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Preface

This book aims to help a broader range of students by exploring a wide variety of
significant topics related to this discipline. It will help students in achieving a higher level
of understanding of the subject and excel in their respective fields. This book would not
have been possible without the unwavered support of my senior professors who took out
the time to provide me feedback and help me with the process. I would also like to thank
my family for their patience and support.

The mathematical discipline that is concerned with the collection, analysis, organization,
interpretation and presentation of data is referred to as statistics. Descriptive statistics
and inferential statistics are the main statistical methods that are used in data analysis.
Descriptive analysis uses indexes such as mean and standard deviation to summarize data
from a sample. Distribution and dispersion are the two most important sets of properties
of descriptive statistics. Inferential statistics uses data analysis to conclude the properties
of the fundamental probability distribution. The topics included in this book on statistics
are of utmost significance and bound to provide incredible insights to readers. It aims to
shed light on some of the unexplored aspects of this field. Those in search of information
to further their knowledge will be greatly assisted by this book.

A brief overview of the book contents is provided below:
Chapter - What is Statistics?

Statistics deals with the collection, organization, analysis and presentation of data through
the use of quantified models and representations. The analyzed data uses two statistical
methods - descriptive and inferential statistics. This is an introductory chapter which will
briefly introduce about statistics.

Chapter - Branches of Statistics

The discipline of statistics can be categorized into various branches such as descriptive
analysis, parametric and nonparametric statistics, exact statistics, etc. This chapter closely
examines these branches of statistics to provide an extensive understanding of the subject.

Chapter - Statistical Measures

Statistical measures refer to the individual quantitative variable values for the statistical units
in a specific group. Such measures include statistical mean, mode, median, range, skewness,
quantile, quartile, variance, quartile deviation, pooled variance, standard deviation, etc. The
topics elaborated in this chapter will help in gaining a better perspective of these statistical
measures.
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VIl Preface

Chapter - Sampling Distributions

Sampling distribution refers to the probability distribution of data obtained from a large
number of samples. Sampling distribution of mean, median, mode and standard deviation
are studied within statistics. This chapter sheds light on the sampling distributions for an
in-depth understanding of the subject.

Chapter - Statistical Inference

Statistical inference is the process that makes use of data analysis for deducing properties of
a probability distribution. Algorithmic inference, fiducial inference and Bayesian inference
fall under its domain. This chapter closely examines the varied aspects of statistical inference
to provide an extensive understanding of the subject.

Chapter - Theorems in Statistics
Central limit theorem, Basu’s theorem, Cochran’s theorem, Fieller’s theorem, Fisher- Tippett-
Gnedenko theorem, Hajek-Le Cam convolution theorem, Neyman-Pearson lemma, etc. are

some of the theorems that are used in statistics. This chapter discusses these theorems of
statistics in detail.

Chapter - Applications

Statistics has applications in the fields of actuarial science, business analytics, forensics,
finance, engineering, operations research, signal processing, psychology, machine learning,
etc. This chapter has been carefully written to provide an easy understanding of the diverse
applications of statistics.

Nancy Maxwell
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What is Statistics?

Statistics deals with the collection, organization, analysis and presentation of data
through the use of quantified models and representations. The analyzed data uses two
statistical methods — descriptive and inferential statistics. This is an introductory chap-
ter which will briefly introduce about statistics.

Statistics is a form of mathematical analysis that uses quantified models, represen-
tations and synopses for a given set of experimental data or real-life studies. Statis-
tics studies methodologies to gather, review, analyze and draw conclusions from data.
Some statistical measures include the following:

e Mean,

« Regression analysis,
o Skewness,

« Kurtosis,

» Variance,

« Analysis of variance.

Statistics is a term used to summarize a process that an analyst uses to characterize a
data set. If the data set depends on a sample of a larger population, then the analyst
can develop interpretations about the population primarily based on the statistical out-
comes from the sample. Statistical analysis involves the process of gathering and eval-
uating data and then summarizing the data into a mathematical form.

Statistics is used in various disciplines such as psychology, business, physical and
social sciences, humanities, government, and manufacturing. Statistical data is gath-
ered using a sample procedure or other method. Two types of statistical methods are
used in analyzing data: Descriptive statistics and inferential statistics. Descriptive
statistics are used to synopsize data from a sample exercising the mean or standard
deviation. Inferential statistics are used when data is viewed as a subclass of a specific
population.
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2 Introductory Statistics

Types of Statistics

Statistics is a general, broad term, so it’s natural that under that umbrella there exist a
number of different models.

Mean

A mean is the mathematical average of a group of two or more numerals. The mean for
a specified set of numbers can be computed in multiple ways, including the arithmetic
mean, which shows how well a specific commodity performs over time, and the geo-
metric mean, which shows the performance results of an investor’s portfolio invested
in that same commodity over the same period.

Regression Analysis

Regression analysis determines the extent to which specific factors such as interest
rates, the price of a product or service, or particular industries or sectors influence the
price fluctuations of an asset. This is depicted in the form of a straight line called linear
regression.

Skewness

Skewness describes the degree a set of data varies from the standard distribution in a
set of statistical data. Most data sets, including commodity returns and stock prices,
have either positive skew, a curve skewed toward the left of the data average, or nega-
tive skew, a curve skewed toward the right of the data average.

Kurtosis

Kurtosis measures whether the data are light-tailed (less outlier-prone) or heavy-tailed
(more outlier-prone) than the normal distribution. Data sets with high kurtosis have
heavy tails, or outliers, which implies greater investment risk in the form of occasional
wild returns. Data sets with low kurtosis have light tails, or lack of outliers, which im-
plies lesser investment risk.

Variance

Variance is a measurement of the span of numbers in a data set. The variance measures
the distance each number in the set is from the mean. Variance can help determine the
risk an investor might accept when buying an investment.

Ronald Fisher developed the analysis of variance method. It is used to decide the effect
solitary variables have on a variable that is dependent. It may be used to compare the
performance of different stocks over time.
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What is Statistics? 3

Statistics can be applied to various different problems and situations but the underly-
ing concepts all remain the same. Thus it is important to understand what statistics is,
not only from an application point of view but also from an interpretation point of view.
This is required because of the diverse applications of statistics, from social science
experiments to studying quantum mechanical phenomena.

Statistics can be broadly classified into descriptive statistics and inferential statistics.

To understand statistics, one needs to study and understand the probability theory.
These are closely connected and inseparable in most cases. In fact, historically, the
foundations of statistics were laid with the development of probability theory.

The ideas of presenting data and drawing relevant inferences are central to the suc-
cessful use of statistical theory. In the end, the statistical analysis should be able to tell
us something concrete about the sample that we are studying. A number of errors are
possible in the interpretation of statistical results and a careful analysis needs to be
made to prevent these errors.

In some rare cases, statistics can be used to draw conclusions that appear to be statisti-
cally relevant but on careful examination, are not. When such practices are intentional,
they can be hard to detect. One good example of such statistical misconduct is data
dredging. Therefore one should also be able to spot the scope and relevance of a statis-
tical study and understand it in the context of the study within which it was intended.

CHARACTERISTICS OF STATISTICS

Some of the potential characteristics that a statistic should include:

Completeness

Completeness refers to an indication of whether or not the data required to meet the in-
formation demand is available in the data resource. Completeness of data is necessary
to ensure the accuracy of the observed data.

Consistency

Consistency is viewed in terms of the uniformity or stability of data. Some of the sta-
tistics used to measure consistency include standard deviation, range, and variance.
When measuring the consistency of data from a sample that is representative of a large
population, the standard error of the mean is usually examined.

Also, when using instruments to collect data, the consistency can be measured by esti-
mating the reliability of the obtained scores.

WORLD TECHNOLOGIES




4 Introductory Statistics

Sufficiency

A statistic is considered sufficient if there is no other statistic that can be computed
from the sample. The sufficiency concept is common in descriptive statistics due to its
strong dependence on the assumption of the data distribution form.

Unbiasedness

The bias of a statistics is determined by the difference between the true value of the
parameter being measured and the estimator’s expected value. If the mean of the sam-
pling distribution and the expected value of the parameter are equal, the statistic is
considered to be unbiased.

STATISTICAL DATA

When working with statistics, it’s important to recognize the different types of data: nu-
merical (discrete and continuous), categorical, and ordinal. Data are the actual pieces
of information that you collect through your study. For example, if you ask five of your
friends how many pets they own, they might give you the following data: o, 2, 1, 4, 18.
(The fifth friend might count each of her aquarium fish as a separate pet.) Not all data
are numbers; let’s say you also record the gender of each of your friends, getting the
following data: male, male, female, male, female.

Most data fall into one of two groups: numerical or categorical:

« Numerical data: These data have meaning as a measurement, such as a person’s
height, weight, IQ, or blood pressure; or they're a count, such as the number of
stock shares a person owns, how many teeth a dog has, or how many pages you
can read of your favorite book before you fall asleep. (Statisticians also call nu-
merical data quantitative data.). Numerical data can be further broken into two
types: discrete and continuous:

o Discrete data represent items that can be counted; they take on possible values
that can be listed out. The list of possible values may be fixed (also called fi-
nite); or it may go from 0, 1, 2, on to infinity (making it countably infinite). For
example, the number of heads in 100 coin flips takes on values from o through
100 (finite case), but the number of flips needed to get 100 heads takes on
values from 100 (the fastest scenario) on up to infinity (if you never get to that
100th heads). Its possible values are listed as 100, 101, 102, 103, . . . (represent-
ing the countably infinite case).

o Continuous data represent measurements; their possible values cannot be
counted and can only be described using intervals on the real number line.
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What is Statistics? 5

For example, the exact amount of gas purchased at the pump for cars with
20-gallon tanks would be continuous data from o gallons to 20 gallons, rep-
resented by the interval [0, 20], inclusive. You might pump 8.40 gallons,
or 8.41, or 8.414863 gallons, or any possible number from 0 to 20. In this
way, continuous data can be thought of as being uncountably infinite. For
ease of recordkeeping, statisticians usually pick some point in the number
to round off. Another example would be that the lifetime of a C battery can
be anywhere from o0 hours to an infinite number of hours (if it lasts forever),
technically, with all possible values in between. Granted, you don’t expect a
battery to last more than a few hundred hours, but no one can put a cap on
how long it can go.

« Categorical data: Categorical data represent characteristics such as a person’s
gender, marital status, hometown, or the types of movies they like. Categorical
data can take on numerical values (such as “1” indicating male and “2” indicat-
ing female), but those numbers don’t have mathematical meaning. You couldn’t
add them together, for example. (Other names for categorical data are qualita-
tive data, or Yes/No data.)

Ordinal data mixes numerical and categorical data. The data fall into categories, but
the numbers placed on the categories have meaning. For example, rating a restaurant
on a scale from o (lowest) to 4 (highest) stars gives ordinal data. Ordinal data are often
treated as categorical, where the groups are ordered when graphs and charts are made.
However, unlike categorical data, the numbers do have mathematical meaning. For
example, if you survey 100 people and ask them to rate a restaurant on a scale from o
to 4, taking the average of the 100 responses will have meaning. This would not be the
case with categorical data.

STATISTICAL DATA ANALYSIS

Statistics is basically a science that involves data collection, data interpretation and
finally, data validation. Statistical data analysis is a procedure of performing various
statistical operations. It is a kind of quantitative research, which seeks to quantify the
data, and typically, applies some form of statistical analysis. Quantitative data basically
involves descriptive data, such as survey data and observational data.

Statistical data analysis generally involves some form of statistical tools, which a lay-
man cannot perform without having any statistical knowledge. There are various soft-
ware packages to perform statistical data analysis. This software includes Statistical
Analysis System (SAS), Statistical Package for the Social Sciences (SPSS), Stat soft,
etc.
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6 Introductory Statistics

Data in statistical data analysis consists of variables. Sometimes the data is univariate
or multivariate. Depending upon the number of variables, the researcher performs dif-
ferent statistical techniques.

If the data in statistical data analysis is multiple in numbers, then several multivari-
ates can be performed. These are factor statistical data analysis, discriminant statisti-
cal data analysis, etc. Similarly, if the data is singular in number, then the univariate
statistical data analysis is performed. This includes t test for significance, z test, f test,
ANOVA one way, etc.

The data in statistical data analysis is basically of 2 types, namely, continuous data and
discreet data. The continuous data is the one that cannot be counted. For example, in-
tensity of a light can be measured but cannot be counted. The discreet data is the one
that can be counted. For example, the number of bulbs can be counted.

The continuous data in statistical data analysis is distributed under continuous distri-
bution function, which can also be called the probability density function, or simply pdf.

The discreet data in statistical data analysis is distributed under discreet distribution
function, which can also be called the probability mass function or simple pmf.

We use the word ‘density’ in continuous data of statistical data analysis because density
cannot be counted, but can be measured. We use the word ‘mass’ in discreet data of
statistical data analysis because mass cannot be counted.

There are various pdf’s and pmf’s in statistical data analysis. For example, Poisson
distribution is the commonly known pmf, and normal distribution is the commonly
known pdf.

These distributions in statistical data analysis help us to understand which data falls
under which distribution. If the data is about the intensity of a bulb, then the data
would be falling in Poisson distribution.

There is a major task in statistical data analysis, which comprises of statistical infer-
ence. The statistical inference is mainly comprised of two parts: Estimation and tests
of hypothesis.

Estimation in statistical data analysis mainly involves parametric data—the data that
consists of parameters. On the other hand, tests of hypothesis in statistical data analy-
sis mainly involve non parametric data— the data that consists of no parameters.

Methods for Statistical Data Analysis
Mean

The arithmetic mean, more commonly known as “the average,” is the sum of a list of
numbers divided by the number of items on the list. The mean is useful in determining
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What is Statistics? 7

the overall trend of a data set or providing a rapid snapshot of your data. Another ad-
vantage of the mean is that it’s very easy and quick to calculate.

Pitfall:

Taken alone, the mean is a dangerous tool. In some data sets, the mean is also closely
related to the mode and the median (two other measurements near the average). How-
ever, in a data set with a high number of outliers or a skewed distribution, the mean
simply doesn’t provide the accuracy you need for a nuanced decision.

Standard Deviation

The standard deviation, often represented with the Greek letter sigma, is the measure
of a spread of data around the mean. A high standard deviation signifies that data is
spread more widely from the mean, where a low standard deviation signals that more
data align with the mean. In a portfolio of data analysis methods, the standard devia-
tion is useful for quickly determining dispersion of data points.

Pitfall:

The standard deviation is deceptive if taken alone. For example, if the data have a very
strange pattern such as a non-normal curve or a large amount of outliers, then the stan-
dard deviation won’t give you all the information you need.

Regression

Regression models the relationships between dependent and explanatory variables,
which are usually charted on a scatterplot. The regression line also designates whether
those relationships are strong or weak. Regression is commonly taught in high school
or college statistics courses with applications for science or business in determining
trends over time.

Pitfall:

Regression is not very nuanced. Sometimes, the outliers on a scatterplot (and the rea-
sons for them) matter significantly. For example, an outlying data point may represent
the input from your most critical supplier or your highest selling product. The nature
of a regression line, however, tempts you to ignore these outliers. As an illustration,
examine a picture of ANSCOMBE’S QUARTET, in which the data sets have the exact
same regression line but include widely different data points.

Sample Size Determination

When measuring a large data set or population, like a workforce, you don’t always need
to collect information from every member of that population — a sample does the job
just as well. The trick is to determine the right size for a sample to be accurate. Using
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8 Introductory Statistics

proportion and standard deviation methods, you are able to accurately determine the
right sample size you need to make your data collection statistically significant.

Pitfall:

When studying a new, untested variable in a population, your proportion equations
might need to rely on certain assumptions. However, these assumptions might be com-
pletely inaccurate. This error is then passed along to your sample size determination
and then onto the rest of your statistical data analysis

Hypothesis Testing

Also commonly called t testing, hypothesis testing assesses if a certain premise is actu-
ally true for your data set or population. In data analysis and statistics, you consider the
result of a hypothesis test statistically significant if the results couldn’t have happened
by random chance. Hypothesis tests are used in everything from science and research
to business and economic.

Pitfall:

To be rigorous, hypothesis tests need to watch out for common errors. For example, the
placebo effect occurs when participants falsely expect a certain result and then perceive
(or actually attain) that result. Another common error is the Hawthorne effect (or ob-
server effect), which happens when participants skew results because they know they
are being studied.

Overall, these methods of data analysis add a lot of insight to your DECISION-MAK-
ING PORTFOLIO, particularly if you've never analyzed a process or data set with sta-
tistics before.
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Branches of Statistics

The discipline of statistics can be categorized into various branches such as descrip-
tive analysis, parametric and nonparametric statistics, exact statistics, etc. This chapter
closely examines these branches of statistics to provide an extensive understanding of
the subject.

DESCRIPTIVE STATISTICS

Descriptive statistics are brief descriptive coefficients that summarize a given data set,
which can be either a representation of the entire or a sample of a population. Descrip-
tive statistics are broken down into measures of central tendency and measures of vari-
ability (spread). Measures of central tendency include the mean, median, and mode,
while measures of variability include the standard deviation, variance, the minimum
and maximum variables, and the kurtosis and skewness.

Descriptive statistics, in short, help describe and understand the features of a specific
data set by giving short summaries about the sample and measures of the data. The
most recognized types of descriptive statistics are measures of center: the mean, me-
dian, and mode, which are used at almost all levels of math and statistics. The mean,
or the average, is calculated by adding all the figures within the data set and then di-
viding by the number of figures within the set. For example, the sum of the following
data set is 20: (2, 3, 4, 5, 6). The mean is 4 (20/5). The mode of a data set is the value
appearing most often, and the median is the figure situated in the middle of the data
set. It is the figure separating the higher figures from the lower figures within a data
set. However, there are less-common types of descriptive statistics that are still very
important.

People use descriptive statistics to repurpose hard-to-understand quantitative insights
across a large data set into bite-sized descriptions. A student’s grade point average
(GPA), for example, provides a good understanding of descriptive statistics. The idea
of a GPA is that it takes data points from a wide range of exams, classes, and grades,
and averages them together to provide a general understanding of a student’s overall
academic abilities. A student’s personal GPA reflects his mean academic performance.

WORLD TECHNOLOGIES




10 Introductory Statistics

Measures of Descriptive Statistics

All descriptive statistics are either measures of central tendency or measures of vari-
ability, also known as measures of dispersion. Measures of central tendency focus on
the average or middle values of data sets; whereas, measures of variability focus on the
dispersion of data. These two measures use graphs, tables, and general discussions to
help people understand the meaning of the analyzed data.

Measures of central tendency describe the center position of a distribution for a data
set. A person analyzes the frequency of each data point in the distribution and describes
it using the mean, median, or mode, which measures the most common patterns of the
analyzed data set.

Measures of variability, or the measures of spread, aid in analyzing how spread-out the
distribution is for a set of data. For example, while the measures of central tendency
may give a person the average of a data set, it does not describe how the data is distrib-
uted within the set. So, while the average of the data may be 65 out of 100, there can still
be data points at both 1 and 100. Measures of variability help communicate this by de-
scribing the shape and spread of the data set. Range, quartiles, absolute deviation, and
variance are all examples of measures of variability. Consider the following data set: 5,
19, 24, 62, 91, 100. The range of that data set is 95, which is calculated by subtracting
the lowest number (5) in the data set from the highest (100).

PARAMETRIC STATISTICS

Parametric statistics is a branch of statistics which assumes that sample data come
from a population that can be adequately modeled by a probability distribution that has
a fixed set of parameters. Conversely a non-parametric model differs precisely in that
the parameter set (or feature set in machine learning) is not fixed and can increase, or
even decrease, if new relevant information is collected.

Most well-known statistical methods are parametric. Regarding nonparametric (and
semiparametric) models, Sir David Cox has said, “These typically involve fewer as-
sumptions of structure and distributional form but usually contain strong assumptions
about independencies”.

The normal family of distributions all have the same general shape and are param-
eterized by mean and standard deviation. That means that if the mean and standard
deviation are known and if the distribution is normal, the probability of any future
observation lying in a given range is known.

Suppose that we have a sample of 99 test scores with a mean of 100 and a standard
deviation of 1. If we assume all 99 test scores are random observations from a normal
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distribution, then we predict there is a 1% chance that the 100th test score will be high-
er than 102.33 (that is, the mean plus 2.33 standard deviations), assuming that the
100th test score comes from the same distribution as the others. Parametric statistical
methods are used to compute the 2.33 value above, given 99 independent observations
from the same normal distribution.

A non-parametric estimate of the same thing is the maximum of the first 99 scores.
We don’t need to assume anything about the distribution of test scores to reason that
before we gave the test it was equally likely that the highest score would be any of the
first 100. Thus there is a 1% chance that the 100th score is higher than any of the 99
that preceded it.

EXACT STATISTICS

Exact statistics, such as that described in exact test, is a branch of statistics that was
developed to provide more accurate results pertaining to statistical testing and interval
estimation by eliminating procedures based on asymptotic and approximate statistical
methods. The main characteristic of exact methods is that statistical tests and confi-
dence intervals are based on exact probability statements that are valid for any sample
size. Exact statistical methods help avoid some of the unreasonable assumptions of
traditional statistical methods, such as the assumption of equal variances in classical
ANOVA. They also allow exact inference on variance components of mixed models.

When exact p-values and confidence intervals are computed under a certain distribu-
tion, such as the normal distribution, then the underlying methods are referred to as
exact parametric methods. The exact methods that do not make any distributional as-
sumptions are referred to as exact nonparametric methods. The latter has the advan-
tage of making fewer assumptions whereas, the former tend to yield more powerful
tests when the distributional assumption is reasonable. For advanced methods such
as higher-way ANOVA regression analysis, and mixed models, only exact parametric
methods are available.

When the sample size is small, asymptotic results given by some traditional methods
may not be valid. In such situations, the asymptotic p-values may differ substantially
from the exact p-values. Hence asymptotic and other approximate results may lead to
unreliable and misleading conclusions.

Approach

All classical statistical procedures are constructed using statistics which depend only
on observable random vectors, whereas generalized estimators, tests, and confidence
intervals used in exact statistics take advantage of the observable random vectors and
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12 Introductory Statistics

the observed values both, as in the Bayesian approach but without having to treat con-
stant parameters as random variables. For example, in sampling from a normal popu-
lation with mean x and variance o, suppose X and S” are the sample mean and the
sample variance. Then, defining Z and U thus:

Z=n(X-u)/o~N(O,)
and that,
U=nS’/oc ~y.,.
Now suppose the parameter of interest is the coefficient of variation, p = 1/ o. then,

we can easily perform exact tests and exact confidence intervals for p based on the
generalized statistic:

XS X-u XU z

sc o sn Jn

Where, X is the observed value of X and S is the observed value of s. Exact inferences
on p based on probabilities and expected values of R are possible because its distribu-
tion and the observed value are both free of nuisance parameters.

R

Generalized p-values

Classical statistical methods do not provide exact tests to many statistical problems
such as testing Variance Components and ANOVA under unequal variances. To rec-
tify this situation, the generalized p-values are defined as an extension of the classical
p-values so that one can perform tests based on exact probability statements valid for
any sample size.

NONPARAMETRIC STATISTICS

Nonparametric statistics is the branch of statistics that is not based solely on parame-
trized families of probability distributions (common examples of parameters are the
mean and variance). Nonparametric statistics is based on either being distribution-free
or having a specified distribution but with the distribution’s parameters unspecified.
Nonparametric statistics includes both descriptive statistics and statistical inference.

The term “nonparametric statistics” has been imprecisely defined in the following two
ways, among others.

» The first meaning of nonparametric covers techniques that do not rely on data
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belonging to any particular parametric family of probability distributions. These
include, among others:

o Distribution free methods, which do not rely on assumptions that the data
are drawn from a given parametric family of probability distributions. As
such it is the opposite of parametric statistics.

o Nonparametric statistics (a statistic is defined to be a function on a sample;
no dependency on a parameter).

Order statistics, which are based on the ranks of observations, is one example
of such statistics.

Statistical hypotheses concern the behavior of observable random variables.
For example, the hypothesis (a) that a normal distribution has a specified mean
and variance is statistical; so is the hypothesis (b) that it has a given mean but
unspecified variance; so is the hypothesis (c) that a distribution is of normal
form with both mean and variance unspecified; finally, so is the hypothesis (d)
that two unspecified continuous distributions are identical.

It will have been noticed that in the examples (a) and (b) the distribution un-
derlying the observations was taken to be of a certain form (the normal) and the
hypothesis was concerned entirely with the value of one or both of its parame-
ters. Such a hypothesis, for obvious reasons, is called parametric.

Hypothesis (¢) was of a different nature, as no parameter values are specified
in the statement of the hypothesis; we might reasonably call such a hypothesis
non-parametric. Hypothesis (d) is also non-parametric but, in addition, it does
not even specify the underlying form of the distribution and may now be reason-
ably termed distribution-free. Notwithstanding these distinctions, the statistical
literature now commonly applies the label “non-parametric” to test procedures
that we have just termed “distribution-free”, thereby losing a useful classification.

« The second meaning of non-parametric covers techniques that do not assume
that the structure of a model is fixed. Typically, the model grows in size to ac-
commodate the complexity of the data. In these techniques, individual variables
are typically assumed to belong to parametric distributions, and assumptions
about the types of connections among variables are also made. These techniques
include, among others:

o Non-parametric regression, which is modeling whereby the structure of the
relationship between variables is treated non-parametrically, but where
nevertheless there may be parametric assumptions about the distribution
of model residuals.

o Non-parametric hierarchical Bayesian models, such as models based on
the Dirichlet process, which allow the number of latent variables to grow as
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necessary to fit the data, but where individual variables still follow paramet-
ric distributions and even the process controlling the rate of growth of latent
variables follows a parametric distribution.

Applications and Purpose

Non-parametric methods are widely used for studying populations that take on a
ranked order (such as movie reviews receiving one to four stars). The use of non-para-
metric methods may be necessary when data have a ranking but no clear numerical
interpretation, such as when assessing preferences. In terms of levels of measurement,
non-parametric methods result in ordinal data.

As non-parametric methods make fewer assumptions, their applicability is much wider
than the corresponding parametric methods. In particular, they may be applied in sit-
uations where less is known about the application in question. Also, due to the reliance
on fewer assumptions, non-parametric methods are more robust.

Another justification for the use of non-parametric methods is simplicity. In certain
cases, even when the use of parametric methods is justified, non-parametric meth-
ods may be easier to use. Due both to this simplicity and to their greater robustness,
non-parametric methods are seen by some statisticians as leaving less room for im-
proper use and misunderstanding.

The wider applicability and increased robustness of non-parametric tests comes at a
cost: In cases where a parametric test would be appropriate, non-parametric tests have
less power. In other words, a larger sample size can be required to draw conclusions
with the same degree of confidence.

Non-parametric Models

Non-parametric models differ from parametric models in that the model structure is
not specified a priori but is instead determined from data. The term non-parametric is
not meant to imply that such models completely lack parameters but that the number
and nature of the parameters are flexible and not fixed in advance:

» Ahistogram is a simple nonparametric estimate of a probability distribution.
« Kernel density estimation provides better estimates of the density than histograms.

« Nonparametric regression and semiparametric regression methods have been
developed based on kernels, splines, and wavelets.

» Data envelopment analysis provides efficiency coefficients similar to those ob-
tained by multivariate analysis without any distributional assumption.

« KNNs classify the unseen instance based on the K points in the training set
which are nearest to it.
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« Asupportvector machine (with a Gaussian kernel) is a nonparametriclarge-mar-
gin classifier.

« Method of moments (statistics) with polynomial probability distributions.

Methods

Non-parametric (or distribution-free) inferential statistical methods are mathematical
procedures for statistical hypothesis testing which, unlike parametric statistics, make
no assumptions about the probability distributions of the variables being assessed. The
most frequently used tests include:

+ Analysis of similarities.
« Anderson—Darling test: Tests whether a sample is drawn from a given distribution.

 Statistical bootstrap methods: Estimates the accuracy/sampling distribution of
a statistic.

» Cochran’s Q: Tests whether k treatments in randomized block designs with 0/1
outcomes have identical effects.

« Cohen’s kappa: Measures inter-rater agreement for categorical items.

« Friedman two-way analysis of variance by ranks: tests whether k treatments in
randomized block designs have identical effects.

« Kaplan—Meier: Estimates the survival function from lifetime data, modeling
censoring.

« Kendall’s tau: Measures statistical dependence between two variables.
+ Kendall's W: A measure between 0 and 1 of inter-rater agreement.

+ Kolmogorov—Smirnov test: Tests whether a sample is drawn from a given dis-
tribution, or whether two samples are drawn from the same distribution.

+ Kruskal-Wallis one-way analysis of variance by ranks: Tests whether > 2 inde-
pendent samples are drawn from the same distribution.

« Kuiper’s test: Tests whether a sample is drawn from a given distribution, sensi-
tive to cyclic variations such as day of the week.

» Logrank test: Compares survival distributions of two right-skewed, censored
samples.

«  Mann—Whitney U or Wilcoxon rank sum test: Tests whether two samples are
drawn from the same distribution, as compared to a given alternative hypothesis.
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McNemar’s test: Tests whether, in 2 x 2 contingency tables with a dichotomous trait
and matched pairs of subjects, row and column marginal frequencies are equal.

Median test: Tests whether two samples are drawn from distributions with
equal medians.

Pitman’s permutation test: A statistical significance test that yields exact p val-
ues by examining all possible rearrangements of labels.

Rank products: Detects differentially expressed genes in replicated microarray
experiments.

Siegel-Tukey test: Tests for differences in scale between two groups.

Sign test: Tests whether matched pair samples are drawn from distributions
with equal medians.

Spearman’s rank correlation coefficient: Measures statistical dependence be-
tween two variables using a monotonic function.

Squared ranks test: Tests equality of variances in two or more samples.
Tukey—Duckworth test: Tests equality of two distributions by using ranks.

Wald—Wolfowitz runs test: Tests whether the elements of a sequence are mutu-
ally independent/random.

Wilcoxon signed-rank test: Tests whether matched pair samples are drawn
from populations with different mean ranks.

ESTIMATION THEORY

Estimation theory is a branch of statistics that deals with estimating the values of pa-
rameters based on measured empirical data that has a random component. The param-
eters describe an underlying physical setting in such a way that their value affects the
distribution of the measured data. An estimator attempts to approximate the unknown
parameters using the measurements.

In estimation theory, two approaches are generally considered.

The probabilistic approach assumes that the measured data is random with
probability distribution dependent on the parameters of interest.

The set-membership approach assumes that the measured data vector belongs
to a set which depends on the parameter vector.
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Examples:

It is desired to estimate the proportion of a population of voters who will vote for a
particular candidate. That proportion is the parameter sought; the estimate is based on
a small random sample of voters. Alternatively, it is desired to estimate the probability
of a voter voting for a particular candidate, based on some demographic features, such
as age.

Or, for example, in radar the aim is to find the range of objects (airplanes, boats,
etc.) by analyzing the two-way transit timing of received echoes of transmitted puls-
es. Since the reflected pulses are unavoidably embedded in electrical noise, their
measured values are randomly distributed, so that the transit time must be esti-
mated.

As another example, in electrical communication theory, the measurements which con-
tain information regarding the parameters of interest are often associated with a noisy
signal.

Basics

For a given model, several statistical “ingredients” are needed so the estimator can be
implemented. The first is a statistical sample — a set of data points taken from a random
vector (RV) of size N. Put into a vector:

x[0]

x[1]

X =

x[N -1]

Secondly, there are M parameters:

Whose, values are to be estimated. Third, the continuous probability density function
(pdf) or its discrete counterpart, the probability mass function (pmf), of the underlying
distribution that generated the data must be stated conditional on the values of the
parameters:

p(x]0).
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It is also possible for the parameters themselves to have a probability distribution (e.g.,
Bayesian statistics). It is then necessary to define the Bayesian probability:

7(0).

After the model is formed, the goal is to estimate the parameters, with the estimates
commonly denoted @, where the “hat” indicates the estimate.

One common estimator is the minimum mean squared error (MMSE) estimator, which
utilizes the error between the estimated parameters and the actual value of the param-
eters:

e=é—9

As the basis for optimality. This error term is then squared and the expected value of
this squared value is minimized for the MMSE estimator.

Estimators

Commonly used estimators (estimation methods) and topics related to them include:
« Maximum likelihood estimators.
« Bayes estimators.
» Method of moments estimators.
+ Cramér—Rao bound.
e Least squares.

« Minimum mean squared error (MMSE), also known as Bayes least squared er-
ror (BLSE).

« Maximum a posteriori (MAP).

e Minimum variance unbiased estimator (MVUE).
« Nonlinear system identification.

o Best linear unbiased estimator (BLUE).

+ Unbiased estimators.

« Particle filter.

«  Markov chain Monte Carlo (MCMC).

« Kalman filter, and its various derivatives.

e  Wiener filter.
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Unknown Constant in Additive white Gaussian Noise

Consider a received discrete signal, x[n], of N independent samples that consists
of an unknown constant A with additive white Gaussian noise (AWGN) w[n]with
known variance o (i.e., N'(0,6%)). Since the variance is known then the only unknown
parameter is A.

The model for the signal is then,
x[n]=A+w[n] n=0,1,...,N-1
Two possible (of many) estimators for the parameter A are:
. A =x[0]
A 1 X
- A= ~ ; x[n]

Both of these estimators have a mean of A, which can be shown through taking the
expected value of each estimator:

E| A |=E[x[0]]- A

and
A 1 N-1 1 N-1 1
E|A |=E|—) x[n]|=—| ) E|x[n]||=—|NA|=A
Ao g

At this point, these two estimators would appear to perform the same. However, the
difference between them becomes apparent when comparing the variances.

Var(ﬁl) =var(x[0]) = o?

and

2

var(A,) = var LIix[n] independence 1 Nivar(x[n]) —L[NGZJ -2
: N~ - N | ~ N? N

It would seem that the sample mean is a better estimator since its variance is lower for
every N > 1.

Maximum Likelihood

Continuing the example using he maximum likelihood estimator, the probability den-
sity function (pdf) of the noise for one sample w[n]is:

p(wln]) = 1 eXP(—

o217

w[n]zj

20°
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and the probability of x[n]becomes x[n] can be thought ofa N (A4,0%))

p(x[n];A) =

1 1 ,
= exp[— L adn- 4) j

By independence, the probability of x becomes,

p(x;A)=ﬁp(x[n];A) - r)Nep[ FONCOE A)j

Taking the natural logarithm of the pdf:

In p(x;A) = —Nln(a\/ﬂ)—

and the maximum likelihood estimator is:
A arg max In p(x; A)
Taking the first derivative of the log-likelihood function:
8 1 N-1 1 N-1
—Inp(x;A)=— x[n]-A)|=—| ) x[n]-NA
A p(x;A) GZLZ_;([] )} G{; [n] }
and setting it to zero:
1 N-1 N-1
- _Z{Zx[n] - NA} => x[n]-NA
O [ n=0 n=0
This results in the maximum likelihood estimator:
1 N-1
=— > x[n
N Z:(; [n]
Which is simply the sample mean? From this example, it was found that the sample
mean is the maximum likelihood estimator for IN samples of a fixed, unknown param-
eter corrupted by AWGN.

Cramér—Rao Lower Bound

To find the Cramér—Rao lower bound (CRLB) of the sample mean estimator, it is first
necessary to find the Fisher information number:

I(A) = E{[%ln p(x;A)} j _ —E{;Z In p(x;A)}
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and copying from above,

a ) B L N-1 _
a—Alnp(x,A) == [nz;)x[n] NA}

Taking the second derivative:

o’ 1 -N
P A)=—(-N)=

2
O (o2

and finding the negative expected value is trivial since it is now a deterministic constant:

0’ N
- E|:8A2 lnp(x;A)} = ey

Finally, putting the Fisher information into:

Var(fl) 2%
results in, Var(fl) > %2

Comparing this to the variance of the sample mean shows that the sample mean is equal
to the Cramér—Rao lower bound for all values of N and A. In other words, the sample
mean is the (necessarily unique) efficient estimator, and thus also the minimum variance
unbiased estimator (MVUE), in addition to being the maximum likelihood estimator.

Maximum of a Uniform Distribution

One of the simplest non-trivial examples of estimation is the estimation of the maxi-
mum of a uniform distribution. It is used as a hands-on classroom exercise and to illus-
trate basic principles of estimation theory. Further, in the case of estimation based on a
single sample, it demonstrates philosophical issues and possible misunderstandings in
the use of maximum likelihood estimators and likelihood functions.

Given a discrete uniform distribution 1,2,..., N with unknown maximum, the UMVU
estimator for the maximum is given by,

k+1 m
—m-l=m+—-1
k k

Where, m is the sample maximum and k is the sample size, sampling without replace-
ment. This problem is commonly known as the German tank problem, due to application
of maximum estimation to estimates of German tank production during World War II.
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The formula may be understood intuitively as;
“The sample maximum plus the average gap between observations in the sample”.

The gap being added to compensate for the negative bias of the sample maximum as an
estimator for the population maximum.

This has a variance of:

1 (N-k)N+1) - N°

P Gt 2) = for small samples k <« N

So, a standard deviation of approximately N / k, the (population) average size of a gap

m
between samples; compare T above.

The sample maximum is the maximum likelihood estimator for the population maxi-
mum.

Applications

Numerous fields require the use of estimation theory. Some of these fields include (but
are by no means limited to):

» Interpretation of scientific experiments.
« Signal processing.

+ Clinical trials.

«  Opinion polls.

»  Quality control.

» Telecommunications.

» Project management.

« Software engineering.

« Control theory (in particular Adaptive control).
» Network intrusion detection system.

» Orbit determination.

Measured data are likely to be subject to noise or uncertainty and it is through statisti-
cal probability that optimal solutions are sought to extract as much information from
the data as possible.
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ECONOMIC STATISTICS

Economic Statistics is the branch of statistical science that studies the quantitative as-
pect of economic processes and phenomena in the national economy in conjunction
with their qualitative aspect. Unlike more specialized forms of statistics, which study
economic processes in particular branches of the national economy, economic statistics
studies the national economy as an integrated whole.

Marxist-Leninist political economy constitutes the theoretical foundation of economic
statistics. Political economy investigates and identifies the most important features of
social-production relations and reveals the laws governing the production and distri-
bution of material goods; economic statistics makes use of these principles to provide
a quantitative description of phenomena and processes in the national economy and
shows, with the help of economic-statistical indicators, how social production is devel-
oping in a particular place and time. In V. I. Lenin’s definition, the purpose of economic
statistics is to give “statistical expression” to the phenomena and laws of socioeconomic
development of society. A preliminary and comprehensive socioeconomic analysis of
the phenomena under study is a major precondition for the scientific organization of
economic statistics.

Economic statistics is both an integral part of statistical science and an important
branch of practical activity. Although it emerged as an independent scientific disci-
pline and a subject taught in educational institutions before the Great Patriotic War of
1941—45, economic statistics underwent its greatest development after the war. In the
investigation of economic processes and in the collection, processing, and analysis of
statistical data, it makes extensive use of such techniques as mass statistical observa-
tion, grouping, indexing, the analysis of time series, and the balance method. Mathe-
maticoeconomic research methods involving computers are coming to be used more
widely.

In a socialist society, economic statistics is an important tool in the management and
planning of the national economy. It describes the condition and development of a so-
cialist economy, progress toward the fulfillment of national economic plans, and the
way the branches of the economy are developing in relation to one another. In addition,
it provides a picture of the introduction of new technology, the location of productive
forces in the country, and improvements in public welfare. The most important tasks of
economic statistics include the economic-statistical description of the efficiency of social
production and the improvement of performance at all levels of the national economy.

In bourgeois statistics, economic statistics does not exist as an independent scientific
discipline for the integrated investigation of processes and phenomena of social repro-
duction. The statistical literature of capitalist countries treats economic statistics as the
application of general methods of statistics and mathematical statistics to the measure-
ment of economic phenomena.
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The system of indexes in economic statistics comprehensively describes economic pro-
cesses and phenomena. The crucial indexes—the comprehensive, general indexes of
economic development and of the growth of the people’s material prosperity—include
the total social product, national income, real incomes of the population, nonproduc-
tive consumption, accumulation, national wealth and its constituent elements, and the
social productivity of labor.

Statisticians dealing with particular branches of the economy-apply the general prin-
ciples that have been developed by economic statistics in order to construct a system
of economic indexes and a methodology for calculating them. A major division of eco-
nomic statistics is the balance of the national economy of the USSR, which makes it
possible to ascertain whether the economy is developing in a balanced manner.
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Statistical Measures

Statistical measures refer to the individual quantitative variable values for the statis-
tical units in a specific group. Such measures include stastical mean, mode, median,
range, skewness, quantile, quartile, variance, quartile deviation, pooled variance, stan-
dard deviation, etc. The topics elaborated in this chapter will help in gaining a better
perspective of these statistical measures.

STATISTICAL MEAN

The statistical mean refers to the mean or average that is used to derive the central
tendency of the data in question. It is determined by adding all the data points in a
population and then dividing the total by the number of points. The resulting number
is known as the mean or the average.

In mathematics and statistics, the term arithmetic mean is preferred over simply
“mean” because it helps to differentiate between other means such as geometric and
harmonic mean. Statistical mean is the most common term for calculating the mean of
a statistical distribution.

An arithmetic mean is calculated using the following equation:

1 n
A=— .
n;a'

The statistical mean has a wide range of applicability in various types of experimen-
tation. This type of calculation eliminates random errors and helps to derive a more
accurate result than a result derived from a single experiment.

The statistical mean can also be used to interpret statistical data. Some important prop-
erties make statistical mean very useful for measuring central tendency. They are follows:

If numbers have average X, then:

Since Xi - X is the distance from a given number to the average. The numbers to the left
of the mean are balanced by the numbers to the right of the mean. The residuals sum
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to zero only if a number is a statistical mean. A single number X is used as an estimate
for the value of numbers, then the statistical mean minimizes the sum of the squares
(xi - X)? of the residuals.

Statistical mean is popular because it includes every item in the data set and it can
easily be used with other statistical measurements. However, the major disadvantage
in using statistical mean is that it can be affected by extreme values in the data set and
therefore be biased.

The statistical mean is widely used not only in the fields of mathematics and statistics,
but also in economics, sociology and history. It gives important information about a
data set and provides insight into the experiment and nature of the data.

The other terms used to measure central tendency (an average) are median and mode.
In a normal distribution the statistical mean is equal to median and mode.

Arithmetic Mean

Arithmetic Mean in the most common and easily understood measure of central ten-
dency. We can define mean as the value obtained by dividing the sum of measurements

with the number of measurements contained in the data set and is denoted by the sym-
bol x.

Individual Data Series

When data is given on individual basis. Following is an example of individual series:

Items | 5 [ 10 |20 |30 | 40 | 50 | 60 | 70

Discrete Data Series

When data is given alongwith their frequencies. Following is an example of discrete
series:

Items 5 |10 |20 (30|40 |50 | 60|70

Frequency | 2 5 1 3 12| 0 5 7

Continuous Data Series

When data is given based on ranges alongwith their frequencies. Following is an exam-
ple of continous series:

Items 0-5 5-10 | 10-20 | 20-30 | 30-40

Frequency 2 5 1 3 12
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MEDIAN

1,3,3,6,7,8,9
Median = 6
1,2,3,4,56,8,9

Median = (4+5)+2
= 45

Finding the median in sets of data with
an odd and even number of values.

The median is the value separating the higher half from the lower half of a data sample
(a population or a probability distribution). For a data set, it may be thought of as the
“middle” value. For example, in the data set [1, 3, 3, 6, 7, 8, 9], the median is 6, the
fourth largest, and also the fourth smallest, number in the sample. For a continuous
probability distribution, the median is the value such that a number is equally likely to
fall above or below it.

The median is a commonly used measure of the properties of a data set in statistics and
probability theory. The basic advantage of the median in describing data compared to
the mean (often simply described as the “average”) is that it is not skewed so much by
a small proportion of extremely large or small values, and so it may give a better idea
of a “typical” value. For example, in understanding statistics like household income or
assets, which vary greatly, the mean may be skewed by a small number of extremely
high or low values. Median income, for example, may be a better way to suggest what a
“typical” income is.

Because of this, the median is of central importance in robust statistics, as it is the
most resistant statistic, having a breakdown point of 50%: so long as no more than
half the data are contaminated, the median will not give an arbitrarily large or small
result.

Finite Data Set of Numbers

The median of a finite list of numbers can be found by arranging all the numbers from
smallest to greatest.

If there is an odd number of numbers, the middle one is picked. For example, consider
the list of numbers

1, 3’ 37 6’ 77 8, 9

This list contains seven numbers. The median is the fourth of them, which is 6.
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If there is an even number of observations, then there is no single middle value; the
median is then usually defined to be the mean of the two middle values. For example,
in the data set

1’ 2) 37 45 5, 65 87 9

the median is the mean of the middle two numbers: this is (4+5)/2,, which is 4.5.
(In more technical terms, this interprets the median as the fully trimmed mid-range).

The formula used to find the index of the middle number of a data set of n numerically
ordered numbers is (n+1) /2. This either gives the middle number (for an odd number
of values) or the halfway point between the two middle values. For example, with 14
values, the formula will give an index of 7.5, and the median will be taken by averaging
the seventh (the floor of this index) and eighth (the ceiling of this index) values. So the
median can be represented by the following formula:

‘| (Ba+1)+2]+] “(Ha+1)+2]

2

median(a) =

where ais an ordered list of numbers, #a denotes its length, and LJ and |_—| denotes
the floor and ceiling function, respectively.

Comparison of common averages of values [ 1, 2, 2,3, 4,7, 9 ]

Type Description Example Result
Arithmetic | Sum of values of a data set divided by | (1+2+2+3+4+7+9)/7 4
mean 1

number of values: X =—
n

n
X.
Zi:l !

Median Middle value separating the greater and | 1, 2, 2,3, 4,7, 9 3
lesser halves of a data set

Mode Most frequent value in a data set 1,2,2,3,4,7,9 2

One can find the median using the Stem-and-Leaf Plot.

There is no widely accepted standard notation for the median, but some authors repre-
sent the median of a variable x either as X or as i, , sometimes also M. In any of these
cases, the use of these or other symbols for the median needs to be explicitly defined
when they are introduced.

The median is used primarily for skewed distributions, which it summarizes differ-
ently from the arithmetic mean. Consider the multiset { 1, 2, 2, 2, 3, 14 }. The median
is 2 in this case, (as is the mode), and it might be seen as a better indication of central
tendency (less susceptible to the exceptionally large value in data) than the arithmetic
mean of 4.

The median is a popular summary statistic used in descriptive statistics, since it is sim-
ple to understand and easy to calculate, while also giving a measure that is more robust
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in the presence of outlier values than is the mean. The widely cited empirical relation-
ship between the relative locations of the mean and the median for skewed distribu-
tions is, however, not generally true. There are, however, various relationships for the
absolute difference between them.

With an even number of observations no value need be exactly at the value of the me-
dian. Nonetheless, the value of the median is uniquely determined with the usual defi-
nition. A related concept, in which the outcome is forced to correspond to a member of
the sample, is the medoid.

In a population, at most half have values strictly less than the median and at most half
have values strictly greater than it. If each set contains less than half the population,
then some of the population is exactly equal to the median. For example, if a < b < ¢,
then the median of the list {a, b, c} is b, and, if a < b < ¢ < d, then the median of the
list {a, b, c, d} is the mean of b and c; i.e., it is (b + ¢)/2. As a median is based on the
middle data in a set, it is not necessary to know the value of extreme results in order to
calculate it. For example, in a psychology test investigating the time needed to solve a
problem, if a small number of people failed to solve the problem at all in the given time
a median can still be calculated.

The median can be used as a measure of location when a distribution is skewed, when
end-values are not known, or when one requires reduced importance to be attached to
outliers, e.g., because they may be measurement errors.

A median is only defined on ordered one-dimensional data, and is independent of any
distance metric. A geometric median, on the other hand, is defined in any number of
dimensions.

The median is one of a number of ways of summarising the typical values associated
with members of a statistical population; thus, it is a possible location parameter. The
median is the 2nd quartile, 5th decile, and 50th percentile. A median can be worked out
for ranked but not numerical classes (e.g. working out a median grade when students
are graded from A to F), although the result might be halfway between grades if there
is an even number of cases.

When the median is used as a location parameter in descriptive statistics, there are
several choices for a measure of variability: the range, the interquartile range, the mean
absolute deviation, and the median absolute deviation.

For practical purposes, different measures of location and dispersion are often com-
pared on the basis of how well the corresponding population values can be estimated
from a sample of data. The median, estimated using the sample median, has good prop-
erties in this regard. While it is not usually optimal if a given population distribution
is assumed, its properties are always reasonably good. For example, a comparison of
the efficiency of candidate estimators shows that the sample mean is more statistically
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efficient than the sample median when data are uncontaminated by data from heavy-
tailed distributions or from mixtures of distributions, but less efficient otherwise, and
that the efficiency of the sample median is higher than that for a wide range of dis-
tributions. More specifically, the median has a 64% efficiency compared to the min-
imum-variance mean (for large normal samples), which is to say the variance of the
median will be ~50% greater than the variance of the mean.

Aho give a divide-and-conquer algorithm to compute the & th smallest element of an

unordered list a in linear time, which is faster than sorting. Running it with & = [_a—‘
computes the median of a. 2

Probability Distributions

I
mode

50% | 50%

I -
median

-~

mean

Geometric visualisation of the mode, median and
mean of an arbitrary probability density function.

For any probability distribution on the real line R with cumulative distribution function
F, regardless of whether it is any kind of continuous probability distribution, in partic-
ular an absolutely continuous distribution (which has a probability density function),
or a discrete probability distribution, a median is by definition any real number m that
satisfies the inequalities:

P(XSm)Z% and P(XZm)Z%

or, equivalently, the inequalities,

1 1
> — >
J.(iw,m]dF(x) > and | @2~

WORLD TECHNOLOGIES




Statistical Measures 31

in which a Lebesgue—Stieltjes integral is used. For an absolutely continuous probability
distribution with probability density function £, the median satisfies,

P(X >m)=P(X <m)= j"; F(x)dx = %

Any probability distribution on R has at least one median, but in specific cases there
may be more than one median. Specifically, if a probability density is zero on an inter-
val [a, b], and the cumulative distribution function at a is 1/2, any value between a and
b will also be a median.

Medians of Particular Distributions

The medians of certain types of distributions can be easily calculated from their param-
eters; furthermore, they exist even for some distributions lacking a well-defined mean,
such as the Cauchy distribution:

» The median of a symmetric unimodal distribution coincides with the mode.

« The median of a symmetric distribution which possesses a mean u also takes
the value .

o The median of a normal distribution with mean u and variance o2 is p. In
fact, for a normal distribution, mean = median = mode.

o The median of a uniform distribution in the interval [a, b] is (a + b) / 2,
which is also the mean.

+ The median of a Cauchy distribution with location parameter x_  and scale pa-
rameter y is x , the location parameter.

+ The median of a power law distribution x™¢, with exponent a > 1is 2/~ 9x__,
where x . is the minimum value for which the power law holds.

+ The median of an exponential distribution with rate parameter A is the natural
logarithm of 2 divided by the rate parameter: A-'In 2.

« The median of a Weibull distribution with shape parameter k and scale param-
eter Ais A(In 2)V.

Populations
Optimality Property
The mean absolute error of a real variable c with respect to the random variable X is,

E(X -]
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Provided that the probability distribution of X is such that the above expectation exists,
then m is a median of X if and only if m is a minimizer of the mean absolute error with
respect to X. In particular, m is a sample median if and only if m minimizes the arith-
metic mean of the absolute deviations.
More generally, a median is defined as a minimum of

E( X —c|-|X]),

This optimization-based definition of the median is useful in statistical data-analysis,
for example, in k-medians clustering.

Unimodal Distributions
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Comparison of mean, median and mode of two
log-normal distributions with different skewness.

It can be shown for a unimodal distribution that the median X and the mean X lie
within (3/5)¥2 = 0.7746 standard deviations of each other. In symbols,

)}v—)?l [3)1/2
Z Tl =z
o 5

where |-| is the absolute value.

A similar relation holds between the median and the mode: they lie within 372 = 1.732
standard deviations of each other:

| X —mode |
o

< 31/2.

Inequality Relating Means and Medians

If the distribution has finite variance, then the distance between the median and the
mean is bounded by one standard deviation.
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This bound was proved by Mallows, who used Jensen’s inequality twice, as follows. We
have,

| g =m = E(X —m)]| <E(X-m])
<E(X-ul)

S‘/E((X—y)z):a.

The first and third inequalities come from Jensen’s inequality applied to the abso-
lute-value function and the square function, which are each convex. The second in-
equality comes from the fact that a median minimizes the absolute deviation function,

ar>E(X—-al).

This proof also follows directly from Cantelli’s inequality. The result can be generalized
to obtain a multivariate version of the inequality, as follows:

| 44 =m|=HEX —m)[[SE|| X —ml]]
<E(lX - ul)

<.\ /E(II X—-u ||2) = \ftrace(var(X))

where m is a spatial median, that is, a minimizer of the function a > E(] X —a). The
spatial median is unique when the data-set’s dimension is two or more. An alternative
proof uses the one-sided Chebyshev inequality; it appears in an inequality on location
and scale parameters.

Jensen’s Inequality for Medians

Jensen’s inequality states that for any random variable x with a finite expectation E(x)
and for any convex function f,

JIEM)]< ELf(x)]

It has been shown that if x is a real variable with a unique median m and fis a C func-
tion then,

f(m) < Median[ f(x)]

A C function is a real valued function, defined on the set of real numbers R, with the
property that for any real t,

[ (o)) ={xeR| f(x) <1}

is a closed interval, a singleton or an empty set.
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Medians for Samples
Efficient Computation of the Sample Median

Even though comparison-sorting n items requires Q(n log n) operations, selection al-
gorithms can compute the k’th-smallest of n items with only ®(n) operations. This in-
cludes the median, which is the (n/2)’th order statistic (or for an even number of sam-
ples, the arithmetic mean of the two middle order statistics).

Selection algorithms still have the downside of requiring Q(n) memory, that is, they
need to have the full sample (or a linear-sized portion of it) in memory. Because
this, as well as the linear time requirement, can be prohibitive, several estimation
procedures for the median have been developed. A simple one is the median of three
rule, which estimates the median as the median of a three-element subsample; this
is commonly used as a subroutine in the quicksort sorting algorithm, which uses an
estimate of its input’s median. A more robust estimator is Tukey’s ninther, which is
the median of three rule applied with limited recursion: if A is the sample laid out as
an array,

med3(A4) = median(A, A[n/2], A[n]),
then,

ninther(A) = med3(med3(A[1 ... 1/3n]), med3(A[1/3n ... 2/3n]), med
3(A[2/3n ... n]))

The remedian is an estimator for the median that requires linear time but sub-linear
memory, operating in a single pass over the sample.

Easy Explanation of the Sample Median

In individual series (if number of observation is very low) first one must arrange all the
observations in order. Then count(n) is the total number of observation in given data.

If nis odd then Median (M) = value of ((n + 1)/2)th item term.

If i is even then Median (M) = value of [(n/2)th item term + (n/2 + 1)th item
term]/2

For an Odd Number of Values

As an example, we will calculate the sample median for the following set of observa-
tions: 1,5, 2, 8, 7.

Start by sorting the values: 1, 2, 5, 7, 8.

In this case, the median is 5 since it is the middle observation in the ordered list.
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The median is the ((n + 1)/2)th item, where n is the number of values. For example, for
the list {1, 2, 5, 7, 8}, we have n = 5, so the median is the ((5 + 1)/2)th item.

median = (6/2)th item
median = 3rd item

median = 5.

For an Even Number of Values

As an example, we will calculate the sample median for the following set of observa-
tions: 1, 6, 2, 8, 7, 2.

Start by sorting the values: 1, 2, 2, 6, 7, 8.

In this case, the arithmetic mean of the two middlemost terms is (2 + 6)/2 = 4. There-
fore, the median is 4 since it is the arithmetic mean of the middle observations in the
ordered list.

Sampling Distribution

The distributions of both the sample mean and the sample median were determined
by Laplace. The distribution of the sample median from a population with a density
function f(x)is asymptotically normal with mean m and variance,
1
4nf (m)

where m is the median of f(x)and n is the sample size. For normal samples, the den-

sity is f(m)=1/~/27c?, thus for large samples the variance of the median equals
(r/2)-(c”/n).

These results have also been extended. It is now known for the p -th quantile that the
distribution of the sample p -th quantile is asymptotically normal around the p -th
quantile with variance equal to:

p(-p)

nf(x,)’
where f'(x,)is the value of the distribution density at the p -th quantile.

Numerical Experimentation

In the case of a discrete variable, the sampling distribution of the median for small-sam-
ples can be investigated as follows. We take the sample size to be an odd number
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N =2n+1. If a given value vis to be the median of the sample then two conditions
must be satisfied. The first is that at most observations can have a value of v—1or
less. The second is that at most 7 observations can have a value of v +1 or more. Let i be
the number of observations that have a value of v+1 or less and let v —1be the number
of observations that have a value of v+1 or more. Then i and % both have a minimum
value of 0 and a maximum of 7 . If an observation has a value below v, it is not relevant
how far below vit is and conversely, if an observation has a value above v, it is not rel-
evant how far above vit is. We can therefore represent the observations as following a
trinomial distribution with probabilities F'(v—1), f(v)and 1—F(v). The probability
that the median m will have a value vis then given by,

Prm=v) =33 PO DI O - FOT

i=0 k=0

Summing this over all values of v defines a proper distribution and gives a unit sum.
In practice, the function f(v)will often not be known but it can be estimated from an
observed frequency distribution. An example is given in the following table where the
actual distribution is not known but a sample of 3,800 observations allows a sufficient-
ly accurate assessment of f(v).

v 0] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
f(v) | 0.000 | 0.008 | 0.010 | 0.013 | 0.083 | 0.108 | 0.328 | 0.220 | 0.202 | 0.023 | 0.005

F(v) | 0.000 | 0.008 | 0.018 | 0.031 | 0.114 | 0.222 | 0.550 | 0.770 | 0.972 | 0.995 | 1.000

Using these data it is possible to investigate the effect of sample size on the stan-
dard errors of the mean and median. The observed mean is 3.16, the observed raw
median is 3 and the observed interpolated median is 3.174. The following table gives
some comparison statistics. The standard error of the median is given both from
the above expression for pr(m =v)and from the asymptotic approximation given
earlier.

Sample Size

Statistic 3 9 15 21
Expected value of median 3.198 | 3.191 | 3.174 | 3.161
Standard error of median (above formula) 0.482 | 0.305 | 0.257 | 0.239

Standard error of median (asymptotic approximation) | 0.879 | 0.508 | 0.393 | 0.332

Standard error of mean 0.421 | 0.243 | 0.188 | 0.159

The expected value of the median falls slightly as sample size increases while, as would
be expected, the standard errors of both the median and the mean are proportionate to
the inverse square root of the sample size. The asymptotic approximation errs on the
side of caution by overestimating the standard error.

In the case of a continuous variable, the following argument can be used. If a given
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value vis to be the median, then one observation must take the value v. The elemen-
tal probability of this is f(v)dv. Then, of the remaining 27 observations, exactly n
of them must be above Vand the remaining 7 below. The probability of this is the 7
th term of a binomial distribution with parameters F(v) and 27 . Finally we multiply
by 2n+1since any of the observations in the sample can be the median observation.
Hence the elemental probability of the median at the point vis given by,

(2n)!

nln!

f(v) [FOI'[1-F)]"2n+1)dv.

Now we introduce the beta function. For integer arguments « and /£, this can be ex-
pressed as B(a, f)=(a-DW(L-D!/(a+ [ -1)!. Also, f(v)=dF(v)/dv. Using these
relationships and setting both @ and £, equal to (n+1) allows the last expression to
be written as,

FONTI-FON o
B(n+1Ln+1)

Hence the density function of the median is a symmetric beta distribution over the unit
interval which supports F'(v). Its mean, as we would expect, is 0.5 and its variance is
1/(4(N +2)). The corresponding variance of the sample median is,

1
4(N +2) f(m)*

However this finding can only be used if the density function f(v)is known or can be
assumed. As this will not always be the case, the median variance has to be estimated
sometimes from the sample data.

Estimation of Variance from Sample Data
1

The value of (2f(x))” —the asymptotic value of n 2(v —m)where v is the population
median—has been studied by several authors. The standard “delete one” jackknife
method produces inconsistent results. An alternative—the “delete k” method—where &
grows with the sample size has been shown to be asymptotically consistent. This meth-

od may be computationally expensive for large data sets. A bootstrap estimate is known
1

to be consistent, but converges very slowly (order of n ). Other methods have been
proposed but their behavior may differ between large and small samples.

Efficiency

The efficiency of the sample median, measured as the ratio of the variance of the mean
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to the variance of the median, depends on the sample size and on the underlying
population distribution. For a sample of size N =2n+1from the normal distribution,
the efficiency for large N is,

£N+2
7T N

. 2 P
The efficiency tends to —as N tends to infinity.
V4

In other words, the relative variance of the median will be 7 /2 = 1.57,, or 57% greater
than the variance of the mean — the standard error of the median will be 25% greater
than that of the mean.

Other Estimators

For univariate distributions that are symmetric about one median, the Hodges—Leh-
mann estimator is a robust and highly efficient estimator of the population median.

If data are represented by a statistical model specifying a particular family of proba-
bility distributions, then estimates of the median can be obtained by fitting that family
of probability distributions to the data and calculating the theoretical median of the
fitted distribution. Pareto interpolation is an application of this when the population is
assumed to have a Pareto distribution.

Coefficient of Dispersion

The coefficient of dispersion (CD) is defined as the ratio of the average absolute devia-
tion from the median to the median of the data. It is a statistical measure used by the
states of Iowa, New York and South Dakota in estimating dues taxes. In symbols,

CD:lM
n m

where n is the sample size, m is the sample median and x is a variate. The sum is taken
over the whole sample.

Confidence intervals for a two-sample test in which the sample sizes are large have
been derived by Bonett and Seier. This test assumes that both samples have the same
median but differ in the dispersion around it. The confidence interval (CI) is bounded
inferiorly by,

172
ta ta
exp| log (t_] -z, (Var {log (t—ﬂ]
b b
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where t, is the mean absolute deviation of the j sample, var() is the variance and z_ is
the value from the normal distribution for the chosen value of a: for a = 0.05, z_ = 1.96.
The following formulae are used in the derivation of these confidence intervals,

N2
(xa—xj 2
ta

var {log (Z—“ﬂ = var[log(t, )] + var[log(t, )]— 2r(var[log(t, )] var[log(z, )])"

b

2
var[log(z,)] = l s_; +
n a

where r is the Pearson correlation coefficient between the squared deviation scores,
dia =| Xia Xy |and dib =| Xip ~ Xp |

a and b here are constants equal to 1 and 2, x is a variate and s is the standard deviation
of the sample.

Multivariate Median

When the dimension is two or higher, there are multiple concepts that extend the defi-
nition of the univariate median; each such multivariate median agrees with the univar-
iate median when the dimension is exactly one.

Marginal Median

The marginal median is defined for vectors defined with respect to a fixed set of coordi-
nates. A marginal median is defined to be the vector whose components are univariate
medians. The marginal median is easy to compute, and its properties were studied by
Puri and Sen.

Centerpoint

An alternative generalization of the median in higher dimensions is the centerpoint.

Other Median-related Concepts
Interpolated Median

When dealing with a discrete variable, it is sometimes useful to regard the observed
values as being midpoints of underlying continuous intervals. An example of this is a
Likert scale, on which opinions or preferences are expressed on a scale with a set num-
ber of possible responses. If the scale consists of the positive integers, an observation
of 3 might be regarded as representing the interval from 2.50 to 3.50. It is possible to
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estimate the median of the underlying variable. If, say, 22% of the observations are of
value 2 or below and 55.0% are of 3 or below (so 33% have the value 3), then the median
m is 3 since the median is the smallest value of x for which F(x)is greater than a half.
But the interpolated median is somewhere between 2.50 and 3.50. First we add half
of the interval width w to the median to get the upper bound of the median interval.
Then we subtract that proportion of the interval width which equals the proportion of
the 33% which lies above the 50% mark. In other words, we split up the interval width
pro rata to the numbers of observations. In this case, the 33% is split into 28% below
the median and 5% above it so we subtract 5/33 of the interval width from the upper
bound of 3.50 to give an interpolated median of 3.35. More formally, if the values f(x)
are known, the interpolated median can be calculated from,

| Fm-t
2
=m+w| ——

2 fm) |

int

Alternatively, if in an observed sample there are & scores above the median category, j
scores in it and i scores below it then the interpolated median is given by,

Pseudo-median

For univariate distributions that are symmetric about one median, the Hodges—Leh-
mann estimator is a robust and highly efficient estimator of the population median; for
non-symmetric distributions, the Hodges—Lehmann estimator is a robust and highly
efficient estimator of the population pseudo-median, which is the median of a symme-
trized distribution and which is close to the population median. The Hodges—Lehmann
estimator has been generalized to multivariate distributions.

Variants of Regression

The Theil-Sen estimator is a method for robust linear regression based on finding me-
dians of slopes.

Median Filter

In the context of image processing of monochrome raster images there is a type of
noise, known as the salt and pepper noise, when each pixel independently becomes
black (with some small probability) or white (with some small probability), and is un-
changed otherwise (with the probability close to 1). An image constructed of median
values of neighborhoods (like 3x3 square) can effectively reduce noise in this case.
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Cluster Analysis

In cluster analysis, the k-medians clustering algorithm provides a way of defining clus-
ters, in which the criterion of maximising the distance between cluster-means that is used
in k-means clustering, is replaced by maximising the distance between cluster-medians.

Median—median Line

This is a method of robust regression. The idea dates back to Wald in 1940 who sug-
gested dividing a set of bivariate data into two halves depending on the value of the
independent parameter x: A left half with values less than the median and a right half
with values greater than the median. He suggested taking the means of the dependent
x and independent variables of the left and the right halves and estimating the slope of
the line joining these two points. The line could then be adjusted to fit the majority of
the points in the data set.

Nair and Shrivastava in 1942 suggested a similar idea but instead advocated divid-
ing the sample into three equal parts before calculating the means of the subsamples.
Brown and Mood in 1951 proposed the idea of using the medians of two subsamples
rather the means. Tukey combined these ideas and recommended dividing the sample
into three equal size subsamples and estimating the line based on the medians of the
subsamples.

Median-unbiased Estimators

Any mean-unbiased estimator minimizes the risk (expected loss) with respect to the
squared-error loss function, as observed by Gauss. A median-unbiased estimator min-
imizes the risk with respect to the absolute-deviation loss function, as observed by La-
place. Other loss functions are used in statistical theory, particularly in robust statistics.

The theory of median-unbiased estimators was revived by George W. Brown in 1947:

“An estimate of a one-dimensional parameter 0 will be said to be median-un-
biased if, for fixed 0, the median of the distribution of the estimate is at the
value 0; i.e., the estimate underestimates just as often as it overestimates. This
requirement seems for most purposes to accomplish as much as the mean-un-
biased requirement and has the additional property that it is invariant under
one-to-one transformation”.

Further properties of median-unbiased estimators have been reported. Median-unbi-
ased estimators are invariant under one-to-one transformations.

There are methods of constructing median-unbiased estimators that are optimal (in a
senseanalogous tothe minimum-variance property for mean-unbiased estimators). Such
constructions exist for probability distributions having monotone likelihood-functions.
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One such procedure is an analogue of the Rao—Blackwell procedure for mean-unbiased
estimators: The procedure holds for a smaller class of probability distributions than
does the Rao—Blackwell procedure but for a larger class of loss functions.

MODE

The mode of a set of data values is the value that appears most often. If X is a discrete
random variable, the mode is the value x (i.e, X = x) at which the probability mass
function takes its maximum value. In other words, it is the value that is most likely to
be sampled.

Like the statistical mean and median, the mode is a way of expressing, in a (usually)
single number, important information about a random variable or a population. The
numerical value of the mode is the same as that of the mean and median in a normal
distribution, and it may be very different in highly skewed distributions.

The mode is not necessarily unique to a given discrete distribution, since the probability
mass function may take the same maximum value at several points x, x_, etc. The most
extreme case occurs in uniform distributions, where all values occur equally frequently.

When the probability density function of a continuous distribution has multiple local
maxima it is common to refer to all of the local maxima as modes of the distribution.
Such a continuous distribution is called multimodal (as opposed to unimodal). A mode
of a continuous probability distribution is often considered to be any value x at which
its probability density function has a locally maximum value, so any peak is a mode.

In symmetric unimodal distributions, such as the normal distribution, the mean (if
defined), median and mode all coincide. For samples, if it is known that they are drawn
from a symmetric unimodal distribution, the sample mean can be used as an estimate
of the population mode.

Mode of a Sample

The mode of a sample is the element that occurs most often in the collection. For exam-
ple, the mode of the sample [1, 3, 6, 6, 6, 6, 7,7, 12, 12, 17] is 6. Given the list of data [1,
1, 2, 4, 4] the mode is not unique — the dataset may be said to be bimodal, while a set
with more than two modes may be described as multimodal.

For a sample from a continuous distribution, such as [0.935..., 1.211..., 2.430..., 3.668...,
3.874...], the concept is unusable in its raw form, since no two values will be exactly the
same, so each value will occur precisely once. In order to estimate the mode of the un-
derlying distribution, the usual practice is to discretize the data by assigning frequency
values to intervals of equal distance, as for making a histogram, effectively replacing
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the values by the midpoints of the intervals they are assigned to. The mode is then the
value where the histogram reaches its peak. For small or middle-sized samples the out-
come of this procedure is sensitive to the choice of interval width if chosen too narrow
or too wide; typically one should have a sizable fraction of the data concentrated in a
relatively small number of intervals (5 to 10), while the fraction of the data falling out-
side these intervals is also sizable. An alternate approach is kernel density estimation,
which essentially blurs point samples to produce a continuous estimate of the probabil-
ity density function which can provide an estimate of the mode.

The following MATLAB (or Octave) code example computes the mode of a sample:

X = sort(x);

indices = find(diff ([X; realmax]) > 0); % indices where repeated values
change

[modeL,i] = max (diff([0; indices])); % longest persistence length of

repeated values

mode = X (indices(i));

The algorithm requires as a first step to sort the sample in ascending order. It then
computes the discrete derivative of the sorted list, and finds the indices where this de-
rivative is positive. Next it computes the discrete derivative of this set of indices, locat-
ing the maximum of this derivative of indices, and finally evaluates the sorted sample
at the point where that maximum occurs, which corresponds to the last member of the
stretch of repeated values.

Comparison of Mean, Median and Mode

|
mode

50% | 50%
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Geometric visualisation of the mode, median and
mean of an arbitrary probability density function.
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Comparison of common averages of values{ 1, 2,2, 3,4,7,9 }

Type Description Example Result
Arithmetic mean | Sum of values of a data set divided by number | (1+2+2+3+4+7+9) /7 4
of values:
Median Middle value separating the greater and lesser 1,2,2,3,4,7,9 3
halves of a data set
Mode Most frequent value in a data set 1,2,2,3,4,7,9 2
Use

Unlike mean and median, the concept of mode also makes sense for “nominal data”
(i.e., not consisting of numerical values in the case of mean, or even of ordered values
in the case of median). For example, taking a sample of Korean family names, one
might find that “Kim” occurs more often than any other name. Then “Kim” would be
the mode of the sample. In any voting system where a plurality determines victory, a
single modal value determines the victor, while a multi-modal outcome would require
some tie-breaking procedure to take place.

Unlike median, the concept of mode makes sense for any random variable assuming
values from a vector space, including the real numbers (a one-dimensional vector
space) and the integers (which can be considered embedded in the reals). For example,
a distribution of points in the plane will typically have a mean and a mode, but the con-
cept of median does not apply. The median makes sense when there is a linear order
on the possible values. Generalizations of the concept of median to higher-dimensional
spaces are the geometric median and the centerpoint.

Uniqueness and Definedness

For some probability distributions, the expected value may be infinite or undefined,
but if defined, it is unique. The mean of a (finite) sample is always defined. The median
is the value such that the fractions not exceeding it and not falling below it are each
at least 1/2. It is not necessarily unique, but never infinite or totally undefined. For a
data sample it is the “halfway” value when the list of values is ordered in increasing
value, where usually for a list of even length the numerical average is taken of the two
values closest to “halfway”. Finally, as said before, the mode is not necessarily unique.
Certain pathological distributions (for example, the Cantor distribution) have no de-
fined mode at all. For a finite data sample, the mode is one (or more) of the values in
the sample.

Properties

Assuming definedness, and for simplicity uniqueness, the following are some of the
most interesting properties.

« All three measures have the following property: If the random variable (or each
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value from the sample) is subjected to the linear or affine transformation, which
replaces X by aX+b, so are the mean, median and mode.

« Except for extremely small samples, the mode is insensitive to “outliers” (such
as occasional, rare, false experimental readings). The median is also very robust
in the presence of outliers, while the mean is rather sensitive.

» In continuous unimodal distributions the median often lies between the mean
and the mode, about one third of the way going from mean to mode. In a for-
mula, median = (2 x mean + mode)/3. This rule, due to Karl Pearson, often
applies to slightly non-symmetric distributions that resemble a normal distri-
bution, but it is not always true and in general the three statistics can appear in

any order.

o Forunimodal distributions, the mode is within standard deviations of the mean,
and the root mean square deviation about the mode is between the standard de-
viation and twice the standard deviation.

Example for a Skewed Distribution

An example of a skewed distribution is personal wealth: Few people are very rich, but
among those some are extremely rich. However, many are rather poor.
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Comparison of mean, median and mode of two
log-normal distributions with different skewness.

A well-known class of distributions that can be arbitrarily skewed is given by the
log-normal distribution. It is obtained by transforming a random variable X having a
normal distribution into random variable Y = e*. Then the logarithm of random vari-
able Y is normally distributed, hence the name.

Taking the mean p of X to be 0, the median of Y will be 1, independent of the standard
deviation o of X. This is so because X has a symmetric distribution, so its median is also
0. The transformation from X to Y'is monotonic, and so we find the median e® = 1 for Y.
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When X has standard deviation o = 0.25, the distribution of Y is weakly skewed. Using
formulas for the log-normal distribution, we find:

2 2
mean — eﬂJro' /2 — e0+0.25 /2 ~ 1.032
_ 2 _0.25?
mode =e"° =" ~0.939
median =e" =¢’ =1

Indeed, the median is about one third on the way from mean to mode.

When X has a larger standard deviation, o = 1, the distribution of Y'is strongly skewed.
Now

2 2
mean =& ="? x1.649
2 2
mode =e¢“° =¢""  ~0.368
median =¢” =¢’ =1

Here, Pearson’s rule of thumb fails.

Van Zwet Condition

Van Zwet derived an inequality which provides sufficient conditions for this inequality
to hold. The inequality

Mode < Median < Mean
holds if
F( Median - x) + F(Median + x) = 1

for all x where F() is the cumulative distribution function of the distribution.

Unimodal Distributions

It can be shown for a unimodal distribution that the median X and the mean X lie
within (3/5)¥2 = 0.7746 standard deviations of each other. In symbols,

[Z-%
L 1<(@3/5"
where |-|is the absolute value.

A similar relation holds between the median and the mode: they lie within 32 = 1.732
standard deviations of each other:

|)~( - mode|

(e}

< 31/2'
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RANGE

In statistics, the range of a set of data is the difference between the largest and smallest
values. Difference here is specific, the range of a set of data is the result of subtracting
the smallest value from largest value.

However, in descriptive statistics, this concept of range has a more complex meaning.
The range is the size of the smallest interval (statistics) which contains all the data and
provides an indication of statistical dispersion. It is measured in the same units as the
data. Since it only depends on two of the observations, it is most useful in representing
the dispersion of small data sets.

For Continuous ITD Random Variables

For nindependent and identically distributed continuous random variables X , X , ..., X

n

with cumulative distribution function G(x) and probability density function g(x). Let T
denote the range of a sample of size n from a population with distribution function G(x).

Distribution

The range has cumulative distribution function,
Ft)=n[" g@)[Gx+1)-G(x)]"dx.

Gumbel notes that the “beauty of this formula is completely marred by the facts that,
in general, we cannot express G(x + t) by G(x), and that the numerical integration is
lengthy and tiresome.”

If the distribution of each X' is limited to the right (or left) then the asymptotic distribu-
tion of the range is equal to the asymptotic distribution of the largest (smallest) value.
For more general distributions the asymptotic distribution can be expressed as a Bessel
function.

Moments

The mean range is given by,
1
n jo (GG -(1-G)'1dG

where x(G) is the inverse function. In the case where each of the X has a standard nor-
mal distribution, the mean range is given by,

| -(-0) -0 )dx
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For Continuous Non-IID Random Variables

For n nonidentically distributed independent continuous random variables X , X, ...,
X with cumulative distribution functions G (x), G,(x), ..., G, (x) and probability density
functions g (x), g,(x), ..., g (x), the range has cumulative distribution function,

F=3[" 2 []1G,(x+)-G,(x)ldx

=l

For Discrete IID Random Variables

For n independent and identically distributed discrete random variables X, X, ...,
X with cumulative distribution function G(x) and probability mass function g(x) the
range of the X, is the range of a sample of size n from a population with distribution
function G(x). We can assume without loss of generality that the support of each X is
{1,2,3,...,N} where N is a positive integer or infinity.

Distribution

The range has probability mass function,

)]:/-1 [g(x):l" t=0

. x+1)-G(x)] t=1,2,3..,N-1
x=1

Example:
If we suppose that g(x) = 1/N, the discrete uniform distribution for all x, then we find,

1
Nn—l

Zﬁf([”ﬁ"—ﬂ%}"ﬂ%}”} (=123, N—1.

t=0

f@)=
N
Derivation

The probability of having a specific range value, t, can be determined by adding the
probabilities of having two samples differing by ¢, and every other sample having a
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value between the two extremes. The probability of one sample having a value of x is
n*g(x). The probability of another having a value ¢ greater than x is:

(n-1)g(x+1).

The probability of all other values lying between these two extremes is:

(I g()a =(6(xrn)-G(x) "

X

Combining the three together yields:

S@=n(n-1)[" g(x)g(x+1)[G(x+1)-G(x)]" dx
Related Quantities

The range is a simple function of the sample maximum and minimum and these are
specific examples of order statisties. In particular, the range is a linear function of order
statistics, which brings it into the scope of L-estimation.

Interquartile Range

IQR I
Q1 Q3
Q1 — 1.5 x IQR Q3 + 1.5 x IQR
Median
r T T T T . T T T 1
—-4o0 -30 —-20 -1lo: [0]e4 i lo 20 30 40
—2.6980 —0.67."450 0.67450 2.6980

24.65%  50%  24.65%
T T T T - T B T T T 1
40 -30 -20 -l 00 1o 20 30 40

15.73% 68.27% 15.73%
—:k:r —:Iicr —:IZG —|10 Ola 1|cr 2lc 36 4|cr

Boxplot (with an interquartile range) and a probability
density function (pdf) of a Normal N(0,02) Population.
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In descriptive statistics, the interquartile range (IQR), also called the midspread or
middle 50%, or technically H-spread, is a measure of statistical dispersion, being equal
to the difference between 75th and 25th percentiles, or between upper and lower quar-

tiles, IQR = Q,- Q.

In other words, the IQR is the first quartile subtracted from the third quartile;
these quartiles can be clearly seen on a box plot on the data. It is a trimmed estima-
tor, defined as the 25% trimmed range, and is a commonly used robust measure of
scale.

The IQR is a measure of variability, based on dividing a data set into quartiles. Quar-
tiles divide a rank-ordered data set into four equal parts. The values that separate parts
are called the first, second, and third quartiles; and they are denoted by Q1, Q2, and Q3,
respectively.

Use

Unlike total range, the interquartile range has a breakdown point of 25%, and is thus
often preferred to the total range.

The IQR is used to build box plots, simple graphical representations of a probability
distribution.

The IQR is used in businesses as a marker for their income rates.

For a symmetric distribution (where the median equals the midhinge, the average
of the first and third quartiles), half the IQR equals the median absolute deviation
(MAD).

The median is the corresponding measure of central tendency.
The IQR can be used to identify outliers.

The quartile deviation or semi-interquartile range is defined as half the IQR.

Algorithm

The IQR of a set of values is calculated as the difference between the upper and lower
quartiles, Q, and Q,. Each quartile is a median calculated as follows.

Given an even 2n or odd 2n+1 number of values:
First quartile Q, = median of the n smallest values,
Third quartile Q, = median of the n largest values.

The second quartile Q, is the same as the ordinary median.
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Data Set in a Table

The following table has 13 rows, and follows the rules for the odd number of entries.

x[i] | Median Quartile

7 Q,=87 Q=31
7 (median of whole table) | (median of upper half, from row 1 to 6)

31
31
47
75
87

115 Q,=119
116 (median of lower half, from row 8 to 13)

O |0 | |O A (W N[

—
=}

119

[y
[

119
155
13 177

[y
N

For the data in this table the interquartile range is IQR = Q, - Q, = 119 - 31 = 88.

Data Set in a Plain-text Box Plot

fo——f——————f———4———F———4———F———4———+———4———+———+ number line
0 1 2 3 4 5 6 7 8 9 10 11 12

For the data set in this box plot:
+ lower (first) quartile Q =7
+ median (second quartile) Q, = 8.5
+ upper (third) quartile Q, = 9
« interquartile range, IQR = Q ,-Q,=2

+ lower 1.5*IQR whisker = Q - 1.5 * IQR =7 - 3 = 4. (If there is no data point at 4,
then the lowest point greater than 4.)

« upper 1.5*IQR whisker = Q,+1.5*IQR=9+3=12. (If there is no data point at
12, then the highest point less than 12.)

This means the 1.5*IQR whiskers can be uneven in lengths.

WORLD TECHNOLOGIES




52 Introductory Statistics

Distributions

The interquartile range of a continuous distribution can be calculated by integrating the
probability density function (which yields the cumulative distribution function—any
other means of calculating the CDF will also work). The lower quartile, Q , is a number
such that integral of the PDF from -« to Q, equals 0.25, while the upper quartile, Q,,
is such a number that the integral from -« to Q, equals 0.75; in terms of the CDF, the
quartiles can be defined as follows:

O, = CDF(0.25),
Q, =CDF '(0.75),
where CDF* is the quantile function.

The interquartile range and median of some common distributions are shown below:

Distribution | Median | IQR
Normal u 2 ®-1(0.75)0 = 1.3490 = (27/20)0
Laplace u 2b In(2) = 1.386b
Cauchy u 2y

Interquartile Range Test for Normality of Distribution

The IQR, mean, and standard deviation of a population P can be used in a simple test of
whether or not P is normally distributed, or Gaussian. If Pis normally distributed, then
the standard score of the first quartile, z, is —0.67, and the standard score of the third
quartile, z, is +0.67. Given mean = X and standard deviation = ¢ for P, if P is normally

distributed, the first quartile,

0 =(0z)+X
and the third quartile,
O,=(0z;)+X

If the actual values of the first or third quartiles differ substantially from the calculated
values, P is not normally distributed. However, a normal distribution can be trivially
perturbed to maintain its Q1 and Q2 std. scores at 0.67 and —0.67 and not be normally
distributed (so the above test would produce a false positive). A better test of normality,
such as Q-Q plot would be indicated here.

Outliers

The interquartile range is often used to find outliers in data. Outliers here are defined
as observations that fall below Q1 — 1.5 IQR or above Q3 + 1.5 IQR. In a boxplot, the
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highest and lowest occurring value within this limit are indicated by whiskers of the
box (frequently with an additional bar at the end of the whisker) and any outliers as
individual points.

1000
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500

1 F

300
[25%-75%
= (345, 464)
200 T Bereich ohne Ausreifer
= (154,821}
@ milde Ausreiber
100 # extremne Ausreiber
Zeit

Box-and-whisker plot with four mild outliers and one extreme
outlier. In this chart, outliers are defined as mild above Q3 + 1.5
IQR and extreme above Q3 + 3 IQR.

STATISTICAL DISPERSION
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Example of samples from two populations with the same mean but different
dispersion. The blue population is much more dispersed than the red population.

In statistics, dispersion (also called variability, scatter, or spread) is the extent to which
a distribution is stretched or squeezed. Common examples of measures of statistical
dispersion are the variance, standard deviation, and interquartile range.
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Dispersion is contrasted with location or central tendency, and together they are the
most used properties of distributions.

Measures

A measure of statistical dispersion is a nonnegative real number that is zero if all the
data are the same and increases as the data become more diverse.

Most measures of dispersion have the same units as the quantity being measured. In
other words, if the measurements are in metres or seconds, so is the measure of disper-
sion. Examples of dispersion measures include:

« Standard deviation.

« Interquartile range (IQR).

e Range.

» Mean absolute difference (also known as Gini mean absolute difference).
e Median absolute deviation (MAD).

« Average absolute deviation (or simply called average deviation).

« Distance standard deviation.

These are frequently used (together with scale factors) as estimators of scale parame-
ters, in which capacity they are called estimates of scale. Robust measures of scale are
those unaffected by a small number of outliers, and include the IQR and MAD.

All the above measures of statistical dispersion have the useful property that they are
location-invariant and linear in scale. This means that if a random variable X has a
dispersion of S, then a linear transformation Y = aX + b for real a and b should have
dispersion S, = |a|S,, where |a| is the absolute value of g, that is, ignores a preceding
negative sign —.

Other measures of dispersion are dimensionless. In other words, they have no units
even if the variable itself has units. These include:

+ Coefficient of variation.
« Quartile coefficient of dispersion.
« Relative mean difference, equal to twice the Gini coefficient.

« Entropy: While the entropy of a discrete variable is location-invariant and
scale-independent, and therefore not a measure of dispersion in the above sense,
the entropy of a continuous variable is location invariant and additive in scale:
If Hz is the entropy of continuous variable z and y=ax+b, then Hy=Hx+log(a).
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There are other measures of dispersion:

« Variance (the square of the standard deviation) — location-invariant but not
linear in scale.

« Variance-to-mean ratio — mostly used for count data when the term coefficient
of dispersion is used and when this ratio is dimensionless, as count data are
themselves dimensionless, not otherwise.

Some measures of dispersion have specialized purposes, among them the Allan vari-
ance and the Hadamard variance.

For categorical variables, it is less common to measure dispersion by a single number.
One measure that does so is the discrete entropy.

Sources

In the physical sciences, such variability may result from random measurement errors:
instrument measurements are often not perfectly precise; i.e.; reproducible, and there
is additional inter-rater variability in interpreting and reporting the measured results.
One may assume that the quantity being measured is stable, and that the variation
between measurements is due to observational error. A system of a large number of
particles is characterized by the mean values of a relatively few number of macroscop-
ic quantities such as temperature, energy, and density. The standard deviation is an
important measure in fluctuation theory, which explains many physical phenomena,
including why the sky is blue.

In the biological sciences, the quantity being measured is seldom unchanging and sta-
ble, and the variation observed might additionally be intrinsic to the phenomenon: It
may be due to inter-individual variability, that is, distinct members of a population
differing from each other. Also, it may be due to intra-individual variability, that is,
one and the same subject differing in tests taken at different times or in other differing
conditions. Such types of variability are also seen in the arena of manufactured prod-
ucts; even there, the meticulous scientist finds variation.

In economics, finance, and other disciplines, regression analysis attempts to explain
the dispersion of a dependent variable, generally measured by its variance, using one
or more independent variables each of which itself has positive dispersion. The fraction
of variance explained is called the coefficient of determination.

A Partial Ordering of Dispersion

A mean-preserving spread (MPS) is a change from one probability distribution A to
another probability distribution B, where B is formed by spreading out one or more
portions of A’s probability density function while leaving the mean (the expected val-
ue) unchanged. The concept of a mean-preserving spread provides a partial ordering
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of probability distributions according to their dispersions: of two probability distribu-
tions, one may be ranked as having more dispersion than the other, or alternatively
neither may be ranked as having more dispersion.

SKEWNESS

30
20 1

10

)

Example distribution with non-zero (positive) skewness.
These data are from experiments on wheat grass growth.

In probability theory and statistics, skewness is a measure of the asymmetry of the
probability distribution of a real-valued random variable about its mean. The skewness
value can be positive or negative, or undefined.

For a unimodal distribution, negative skew commonly indicates that the tail is on the
left side of the distribution, and positive skew indicates that the tail is on the right. In
cases where one tail is long but the other tail is fat, skewness does not obey a simple
rule. For example, a zero value means that the tails on both sides of the mean balance
out overall; this is the case for a symmetric distribution, but can also be true for an
asymmetric distribution where one tail is long and thin, and the other is short but fat.

Consider the two distributions in the figure just below. Within each graph, the values
on the right side of the distribution taper differently from the values on the left side.
These tapering sides are called tails, and they provide a visual means to determine
which of the two kinds of skewness a distribution has:

« Negative skew: The left tail is longer; the mass of the distribution is concen-
trated on the right of the figure. The distribution is said to be left-skewed, left-
tailed, or skewed to the left, despite the fact that the curve itself appears to be
skewed or leaning to the right; left instead refers to the left tail being drawn out
and, often, the mean being skewed to the left of a typical center of the data. A
left-skewed distribution usually appears as a right-leaning curve.
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e Positive skew: The right tail is longer; the mass of the distribution is concen-
trated on the left of the figure. The distribution is said to be right-skewed, right-
tailed, or skewed to the right, despite the fact that the curve itself appears to be
skewed or leaning to the left; right instead refers to the right tail being drawn
out and, often, the mean being skewed to the right of a typical center of the data.
A right-skewed distribution usually appears as a left-leaning curve.

& -

) |/ )

Negative Skew Positive Skew

L
v

Skewness in a data series may sometimes be observed not only graphically but by sim-
ple inspection of the values. For instance, consider the numeric sequence (49, 50, 51),
whose values are evenly distributed around a central value of 50. We can transform this
sequence into a negatively skewed distribution by adding a value far below the mean,
which is probably a negative outlier, e.g. (40, 49, 50, 51). Therefore, the mean of the se-
quence becomes 47.5, and the median is 49.5. Based on the formula of nonparametric
skew, defined as (¢ —Vv)/ o, the skew is negative. Similarly, we can make the sequence
positively skewed by adding a value far above the mean, which is probably a positive
outlier, e.g. (49, 50, 51, 60), where the mean is 52.5, and the median is 50.5.

Relationship of Mean and Median

The skewness is not directly related to the relationship between the mean and median:
a distribution with negative skew can have its mean greater than or less than the medi-
an, and likewise for positive skew.

Mean
Median Median Median
Mode
Mode 1= Mean I Mean= Mode
| | :
] I I
I
1
] I I
] I I
] I I
I I I
I I I
Positive Symmetrical Negative
Skew Distribution Skew

A general relationship of mean and median under differently skewed unimodal distribution.
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In the older notion of nonparametric skew, defined as (#—Vv)/ o, where u is the mean,
vis the median, and o is the standard deviation, the skewness is defined in terms of
this relationship: positive/right nonparametric skew means the mean is greater than
(to the right of) the median, while negative/left nonparametric skew means the mean
is less than (to the left of) the median. However, the modern definition of skewness and
the traditional nonparametric definition do not always have the same sign: while they
agree for some families of distributions, they differ in some of the cases, and conflating
them is misleading.

If the distribution is symmetric, then the mean is equal to the median, and the distri-
bution has zero skewness. If the distribution is both symmetric and unimodal, then
the mean = median = mode. This is the case of a coin toss or the series 1,2,3,4,... Note,
however, that the converse is not true in general, i.e. zero skewness does not imply that
the mean is equal to the median.

A study points out:

“Many textbooks teach arule of thumb stating that the mean is right of the median
under right skew, and left of the median under left skew. This rule fails with sur-
prising frequency. It can fail in multimodal distributions, or in distributions where
one tail is long but the other is heavy. Most commonly, though, the rule fails in dis-
crete distributions where the areas to the left and right of the median are not equal.
Such distributions not only contradict the textbook relationship between mean,
median, and skew, they also contradict the textbook interpretation of the median”.

Households

mode
1500 median
1000 ¢ 9

500
mean I
? Ll Adults
1 2 3 4 5

Distribution of adult residents across US households.

For example, in the distribution of adult residents across US households, the skew is to
the right. However, due to the majority of cases is less or equal to the mode, which is
also the median, the mean sits in the heavier left tail. As a result, the rule of thumb that
the mean is right of the median under right skew failed.
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Definition:
Pearson’s Moment Coefficient of Skewness
The skewness of a random variable X is the third standardized moment z,, defined as:

A5 P L B

o )| o E-w )" "

where (1 is the mean, o is the standard deviation, E is the expectation operator, u, is
the third central moment, and x, are the t-th camulants. It is sometimes referred to as
Pearson’s moment coefficient of skewness, or simply the moment coefficient of skew-
ness, but should not be confused with Pearson’s other skewness statistics. The last
equality expresses skewness in terms of the ratio of the third cumulant «, to the 1.5th
power of the second cumulant x,. This is analogous to the definition of kurtosis as the
fourth cumulant normalized by the square of the second cumulant. The skewness is
also sometimes denoted Skew[X].

If o is finite, u is finite too and skewness can be expressed in terms of the non-central
moment E[X3] by expanding the previous formula,

Ay

_ E[X°]-3uBLX*]+ 34" BX]- o’

3
(o}

_ E[X°]-3u(E[X”]- uB[X]) - 4’

3
(o)

_ E[X3]—3,uc72—,u3.

3
o

Examples:

Skewness can be infinite, as when,

Pr[X >x]=x7 for x>1,Pr[X <1]=0

where the third cumulants are infinite, or as when,

Pr{X < x]=(1-x)" /2 for negative x and
Pr{X > x]=(1+x)" /2 for positive x.

where the third cumulant is undefined.
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Examples of distributions with finite skewness include the following.

+ A normal distribution and any other symmetric distribution with finite third
moment has a skewness of 0.

« A half-normal distribution has a skewness just below 1.
« An exponential distribution has a skewness of 2.

« Alognormal distribution can have a skewness of any positive value, depending
on its parameters.

Properties

Starting from a standard cumulant expansion around a normal distribution, one can
show that:

skewness = 3 (mean — median)/standard deviation + O (skewness?).

If Yis the sum of n independent and identically distributed random variables, all with
the distribution of X, then the third cumulant of Y'is n times that of X and the second
cumulant of Y is n times that of X, so Skew[Y]= Skew[X]/ J7n . This shows that the
skewness of the sum is smaller, as it approaches a Gaussian distribution in accordance
with the central limit theorem. Note that the assumption that the variables be indepen-
dent for the above formula is very important because it is possible even for the sum of
two Gaussian variables to have a skewed distribution.

Sample Skewness

For a sample of n values, a natural method of moments estimator of the population
skewness is:

n n
—\3 —\3
%Z(xi_x) %Z(xi_x)
b1:_33: i=1 - — i=1

- B 3/2 0
_ —\2
ﬁ (xi_x)z |:nllz(xi_x) :|
i=1

i=1

where X is the sample mean, s is the sample standard deviation, and the numerator
m,_ is the sample third central moment. This formula can be thought of as the average
cubed deviation in the sample divided by the cubed sample standard deviation.

Another common definition of the sample skewness is:

2
ky n m,

G = = 3
B m-D(n-2) 5
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1 .
:m my _\/”(T_l) ;;(xi—x)
_2 v _2 n 3/2 |°

where £, is the unique symmetric unbiased estimator of the third cumulant and &, = s*
is the symmetric unbiased estimator of the second cumulant (i.e. the variance).

In general, the ratios b, and G, are both biased estimators of the population skewness
7,; their expected values can even have the opposite sign from the true skewness. (For
instance, a mixed distribution consisting of very thin Gaussians centred at —99, 0.5,
and 2 with weights 0.01, 0.66, and 0.33 has a skewness of about —9.77, but in a sample
of 3, G,has an expected value of about 0.32, since usually all three samples are in the
positive-valued part of the distribution, which is skewed the other way.) Nevertheless,
b, and G, each have obviously the correct expected value of zero for any symmetric dis-
tribution with a finite third moment, including a normal distribution.

Under the assumption that the underlying random variable X is normally distributed,

it can be shown that \/;bl —4 5 N(0,6), i.e., its distribution converges to a normal dis-
tribution with mean 0 and variance 6. The variance of the skewness of a random sample
of size n from a normal distribution is:

6n(n—1)
(n=2)n+D)(n+3)

var(G,) =

An approximate alternative is 6/n, but this is inaccurate for small samples.
In normal samples, b, has the smaller variance of the two estimators, with:
m,

var(b,) < Var( 5 J <var(G,),
m

2

where m, in the denominator is the (biased) sample second central moment.

The adjusted Fisher—Pearson standardized moment coefficient G;is the version found
in Excel and several statistical packages including Minitab, SAS and SPSS.

Applications

Skewness is a descriptive statistic that can be used in conjunction with the histogram
and the normal quantile plot to characterize the data or distribution.

Skewness indicates the direction and relative magnitude of a distribution’s deviation
from the normal distribution.
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With pronounced skewness, standard statistical inference procedures such as a confi-
dence interval for a mean will be not only incorrect, in the sense that the true coverage
level will differ from the nominal (e.g., 95%) level, but they will also result in unequal

error probabilities on each side.

Skewness can be used to obtain approximate probabilities and quantiles of distribu-
tions (such as value at risk in finance) via the Cornish-Fisher expansion.

Many models assume normal distribution; i.e., data are symmetric about the mean.
The normal distribution has a skewness of zero. But in reality, data points may not
be perfectly symmetric. So, an understanding of the skewness of the dataset indicates
whether deviations from the mean are going to be positive or negative.

D’Agostino’s K-squared test is a goodness-of-fit normality test based on sample skew-
ness and sample kurtosis.

Other Measures of Skewness
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Comparison of mean, median and mode of two
log-normal distributions with different skewnesses.

Other measures of skewness have been used, including simpler calculations suggested
by Karl Pearson These other measures are:

Pearson’s First Skewness Coefficient (Mode Skewness)
The Pearson mode skewness, or first skewness coefficient, is defined as:

(mean — mode)/standard deviation.

Pearson’s Second Skewness Coefficient (Median Skewness)
The Pearson median skewness, or second skewness coefficient, is defined as:
3 (mean — median)/standard deviation.

Which is a simple multiple of the nonparametric skew.
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Quartile-based Measures

Bowley’s measure of skewness, also called Yule’s coefficient is defined as:

5 0+0-20,
1
Q3 - Q]
O+0 0
2
When writing it as 5—Q’ it is easier to see that the numerator is the average
3T 2

2
of the upper and lower quartiles (a measure of location) minus the median while the

denominator is (Q3-Q1)/2 which (for symmetric distributions) is the MAD measure of
dispersion.

Other names for this measure are Galton’s measure of skewness, the Yule—Kendall in-
dex and the quartile skewness,

A more general formulation of a skewness function was described by Groeneveld, R. A.
and Meeden, G:

F'u)+ F'(1-u)—-2F'(1/2)
F'(u)-F'(1-u)

y(u)=

where F is the cumulative distribution function. This leads to a corresponding over-
all measure of skewness defined as the supremum of this over the range 1/2 < u < 1.
Another measure can be obtained by integrating the numerator and denominator of this
expression. The function y(u) satisfies —1 < y(u) < 1 and is well defined without requiring
the existence of any moments of the distribution. Quantile-based skewness measures are
at first glance easy to interpret, but they often show significantly larger sample variations,
than moment-based methods. This means that often samples from a symmetric distribu-
tion (like the uniform distribution) have a large quantile-based skewness, just by chance.

Bowley’s measure of skewness is y(u) evaluated at u = 3/4. Kelley’s measure of skew-
ness uses u = 0.1.

Groeneveld and Meeden’s Coefficient

Groeneveld and Meeden have suggested, as an alternative measure of skewness,

B, = skew(X) = E((&;_Vib

where u is the mean, v is the median, |...| is the absolute value, and E() is the expecta-
tion operator. This is closely related in form to Pearson’s second skewness coefficient.
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L-moments

Use of L-moments in place of moments provides a measure of skewness known as the
L-skewness.

Distance Skewness

A value of skewness equal to zero does not imply that the probability distribution is
symmetric. Thus there is a need for another measure of asymmetry that has this prop-
erty: such a measure was introduced in 2000. It is called distance skewness and denot-
ed by dSkew. If X is a random variable taking values in the d-dimensional Euclidean
space, X has finite expectation, X is an independent identically distributed copy of X,

and || - || denotes the norm in the Euclidean space, then a simple measure of asymme-
try with respect to location parameter 0 is,

B[ X - X"l
El| X+X'-20|

dSkew(X):=1- ifPr(X =0) =1

and dSkew(X) := o for X = 0 (with probability 1). Distance skewness is always between
0 and 1, equals o if and only if X is diagonally symmetric with respect to 0 (X and 20-X
have the same probability distribution) and equals 1 if and only if X is a constant ¢ (
¢ # 6) with probability one. Thus there is a simple consistent statistical test of diagonal
symmetry based on the sample distance skewness:

Zi,j ” X; _xj ”

> X +x, =20
Ly

dSkew, (X) =1~

Medcouple

The medcouple is a scale-invariant robust measure of skewness, with a breakdown
point of 25%. It is the median of the values of the kernel function,

(x; —x,) = (x, —x))

xi—xj

h(x;,x;) =

taken over all couples (x,,x,) suchthat x, > x,, > x;, where x,, is the median of the sample
{x,,x,,...,x,}.. It can be seen as the median of all possible quantile skewness measures.

STANDARD DEVIATION

In statistics, the standard deviation (SD, also represented by the lower case Greek let-
ter sigma o for the population standard deviation or the Latin letter s for the sample
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standard deviation) is a measure of the amount of variation or dispersion of a set of
values. A low standard deviation indicates that the values tend to be close to the mean
(also called the expected value) of the set, while a high standard deviation indicates that
the values are spread out over a wider range.

34.1% 34.1%

13.6%
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A plot of normal distribution (or bell-shaped curve) where
each band has a width of 1 standard deviation.
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&
RS
iy 0.5
A
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Cumulative probability of a normal distribution with
expected value 0 and standard deviation 1.

The standard deviation of a random variable, statistical population, data set, or proba-
bility distribution is the square root of its variance. It is algebraically simpler, though in
practice less robust, than the average absolute deviation. A useful property of the stan-
dard deviation is that, unlike the variance, it is expressed in the same units as the data.

In addition to expressing the variability of a population, the standard deviation is com-
monly used to measure confidence in statistical conclusions. For example, the margin
of error in polling data is determined by calculating the expected standard deviation
in the results if the same poll were to be conducted multiple times. This derivation of
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a standard deviation is often called the “standard error” of the estimate or “standard
error of the mean” when referring to a mean. It is computed as the standard deviation
of all the means that would be computed from that population if an infinite number of
samples were drawn and a mean for each sample were computed.

The standard deviation of a population and the standard error of a statistic derived
from that population (such as the mean) are quite different but related (related by the
inverse of the square root of the number of observations). The reported margin of error
of a poll is computed from the standard error of the mean (or alternatively from the
product of the standard deviation of the population and the inverse of the square root
of the sample size, which is the same thing) and is typically about twice the standard
deviation—the half-width of a 95 percent confidence interval.

In science, many researchers report the standard deviation of experimental data, and
by convention, only effects more than two standard deviations away from a null ex-
pectation are considered statistically significant—normal random error or variation
in the measurements is in this way distinguished from likely genuine effects or as-
sociations. The standard deviation is also important in finance, where the standard
deviation on the rate of return on an investment is a measure of the volatility of the
investment.

When only a sample of data from a population is available, the term standard devia-
tion of the sample or sample standard deviation can refer to either the above-men-
tioned quantity as applied to those data, or to a modified quantity that is an unbiased
estimate of the population standard deviation (the standard deviation of the entire
population).

Sample Standard Deviation of Metabolic Rate of Northern Fulmars

Logan gives the following example. Furness and Bryant measured the resting metabolic
rate for 8 male and 6 female breeding northern fulmars. The table shows the Furness
data set.

Furness data set on metabolic rates of northern fulmars
Sex | Metabolic rate Sex Metabolic rate

Male 525.8 Female 727.7

Male 605.7 Female 1086.5

Male 843.3 Female 1091.0

Male 1195.5 Female 1361.3

Male 1945.6 Female 1490.5

Male 2135.6 Female 1956.1

Male 2308.7

Male 2050.0
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The graph shows the metabolic rate for males and females. By visual inspection, it ap-

pears that the variability of the metabolic rate is greater for males than for females.

Metabolic rate

2000~

Metabolic rate versus sex
for 14 northern fulmars

3000 -

1000 -

'
Female

Male
Sex

The sample standard deviation of the metabolic rate for the female fulmars is calculat-

ed as follows. The formula for the sample standard deviation is,

s = ;i(x —x)
N-157" T

where {x,,x,,...,x, } are the observed values of the sample items, X is the mean value of
these observations, and N is the number of observations in the sample.

In the sample standard deviation formula, for this example, the numerator is the sum of
the squared deviation of each individual animal’s metabolic rate from the mean metabolic
rate. The table below shows the calculation of this sum of squared deviations for the female
fulmars. For females, the sum of squared deviations is 886047.09, as shown in the table.

Sum of squares calculation for female fulmars
Animal Sex Metabolic rate | Mean Difference from mean Squared difference
from mean
1 Female 727.7 1285.5 -557.8 311140.84
2 Female 1086.5 1285.5 -199.0 39601.00
3 Female 1091.0 1285.5 -194.5 37830.25
4 Female 1361.3 1285.5 75.8 5745.64
5 Female 1490.5 1285.5 205.0 42025.00
6 Female 1956.1 1285.5 670.6 449704.36
Mean of metabolic rates | 1285.5 | Sum of squared differences | 886047.09
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The denominator in the sample standard deviation formula is N — 1, where N is the
number of animals. In this example, there are N = 6 females, so the denominator is 6 —
1 = 5. The sample standard deviation for the female fulmars is therefore,

N

Z(xi _f)z

= _ /886047.09 _ 420.96.
N -1 5

For the male fulmars, a similar calculation gives a sample standard deviation of 894.37,
approximately twice as large as the standard deviation for the females. The graph shows
the metabolic rate data, the means (red dots), and the standard deviations (red lines)
for females and males.

Sample standard deviation of
metabolic rate in male and female fulmars
3000 =
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1 Std. Dev. = 421 .
1000 -
[ ]
L ]
-
.
:emal e r\a1-.1IF'.l
Sex

Use of the sample standard deviation implies that these 14 fulmars are a sample from a
larger population of fulmars. If these 14 fulmars comprised the entire population (per-
haps the last 14 surviving fulmars), then instead of the sample standard deviation, the
calculation would use the population standard deviation. In the population standard
deviation formula, the denominator is N instead of N - 1. It is rare that measurements
can be taken for an entire population, so, by default, statistical computer programs
calculate the sample standard deviation.

Population Standard Deviation of Grades of Eight Students

Suppose that the entire population of interest was eight students in a particular class.
For a finite set of numbers, the population standard deviation is found by taking the
square root of the average of the squared deviations of the values subtracted from their
average value. The marks of a class of eight students (that is, a statistical population)
are the following eight values:

2,4,4,4,5,5,7,9.
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These eight data points have the mean (average) of 5:

2+4+4+4+5+5+74+9
ﬂ: 8 =

5.

First, calculate the deviations of each data point from the mean, and square the result
of each:

(2-5)"=(-3)*=9 (5-5°=0"=0
(4-57°=(-1)"=1 (5-5°=0"=0
(4-5)7=(-1)* =1 (7-52=2=4
(4-57=(-1)"=1 (9-5)* =4% =16.

The variance is the mean of these values:

5’ _9+1+1+1+0+0+4+16
8

4.

and the population standard deviation is equal to the square root of the variance:
o=4=2.

This formula is valid only if the eight values with which we began form the complete
population. If the values instead were a random sample drawn from some large parent
population (for example, they were 8 students randomly and independently chosen
from a class of 2 million), then one often divides by 7 (which is n — 1) instead of 8 (which
is n) in the denominator of the last formula. In that case the result of the original for-
mula would be called the sample standard deviation. Dividing by n — 1 rather than by
n gives an unbiased estimate of the variance of the larger parent population. This is
known as Bessel’s correction.

Standard Deviation of Average Height for Adult Men

If the population of interest is approximately normally distributed, the standard devi-
ation provides information on the proportion of observations above or below certain
values. For example, the average height for adult men in the United States is about 70
inches (177.8 cm), with a standard deviation of around 3 inches (7.62 cm). This means
that most men (about 68%, assuming a normal distribution) have a height within 3
inches (7.62 cm) of the mean (67—73 inches (170.18—185.42 cm)) — one standard devi-
ation — and almost all men (about 95%) have a height within 6 inches (15.24 cm) of the
mean (64—76 inches (162.56—193.04 cm)) — two standard deviations. If the standard
deviation were zero, then all men would be exactly 70 inches (177.8 cm) tall. If the stan-
dard deviation were 20 inches (50.8 cm), then men would have much more variable
heights, with a typical range of about 50—90 inches (127-228.6 ¢cm). Three standard
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deviations account for 99.7% of the sample population being studied, assuming the
distribution is normal (bell-shaped).

Definition of Population Values
Let X be a random variable with mean value u:

E[X]=p.

Here the operator E denotes the average or expected value of X. Then the standard
deviation of X is the quantity

o =+EB[(X -u)’]

= JE[X?]+ E[-2uX]+E[1]

= JE[X*]-24E[X ]+ 1’
= JE[X?]= 24 + 41
= VE[X?]-

— JELX?]=(E[X])

(derived using the properties of expected value).

In other words, the standard deviation o (sigma) is the square root of the variance of X;
i.e., it is the square root of the average value of (X — u)>.

The standard deviation of a (univariate) probability distribution is the same as that of
a random variable having that distribution. Not all random variables have a standard
deviation, since these expected values need not exist. For example, the standard devi-
ation of a random variable that follows a Cauchy distribution is undefined because its
expected value u is undefined.

Discrete Random Variable

In the case where X takes random values from a finite data set x, x,, ..., x,, with each
value having the same probability, the standard deviation is,

1 1
a=\/ﬁ[(xl—m%(xz—u)2+---+<xN—m2], where 1= (x +-+x,)

or, using summation notation,

1 N ) 1 N
o=,—) (x,—u), where u=—)>» x,.
1/N;,(, 1) H NZ;‘
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If, instead of having equal probabilities, the values have different probabilities, let x,
have probability p , x, have probability p,, ..., x, have probability p,. In this case, the
standard deviation will be,

o= /ipl (x,—u)*, where u= ipixi.
i=I i=1

Continuous Random Variable

The standard deviation of a continuous real-valued random variable X with probability
density function p(x) is,

o= \/I (x— )’ p(x)dx, where u= pr(x)dx,

and where the integrals are definite integrals taken for x ranging over the set of possible
values of the random variable X.

In the case of a parametric family of distributions, the standard deviation can be ex-
pressed in terms of the parameters. For example, in the case of the log-normal distri-
bution with parameters i and 02, the standard deviation is,

(eaz _1)e2ﬂ+a’2

Estimation

One can find the standard deviation of an entire population in cases (such as stan-
dardized testing) where every member of a population is sampled. In cases where that
cannot be done, the standard deviation o is estimated by examining a random sample
taken from the population and computing a statistic of the sample, which is used as an
estimate of the population standard deviation. Such a statistic is called an estimator,
and the estimator (or the value of the estimator, namely the estimate) is called a sample
standard deviation, and is denoted by s (possibly with modifiers).

Unlike in the case of estimating the population mean, for which the sample mean is a
simple estimator with many desirable properties (unbiased, efficient, maximum likeli-
hood), there is no single estimator for the standard deviation with all these properties,
and unbiased estimation of standard deviation is a very technically involved problem.
Most often, the standard deviation is estimated using the corrected sample standard
deviation (using N — 1), defined below, and this is often referred to as the “sample
standard deviation”, without qualifiers. However, other estimators are better in other
respects: the uncorrected estimator (using N) yields lower mean squared error, while
using N - 1.5 (for the normal distribution) almost completely eliminates bias.
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Uncorrected Sample Standard Deviation

The formula for the population standard deviation (of a finite population) can be applied to
the sample, using the size of the sample as the size of the population (though the actual pop-
ulation size from which the sample is drawn may be much larger). This estimator, denoted
by s,, is known as the uncorrected sample standard deviation, or sometimes the standard
deviation of the sample (considered as the entire population), and is defined as follows:

1Y —
Sy = WZ(xi—x) ,
i=l

where {x,,x,,...,x, } are the observed values of the sample items and X is the mean val-
ue of these observations, while the denominator N stands for the size of the sample: this
is the square root of the sample variance, which is the average of the squared deviations
about the sample mean.

This is a consistent estimator (it converges in probability to the population value as
the number of samples goes to infinity), and is the maximum-likelihood estimate when
the population is normally distributed. However, this is a biased estimator, as the es-
timates are generally too low. The bias decreases as sample size grows, dropping off as
1/N, and thus is most significant for small or moderate sample sizes; for N > 75 the bias
is below 1%. Thus for very large sample sizes, the uncorrected sample standard devia-
tion is generally acceptable. This estimator also has a uniformly smaller mean squared
error than the corrected sample standard deviation.

Corrected Sample Standard Deviation

If the biased sample variance (the second central moment of the sample, which is a
downward-biased estimate of the population variance) is used to compute an estimate
of the population’s standard deviation, the result is,

Sy :Q/%iz]::(xi _)T)z'

Here taking the square root introduces further downward bias, by Jensen’s inequality,
due to the square root’s being a concave function. The bias in the variance is easily cor-
rected, but the bias from the square root is more difficult to correct, and depends on the
distribution in question.

An unbiased estimator for the variance is given by applying Bessel’s correction, using
N - 1instead of N to yield the unbiased sample variance, denoted s2:

s? :—1 i(x ~-x)
N-155
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This estimator is unbiased if the variance exists and the sample values are drawn inde-
pendently with replacement. N — 1 corresponds to the number of degrees of freedom in
the vector of deviations from the mean,

(x,=x,...,x, —X).
Taking square roots reintroduces bias (because the square root is a nonlinear function,

which does not commute with the expectation), yielding the corrected sample stan-
dard deviation, denoted by s:

S:\/ﬁg(%_f)2~

As explained above, while s? is an unbiased estimator for the population variance, s is
still a biased estimator for the population standard deviation, though markedly less
biased than the uncorrected sample standard deviation. This estimator is commonly
used and generally known simply as the “sample standard deviation”. The bias may
still be large for small samples (IVless than 10). As sample size increases, the amount of
1

N-1

. ) i ) ) 1
bias decreases. We obtain more information and the difference between — and
becomes smaller. N

Unbiased Sample Standard Deviation

For unbiased estimation of standard deviation, there is no formula that works across all
distributions, unlike for mean and variance. Instead, s is used as a basis, and is scaled
by a correction factor to produce an unbiased estimate. For the normal distribution, an
unbiased estimator is given by s/c,, where the correction factor (which depends on N)
is given in terms of the Gamma function, and equals:

=)
¢,(N)= N—1 F(]V_lj
2

This arises because the sampling distribution of the sample standard deviation fol-
lows a (scaled) chi distribution, and the correction factor is the mean of the chi dis-
tribution.

An approximation can be given by replacing N — 1 with N - 1.5, yielding:

. 1 & =2
o= E X —X),
\/N_l.s i=1( ' )
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The error in this approximation decays quadratically (as 1/N?), and it is suited for all
but the smallest samples or highest precision: for N = 3 the bias is equal to 1.3%, and
for N = 9 the bias is already less than 0.1%. A more accurate approximation is to replace
N —1.5above with N —-1.5+1/(8(N —1)).

For other distributions, the correct formula depends on the distribution, but a rule of
thumb is to use the further refinement of the approximation:

L O i
= IR
N_1.5_17/2 =l

where y, denotes the population excess kurtosis. The excess kurtosis may be either
known beforehand for certain distributions, or estimated from the data.

Confidence Interval of a Sampled Standard Deviation

The standard deviation we obtain by sampling a distribution is itself not absolutely
accurate, both for mathematical reasons (explained here by the confidence interval)
and for practical reasons of measurement (measurement error). The mathematical ef-
fect can be described by the confidence interval or CI. To show how a larger sample
will make the confidence interval narrower, consider the following examples: A small
population of N = 2 has only 1 degree of freedom for estimating the standard deviation.
The result is that a 95% CI of the SD runs from 0.45 x SD to 31.9 x SD; the factors here
are as follows:

2 o 2

2
Pr(qa <ks—2<q aJ=1—a,
hud 1-

where ¢, is the p-th quantile of the chi-square distribution with k degrees of freedom,
and 1- « is the confidence level. This is equivalent to the following:

2 2

Pr| &k 5 <0'2<ks— =l-a.
CI1 o q,
2 2

With k = 1, ¢,,,; =0.000982and ¢, ,,; =5.024. The reciprocals of the square roots of
these two numbers give us the factors 0.45 and 31.9 given above.

A larger population of N = 10 has 9 degrees of freedom for estimating the standard
deviation. The same computations as above give us in this case a 95% CI running from
0.69 x SD to 1.83 x SD. So even with a sample population of 10, the actual SD can still
be almost a factor 2 higher than the sampled SD. For a sample population N=100, this
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is down to 0.88 x SD to 1.16 x SD. To be more certain that the sampled SD is close to
the actual SD we need to sample a large number of points.

These same formulae can be used to obtain confidence intervals on the variance of
residuals from a least squares fit under standard normal theory, where k is now the
number of degrees of freedom for error.

Bounds on Standard Deviation

For a set of N > 4 data spanning a range of values R, an upper bound on the standard de-
viation s is given by s = 0.6R. An estimate of the standard deviation for N > 100 data taken
to be approximately normal follows from the heuristic that 95% of the area under the
normal curve lies roughly two standard deviations to either side of the mean, so that, with
95% probability the total range of values R represents four standard deviations so that s =
R/4. This so-called range rule is useful in sample size estimation, as the range of possible
values is easier to estimate than the standard deviation. Other divisors K(N) of the range
such that s = R/K(N) are available for other values of N and for non-normal distributions.

Identities and Mathematical Properties

The standard deviation is invariant under changes in location, and scales directly with
the scale of the random variable. Thus, for a constant ¢ and random variables X and Y:

o(c)=0
o(X +c)=0(X),
o(cX)=|c|o(X).

The standard deviation of the sum of two random variables can be related to their indi-
vidual standard deviations and the covariance between them:

oc(X+Y)= \/Val‘(X)-i-Val’(Y)-l-ZCOV(X, Y).

2 . . .
where var=0"and cov stand for variance and covariance, respectively.

The calculation of the sum of squared deviations can be related to moments calculated
directly from the data. In the following formula, the letter E is interpreted to mean ex-
pected value, i.e., mean.

o(X) =E[(X —E[X])’] =ELX"]—- (E[X])".

The sample standard deviation can be computed as:

S00) = | EICC - ELXD)
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For a finite population with equal probabilities at all points, we have:

1 N — 1 N ) — 1 N 5 1 N 2
,/N;(xi_x) :\/ﬁ[;xij_(x) = [ﬁ;sz_(W;xzj

This means that the standard deviation is equal to the square root of the difference
between the average of the squares of the values and the square of the average value.

Interpretation and Application
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Example of samples from two populations with the same mean
but different standard deviations. Red population has mean 100
and SD 10; blue population has mean 100 and SD 50.

A large standard deviation indicates that the data points can spread far from the mean
and a small standard deviation indicates that they are clustered closely around the mean.

For example, each of the three populations {o, o, 14, 14}, {0, 6, 8, 14} and {6, 6, 8, 8}
has a mean of 7. Their standard deviations are 7, 5, and 1, respectively. The third popu-
lation has a much smaller standard deviation than the other two because its values are
all close to 7. It will have the same units as the data points themselves. If, for instance,
the data set {0, 6, 8, 14} represents the ages of a population of four siblings in years, the
standard deviation is 5 years. As another example, the population {1000, 1006, 1008,
1014} may represent the distances traveled by four athletes, measured in meters. It has
a mean of 1007 meters, and a standard deviation of 5 meters.

Standard deviation may serve as a measure of uncertainty. In physical science, for ex-
ample, the reported standard deviation of a group of repeated measurements gives the
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precision of those measurements. When deciding whether measurements agree with
a theoretical prediction, the standard deviation of those measurements is of crucial
importance: If the mean of the measurements is too far away from the prediction (with
the distance measured in standard deviations), then the theory being tested probably
needs to be revised. This makes sense since they fall outside the range of values that
could reasonably be expected to occur, if the prediction were correct and the standard
deviation appropriately quantified.

While the standard deviation does measure how far typical values tend to be from the
mean, other measures are available. An example is the mean absolute deviation, which
might be considered a more direct measure of average distance, compared to the root
mean square distance inherent in the standard deviation.

Application Examples

The practical value of understanding the standard deviation of a set of values is in ap-
preciating how much variation there is from the average (mean).

Experiment, Industrial and Hypothesis Testing

Standard deviation is often used to compare real-world data against a model to test
the model. For example, in industrial applications the weight of products coming off
a production line may need to comply with a legally required value. By weighing some
fraction of the products an average weight can be found, which will always be slightly
different from the long-term average. By using standard deviations, a minimum and
maximum value can be calculated that the averaged weight will be within some very
high percentage of the time (99.9% or more). If it falls outside the range then the pro-
duction process may need to be corrected. Statistical tests such as these are particularly
important when the testing is relatively expensive. For example, if the product needs to
be opened and drained and weighed, or if the product was otherwise used up by the test.

In experimental science, a theoretical model of reality is used. Particle physics conven-
tionally uses a standard of “5 sigma” for the declaration of a discovery. A five-sigma
level translates to one chance in 3.5 million that a random fluctuation would yield the
result. This level of certainty was required in order to assert that a particle consistent
with the Higgs boson had been discovered in two independent experiments at CERN,
and this was also the significance level leading to the declaration of the first detection
of gravitational waves.

Weather

As a simple example, consider the average daily maximum temperatures for two cities,
one inland and one on the coast. It is helpful to understand that the range of daily maxi-
mum temperatures for cities near the coast is smaller than for cities inland. Thus, while
these two cities may each have the same average maximum temperature, the standard
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deviation of the daily maximum temperature for the coastal city will be less than that
of the inland city as, on any particular day, the actual maximum temperature is more
likely to be farther from the average maximum temperature for the inland city than for
the coastal one.

Finance

In finance, standard deviation is often used as a measure of the risk associated with
price-fluctuations of a given asset (stocks, bonds, property, etc.), or the risk of a port-
folio of assets (actively managed mutual funds, index mutual funds, or ETFs). Risk
is an important factor in determining how to efficiently manage a portfolio of invest-
ments because it determines the variation in returns on the asset and/or portfolio and
gives investors a mathematical basis for investment decisions (known as mean-vari-
ance optimization). The fundamental concept of risk is that as it increases, the ex-
pected return on an investment should increase as well, an increase known as the risk
premium. In other words, investors should expect a higher return on an investment
when that investment carries a higher level of risk or uncertainty. When evaluating
investments, investors should estimate both the expected return and the uncertainty
of future returns. Standard deviation provides a quantified estimate of the uncertain-
ty of future returns.

For example, assume an investor had to choose between two stocks. Stock A over the
past 20 years had an average return of 10 percent, with a standard deviation of 20
percentage points (pp) and Stock B, over the same period, had average returns of 12
percent but a higher standard deviation of 30 pp. On the basis of risk and return, an
investor may decide that Stock A is the safer choice, because Stock B’s additional two
percentage points of return is not worth the additional 10 pp standard deviation (great-
er risk or uncertainty of the expected return). Stock B is likely to fall short of the initial
investment (but also to exceed the initial investment) more often than Stock A under
the same circumstances, and is estimated to return only two percent more on average.
In this example, Stock A is expected to earn about 10 percent, plus or minus 20 pp (a
range of 30 percent to —10 percent), about two-thirds of the future year returns. When
considering more extreme possible returns or outcomes in future, an investor should
expect results of as much as 10 percent plus or minus 60 pp, or a range from 70 percent
to —50 percent, which includes outcomes for three standard deviations from the aver-
age return (about 99.7 percent of probable returns).

Calculating the average (or arithmetic mean) of the return of a security over a given
period will generate the expected return of the asset. For each period, subtracting the
expected return from the actual return results in the difference from the mean. Squar-
ing the difference in each period and taking the average gives the overall variance of
the return of the asset. The larger the variance, the greater risk the security carries.
Finding the square root of this variance will give the standard deviation of the invest-
ment tool in question.
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Population standard deviation is used to set the width of Bollinger Bands, a widely ad-
opted technical analysis tool. For example, the upper Bollinger Band is given as X + no..
The most commonly used value for n is 2; there is about a five percent chance of going
outside, assuming a normal distribution of returns.

Financial time series are known to be non-stationary series, whereas the statistical cal-
culations above, such as standard deviation, apply only to stationary series. To apply
the above statistical tools to non-stationary series, the series first must be transformed
to a stationary series, enabling use of statistical tools that now have a valid basis from
which to work.

Geometric Interpretation

To gain some geometric insights and clarification, we will start with a population of
three values, x, x,, X, This defines a point P = (x,, x,, xs) in R3. Consider the line L =
{(r, r, ) : r € R}. This is the “main diagonal” going through the origin. If our three
given values were all equal, then the standard deviation would be zero and P would lie
on L. So it is not unreasonable to assume that the standard deviation is related to the
distance of P to L. That is indeed the case. To move orthogonally from L to the point P,
one begins at the point:

M =(x,x,x)
whose coordinates are the mean of the values we started out with.
M is on L therefore M =(/,/,/) for some / € R.

The line L is to be orthogonal to the vector from M to P . Therefore:

L-(P-M)=0
(r,r,r)-(x,=l,x, =, x;—0)=0
r(x,—l+x,—l+x,—0)=0

r(in—%j:O
D x,-30=0
%Zj:xizf

x=1{

A little algebra shows that the distance between P and M (which is the same as the
orthogonal distance between P and the line L) fZ(xi —X)* is equal to the standard
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deviation of the vector (x, x,, x 3), multiplied by the square root of the number of dimen-
sions of the vector (3 in this case).

Chebyshev’s Inequality

An observation is rarely more than a few standard deviations away from the mean. Che-
byshev’s inequality ensures that, for all distributions for which the standard deviation
is defined, the amount of data within a number of standard deviations of the mean is at
least as much as given in the following table.

Distance from mean | Minimum population
\/5 o 50%
20 75%
30 89%
40 94%
50 96%
60 97%
1
ko 1- el
1-7

Rules for Normally Distributed Data

34.1% 34.1%

0.0 01 0.2 03 04

Dark blue is one standard deviation on either side of the mean. For the normal distri-
bution, this accounts for 68.27 percent of the set; while two standard deviations from
the mean (medium and dark blue) account for 95.45 percent; three standard deviations
(light, medium, and dark blue) account for 99.73 percent; and four standard deviations
account for 99.994 percent. The two points of the curve that are one standard deviation
from the mean are also the inflection points.

The central limit theorem states that the distribution of an average of many independent,
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identically distributed random variables tends toward the famous bell-shaped normal
distribution with a probability density function of:

. 2y _ _%(%T
f(x,ﬂ,O' )_O'\/Ee

where u is the expected value of the random variables, o equals their distribution’s
standard deviation divided by n'/?, and n is the number of random variables. The stan-
dard deviation therefore is simply a scaling variable that adjusts how broad the curve
will be, though it also appears in the normalizing constant.

If a data distribution is approximately normal, then the proportion of data values with-
in z standard deviations of the mean is defined by:

Proportion = erf (i

&

where erf is the error function. The proportion that is less than or equal to a number,
X, is given by the cumulative distribution function:

ProportionSx—l[1+erf£O_\/_ﬂ 1{1+erf[\/§ﬂ.

If a data distribution is approximately normal then about 68 percent of the data values
are within one standard deviation of the mean (mathematically, 4 + o, where u is the
arithmetic mean), about 95 percent are within two standard deviations (u + 20), and
about 99.7 percent lie within three standard deviations (i £ 30). This is known as the
68-95-99.7 rule, or the empirical rule.

For various values of z, the percentage of values expected to lie in and outside the sym-
metric interval, CI = (-zo, zo), are as follows:

1

09 - -

08 - -

0.7 - -1

06 - -

a 05 ,

0.4 | -

03 -1

0.2 |- -

01 1

0 1 1 | | 1 1 1

Percentage within (z2).
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4 T T
3.5 -1
p
z (Percentage within).
Confidence Proportion without
interval Percentage Percentage Fraction
0.318 6390 | 25% 75% 3/4
0.6744900 | 50% 50% 1/2
0.9944580 | 68% 32% 1/3.125
10 68.2689492% 31.7310508% 1/ 3.1514872
1.2815520 80% 20% 1/5
1.6448540 | 90% 10% 1/10
1.9599640 | 95% 5% 1/20
20 95.4499736% 4.5500264% 1/21.977895
2.5758290 | 99% 1% 1/ 100
30 09.7300204% 0.2699796% 1/ 370.398
3.2005270 | 99.9% 0.1% 1/1000
3.8005920 | 99.99% 0.01% 1 /10000
40 99.993666% 0.006334% 1/15787
4.4171730 99.999% 0.001% 1 /100000
4-50 99-9993204653751% | 0.0006795346249% ;/41/4 Z;E())%g?(;sos(on each side of mean)
4.8916380 | 99.9999% 0.0001% 1 /1000000
50 99:9999426697% 0.0000573303% 1/ 1744278
5.3267240 | 99.99999% 0.00001% 1 /10000000
5.7307290 | 99.999999% 0.000001% 1 /100000000
60 99.9999998027% 0.0000001973% 1/ 506797346
6.10904100 | 99.9999999% 0.0000001% 1/ 1000000000
6.4669510 99.99999999% 0.00000001% 1/10000000000
6.8065020 | 99.999999999% 0.000000001% 1 /100000000000
70 09.9999999997440% | 0.000000000256% |1 /390682215445
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Relationship between Standard Deviation and Mean

The mean and the standard deviation of a set of data are descriptive statistics usually re-
ported together. In a certain sense, the standard deviation is a “natural” measure of sta-
tistical dispersion if the center of the data is measured about the mean. This is because
the standard deviation from the mean is smaller than from any other point. The precise
statement is the following: suppose x,, ..., x, are real numbers and define the function:

o(r)= \/ﬁ Z(x" — ).

Using calculus or by completing the square, it is possible to show that o(r) has a unique
minimum at the mean:

r=Xx.

Variability can also be measured by the coefficient of variation, which is the ratio of the
standard deviation to the mean. It is a dimensionless number.

Standard Deviation of the Mean

Often, we want some information about the precision of the mean we obtained. We
can obtain this by determining the standard deviation of the sampled mean. Assuming
statistical independence of the values in the sample, the standard deviation of the mean
is related to the standard deviation of the distribution by:

1

=—=0

o =
mean \/ﬁ

where N is the number of observations in the sample used to estimate the mean. This
can easily be proven with:

var(X)=o},

var(X, + X,) = var(X,) + var(X,)
(Statistical Independence is assumed).
var(cX,) = ¢’ var(X,)
hence,

1 & 1 ul
var(mean) =var| — » X, |=—var X.

i=1
N
= %Zvar(Xi) = %VZH‘(X) = %V&I‘(X).

i=1
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Resulting in:

O
o =

mean W °

It should be emphasized that in order to estimate the standard deviation of the
mean o, it is necessary to know the standard deviation of the entire population
o beforehand. However, in most applications this parameter is unknown. For ex-
ample, if a series of 10 measurements of a previously unknown quantity is per-
formed in a laboratory, it is possible to calculate the resulting sample mean and
sample standard deviation, but it is impossible to calculate the standard deviation

of the mean.

Rapid Calculation Methods

The following two formulas can represent a running (repeatedly updated) standard
deviation. A set of two power sums s, and s, are computed over a set of N values of x,

denoted as x, ..., X..:
1 N

Given the results of these running summations, the values N, s, s, can be used at any
time to compute the current value of the running standard deviation:

2
Ns, —s;

N

O =

Where N, as mentioned above, is the size of the set of values (or can also be regarded
ass).
[}

Similarly for sample standard deviation,

Ns, —s;
N(N-1)

In a computer implementation, as the three s, sums become large, we need to con-
sider round-off error, arithmetic overflow, and arithmetic underflow. The method
below calculates the running sums method with reduced rounding errors. This is
a “one pass” algorithm for calculating variance of n samples without the need to
store prior data during the calculation. Applying this method to a time series will
result in successive values of standard deviation corresponding to n data points as
n grows larger with each new sample, rather than a constant-width sliding window
calculation.
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Fork=1, ..., n:
4,=0
Akl

Xy — Ay
4, :Ak—l-"_kT

where A is the mean value,
Qo =0
k-1

0, =0+ T(xk - Ak—l)z =0+ (x5 —4,)(x —4,)

Note: O, =0since k—1=0o0r x, = 4

Sample variance,

:_ 9,

S =
" on-1

Population variance,

Weighted Calculation

When the values x, are weighted with unequal weights w, the power sums s, s, s, are
each computed as:

N .

— J

s, = E w,xj].
k=1

And the standard deviation equations remain unchanged. s is now the sum of the
weights and not the number of samples N.

The incremental method with reduced rounding errors can also be applied, with some
additional complexity.

A running sum of weights must be computed for each k from 1 to n:

W, =0
W,=W,_, +w

and places where 1/n is used above must be replaced by w,/W :

4,=0
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w,
A, =4+ Wk(xk —-4,,)

k

0, =0
0, =0+

wW,_
— (x; _Ak—l)z =0, twi(x, =4, )(x, —4,)

k

In the final division,

O_szn
w,
and
2 _ Qn
s = T
W —
or
!
n 2
S, =———0,,
n—1

where n is the total number of elements, and n’is the number of elements with non-ze-
ro weights. The above formulas become equal to the simpler formulas given above if
weights are taken as equal to one.

QUANTILE

N o)

-3 s -7 p - o Ea

Probability density of a normal distribution, with quartiles shown. The area below
the red curve is the same in the intervals (-,Q)), (Q,,Q,), (Q,,Q,), and (Q,,+).
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In statistics and probability quantiles are cut points dividing the range of a probability
distribution into continuous intervals with equal probabilities, or dividing the obser-
vations in a sample in the same way. There is one fewer quantile than the number of
groups created. Thus quartiles are the three cut points that will divide a dataset into
four equal-sized groups. Common quantiles have special names: for instance quartile,
decile. The groups created are termed halves, thirds, quarters, etc., though sometimes
the terms for the quantile are used for the groups created, rather than for the cut
points.

g-quantiles are values that partition a finite set of values into g subsets of (nearly) equal
sizes. There are g — 1 of the g-quantiles, one for each integer k satisfying o < k < q. In some
cases the value of a quantile may not be uniquely determined, as can be the case for the
median (2-quantile) of a uniform probability distribution on a set of even size. Quantiles
can also be applied to continuous distributions, providing a way to generalize rank sta-
tistics to continuous variables. When the cumulative distribution function of a random
variable is known, the g-quantiles are the application of the quantile function (the inverse
function of the cumulative distribution function) to the values {1/q, 2/q, ..., (q — 1)/q}.

Specialized Quantiles
Some g-quantiles have special names:
« The only 2-quantile is called the median.
» The 3-quantiles are called tertiles or terciles — T.

« The 4-quantiles are called quartiles — Q; the difference between upper and low-
er quartiles is also called the interquartile range, midspread or middle fifty —

IQR=0Q,-Q,
« The 5-quantiles are called quintiles — QU.
» The 6-quantiles are called sextiles — S.
« The 7-quantiles are called septiles.
» The 8-quantiles are called octiles.
» The 10-quantiles are called deciles — D.
» The 12-quantiles are called duo-deciles or dodeciles.
» The 16-quantiles are called hexadeciles — H.
» The 20-quantiles are called ventiles, vigintiles, or demi-deciles — V.
« The 100-quantiles are called percentiles — P.

» The 1000-quantiles have been called permilles or milliles, but these are rare
and largely obsolete.
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Quantiles of a Population

As in the computation of, for example, standard deviation, the estimation of a quantile
depends upon whether one is operating with a statistical population or with a sample
drawn from it. For a population, of discrete values or for a continuous population den-
sity, the k-th g-quantile is the data value where the cumulative distribution function
crosses k/q. That is, x is a k-th g-quantile for a variable X if,

Pr[X < x] < k/q or, equivalently, Pr[X > x] > 1 - k/q
and
Pr[X < x] = k/q and Pr[X > x] > k/q.

For a finite population of N equally probable values indexed 1, ..., N from lowest to
highest, the k-th g-quantile of this population can equivalently be computed via the
value of I = N k/q. If I is not an integer, then round up to the next integer to get the
appropriate index; the corresponding data value is the k-th g-quantile. On the other
hand, if I is an integer then any number from the data value at that index to the data
value of the next can be taken as the quantile, and it is conventional (though arbitrary)
to take the average of those two values.

If, instead of using integers k and g, the “p-quantile” is based on a real number p with o
< p < 1then p replaces k/q in the above formulas. Some software programs regard the
minimum and maximum as the oth and 100th percentile, respectively; however, such
terminology is an extension beyond traditional statistics definitions.

The following two examples use the Nearest Rank definition of quantile with rounding.
For an explanation of this definition.

Even-sized Population

Consider an ordered population of 10 data values {3, 6, 7, 8, 8, 10, 13, 15, 16, 20}. What
are the 4-quantiles (the “quartiles”) of this dataset?

Quartile Calculation Result

Zeroth quartile | Although not universally accepted, one can also speak of the zeroth quartile. 3
This is the minimum value of the set, so the zeroth quartile in this example
would be 3.

First quartile The rank of the first quartile is 10x(1/4) = 2.5, which rounds up to 3, mean- 7
ing that 3 is the rank in the population (from least to greatest values) at
which approximately 1/4 of the values are less than the value of the first
quartile. The third value in the population is 7.

Second quartile | The rank of the second quartile (same as the median) is 10x(2/4) = 5, which 9
is an integer, while the number of values (10) is an even number, so the av-
erage of both the fifth and sixth values is taken—that is (8+10)/2 = 9, though
any value from 8 through to 10 could be taken to be the median.
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Third quartile The rank of the third quartile is 10x(3/4) = 7.5, which rounds up to 8. The 15
eighth value in the population is 15.

Fourth quartile | Although not universally accepted, one can also speak of the fourth quartile. | 20
This is the maximum value of the set, so the fourth quartile in this example
would be 20. Under the Nearest Rank definition of quantile, the rank of the
fourth quartile is the rank of the biggest number, so the rank of the fourth
quartile would be 10.

So the first, second and third 4-quantiles (the “quartiles”) of the dataset {3, 6, 7, 8, 8,
10, 13, 15, 16, 20} are {7, 9, 15}. If also required, the zeroth quartile is 3 and the fourth
quartile is 20.

Odd-sized Population

Consider an ordered population of 11 data values {3, 6, 7, 8, 8, 9, 10, 13, 15, 16, 20}.
What are the 4-quantiles (the “quartiles”) of this dataset?

Quartile Calculation Result
Zeroth quartile | Although not universally accepted, one can also speak of the zeroth quartile. 3
This is the minimum value of the set, so the zeroth quartile in this example
would be 3.

First quartile The first quartile is determined by 11x(1/4) = 2.75, which rounds up to 3, 7
meaning that 3 is the rank in the population (from least to greatest values)
at which approximately 1/4 of the values are less than the value of the first
quartile. The third value in the population is 7.

Second quartile | The second quartile value (same as the median) is determined by 11x(2/4) 9
= 5.5, which rounds up to 6. Therefore, 6 is the rank in the population (from
least to greatest values) at which approximately 2/4 of the values are less
than the value of the second quartile (or median). The sixth value in the pop-
ulation is 9.

Third quartile | The third quartile value for the original example above is determined by 15
11x(3/4) = 8.25, which rounds up to 9. The ninth value in the population is 15.

Fourth quartile | Although not universally accepted, one can also speak of the fourth quartile. 20
This is the maximum value of the set, so the fourth quartile in this example
would be 20. Under the Nearest Rank definition of quantile, the rank of the
fourth quartile is the rank of the biggest number, so the rank of the fourth
quartile would be 11.

So the first, second and third 4-quantiles (the “quartiles”) of the dataset {3, 6,7, 8, 8, 9,
10, 13, 15, 16, 20} are {7, 9, 15}. If also required, the zeroth quartile is 3 and the fourth
quartile is 20.

Estimating Quantiles from a Sample

When one has a sample drawn from an unknown population, the cumulative distri-
bution function and quantile function of the underlying population are not known
and the task becomes that of estimating the quantiles. There are several methods.
Mathematica, Matlab, R and GNU Octave programming languages include nine
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sample quantile methods. SAS includes five sample quantile methods, SciPy and
Maple both include eight, EViews includes the six piecewise linear functions, Stata
includes two, Python includes two, and Microsoft Excel includes two. Mathematica
supports an arbitrary parameter for methods that allows for other, non-standard,
methods.

In effect, the methods compute Q , the estimate for the k-th g-quantile, where p = k/q,
from a sample of size N by computing a real valued index h. When h is an integer, the
h-th smallest of the N values, x,, is the quantile estimate. Otherwise a rounding or inter-
polation scheme is used to compute the quantile estimate from h, x,, and x,,,.

The estimate types and interpolation schemes used include:

Type h Q, Notes

R-1, SAS-3, Maple-1 | Np +1/2 X 1/on Inverse of empirical distribution
function.

R-2, SAS-5, Np +1/2 (x[h_1 st X /21) /2 The same as R-1, but with averaging

Maple-2, Stata at discontinuities.

R-3, SAS-2 Np X The observation numbered closest
to Np. Here, |h] indicates rounding
to the nearest integer, choosing the
even integer in the case of a tie.

R-4, SAS-1, Np Xy + (= [hD (x,, ., —x,) | Linear interpolation of the empirical

SciPy-(0,1), distribution function.

Maple-3

R-5, SciPy-(.5,.5), Np +1/2 X, + (h = |hp) (xth o xth) Piecewise linear function where the

Maple-4 knots are the values midway through
the steps of the empirical distribution
function.

R-6, Excel, Python, | (N + 1)p Xy + (h - [hD (xth o xth) Linear interpolation of the expecta-

SAS-4, SciPy-(0,0), tions for the order statistics for the

Maple-5, uniform distribution on [0,1]. That s,

Stata-altdef it is the linear interpolation between
points (p,, x,), where p, = h/(N+1) is
the probability that the last of (N+1)
randomly drawn values will not ex-
ceed the h-th smallest of the first N
randomly drawn values.

R-7, Excel, Python, (N-1p+1 X, + (h - 1hp (xth o xth) Linear interpolation of the modes for

SciPy-(1,1), Maple-6, the order statistics for the uniform

NumPy, Julia distribution on [0,1].

R-8, SciPy-(1/3,1/3), | (N + 1/3)p | x, + (h - [h]) (x,,, - x,) | Linear interpolation of the approxi-

Maple-7 +1/3 mate medians for order statistics.

R-9, (N + 1/4)p Xy + (h - |hp (xth+1 - xth) The resulting quantile estimates are

SciPy-(3/8,3/8), +3/8 approximately unbiased for the ex-

Maple-8 pected order statistics if x is normally
distributed.
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« R-1through R-3 are piecewise constant, with discontinuities.

« R-4 and following are piecewise linear, without discontinuities, but differ in
how h is computed.

« R-3 and R-4 are not symmetric in that they do not give h = (N + 1)/2 when p =
1/2.

» Excel’'s PERCENTILE.EXC and Python’s default “exclusive” method are equiv-
alent to R-6.

« Excel’'s PERCENTILE and PERCENTILE.INC and Python’s optional “inclusive”
method are equivalent to R-7.

« Packages differ in how they estimate quantiles beyond the lowest and highest
values in the sample. Choices include returning an error value, computing lin-
ear extrapolation, or assuming a constant value.

The standard error of a quantile estimate can in general be estimated via the bootstrap.
The Maritz—Jarrett method can also be used.

QUARTILE

A quartile is a type of quantile which divides the number of data points into four more
or less equal parts, or quarters. The first quartile (Q)) is defined as the middle number
between the smallest number and the median of the data set. It is also known as the
lower quartile or the 25th empirical quartile and it marks where 25% of the data is be-
low or to the left of it (if data is ordered on a timeline from smallest to largest). The sec-
ond quartile (Q,) is the median of the data and 50% of the data lies below this point. The
third quartile (Q,) is the middle value between the median and the highest value of the
data set. It is also known as the upper quartile or the 75th empirical quartile and 75%
of the data lies below this point. Due to the fact that the data needs to be ordered from
smallest to largest in order to compute quartiles, quartiles are a form of Order statistic.

Along with the minimum and the maximum of the data, which are also quartiles, the
three quartiles described above provide a five-number summary of the data. This sum-
mary is important in statistics because it provides information about both the center
and the spread of the data. Knowing the lower and upper quartile provides information
on how big the spread is and if the dataset is skewed toward one side. Since quartiles di-
vide the number of data points evenly, the range is not the same between quartiles (ie.
Q,-Q, # Q,-Q)). While the maximum and minimum also show the spread of the data,
the upper and lower quartiles can provide more detailed information on the location
of specific data points, the presence of outliers in the data, and the difference in spread
between the middle 50% of the data and the outer data points.
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IOR I
Q1 Q3

Q1 - 1.5 x IQR Q3 + 1.5 x IQR
Median -

T T T T T T T T 1
—40 -30 -20 -lo: 0o i lo 20 30 40
—2.6980 —0.67450 0.67450 2.6980
24.65% - 50% . 24.65%

—:ta —éc —éo —Ilo Ola 1|a 2'0 3|0 4|0
15.73% 68.27% 15.73%

T T T T T T T T 1
40 -3c =20 -1lc [o1e) lo 20 30 4o

Boxplot (with quartiles and an interquartile range) and a probability
density function (pdf) of a normal N(0,10%) population.

Symbol | Names Definition

Q First quartile Splits off the lowest 25% of
lower quartile data from the highest 75%.
25th percentile.

Q, Second quartile | Cuts data set in half.
median
50th percentile.

Q, Third quartile | Splits off the highest 25% of
upper quartile | data from the lowest 75%.
75th percentile.

Computing Methods

Discrete Distributions

For discrete distributions, there is no universal agreement on selecting the quartile

values.

Method 1

e Use the median to divide the ordered data set into two halves:

o If there is an odd number of data points in the original ordered data set, do
not include the median (the central value in the ordered list) in either half.
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o If there is an even number of data points in the original ordered data set,
split this data set exactly in half.

« The lower quartile value is the median of the lower half of the data. The upper
quartile value is the median of the upper half of the data.

This rule is employed by the TI-83 calculator boxplot and “1-Var Stats” functions.

Method 2
o Use the median to divide the ordered data set into two halves:

o If there are an odd number of data points in the original ordered data set,
include the median (the central value in the ordered list) in both halves.

o If there are an even number of data points in the original ordered data set,
split this data set exactly in half.

« The lower quartile value is the median of the lower half of the data. The upper
quartile value is the median of the upper half of the data.

The values found by this method are also known as “Tukey’s hinges”.

Method 3

« If there are even numbers of data points, then Method 3 is the same as either
method above.

« If there are (4n+1) data points, then the lower quartile is 25% of the nth data
value plus 75% of the (n+1)th data value; the upper quartile is 75% of the (3n+1)
th data point plus 25% of the (3n+2)th data point.

« If there are (4n+3) data points, then the lower quartile is 75% of the (n+1)th
data value plus 25% of the (n+2)th data value; the upper quartile is 25% of the
(3n+2)th data point plus 75% of the (3n+3)th data point.

Method 4

If we have an ordered dataset x,, x,,...,x, , we can interpolate between data points to
find the p th empirical quantile if x; is in the i/(n +1) quantile. If we denote the integer
part of a number by a by[a], then the empirical quantile function is given by,

q(p)= Xy T a(x(k+]) - x(k))?

where k =[p(n+D]and a = p(n+1)~[p(n+1)]

To find the first, second, and third quartiles of the dataset we would evaluate ¢(0.25),
q(0.5), and ¢(0.75) respectively.
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Example: Ordered Data Set: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49

Method 1 | Method 2 | Method 3 | Method 4
Q, 15 25.5 20.25 15
Q, 40 40 40 40
Q, 43 42.5 42.75 43

Example: Ordered Data Set: 7, 15, 36, 39, 40, 41

As there are an even number of data points, all three methods give the same results.

Method 1 | Method 2 | Method 3 | Method 4
Q 15 15 15 13
Q, 375 37.5 37.5 37:5
Q, 40 40 40 40.25

Introductory Statistics

Continuous Probability Distributions
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Quartiles on a cumulative distribution function of a normal distribution.

If we define a continuous probability distributions as P(X) where X is a real valued
random variable, its cumulative distribution function (CDF) is given by,

F,(x)=P(X <x)

The CDF gives the probability that the random variable X is less than the value x.
Therefore, the first quartile is the value of x when F, (x)=0.25, the second quartile
is xwhen F, (x)=0.5, and the third quartile is x when F, (x)=0.75. The values of
O(p) can be found with the quantile function Q(p)where p =0.25for the first quar-
tile, p = 0.5 for the second quartile, and p =0.75 for the third quartile. The quantile
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function is the inverse of the cumulative distribution function if the cumulative distri-
bution function is monotonically increasing.

Outliers

There are methods by which to check for outliers in the discipline of statistics and sta-
tistical analysis. Outliers could be a result from a shift in the location (mean) or in the
scale (variability) of the process of interest. Outliers could also may be evidence of a
sample population that has a non-normal distribution or of a contaminated population
data set. Consequently, as is the basic idea of descriptive statistics, when encountering
an outlier, we have to explain this value by further analysis of the cause or origin of
the outlier. In cases of extreme observations, which are not an infrequent occurrence,
the typical values must be analyzed. In the case of quartiles, the Interquartile Range
(IQR) may be used to characterize the data when there may be extremities that skew
the data; the interquartile range is a relatively robust statistic (also sometimes called
“resistance”) compared to the range and standard deviation. There is also a mathemat-
ical method to check for outliers and determining “fences”, upper and lower limits from
which to check for outliers.

After determining the first and third quartiles and the interquartile range as outlined
above, then fences are calculated using the following formula:

Lower fence = Q, —1.5(IQR)

Upper fence = @, +1.5(IQR),

I
|
|
|
|
|
|
Outliers
\ "

Boxplot Diagram with Outliers.

4

where Q, and Q, are the first and third quartiles, respectively. The lower fence is the
“lower limit” and the upper fence is the “upper limit” of data, and any data lying outside
these defined bounds can be considered an outlier. Anything below the Lower fence or
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above the Upper fence can be considered such a case. The fences provide a guideline
by which to define an outlier, which may be defined in other ways. The fences define a
“range” outside of which an outlier exists; a way to picture this is a boundary of a fence,
outside of which are “outsiders” as opposed to outliers. It is common for the lower and
upper fences along with the outliers to be represented by a boxplot. For a boxplot, only
the vertical heights correspond to the visualized data set while horizontal width of the
box is irrelevant. Outliers located outside the fences in a boxplot can be marked as any

choice of symbol, such as an “x” or “0”. The fences are sometimes also referred to as
“whiskers” while the entire plot visual is called a “box-and-whisker” plot.

When spotting an outlier in the data set by calculating the interquartile ranges and box-
plot features, it might be simple to mistakenly view it as evidence that the population is
non-normal or that the sample is contaminated. However, this method should not take
place of a hypothesis test for determining normality of the population. The significance
of the outliers vary depending on the sample size. If the sample is small, then it is more
probable to get interquartile ranges that are unrepresentatively small, leading to nar-
rower fences. Therefore, it would be more likely to find data that are marked as outliers.

Computer Software for Quartiles
Excel:

The Excel function QUARTILE(array, quart) provides the desired quartile value for
a given array of data. In the Quartile function, array is the dataset of numbers that is
being analyzed and quart is any of the following 5 values depending on which quartile
is being calculated.

Upper Quartile (75th percentile)
Maximum value

Quart | Output QUARTILE Value

0 Minimum value

1 Lower Quartile (25th percentile)
2 Median

3

4

MATLAB:

In order to calculate quartiles in Matlab, the function quantile(A,p) can be used. Where
A is the vector of data being analyzed and p is the percentage that relates to the quar-
tiles as stated below.

p Output QUARTILE Value

0 Minimum value

0.25 Lower Quartile (25th percentile)
0.5 Median

0.75 Upper Quartile (75th percentile)
1 Maximum value
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QUARTILE DEVIATION AND ITS COEFFICIENT

The Quartile Deviation is a simple way to estimate the spread of a distribution about
a measure of its central tendency (usually the mean). So, it gives you an idea about
the range within which the central 50% of your sample data lies. Consequently, based
on the quartile deviation, the Coefficient of Quartile Deviation can be defined, which
makes it easy to compare the spread of two or more different distributions.

The Quartile Deviation

Formally, the Quartile Deviation is equal to the half of the Inter-Quartile Range and
thus we can write it as,
Q3 — Ql

0, =%

Therefore, we also call it the Semi Inter-Quartile Range.

« The Quartile Deviation doesn’t take into account the extreme points of the
distribution. Thus, the dispersion or the spread of only the central 50% data is
considered.

« Ifthe scale of the data is changed, the Qd also changes in the same ratio.

o It is the best measure of dispersion for open-ended systems (which have
open-ended extreme ranges).

« Also, it is less affected by sampling fluctuations in the dataset as compared to
the range (another measure of dispersion).

« Sinceitis solely dependent on the central values in the distribution, if in any ex-
periment, these values are abnormal or inaccurate, the result would be affected
drastically.

The Coefficient of Quartile Deviation

Based on the quartiles, a relative measure of dispersion, known as the Coefficient of
Quartile Deviation, can be defined for any distribution. It is formally defined as,

Q,-Q,

Q,+Q,

Since it involves a ratio of two quantities of the same dimensions, it is unit-less. Thus,
it can act as a suitable parameter for comparing two or more different datasets which
may or may not involve quantities with the same dimensions.

Coefficient of Quartile Deviation = x100
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Example of samples from two populations with the same mean but different
variances. The red population has mean 100 and variance 100 (SD=10) while
the blue population has mean 100 and variance 2500 (SD=50).

In probability theory and statistics, variance is the expectation of the squared deviation
of a random variable from its mean. Informally, it measures how far a set of (random)
numbers are spread out from their average value. Variance has a central role in statis-
tics, where some ideas that use it include descriptive statistics, statistical inference, hy-
pothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important
tool in the sciences, where statistical analysis of data is common. The variance is the
square of the standard deviation, the second central moment of a distribution, and the
covariance of the random variable with itself, and it is often represented by o, s* or
Var(X).

The variance of a random variable X is the expected value of the squared deviation
from the mean of X, z=E[X]:

Var(X)=E[ (X - u)° |

This definition encompasses random variables that are generated by processes that
are discrete, continuous, neither, or mixed. The variance can also be thought of as the
covariance of a random variable with itself:

Var(X)=Cov(X,X).
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The variance is also equivalent to the second cumulant of a probability distribution that
generates X . The variance is typically designated as Var(X), o7, or simply o”. The
expression for the variance can be expanded:

Var(X) =E[ (X -E[X])" |
=E| X* -2XE[X]+E[XT |
=E| X* |-2E[X]E[X]+E[X]’
=E[ X* |-E[XT

In other words, the variance of X is equal to the mean of the square of X minus the
square of the mean of X. This equation should not be used for computations using
floating point arithmetic because it suffers from catastrophic cancellation if the two
components of the equation are similar in magnitude. There exist numerically stable
alternatives.

Discrete Random Variable

If the generator of random variable Xis discrete with probability mass function
X, B D,,X, = D,,...,X, = p, then,

Var(X) = Zp (0 — ),

or equivalently,

Var(X) = [Zn:pixf ] -2,

where  is the expected value, i.e.,

n
M= Zpixi°
i=1

(When such a discrete weighted variance is specified by weights whose sum is not 1,
then one divides by the sum of the weights.)

The variance of a set of n equally likely values can be written as,

Var(X) = %i(xi - 1),
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where  is the average value, i.e.,
1 n
p=—D X
n i=1

The variance of a set of n equally likely values can be equivalently expressed, without
directly referring to the mean, in terms of squared deviations of all points from each
other:

Var(X) = %iié(xi -x,) :%ZZ(xi -x, ).

[ - T i

Absolutely Continuous Random Variable

If the random variable X has a probability density function f(x), and F(x)is the cor-
responding cumulative distribution function, then:

Var(X) =o* = [ (x - ) fx)dx

= [ x*f)dx—2u] xfC)dx+ [ u*f(x)dx
=ijdF(x)—2ﬂIRxdF(x)+ﬂ2IRdF(x)

= J‘]szdF(x)—2,u~,u+,u2 ‘1
= [ x*dF(x)- 7,
or equivalently,
Var(X) = Iszf(x)dx -2,
where s is the expected value of X given by,

U= ij F(xX)dx = _[RxdF(x).

In these formulas, the integrals with respect to dx and dF(x) are Lebesgue and Lebes-
gue—Stieltjes integrals, respectively.

If the function x* f(x)is Riemann-integrable on every finite interval [a,b] = R then
Var(X) = J.iwxzf(x)dx — 12,
where the integral is an improper Riemann integral.
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Examples:

Exponential Distribution

The exponential distribution with parameter A is a continuous distribution whose prob-
ability density function is given by,

fx)=2e™

on the interval [0, ). Its mean can be shown to be,

E[X]= J.:/Ixe”lx dx = %

Using integration by parts and making use of the expected value already calculated:
B[X*]= [ Ax%e**dx
(o]
_ | _A2pAx @ @ —-Ax
—[ x’e ]0+I02xe dx

2
=0+—FE
o [X]

Thus, the variance of X is given by,

Var(X) =E[X?]-E[XT = %— (—j -1
Fair Die

A fair six-sided die can be modeled as a discrete random variable, X, with out-
comes 1 through 6, each with equal probability 1/6. The expected value of X is
(1+2+3+4+5+6)/6="7/2.Therefore, the variance of X is,

Var(X) = i%{i —Zj

2
:%((—5/2)2 +(=3/20 +(-1/2)* +(1/2)* +(3/2)* +(5/2)*)

_35 2.92.
12
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The general formula for the variance of the outcome, X, of an n-sided die is,

Var(X) = E(X?)-(E(X))?

_ (n+1)(2n+1)_[n+1]2

6
n’-1
12

2

Commonly used Probability Distributions

The following table lists the variance for some commonly used probability distribu-

tions.
Name of the probability Probability distribution function Variance
distribution
Binomial distribution
n np(1—
Pr(X:k):(kjpk(l—p)"k p-p)
Geometric distribution Pr(X=k)=(1-p)'p (1-p)
p2
Normal distribution e e
fle|u,0®) = —e =
270
Uniform distribution PRV
(continuous) F(x|ab)= b;a fora<x<b, %
0 forx<aorx>b
Exponential distribution fx|A)=4 e 1
2
Properties

Variance is non-negative because the squares are positive or zero:

Var(X)>o.

The variance of a constant is zero,

Var(a) =o.
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If the variance of a random variable is 0, then it is a constant. That is, it always has the
same value:

Var(X)=o< P(X =a)=1.

Variance is invariant with respect to changes in a location parameter. That is, if a con-
stant is added to all values of the variable, the variance is unchanged:

Var(X +a) = Var(X).

If all values are scaled by a constant, the variance is scaled by the square of that con-
stant:

Var(aX) = a® Var(X).
The variance of a sum of two random variables is given by,

Var(aX +bY)=a® Var(X)+b* Var(Y) +2ab Cov(X,Y),
Var(aX -bY) =a® Var(X) +b* Var(Y) —2ab Cov(X,Y),

where Cov(-, -) is the covariance. In general we have for the sum of N random variables

X, Xy}

Var(iXij = i Cov(Xl.,Xj)

i=1 1,j=1
N
=Y Var(X,)+ > Cov(X,,X,).
i=1 i#]

These results lead to the variance of a linear combination as:

N N
Var(ZaiXiJ = > a,a,Cov(X,,X,)

i=1 1,j=1

N
=Y a; Var(X,)+ Y a,a;Cov(X;, X))

i
i#j

N
=Y a;Var(X,)+2 ) aa;Cov(X,X)).

i 1<i<j<N

If the random variables X ,..., X, are such that,

Cov(X,,X,)=0,V (i # j),
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they are said to be uncorrelated. It follows immediately from the expression given ear-
lier that if the random variables X ,..., X are uncorrelated, then the variance of their
sum is equal to the sum of their variances, or, expressed symbolically:

Var[iXij = i Var(X,).

i=1

Since independent random variables are always uncorrelated, the equation above holds
in particular when the random variables X ,...,X, are independent. Thus indepen-
dence is sufficient but not necessary for the variance of the sum to equal the sum of the
variances.

Issues of Finiteness

If a distribution does not have a finite expected value, as is the case for the Cauchy
distribution, then the variance cannot be finite either. However, some distributions
may not have a finite variance despite their expected value being finite. An example is a
Pareto distribution whose index k satisfies 1<k <2.

Sum of Uncorrelated Variables (Bienaymé Formula)

One reason for the use of the variance in preference to other measures of dispersion is
that the variance of the sum (or the difference) of uncorrelated random variables is the
sum of their variances:

Var(zn:XiJ:iVar(Xi).

This statement is called the Bienaymé formula and was discovered in 1853. It is often
made with the stronger condition that the variables are independent, but being uncor-
related suffices. So if all the variables have the same variance o2, then, since division by
nis a linear transformation, this formula immediately implies that the variance of their
mean is,

Var(X) = Var( ZX] ZVar )=—no O

That is, the variance of the mean decreases when n increases. This formula for the
variance of the mean is used in the definition of the standard error of the sample mean,
which is used in the central limit theorem.

To prove the initial statement, it suffices to show that,

Var(X +Y)=Var(X)+ Var(Y).
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The general result then follows by induction. Starting with the definition,

Var(X+Y)=E[(X+Y)’]-(E[X+Y])’
=E[X* +2XY +Y?*]-(E[X]+E[Y])*.

Using the linearity of the expectation operator and the assumption of independence (or
uncorrelatedness) of X and Y, this further simplifies as follows:
Var(X +Y)=E[X?]+2E[XY]+E[Y?]-(E[X]* +2E[X]E[Y]+E[Y]*)
=E[X*]+E[Y?]-E[X]*-E[Y]
=Var(X)+ Var(Y).

Sum of Correlated Variables
With Correlation and Fixed Sample Size

In general the variance of the sum of n variables is the sum of their covariances:

Var(iXiJ ZZCov(Xl,X) ZVar(X)+2 Y. Cov(X,,X)).

i=1 j=1 1<i<j<n

(The second equality comes from the fact that Cov(X,X) = Var(X).)

Here Cov(, -) is the covariance, which is zero for independent random variables (if it
exists). The formula states that the variance of a sum is equal to the sum of all elements
in the covariance matrix of the components. The next expression states equivalently
that the variance of the sum is the sum of the diagonal of covariance matrix plus two
times the sum of its upper triangular elements (or its lower triangular elements); this
emphasizes that the covariance matrix is symmetric. This formula is used in the theory
of Cronbach’s alpha in classical test theory.

So if the variables have equal variance 0® and the average correlation of distinct vari-
ables is p, then the variance of their mean is,

Var()_():o-—+n—_1p02.
n n

This implies that the variance of the mean increases with the average of the correlations.
In other words, additional correlated observations are not as effective as additional in-
dependent observations at reducing the uncertainty of the mean. Moreover, if the vari-
ables have unit variance, for example if they are standardized, then this simplifies to:

Var(X)——+n—1p
n
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This formula is used in the Spearman—Brown prediction formula of classical test the-
ory. This converges to p if n goes to infinity, provided that the average correlation re-
mains constant or converges too. So for the variance of the mean of standardized vari-
ables with equal correlations or converging average correlation we have,

lim Var(X) = p.

Therefore, the variance of the mean of a large number of standardized variables is
approximately equal to their average correlation. This makes clear that the sample
mean of correlated variables does not generally converge to the population mean, even
though the law of large numbers states that the sample mean will converge for inde-
pendent variables.

L.i.d. with Random Sample size

There are cases when a sample is taken without knowing, in advance, how many obser-
vations will be acceptable according to some criterion. In such cases, the sample size N
is a random variable whose variation adds to the variation of X, such that,

Var(>X) = E(N)Var(X) + Var(N)E2(X).

If N has a Poisson distribution, then E(N) = Var(N) with estimator N=n. So, the estima-
tor of Var(3X) becomes nS? + nXbar® giving,

standard error(Xbar) = vV [(S*, + Xbar®)/n].

Matrix Notation for the Variance of a Linear Combination

Define X as a column vector of nrandom variables X_,...,X, , and c as a column vec-
tor of nscalars c,,...,c,. Therefore, ¢’ X is a linear combination of these random vari-
ables, where ¢’ denotes the transpose of ¢ . Also let T be the covariance matrix of X .
The variance of ¢’ X s then given by:

Var(c’ X)=c"Xec.
This implies that the variance of the mean can be written as (with a column vector of ones),

Var(x)=Var(1/n-1X)=1/n*-1Z1.

Weighted Sum of Variables

The scaling property and the Bienaymé formula, along with the property of the covari-
ance Cov(aX, bY) = ab Cov(X, Y) jointly imply that,

Var(aX £bY) =a® Var(X) + b* Var(Y) + 2ab Cov(X,Y).
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This implies that in a weighted sum of variables, the variable with the largest weight
will have a disproportionally large weight in the variance of the total. For example, if X
and Y are uncorrelated and the weight of X is two times the weight of Y, then the weight
of the variance of X will be four times the weight of the variance of Y.

The expression above can be extended to a weighted sum of multiple variables:
Var(ZaiXij =>a; Var(X,)+2) > aa;Cov(X,,X))
i i=1 1<i <j<n
Product of Independent Variables
If two variables X and Y are independent, the variance of their product is given by,
Var(XY) =[E(X)]? Var(Y) +[E(Y)]* Var(X) + Var(X) Var(Y).
Equivalently, using the basic properties of expectation, it is given by,

Var(XY) = E(X*)E(Y®) - [E(X)FP[E(Y)T.

Product of Statistically Dependent Variables

In general, if two variables are statistically dependent, the variance of their product is
given by:
Var(XY)=E[X?Y?]-[E(XY)]?
=Cov(X?,Y?)+E(X?)E(Y?)-[E(XY)]?
=Cov(X?,Y?)+(Var(X)+[E(X)?)(Var(Y) +[E(Y)]?)
—[Cov(X,Y)+E(X)E(Y)]?

Decomposition

The general formula for variance decomposition or the law of total variance is: If X and
Y are two random variables, and the variance of X exists, then:

Var[X]=E(Var[X |Y])+ Var(E[X | Y]).
The conditional expectation E(X |Y)of X given Y, and the conditional variance
Var(X |Y) may be understood as follows. Given any particular value y of the random
variable Y, there is a conditional expectation E(X |Y = y) given the event Y = y. This

quantity depends on the particular value y; it is a function g(y) =E(X |Y =y). That
same function evaluated at the random variable Y is the conditional expectation,

E(X|Y)=g).
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In particular, if Y is a discrete random variable assuming possible values y,,y,,Y, ..
with corresponding probabilities p,,p,,p, ..., then in the formula for total variance,
the first term on the right-hand side becomes,

E(Var[X [Y]) =} p,o7,

where o} =Var[X Y = y,]. Similarly, the second term on the right-hand side becomes,
Var(E[X |Y]) = Zpiﬂ? - [Zpiuj = Zpiu? -1,

where 4 =E[X |Y =y,]and u= z D;#;. . Thus the total variance is given by,
Var[ X] = Zpiaf —{Zpi,uf —/fj.

A similar formula is applied in analysis of variance, where the corresponding formula is,

MS, . = MSy i eon + MS iin;

here MS refers to the Mean of the Squares. In linear regression analysis the corre-
sponding formula is,

MS,,, =MS +MS, -

total regression

This can also be derived from the additivity of variances, since the total (observed)
score is the sum of the predicted score and the error score, where the latter two are
uncorrelated.

Similar decompositions are possible for the sum of squared deviations (sum of squares,

SS):

SS SS +SS

total — between within ?

SS SS +SS

total regression residual *

Calculation from the CDF

The population variance for a non-negative random variable can be expressed in terms
of the cumulative distribution function F using,

o[ “u(1~ FQw)du - ( [fa- F(u))du)2 .
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This expression can be used to calculate the variance in situations where the CDF, but
not the density, can be conveniently expressed.

Characteristic Property

The second moment of arandom variable attains the minimum value when taken around
the first moment (i.e., mean) of the random variable, i.e. argmin_E ((X - m)2 ) =E(X).

Conversely, if a continuous function @ satisfies argmin E(p(X -m))=E(X) for all
random variables X, then it is necessarily of the form ¢(x) = ax*® + b, where a > 0. This
also holds in the multidimensional case.

Units of Measurement

Unlike expected absolute deviation, the variance of a variable has units that are the
square of the units of the variable itself. For example, a variable measured in meters
will have a variance measured in meters squared. For this reason, describing data sets
via their standard deviation or root mean square deviation is often preferred over using
the variance. In the dice example the standard deviation is 42.9~17, slightly larger than
the expected absolute deviation of 1.5.

The standard deviation and the expected absolute deviation can both be used as an in-
dicator of the “spread” of a distribution. The standard deviation is more amenable to al-
gebraic manipulation than the expected absolute deviation, and, together with variance
and its generalization covariance, is used frequently in theoretical statistics; however
the expected absolute deviation tends to be more robust as it is less sensitive to outliers
arising from measurement anomalies or an unduly heavy-tailed distribution.

Approximating the Variance of a Function

The delta method uses second-order Taylor expansions to approximate the variance of
a function of one or more random variables. For example, the approximate variance of
a function of one variable is given by,

Var[ f(X)]~(f(E[X]) Var[X]
provided that fis twice differentiable and that the mean and variance of X are finite.

Population Variance and Sample Variance

Real-world observations such as the measurements of yesterday’s rain throughout the day
typically cannot be complete sets of all possible observations that could be made. As such,
the variance calculated from the finite set will in general not match the variance that would
have been calculated from the full population of possible observations. This means that one
estimates the mean and variance that would have been calculated from an omniscient set
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of observations by using an estimator equation. The estimator is a function of the sample
of n observations drawn without observational bias from the whole population of potential
observations. In this example that sample would be the set of actual measurements of yes-
terday’s rainfall from available rain gauges within the geography of interest.

The simplest estimators for population mean and population variance are simply the
mean and variance of the sample, the sample mean and (uncorrected) sample variance
— these are consistent estimators (they converge to the correct value as the number of
samples increases), but can be improved. Estimating the population variance by taking
the sample’s variance is close to optimal in general, but can be improved in two ways.
Most simply, the sample variance is computed as an average of squared deviations about
the (sample) mean, by dividing by n. However, using values other than n improves the
estimator in various ways. Four common values for the denominator are n, n — 1, n + 1,
and n — 1.5: n is the simplest (population variance of the sample), n — 1 eliminates bias,
n + 1 minimizes mean squared error for the normal distribution, and n - 1.5 mostly
eliminates bias in unbiased estimation of standard deviation for the normal distribution.

Firstly, if the omniscient mean is unknown (and is computed as the sample mean),
then the sample variance is a biased estimator: it underestimates the variance by a
factor of (n — 1) / n; correcting by this factor (dividing by n — 1 instead of n) is called
Bessel’s correction. The resulting estimator is unbiased, and is called the (corrected)
sample variance or unbiased sample variance. For example, when n = 1 the variance of
a single observation about the sample mean (itself) is obviously zero regardless of the
population variance. If the mean is determined in some other way than from the same
samples used to estimate the variance then this bias does not arise and the variance
can safely be estimated as that of the samples about the (independently known) mean.

Secondly, the sample variance does not generally minimize mean squared error between
sample variance and population variance. Correcting for bias often makes this worse: one
can always choose a scale factor that performs better than the corrected sample variance,
though the optimal scale factor depends on the excess kurtosis of the population, and
introduces bias. This always consists of scaling down the unbiased estimator (dividing
by a number larger than n — 1), and is a simple example of a shrinkage estimator: one
“shrinks” the unbiased estimator towards zero. For the normal distribution, dividing by
n + 1 (instead of n — 1 or n) minimizes mean squared error. The resulting estimator is
biased, however, and is known as the biased sample variation.

Population Variance

In general, the population variance of a finite population of size N with values x. is given
by,

(xf —2uX; +qu)

qN
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|
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1 1
= (ﬁ;xiz]_2ﬂ(ﬁ§xfj+’u2
(1) e
(g )
where the population mean is,
1 N
e ﬁ;‘xi.

The population variance can also be computed using,

2 N 2
o =1;2Z(xi—xj) = 2;,2 Z(xi—xj) :

i<j i,j=1

This is true because,

1 N
N iél(xi —xj)2 y Z (xf —2x,x; +xj2.)

:O'2

The population variance matches the variance of the generating probability distribu-
tion. In this sense, the concept of population can be extended to continuous random
variables with infinite populations.

Sample Variance

In many practical situations, the true variance of a population is not known a priori
and must be computed somehow. When dealing with extremely large populations,
it is not possible to count every object in the population, so the computation must
be performed on a sample of the population. Sample variance can also be applied
to the estimation of the variance of a continuous distribution from a sample of that
distribution.
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We take a sample with replacement of n values Y, ..., Y, from the population, where n
< N, and estimate the variance on the basis of this sample. Directly taking the variance
of the sample data gives the average of the squared deviations:

n

ot =25 7Y <[5 7L 5 (v )

ni; n ;i

Here, Y denotes the sample mean:
= 1
Y = —ZYl

Since the Y, are selected randomly, both Y and o, are random variables. Their expect-
ed values can be evaluated by averaging over the ensemble of all possible samples {Y}
of size n from the population. For o, this gives:

n
i=1

5 1 13 ’
Eloy |- ;Z[K‘;;ij
1 n 2_3 n i n
—EIZE{YI' YZYZY}

<23 2Ry ) 258wy, o LS e, o LS
:ii

niz

{n;2(0'2 +,u2)—%(n—1),u2+%n(n—1),u2+%(0'2 +y2)}
n-1 ,
=——o0
n

Hence o, gives an estimate of the population variance that is biased by a factor of

n-1 . . . . .

—— . For this reason, oy, is referred to as the biased sample variance. Correcting for
n

this bias yields the unbiased sample variance:

=t - 1y ) |- L3 -7)

n-1 n-1\n< n-14

Either estimator may be simply referred to as the sample variance when the version
can be determined by context. The same proof is also applicable for samples taken from
a continuous probability distribution.
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The use of the term n — 1 is called Bessel’s correction, and it is also used in sample co-
variance and the sample standard deviation (the square root of variance). The square
root is a concave function and thus introduces negative bias (by Jensen’s inequality),
which depends on the distribution, and thus the corrected sample standard deviation
(using Bessel’s correction) is biased. The unbiased estimation of standard deviation is a
technically involved problem, though for the normal distribution using the termn - 1.5
yields an almost unbiased estimator.

The unbiased sample variance is a U-statistic for the function f(y, y,) = (y, - y,)*/2,
meaning that it is obtained by averaging a 2-sample statistic over 2-element subsets of
the population.

Distribution of the Sample Variance

a =
- —_— =1 -
— =2
@ | — v =3 @ |
=1 - =1
— =10
@ -
= =
= =
= frag
hoa =
= =
o o
o 7 = 7
=g = |
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0 1 2 3 4 S 0 1 2 3 4 5
x X

Distribution and cumulative distribution of S2/02, for various values
of v =n - 1, when the y, are independent normally distributed.

Being a function of random variables, the sample variance is itself a random variable,
and it is natural to study its distribution. In the case that Y, are independent observa-
tions from a normal distribution, Cochran’s theorem shows that s2 follows a scaled chi-
squared distribution:

2

S
(M-1)—~ 2.,
o
As a direct consequence, it follows that,

2 2
anJ_O- ’

62

n-1

E(sz)zE[

and

2 4 4
Var[s2]:Var[ 9 Zﬁ_ljza—Var()(z ): 20
n-1 (n
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If the Y, are independent and identically distributed, but not necessarily normally dis-
tributed, then,

E[s*]=0?, Var[s®] :%4[(,(_1)+ij =i(#4 3 n—364j,

n-1 n n-1

where « is the kurtosis of the distribution and p, is the fourth central moment.

If the conditions of the law of large numbers hold for the squared observations, s? is a
consistent estimator of 02. One can see indeed that the variance of the estimator tends
asymptotically to zero. An asymptotically equivalent formula was given in Kenney and
Keeping, Rose and Smith, and Weisstein.

Samuelson’s Inequality

Samuelson’s inequality is a result that states bounds on the values that individual ob-
servations in a sample can take, given that the sample mean and (biased) variance have
been calculated. Values must lie within the limits § £ oy, (n — 1)2.

Relations with the Harmonic and Arithmetic Means

It has been shown that for a sample {y } of real numbers,

o, <2y,.(A-H),

where y__is the maximum of the sample, A is the arithmetic mean, H is the harmonic
mean of the sample and 0'5 is the (biased) variance of the sample.

This bound has been improved, and it is known that variance is bounded by,
o2 < Y (A= H)(Y,0 — A)
! Ynax —H
(A _H)(A _ymin)
H - ymin

>

2 y i
> min
O-y =

K

where y__. is the minimum of the sample.

Tests of Equality of Variances

Testing for the equality of two or more variances is difficult. The F test and chi square tests
are both adversely affected by non-normality and are not recommended for this purpose.

Several non parametric tests have been proposed: these include the Barton—David—
Ansari-Freund-Siegel-Tukey test, the Capon test, Mood test, the Klotz test and the
Sukhatme test. The Sukhatme test applies to two variances and requires that both
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medians be known and equal to zero. The Mood, Klotz, Capon and Barton—David—An-
sari—Freund—Siegel-Tukey tests also apply to two variances. They allow the median to
be unknown but do require that the two medians are equal.

The Lehmann test is a parametric test of two variances. Of this test there are several
variants known. Other tests of the equality of variances include the Box test, the Box—
Anderson test and the Moses test.

Resampling methods, which include the bootstrap and the jackknife, may be used to
test the equality of variances.

Moment of Inertia

The variance of a probability distribution is analogous to the moment of inertia in clas-
sical mechanics of a corresponding mass distribution along a line, with respect to rota-
tion about its center of mass. It is because of this analogy that such things as the vari-
ance are called moments of probability distributions. The covariance matrix is related
to the moment of inertia tensor for multivariate distributions. The moment of inertia of
a cloud of n points with a covariance matrix of X is given by,

I=n(1,tr(Z)-X).

This difference between moment of inertia in physics and in statistics is clear for points
that are gathered along a line. Suppose many points are close to the x axis and distrib-
uted along it. The covariance matrix might look like,

10 O O
X=/0 0.1 O
(0] O 0.1

That is, there is the most variance in the x direction. Physicists would consider this to
have a low moment about the x axis so the moment-of-inertia tensor is,

0.2 O (o}
I=n| 0o 101 O
0 0 10.1

Semivariance

The semivariance is calculated in the same manner as the variance but only those ob-
servations that fall below the mean are included in the calculation:

. 1
Semivariance = — Z (x; — p)?
n

T <p
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It is sometimes described as a measure of downside risk in an investments context.
For skewed distributions, the semivariance can provide additional information that a
variance does not.

For inequalities associated with the semivariance.

Generalizations
For Complex Variables

If xis a scalar complex-valued random variable, with values in C,then its variance is

E [(x —1)(x—p) ] ,where x" is the complex conjugate of x 'This variance is a real scalar.

For Vector-valued Random Variables
As a Matrix

If X is a vector-valued random variable, with values in R",and thought of as a col-

umn vector, then a natural generalization of variance is E[(X —)(X - ,u)T],where

1 =E(X)and X" is the transpose of X and so is a row vector. The result is a positive
semi-definite square matrix, commonly referred to as the variance-covariance matrix
(or simply as the covariance matrix).

If X is a vector- and complex-valued random variable, with values in C",then the co-
variance matrix is E[(X —u)(X - ,u)T],where X'is the conjugate transpose of X

This matrix is also positive semi-definite and square.

As a Scalar

Another generalization of variance for vector-valued random variables X , which re-
sults in a scalar value rather than in a matrix, is the generalized variance det(C), the
determinant of the covariance matrix. The generalized variance can be shown to be
related to the multidimensional scatter of points around their mean.

A different generalization is obtained by considering the Euclidean distance between

the random variable and its mean. This results in E[(X —)"(X - ,u)] =1tr(C), which
is the trace of the covariance matrix.

Coefficient of Variance

The coefficient of variation (CV) is a statistical measure of the dispersion of data points in a
data series around the mean. The coefficient of variation represents the ratio of the standard
deviation to the mean, and it is a useful statistic for comparing the degree of variation from
one data series to another, even if the means are drastically different from one another.
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The coefficient of variation shows the extent of variability of data in a sample in relation
to the mean of the population. In finance, the coefficient of variation allows investors
to determine how much volatility, or risk, is assumed in comparison to the amount of
return expected from investments. Ideally, the coefficient of variation formula should
result in a lower ratio of the standard deviation to mean return, meaning the better
risk-return trade-off. Note that if the expected return in the denominator is negative or
zero, the coefficient of variation could be misleading.

The coefficient of variation is helpful when using the risk/reward ratio to select invest-
ments. For example, an investor who is risk-averse may want to consider assets with a
historically low degree of volatility and a high degree of return, in relation to the overall
market or its industry. Conversely, risk-seeking investors may look to invest in assets
with a historically high degree of volatility.

While most often used to analyze dispersion around the mean, quartile, quintile, or
decile CVs can also be used to understand variation around the median or 10th percen-
tile, for example.

Coefficient of Variation Formula

Below is the formula for how to calculate the coefficient of variation:

cv=2
U

where,
o =standard deviation
M =mean

Please note that if the expected return in the denominator of the coefficient of variation
formula is negative or zero, the result could be misleading.

Coefficient of Variation in Excel

The coefficient of variation formula can be performed in Excel by first using the stan-
dard deviation function for a data set. Next, calculate the mean using the Excel function
provided. Since the coefficient of variation is the standard deviation divided by the
mean, divide the cell containing the standard deviation by the cell containing the mean.

Example of Coefficient of Variation for Selecting Investments

For example, consider a risk-averse investor who wishes to invest in an exchange-trad-
ed fund (ETF), which is a basket of securities that tracks a broad market index. The
investor selects the SPDR S&P 500 ETF, Invesco QQQ ETF, and the iShares Russell
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2000 ETF. Then, he analyzes the ETFs’ returns and volatility over the past 15 years and
assumes the ETFs could have similar returns to their long-term averages.

For illustrative purposes, the following 15-year historical information is used for the
investor’s decision:

» SPDR S&P 500 ETF has an average annual return of 5.47% and a standard devi-
ation of 14.68%. SPDR S&P 500 ETF’s coefficient of variation is 2.68.

« Invesco QQQ ETF has an average annual return of 6.88% and a standard devi-
ation of 21.31%. QQQ’s coefficient of variation is 3.09.

+ iShares Russell 2000 ETF has an average annual return of 7.16% and a standard
deviation of 19.46%. IWM’s coefficient of variation is 2.72.

Based on the approximate figures, the investor could invest in either the SPDR S&P
500 ETF or the iShares Russell 2000 ETF, since the risk/reward ratios are compara-
tively the same and indicate a better risk-return trade-off than the Invesco QQQ ETF.

POOLED VARIANCE

Pooled Variance/Change is the weighted normal for assessing the fluctuations of two
autonomous variables where the mean can differ between tests however the genuine
difference continues as before.

Problem Statement:

Compute the Pooled Variance of the numbers 1, 2, 3, 4 and 5.
Solution:

Step 1:

Decide the normal (mean) of the given arrangement of information by including every
one of the numbers then gap it by the aggregate include of numbers given the informa-
tion set.

1+2+3+4+5 _15
5 5

Mean = =3

Step 2:
At that point, subtract the mean worth with the given numbers in the information set.

=(1-3),(2-3),(3-3),(4-3),(5-3) = —2,-1,0,1,2

WORLD TECHNOLOGIES




Statistical Measures 119

Step 3:

Square every period’s deviation to dodge the negative numbers.
= (-2)%,(-1)",(0)",(1)",(2)" = 4,1,0,1,4

Step 4:

Now discover Standard Deviation utilizing the underneath equation.

g= |ZX-M"
n-—1

V1
Standard Deviation = NIO 1.58113.

7

((aggregate check of numbers -1) x Var)
(aggregate tally of numbers-1)

Step 5:

Pooled Variance (r) =

(1)=(-1)x 2,

_(4x25)
4

=2.5

Hence, Pooled Variance (r) =2.5.

References
«  Arithmetic-mean, statistics: tutorialspoint.com, Retrieved 16 July, 2019

+  Quartile-deviation, business-mathematics-and-statistics-measures-of-central-tendency-and-dis-
persion: toppr.com, Retrieved 25 August, 2019

«  Hippel, Paul T. von (2005). “Mean, Median, and Skew: Correcting a Textbook Rule”. Journal of
Statistics Education. 13 (2). d0i:10.1080/10691898.2005.11910556

«  Coefficientofvariation: investopedia.com, Retrieved 15 February, 2019

«  Dodge, Yadolah (2003). The Oxford Dictionary of Statistical Terms. Oxford University Press.
ISBN 978-0-19-920613-1

«  Pooled-variance, statistics: tutorialspoint.com, Retrieved 09 May, 2019

+  Frohne, I.; Hyndman, R.J. (2009). Sample Quantiles. R Project. ISBN 3-900051-07-0

WORLD TECHNOLOGIES




4

Sampling Distributions

Sampling distribution refers to the probability distribution of data obtained from a
large number of samples. Sampling distribution of mean, median, mode and standard
deviation are studied within statistics. This chapter sheds light on the sampling distri-
butions for an in-depth understanding of the subject.

Suppose we have a finite population and we draw all possible simple random samples
of size n without replacement or with replacement. For each sample we calculate a
statistic (sample mean X or proportion p, etc.). All possible values of the statistic
make a probability distribution which is called the sampling distribution. The number
of all possible samples is usually very large and obviously the number of statistics (any
function of the sample) will be equal to the number of samples if one and only one
statistic is calculated from each sample. In fact, in practical situations, the sampling
distribution has a very large number of values. The shape of the sampling distribution
depends upon the size of the sample, the nature of the population and the statistic
which is calculated from all possible simple random samples.

Standard Error

The standard deviation of a statistic is called the standard error of that statistic. If the
statistic is X', the standard deviation of all possible values of X is called the standard
error of X , which may be written as S.E.(X ) or o . Similarly, if the sample statistic is

proportion p, the standard deviation of all possible values of p is called the standard
error of p and is denoted by o, orS.E.( D).

Sampling Distribution of X

The probability distribution of all possible values of X calculated from all possible
simple random samples is called the sampling distribution of X . In brief, we shall call
it the distribution of X . The mean of this distribution is called the expected value of X
and is written as E ()_( ) 0 The standard deviation (standard error) of this distribution

is denoted by S.E.( X)or 05 and the variance of X is denoted by Var( X) Var(}_( ) or
0 ¢ . The distribution of X has some important properties:

«  Oneimportant property of the distribution of X is thatitis a normal distribution
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when the size of the sample is large. When the sample size n is more than 30,
we call it a large sample size. The shape of the population distribution does not
matter. The population may be normal or non-normal, the distribution of X is
normal for n>30, but this is true when the number of samples is very large. As
the distribution of random variable X is normal, X can be transformed into

X-—p . The distribution of X has a

0'/\/;

t-distribution when the population is normal and n>30. Diagram (a) shows the
normal distribution and diagram (b) shows the t-distribution.

a standard normal variable Z where Z =

Lrimgram (a)

ol

Dviagram (b}

tlistribution

+ The mean of the distribution of X is equal to the mean of the population. Thus
E(X ) = pz = ¢ (population mean). This relation is true for small as well as
large sample sizes in sampling without replacement and with replacement.

« The standard error (standard deviation) of X is related to the standard devia-
tion of the population o through the relations:

SE(X)=0y =1

N

This is true when population is infinite, which means NN is very large or the sampling
is done with replacement from a finite or infinite population.

_ N —
S.E(X)IO'XZ% N—Tll

This is true when sampling is without replacement from a finite population. The above
two equations between oy and o are true both for small as well as large sample sizes.
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Examples of Sampling Distribution

Draw all possible samples of size 2 without replacement from a population consisting
of 3, 6, 9, 12, 15. Form the sampling distribution of sample means and verify the results.

. E(X'):,u

v

Solution:

We have population values 3, 6, 9, 12, 15, population size N=5 and sample size n=2.
Thus, the number of possible samples which can be drawn without replacement is,

(-

Sample No. | Sample Values | Sample Mean X | Sample No. | Sample Values | Sample Mean X
1 3,6 4.5 6 6,12 9.0
2 3,9 6.0 7 6, 15 10.5
3 3,12 7.5 8 9,12 10.5
4 3,15 9.0 9 9,15 12.0
5 6,9 7.5 10 12, 15 13.5

The sampling distribution of the sample mean X and its mean and standard deviation

are:

X | f | fX) | X(X) | XF(X)
4.5 1 1/10 4.5/10 20.25/10
6.0 1 1/10 6.0/10 36.00/10
7.5 2 2/10 15.0/10 112.50/10
9.0 2 2/10 18.0/10 162.00/10
10.5 |2 2/10 21.0/10 220.50/10
12.0 |1 1/10 12.0/10 144.00/10
13.5 |1 1/10 13.5/10 182.25/10
Total {10 |1 90/10 877.5/10
S Srr S (0}
EX)=2X(X)=2=9
10
_ = = .. o2 887 o)
Var(X) =YX (D[ XX FX)] = 1Z 5 -(?—OJ —87.75-81=6.75
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The mean and variance of the population are:

X | 3 6 9 | 12 | 15 X =45
¥=X%5
X* 9 36 | 81 | 144 | 225
=495
2X 45
'U_T_ 5 =9
and
o2 2X _(ZX] _495_(45) _ o gi_1g
N N 5 5
Verification:
« EX)=u=9
. Var()_()zo-—(N_nj:182(EJ=6.75
n\ N-1 5—1
Example:

If random samples of size three are drawn without replacement from the popula-
tion consisting of four numbers 4, 5, 5, 7. Find the sample mean X for each sample
and make a sampling distribution of X . Calculate the mean and standard devia-
tion of this sampling distribution. Compare your calculations with the population

parameters.
Solution:

We have population values 4, 5, 5, 7, population size N=4 and sample size n=3. Thus,
the number of possible samples which can be drawn without replacement is,

(4

Sample No. | Sample Values | Sample Mean (X )
1 4,5,5 14/3
2 4,5,7 16/3
3 4,5,7 16/3
4 55,7 17/3

WORLD TECHNOLOGIES




124 Introductory Statistics

The sampling distribution of the sample mean X and its mean and standard deviation
are:

X | S| f(X)| XF(X) | XA(X)
14/3 | 1 1/4 14/12 | 196/36
16/3 | 2 2/4 32/12 512/36
17/3 | 1 1/4 17/12 | 289/36
Total | 4 1 63/12 997/36

py =Y X f(X) =i’—§’=5-25

T2 (% e o _ 997 (63
oy = (X (O -[LXF (D] :*/3_6‘(5] ~0.3632

The mean and standard deviation of the population are:

X |4 5 5 7 >X =21

X2 16 |25 |25 |49 > X2

=115

>2X 21 2 2X* (XX T 115 (21 §
u p 5.25 and O \/ N N 2 97

4

Hence, y, =y and o, = To'
n N -1
Sampling Errors

Suppose we are interested in the value of a population parameter, the true value of
which is @ but is unknown. The knowledge about € can be obtained either from sam-
ple data or from population data. In both cases, there is a possibility of not reaching the
true value of the parameter. The difference between the calculated value (from the sam-
ple data or from population data) and the true value of the parameter is called an error.

Thus, error is something which cannot be determined accurately if the population is
large and the units of the population are to be measured. Suppose we are interested in
finding the total production of wheat in Pakistan in a certain year. Sufficient funds and
time are at our disposal and we want to get the ‘true’ figure of the production of wheat.
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The maximum we can do is contact all the farmers, and suppose all the farmers cooper-
ate completely and supply the information as honestly as possible. But the information
supplied by the farmers will have errors in most cases, so we may not be able to identify
the ‘true’ figure. In spite of all efforts, we shall be in the dark.

The calculated or observed figure may be good for all practical purposes but we can
never claim that a true value of the parameter has been obtained. If the study of the
units is based on counting, we can possibly get the true figure of the population pa-
rameter. There are two kinds of errors, (i) sampling errors or random errors and (ii)
non-sampling errors.

Sampling Errors

Sampling errors occur due to the nature of sampling. The sample selected from the
population is one of all possible samples. Any value calculated from the sample is based
on the sample data and is called a sample statistic. The sample statistic may or may

not be close to the population parameter. If the statistic is & and the true value of the

population parameter is @, then the difference @ —@ is called the sampling error. It is
important to note that a statistic is a random variable and it may take any value.

A particular example of sampling error is the difference between the sample mean X
and the population mean . Thus sampling error is also a random term. The popula-
tion parameter is usually not known; therefore the sampling error is estimated from the
sample data. The sampling error is due to the fact that a certain part of the population
is incorporated in the sample. Obviously, one part of the population cannot give the
true picture of the properties of the population. But one should not get the impression
that a sample always gives a result which is full of errors. We can design a sample and
collect sample data in a manner so that sampling errors are reduced. Sampling errors
can be reduced by the following methods: (1) by increasing the size of the sample (2)
by stratification.

Reducing Sampling Errors

« Increasing the size of the sample: The sampling error can be reduced by in-
creasing the sample size. If the sample size n is equal to the population size N,
then the sampling error is zero.

 Stratification: When the population contains homogeneous units, a simple ran-
dom sample is