyses, detection of QTLs etc. This high price is paid for the genotype building (there is no other 
way of doing that), for traits that are expensive for evaluation – disease resistance, or traits with 
low heritability.

Role and Application of Bioinformatics in  
Plant Disease Management

Genomic studies focused on whole genome analysis, have opened up a new era for biology in gen-
eral and for agriculture in particular. Along with the use of genetic plant models and the prog-
ress in sequencing agriculturally important organisms, the combination of bioinformatics and 
functional genomics globally enhance agricultural genomics. These studies are likely to pave the 
way towards better understanding of plant-pathogen biological network, and eventually to lead 
to break thoughts in promotion of plant resistance to pests. Bioinformatics plays a great role in 
plant disease management. Some of the areas in which bioinformatics is involved in plant diseases 
management are indicated below.

Study of host- pathogen interaction The interaction between plants and their pathogens is com-
plex. The study of these interactions has a long and rich history in science, with plant pathologists 
tackling these complex systems first with classical tools, such as physiology, histology, microbiol-
ogy, plant breeding and genetics, and more recently with advanced biochemistry and molecular 
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biology approaches. Plant pathogens have evolved a broad set of proteins that enable a stealthy 
entry into the plant cell and facilitate the evasion of host defenses. Among other defenses, plants 
have evolved a series of proteins that monitor their cells for signs of infection. Downstream of 
these monitors is a signaling and response system triggered upon infection.

The molecular basis of the host-pathogen interaction is now much better understood, as a result 
of the development of genomic data and tools. For example, the complete genomic sequence is 
available for a model plant, Arabidopsis, and for one of its bacterial pathogens, Pseudomonas 
syringaepv. tomato DC3000. Detailed molecular analyses of these two organisms have revealed 
much about plant defenses. Modern genomics tools, including applications of bioinformatics and 
functional genomics, allow scientists to interpret DNA sequence data and test hypotheses on a 
broader scale than previously possibl. In the last 5 to 10 years, many of the critical host proteins 
that detect the presence of pathogens have been characterized. Numerous components of the plant 
signaling system have also been identified that function downstream of the detection molecules. 
In parallel, the pathogen proteins that are used to suppress host defenses and drive the infection 
process (so-called effector proteins) have also been identified, using molecular biological technol-
ogies and genetics.

Study of Disease Genetics 

Advances in molecular biology, plant pathology, and biotechnology have made the development 
of different techniques are designed to detect plant diseases early, either by identifying the pres-
ence of the pathogen in the plant (by testing for the presence of pathogen DNA) or the molecules 
(proteins) produced by either the pathogen or the plant during infection. These techniques re-
quire minimal processing time and are more accurate in identifying pathogens. In the past, dis-
ease genetics has focused on monogenic diseases in which the expression of a particular variant of 
a single gene will, in the vast majority of cases, lead to disease. There are innumerable monogenic 
diseases, each of which affects only a small number of individuals. In contrast, disease genet-
ics research is now focused on identification of genes associated with common diseases. These 
common diseases are multi-factorial (i.e. dependent on complex interactions between numerous 
environmental factors and a number of alternative forms of genes called disease susceptibility 
genes) and polygenic (involving more than one gene in their multi-factorial pathogenesis. The 
overall goal of disease genetics is to identify how genetic variation can influence disease sus-
ceptibility and to improve understanding of the molecular processes resulting in clinically overt 
disease. New treatments can then be designed to target these molecular processes to prevent and 
treat the disease.

Typically, new disease susceptibility genes have been identified using a combination of linkage and 
association studies. The linkage studies involve collection of DNA samples and extensive clinical 
phenotypic data from multiple members of affected families. Markers are typed throughout the 
genome, and using linkage analysis algorithms, chromosomal regions harboring disease genes 
are identified. The regions are identified using highly informative markers on the basis of their 
chromosomal location by taking advantage of the meiotic process of recombination as apparent 
in families segregating for the disease. Markers closest to the disease gene show the strongest cor-
relation with disease patterns in families. These linkage studies allow identification of a region on 
a chromosome and large portions of the DNA that may be linked to a specific disease.
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Identification of Pathogencity Factors of a Pathogen 

Pathogensity is the capacity of a pathogen to overcome genetically determined host resistance. The 
identification of genes involved in host–pathogen interactions is important for the elucidation of 
mechanisms of disease resistance and host susceptibility. A traditional way to classify the origin 
of genes sampled from a pool of mixed cDNA is through sequence similarity to known genes from 
either the pathogen or host organism or other closely related species. This approach does not work 
when the identified sequence has no close homologues in the sequence databases.

It was reported that bioinformatics play a role in identification of the HrpL region and type III 
Secretion System effector proteins of Pseudomonas syringaepv. phaseolicola1448A. The HrpL al-
ternative sigma factor activates the expression of multiple genes that are essential to the plant 
pathogencity of Pseudomonas syringae. The most important of these are genes encoding the type 
III secretion system (T3SS) and effector proteins that are injected by the T3SS into host cells. 
The T3SS is encoded by hypersensitive response and pathogencity (hrp) and hrpconserved (hrc) 
genes. Effector proteins are encoded by avirulence (avr) and Hrp outer protein (hop) genes, whose 
different names reflect the phenotype used to discover them. Mutations were constructed in the 
DC3000 homologs and found to reduce bacterial growth in host These results establish the utility 
of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant 
to pathogenesis in pathogen genomes.Similarly, it was reported that identification and character-
ization of potato protease inhibitors able to inhibit pathogencity and growth of Botrytis cinerea.

Developing Disease Resistance Cultivars 

Durable disease resistance is a major but elusive goal of many crop improvement programs. Ge-
nomic approaches will have a significant impact on efforts to ameliorate plant diseases by increas-
ing the definition of and access to gene pools available for crop improvement. This approach will 
involve the detailed characterization of the many genes that confer resistance, as well as technolo-
gies for the precise manipulation and deployment of resistance genes. Genomic studies on patho-
gens are providing an understanding of the molecular basis of specificity and the opportunity to 
select targets for more durable resistance. As goal of plant genomics is to understand the genetic 
and molecular basis of all biological processes in plants that are relevant to the species. This un-
derstanding is fundamental to allow efficient exploitation of plants as biological resources in the 
development of new cultivars with improved quality and reduced economic and environmental 
costs. This knowledge is also vital for the development of new plant diagnostic tools Traits con-
sidered of primary interest are, pathogen and abiotic stress resistance, quality traits for plant, and 
reproductive traits determining yield. A genome program can now be envisioned as a highly im-
portant tool for plant improvement. Such an approach to identify key genes and understand their 
function will result in a quantum leap in plant improvement. Additionally, the ability to examine 
gene expression will allow us to understand how plants respond to and interact with the physical 
environment and management practices. Bioinformatics plays several roles in breeding for disease 
resistance. It will be important for acquiring and organizing large amounts of information. It will 
also allow the visualization of information from heterogeneous datasets to facilitate the selection 
of superior individuals.

Disease resistance is only one of several traits under selection in a breeding program. Bioinformat-
ics will therefore play an increasing role in integrating phenotypic and pedigree information for 
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agronomic as well as resistance traits. Improved algorithms and increased computing power will 
make it possible to simulate and optimize selection strategies as well as to model the epidemiology 
of pathogens. According to Vassilev et al. the key role of bioinformatics for plant improvements 
may include: to encourage the submission of all sequence data into the public domain, through 
repositories, to provide rational annotation of genes, proteins and phenotypes, and to elaborate 
relationships both within the plants’ data and between plants and other organisms to provide data 
including sequence information, information on mutations, markers, maps, functional discover-
ies, and other.

Production of Disease Free Planting Materials 

Most agricultural biotechnologies involve tissue culture and DNA-based markers for germplasm 
conservation, production of disease-free planting material, and assistance to genetic improve-
ment. More recently, Latin America countries such as, Argentina, Brazil, Colombia, Honduras, 
Mexico and Uruguay have commercially grown transgenic crops. Advanced biotechnologies, such 
as genetic sequencing and microarray genomics, are differentially utilized in some Latin America 
countries, with Brazil being at the forefront, for characterization, mapping, and trait screening for 
important crops and pathogens. With this regard the role of bioinformatics is indispensable.

Bioinformatics in Computer-Aided Drug Design

Computer-Aided Drug Design (CADD) is a specialized discipline that uses computational methods 
to simulate drug-receptor interactions. CADD methods are heavily dependent on bioinformatics 
tools, applications and databases. As such, there is considerable overlap in CADD research and 
bioinformatics.

There are several key areas where bioinformatics supports CADD research. 

•	 Virtual High-Throughput Screening (vHTS): Pharmaceutical companies are always 
searching for new leads to develop into drug compounds. One search method is virtual 
high-throughput screening. In vHTS, protein targets are screened against databases of 
small-molecule compounds to see which molecules bind strongly to the target. If there is a 
“hit” with a particular compound, it can be extracted from the database for further testing. 
With today’s computational resources, several million compounds can be screened in a few 
days on sufficiently large clustered computers. Pursuing a handful of promising leads for 
further development can save researchers considerable time and expense. ZINC is a good 
example of a vHTS compound library.

•	 Sequence Analysis: In CADD research, one often knows the genetic sequence of multiple 
organisms or the amino acid sequence of proteins from several species. It is very useful to 
determine how similar or dissimilar the organisms are based on gene or protein sequences. 
With this information one can infer the evolutionary relationships of the organisms, search 
for similar sequences in bioinformatic databases and find related species to those under 
investigation. There are many bioinformatic sequence analysis tools ¡¤\5 that can be used 
to determine the level of sequence similarity. 

Bioinformatics
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•	 Homology Modeling: Another common challenge in CADD research is determining the 
3-D structure of proteins. Most drug targets are proteins, so it’s important to know their 
3-D structure in detail. It’s estimated that the human body has 500,000 to 1 million pro-
teins. However, the 3-D structure is known for only a small fraction of these. Homology 
modeling is one method used to predict 3-D structure. In homology modeling, the amino 
acid sequence of a specific protein (target) is known, and the 3-D structures of proteins 
related to the target (templates) are known. Bioinformatics software tools are then used to 
predict the 3-D structure of the target based on the known 3-D structures of the templates. 
MODELLER is a well-known tool in homology modeling, and the SWISS-MODEL Reposi-
tory is a database of protein structures created with homology modeling.

•	 Similarity Searches: A common activity in biopharmaceutical companies is the search for 
drug analogues. Starting with a promising drug molecule, one can search for chemical com-
pounds with similar structure or properties to a known compound. There are a variety of 
methods used in these searches, including sequence similarity, 2D and 3D shape similarity, 
substructure similarity, electrostatic similarity and others. A variety of bioinformatic tools 
and search engines are available for this work.

•	 Drug Lead Optimization: When a promising lead candidate has been found in a drug dis-
covery program, the next step (a very long and expensive step!) is to optimize the structure 
and properties of the potential drug. This usually involves a series of modifications to the 
primary structure (scaffold) and secondary structure (moieties) of the compound. This pro-
cess can be enhanced using software tools that explore related compounds (bioisosteres) 
to the lead candidate. OpenEye’s WABE is one such tool. Lead optimization tools such as 
WABE offer a rational approach to drug design that can reduce the time and expense of 
searching for related compounds.

•	 Physicochemical Modeling: Drug-receptor interactions occur on atomic scales. To form 
a deep understanding of how and why drug compounds bind to protein targets, we must 
consider the biochemical and biophysical properties of both the drug itself and its target 
at an atomic level. Swiss-PDB is an excellent tool for doing this. Swiss-PDB can predict 
key physicochemical properties, such as hydrophobicity and polarity that have a profound 
influence on how drugs bind to proteins. 

•	 Drug Bioavailability and Bioactivity: Most drug candidates fail in Phase III clinical trials 
after many years of research and millions of dollars have been spent on them. And most 
fail because of toxicity or problems with metabolism. The key characteristics for drugs are 
Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) and efficacy—in other 
words bioavailability and bioactivity. Although these properties are usually measured in 
the lab, they can also be predicted in advance with bioinformatics software. 

Benefits of CADD

CADD methods and bioinformatics tools offer significant benefits for drug discovery programs.

•	 Cost Savings: The Tufts Report suggests that the cost of drug discovery and development 
has reached $800 million for each drug successfully brought to market. Many biopharma-
ceutical companies now use computational methods and bioinformatics tools to reduce 
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this cost burden. Virtual screening, lead optimization and predictions of bioavailability and 
bioactivity can help guide experimental research. Only the most promising experimental 
lines of inquiry can be followed and experimental dead-ends can be avoided early based on 
the results of CADD simulations.

•	 Time-to-Market: The predictive power of CADD can help drug research programs choose 
only the most promising drug candidates. By focusing drug research on specific lead 
candidates and avoiding potential “dead-end” compounds, biopharmaceutical companies 
can get drugs to market more quickly. 

•	 Insight: One of the non-quantifiable benefits of CADD and the use of bioinformatics tools 
is the deep insight that researchers acquire about drug-receptor interactions. Molecular 
models of drug compounds can reveal intricate, atomic scale binding properties that are 
difficult to envision in any other way. When we show researchers new molecular models of 
their putative drug compounds, their protein targets and how the two bind together, they 
often come up with new ideas on how to modify the drug compounds for improved fit. This 
is an intangible benefit that can help design research programs.

Bioinformatics
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Chapter 4
Gene and DNA Sequence Analysis
Sequence analysis seeks to understand the structure, feature and function of a DNA, RNA or pep-
tide sequence using a broad range of analytical methods. Gene prediction, DNA sequencing and 
whole genome sequencing are some of the fields of study within this discipline. The chapter closely 
examines these key concepts of gene and DNA sequence analysis to provide an extensive under-
standing of the subject.

Gene Prediction and Methods

Gene prediction is the process of inferring the sequence of the functional products encoded in ge-
nomic DNA sequences.

Gene Prediction Methods

There are two basic problems in gene prediction: prediction of protein coding regions and pre-
diction of the functional sites of genes. A large number of researches working on this subject have 
accumulated, which can be classified into four generations in summary. The first generation of 
programs was designed to identify approximate locations of coding regions in genomic DNA. The 
most widely known programs were probably TestCode and GRAIL. But they could not accurately 
predict precise exon locations. The second generation, such as SORFIND and Xpound, combined 
splice signal and coding region identification to predict potential exons, but did not attempt to as-
semble predicted exons into complete genes. The next generation of programs attempted the more 
difficult task of predicting complete gene structures. A variety of programs have been developed, 
including GeneID GeneParser, GenLang, and FGENEH, However, the performance of those pro-
grams remained rather poor. Moreover, those programs were all based on the assumption that the 
input sequence contains exactly one complete gene, which is not often the case. To solve this prob-
lem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were developed, 
which could be classified into the fourth generation.

There are mainly two classes of methods for computational gene prediction. One is based on se-
quence similarity searches, while the other is gene structure and signal-based searches, which is 
also referred to as ab initio gene finding.

Sequence Similarity Searches

Sequence similarity search is a conceptually simple approach that is based on finding similarity 
in gene sequences between ESTs (expressed sequence tags), proteins, or other genomes to the in-
put genome. This approach is based on the assumption that functional regions (exons) are more 
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conserved evolutionarily than nonfunctional regions (intergenic or intronic regions). Once there is 
similarity between a certain genomic region and an EST, DNA, or protein, the similarity informa-
tion can be used to infer gene structure or function of that region. EST-based sequence similarity 
usually has drawbacks in that ESTs only correspond to small portions of the gene sequence, which 
means that it is often difficult to predict the complete gene structure of a given region.

Local alignment and global alignment are two methods based on similarity searches. The most 
common local alignment tool is the BLAST family of programs, which detects sequence similarity 
to known genes, proteins, or ESTs. Two more types of software, PROCRUSTES and GeneWise, use 
global alignment of a homologous protein to translated ORFs in a genomic sequence for gene pre-
diction. A new heuristic method based on pairwise genome comparison has been implemented in 
the software called CSTfinder. The biggest limitation to this type of approaches is that only about 
half of the genes being discovered have significant homology to genes in the databases.

Ab initio Gene Prediction Methods

The second class of methods for the computational identification of genes is to use gene structure 
as a template to detect genes, which is also called ab initio prediction. Ab initio gene predictions 
rely on two types of sequence information: signal sensors and content sensors. Signal sensors refer 
to short sequence motifs, such as splice sites, branch points, polypyrimidine tracts, start codons 
and stop codons. Exon detection must rely on the content sensors, which refer to the patterns of 
codon usage that are unique to a species, and allow coding sequences to be distinguished from the 
surrounding non-coding sequences by statistical detection algorithms.

Many algorithms are applied for modeling gene structure, such as Dynamic Programming, linear 
discriminant analysis, Linguist methods, Hidden Markov Model and Neural Network. Based on 
these models, a great number of ab initio gene prediction programs have been developed. Some of 
the frequently used ones are shown in Table, among which the programs GeneParser, Genie and 
GRAIL combine similarity searches.

Table: Ab initio Gene Prediction Programs (Possibly with Homology Integration)

Program Organism Algorithm Homology

GeneID Vertebrates, plants DP

FGENESH Human, mouse, Drosophila, rice HMM

GeneParser Vertebrates NN EST

Genie Drosophila, human, other GHMM protein

GenLang Vertebrates, Drosophila, dicots Grammar rule

GENSCAN Vertebrates, Arabidopsis, maize GHMM

GlimmerM Small eukaryotes, Arabidopsis, rice IMM

GRAIL Human, mouse, Arabidopsis, Drosophila NN, DP EST, cDNA

HMMgene Vertebrates, C. elegans CHMM

AUGUSTUS Human, Arabidopsis IMM,WWAM

MZEF Human, mouse, Arabidopsis, Fission yeast Quadratic discriminant analysis
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The most successful programs so far are based on Hidden Markov Model. Readers interested 
in other algorithms can learn from references. In Hidden Markov Model, transitions between 
sub-models corresponding to particular gene components are modeled as unobserved (“hidden”) 
Markov processes, which determine the probability of generating particular (observable) nucle-
otides. Since exon and intron lengths appear to be constrained by factors related to pre-mRNA 
splicing, and do not exhibit geometric distributions, a more general model is required to accurately 
account for the lengths of exons and introns in real genes. So a Generalized Hidden Markov Model 
(GHMM) is developed, in which subsequent states are generated according to a Markov chain but 
have arbitrary (instead of fixed unit) length distributions. Figure illustrates the state transition in 
eukaryotic genomic sequences.

Figure: State transition of HMM modeling eukaryotic genes.

Suppose we are given a DNA sequence S of length L and a parse ϕ also of length L. The conditional 
probability of the parse ϕ, given that the sequence generated is S, can be computed using Bayes’ Rule as:
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Here, ϕL is the set of all parses of length L. Now, given a particular DNA sequence S, we can find 
a parse ϕL that maximizes the likelihood of generating. In other words, for a particular sequence, 
we can find the functional unit (for example, the promoter region) that the sequence is most likely 
to represent. Thus, the model can be used for automatic annotation of DNA sequences.

Other Methods

The major limitation with HMM method is that we have a little knowledge of gene structures, 
especially for new sequencing genomes. Furthermore, current set of known genes is limited and 
certainly does not represent all potential gene features or their organizational themes. So recently 
some techniques in physics and signal processing have been applied to recognize genes.

It is well known that base sequences in the protein-coding regions of DNA molecules have a peri-
od-3 component because of the codon structure involved in the translation of base sequences into 
amino acids. Discrete Fourier Transform (DFT) is suitable for processing periodicity. For a DNA 
sequence of length N, assume uA(n), uT(n), uC(n), and uG(n), which represent the binary indicator 
function for the corresponding nucleotide. It takes the value 1 at index n if the corresponding 
nucleotide is present at that position, and takes the value 0 otherwise. Applying DFT to each of 
these sequences produces four spectral representations, represented as UA(k), UT(k), UC(k), and 
UG(k), respectively. The total frequency spectrum of the given DNA sequence is defined as:
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In coding regions of DNA, S(k) typically has a peak at the frequency k = N/3, whereas in noncoding 
regions, it generally does not have any significant peaks. By this property, gene predictor can be 
constructed. In 2003, a new measure for gene prediction in eukaryotes was presented by Kotlar 
and Lavner , which was based on DFT. The phase of the DFT at a frequency of 1/3 was distributed 
with a bell-shaped curve around a central value in coding regions, whereas in noncoding regions, 
the distribution was close to uniform. This regularity was used for discriminating between coding 
and noncoding regions in a given nonannotated genomic sequence.

The Z curve method is another powerful tool in visualizing and analyzing DNA sequences. It has 
been applied to recognize coding sequences in the human genome, and to find genes in the ge-
nomes of yeast and Vibrio cholerae. For predicting short coding sequence, it shows higher accu-
racy than GENSCAN, which is considered as one of the best ab initio gene prediction programs, 
while it is much simpler computationally than the latter.

In addition, with many genome sequencing projects currently under way, the comparative genome 
approach is becoming more promising in the field of gene prediction. In practice, its performance 
will depend on the evolutionary distance between the compared sequences. Initial results show 
that the relationship is not straightforward. Indeed, a greater evolutionary distance allows some 
algorithms to more accurately discriminate between coding and non-coding sequence conserva-
tion. Such comparative genome programs are often computer intensive and consequently much 
work remains to be done.

Evaluation of Gene Prediction Programs

The abundance of gene prediction program raises the problem of adequate evaluation of predic-
tion program quality. Comparison of the accuracy and reliability must take into account the type 
of algorithms, for example, neural network, Hidden Markov Model, or others; the number of se-
quences used for training and testing; and the method used for evaluation. It is impossible to rank 
the predictors by only a single measure.

Sensitivity (Sn) and Specificity (Sp) are probably the two most widely used measures, which are 
explained by Burset and Guigó in detail. The accuracy of the predictions can be measured at three 
different levels: coding nucleotide sequence, exonic structure, and protein product. The nucleotide 
level accuracy that measures Sn, Sp, CC (correlation coefficient) and AC (approximate coefficient) 
gives an overall sense of how closely the predicted and actual coding regions are in a sequence 
alignment, but does not accurately reflect the identification of precise exon boundaries. Evaluation 
at the exon level mainly provides how well the sequence signals (splice sites, start codon, and stop 
codon, etc.) are identified. The accuracy can be measured by comparing predicted and real exons 
along the test sequences. 

Figure: Evaluation of gene prediction accuracy at the exon level.
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Thus, sensitivity (Sn), specificity (Sp), miss rate (MR) and wrong rate (WR) are expressed as following:

CE CESn Sp
AE PE
ME WEMR WR
AE PE

= =

= =

(AE, actural exons; PE, predicted exons; CE, correct exons; WE, wrong exons; ME, missing exons).

At the protein level, the accuracy is measured by comparing the protein product encoded by the 
actual gene in the test sequence with the protein product encoded by the predicted gene. In the 
gene prediction literatures, only Fields and Soderlund provided an evaluation of the gm program 
at the final protein product level, which indicated that it is not widely used. 

The prediction accuracy of some usual programs has been tested on Burset and Guigó’s sequence 
set , and the results at exon level are illustrated in . It shows that GENSCAN based on GHMM is 
significantly more accurate than other programs.

Table: Accuracy Comparisons of Gene Prediction Programs

Program Sn Sp MR WR
GENSCAN 0.78 0.81 0.09 0.05

FGENEH 0.61 0.64 0.15 0.12

GeneID 0.44 0.46 0.28 0.24

Genie 0.55 0.48 0.17 0.33

GenLang 0.51 0.52 0.21 0.22

GeneParser2 0.35 0.40 0.34 0.17

GRAIL2 0.36 0.43 0.25 0.11

SORFIND 0.42 0.47 0.24 0.14

Xpound 0.15 0.18 0.33 0.13

Since the early eighties of the twentieth century, there has been great progress in the development 
of computational gene prediction. However, some problems have not yet been solved. First, short 
exons are difficult to locate, because discriminative statistical characteristics are less likely to ap-
pear in short sequences. The more difficult cases are those where the length of a coding exon is a 
multiple of three (typically 3, 6 or 9 bp), because missing such exons will not cause a problem in 
the exon assembly as they do not introduce any changes in the frame. Lately, Gao and Zhang (26) 
compared the performance of various algorithms for recognizing short coding sequences and val-
idated that the Z curve method is the best one.

Second, the problem of alternatively splicing has not yet been solved effectively, which in partic-
ular is an important regulatory mechanism in higher eukaryotes. Some gene prediction programs 
tried to handle this through the identification of sub-optimal exons (GENSCAN and MZEF). Nev-
ertheless, a more relevant approach would consist of improving the identification of the intronic 
and exonic signals that dictate the choice of alternatively splicing sites.

In addition, the evaluation system of gene prediction programs is still in need of improvement. 
Some of the measures mentioned above often give results contradictory to each other, because 
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many of them emphasize only a few or even only one of the several aspects of the prediction quality. 
So more reasonable and comprehensive criterions are needed for evaluation of gene prediction 
programs. Recently, Bajic introduced averaged score measure (ASM) and used it to assess the 
quality of programs for eukaryotic promoter prediction.

Further more, in order to compensate the insufficiency of any individual gene prediction program, 
the computational method to construct gene models by multiple evidences is becoming more 
promising. For the nonannotated genomic sequences, a diverse set of sources can be combined 
for annotation, including the locations of gene predictions from ab initio gene finders, protein 
sequence alignments, ESTs and cDNA alignments, promoter predictions, splice site predictions, 
and so on. Such integrative approach has been proved to consistently outperform even the best 
individual gene finder, and in some cases, can produce dramatic improvements in sensitivity and 
specificity.

Finally, it should be emphasized that for all gene prediction methods, the performances depend on 
the current biological knowledge to a large extent, especially knowledge at the molecular level of 
gene expression. So it requires great efforts by both experimental and computational biologists to 
make gene prediction more accurate, which can definitely speed up gene discovery and knowledge 
mining.

DNA Sequencing

DNA sequencing is the technique used to determine the nucleotide sequence of DNA (deoxy-
ribonucleic acid). The nucleotide sequence is the most fundamental level of knowledge of a 
gene or genome. It is the blueprint that contains the instructions for building an organism, 
and no understanding of genetic function or evolution could be complete without obtaining 
this information.

First-Generation Sequencing Technology

In gel electrophoresis an electric field is applied to a buffer solution covering an agarose gel, which has slots at  
one end containing DNA samples. The negatively charged DNA molecules travel through  

the gel toward a positive electrode and are separated based on size as they advance.

So-called first-generation sequencing technologies, which emerged in the 1970s, included the Max-
am-Gilbert method, discovered by and named for American molecular biologists Allan M. Maxam 
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and Walter Gilbert, and the Sanger method (or dideoxy method), discovered by English biochem-
ist Frederick Sanger. In the Sanger method, which became the more commonly employed of the 
two approaches, DNA chains were synthesized on a template strand, but chain growth was stopped 
when one of four possible dideoxy nucleotides, which lack a 3’ hydroxyl group, became incorpo-
rated, thereby preventing the addition of another nucleotide. A population of nested, truncated 
DNA molecules was produced that represented each of the sites of that particular nucleotide in 
the template DNA. The molecules were separated according to size in a procedure called electro-
phoresis, and the inferred nucleotide sequence was deduced by a computer. Later, the method 
was performed by using automated sequencing machines, in which the truncated DNA molecules, 
labeled with fluorescent tags, were separated by size within thin glass capillaries and detected by 
laser excitation.

Next-Generation Sequencing Technology

Next-generation (massively parallel, or second-generation) sequencing technologies have largely 
supplanted first-generation technologies. These newer approaches enable many DNA fragments 
(sometimes on the order of millions of fragments) to be sequenced at one time and are more 
cost-efficient and much faster than first-generation technologies. The utility of next-generation 
technologies was improved significantly by advances in bioinformatics that allowed for increased 
data storage and facilitated the analysis and manipulation of very large data sets, often in the giga-
base range (1 gigabase = 1,000,000,000 base pairs of DNA).

Applications of DNA Sequencing Technologies

Knowledge of the sequence of a DNA segment has many uses. First, it can be used to find genes, 
segments of DNA that code for a specific protein or phenotype. If a region of DNA has been 
sequenced, it can be screened for characteristic features of genes. For example, open reading 
frames (ORFs)—long sequences that begin with a start codon (three adjacent nucleotides; the 
sequence of a codon dictates amino acid production) and are uninterrupted by stop codons 
(except for one at their termination)—suggest a protein-coding region. Also, human genes are 
generally adjacent to so-called CpG islands—clusters of cytosine and guanine, two of the nucle-
otides that make up DNA. If a gene with a known phenotype (such as a disease gene in humans) 
is known to be in the chromosomal region sequenced, then unassigned genes in the region will 
become candidates for that function. Second, homologous DNA sequences of different organ-
isms can be compared in order to plot evolutionary relationships both within and between 
species. Third, a gene sequence can be screened for functional regions. In order to determine 
the function of a gene, various domains can be identified that are common to proteins of similar 
function. For example, certain amino acid sequences within a gene are always found in proteins 
that span a cell membrane; such amino acid stretches are called transmembrane domains. If a 
transmembrane domain is found in a gene of unknown function, it suggests that the encoded 
protein is located in the cellular membrane. Other domains characterize DNA-binding pro-
teins. Several public databases of DNA sequences are available for analysis by any interested 
individual.

The applications of next-generation sequencing technologies are vast, owing to their relatively 
low cost and large-scale high-throughput capacity. Using these technologies, scientists have been 
able to rapidly sequence entire genomes (whole genome sequencing) of organisms, to discover 
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genes involved in disease, and to better understand genomic structure and diversity among spe-
cies generally.

DNA sequencing A nucleotide sequence determined using DNA sequencing technologies.

DNA Sequence Data Analysis

DNA sequencing is used to determine the sequence of individual genes, full chromosomes or en-
tire genomes of an organism. DNA sequencing has also become the most efficient way to sequence 
RNA or proteins.

DNA Molecule

Whole Genome Sequencing and Sequence Assembly

A DNA sequencing reaction produces a sequence that is several hundred bases long. Gene se-
quences are typically thousands of bases long. The largest known gene is the one associated with 
Duchenne muscular dystrophy. It is approximately 2.4 million bases in length. In order to study 
one whole gene, scientists use a simple strategy known as shotgun sequencing. The long DNA se-
quence is assembled from a series of shorter overlapping sequences. Let’s see what happens in the 
shotgun sequencing approach.

Shotgun Sequencing

Special machines, known as sequencing machines are used to extract short random DNA sequenc-
es from a particular genome we wish to determine (target genome). Current DNA sequencing 
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technologies cannot read one whole genome at once. It reads small pieces of between 20 and 30000 
bases, depending on the technology used. These short pieces are called reads. Special software 
are used to assemble these reads according to how they overlap, in order to generate continuous 
strings called contigs. These contigs can be the whole target genome itself, or parts of the genome.

 
Shotgun Sequencing

The process of aligning and merging fragments from a longer DNA sequence, in order to recon-
struct the original sequence is known as Sequence Assembly.

In order to obtain the whole genome sequence, we may need to generate more and more random 
reads, until the contigs match to the target genome.

Sequence Assembly Problem

The sequence assembly problem can be described as follows:

•	 Given a set of sequences, find the minimal length string containing all members of the set 
as substrings.

•	 This problem is further complicated due to the existence of repetitive sequences in the ge-
nome as well as substitutions or mutations withing them.

•	 The sequence assembly problem can be compared to a real life scenario.
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Assume that you take many copies of a book, pass each of them through a shredder with a differ-
ent cutter, and then you try to make the text of the book back together just by gluing together the 
shredded pieces. It is obvious that this task is pretty difficult. Furthermore, there are some extra 
practical issues as well. The original copy may have many repeated paragraphs, and some shreds 
may be modified during shredding to have typos. Parts from another book may have also been 
added in, and some shreds may be completely unrecognizable.

It sounds very confusing and quite impossible to be carried out. This problem is known to be NP 
Complete. NP complete problems are problems whose status is unknown. No polynomial time 
algorithm has yet been discovered for any NP complete problem, nor has anybody yet been able to 
prove that no polynomial-time algorithm exists for any of them. However, there are greedy algo-
rithms to solve the sequence assembly problem, where experiments have proven to perform fairly 
well in practice.

A common method used to solve the sequence assembly problem and perform sequence data anal-
ysis is sequence alignment.

Sequence Alignment

Sequence alignment is a method of arranging sequences of DNA, RNA, or protein to identify re-
gions of similarity. The similarity being identified, may be a result of functional, structural, or 
evolutionary relationships between the sequences.

If we compare two sequences, it is known as pairwise sequence alignment. If we compare more 
than two sequences, it is known as multiple sequence alignment.

Next-Generation Sequencing

Next-generation sequencing (NGS), also known as high-throughput sequencing, is the collective 
term used to describe many different modern sequencing technologies such as,

•	 Illumina (Solexa) sequencing

•	 Roche 454 sequencing

•	 Ion torrent Proton / PGM sequencing

•	 Solid sequencing

These recent technologies allow us to sequence DNA and RNA much more quickly and cheaply 
than the previously used Sanger sequencing, and have revolutionized the study of genomics.

Nucleic Acid Amplification

Nucleic acid amplification is a valuable molecular tool not only in basic research but also in appli-
cation oriented fields, such as clinical medicine development, infectious diseases diagnosis, gene 
cloning and industrial quality control. PCR was the first nucleic acid amplification method. With 
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the advancement of research, a no of alternative nucleic acid amplification methods has been de-
veloped such as loop mediated isothermal amplification, nucleic acid sequence based amplifica-
tion, strand displacement amplification, multiple displacement amplification. Most of the alterna-
tive methods are isothermal obviating the need for thermal cyclers. Though principles of most of 
the alternate methods are relatively complex than that of PCR, they offer better applicability and 
sensitivity in cases where PCR has limitations. Most of the alternate methods still have to prove 
themselves through extensive validation studies and are not available in commercial form; they 
pose the potentiality to be used as replacements of PCR. Continuous research is going on in differ-
ent parts of the world to make these methods viable technically and economically.

Nucleic acid amplification is a pivotal process in biotechnology and molecular biology and has been 
widely used in research, medicine, agriculture and forensics. Polymerase chain reaction (PCR) was 
the first nucleic acid amplification method developed and until now has been the method of choice 
since its invention by Mullis. PCR is the preferred method for application oriented fields involving 
nucleic acid amplification for its simplicity, easier methodology, extensively validated standard 
operating procedure and availability of reagents and equipments. However, PCR has a good no of 
limitations, including high cost of equipment, contamination chances, sensitivity to certain classes 
of contaminants and inhibitors, requirement of thermal cycling etc. These limitations gave birth 
to alternative methods such as loop mediated isothermal amplification (LAMP), nucleic acid se-
quence based amplification (NASBA), self-sustained sequence replication (3SR), rolling circle am-
plification (RCA) etc., most of which are isothermal nucleic acid amplification methods obviating 
the need of thermal cycler. These methods offer potential advantages over PCR for speed, cost, 
scale or portability. 

Alternative Methods of Polymerase Chain Reaction

Several alternative amplification methods have been developed already, such as LAMP, 3SR or 
NASBA, strand displacement amplification (SDA) and RCA, ligase chain reaction (LCR).

Loop Mediated Isothermal Amplification

LAMP is a specific, simple, rapid and cost-effective isothermal nucleic acid amplification method. 
LAMP has an improved simple visual amplicon detection system. LAMP relies on the auto-cycling 
strand displacement deoxyribonucleic acid (DNA) synthesis which is carried out at 60-65°C for 
45-60 min in the presence of Bacillus stearothermophylus (Bst) DNA polymerase, deoxyribonu-
cleotide triphosphate (dNTPs), specific primers and the target DNA template. The LAMP meth-
od employs a DNA polymerase with high strand displacement activity and a set of four specially 
constructed primers (two inner and two outer primer) that recognize six distinct sequences on the 
target DNA. The mechanism of the LAMP amplification reaction includes three steps: Production 
of starting material, cycling amplification and elongation and recycling. High-level of precision can 
be attained without expensive equipments. There are fewer and simpler sample preparation steps 
compared with conventional PCR and real-time PCR. Substantial alteration of the fluorescence 
of the reaction tube can be visualized without costly specialized equipment as the signal recogni-
tion system is highly sensitive. LAMP is a one-step amplification reaction taking only 30-60 min. 
LAMP is more resistant to various inhibitory compounds present in clinical samples than PCR, so 
there is no need for extensive DNA purification. By combination with reverse transcription (RT), 
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LAMP can amplify ribonucleic acid (RNA) sequences with high efficiency. It is highly sensitive and 
able to detect DNA at as few as six copies in the reaction mixture. LAMP has the potential to be 
helpful in basic research on medicine and pharmacy, environmental hygiene, point-of-care testing 
and cost-effective diagnosis of infectious diseases. LAMP is as suitable for DNA sequencing as 
PCR, in terms of both Sanger sequencing and Pyrosequencing.

Figure: Schematic description of loop mediated isothermal amplification assay

Nucleic Acid Sequence based Amplification

NASBA, also known as 3SR and transcription mediated amplification, is an isothermal tran-
scription-based amplification system. NASBA specifically designed for the detection of RNA tar-
gets. In some NASBA systems, DNA can also be amplified. The complete amplification reaction 
is performed at the predefined temperature of 41 °C. Throughout the amplification reaction, 
constant temperature is maintained allowing each step of the reaction to proceed as soon as 
amplification intermediate formed. The exponential kinetic of the NASBA process is attributed 
by multiple transcription of RNA copies from a given DNA product, is intrinsically more effi-
cient than DNA-amplification methods limited to binary increases per cycle. This amplification 
system uses a consortium of three enzymes (avian myeloblastosis virus reverse transcriptase, 
RNase H and T7 DNA dependent RNA polymerase) leading to main amplification product of 
single-stranded RNA. NASBA RNA product can be sequenced directly with a dideoxy method 
using RT and a labeled oligonucleotide primer. The length of the target sequence to be ampli-
fied efficiently is limited to approx 100-250 nucleotides. High-level of precision can be acquired 
without expensive equipments. NASBA amplicon detection step has significantly improved, in-
corporation of the use of enzyme-linked gel assay, enzymatic bead-based detection and electro-
chemiluminescent (ECL) detection, molecular beacon technology and fluorescent correlation 
spectroscopy. In clinical use and pathogen detection, NASBA pose theoretically higher analytical 
sensitivity than reverse transcription-polymerase chain reaction RT-PCR making it an estab-
lished diagnostic tool. It has potential for detection and differentiation of viable cells through 
specific and sensitive amplification of messenger RNA, even against the background of genomic 
DNA.
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Figure: Principles of nucleic acid sequence based amplification

Strand Displacement Amplification

SDA, first described in 1992, is an isothermic amplification method, which utilizes four different 
primers of which a primer containing a restriction site (a recognition sequence for HincII exo-
nuclease) is annealed to the DNA template. An exonuclease-deficient fragment of Eschericia coli 
DNA polymerase 1 (exo-Klenow) elongates the primers. Each SDA cycle consists of primer bind-
ing to a displaced target fragment, extension of the primer/target complex by exoklenow, nicking 
of the resultant hemiphosphothioate HincII site, dissociation of HincII from the nicked site and 
extension of the nick and displacement of the downstream strand by exo-Klenow. This method 
can be performed at high temperatures. In a single reaction, 109 copies of target DNA can be pro-
duced in less than an hour. As with the other target amplification technologies (PCR, LCR, 3SR), 
only semi-quantitation is possible by this method. A major limitation of SDA is its inability to ef-
ficiently amplify long target sequences. SDA is the basis for some commercial detection tests such 
as BDProbeTec (Becton Dickinson, Franklin Lakes, NJ, USA) and has been evaluated recently for 
the identification of Mycobacterium tuberculosis directly from clinical specimens. The efficiency 
and robustness of this technology still remains to be proven in the large clinical studies. A recent 
development has been reported for real-time sequence specific DNA target detection using the 
fluorogenic reporter probes.

Figure: Target generation scheme for strand displacement amplification
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Multiple Displacement Amplification

The MDA is an isothermal, strand-displacing method based on the use of the highly processive and 
strand-displacing DNA polymerase from bacteriophage Ø29, in conjunction with modified random 
primers to amplify the entire genome with high-fidelity. It has been developed to amplify all DNA in a 
sample from a very small amount of starting material. MDA by Ø29 DNA polymerase involves incubat-
ing Ø29 DNA polymerase, dNTPs, random hexamers and denatured template DNA at 30 °C for 16-18 
h. The enzyme is inactivated at 65 °C for 10 min and the product DNA can be used directly in down-
stream applications In contrast to PCR-based methods no repeated cycling is required, but a short 
initial denaturation followed by the amplification step of 6-18 h and a final inactivation of the enzyme 
is needed. This method can also be used to generate capture probes for microarrays, to produce highly 
pure DNA or even to amplify stored DNA. MDA could be the method of choice when limited amounts 
of sample are available. Sensitivity and yields are high: About 20-30 μg of DNA can be obtained from 
as few as 1-10 copies of human genomic DNA. In addition, MDA can be carried out directly from bi-
ological samples including crude whole blood and tissue culture cells. MDA method presents several 
characteristics that, in combination with specific hybridization to macroarray and microarray, may be 
suitable for multiplex qualitative detection and identification. The utility of MDA has not been fully 
assessed for use in applications such as sample archiving, forensics and single cell clinical diagnostics.

Figure: Schematic representation of multiple displacement amplification mechanism

Rolling Circle Amplification

RCA is an isothermal nucleic acid amplification method. RCA technology enables the amplification 
of the probe DNA sequences more than 109 fold both in solution and on the solid phase at a single 
temperature. It has the ability to readily detect down to a few target-specific circularized probes in 
a test sample. In RCA reaction, numerous rounds of isothermal enzymatic synthesis is involved. 
Ø29 DNA polymerase extends a circle-hybridized primer by continuously progressing around the 
circular DNA probe of several dozen nucleotides to replicate its sequence over and over again. A 
major advantage of RCA is that unlike PCR, this technology is resistant to contamination and un-
like some other isothermal technologies, requires little or no assay optimization. The capacity of 
RCA to yield the surface-bound amplification products offers significant advantages to in situ or 
microarray hybridization assays. In linear RCA, the product of amplification remains tethered to 
the target molecule. RCA seems well-suited to cell-and tissue-based assays in conjunction with the 
isothermal nature of the RCA reaction and the capability to localize multiple markers simultane-
ously. RCA is also suitable in cases where it is critical to maintain morphological information. RCA 
amplification permits the localization of signals, thus representing single molecules with specific 
genetic traits or biochemical features.
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Figure: Scheme for multiply-primed rolling circle amplification

RCA reactions exhibit an excellent sequence specificity that is favorable for genotyping or muta-
tion detection and allows to unambiguously identifying DNA markers on the excessive unrelated 
background. As compared with PCR, the RCA based DNA diagnostics are capable of higher mul-
tiplexity and they are less prone to amplification errors, thus allowing contamination-resistant 
detection of target molecules in a variety of testing formats. RCA has the potential for a highly 
localized isothermal detection of the designated sites on essentially intact duplex DNA with even 
superior specificity. The simplicity and efficiency of RCA technology, along with ease and accuracy 
of quantitation, makes it amenable for miniaturization and automation in the high-throughput 
analysis.

Ligase Chain Reaction

LCR is a cyclic DNA template-dependent amplification reaction. The method of DNA amplifica-
tion is similar to PCR; however, LCR amplifies the probe molecule rather than producing ampli-
con through polymerization of nucleotides. LCR uses both a DNA polymerase enzyme and a DNA 
ligase enzyme to drive the reaction. LCR uses two complementary pairs of oligonucleotides that 
hybridize in close proximity on the target fragment. Only when the oligonucleotides correctly hy-
bridize to the target sequence, the remaining nick between the oligonucleotides is ligated by a DNA 
ligase and a fragment equating to the total sequence of both oligonucleotides is generated. Once 
the probes have been ligated, the ligation product can serve as a template for annealing and future 
ligation. Like PCR, LCR requires a thermal circler to drive the reaction and each cycle results in a 
doubling of the target nucleic acid molecule. The detection of LCR products can be performed by 
electrophoresis or by an enzyme-linked immunosorbent assay (ELISA) like microplate procedure 
or real-time detection.

Figure: Ligase chain reaction
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LCR can have greater specificity than PCR. It can be used for multiplex reactions rendering it suit-
able for detection of products by microarrays. Its limitations come from the specificity of the ligase 
reaction, which is restricted to the region of the ligation junction.

This technique has one disadvantage over the detection of food pathogen that it can detect DNA 
from dead organism. The potential problem of this technology in addition to the risk of contam-
ination is clearly the lack of conformation, since only primer sequences are amplified. However, 
LDR sensitivity is limited, especially when rare targets need to be detected in the presence of high 
wild-type DNA background. With this technology, SNPs can easily be differentiated. It has been ex-
ploited to detect pathogens such as Neisseria gonorrhoneae, Chlamydia trachomatis and M. tuber-
culosis in human clinical specimens as well as detecting point mutations in C. trachomatis plasmid 
DNA, human immunodeficiency virus cloned fragments and in human sickle cell clinical samples.

Helicase Dependant Amplification

HDA is an isothermal nucleic acid amplification method using the replication fork mechanism. 
Basic principle of HDA is the unwinding activity of a DNA helicase in the presence of adenosine 
tri phosphate. Helicase separates the two strands of a DNA duplex generating single-stranded 
templates for the purpose of in vitro amplification of a target nucleic acid and the displaced DNA 
strands are coated by single-stranded binding proteins. Two-sequence specific primers anneal to 
the 3’- end of each single-stranded DNA (ssDNA) template and exonuclease-deficient DNA poly-
merases produce double-stranded DNA by extending the primers annealed to the target DNA. Ex-
ponential amplification can be achieved if this process repeats itself at a single temperature. This 
process allows multiple cycles of replication to be performed at a single incubation temperature, 
completely eliminating the need for thermo cycling equipment. The HDA amplicons can be de-
tected using gel electrophoresis, real-time format and ELISA. High speed (100 bp/s) and proces-
sivity (10 kb/binding) are the major advantages of HDA. HDA offers several advantages over other 
isothermal DNA amplification methods. It has a simple reaction scheme and can be performed at 
a single temperature for the entire process. These properties offer a great potential for the devel-
opment of simple portable DNA diagnostic devices to be used in the field and at the point-of-care.

Figure: Helicase-dependent amplification process. Step 1: The helicase unwinds deoxyribonucleic 
acid (DNA) duplexes. Step 2: The primers anneal to the single-stranded DNA. Step 3: The primers 
extended by DNA polymerase; one duplex is amplified and converted to two duplexes. The dou-
ble-stranded DNAs are separated by helicase and this chain reaction repeats itself.
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Ramification Amplification Method

RAM is a novel isothermal nucleic acid amplification method. This technique is termed as RAM 
because the amplification power is derived from primer extension, strand displacement and 
multiple ramification (branching) points. This method uses a specially designed circular probe 
(C-probe) in which the 3’ and 5’ ends are brought together in juxtaposition by hybridization 
to a target. The two ends are then covalently linked by a T4 DNA ligase in a target-dependent 
manner, producing a closed DNA circle. In the presence of an excess of primers (forward and 
reverse primers), bacteriophage Ø29 DNA polymerase extends the bound forward primer along 
the C-probe and displaces the downstream strand, thus generating a multimeric ssDNA by con-
tinuously rolling over the closed circular DNA, analogous to the “rolling circle” replication of 
bacteriophages in vivo. 

The multimeric ssDNA generated then serves as a template where multiple reverse primers hy-
bridize, extend and displace downstream DNA and generate a large ramified (branching) DNA 
complex. This ramification process continues until all ssDNAs become double-stranded, result-
ing in an exponential amplification that distinguishes itself from the previously described non-
exponential RCA. By using a unique bacteriophage DNA polymerase, Ø29 DNA polymerase, that 
has an intrinsic high processivity, it is possible to achieve significant amplification within 1 h at 35 
°C. As RAM is an isothermal amplification method and large multimeric products are generated, 
cell morphological characteristics are preserved while amplification products are better localized 
in the cells, making this method ideal for in situ amplification.The RAM assay offers several ad-
vantages over other amplification techniques: (1) the primers readily bind to ssDNAs displaced 
by the DNA polymerase, enabling the reaction to be performed under isothermal conditions, ob-
viating the need for a thermocycler; (2) generic primers amplify all probes with equal efficiency, 
resulting in better multiplex capability than conventional PCR; both ends of the probe can be 
ligated regardless of the nature of target (DNA or RNA), eliminating the need for RT for detect-
ing RNA and creating a uniform assay format for both RNA and DNA detection; and (4) ligation 
requires that both probe termini hybridize with perfect matching, permitting the detection of a 
single-nucleotide polymorphism. It can be readily used in clinical laboratories for the detection of 
genes and infectious agents in various areas, such as Hematology, Oncology, infectious disease, 
Pathology, forensics, blood banks and genetic disease. In addition, it has great potential for use 
in field tests and doctors’ offices due to its simple and isothermal amplification format.

Figure: Schematic representation of ramification amplification of ligated circular probe
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Gene Expression

The central dogma of biology describes the method by which information is taken from genes and 
used to create proteins. DNA transcription produces RNA, then RNA translation makes proteins. 
This process is known as gene expression and all life forms use it to create the building blocks of 
life from genetic information.

A cell expresses only a selection of the genes it contains at any one time, which means that the cell 
can interpret its genetic code in different ways. Controlling which genes are expressed enables 
the cell to control its size, shape and functions. The ways in which an organism’s cells express the 
genes they contain affects the organism’s phenotype, e.g. which color hair a mouse has, or whether 
it has hair at all. 

What is Gene Expression Profiling and who uses it?

Gene expression profiling measures which genes are being expressed in a cell at any given mo-
ment. This method can measure thousands of genes at a time; some experiments can measure the 
entire genome at once. Gene expression profiling measures mRNA levels, showing the pattern of 
genes expressed by a cell at the transcription level. This often means measuring relative mRNA 
amounts in two or more experimental conditions, then assessing which conditions resulted in 
specific genes being expressed.

Gene expression profiling is used by a variety of biomedical researchers, from molecular biologists 
to environmental toxicologists. This technology can provide accurate information on gene expres-
sion, towards countless experimental goals.

Different techniques are used to determine gene expression. These include DNA microarrays and 
sequencing technologies. The former measures the activity of specific genes of interest and the 
latter enables researchers to determine all active genes in a cell.

Once a genome has been sequenced, we know what potential a cell has—what characteristics and 
function it might have—based on the genes it contains. However, sequencing the genome does not 
tell us which genes a cell is expressing, or the functions or processes it is carrying out at any given 
moment. To determine these, we need to work out its gene expression profile. If a gene is being 
used to make mRNA, it is considered ‘on’; if it is not being used to make mRNA, it is considered 
‘off’.

A gene expression profile tells us how a cell is functioning at a specific time. This is because cell 
gene expression is influenced by external and internal stimuli, including whether the cell is divid-
ing, what factors are present in the cell’s environment, the signals it is receiving from other cells, 
and even the time of day. 

Why use Gene Expression Profiling?

Gene expression profiling enables you to investigate the effects of different conditions on gene ex-
pression by altering the environment to which the cell is exposed, and determining which genes are 
expressed. Alternatively, if you already know a gene is involved in a certain cell behavior, gene 
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expression profiling helps you to determine whether a cell is carrying out this function. For 
example, certain genes are known to be involved in cell division; if these genes are active in a cell, 
you can tell the cell is undergoing division, or whether a cell is differentiated.

Gene expression profiling is often used in hypothesis generation. If very little is known about when 
and why a gene will be expressed, expression profiling under different conditions can help design 
a hypothesis to test in future experiments. For example, if gene A is expressed only when the cell is 
exposed to other cells, this gene may be involved in intercellular communication. Further experi-
ments could determine whether this is the case.

Gene profiling can also investigate the effect of drug-like molecules on cellular response. You could 
identify the gene markers of drug metabolism, or determine whether cells express genes known to 
be involved in response to toxic environments when exposed to the drug.

Gene profiling can also be used as a diagnostic tool. If cancerous cells express higher levels of cer-
tain genes, and these genes code for a protein receptor, this receptor may be involved in the cancer, 
and targeting it with a drug might treat the disease. Gene expression profiling might then be a key 
diagnostic tool for people with this cancer.

RNA Expression Analysis by RNA Sequencing

RNA expression patterns are key to predicting and classifying human disease based on specific 
biomarkers. To understand cellular responses, we must determine how gene expression changes 
are affected in relation to external stimuli, different environmental conditions and genetic lesions .

Transcriptome sequencing, using next-generation sequencing, lets us discover differentially ex-
pressed genes without requiring knowledge of which genes are involved.

Protein-coding RNAs are an important source of information, though non-coding RNA is also sig-
nificant. Next-generation RNA sequencing enables such analysis, along with:

• ‘Digital counting’ of RNA molecules for highly quantitative and precise measurements

• Dynamic ranges to fully capture relevant biological changes

• The discovery of unknown RNAs (novel transcripts, splice variants, and gene fusions)

• The capture of all RNA types (poly-A+, long non-coding RNA and gene fusions) in a single
assay

• Opportunities to focus, going from complete transcriptome analysis to a handful of pre-se-
lected RNA sequences to balance experimental cost and ease of analysis with discovery
potentia

Gene Expression analysis by Real Time Quantitative PCR

Quantification of mRNA using qPCR can be done using Applied Biosystems™ TaqMan® probe–
based analysis and Applied Biosystems™ SYBR™ Green dye–based analysis plus using digital 
PCR, as discussed subsequently.
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qPCR is the gold-standard technique for validating differential gene expression profiles, and enables:

•	 Quantitation of gene products

•	 Microarray validation

•	 Pathway analysis

•	 Studies of developmental biology

•	 Quality control and assay validation

•	 siRNA/RNAi experiments

•	 Low-fold copy number discrimination (down to two-fold)

•	 Mid- to high-throughput profiling using the OpenArray platform. 

Gene Expression Quantification by Digital PCR

Although qPCR is useful for detecting gene expression changes of two-fold or more, a different 
approach is needed for measuring less than two-fold changes. Digital PCR (dPCR) can be used to 
resolve low-fold gene expression changes. dPCR enables:

•	 Absolute quantification of nucleic acid standards and next-generation sequencing libraries

•	 Rare target detection

•	 Enrichment and separation of mixtures.

Gene Expression Analysis

Gene expression analysis is most simply described as the study of the way genes are transcribed 
to synthesize functional gene products — functional RNA species or protein products. The study 
of gene regulation provides insights into normal cellular processes, such as differentiation, and 
abnormal or pathological processes.

Mechanisms of Gene Regulation

Gene Expression Workflow.

Researchers may perform gene expression analysis at any one of several different levels at which gene 
expression is regulated: transcriptional, post-transcriptional, translational, and post-translational 
protein modification.

Bioinformatics
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Transcription, the process of creating a complementary RNA copy of a DNA sequence, can be reg-
ulated in a variety of ways. Transcriptional regulation processes are the most commonly studied 
and manipulated in typical gene expression analysis experiments.

The binding of regulatory proteins to DNA binding sites is the most direct method by which tran-
scription is naturally modulated. Alternatively, regulatory processes can also interact with the 
transcriptional machinery of a cell. More recently, the influence of epigenetic regulation, such as 
the effect of variable DNA methylation on gene expression, has been uncovered as a powerful tool 
for gene expression profiling. Varying degrees of methylation are known to affect chromatin fold-
ing and strongly affect accessibility of genes to active transcription.

Following transcription, eukaryotic RNA is typically spliced to remove noncoding intron sequenc-
es and capped with a poly(A) tail. At this post-transcriptional level, RNA stability has a significant 
effect on functional gene expression, that is, the production of functional protein. Small interfering 
RNA (siRNA) consists of double-stranded nucleic acid molecules that are participants in the RNA 
interference pathway, in which the expression of specific genes is modulated (typically by decreas-
ing activity). Precisely how this modulation is accomplished is not yet fully understood. A growing 
field of gene expression analysis is in the area of microRNAs (miRNAs), short RNA molecules that 
also act as eukaryotic post-transcriptional regulators and gene silencing agents.

Gene Expression Profiling and Quantitation: Methods and Techniques

Researchers studying gene expression employ a wide variety of molecular biology techniques and 
experimental methods. Gene expression analysis studies can be broadly divided into four areas: 
RNA expression, promoter analysis, protein expression, and post-translational modification.

RNA Expression

•	 Northern blotting — steady-state levels of mRNA are directly quantitated by electro-
phoresis and transfer to a membrane followed by incubation with specific probes. The 
RNA-probe complexes can be detected using a variety of different chemistries or radio-
nuclide labeling. This relatively laborious technique was the first tool used to measure 
RNA levels.

•	 DNA microarrays — an array of oligonucleotide probes bound to a chip surface enables 
gene expression profiling of many genes in response to a condition. Labeled cDNA from 
a sample is hybridized to complementary probe sequences on the chip, and strongly asso-
ciated complexes are identified optically. Gene expression profiling is often a first step in 
a gene expression analysis workflow, investigating changes in the expression profile of a 
whole system or examining the effects of mutations in biological systems.

•	 Real-Time PCR — steady-state levels of mRNA are quantitated by reverse transcription of the 
RNA to cDNA followed by quantitative PCR (qPCR) on the cDNA. The amount of each specific 
target is determined by measuring the increase in fluorescence signal from DNA-binding dyes 
or probes during successive rounds of enzyme-mediated amplification. This precise, versatile 
tool is used to investigate mutations (including insertions, deletions, and single-nucleotide 
polymorphisms (SNPs)), identify DNA modifications (such as methylation), confirm results 
from northern blotting or microarrays, and conduct gene expression profiling. Expression 
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levels can be measured relative to other genes (relative quantification) or against a standard 
(absolute quantification). Real-time PCR is the gold standard in nucleic acid quantification 
because of its accuracy and sensitivity. Real-time PCR can be used to quantitate mRNA or 
miRNA expression following conversion to cDNA or to quantitate genomic DNA directly to 
investigate transcriptional activity.

Promoter Analysis

•	 Expression of reporter genes/promoter fusions in host cells — promoter activity (transcrip-
tion rate) is measured in vivo by introducing fusions of various promoter sequences with a 
gene encoding a product that can be readily measured to monitor activity levels.

•	 In vitro transcription (nuclear run-on assays) — transcription rates are measured by incu-
bating isolated cell nuclei with labeled nucleotides, hybridizing the resultant product to a 
membrane (slot blot), and then exposing this to film or other imaging media.

•	 Gel shift assays — also called electrophoretic mobility shift assays, these are used to study 
protein-DNA or protein-RNA interactions. DNA or RNA fragments that are tightly asso-
ciated with proteins (such as transcription factors) migrate more slowly in an agarose or 
polyacrylamide gel (showing a positional shift). Identifying the associated sequences pro-
vides insight into gene regulation.

•	 Chromatin immunoprecipitation (ChIP) — protein-binding regions of DNA can be identi-
fied in vivo. In living cells, DNA and protein are chemically cross-linked, and the resulting 
complex is precipitated by antibody-coated beads (immunoprecipitation). Following pro-
tein digestion and DNA purification, the sequences of the precipitated DNA are determined.

Protein Expression

•	 Western blotting — quantification of relative expression levels for specific proteins is ac-
complished by electrophoretically separating extracted cell proteins, transferring them 
to a membrane, and then probing the bound proteins with antibodies (targeted to an-
tigens of interest) that are subsequently detected using various chemistries or radiola-
belling.

•	 2-D Gel Electrophoresis — protein expression profiling is achieved by separating a com-
plex mixture of proteins in two dimensions and then staining to detect differences at the 
whole-proteome level.

•	 Immunoassays — proteins are quantitated in solution using antibodies that are bound to 
color-coded beads (as in the Bio-Plex supension array system) or immobilized to a surface 
(ELISA), which is subsequently probed with an antibody suspension and is typically de-
tected using a chromogenic or fluorogenic reporter.

Posttranslational Modification Analysis

•	 Immunoassays — levels of protein phosphorylation and other post-translational modifica-
tions are detected using antibodies that are specific for these adducts.

•	 Mass spectrometry — proteins and their modifications are identified based on their mass.

Bioinformatics
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Serial Analysis of Gene Expression

Serial analysis of gene expression (SAGE) uses mRNA from a particular sample to create comple-
mentary DNA (cDNA) fragments which are then amplified and sequenced using high-throughput 
sequencing technology.

The mechanism behind SAGE is based on tags which can identify the original transcript, and rapid 
sequencing of chains of tags linked together. The procedure essentially simplifies sequencing by 
linking the cDNA segments together in a long chain.

The resulting analysis gives a snapshot of the transcriptome of the sample, including the identity 
and abundance of each mRNA.

Steps of SAGE

SAGE is a complex protocol with many steps:

•	 Step 1: mRNA is isolated from the sample and reverse transcribed using biotinylated prim-
ers to generate cDNA.

•	 Step 2: cDNA is bound via biotin to streptavidin microbeads.

•	 Step 3: cDNA is cleaved with restriction enzymes freeing it from the beads.

•	 Step 4: Cleaved DNA is washed out, leaving truncated cDNA bound to the beads.

•	 Step 5: Two oligonucleotides with sticky ends are added to the remaining truncated cDNA, 
in separate samples.

•	 Step 6: Cleaved DNA is “tagged” enzymatically, removing it from the beads.

•	 Step 7: Sticky ends are repaired with DNA polymerase.

•	 Step 8: Blunt ended tags from the two separate samples are ligated together, generating 
ditags with two different oligonucleotide adapter ends.

•	 Step 9: Ditags are cleaved to remove the oligonucleotides. Ditags will form long cDNA 
chains, or concatemers.

•	 Step 10: Transform concatemers into bacteria for replication.

•	 Step 11: Isolate concatemers from bacteria and sequence.

Challenges when using SAGE

One challenge is that the tags are only about 13 or 14 base pairs. It can be difficult to identify such 
a short tag if it’s from an unknown gene.

The flip side of that problem is that SAGE can be used to find unknown genes, and in some studies it’s 
an advantage to be able to measure gene expression quantitatively without prior sequence information.

Tags may also have issues with specificity; multiple genes could share the same tag if there is an 
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overlap in sequence. There also can be inconsistencies with the restriction enzymes, and incom-
patibilities for certain species.

SAGE and DNA microarray

SAGE is similar in many ways to a DNA microarray; however, in a DNA microarray, the mRNAs 
hybridize to cDNA probes on the array. In SAGE, the data output is based on sequencing. That 
means SAGE analysis is more quantitative and it does not depend on the use of known genes.

Microarray experiments are generally less costly, and so are used more often in larger-scale studies.

Application

A study of new markers in cancer illustrates how SAGE can be used in biomedical research. Re-
searchers compared gene expression levels in cancerous tissues with those in non-cancerous tis-
sues to search for markers that could diagnose the pancreatic cancer at an early stage. Because the 
results of a SAGE analysis of a large number of representative tissues had already been published 
online, the scientists were able to search the database for genes preferentially expressed in pancre-
atic cancer. From this, they were able to identify a gene calledprostate stem cell antigen (PCSA), 
that had previously not been associated with pancreatic cancer.

Whole-Genome Sequencing

Whole-genome sequencing (WGS) is a comprehensive method for analyzing entire genomes. Ge-
nomic information has been instrumental in identifying inherited disorders, characterizing the 
mutations that drive cancer progression, and tracking disease outbreaks. Rapidly dropping se-
quencing costs and the ability to produce large volumes of data with today’s sequencers make 
whole-genome sequencing a powerful tool for genomics research.

While this method is commonly associated with sequencing human genomes, the scalable, flexible 
nature of next-generation sequencing (NGS) technology makes it equally useful for sequencing 
any species, such as agriculturally important livestock, plants, or disease-related microbes.

Advantages of Whole-Genome Sequencing

•	 Provides a high-resolution, base-by-base view of the genome.

•	 Captures both large and small variants that might otherwise be missed.

•	 Identifies potential causative variants for further follow-on studies of gene expression and 
regulation mechanisms.

•	 Delivers large volumes of data in a short amount of time to support assembly of novel genomes.

Clone-by-clone

This method requires the genome to have smaller sections copied and inserted into bacteria. The 
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bacteria then can be grown to produce identical copies, or “clones,” containing approximately 
150,000 base pairs of the genome that is desired to be sequenced. Then, the inserted DNA in each 
clone is further broken down into smaller, overlapping 500 base pair chunks. These smaller inserts 
are sequenced. After sequencing is performed, the overlapping portions are used to reassemble the 
clone. This approach was used to sequence the first human genome using Sanger sequencing. This 
approach is time-consuming and costly, but it is reliable.

Whole-Genome Shotgun

As the name implies, “shotgun” sequencing is a method that breaks DNA into small random pieces 
for sequencing and reassembly. The pieces of DNA are also cloned into bacteria for growth, isola-
tion and subsequent sequencing. Because the pieces are random, there are overlapping sequences 
that aid in reassembly into the original DNA order. This approach was originally used in Sanger 
sequencing but is now also used in next-generation sequencing methods providing rapid genome 
sequencing with lower costs. It is only good for shorter “reads” (ie, sequencing on shorter DNA 
fragments to be put back together again). Because it is reassembled based on overlapping regions 
and has shorter read lengths, it is best utilized when a reference genome is available, and it re-
quires sophisticated computational approaches to reassemble the sequence. It also can be chal-
lenging for genomes with many repetitive regions.

Assembly of Sequencing Reads

Because genomes are sequenced in varying lengths of DNA fragments, the resulting sequences 
must be put back together. This is referred to as “assembly,” or “reassembly.” Two common ap-
proaches are de novo assembly and assembly by reference mapping.

De novo assembly is performed by identifying overlapping regions in the DNA sequences, aligning 
the sequences and putting them back together to form the genome. This is done without any se-
quence with which to compare. Mapping to a reference genome uses another genome to align new 
sequencing data to as a comparator.

Although de novo assembly can be challenging, this approach is the only one available for 
sequencing new organisms. Additionally, de novo assembly introduces results with less bias 
than mapping to a reference genome. Mapping to a reference genome is easier and requires 
less contiguous reads, but new or unexpected sequences can be lost. The sequence results 
obtained by this method is only as good as the reference genome chosen; however, it can 
provide better identification of single nucleotide polymorphisms (SNPs). Multiple institu-
tions and genomic sequencing companies have invested considerable time and effort into cre-
ating improved reference genomes. Single nucleotide polymorphisms are known to vary by 
race and ethnicity, thus, multiple reference genomes have been created for various races/
ethnicities.

Examples of Next-generation Sequencing Platforms

Several companies focus on development and marketing of next-generation sequencing ma-
chines (often referred to as “platforms”) for use in whole-genome (and other) sequencing. Illu-
mina is considered by many as the leader because of the number of users that utilize its systems. 
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Illumina has multiple platforms depending on the need. The Illumina HiSeq is one of the more 
common sequencers found in laboratories, including major research institutions, companies 
providing next-generation sequencing services for clinics and labs, and pathology laboratories. 
It has a high throughput, capable of sequencing many genomes rapidly with reasonable costs. 
This instrument also can be used to look at copy number variation, as well as mutations and 
other alterations, and RNA expression levels to do transcriptomics. Because of the popularity 
in the clinic of targeted sequencing panels, which are much smaller with clinics requiring fast-
er turnaround times for treatment of patients, Illumina created the MiSeq, which can provide 
same-day sequencing results for very small panels. Illumina also produced multiple variations 
to provide sequencers for each disease area optimizing output, turnaround time and costs for 
specific use cases.

Thermo Fisher Scientific’s Ion Torrent or Ion Proton uses a completely different technology based 
on detection of pH differences and was once expected to provide better utility for clinical applica-
tions because it was easier to use, cost less and provided faster turnaround time. However, Illumi-
na countered with new machines to fit these needs. Consequently, both are found in research and 
clinical laboratories.

Other technologies developed recently use different novel approaches. A few examples are provid-
ed below.

Oxford Nanopore Technologies introduced the MinION, which enables anyone to sequence on 
a desktop computer using a USB device. The DNA is passed through a protein nanopore mem-
brane for sequencing and detection by creation of an ionic current that varies based on the 
nucleotide.

Pacific Biosciences introduced its single molecule, real-time technology with the longest reads 
to date, with average read lengths of more than 10,000 base pairs compared with more than 
150 base pairs. Single molecule, real-time technology uses a chip with single DNA molecules 
attached. Zero-mode waveguide technology enables isolation of a single nucleotide for the 
DNA polymerase to add fluorescent labels for detection of each base. The error rate of this 
instrument is still higher than some of the prior technologies, but a lot of interest has been 
generated, and there is hope that speed and costs can be further optimized with the new 
approach.

Coverage Breadth and Depth

Coverage refers to the number of reads that show a specific nucleotide in the reconstructed DNA 
sequence. A read is a string of A, T, C, G bases that correspond to the reference DNA. There are 
millions of reads in a sequencing run. Increased coverage depth results in increased confidence in 
variant identification.

For the human genome, a 10- to 30-times coverage depth is acceptable for detecting mutations, 
SNPs and rearrangements. A next-generation sequencing approach that provides a coverage depth 
of 30 times is considered to have high coverage. However, as coverage depth increases, coverage 
breadth decreases.

Bioinformatics
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Figure: Relationship between coverage breadth vs. coverage depth.

Gene Annotation

genomes make the basic genetic material and typically consist of DNA. Whereby, genome include 
the genes (coding) and the non-coding regions, of interest to us, are the coding regions as they 
actively influence basic life processes. The genes contain useful biological information that is re-
quired in building up and maintaining an organism. Gene annotation can be defined merely as the 
process of making nucleotide sequence meaningful. However, it’s a much complex process encom-
passing several procedures and a broad range of activities.

Gene annotation involves the process of taking the raw DNA sequence produced by the genome-
sequencing projects and adding layers of analysis and interpretation necessary to extracting 
biologically significant information and placing such derived details into context. Through the 
aid of bioinformatics, there exists software to perform such complex procedures. The first gene 
annotation software system was developed in 1995 at The Institute for Genomic Research, and this 
was used to sequence and analyze the genes of the bacterium Haemophilus influenza.

As a process of identification of gene location and coding regions, gene annotation helps us have 
an insight of what these genes do in the body by establishing structural aspects and relating them 
to functions of different proteins. Currently, the process is automated, and the National Center for 
Biomedical Ontology have a database for records and to enable comparison.

How is Gene Annotation Performed?

Gene annotation can either be manual or electronic with the aid of tools developed by an amalga-
mation of organizations. The downsides of the manual technique are that it is time-consuming and 
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the turn-over rate is much low. However, it remains useful for predictive purposes thus serves a 
complementary function. There exist three main steps in the process of gene annotation:

•	 Identification of the non-coding regions of the genome (exons). This is vital to limit the 
range of analysis and only focus on the essential components as it is needless doing the 
tedious work on portions that give no or little biological information.

•	 Gene prediction; these give an overview of the amino acid components of the genes and 
the role of such elements. Also referred to as gene finding, this process identifies regions of 
genomic DNA that encode genes. Empirical methods or Ab Initio methods can do it.

•	 Establishing a connection and a correlation between the identified elements and the bio-
logical information at hand. Linking of biological functions and data is possible this way.

•	 Homology-based tools for example Blast has hugely simplified the process of gene 
annotation, and this can now be done without much hassle as witnessed in manual methods 
that require human expertise.

Modalities of Gene Annotation

Genomics is a broad study and can be subdivided as structural genomics, functional genomics, and 
comparative genomics to leverage the understanding of this crucial topic. Similarly, gene annotation ex-
ists as a double-phased entity comprising of structural gene annotation and functional gene annotation.

Structural Annotation

The initial process in gene annotation and involve identification by physical appearance, chemical 
composition, molecular weight variations, and general morphology. Such differences as coding 
regions, gene structures, ORFs and their locations, as well as regulatory motifs, are crucial infor-
mation that is derived from this procedure and influence the process of gene identification as well 
as distinction. The accuracy of this process can be evaluated based on two parameters; specificity 
and accuracy. Where sensitivity is the percentage of right signals predicted among all possible cor-
rect strengths while specificity refers to the proportion of right signal among all that are forecasted.

Functional Annotation

The process of relating crucial biological functions to the genetic elements as depicted in the struc-
tural annotation step. Biochemical functions, physiological functions, involved regulations and inter-
actions atop expressions are some of the critical roles that are often considered in DNA annotation.

The above steps can involve biological experiments as well as in silico analysis mimicking the 
internal conditions. A new method seeking to improve genomics annotation-Proteogenomics is 
currently in use, and it utilizes information from expressed proteins, such information is obtained 
from mass spectrometry.

Essential Components

Gene annotation is a purposeful process, and some of the vital information that we seek to ex-
tract from this process include; CDs, mRNA, Pseudogenes, promoter and poly-A signals, mcRNA 
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among others. Such elements are minute and identification may be hectic. Scientists have devel-
oped software and tools to aid the process and notable tools frequently used are; ORF detectors, 
promoter detectors and start/stop codon identifiers. Automation of this process has created en-
hanced accuracy, and now there exist large discrepancies between with the manually conducted 
procedures as gene sequencing is a dynamic topic. 

Transcriptome Sequencing

Transcriptome sequencing encompasses a wide variety of applications from simple mRNA pro-
filing to discovery and analysis of the entire transcriptome, including both coding mRNA and 
non-coding RNA (e.g., miRNA, small RNAs, linc RNAs). These applications, collectively called 
RNA-Seq, are extremely popular for next generation sequencing platforms as they uncover in-
formation that may be missed by array-based platforms, as no prior knowledge of the transcript 
sequence is needed. RNA-Seq was initially used primarily for discovery applications (rare genes, 
splice junctions, gene fusions) and with novel or poorly studied organisms for which there weren’t 
good standard microarrays. However, as the technology is becoming more available and costs are 
coming down, it is starting to be used for RNA profiling (sample comparison) as well. Also, as it is 
sequencing based, it is well suited for specialty applications such as RNA editing and allele specific 
expression. While there are a variety of RNA-Seq applications and protocols, most follow the basic 
strategy of isolating RNA (such as with poly dT to pull down mRNA), converting it to DNA and 
then adding adaptor sequences to generate a library suitable for sequencing.

mRNA-Seq

One of the most popular forms of transcriptome sequencing is mRNA-Seq, which targets all polya-
denylated mRNA transcripts, or the coding portion of the transcriptome. The depth offered by next 
generation sequencing is leveraged to find new genes that were undetectable before due to their 
low level of expression. By the same token, the increased depth and reduced cost of sequencing 
means these projects can be used to profile gene expression while differentiating between isoforms 
of the same gene via paired-end reads.

Small RNA-Seq

Attempts to target small RNA for sequencing have been driven by interest in microRNAs, as they act as 
regulatory elements in the transcriptome. By complexing in the 3′ region with mRNA transcripts that 
have complementary sequence, microRNAs mark these transcripts for degradation prior to transla-
tion. The depth offered by next generation sequencing again loans itself to both novel microRNA gene 
discovery and expression profiling. The major problem in preparing these samples is the difficulty in 
separating these species from similarly sized adapter-dimers. Gel-based size selections that recover 
adapter-bound small RNAs while excluding adapter-dimers from the sample are employed here.

Tag-based Approaches

The original RNA sequencing method used with next generation sequencing was ‘digital gene ex-
pression’ (DGE), a modified form of ‘serial analysis of gene expression’ (SAGE). In this method 
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a single short tag (~23 bases) is generated for each transcript as defined by the relation of a four 
base restriction enzyme recognition site and the location of the polyA tail. (In practice, additional 
tags can be generated by the presence of polyA stretches elsewhere in the transcript.) Because 
each transcript contains only a single tag (or at the most, a few), DGE libraries are substantially 
less complex than standard RNA-Seq libraries, allowing useful results with fewer reads per sam-
ple (1-2M compared with ~30M). Alternatively, higher read depths allow for the detection of ex-
tremely rare transcripts, which can be useful when looking for single or low copy transcripts in a 
population of cells. The SuperSAGE method improves on the original DGE methods through the 
generation of larger tags, allowing for more precise alignment to the transcriptome. While these 
methods still have adherents, the rapidly falling costs of sequencing are diminishing the impor-
tance of needing fewer reads, while the more comprehensive coverage of the transcriptome by oth-
er RNA-Seq methods is gaining in popularity. However, variants of these “tag profiling” methods, 
such as ‘cap analysis gene expression’ (CAGE), can be very useful for determining the precise 5′ 
ends of transcripts.

Whole Transcriptome Sequencing

A truly comprehensive view of the transcriptome requires the examination of all unique RNA 
transcripts for an organism, including both the coding and non-coding portions. This is achieved 
by combining the results of various RNA-Seq methods. The primary method is the generation of 
RNA-Seq libraries without the use of polyA enrichment, allowing for the sequencing of a signifi-
cant portion of the non-coding RNA. However, since rRNA accounts for 95-98% of the transcrip-
tome, it is still necessary to eliminate this fraction prior to sequencing. This is often accomplished 
with commercially available kits that can use oligos complementary to known rRNA sequences to 
sequester those transcripts. Alternatively, ‘duplex-specific nuclease’ (or DSN) can be used to elim-
inate highly abundant sequences, greatly enriching the other portions of the transcriptome. The 
standard RNA-Seq methods generally don’t capture small RNAs well, so the results are combined 
with small RNA-Seq and possibly one or more of the CAGE methods to more accurately define the 
transcription start and stop sites.

RNA Sequencing and Analysis

RNA sequencing (RNA-Seq) uses the capabilities of high-throughput sequencing methods to 
provide insight into the transcriptome of a cell. Compared to previous Sanger sequencing- and 
microarray-based methods, RNA-Seq provides far higher coverage and greater resolution of the 
dynamic nature of the transcriptome. Beyond quantifying gene expression, the data generated 
by RNA-Seq facilitate the discovery of novel transcripts, identification of alternatively spliced 
genes, and detection of allele-specific expression. Recent advances in the RNA-Seq workflow, 
from sample preparation to library construction to data analysis, have enabled researchers to 
further elucidate the functional complexity of the transcription. In addition to polyadenylated 
messenger RNA (mRNA) transcripts, RNA-Seq can be applied to investigate different popula-
tions of RNA, including total RNA, pre-mRNA, and noncoding RNA, such as microRNA and long 
ncRNA. 
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The central dogma of molecular biology outlines the flow of information that is stored in genes 
as DNA, transcribed into RNA, and finally translated into proteins. The ultimate expression of 
this genetic information modified by environmental factors characterizes the phenotype of an 
organism. The transcription of a subset of genes into complementary RNA molecules specifies 
a cell’s identity and regulates the biological activities within the cell. Collectively defined as the 
transcriptome, these RNA molecules are essential for interpreting the functional elements of the 
genome and understanding development and disease.

The transcriptome has a high degree of complexity and encompasses multiple types of coding 
and noncoding RNA species. Historically, RNA molecules were relegated as a simple intermediate 
between genes and proteins, as encapsulated in the central dogma of molecular biology. There-
fore, messenger RNA (mRNA) molecules were the most frequently studied RNA species because 
they encoded proteins via the genetic code. In addition to protein-coding mRNA, there is a di-
verse group of noncoding RNA (ncRNA) molecules that are functional. Previously, most known 
ncRNAs fulfilled basic cellular functions, such as ribosomal RNAs and transfer RNAs involved in 
mRNA translation, small nuclear RNA (snRNAs) involved in splicing, and small nucleolar RNAs 
(snoRNAs) involved in the modification of rRNAs. More recently, novel classes of RNA have been 
discovered, enhancing the repertoire of ncRNAs. For instance, one such class of ncRNAs is small 
noncoding RNAs, which include microRNA (miRNA) and piwi-interacting RNA (piRNA), both 
of which regulate gene expression at the posttranscriptional level. Another noteworthy class of 
ncRNAs is long noncoding RNAs (lncRNAs). As a functional class, lncRNAs were first described 
in mice during the large-scale sequencing of cDNA libraries. A myriad of molecular functions have 
been discovered for lncRNAs, including chromatin remodeling, transcriptional control, and post-
transcriptional processing, although the vast majority are not fully characterized.

Initial gene expression studies relied on low-throughput methods, such as northern blots and 
quantitative polymerase chain reaction (qPCR), that are limited to measuring single transcripts. 
Over the last two decades, methods have evolved to enable genome-wide quantification of gene 
expression, or better known as transcriptomics. The first transcriptomics studies were performed 
using hybridization-based microarray technologies, which provide a high-throughput option at 
relatively low cost. However, these methods have several limitations: the requirement for a priori 
knowledge of the sequences being interrogated; problematic cross-hybridization artifacts in the 
analysis of highly similar sequences; and limited ability to accurately quantify lowly expressed 
and very highly expressed genes. In contrast to hybridization-based methods, sequence-based ap-
proaches have been developed to elucidate the transcriptome by directly determining the tran-
script sequence. Initially, the generation of expressed sequence tag (EST) libraries by Sanger se-
quencing of complementary DNA (cDNA) was used in gene expression studies, but this approach 
is relatively low-throughput and not ideal for quantifying transcripts. To overcome these tech-
nical constraints, tag-based methods such as serial analysis of gene expression (SAGE) and cap 
analysis gene expression (CAGE) were developed to enable higher throughput and more precise 
quantification of expression levels. By quantifying the number of tagged sequences, which directly 
corresponded to the number of mRNA transcripts, these tag-based methods provide a distinct ad-
vantage over measuring analog-style intensities as in array-based methods. However, these assays 
are insensitive to measuring expression levels of splice isoforms and cannot be used for novel gene 
discovery. In addition, the laborious cloning of sequence tags, the high cost of automated Sanger 
sequencing, and the requirement for large amounts of input RNA have greatly limited its use.
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The development of high-throughput next-generation sequencing (NGS) has revolutionized tran-
scriptomics by enabling RNA analysis through the sequencing of complementary DNA (cDNA). This 
method, termed RNA sequencing (RNA-Seq), has distinct advantages over previous approaches 
and has revolutionized our understanding of the complex and dynamic nature of the transcriptome. 
RNA-Seq provides a more detailed and quantitative view of gene expression, alternative splicing, 
and allele-specific expression. Recent advances in the RNA-Seq workflow, from sample preparation 
to sequencing platforms to bioinformatic data analysis, has enabled deep profiling of the transcrip-
tome and the opportunity to elucidate different physiological and pathological conditions. 

Transcriptome Sequencing

The introduction of high-throughput next-generation sequencing (NGS) technologies revolu-
tionized transcriptomics. This technological development eliminated many challenges posed by 
hybridization-based microarrays and Sanger sequencing-based approaches that were previously 
used for measuring gene expression. A typical RNA-Seq experiment consists of isolating RNA, 
converting it to complementary DNA (cDNA), preparing the sequencing library, and sequencing 
it on an NGS platform. However, many experimental details, dependent on a researcher’s objec-
tives, should be considered before performing RNA-Seq. These include the use of biological and 
technical replicates, depth of sequencing, and desired coverage across the transcriptome. In some 
cases, these experimental options will have minimal impact on the quality of the data. However, in 
many cases the researcher must carefully design the experiment, placing a priority on the balance 
between high-quality results and the time and monetary investment.

Figure: Overview of RNA-Seq. First, RNA is extracted from the biological material of choice (e.g., cells, tissues). 

Second, subsets of RNA molecules are isolated using a specific protocol, such as the poly-A selec-
tion protocol to enrich for polyadenylated transcripts or a ribo-depletion protocol to remove ribo-
somal RNAs. Next, the RNA is converted to complementary DNA (cDNA) by reverse transcription 
and sequencing adaptors are ligated to the ends of the cDNA fragments. Following amplification 
by PCR, the RNA-Seq library is ready for sequencing.

Isolation of RNA

The first step in transcriptome sequencing is the isolation of RNA from a biological sample. To 
ensure a successful RNA-Seq experiment, the RNA should be of sufficient quality to produce a 
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library for sequencing. The quality of RNA is typically measured using an Agilent Bioanalyzer, 
which produces an RNA Integrity Number (RIN) between 1 and 10 with 10 being the highest qual-
ity samples showing the least degradation. The RIN estimates sample integrity using gel electro-
phoresis and analysis of the ratios of 28S to 18S ribosomal bands. Note that the RIN measures are 
based on mammalian organisms and certain species with abnormal ribosomal ratios (i.e., insects) 
may erroneously generate poor RIN numbers. Low-quality RNA (RIN < 6) can substantially af-
fect the sequencing results (e.g., uneven gene coverage, 3′–5′ transcript bias, etc.) and lead to 
erroneous biological conclusions. Therefore, high-quality RNA is essential for successful RNA-Seq 
experiments. Unfortunately, high-quality RNA samples may not be available in some cases, such 
as human autopsy samples or paraffin embedded tissues, and the effect of degraded RNA on the 
sequencing results should be carefully considered.

Library Preparation Methods

Following RNA isolation, the next step in transcriptome sequencing is the creation of an RNA-Seq 
library, which can vary by the selection of RNA species and between NGS platforms. The construc-
tion of sequencing libraries principally involves isolating the desired RNA molecules, reverse-tran-
scribing the RNA to cDNA, fragmenting or amplifying randomly primed cDNA molecules, and 
ligating sequencing adaptors. Within these basic steps, there are several choices in library con-
struction and experimental design that must be carefully made depending on the specific needs of 
the researcher. Additionally, the accuracy of detection for specific types of RNAs is largely depen-
dent on the nature of the library construction. Although there are a few basic steps for preparing 
RNA-Seq libraries, each stage can be manipulated to enhance the detection of certain transcripts 
while limiting the ability to detect other transcripts.

Table: RNA-Seq library protocols

Library design Usage Description
Poly-A selection Sequencing mRNA Select for RNA species with poly-A tail and enriches for mRNA
Ribo-depletion Sequencing mRNA, 

pre-mRNA, ncRNA
Removes ribosomal RNA and enriches for mRNA, pre-mRNA, 
and ncRNA

Size selection Sequencing miRNA Selects RNA species using size fractionation by gel electropho-
resis

Duplex-specific nuclease Reduce highly abun-
dant transcripts

Cleaves highly abundant transcripts, including rRNA and 
other highly expressed genes

Strand-specific De novo transcriptome 
assembly

Preserves strand information of the transcript

Multiplexed Sequencing multiple 
samples together

Genetic barcoding method that enables sequencing multiple 
samples together

Short-read Higher coverage Produces 50–100 bp reads; generally higher read coverage 
and reduced error rate compared to long-read sequencing

Long-read De novo transcriptome 
assembly

Produces >1000 bp reads; advantageous for resolving splice 
junctions and repetitive regions

Selection of RNA Species

Before constructing RNA-Seq libraries, one must choose an appropriate library preparation pro-
tocol that will enrich or deplete a “total” RNA sample for particular RNA species. The total RNA 
pool includes ribosomal RNA (rRNA), precursor messenger RNA (pre-mRNA), mRNA, and var-
ious classes of noncoding RNA (ncRNA). In most cell types, the majority of RNA molecules are 
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rRNA, typically accounting for over 95% of the total cellular RNA. If the rRNA transcripts are 
not removed before library construction, they will consume the bulk of the sequencing reads, re-
ducing the overall depth of sequence coverage and thus limiting the detection of other less-abun-
dant RNAs. Because the efficient removal of rRNA is critical for successful transcriptome profiling, 
many protocols focus on enriching for mRNA molecules before library construction by selecting 
for polyadenylated (poly-A) RNAs. In this approach, the 3′ poly-A tail of mRNA molecules is tar-
geted using poly-T oligos that are covalently attached to a given substrate (e.g., magnetic beads). 
Alternatively, researchers can selectively deplete rRNA using commercially available kits, such as 
RiboMinus (Life Technologies) or RiboZero (Epicentre). This latter method facilitates the accu-
rate quantification of noncoding RNA species, which may be polyadenylated and thus excluded 
from poly-A libraries. Lastly, highly abundant RNA can be removed by denaturing and re-an-
nealing double-stranded cDNA in the presence of duplex-specific nucleases that preferentially di-
gest the most abundant species, which re-anneal as double-stranded molecules more rapidly than 
less-abundant molecules. This method can also be used to remove other highly abundant mRNA 
transcripts in samples, such as hemoglobin in whole blood, immunoglobulins in mature B cells, 
and insulin in pancreatic beta cells.

A comprehensive understanding of the technical biases and limitations surrounding each meth-
odological approach is essential for selecting the best method for library preparation. For exam-
ple, poly-A libraries are the superior choice if one is solely interested in coding RNA molecules. 
Conversely, ribo-depletion libraries are a more appropriate choice for accurately quantifying non-
coding RNA as well as pre-mRNA that has not been posttranscriptionally modified. Furthermore, 
moderate differences exist between ribo-depletion protocols, such as the efficiency of rRNA re-
moval and differential coverage of small genes, which should be investigated before selecting a 
method.

In addition to the selective depletion of specific RNA species, new approaches have been devel-
oped to selectively enrich for regions of interest. These approaches include methods employing 
PCR-based approaches, hybrid capture, in-solution capture, and molecular inversion probes. The 
hybridization-based in solution capture involves a set of biotinylated RNA baits transcribed from 
DNA template oligo libraries that contain sequences corresponding to particular genes of interest. 
The RNA baits are combined with the RNA-Seq library where they hybridize to RNA sequences 
that are complementary to the baits, and the bounded complexes are recovered using streptavi-
din-coated beads. The resulting RNA-Seq library is now enriched for sequences corresponding to 
the baits and yet retains its gene expression information despite the removal of other RNA species. 
The approach enables researchers to reduce sequencing costs by sequencing selected regions in a 
greater number of samples.

Selection of Small RNA Species

Complementing the library preparation protocols discussed above, more specific protocols have 
been developed to selectively target small RNA species, which are key regulators of gene expres-
sion. Small RNA species include microRNA (miRNA), small interfering RNA (siRNA), and piwi-in-
teracting RNA (piRNA). Because small RNAs are lowly abundant, short in length (15–30 nt), and 
lack polyadenylation, a separate strategy is often preferred to profile these RNA species. Similar 
to total RNA isolation, commercially available extraction kits have been developed to isolate small 
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RNA species. Most kits involve isolation of small RNAs by size fractionation using gel electropho-
resis. Size fractionation of small RNAs requires involves running the total RNA on a gel, cutting 
a gel slice in the 14–30 nucleotide region, and purifying the gel slice. For higher concentrations 
of small RNAs, the excised gel slice can be concentrated by ethanol precipitation. An alternative 
to gel electrophoresis is the use of silica spin columns, which bind and elute small RNAs from a 
silica column. After isolation of small RNAs species from total RNA, the RNA is ready for cDNA 
synthesis and primer ligation.

cDNA Synthesis

Universal to all RNA-Seq preparation methods is the conversion of RNA into cDNA because 
most sequencing technologies require DNA libraries. Most protocols for cDNA synthesis cre-
ate libraries that were uniformly derived from each cDNA strand, thus representing the parent 
mRNA strand and its complement. In this conventional approach, the strand orientation of the 
original RNA is lost as the sequencing reads derived from each cDNA strand are indistinguish-
able in an effort to maximize efficiency of reverse transcription. However, strand information can 
be particularly valuable for distinguishing overlapping transcripts on opposite strands, which 
is critical for de novo transcript discovery. Therefore, alternative library preparation protocols 
have since been developed that yield strand-specific reads. One strategy to preserve strand in-
formation is to ligate adapters in predetermined directions to single-stranded RNA or the first-
strand of cDNA. Unfortunately, this approach is laborious and results in coverage bias at both 
the 5′ and 3′ ends of cDNA molecules. The preferred strategy to preserve strandedness is to 
incorporate a chemical label such as deoxy-UTP (dUTP) during synthesis of the second-strand 
cDNA that can be specifically removed by enzymatic digestion. During library construction, this 
facilitates distinguishing the second-strand cDNA from the first strand. Although this approach 
is favored, the validity of antisense transcripts near highly expressed genes should be measured 
with caution because a small amount of reads (∼1%) have been observed from the opposite 
strand.

Multiplexing

Another consideration for constructing cost-effective RNA-Seq libraries is assaying multiple in-
dexed samples in a single sequencing lane. The large number of reads that can be generated per 
sequencing run (e.g., a single lane of an Illumina HiSeq 2500 generates up to 750 million paired-
end reads) permits the analysis of increasingly complex samples. However, increasingly high se-
quencing depths provide diminishing returns for lower complexity samples, resulting in oversam-
pling with minimal improvement in data quality. Therefore, an affordable and efficient solution is 
to introduce unique 6-bp indices, also known as “barcodes,” to each RNA-Seq library. This enables 
the pooling and sequencing of multiple samples in the same sequencing reaction because the bar-
codes identify which sample the read originated from. Depending on the application, adequate 
transcriptome coverage can be attained for 2–20 samples. To detect transcripts of moderate to 
high abundance, ∼30–40 million reads are required to accurately quantify gene expression. To 
obtain coverage over the full-sequence diversity of complex transcript libraries, including rare and 
lowly-expressed transcripts, up to 500 million reads is required. As such, for any given study it is 
important to consider the level of sequencing depth required to answer experimental questions 
with confidence while efficiently using NGS resources.
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Quantitative Standards

Although RNA-Seq is a widely used technique for transcriptome profiling, the rapid development 
of sequencing technologies and methods raises questions about the performance of different plat-
forms and protocols. Variation in RNA-Seq data can be attributed to an assortment of factors, 
ranging from the NGS platform used to the quality of input RNA to the individual performing the 
experiment. To control for these sources of technical variability, many laboratories use positive 
controls or “spike-ins” for sequencing libraries. The External RNA Controls Consortium (ERCC) 
developed a set of universal RNA synthetic spike-in standards for microarray and RNA-Seq exper-
iments. The spike-ins consist of a set of 96 DNA plasmids with 273–2022 bp standard sequences 
inserted into a vector of ∼2800 bp. The spike-in standard sequences are added to sequencing 
libraries at different concentrations to assess coverage, quantification, and sensitivity. These RNA 
standards serve as an effective quality control tool for separating technical variability from biolog-
ical variability detected in differential transcriptome profiling studies.

Selection of Tissue or Cell Populations

When beginning an RNA-Seq experiment, one of the initial considerations is the choice of biolog-
ical material to be used for library construction and sequencing. This choice is not trivial consid-
ering there are hundreds of cell types in over 200 different tissues that make up greater than 50 
unique organs in humans alone. In addition to spatial (e.g., cell- and tissue-type) specificity, gene 
expression shows temporal specificity, such that different developmental stages will show unique 
expression signatures. Ultimately, the biological material chosen will be dependent on both the 
experimental goals and feasibility. For example, the tissue of choice for an investigation of unique 
gene expression signatures in colon cancer, the tissue choice is clear. However, for research studies 
investigating variation in gene expression across individuals in a population, the choice of biolog-
ical material is less apparent and will likely depend on the feasibility of obtaining the biological 
samples (e.g., blood draws are less invasive and easier to perform than tissue biopsies).

Handling Tissue Heterogeneity

Another consideration when selecting the biological source of RNA is the heterogeneity of tissues. 
The accuracy of gene expression quantification is dependent on the purity of samples. In fact, the 
heterogeneity can substantially impact estimations of transcript abundances in samples composed 
of multiple cell types. Most tissue samples isolated from the human body are heterogeneous by 
nature. Furthermore, pathological tissue samples are often composed of disease-state cells sur-
rounded by normal cells. To isolate distinct cell types, experimental methods have been developed, 
including laser-capture microdissection and cell purification. Laser-capture microdissection en-
ables the isolation of cell types that are morphologically distinguishable under direct microscopic 
visualization. Although this technique yields high-quality RNA, the total yield is low and requires 
PCR amplification, thereby introducing amplification biases and creating less distinguishable ex-
pression profiles across different cell types. Cell purification and enrichment protocols are also 
available, such as differential centrifugation and fluorescence-activated cell sorting. In conjunc-
tion with RNA-Seq, these experimental methods have overcome previous technical limitations 
and enable researchers to uncover unique expression signatures across specific cell-types and de-
velopmental stages. In addition to these experimental methods, in silico probabilistic models can 
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be applied in downstream analysis to differentiate the transcript abundances of distinct cells from 
RNA-Seq data of heterogeneous tissue samples. Interestingly, in some cases, the sample hetero-
geneity can have advantages in transcriptome profiling by identifying novel pathways, implicating 
cellular origins of disease, or identifying previously unknown pathological sites.

Single-Cell Transcriptomics

Beyond tissue heterogeneity, considerable evidence indicates that cell-to-cell variability in gene 
expression is ubiquitous, even within phenotypically homogeneous cell populations. Unfortunate-
ly, conventional RNA-Seq studies do not capture the transcriptomic composition of individual 
cells. The transcriptome of a single cell is highly dynamic, reflecting its functionality and responses 
to ever-changing stimuli. In addition to cellular heterogeneity resulting from regulation, individ-
ual cells show transcriptional “noise” that arises from the kinetics of mRNA synthesis and decay. 
Furthermore, genes that show mutually exclusive expression in individual cells may be observed 
as genes showing co-expression in expression analyses of bulk cell populations.

To uncover cell-to-cell variation within populations, significant efforts have been invested in devel-
oping single-cell RNA-Seq methods. The biggest challenge has been extending the limits of library 
preparation to accommodate extremely low input RNA. A human cell contains <1 pg of mRNA, 
whereas most sequencing protocols such as Illumina’s TruSeq RNA-Seq kit recommends 400 ng 
to 1 μg of input RNA material. Various single-cell RNA amplification methods have been developed 
to accommodate less input RNA. The key limiting factors in the detection of transcripts in single 
cells are cDNA synthesis and PCR amplification. The efficiency of RNA-to-cDNA conversion is im-
perfect, estimated to be as low as 5%–25% of all transcripts. In addition, PCR amplification meth-
ods do not linearly amplify transcript and are prone to introduce biases based on the nucleic acid 
composition of different transcripts, ultimately altering the relative abundance of these transcripts 
in the sequencing library. Methods that avoid PCR amplification steps, such as CEL-Seq, through 
linear in vitro amplification of the transcriptome can avoid these biases. In addition, the use of 
nanoliter-scale reaction volumes with microfluidic devices as opposed to microliter-scale reactions 
can reduce biases that arise during sample preparation. Although single-cell methods are still un-
der active development, quantitative assessments of these techniques indicate that obtaining accu-
rate transcriptome measurements by single-cell RNA-Seq is possible after accounting for technical 
noise. These methods will undoubtedly be important for uncovering oscillatory and heterogeneous 
gene expression within single-cell types, as well as identifying cell-specific biomarkers that further 
our understanding of biology across many physiological and pathological conditions.

Sequencing Platforms for Transcriptomics

When designing an RNA-Seq experiment, the selection of a sequencing platform is important and 
dependent on the experimental goals. Currently, several NGS platforms are commercially available 
and other platforms are under active technological development. The majority of high-throughput 
sequencing platforms use a sequencing-by-synthesis method to sequence tens of millions of se-
quence clusters in parallel. The NGS platforms can often be categorized as either ensemble-based 
(i.e. sequencing many identical copies of a DNA molecule) or single-molecule-based (i.e. sequenc-
ing a single DNA molecule). The differences between these sequencing techniques and platforms 
can affect downstream analysis and interpretation of the sequencing data.

________________________ WORLD TECHNOLOGIES ________________________



WT

192 	

In recent years, the sequencing industry has been dominated by Illumina, which applies an en-
semble-based sequencing-by-synthesis approach. Using fluorescently labeled reversible-termi-
nator nucleotides, DNA molecules are clonally amplified while immobilized on the surface of a 
glass flowcell. Because molecules are clonally amplified, this approach provides the relative RNA 
expression levels of genes. To remove potential PCR-amplification biases, PCR controls and spe-
cific steps in the downstream computational analysis are required. One major benefit of ensem-
ble-based platforms is low sequencing error rates (<1%) dominated by single mismatches. Low 
error rates are particularly important for sequencing miRNAs, whose relatively small sizes result 
in misalignment or loss of reads if error rates are too high. Currently, the Illumina HiSeq platform 
is the most commonly applied next-generation sequencing technology for RNA-Seq and has set 
the standard for NGS sequencing. The platform has two flow cells, each providing eight separate 
lanes for sequencing reactions to occur. The sequencing reactions can take between 1.5 and 12 d to 
complete, depending on the total read length of the library. Even more recently, Illumina released 
the MiSeq, a desktop sequencer with lower throughput but faster turnaround (generates ∼30 mil-
lion paired-end reads in 24 h). The simplified workflow of the MiSeq instrument offers rapid turn-
around time for transcriptome sequencing on a smaller scale.

Single-molecule-based platforms such as PacBio enable single-molecule real-time (SMRT) sequenc-
ing. This approach uses DNA polymerase to perform uninterrupted template-directed synthesis 
using fluorescently labeled nucleosides. As each base is enzymatically incorporated into a growing 
DNA strand, a distinctive pulse of fluorescence is detected in real-time by zero-mode waveguide 
nanostructure arrays. An advantage of SMRT is that it does not include a PCR amplification step, 
thereby avoiding amplification bias and improving uniform coverage across the transcriptome. 
Another advantage of this sequencing approach is the ability to produce extraordinarily long reads 
with average lengths of 4200 to 8500 bp, which greatly improves the detection of novel transcript 
structures. A critical disadvantage of SMRT is a high rate of errors (∼5%) that are predominately 
characterized by insertions and deletions; the high error rate results in misalignment and loss of 
sequencing reads due to the difficulty of matching erroneous reads to the reference genome.

Another important consideration for choosing a sequencing platform is transcriptome assembly. 
Transcriptome assembly is necessary to transform a collection of short sequencing reads into a 
set of full-length transcripts. In general, longer sequencing reads make it simpler to accurately 
and unambiguously assemble transcripts, as well as identify splicing isoforms. The extremely long 
reads generated by the PacBio platform are ideal for de novo transcriptome assembly in which the 
reads are not aligned to a reference transcriptome. The longer reads will facilitate an accurate de-
tection of alternative splice isoforms, which may not be discovered with shorter reads. Moleculo, 
a company acquired by Illumina, has developed long-read sequencing technology capable of pro-
ducing 8500 bp reads. Although it has yet to be widely adopted for transcriptome sequencing, the 
long reads aid transcriptome assembly. Lastly, Illumina has developed protocols for its desktops 
MiSeq to sequence slightly longer reads (up to 350 bp). Although much shorter than PacBio and 
Moleculo reads, the longer MiSeq reads can also be used to improve both de novo and reference 
transcriptome assembly.

Transcriptome Analysis

Gene expression profiling by RNA-Seq provides an unprecedented high-resolution view of the 
global transcriptional landscape. As the sequencing technologies and protocol methodologies 
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continually evolve, new informatics challenges and applications develop. Beyond surveying gene 
expression levels, RNA-Seq can also be applied to discover novel gene structures, alternatively 
spliced isoforms, and allele-specific expression (ASE). In addition, genetic studies of gene expres-
sion using RNA-Seq have observed genetically correlated variability in expression, splicing, and 
ASE. 

RNA-Sequencing Data Analysis Workflow

The conventional pipeline for RNA-Seq data includes generating FASTQ-format files contains 
reads sequenced from an NGS platform, aligning these reads to an annotated reference genome, 
and quantifying expression of genes. Although basic sequencing analysis tools are more accessible 
than ever, RNA-Seq analysis presents unique computational challenges not encountered in other 
sequencing-based analyses and requires specific consideration to the biases inherent in expression 
data.

Overview of RNA-Seq data analysis. Following typical RNA-Seq experiments, reads are first aligned 
to a reference genome. Second, the reads may be assembled into transcripts using reference tran-
script annotations or de novo assembly approaches. Next, the expression level of each gene is 
estimated by counting the number of reads that align to each exon or full-length transcript. Down-
stream analyses with RNA-Seq data include testing for differential expression between samples, 
detecting allele-specific expression, and identifying expression quantitative trait loci (eQTLs).

Read Alignment

Mapping RNA-Seq reads to the genome is considerably more challenging than mapping DNA se-
quencing reads because many reads map across splice junctions. In fact, conventional read map-
ping algorithms, such as Bowtie and BWA, are not recommended for mapping RNA-Seq reads 
to the reference genome because of their inability to handle spliced transcripts. One approach 
to resolving this problem is to supplement the reference genome with sequences derived from 
exon–exon splice junctions acquired from known gene annotations. A preferred strategy is to map 
reads with a “splicing-aware” aligner that can recognize the difference between a read aligning 
across an exon–intron boundary and a read with a short insertion. As RNA-Seq data have become 
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more widely used, a number of splicing-aware mapping tools have been developed specifically for 
mapping transcriptome data. The more commonly used RNA-Seq alignment tools include GSNAP, 
MapSplice, RUM,and TopHat. Each aligner has different advantages in terms of performance, 
speed, and memory utilization. Selecting the best aligner to use depends on these metrics and 
the overall objectives of the RNA-Seq study. Efforts to systematically evaluate the performance of 
RNA-Seq aligners have been initiated by GENCODE’s RNA-Seq Genome Annotation Assessment 
Project3 (RGASP3), which has found major performance difference between alignments tools on 
numerous benchmarks, including alignment yield, basewise accuracy, mismatch and gap place-
ment, and exon junction discovery.

Table: Widely used RNA-Seq software packages

Primary category Tool name Notes
Splice-aware read  
alignment

GEM Filtration-based approach to approximate string matching for alignment
GSNAP Based on seed and extend alignment algorithm aware of complex variants
MapSplice Based on Burrows-Wheeler Transform (BWT) algorithm
RUM Integrates alignment tools Blat and Bowtie to increase accuracy

STAR Based on seed searching in an uncompressed suffix arrays followed by seed 
clustering and stitching procedure; fast but memory-intensive

TopHat Uses Bowtie, based on BWT, to align reads; resolves spliced reads using ex-
ons by split read mapping

Transcript assembly 
and quantification Cufflinks Assembles transcripts to reference annotations or de novo and quantifies 

abundance
FluxCapacitor Quantifies transcripts using reference annotations
iReckon Models novel isoforms and estimates their abundance

Differential  
expression (DE) BaySeq Count-based approach using empirical Bayesian method to estimate poste-

rior likelihoods
Cuffdiff2 Isoform-based approach based on beta negative binomial distribution
DESeq Exon-based approach using the negative binomial model
DEGSeq Isoform-based approach using the Poisson model

EdgeR Count-based approach using empirical Bayes method based on the negative 
binomial model

MISO Isoform-based model using Bayes factors to estimate posterior probabilities
Other tools

HCP Normalizes expression data by inferring known and hidden factors with pri-
or knowledge

PEER Normalizes expression data by inferring known and hidden factors using a 
probabilistic estimation based on the Bayesian framework

Matrix eQTL Fast eQTL detection tool that uses linear models (linear regression or ANOVA)

Transcript Assembly and Quantification

After RNA-Seq reads are aligned, the mapped reads can be assembled into transcripts. The major-
ity of computational programs infer transcript models from the accumulation of read alignments 
to the reference genome. An alternative approach for transcript assembly is de novo reconstruc-
tion, in which contiguous transcript sequences are assembled with the use of a reference genome 
or annotations. The reconstruction of transcripts from short-read data is a major challenge and a 
gold standard method for transcript assembly does not exist. The nature of the transcriptome (e.g., 
gene complexity, degree of polymorphisms, alternative splicing, dynamic range of expression), 
common technological challenges (e.g., sequencing errors), and features of the bioinformatics 
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workflow (e.g., gene annotation, inference of isoforms) can substantially affect transcriptome as-
sembly quality. RGASP3 has initiated efforts to evaluate computational methods for transcriptome 
reconstruction and has found that most algorithms can identify discrete transcript components, 
but the assembly of complete transcript structures remains a major challenge.

A common downstream feature of transcript reconstruction software is the estimation of gene ex-
pression levels. Computational tools such as Cufflinks, FluxCapacitor, and MISO, quantify expres-
sion by counting the number of reads that map to full-length transcripts. Alternative approaches, 
such as HTSeq, can quantify expression without assembling transcripts by counting the number of 
reads that map to an exon. To accurately estimate gene expression, read counts must be normal-
ized to correct for systematic variability, such as library fragment size, sequence composition bias, 
and read depth. To account for these sources of variability, the reads per kilobase of transcripts per 
million mapped reads (RPKM) metric normalizes a transcript’s read count by both the gene length 
and the total number of mapped reads in the sample. For paired end-reads, a metric that normal-
izes for sources of variances in transcript quantification is the paired fragments per kilobase of 
transcript per million mapped reads (FPKM) metric, which accounts for the dependency between 
paired-end reads in the RPKM estimate. Another technical challenge for transcript quantification 
is the mapping of reads to multiple transcripts that are a result of genes with multiple isoforms 
or close paralogs. One solution to correct for this “read assignment uncertainty” is to exclude all 
reads that do not map uniquely, as in Alexa-Seq. However, this strategy is far from ideal for genes 
lacking unique exons. An alternative strategy used by Cufflinks, and MISO is to construct a likeli-
hood function that models the sequencing experiment and estimates the maximum likelihood that 
a read maps to a particular isoform.

Considerations for miRNA Sequencing Analysis

The general approach for analysis of miRNA sequencing data is similar to approaches discussed 
for mRNA. To identify known miRNAs, the sequencing reads can be mapped to a specific database, 
such as miRBase, a repository containing over 24,500 miRNA loci from 206 species in its latest 
release (v21) in June 2014. In addition, several tools have been developed to facilitate analysis of 
miRNAs including the commonly used tools miRanalyzer and miRDeep. MiRanalyzer can detect 
known miRNAs annotated on miRBase as well as predict novel miRNAs using a machine-learning 
approach based on the random forest method with a broad range of features. Similarly, miRDeep 
is able to identify known miRNAs and predict novel miRNAs using properties of miRNA biogene-
sis to score the compatibility of the position and frequency of sequenced RNA from the secondary 
structure of precursor miRNAs. Although miRDeep and miRanalyzer contain modules for tar-
get prediction, expression quantification, and differential expression, the methods developed for 
mRNA quantification and differential expression can also be applied to miRNA data.

Quality Assessment and Technical Considerations

At each stage in the RNA-Seq analysis pipeline, careful consideration should be applied to identify-
ing and correcting for various sources of bias. Bias can arise throughout the RNA-Seq experimen-
tal pipeline, including during RNA extraction, sample preparation, library construction, sequenc-
ing, and read mapping. First, the quality of the raw sequence data in FASTQ-format files should be 
evaluated to ensure high-quality reads. User-friendly software tools designed to generate quality 
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overviews include the FASTX-toolkit, the FastQC software, and the RobiNA package. Several im-
portant parameters that should be evaluated include the sequence diversity of reads, adaptor con-
tamination, base qualities, nucleotide composition, and percentage of called bases. These technical 
artifacts can arise at the sequencing stage or during the construction of the RNA-Seq. For example, 
the 5′ read end, derived from either end of a double-stranded cDNA fragment, shows higher er-
ror rate due to mispriming events introduced by the random oligos during the RNA-Seq library 
construction protocol. If possible, actions to correct for these biases should be performed, such as 
trimming the ends of reads, to expedite the speed and improve the quality of the read alignments.

After aligning the reads, additional parameters should be assessed to account for biases that arise 
at the read mapping stage. These parameters include the percentage of reads mapped to the tran-
scriptome, the percentage of reads with a mapped mate pair, the coverage bias at the 5′- and 3′-
ends, and the chromosomal distribution of reads. One of the most common sources of mapping 
errors for RNA-Seq data occurs when a read spans the splicing junction of an alternatively spliced 
gene. A misalignment can be easily introduced due to ambiguous mapping of the read end to one 
of the two (or more) possible exons and is especially common when reads are mapped to a refer-
ence transcriptome that contains an incomplete annotation of isoforms. If genotype information is 
available, the integrity of the samples should also be evaluated by investigating the correlation of 
single-nucleotide variants (SNVs) between the DNA and RNA reads. The concordance between the 
DNA and RNA sequencing data may provide insight into sample swaps or sample mixtures caused 
accidentally as a result of personnel or equipment error. In the case of a swapped sample, more 
discordant variants would be observed between the DNA and RNA sequencing data. In the case 
of a mixture of samples, more significant patterns of allele-specific expression would be observed 
than expected for a single individual as a result of more combinations of heterozygous and homo-
zygous sites that would skew the alleles beyond the expected 1:1 allelic ratio.

Differential Gene Expression

A primary objective of many gene expression experiments is to detect transcripts showing differ-
ential expression across various conditions. Extensive statistical approaches have been developed 
to test for differential expression with microarray data, where the continuous probe intensities 
across replicates can be approximated by a normal distribution. Although in principle these ap-
proaches are also applicable to RNA-Seq data, different statistical models must be considered for 
discrete read counts that do not fit a normal distribution. Early RNA-Seq studies suggested that 
the distribution of read counts across replicates fit a Poisson distribution, which formed the basis 
for modeling RNA-Seq count data. However, further studies indicated that biological variability 
is not captured by the Poisson assumption, resulting in high false-positive rates due to underes-
timation of sampling error. Hence, negative binomial distribution models that take into account 
overdispersion or extra-Poisson variation have been shown to best fit the distribution of read 
counts across biological replicates.

To model the count-based nature of RNA-Seq data, complex statistical models have been devel-
oped to handle sources of variability that model overdispersion across technical and biological 
replicates. One source of variability is differences in sequencing read depth, which can artificially 
create differences between samples. For instance, differences in read depth will result in the sam-
ples appearing more divergent if raw read counts between genes are compared. To correct for 
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this, it is advantageous to transform raw read count data to FPKM or RPKM values in differential 
expression analyses. Although this correction metric is commonly used in place of read counts, the 
presence of several highly expressed genes in a particular sample can significantly alter the RPKM 
and FPKM values. For example, a highly expressed gene can “absorb” many reads, consequently 
repressing the read counts for other genes and artificially inflating gene expression variation. To 
account for this bias, several statistical models have been proposed that use the highly expressed 
genes as model covariates. Another source of variability that has been observed is that the distribu-
tion of sequencing reads is unequal across genes. Therefore, a two-parameter generalized Poisson 
model that simultaneously considers read depth and sequencing bias as independent parameters 
was developed and shown to improve RNA-Seq analysis. More complex normalization methods 
have also been developed to account for hidden covariates without removing significant biological 
variability. For example, the probabilistic estimation of expression residuals (PEER) framework 
and the hidden covariates with prior (HCP) framework are methods that use a Bayesian approach 
to infer hidden covariates and remove their effects from expression data.

To detect differential expression, a variety of statistical methods have been designed specifically 
for RNA-Seq data. A popular tool to detect differential expression is Cuffdiff, which is part of 
the Tuxedo suite of tools (Bowtie, Tophat, and Cufflinks) developed to analyze RNA-Seq data. In 
addition to Cuffdiff, several other packages support testing differential expression, including bay-
Seq, DESeq, DEGseq, and edgeR. Although these packages can assign significance to differential-
ly expressed transcripts, the biological observations should be carefully interpreted. Each model 
makes specific assumptions that may be violated in the context of the observed data; therefore, 
an understanding of the model parameters and their constraints is critical for drawing mean-
ingful and accurate biological conclusions. Furthermore, replicates in RNA-Seq experiments are 
crucial for measuring variability and improving estimations for the model parameters. Biological 
replicates (e.g., cells grown on two different plates under the same conditions) are preferred to 
technical replicates (e.g., one RNA-Seq library sequenced on two different lanes), which show 
little variation. Although the number of replicates required per condition is an open research 
question, a minimum of three replicates per sample has been suggested. In many cases, multi-
plexed RNA-Seq libraries can be used to add biological replicates without increasing sequencing 
costs (if sequenced at a lower depth) and will greatly improve the robustness of the experimental 
design. Additionally, the accuracy of measurements of differential gene expression can be further 
improved by using ERCC spike-in controls to distinguish technical variation from biological vari-
ation.

Allele-Specific Expression

A major advantage of RNA-Seq is the ability to profile transcriptome dynamics at a single-nucle-
otide resolution. Therefore, the sequenced transcript reads can provide coverage across heterozy-
gous sites, representing transcription from both the maternal and paternal alleles. If a sufficient 
number of reads cover a heterozygous site within a gene, the null hypothesis is that the ratio of 
maternal to paternal alleles is balanced. Significant deviation from this expectation suggests al-
lele-specific expression (ASE). Potential mechanisms for ASE include genetic variation (e.g., sin-
gle-nucleotide polymorphism in a cis-regulatory region upstream of a gene) and epigenetic effects 
(e.g., genomic imprinting, methylation, histone modifications, etc.). Early studies showed that al-
lele-specific differences can affect up to 30% of loci within an individual and are caused by both 
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common and rare genetic variants. Studies have also applied ASE to identify expression mod-
ifiers of protein-coding variation, effects of loss-of-function variation, and differences between 
pathogenic and healthy tissues. Furthermore, ASE studies using single-cell transcriptomics have 
uncovered a stochastic pattern of allelic expression that may contribute to variable expressivity, a 
novel perspective which may have fundamental implications for variable disease penetrance and 
severity.

Conventional workflows to detect ASE involve counting reads containing each allele at hetero-
zygous sites and applying a statistical test, such as the binomial test or the Fisher’s exact test. 
However, more rigorous statistical approaches are necessary to overcome technical challenges 
involved in ASE detection. These challenges include read-mapping bias, sampling variance, 
overdispersion at extreme read depths, alternatively spliced alleles, insertions and deletions 
(indels), and genotyping errors. To account for overdispersion, one approach is to model allelic 
read counts using a beta-binomial distribution at individual loci; however, accurate estima-
tion of the overdispersion parameter requires replicates and, in our experience, major source 
of bias come from site-specific mapping differences. Another strategy is to use a hierarchical 
Bayesian model that combines information across loci, as well as across replicates and technol-
ogies, to make global and site-specific inferences for ASE. To assess reference-allele mapping 
bias, the number of mismatches in reads containing the nonreference allele should be assessed 
as increased bias is observed with greater sequence divergence between alleles. To correct for 
read-mapping bias, an enhanced reference genome can be constructed that masks all SNP po-
sitions or includes the alternative alleles at polymorphic loci. Statistical methods to better ad-
dress these technical biases are under active development and are expected to foster further 
improvements in ASE detection.

Expression Quantitative Trait Loci

Another prominent direction of RNA-Seq studies has been the integration of expression data 
with other types of biological information, such as genotyping data. The combination of RNA-
Seq with genetic variation data has enabled the identification of genetic loci correlated with 
gene expression variation, also known as expression quantitative trait loci (eQTLs). This ex-
pression variation caused by common and rare variants is postulated to contribute to phenotyp-
ic variation and susceptibility to complex disease across individuals. The goal of eQTL analysis 
is to identify associations that will uncover underlying biological processes, discover genetic 
variants causing disease, and determine causal pathways. Initial eQTL studies using RNA-Seq 
data identified a greater number of statistically significant eQTLs than had been identified by 
microarray studies. Most of the eQTLs identified directly influenced gene expression in an al-
lele-specific manner and were located near transcriptional start sites, indicating that eQTLs 
could modulate expression directly, or in cis. Later studies identified trans-eQTLs, which are 
variants that affect the expression of a distant gene (>1 Mb) by modifying the activity or expres-
sion of upstream factors that regulate the gene. Although trans-eQTLs show weaker effects and 
present validation difficulties, they can potentially reveal previously unknown pathways in gene 
regulation networks.

RNA-Seq has revolutionized QTL analyses because it enables association analyses of more than 
just gene expression levels alone. For example, RNA-Seq provides unprecedented opportunity 
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to investigate variations in splicing by profiling alternately spliced isoforms of a gene. This has 
enabled the identification of variants influencing the quantitative expression of alternatively 
spliced isoforms commonly referred to as splicing-QTLs (sQTLs). In addition, specific RNA-
Seq library constructions (e.g., ribo-depleted) have enabled the detection of eQTLs affecting 
other RNA species; recent studies have identified variants affecting the expression of various 
ncRNAs, including long intergenic noncoding RNAs. The expanding potential of RNA-Seq to 
associate phenotypic variations with genetic variation offers an enhanced understanding of 
gene regulation.

Traditional eQTL mapping methods that were developed for microarray data use linear models 
such as linear regression and ANOVA to associate genetic variants with gene expression. These 
methods have been directly applied to RNA-Seq data following appropriate normalization of total 
read counts. Most eQTL studies perform separate testing for each transcript-SNP pair using lin-
ear regression and ANOVA models to detect significant association. Nonlinear approaches have 
also been developed to test associations, such as generalized linear and mixed models, Bayesian 
regression. Alternative models, such as Merlin, have also been developed to detect eQTLs from 
expression data that include related individuals using pedigree data. In addition, several meth-
ods have been developed to simultaneously test the effect of multiple SNPs on the expression of 
a single gene using Bayesian methods. To further improve on the detection of causal regulato-
ry variants, several studies have integrated ASE information with eQTL analysis. These studies 
showed that genetic variants showing allele-specific effects and identified as eQTLs show higher 
enrichment in functional annotations and provide stronger evidence of cis-regulatory impact. 
Because high-throughput sequencing has created genotype data sets featuring millions of SNPs 
and expression data sets featuring tens of thousands of transcripts, the task of testing billions of 
transcript-SNP pairs in eQTL analysis can be computationally intensive. To mitigate this com-
putational burden, software has been developed such as Matrix eQTL to efficiently test the as-
sociations by modeling the effect of genotype as either additive linear (least squares model) or 
categorical (ANOVA model). Because of the large number of tests performed, it is important to 
correct for multiple-testing by calculating the false discovery rate or resampling using bootstrap 
or permutation procedures.

However, the design and interpretation of eQTL studies is not straightforward. Many complica-
tions result from the complexity of gene regulation, which shows both spatial (cell and tissue loca-
tion) specificity as well as temporal (developmental stage) specificity. For instance, several studies 
have performed eQTL analysis across multiple tissues, indicating that genetic regulatory elements 
can have tissue-specific effects. Therefore, future eQTL analyses should test for SNP-transcript 
associations in well-defined cell types that are relevant to the trait of interest. For example, a study 
detecting eQTLs in cardiovascular disease should use heart tissue while a study interested in au-
toimmune disease should use whole blood. Another major consideration for eQTL studies is ac-
counting for population structure and elucidating the causal variants. The structure of genomic 
variation can vary significantly between populations and will influence the resolution of any ge-
netic association study. Furthermore, if substantial linkage disequilibrium (LD) exists within the 
genome, the associated genetic variant is often “tagging” the causal variant rather than acting as 
the causal regulatory variant itself. As eQTL studies integrate data across different populations 
and use population-scale genome sequencing, the ability to elucidate causal variants will greatly 
improve.
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Chapter 5
Proteome and Protein Sequence 
Analysis
The methods of determining the amino acid sequence of protein or peptide is known as protein se-
quencing. The entire set of proteins which can be expressed by an organism is known as proteome. 
Its identification as well as quantification is called proteomic analysis. This chapter discusses in 
detail the theories and methodologies related to proteome and protein sequence analysis.

Protein Sequencing

The molecules that give cells and entire organisms their shape as well as their ability to move, 
grow, and reproduce are the proteins. Although they come in an almost infinite variety of shapes 
and sizes, they have all been designed by the process of evolution to serve a defined and useful 
function in the processes of life. Some proteins, like actin and collagen, help to give a cell its phys-
ical shape. Other proteins, like lactase and pepsin, help in the digestion of food. Others transport 
signals between cells, help us fight off disease, or repair damaged DNA. For almost every job in a 
cell, there is a protein designed to do it.

The Building Blocks of Proteins

The building blocks of proteins are amino acids. There are twenty different amino acids used by 
living cells to build proteins. They are linked together in a long, linear chain during the process of 
translation, which is carried out by the ribosomes inside cells. Proteins begin to take on their char-
acteristic three-dimensional shape even while they are being made, folding and twisting as each 
new amino acid added to the chain tugs or pushes at the others added before it. Each amino acid 
has an amino group (-NH3

+) and a carboxyl group (-COOH). Peptide bonds link the carboxyl group 
of one amino acid to the amino group of the next amino acid. On one end of a protein, therefore, 
there is a free amino group called the N-terminus, and on the other end is a free carboxyl group, 
called the C-terminus.

The process of determining a protein’s order of amino acids is called protein sequencing. A pro-
tein’s sequence can easily be deduced from its gene sequence, since the order of bases on a DNA 
strand specifies the order in which the amino acids are linked together during translation. The 
chemistry involved in DNA sequencing is less complex than that which is involved in determining 
the order of each amino acid in an amino acid chain. There are two primary reasons why effort 
would be put into sequencing a protein. The first is to provide the information needed to design a 
synthetic DNA probe that can be used to locate the gene that codes for the protein. The second is to 
prove that a protein that has been isolated or manufactured in the laboratory is what it is believed 
to be.
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Sequencing Techniques

The most widely used technique for sequencing proteins is the Edman degradation, a procedure 
developed by Pehr Edman in the 1950s. The reaction steps used for this method have since been 
completely automated by machine. The procedure uses special reagents under alternating basic 
and acidic conditions to remove one amino acid at a time from the protein’s N-terminus. As each 
amino acid is released during each cycle of degradation, it is identified by chromatography, a sep-
aration technique that relies on an amino acid’s unique size and electrical charge to distinguish it 
from the other nineteen amino acids.

In many automated approaches, high-performance liquid chromatography (HPLC) is used to tell 
which amino acid has been released; the amount of time it takes to travel through an HPLC column 
is unique to each amino acid. Up to fifty amino acids from the N-terminus can be identified using 
Edman degradation. If a scientist is trying to identify a previously sequenced protein, usually only 
the first fifteen to twenty amino acids of the purified protein need to be sequenced. That informa-
tion can then be entered into a database and matched with known proteins having identical or 
related sequences.

Sequencing a protein from its C-terminus is particularly challenging, and there are no techniques 
that are as robust as Edman degradation. However, some limited amino acid sequence information 
can be obtained using enzymes called carboxypeptidases, which remove individual C-terminal ami-
no acids. These enzymes, however, tend to cleave only specific amino acids from the C-terminus.

Carboxypeptidase B, isolated from cow pancreas, for example, can release the amino acids ar-
ginine and lysine from the C-terminus of a protein. Carboxypeptidase A, also isolated from cow 
pancreas, fails to release arginine, lysine, or proline, but can cleave off the other seventeen amino 
acids. Carboxypeptidases isolated from citrus leaves and yeast can cleave off any amino acid from 
the C-terminus of a protein, although the rate at which they do this depends on the particular ami-
no acid. If one amino acid is released slowly and the next within the chain is released very quickly, 
they might appear to be cleaved at the same time, making it difficult to establish their order. C-ter-
minal amino acid identification using enzymes, therefore, is not practical beyond the first several 
positions.

Another method of protein sequencing, called mass spectrometry, uses electric current to break 
individual amino acids from a protein. In a mass spectrometer, the released amino acids are col-
lected in a detector and are each identified by their unique mass.

Sequencing of the human genome has allowed a giant leap in the understanding of how the human 
species evolved and how genetic diseases arise. Advances made in DNA sequencing technology 
lead to this grand accomplishment. The next frontier is to decipher how all the proteins encoded by 
the genome interact to carry out the processes of life. This is the study of proteomics. Advances in 
mass spectrometry and protein sequencing instrumentation are bringing this challenging problem 
closer to its resolution.

Protein Sequence Alignment and Analysis

Amino acid sequence alignment and analysis is central to most biochemical and molecular biology 
applications. Although it should be possible to retrieve all the information we need about a protein 
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directly from its sequence, looking at a sequence without prior knowledge and experience is like 
reading a text in a foreign language: we may recognize the letters, but we do not understand the 
meaning and are unable to extract the information. Still, when proteins are concerned, we have 
learned to extract a substantial part of the information from detailed sequence analysis, using 
for example multiple sequence alignment. In a multiple sequence alignment a given sequence is 
compared to a group of other sequences from related organisms. When we say “related” we mean 
“evolutionary related” and that they belong to the same family, the members of which usually 
perform a similar function in different organisms. We know that when proteins are evolutionary 
related the main characteristic features of the sequence and the tertiary structure are conserved. 
Since conservation of function normally assumes that a certain number of amino acid residues 
within a protein family are conserved, we need to have some tools to be able to assess the degree 
of conservation of each member of the protein family. For this, alignment techniques and scoring 
schemes for sequence alignment have been developed.

In a sequence alignment we try to align identical amino acids in the sequences against each other. 
However, since normally there are also many amino acid substitutions, we need to know how to 
handle substitutions of one amino acid by another in the sequences being aligned (amino acid 
substitutions are caused by mutations in the gene coding for the protein in question). Some sub-
stitutions are conservative, i.e., they will not cause any substantial disturbances in the protein 
structure, which would affect the protein function, but other substitutions, if they would occur, 
may have a dramatic effect on protein structure and function. To handle amino acid substitutions 
in sequence alignment, specially designed substitution matrices are used, which are part of the 
alignment scoring scheme and help in calculating the score of the alignment to distinguish be-
tween several possible alignments. Even structural information may be used in making a correct 
alignment, for example in correctly placing insertion and deletion regions in the alignment. Inser-
tions and deletions are very common in sequences belonging to the same family and often occur 
in loop regions. By other words, insertions and deletions may indicate that a certain region of the 
sequence may have a loop structure.

Amino Acid Analysis

Amino acid analysis is a fundamental biochemical technique used for the determination of the ami-
no acid composition or content of proteins, peptides and other pharmaceutical or biological prepa-
rations or samples containing compounds that contain primary or secondary amino groups within 
their molecular structure. Amino acid analysis allows for amino acid quantitation (also known as 
amino acid quantification or amino acid identification) of free amino acids, as well as amino acids re-
leased from macromolecules such as peptides, proteins or glycoproteins. Amino acid testing also en-
ables the analysis of protein complexes or mixtures of proteins such as protein powder supplements.

Protein molecules are abundant in mammals and are a significant and vital part of the mammalian 
diet as well as a vital part of their metabolism. Since proteins and various amino acids are needed 
in the human diet to help the body repair cells and synthesize new cells, amino acid quantification 
may be used to monitor or detect the metabolic states by analyzing the content of free amino acids 
in biological fluids such as urine, blood or plasma.
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Methods for Amino Acids Analysis

High Performance Liquid Chromatography is the most popular approach for amino acid compo-
nents analysis. However, there are many types of amino acids analysis.

Detection Types

Using UV detection for amino acids in most cases requires by using the absorption of the carboxyl 
group in the 200 to 210 nm range. In generally, some amino acids are difficult to analyze as-is with 
sufficient sensitivity and selectivity. Finally, derivatization methods, which include many types, 
have been used for a long time.

Pre-label Method

As for this method, the amino acids are derivertized before injection and then the reaction prod-
ucts are separated and detected. There are some advantages of using this method:

1.	 Reagent consumption rates can be minimized by specifying a small reaction system.

2.	 It allows increasing sensitivity by using more expensive reagents, which offer lower back-
ground levels.

3.	 Even if unreacted derivatizing reagent is detected, it will not be a problem as long as it is 
separated in the column.

Disadvantages of pre-label method:

1.	 Sample matrix will affect derivatization reaction efficiency.

2.	 Reaction products are often unstable and may affect quantitation results.

Post-column Reaction Detection Method

There are some steps in post-column derivatization method, including amino acids separation, 
derivatizing reagent delivery and mix, which can allow it to react with the amino acids before send-
ing the products to the detector. Some advantages of this method are listed below:

1.	 It can be automated offering excellent quantitative performance and reproducibility.

2.	 Due to the separation of sample components before reaction, reaction efficiency if less 
prone to sample matrix effects, which enable it to be applied for a wide range of samples.

Disadvantages of post-column derivatization:

1.	 It is not suitable for high-sensitivity analysis.

2.	 Relatively high reagent consumption

3.	 Limited variety of derivatizing reagents will be applied.

4.	 Rapid reversed-phase chromatography can not be used.
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Protein Structure Prediction Methods

Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein 
structure.

Protein structure prediction is the prediction of the three-dimensional structure of a protein from 
its amino acid sequence — that is, the prediction of its folding and its secondary, tertiary, and qua-
ternary structure from its primary structure. Structure prediction is fundamentally different from 
the inverse problem of protein design. Protein structure prediction is one of the most important 
goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine (for 
example, in drug design) and biotechnology (for example, in the design of novel enzymes).

There are three major theoretical methods for predicting the structure of proteins: comparative 
modelling, fold recognition, and ab initio prediction.

Comparative Modelling

Comparative modelling exploits the fact that evolutionarily related proteins with similar sequenc-
es, as measured by the percentage of identical residues at each position based on an optimal struc-
tural superposition, have similar structures. The similarity of structures is very high in the so-called 
``core regions’’, which typically are comprised of a framework of secondary structure elements 
such as alpha-helices and beta-sheets. Loop regions connect these secondary structures and gen-
erally vary even in pairs of homologous structures with a high degree of sequence similarity.

Fold Recognition or Threading

Threading uses a database of known three-dimensional structures to match sequences without 
known structure with protein folds. This is accomplished by the aid of a scoring function that as-
sesses the fit of a sequence to a given fold. These functions are usually derived from a database of 
known structures and generally include a pairwise atom contact and solvation terms. Threading 
methods compare a target sequence against a library of structural templates, producing a list of 
scores. The scores are then ranked and the fold with the best score is assumed to be the one adopted 
by the sequence. The methods to fit a sequence against a library of folds can be extremely elaborate 
computationally, such as those involving double dynamic programming, dynamic programming 
with frozen approximation, Gibbs Sampling using a database of ``threading’’ cores, and branch 
and bound heuristics, or as ``simple’’ as using sophisticated sequence alignment methods such as 
Hidden Markov Models.

Ab Initio Prediction

The ab initio approach is a mixture of science and engineering. The science is in understanding 
how the three-dimensional structure of proteins is attained. The engineering portion is in deduc-
ing the three-dimensional structure given the sequence. The biggest challenge with regards to the 
folding problem is with regards to ab initio prediction, which can be broken down into two com-
ponents: devising a scoring function that can distinguish between correct (native or native-like) 
structures from incorrect (non-native) ones, and a search method to explore the conformational 
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space. In many ab initio methods, the two components are coupled together such that a search 
function drives, and is driven by, the scoring function to find native-like structures.

Protein Complex Analysis

Proteins, also called polypeptides, are the polymers of amino acids. There are a total of twenty ami-
no acids called monomers that exist naturally in proteins. Proteins are found in abundance and are 
differentiated from each other according to the number, type, and arrangement of amino acids in 
series, which comprise the mainstay of polypeptides.

For different reasons, proteins are the main components of food, as well as an important source for 
producing energy. Proteins are generally present in many natural food types such as fish or meat. 
Many of the proteins in food are enzymes that are able to improve a certain number of biochemical 
reactions. The presence of amino acids in proteins is very essential for human health.

Methods Involved in Analyzing Protein

Different proteins have different molecular structures, physiochemical properties, and nutritional 
attributes. Three major steps are involved in protein analysis.

1. Protein separation

The following are some of the common methods for separating proteins:

•	 SDS (sodium dodecyl sulfate)-PAGE: Protein separation by this method is based on the 
molecular weight, as opposed to fold or charge. Factors other than the molecular weight, 
however, may also affect the movement of proteins on SDS gel, which was analyzed in a 
course group. This technique is broadly used in genetics, biochemistry, molecular biology, 
and forensics.

•	 Isoelectric focusing: Separation of protein by this method is dependent upon balance be-
tween the negative charged (acidic) and positive charged (basic) constituent amino acids, 
which defines a property called protein isoelectric (PI) point. The net charge of the proteins 
in pH becomes accurately zero. Proteins that vary by as small as a single charged residue 
can be isolated by this method.
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On the other hand, however, proteins of different sizes with a similar PI value can be placed at 
the same place. Often, two chromatic methods are used for the separation of proteins or even for 
peptide separation.

•	 High-performance liquid chromatography (HPLC) methods are used for separating and 
purifying peptides or proteins on the basis of charge, size, or on the whole hydrophobicity.

•	 Thin-layer chromatography (TLC) has also been used for separating peptides on the basis 
of their similar properties.

•	 Gel Electrophoresis through two-dimensions (2D): This is a powerful technique generally 
used for analyzing complex samples, but it may not be used for a few or specific proteins, 
in the interest of characterizing all varieties of protein samples. In this method, first the 
protein is passed in a narrow path of isoelectric targeting gel. Based on the isoelectric point 
the protein can be separated.

Then the isoelectric targeting gel is situated over the SDS-PAGE gel and it is run in the perpendic-
ular direction. Proteins run as spots and their position is based on their size and charged proper-
ties. This provides a powerful separation of proteins using either of these two gels only, which are 
isoelectric focusing or SDS-PAGE.

2. Western blotting

Immunoblotting is considered the most general version of western blotting and is used in combi-
nation with chromatographic methods. This method is used for identifying specific proteins within 
a given piece of tissue extract or homogenate. The protein sample is first electrophoresed by using 
SDS page for the separation of proteins on the basis of molecular weight.

Following this, the wet gel is positioned against the nitrocellulose sheet and kept in a special kind 
of electrophoretic chamber. Thereafter, an electric field is passed into the gel that causes the pro-
tein to move out of the gel and also onto the sheet of nitrocellulose in which it becomes adsorbed 
tightly. Afterward, nitrocellulose sheet with this tightly bounded protein can be “probed” or “blot-
ted” with antibodies, specifically for targeting the protein.

3. Protein identification

If the protein spot or band was found on a gel, the next step is to determine their molecular iden-
tity. The two methods commonly available for this method are as follows.

•	 Edman degradation: This method was developed by Pehr Edman. He used reagents called 
isothiocyanates to act and react with the N-terminus of the peptide or protein. Under cer-
tain suitable conditions, a solitary “round” of Edman degradation can split the amino ter-
minus residue to produce amino acid derivative with the addition of a new free N-termi-
nus. Eventually, the amino terminus is separated from the protein, without interrupting 
the bonding of proteins between the other residual amino acids.

•	 Mass spectrometry: This is the most apt method for identifying the exact protein molecu-
lar weight. Because this method is very sensitive and amenable to the quick processing of 
several samples, this technique has become popular for identifying the different kinds of 
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proteins that are present in a complex sample. Hence, mass spectrometry may be used for 
determination of the sequence of the proteins and thus the protein identity in a way con-
ceptually like the above described, based on an Edman degradation.

Challenges of Protein Complex Analysis

Protein complex analysis involves extensive interpretation of the structure and function of pro-
teins, which are present in complex biological samples. Due to this, techniques like protein com-
plex analysis have great value in understanding the complex organisms. Though recent protein 
complex analysis methods are efficient in identifying the structure and of protein complex, there 
are some limiting factors.

Some of the factors that affect protein complex analysis are serum proteomics, the presence of 
membrane protein in proteome, complexity, etc. Much of the research is being performed to en-
hance the protein complex analysis process, which includes identifying whether the complexes are 
suitable for being modulated efficiently by small molecules. 

Interference of Protein–Protein Interactions

One of the main challenges faced during the protein complex analysis process is the development 
of compounds that interfere by acting on protein complexes.

In some cases like those involving ion channels (considered as the reliable target class earlier), the 
process of directing the compounds against individual proteins has not been possible whereas hist 
is implemented in many other cases. Simultaneously, several compounds have been identified, 
which act on alpha subunits involved in pore formation.

Some of those compounds are successfully implemented in clinical studies, which is mainly due to 
their critical side effects and lack of specificity. Many compounds that had been developed to act 
against individual proteins are now being implemented in acting against other targets.

Even at present, there exists a misconception that the interference of small molecules with pro-
tein–protein interactions is not possible, which is mainly due to the lack of understanding regard-
ing the protein–protein interactions process. Protein interfaces have conformational flexibility in 
constitutive complex too. Moreover, studies involving allosteric proteins indicate that the ligands 
are responsible for structural changes that occur at protein–protein interfaces.

Bioinformatics
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The binding sites of allosteric ligands are not restricted sterically, which is the advantage, and 
indicates that they are as efficient as traditional competitive agonist. Allosteric ligands are 
efficient in developing drugs that can act against protein complexes. The cell-based assays 
and high-content screening are the techniques involved in developing drugs against protein 
complexes.

Complexity Challenge

The complexity challenge is another factor that affects the analysis of protein complexes. Two im-
portant strategies that are involved in resolving these challenges are recombinant approaches and 
those that are based on native sources.

Recombinant approaches, such as tagged protein co-purification analysis and yeast-two hybrid 
screens, consist of a systematic methodology that makes them reliable to resolve the complex-
ity challenge. Both the aforementioned are based on gene expression from random libraries of 
yeast. Those methods prove to be inefficient when applied to proteome of simple organism. Half 
of the interactions are false-positive and interactions that involve membrane proteins are not 
detected.

Approaches that are based on native sources are based on both biochemical fractionation and 
mass-spectrometric identification. Some of the restrictions in these methods are complex source 
preparation methods and the amount of sample required.

The biochemical fractionation approach is an option for affinity purification based on a protein. 
Requirement of high affinity ligands is also a limiting factor in these approaches. High sensitivity 
and mass spectrometry reliability should be efficient as those in recent bioinformatics techniques. 
Aforementioned limitations restrict the large-scale application of these methods. Nevertheless, 
better results can be obtained if these approaches are carried out perfectly.

Presence of Membrane Proteins

Membrane proteins occupy over 30% of the entire complement of protein. Unfortunately, their 
tendency to get aggregated and get deposited in solid form in a solution restricts their analysis. 
Tryptic cleavage target residues such as arginine and lysine are not present in transmembrane 
segments, but are present only in the hydrophilic part of these membrane proteins.

Two-dimensional gel electrophoresis is not suitable for isolating these membrane proteins. These 
challenges can be overcome by various membrane solubilizing approaches that are used in resolv-
ing the solubility issues and in the analysis of fractions enriched in membranes.

In this method, solubilization is achieved through various processes, such as a fraction of an en-
riched yeast membrane is subjected to solubilization process in the existence of cyanogen bromide 
by adding 90% of formic acid solution; a microsomal membrane fraction is subjected to solubili-
zation by boiling it in 0.5% of sodium dodecyl sulfate solution; and by using a sample of enriched 
membrane in thermal sonication and denaturation processes of proteins in 60% of methanol solu-
tion with trypsin. All the solubilization methods discussed earlier are efficient and used in optimi-
zation of membrane protein identification process.
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Serum Proteomics

Human serum contains about 10,000 types of proteins. The large variation in the serum con-
centration was a limiting factor for biomarker discovery. Human serum concentration contains a 
high amount of albumin when compared to other protein types but eliminating the albumin may 
also result in the elimination of other types of proteins such as peptide hormones, cytokines, etc. 
Various methods are currently used, which are efficient in identifying biomarkers discovered from 
serum. Some of the methods include 2D-PAGE analysis, SELDI-TOF MS, etc.
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Chapter 6
Bioinformatics Software
There are a variety of different software which are used in the field of bioinformatics, such as EM-
BOSS, eProbalign and geWorkbench. The diverse applications of these bioinformatics software 
have been thoroughly discussed in this chapter.

EMBOSS

EMBOSS is a suite of programs developed to do molecular biology by EMBnet. EMBOSS is free soft-
ware and although it is primarily developed for Linux it also runs in MS Windows and Mac OS X.

EMBOSS is comprised by hunders of programs and includes utilities to align sequences, translate 
RNA to proteins, identify protien motifs, analyze repetitions, calculate codon usage statistics and 
many more analyses.

Running EMBOSS Commands

The EMBOSS utilities have a Command Line Interface and all can be run from a text terminal. The 
documentation for the EMBOSS aplications is written taking into account mainly the Command 
Line Interface. But there are other ways to run the EMBOSS software.

There are web servers that provide the EMBOSS tools as a service. In those servers the EMBOSS 
utilities can be accessed as web pages and the server runs the terminal command and return the 
result.

Another interface to EMBOSS is Jemboss. Jemboss is a Graphical User Interface application, like 
any of the other common desktop applications.

Identify the Command

When we do not know which of the EMBOSS commands to use we can use another EMBOSS com-
mand, wossname, to search in the EMBOSS command list.

Get a list with all commands:

$ wossname

Look for command to do alignments:

$ wossname alignment
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Getting help for a command

The command manuals can be found in the web. They are also available in any EMBOSS installa-
tion by using the tfm command. For instance, to read the manual for the water command we could 
run:

$ tfm water

The manual reader is similar to the Unix less command. It is also possible to get a brief list of pa-
rameters available with the option “-help” and the complete list with “-help -verbose”

$ water -help -verbose

Example: change a sequence format

To get familiar with the EMBOSS way of running the analyse we will change the format of a se-
quence file. EMBOSS has a program to modify sequence files: seqret seqret can change the se-
quence format, trim the sequences and reverse-complement them. Let’s change the format of fasta 
sequence file to the GenBank format. If we run seqset in the command line it will ask for the input 
file and for the output file:

$ seqret

By default seqret won’t change the sequence format unless we specify the output format that we 
want. To do it we have to write genbank::secuencia.gb. We can also tell seqret which is our input file:

$ seqret secuencia.fasta genbank::secuencia.gb

We could sent the result to standard output instead of a file. This is a general feature of all EM-
BOSS programs.

$ seqret secuencia.fasta genbank::stdout

To reverse and complement a sequence we can use the parameter -sreverse1:

$ seqret secuencia.fasta embl::stdout -sreverse1

Would the result sequence be different in this case? seqret can also trim the input sequence.

$ seqret secuencia.fasta embl::stdout -sbegin1 10 -send1 30

eProbalign

the eProbalign web server doubles as an online platform for post-alignment analysis. The heart-
and-soul of the post-alignment functionality is the Probalign Alignment Viewer applet, which 
provides users a convenient means to manipulate the alignments by posterior probabilities. The 
viewer can also be used to produce graphical and text versions of the output.

Multiple sequence alignments are frequently employed for analyzing biomolecular sequences. 
Their application spans a wide range of problems such as phylogeny reconstruction, protein 
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functional site detection, and protein and RNA structure prediction. The research literature 
is abundant with programs and benchmarks for multiple sequence alignment, particularly for 
protein data. Traditionally, ClustalW is the most popular program used for multiple sequence 
alignment; while BAliBASE is a likely the most commonly used benchmark of protein align-
ments.

MAFFT, Probcons and Probalign are recent alignment strategies that are among recent programs 
with the highest accuracies on BAliBASE and other common benchmarks (i.e. HOMSTRAD and 
OXBENCH. Both Probcons and Probalign compute maximal expected accuracy alignments us-
ing posterior probabilities. In Probcons, posterior probabilities are derived using an HMM whose 
parameters that have been estimated via supervised learning on BAliBASE unaligned sequences. 
Probalign, which is largely based on the Probcons scheme, derives the posterior probabilities from 
the input data by implicitly examining suboptimal (sum-of-pair) alignments using the partition 
function methodology for alignments. Probalign alignments have been shown to have a statistical-
ly significant improvement over Probcons, MAFFT and MUSCLE.

eProbalign also provides a convenient platform to visualize the alignment, generate images, and 
manipulate the output by average column posterior probabilities. The average column posterior 
probability can be considered a measure of column reliability where columns with higher scores 
are more likely to be correct and perhaps biologically informative.

Input Parameters

eProbalign takes as input unaligned protein or nucleic acid sequences in FASTA format. ePro-
balign checks the dataset to make sure it conforms with IUPAC nucleotide and amino acid one 
letter abbreviations. White space between residues/nucleotides in the sequences are stripped and 
the cleaned sequences are passed on to the queuing system. The user can specify gap open, gap 
extension, and thermodynamic temperature parameters on the eProbalign input page. The input 
page provides a brief description of the parameters (help link) and links to the standalone Pro-
balign code with publication and datasets.

Figure: eProbalign input page.

The three Probalign parameters on the input page are used for computing the partition function 
dynamic programming matrices from which the posterior probabilities are derived. This is the 
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same as computing a set of (suboptimal) pairwise alignments (for every pair of sequences in the in-
put) and then estimating pairwise posterior probabilities by simple counting. The thermodynamic 
temperature controls the extent to which suboptimal alignments are considered. For example, all 
possible suboptimal alignments would be considered at infinite temperature, whereas only the 
single best would be used at a temperature of zero. The affine gap parameters are used for the pair-
wise alignments. Subsequently, Probalign computes the maximal expected accuracy alignment 
from the posterior probabilities in the same way that Probcons does .

Output and Alignment Column Reliability

The eProbalign output provides three options for viewing and analyzing the alignment. The align-
ment can be viewed in (i) FASTA text format, (ii) pdf graphical format, and (iii) the Probalign 
Alignment Viewer (PAV) applet. Each column of the alignment in the pdf file and in the applet is 
colored in a shade of red according to the average column posterior probability. Bright red indi-
cates probability close to one whereas white indicates close to zero.

Figure: eProbalign output page indicating results are done.

Figure: Probalign Alignment Viewer applet.

The average column posterior probability is defined as the sum of posterior probabilities of all 
pairwise residues in the column normalized by the number of comparisons. The top row of the 
alignment in the pdf and applet displays the average column posterior probabilities multiplied 
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by ten and floored to the lower integer. For example, a score of 1 indicates that the probability is 
between 0.1 and 0.2.

The Probalign Alignment Viewer is a Java applet that provides basic manipulation of the align-
ment. Basic Java and browser requirements to use the applet are listed on the output page. With 
the applet the user can opt to view and save the alignment with column posterior probabilities 
above any specified threshold. This has the benefit of “cleaning up” the alignment by column pos-
terior probabilities, which is unique to eProbalign. The applet also displays posterior probabilities 
of all columns in a separate window if desired and provides options to switch between the gapped 
and ungapped versions of the alignment.

Figure: Posterior probability of each column.

Server Implementation

We implement a first-in/first-out queuing system that receives requests for Probalign alignments 
and processes them accordingly. At most, eProbalign will run two Probalign jobs at once, and it 
will periodically check the queue for new requests. Alignments that take longer than some defined 
time limit are stopped and the user is advised to download and run the standalone version. This 
time limit will be increased as the server hardware is upgraded.

Scalability

Currently, eProbalign is installed on a dual processor 2.8GHz Intel Xeon machine with 2GB 
RAM. With these settings, eProbalign can usually align datasets of up to 20 sequences within 
one minute. Most BAliBASE 3.0 datasets from RV11 and RV12 also finish within one minute. We 
have also tested large datasets (in number and length of sequences) from BAliBASE RV30 and 
RV40 classes on eProbalign. BB30029 and BB30008 from RV30 contain 98 and 36 sequences 
with lengths from 431 to 852 and 400 to 1155 respectively, and BB40002 from RV40 contains 55 
sequences with lengths ranging from 58 to 1502. When the server is idle, eProbalign finished in 
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about 20 minutes on BB30008, 55 minutes on BB30029, and 30 minutes on BB40002. Results 
may take longer to finish when the server queue is full and multiple jobs are running simultane-
ously. However, the effect of parallel jobs will diminish as the server moves to a bigger machine 
in the near future.

.NET Bio

.NET Bio is a bioinformatics toolkit that was built using the Microsoft 4.0. NET Framework. 
It is designed for use by developers, researchers, and scientists, making it simpler to build ap-
plications to meet the needs of life scientists. This open-source platform features a library of 
commonly used bioinformatics functions plus applications built upon that framework, and can 
be extended by using any Microsoft .NET language, including C#, F#, Visual Basic. NET, and 
IronPython.

Users can perform a range of tasks with. NET Bio, including:

•	 Importing DNA, RNA, or protein sequences from files with a variety of standard data for-
mats, including FASTA, FASTQ, GFF, GenBank, and BED.

•	 Constructing sequences from scratch.

•	 Manipulating sequences in various ways, such as adding or removing elements or generat-
ing a complement.

•	 Analyzing sequences by using algorithms such as Smith-Waterman and Needle-
man-Wunsch.

•	 Submitting sequence data to remote websites (for example, a Basic Local Alignment Search 
Tool [BLAST] website) for analysis.

•	 Outputting sequence data in any supported file format, regardless of the input format.

Like other frameworks (for example, BioJava and BioPython), .NET Bio can help reduce the level 
of effort that is required to implement bioinformatics applications through the provision of a range 
of pre-written functionality.

In addition to enhancements to the performance and capacity of the basic features contained in 
the previous version, the new version will provide a range of new features and demo applications. 
This includes:

•	 Access to advanced math functions by using Sho scripting

•	 A comparative DNA sequence assembler sample application

•	 A range of command-line utilities

.NET Bio is now in use by both academic and commercial organizations—including Microsoft—
worldwide.
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geWorkbench

geWorkbench (genomics Workbench) is an open source Java desktop application that provides 
access to an integrated suite of tools for the analysis and visualization of data from a wide 
range of genomics domains (gene expression, sequence, protein structure and systems biolo-
gy). More than 70 distinct plug-in modules are currently available implementing both classi-
cal analyses (several variants of clustering, classification, homology detection, etc.) as well as 
state of the art algorithms for the reverse engineering of regulatory networks and for protein 
structure prediction, among many others. geWorkbench leverages standards-based middle-
ware technologies to provide seamless access to remote data, annotation and computational 
servers, thus, enabling researchers with limited local resources to benefit from available public 
infrastructure.

A large number of bioinformatics techniques have been developed in recent years to serve the 
needs of biomedical research. The field is moving rapidly, with new and improved approaches 
appearing frequently. The fast pace of change and the technical sophistication of these ap-
proaches creates a barrier of adoption for ordinary biologists. The problem is exacerbated by 
the integrative nature of biomedical research, which requires combining data from multiple 
genomic/biomedical databases and using an array of advanced analyses, often available only 
in the form of command line programs. Additionally, due to their sheer size and dimension-
ality, analysis of genomic data sets can be computationally very demanding. It is unlikely that 
every biomedical researcher that would like to utilize such analyses will have access to local/
institutional hardware resources capable of supporting their execution. It is then important 
to facilitate sharing of public infrastructure through the use of technologies such as grid com-
puting.

geWorkbench integrates many computational resources and makes them available through 
a unified user interface. For biomedical researchers with little or no computational training, 
this approach facilitates adoption by eliminating many steps that require programming skills 
(e.g. transformations from one file format to another; staging of databases and programs; deal-
ing with operating system (OS) shells in order to execute command line programs). For soft-
ware developers, geWorkbench provides an open source, component-based architecture that 
enables the addition of new functionality in the form of plug-in modules (which can further 
leverage existing tooling that streamlines access to server side components). Extensive docu-
mentation is available (manuals, online help and tutorials) to guide users in the proper use of 
the application. An innovative logging framework collects and mines data about how various 
modules are being utilized, offering the possibility for novice users to learn from their more 
advanced peers.

Design, Implementation and Support

geWorkbench comprises at present more than 70 distinct modules, supporting the integrated 
analysis and visualization of many types of genomic data. Users of geWorkbench can:

•	 Load data from disk or from remote data sources (such as the caArray microarray data 
repository at the National Cancer Institute, the PDB protein structure database; and 
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sequence databases at the University of Santa Cruz and the European Molecular Biology 
Laboratory).

•	 Visualize gene expression, molecular interaction networks, protein sequence and protein 
structure data in a variety of ways.

•	 Access client- and server-side computational analysis tools such as t-test analysis, hier-
archical clustering, self-organizing maps, analysis of variance (ANOVA), regulatory and 
signaling network reconstruction, basic local alignment search tool (BLAST) searches, pat-
tern/motif discovery, etc.

•	 Validate computational hypothesis through the integration of gene and pathway annota-
tion information from curated sources as well as through enrichment analyses.

Several modules have been developed in collaboration with investigators from the Center for the 
Multi-scale Analysis of Genomic and Cellular Networks, one of seven National Centers for Bio-
medical Computing; The mission of the MAGNet Center is to provide the research community 
with novel, structural and systems biology methods and tools for the dissection of molecular inter-
actions in the cell and for the interaction-based elucidation of cellular phenotypes. Other geWork-
bench modules are wrapped versions of pre-existing third party software tools such as Cytoscape, 
Ontologizer and GenePattern. 

Table: geWorkbench plug in modules based on MAGNet tools

Plugin Name Description

ARACNe Prediction of transcriptional interactions from gene expression data.

MINDy Identification of modulators of transcriptional regulation.

Matrix REDUCE Physics-based prediction of DNA-binding sites.

MEDUSA Machine learning-based prediction of DNA-binding sites.

MarkUs Functional annotation of protein structures.

Pudge Protein structure prediction from sequence

SkyBase Database of predicted protein structure models.

Software Architecture

geWorkbench is designed around a component-based architecture whose main purpose is to facil-
itate the expeditious integration of algorithms and data sources as plug in modules. 

Server Side Computing

The computational, administration and storage requirements of many bioinformatics resources 
developed by MAGNet (such as large genomic databases and CPU/memory-intensive algorithms) 
make deployment on a desktop computer infeasible. To make them available to geWorkbench 
(as well as other clients), such resources are deployed as programmatically accessible grid ser-
vices using caGrid, the grid middleware layer of the caBIG® initiative. An attractive feature of ca-
Grid is that if offers tooling, which streamlines the process of defining, deploying and registering 
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caGrid-aware services. caGrid services have been developed by other participants of the caBIG® 
program as well and geWorkbench provides access to many of them (caArray, the Cancer Gene 
Index, the NCI Pathway Interaction Database, etc.)

Documentation and user Support

geWorkbench is accompanied by detailed end-user documentation, demonstrating how to per-
form common analysis tasks and explaining the theoretical underpinnings of many analysis 
modules. Community support is provided by the caBIG® Molecular Analysis Tools Knowledge 
Center.
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Permissions 

All chapters in this book are published with  permission  under  the  Creative  Commons  Attribution  
Share Alike License or equivalent. Every chapter published in this book has been scrutinized by our 
experts. Their significance has been extensively debated. The topics covered herein carry significant 
information for a comprehensive understanding. They may even be implemented as practical applications 
or may be referred to as a beginning point for further studies.

We would like to thank the editorial team for lending their expertise to make the book truly unique. 
They have played a crucial role in the development of this book. Without their invaluable contributions 
this book wouldn’t have been possible. They have made vital efforts to compile up to date information 
on the varied aspects of this subject to make this book a valuable addition to the collection of many 
professionals and students.

This book was conceptualized with the vision of imparting up-to-date and integrated information in 
this field. To ensure the same, a matchless editorial board was set up. Every individual on the board 
went through rigorous rounds of assessment to prove their worth. After which they invested a large 
part of their time researching and compiling the most relevant data for our readers.

The editorial board has been involved in producing this book since its inception. They have spent rigorous 
hours researching and exploring the diverse topics which have resulted in the successful publishing 
of this book. They have passed on their knowledge of decades through this book. To expedite this 
challenging task, the publisher supported the team at every step. A small team of assistant editors was 
also appointed to further simplify the editing procedure and attain best results for the readers.

Apart from the editorial board, the designing team has also invested a significant amount of their time 
in understanding the subject and creating the most relevant covers. They scrutinized every image to 
scout for the most suitable representation of the subject and create an appropriate cover for the book.

The publishing team has been an ardent support to the editorial, designing and production team. Their 
endless efforts to recruit the best for this project, has resulted in the accomplishment of this book. They 
are a veteran in the field of academics and their pool of knowledge is as vast as their experience in 
printing. Their expertise and guidance has proved useful at every step. Their uncompromising quality 
standards have made this book an exceptional effort. Their encouragement from time to time has been 
an inspiration for everyone.

The publisher and the editorial board hope that this book will prove to be a valuable piece of knowledge 
for students, practitioners and scholars across the globe.
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