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VIII

This book aims to help a broader range of students by exploring a wide variety of 
significant topics related to this discipline. It will help students in achieving a higher level 
of understanding of the subject and excel in their respective fields. This book would not 
have been possible without the unwavered support of my senior professors who took out 
the time to provide me feedback and help me with the process. I would also like to thank 
my family for their patience and support.

The mathematical discipline that is concerned with the collection, analysis, organization, 
interpretation and presentation of data is referred to as statistics. Descriptive statistics 
and inferential statistics are the main statistical methods that are used in data analysis. 
Descriptive analysis uses indexes such as mean and standard deviation to summarize data 
from a sample. Distribution and dispersion are the two most important sets of properties 
of descriptive statistics. Inferential statistics uses data analysis to conclude the properties 
of the fundamental probability distribution. The topics included in this book on statistics 
are of utmost significance and bound to provide incredible insights to readers. It aims to 
shed light on some of the unexplored aspects of this field. Those in search of information 
to further their knowledge will be greatly assisted by this book. 

A brief overview of the book contents is provided below: 

Chapter – What is Statistics?

Statistics deals with the collection, organization, analysis and presentation of data through 
the use of quantified models and representations. The analyzed data uses two statistical 
methods – descriptive and inferential statistics. This is an introductory chapter which will 
briefly introduce about statistics.

Chapter – Branches of Statistics

The discipline of statistics can be categorized into various branches such as descriptive 
analysis, parametric and nonparametric statistics, exact statistics, etc. This chapter closely 
examines these branches of statistics to provide an extensive understanding of the subject.

Chapter – Statistical Measures

Statistical measures refer to the individual quantitative variable values for the statistical units 
in a specific group. Such measures include statistical mean, mode, median, range, skewness, 
quantile, quartile, variance, quartile deviation, pooled variance, standard deviation, etc. The 
topics elaborated in this chapter will help in gaining a better perspective of these statistical 
measures.

Preface
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Chapter – Sampling Distributions

Sampling distribution refers to the probability distribution of data obtained from a large 
number of samples. Sampling distribution of mean, median, mode and standard deviation 
are studied within statistics. This chapter sheds light on the sampling distributions for an 
in-depth understanding of the subject.

Chapter – Statistical Inference

Statistical inference is the process that makes use of data analysis for deducing properties of 
a probability distribution. Algorithmic inference, fiducial inference and Bayesian inference 
fall under its domain. This chapter closely examines the varied aspects of statistical inference 
to provide an extensive understanding of the subject.

Chapter – Theorems in Statistics

Central limit theorem, Basu’s theorem, Cochran’s theorem, Fieller’s theorem, Fisher– Tippett–
Gnedenko theorem, Hajek–Le Cam convolution theorem, Neyman–Pearson lemma, etc. are 
some of the theorems that are used in statistics. This chapter discusses these theorems of 
statistics in detail.

Chapter – Applications

Statistics has applications in the fields of actuarial science, business analytics, forensics, 
finance, engineering, operations research, signal processing, psychology, machine learning, 
etc. This chapter has been carefully written to provide an easy understanding of the diverse 
applications of statistics.

Nancy Maxwell
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Statistics deals with the collection, organization, analysis and presentation of data 
through the use of quantified models and representations. The analyzed data uses two 
statistical methods – descriptive and inferential statistics. This is an introductory chap-
ter which will briefly introduce about statistics.

Statistics is a form of mathematical analysis that uses quantified models, represen-
tations and synopses for a given set of experimental data or real-life studies. Statis-
tics studies methodologies to gather, review, analyze and draw conclusions from data. 
Some statistical measures include the following:

•	 Mean,

•	 Regression analysis,

•	 Skewness,

•	 Kurtosis,

•	 Variance,

•	 Analysis of variance.

Statistics is a term used to summarize a process that an analyst uses to characterize a 
data set. If the data set depends on a sample of a larger population, then the analyst 
can develop interpretations about the population primarily based on the statistical out-
comes from the sample. Statistical analysis involves the process of gathering and eval-
uating data and then summarizing the data into a mathematical form.

Statistics is used in various disciplines such as psychology, business, physical and 
social sciences, humanities, government, and manufacturing. Statistical data is gath-
ered using a sample procedure or other method. Two types of statistical methods are 
used in analyzing data: Descriptive statistics and inferential statistics. Descriptive 
statistics are used to synopsize data from a sample exercising the mean or standard 
deviation. Inferential statistics are used when data is viewed as a subclass of a specific 
population.

1
What is Statistics?
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Types of Statistics

Statistics is a general, broad term, so it’s natural that under that umbrella there exist a 
number of different models.

Mean

A mean is the mathematical average of a group of two or more numerals. The mean for 
a specified set of numbers can be computed in multiple ways, including the arithmetic 
mean, which shows how well a specific commodity performs over time, and the geo-
metric mean, which shows the performance results of an investor’s portfolio invested 
in that same commodity over the same period.

Regression Analysis

Regression analysis determines the extent to which specific factors such as interest 
rates, the price of a product or service, or particular industries or sectors influence the 
price fluctuations of an asset. This is depicted in the form of a straight line called linear 
regression.

Skewness

Skewness describes the degree a set of data varies from the standard distribution in a 
set of statistical data. Most data sets, including commodity returns and stock prices, 
have either positive skew, a curve skewed toward the left of the data average, or nega-
tive skew, a curve skewed toward the right of the data average.

Kurtosis

Kurtosis measures whether the data are light-tailed (less outlier-prone) or heavy-tailed 
(more outlier-prone) than the normal distribution. Data sets with high kurtosis have 
heavy tails, or outliers, which implies greater investment risk in the form of occasional 
wild returns. Data sets with low kurtosis have light tails, or lack of outliers, which im-
plies lesser investment risk.

Variance

Variance is a measurement of the span of numbers in a data set. The variance measures 
the distance each number in the set is from the mean. Variance can help determine the 
risk an investor might accept when buying an investment.

Ronald Fisher developed the analysis of variance method. It is used to decide the effect 
solitary variables have on a variable that is dependent. It may be used to compare the 
performance of different stocks over time.
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Statistics can be applied to various different problems and situations but the underly-
ing concepts all remain the same. Thus it is important to understand what statistics is, 
not only from an application point of view but also from an interpretation point of view. 
This is required because of the diverse applications of statistics, from social science 
experiments to studying quantum mechanical phenomena.

Statistics can be broadly classified into descriptive statistics and inferential statistics.

To understand statistics, one needs to study and understand the probability theory. 
These are closely connected and inseparable in most cases. In fact, historically, the 
foundations of statistics were laid with the development of probability theory.

The ideas of presenting data and drawing relevant inferences are central to the suc-
cessful use of statistical theory. In the end, the statistical analysis should be able to tell 
us something concrete about the sample that we are studying. A number of errors are 
possible in the interpretation of statistical results and a careful analysis needs to be 
made to prevent these errors.

In some rare cases, statistics can be used to draw conclusions that appear to be statisti-
cally relevant but on careful examination, are not. When such practices are intentional, 
they can be hard to detect. One good example of such statistical misconduct is data 
dredging. Therefore one should also be able to spot the scope and relevance of a statis-
tical study and understand it in the context of the study within which it was intended.

Characteristics of Statistics

Some of the potential characteristics that a statistic should include:

Completeness

Completeness refers to an indication of whether or not the data required to meet the in-
formation demand is available in the data resource. Completeness of data is necessary 
to ensure the accuracy of the observed data.

Consistency

Consistency is viewed in terms of the uniformity or stability of data. Some of the sta-
tistics used to measure consistency include standard deviation, range, and variance. 
When measuring the consistency of data from a sample that is representative of a large 
population, the standard error of the mean is usually examined.

Also, when using instruments to collect data, the consistency can be measured by esti-
mating the reliability of the obtained scores.
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Sufficiency

A statistic is considered sufficient if there is no other statistic that can be computed 
from the sample. The sufficiency concept is common in descriptive statistics due to its 
strong dependence on the assumption of the data distribution form.

Unbiasedness

The bias of a statistics is determined by the difference between the true value of the 
parameter being measured and the estimator’s expected value. If the mean of the sam-
pling distribution and the expected value of the parameter are equal, the statistic is 
considered to be unbiased.

Statistical Data

When working with statistics, it’s important to recognize the different types of data: nu-
merical (discrete and continuous), categorical, and ordinal. Data are the actual pieces 
of information that you collect through your study. For example, if you ask five of your 
friends how many pets they own, they might give you the following data: 0, 2, 1, 4, 18. 
(The fifth friend might count each of her aquarium fish as a separate pet.) Not all data 
are numbers; let’s say you also record the gender of each of your friends, getting the 
following data: male, male, female, male, female.

Most data fall into one of two groups: numerical or categorical:

•	 Numerical data: These data have meaning as a measurement, such as a person’s 
height, weight, IQ, or blood pressure; or they’re a count, such as the number of 
stock shares a person owns, how many teeth a dog has, or how many pages you 
can read of your favorite book before you fall asleep. (Statisticians also call nu-
merical data quantitative data.). Numerical data can be further broken into two 
types: discrete and continuous:

◦◦ Discrete data represent items that can be counted; they take on possible values 
that can be listed out. The list of possible values may be fixed (also called fi-
nite); or it may go from 0, 1, 2, on to infinity (making it countably infinite). For 
example, the number of heads in 100 coin flips takes on values from 0 through 
100 (finite case), but the number of flips needed to get 100 heads takes on 
values from 100 (the fastest scenario) on up to infinity (if you never get to that 
100th heads). Its possible values are listed as 100, 101, 102, 103, . . . (represent-
ing the countably infinite case).

◦◦ Continuous data represent measurements; their possible values cannot be 
counted and can only be described using intervals on the real number line. 

____________________ WORLD TECHNOLOGIES ____________________



WT

5What is Statistics?

For example, the exact amount of gas purchased at the pump for cars with 
20-gallon tanks would be continuous data from 0 gallons to 20 gallons, rep-
resented by the interval [0, 20], inclusive. You might pump 8.40 gallons, 
or 8.41, or 8.414863 gallons, or any possible number from 0 to 20. In this 
way, continuous data can be thought of as being uncountably infinite. For 
ease of recordkeeping, statisticians usually pick some point in the number 
to round off. Another example would be that the lifetime of a C battery can 
be anywhere from 0 hours to an infinite number of hours (if it lasts forever), 
technically, with all possible values in between. Granted, you don’t expect a 
battery to last more than a few hundred hours, but no one can put a cap on 
how long it can go.

•	 Categorical data: Categorical data represent characteristics such as a person’s 
gender, marital status, hometown, or the types of movies they like. Categorical 
data can take on numerical values (such as “1” indicating male and “2” indicat-
ing female), but those numbers don’t have mathematical meaning. You couldn’t 
add them together, for example. (Other names for categorical data are qualita-
tive data, or Yes/No data.)

Ordinal data mixes numerical and categorical data. The data fall into categories, but 
the numbers placed on the categories have meaning. For example, rating a restaurant 
on a scale from 0 (lowest) to 4 (highest) stars gives ordinal data. Ordinal data are often 
treated as categorical, where the groups are ordered when graphs and charts are made. 
However, unlike categorical data, the numbers do have mathematical meaning. For 
example, if you survey 100 people and ask them to rate a restaurant on a scale from 0 
to 4, taking the average of the 100 responses will have meaning. This would not be the 
case with categorical data.

Statistical Data Analysis

Statistics is basically a science that involves data collection, data interpretation and 
finally, data validation. Statistical data analysis is a procedure of performing various 
statistical operations. It is a kind of quantitative research, which seeks to quantify the 
data, and typically, applies some form of statistical analysis. Quantitative data basically 
involves descriptive data, such as survey data and observational data.

Statistical data analysis generally involves some form of statistical tools, which a lay-
man cannot perform without having any statistical knowledge. There are various soft-
ware packages to perform statistical data analysis. This software includes Statistical 
Analysis System (SAS), Statistical Package for the Social Sciences (SPSS), Stat soft, 
etc.
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Data in statistical data analysis consists of variables. Sometimes the data is univariate 
or multivariate. Depending upon the number of variables, the researcher performs dif-
ferent statistical techniques.

If the data in statistical data analysis is multiple in numbers, then several multivari-
ates can be performed. These are factor statistical data analysis, discriminant statisti-
cal data analysis, etc. Similarly, if the data is singular in number, then the univariate 
statistical data analysis is performed. This includes t test for significance, z test, f test, 
ANOVA one way, etc.

The data in statistical data analysis is basically of 2 types, namely, continuous data and 
discreet data. The continuous data is the one that cannot be counted. For example, in-
tensity of a light can be measured but cannot be counted. The discreet data is the one 
that can be counted. For example, the number of bulbs can be counted.

The continuous data in statistical data analysis is distributed under continuous distri-
bution function, which can also be called the probability density function, or simply pdf.

The discreet data in statistical data analysis is distributed under discreet distribution 
function, which can also be called the probability mass function or simple pmf.

We use the word ‘density’ in continuous data of statistical data analysis because density 
cannot be counted, but can be measured. We use the word ‘mass’ in discreet data of 
statistical data analysis because mass cannot be counted.

There are various pdf’s and pmf’s in statistical data analysis. For example, Poisson 
distribution is the commonly known pmf, and normal distribution is the commonly 
known pdf.

These distributions in statistical data analysis help us to understand which data falls 
under which distribution. If the data is about the intensity of a bulb, then the data 
would be falling in Poisson distribution.

There is a major task in statistical data analysis, which comprises of statistical infer-
ence. The statistical inference is mainly comprised of two parts: Estimation and tests 
of hypothesis.

Estimation in statistical data analysis mainly involves parametric data—the data that 
consists of parameters. On the other hand, tests of hypothesis in statistical data analy-
sis mainly involve non parametric data— the data that consists of no parameters.

Methods for Statistical Data Analysis

Mean

The arithmetic mean, more commonly known as “the average,” is the sum of a list of 
numbers divided by the number of items on the list. The mean is useful in determining 
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the overall trend of a data set or providing a rapid snapshot of your data. Another ad-
vantage of the mean is that it’s very easy and quick to calculate.

Pitfall:

Taken alone, the mean is a dangerous tool. In some data sets, the mean is also closely 
related to the mode and the median (two other measurements near the average). How-
ever, in a data set with a high number of outliers or a skewed distribution, the mean 
simply doesn’t provide the accuracy you need for a nuanced decision.

Standard Deviation

The standard deviation, often represented with the Greek letter sigma, is the measure 
of a spread of data around the mean. A high standard deviation signifies that data is 
spread more widely from the mean, where a low standard deviation signals that more 
data align with the mean. In a portfolio of data analysis methods, the standard devia-
tion is useful for quickly determining dispersion of data points.

Pitfall:

The standard deviation is deceptive if taken alone. For example, if the data have a very 
strange pattern such as a non-normal curve or a large amount of outliers, then the stan-
dard deviation won’t give you all the information you need.

Regression

Regression models the relationships between dependent and explanatory variables, 
which are usually charted on a scatterplot. The regression line also designates whether 
those relationships are strong or weak. Regression is commonly taught in high school 
or college statistics courses with applications for science or business in determining 
trends over time.

Pitfall:

Regression is not very nuanced. Sometimes, the outliers on a scatterplot (and the rea-
sons for them) matter significantly. For example, an outlying data point may represent 
the input from your most critical supplier or your highest selling product. The nature 
of a regression line, however, tempts you to ignore these outliers. As an illustration, 
examine a picture of ANSCOMBE’S QUARTET, in which the data sets have the exact 
same regression line but include widely different data points.

Sample Size Determination

When measuring a large data set or population, like a workforce, you don’t always need 
to collect information from every member of that population – a sample does the job 
just as well. The trick is to determine the right size for a sample to be accurate. Using 
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proportion and standard deviation methods, you are able to accurately determine the 
right sample size you need to make your data collection statistically significant.

Pitfall:

When studying a new, untested variable in a population, your proportion equations 
might need to rely on certain assumptions. However, these assumptions might be com-
pletely inaccurate. This error is then passed along to your sample size determination 
and then onto the rest of your statistical data analysis

Hypothesis Testing

Also commonly called t testing, hypothesis testing assesses if a certain premise is actu-
ally true for your data set or population. In data analysis and statistics, you consider the 
result of a hypothesis test statistically significant if the results couldn’t have happened 
by random chance. Hypothesis tests are used in everything from science and research 
to business and economic.

Pitfall:

To be rigorous, hypothesis tests need to watch out for common errors. For example, the 
placebo effect occurs when participants falsely expect a certain result and then perceive 
(or actually attain) that result. Another common error is the Hawthorne effect (or ob-
server effect), which happens when participants skew results because they know they 
are being studied.

Overall, these methods of data analysis add a lot of insight to your DECISION-MAK-
ING PORTFOLIO, particularly if you’ve never analyzed a process or data set with sta-
tistics before.
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The discipline of statistics can be categorized into various branches such as descrip-
tive analysis, parametric and nonparametric statistics, exact statistics, etc. This chapter 
closely examines these branches of statistics to provide an extensive understanding of 
the subject.

Descriptive Statistics

Descriptive statistics are brief descriptive coefficients that summarize a given data set, 
which can be either a representation of the entire or a sample of a population. Descrip-
tive statistics are broken down into measures of central tendency and measures of vari-
ability (spread). Measures of central tendency include the mean, median, and mode, 
while measures of variability include the standard deviation, variance, the minimum 
and maximum variables, and the kurtosis and skewness.

Descriptive statistics, in short, help describe and understand the features of a specific 
data set by giving short summaries about the sample and measures of the data. The 
most recognized types of descriptive statistics are measures of center: the mean, me-
dian, and mode, which are used at almost all levels of math and statistics. The mean, 
or the average, is calculated by adding all the figures within the data set and then di-
viding by the number of figures within the set. For example, the sum of the following 
data set is 20: (2, 3, 4, 5, 6). The mean is 4 (20/5). The mode of a data set is the value 
appearing most often, and the median is the figure situated in the middle of the data 
set. It is the figure separating the higher figures from the lower figures within a data 
set. However, there are less-common types of descriptive statistics that are still very 
important.

People use descriptive statistics to repurpose hard-to-understand quantitative insights 
across a large data set into bite-sized descriptions. A student’s grade point average 
(GPA), for example, provides a good understanding of descriptive statistics. The idea 
of a GPA is that it takes data points from a wide range of exams, classes, and grades, 
and averages them together to provide a general understanding of a student’s overall 
academic abilities. A student’s personal GPA reflects his mean academic performance.

2
Branches of Statistics
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Measures of Descriptive Statistics

All descriptive statistics are either measures of central tendency or measures of vari-
ability, also known as measures of dispersion. Measures of central tendency focus on 
the average or middle values of data sets; whereas, measures of variability focus on the 
dispersion of data. These two measures use graphs, tables, and general discussions to 
help people understand the meaning of the analyzed data.

Measures of central tendency describe the center position of a distribution for a data 
set. A person analyzes the frequency of each data point in the distribution and describes 
it using the mean, median, or mode, which measures the most common patterns of the 
analyzed data set.

Measures of variability, or the measures of spread, aid in analyzing how spread-out the 
distribution is for a set of data. For example, while the measures of central tendency 
may give a person the average of a data set, it does not describe how the data is distrib-
uted within the set. So, while the average of the data may be 65 out of 100, there can still 
be data points at both 1 and 100. Measures of variability help communicate this by de-
scribing the shape and spread of the data set. Range, quartiles, absolute deviation, and 
variance are all examples of measures of variability. Consider the following data set: 5, 
19, 24, 62, 91, 100. The range of that data set is 95, which is calculated by subtracting 
the lowest number (5) in the data set from the highest (100).

Parametric statistics

Parametric statistics is a branch of statistics which assumes that sample data come 
from a population that can be adequately modeled by a probability distribution that has 
a fixed set of parameters. Conversely a non-parametric model differs precisely in that 
the parameter set (or feature set in machine learning) is not fixed and can increase, or 
even decrease, if new relevant information is collected. 

Most well-known statistical methods are parametric. Regarding nonparametric (and 
semiparametric) models, Sir David Cox has said, “These typically involve fewer as-
sumptions of structure and distributional form but usually contain strong assumptions 
about independencies”. 

The normal family of distributions all have the same general shape and are param-
eterized by mean and standard deviation. That means that if the mean and standard 
deviation are known and if the distribution is normal, the probability of any future 
observation lying in a given range is known. 

Suppose that we have a sample of 99 test scores with a mean of 100 and a standard 
deviation of 1. If we assume all 99 test scores are random observations from a normal 
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distribution, then we predict there is a 1% chance that the 100th test score will be high-
er than 102.33 (that is, the mean plus 2.33 standard deviations), assuming that the 
100th test score comes from the same distribution as the others. Parametric statistical 
methods are used to compute the 2.33 value above, given 99 independent observations 
from the same normal distribution. 

A non-parametric estimate of the same thing is the maximum of the first 99 scores. 
We don’t need to assume anything about the distribution of test scores to reason that 
before we gave the test it was equally likely that the highest score would be any of the 
first 100. Thus there is a 1% chance that the 100th score is higher than any of the 99 
that preceded it. 

Exact statistics

Exact statistics, such as that described in exact test, is a branch of statistics that was 
developed to provide more accurate results pertaining to statistical testing and interval 
estimation by eliminating procedures based on asymptotic and approximate statistical 
methods. The main characteristic of exact methods is that statistical tests and confi-
dence intervals are based on exact probability statements that are valid for any sample 
size. Exact statistical methods help avoid some of the unreasonable assumptions of 
traditional statistical methods, such as the assumption of equal variances in classical 
ANOVA. They also allow exact inference on variance components of mixed models. 

When exact p-values and confidence intervals are computed under a certain distribu-
tion, such as the normal distribution, then the underlying methods are referred to as 
exact parametric methods. The exact methods that do not make any distributional as-
sumptions are referred to as exact nonparametric methods. The latter has the advan-
tage of making fewer assumptions whereas, the former tend to yield more powerful 
tests when the distributional assumption is reasonable. For advanced methods such 
as higher-way ANOVA regression analysis, and mixed models, only exact parametric 
methods are available. 

When the sample size is small, asymptotic results given by some traditional methods 
may not be valid. In such situations, the asymptotic p-values may differ substantially 
from the exact p-values. Hence asymptotic and other approximate results may lead to 
unreliable and misleading conclusions. 

Approach

All classical statistical procedures are constructed using statistics which depend only 
on observable random vectors, whereas generalized estimators, tests, and confidence 
intervals used in exact statistics take advantage of the observable random vectors and 
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the observed values both, as in the Bayesian approach but without having to treat con-
stant parameters as random variables. For example, in sampling from a normal popu-
lation with mean µ and variance 2s , suppose X and 2S are the sample mean and the 
sample variance. Then, defining Z and U thus: 

0 1( ) / ~ ( , )Z n X Nµ s= −

and that,

2 2 2
1/ ~ .nU nS s χ −=

Now suppose the parameter of interest is the coefficient of variation, / .ρ µ s=  then, 
we can easily perform exact tests and exact confidence intervals for ρ based on the 
generalized statistic:

  ,
xS X x U ZR
s s n n

µ
s s

−
= − = −

Where, x  is the observed value of X and S is the observed value of s . Exact inferences 
on ρ based on probabilities and expected values of R are possible because its distribu-
tion and the observed value are both free of nuisance parameters.

Generalized p-values

Classical statistical methods do not provide exact tests to many statistical problems 
such as testing Variance Components and ANOVA under unequal variances. To rec-
tify this situation, the generalized p-values are defined as an extension of the classical 
p-values so that one can perform tests based on exact probability statements valid for 
any sample size. 

Nonparametric statistics

Nonparametric statistics is the branch of statistics that is not based solely on parame-
trized families of probability distributions (common examples of parameters are the 
mean and variance). Nonparametric statistics is based on either being distribution-free 
or having a specified distribution but with the distribution’s parameters unspecified. 
Nonparametric statistics includes both descriptive statistics and statistical inference. 

The term “nonparametric statistics” has been imprecisely defined in the following two 
ways, among others. 

•	 The first meaning of nonparametric covers techniques that do not rely on data 
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belonging to any particular parametric family of probability distributions. These 
include, among others: 

◦◦ Distribution free methods, which do not rely on assumptions that the data 
are drawn from a given parametric family of probability distributions. As 
such it is the opposite of parametric statistics.

◦◦ Nonparametric statistics (a statistic is defined to be a function on a sample; 
no dependency on a parameter).

Order statistics, which are based on the ranks of observations, is one example 
of such statistics. 

Statistical hypotheses concern the behavior of observable random variables. 
For example, the hypothesis (a) that a normal distribution has a specified mean 
and variance is statistical; so is the hypothesis (b) that it has a given mean but 
unspecified variance; so is the hypothesis (c) that a distribution is of normal 
form with both mean and variance unspecified; finally, so is the hypothesis (d) 
that two unspecified continuous distributions are identical. 

It will have been noticed that in the examples (a) and (b) the distribution un-
derlying the observations was taken to be of a certain form (the normal) and the 
hypothesis was concerned entirely with the value of one or both of its parame-
ters. Such a hypothesis, for obvious reasons, is called parametric. 

Hypothesis (c) was of a different nature, as no parameter values are specified 
in the statement of the hypothesis; we might reasonably call such a hypothesis 
non-parametric. Hypothesis (d) is also non-parametric but, in addition, it does 
not even specify the underlying form of the distribution and may now be reason-
ably termed distribution-free. Notwithstanding these distinctions, the statistical 
literature now commonly applies the label “non-parametric” to test procedures 
that we have just termed “distribution-free”, thereby losing a useful classification. 

•	 The second meaning of non-parametric covers techniques that do not assume 
that the structure of a model is fixed. Typically, the model grows in size to ac-
commodate the complexity of the data. In these techniques, individual variables 
are typically assumed to belong to parametric distributions, and assumptions 
about the types of connections among variables are also made. These techniques 
include, among others: 

◦◦ Non-parametric regression, which is modeling whereby the structure of the 
relationship between variables is treated non-parametrically, but where 
nevertheless there may be parametric assumptions about the distribution 
of model residuals.

◦◦ Non-parametric hierarchical Bayesian models, such as models based on 
the Dirichlet process, which allow the number of latent variables to grow as 
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necessary to fit the data, but where individual variables still follow paramet-
ric distributions and even the process controlling the rate of growth of latent 
variables follows a parametric distribution.

Applications and Purpose

Non-parametric methods are widely used for studying populations that take on a 
ranked order (such as movie reviews receiving one to four stars). The use of non-para-
metric methods may be necessary when data have a ranking but no clear numerical 
interpretation, such as when assessing preferences. In terms of levels of measurement, 
non-parametric methods result in ordinal data. 

As non-parametric methods make fewer assumptions, their applicability is much wider 
than the corresponding parametric methods. In particular, they may be applied in sit-
uations where less is known about the application in question. Also, due to the reliance 
on fewer assumptions, non-parametric methods are more robust. 

Another justification for the use of non-parametric methods is simplicity. In certain 
cases, even when the use of parametric methods is justified, non-parametric meth-
ods may be easier to use. Due both to this simplicity and to their greater robustness, 
non-parametric methods are seen by some statisticians as leaving less room for im-
proper use and misunderstanding. 

The wider applicability and increased robustness of non-parametric tests comes at a 
cost: In cases where a parametric test would be appropriate, non-parametric tests have 
less power. In other words, a larger sample size can be required to draw conclusions 
with the same degree of confidence. 

Non-parametric Models

Non-parametric models differ from parametric models in that the model structure is 
not specified a priori but is instead determined from data. The term non-parametric is 
not meant to imply that such models completely lack parameters but that the number 
and nature of the parameters are flexible and not fixed in advance:

•	 A histogram is a simple nonparametric estimate of a probability distribution.

•	 Kernel density estimation provides better estimates of the density than histograms.

•	 Nonparametric regression and semiparametric regression methods have been 
developed based on kernels, splines, and wavelets.

•	 Data envelopment analysis provides efficiency coefficients similar to those ob-
tained by multivariate analysis without any distributional assumption.

•	 KNNs classify the unseen instance based on the K points in the training set 
which are nearest to it.
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•	 A support vector machine (with a Gaussian kernel) is a nonparametric large-mar-
gin classifier.

•	 Method of moments (statistics) with polynomial probability distributions.

Methods

Non-parametric (or distribution-free) inferential statistical methods are mathematical 
procedures for statistical hypothesis testing which, unlike parametric statistics, make 
no assumptions about the probability distributions of the variables being assessed. The 
most frequently used tests include: 

•	 Analysis of similarities.

•	 Anderson–Darling test: Tests whether a sample is drawn from a given distribution.

•	 Statistical bootstrap methods: Estimates the accuracy/sampling distribution of 
a statistic.

•	 Cochran’s Q: Tests whether k treatments in randomized block designs with 0/1 
outcomes have identical effects.

•	 Cohen’s kappa: Measures inter-rater agreement for categorical items.

•	 Friedman two-way analysis of variance by ranks: tests whether k treatments in 
randomized block designs have identical effects.

•	 Kaplan–Meier: Estimates the survival function from lifetime data, modeling 
censoring.

•	 Kendall’s tau: Measures statistical dependence between two variables.

•	 Kendall’s W: A measure between 0 and 1 of inter-rater agreement.

•	 Kolmogorov–Smirnov test: Tests whether a sample is drawn from a given dis-
tribution, or whether two samples are drawn from the same distribution.

•	 Kruskal–Wallis one-way analysis of variance by ranks: Tests whether > 2 inde-
pendent samples are drawn from the same distribution.

•	 Kuiper’s test: Tests whether a sample is drawn from a given distribution, sensi-
tive to cyclic variations such as day of the week.

•	 Logrank test: Compares survival distributions of two right-skewed, censored 
samples.

•	 Mann–Whitney U or Wilcoxon rank sum test: Tests whether two samples are 
drawn from the same distribution, as compared to a given alternative hypothesis.
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•	 McNemar’s test: Tests whether, in 2 × 2 contingency tables with a dichotomous trait 
and matched pairs of subjects, row and column marginal frequencies are equal.

•	 Median test: Tests whether two samples are drawn from distributions with 
equal medians.

•	 Pitman’s permutation test: A statistical significance test that yields exact p val-
ues by examining all possible rearrangements of labels.

•	 Rank products: Detects differentially expressed genes in replicated microarray 
experiments.

•	 Siegel–Tukey test: Tests for differences in scale between two groups.

•	 Sign test: Tests whether matched pair samples are drawn from distributions 
with equal medians.

•	 Spearman’s rank correlation coefficient: Measures statistical dependence be-
tween two variables using a monotonic function.

•	 Squared ranks test: Tests equality of variances in two or more samples.

•	 Tukey–Duckworth test: Tests equality of two distributions by using ranks.

•	 Wald–Wolfowitz runs test: Tests whether the elements of a sequence are mutu-
ally independent/random.

•	 Wilcoxon signed-rank test: Tests whether matched pair samples are drawn 
from populations with different mean ranks.

Estimation theory

Estimation theory is a branch of statistics that deals with estimating the values of pa-
rameters based on measured empirical data that has a random component. The param-
eters describe an underlying physical setting in such a way that their value affects the 
distribution of the measured data. An estimator attempts to approximate the unknown 
parameters using the measurements. 

In estimation theory, two approaches are generally considered. 

•	 The probabilistic approach assumes that the measured data is random with 
probability distribution dependent on the parameters of interest.

•	 The set-membership approach assumes that the measured data vector belongs 
to a set which depends on the parameter vector.
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Examples:

It is desired to estimate the proportion of a population of voters who will vote for a 
particular candidate. That proportion is the parameter sought; the estimate is based on 
a small random sample of voters. Alternatively, it is desired to estimate the probability 
of a voter voting for a particular candidate, based on some demographic features, such 
as age. 

Or, for example, in radar the aim is to find the range of objects (airplanes, boats, 
etc.) by analyzing the two-way transit timing of received echoes of transmitted puls-
es. Since the reflected pulses are unavoidably embedded in electrical noise, their 
measured values are randomly distributed, so that the transit time must be esti-
mated. 

As another example, in electrical communication theory, the measurements which con-
tain information regarding the parameters of interest are often associated with a noisy 
signal. 

Basics

For a given model, several statistical “ingredients” are needed so the estimator can be 
implemented. The first is a statistical sample – a set of data points taken from a random 
vector (RV) of size N. Put into a vector:

0
1

1

[ ]
[ ]

x .

[ ]

x
x

x N

 
 
 =
 
 − 



Secondly, there are M parameters:

1

2

θ
θ

θ

θ

 
 
 =
 
 
 



,

M

Whose, values are to be estimated. Third, the continuous probability density function 
(pdf) or its discrete counterpart, the probability mass function (pmf), of the underlying 
distribution that generated the data must be stated conditional on the values of the 
parameters:

x θ( | ).p
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It is also possible for the parameters themselves to have a probability distribution (e.g., 
Bayesian statistics). It is then necessary to define the Bayesian probability:

( ).π θ

After the model is formed, the goal is to estimate the parameters, with the estimates 
commonly denoted θ̂ , where the “hat” indicates the estimate.

One common estimator is the minimum mean squared error (MMSE) estimator, which 
utilizes the error between the estimated parameters and the actual value of the param-
eters:

e θ θ= −

As the basis for optimality. This error term is then squared and the expected value of 
this squared value is minimized for the MMSE estimator. 

Estimators

Commonly used estimators (estimation methods) and topics related to them include: 

•	 Maximum likelihood estimators.

•	 Bayes estimators.

•	 Method of moments estimators.

•	 Cramér–Rao bound.

•	 Least squares.

•	 Minimum mean squared error (MMSE), also known as Bayes least squared er-
ror (BLSE).

•	 Maximum a posteriori (MAP).

•	 Minimum variance unbiased estimator (MVUE).

•	 Nonlinear system identification.

•	 Best linear unbiased estimator (BLUE).

•	 Unbiased estimators.

•	 Particle filter.

•	 Markov chain Monte Carlo (MCMC).

•	 Kalman filter, and its various derivatives.

•	 Wiener filter.
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Unknown Constant in Additive white Gaussian Noise

Consider a received discrete signal, [ ]x n , of N independent samples that consists 
of an unknown constant A with additive white Gaussian noise (AWGN) [ ]w n with 
known variance s (i.e., 20( , )s ). Since the variance is known then the only unknown 
parameter is A.

The model for the signal is then,

0 1 1[ ] [ ] , , ,x n A w n n N= + = … −

Two possible (of many) estimators for the parameter A are:

•	 1 0ˆ [ ]A x=

•	
1

2
0

1ˆ [ ]
N

n

A x n
N

−

=

= ∑
Both of these estimators have a mean of A , which can be shown through taking the 
expected value of each estimator:

[ ]1 0ˆE E [ ]A x A  = = 

and
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∑ ∑

At this point, these two estimators would appear to perform the same. However, the 
difference between them becomes apparent when comparing the variances.

( ) ( ) 2
1 0ˆvar var [ ]A x s= =

and

21 1
2

2 2 2
0 0

1 1 1 ss
− −
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N N

independence

n n

A x n x n N
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It would seem that the sample mean is a better estimator since its variance is lower for 
every N > 1. 

Maximum Likelihood

Continuing the example using he maximum likelihood estimator, the probability den-
sity function (pdf) of the noise for one sample [ ]w n is:

2
2

1 1
22

( [ ]) exp [ ]p w n w n
ss π

 = − 
 
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and the probability of [ ]x n becomes [ ]x n can be thought of a 2( , )A s )

2
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By independence, the probability of  x becomes,

1 1
2

2
00

1 1
22 ss π

− −

==

 
= = − − 

 
∑∏( ; ) ( [ ]; ) exp ( [ ] )

( )

N N

N
nn

p x A p x n A x n A

Taking the natural logarithm of the pdf:
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and the maximum likelihood estimator is:

ˆ arg max ln ( ; )A p A

Taking the first derivative of the log-likelihood function:
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and setting it to zero:
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This results in the maximum likelihood estimator:
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Which is simply the sample mean? From this example, it was found that the sample 
mean is the maximum likelihood estimator for N samples of a fixed, unknown param-
eter corrupted by AWGN. 

Cramér–Rao Lower Bound

To find the Cramér–Rao lower bound (CRLB) of the sample mean estimator, it is first 
necessary to find the Fisher information number: 

2 2

2x x( ) E ln ( ; ) E ln ( ; )A p A p A
A A

   ∂ ∂ = = −     ∂ ∂    


x
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and copying from above,
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Taking the second derivative:
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and finding the negative expected value is trivial since it is now a deterministic constant:
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Finally, putting the Fisher information into:
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Comparing this to the variance of the sample mean shows that the sample mean is equal 
to the Cramér–Rao lower bound for all values of N and A. In other words, the sample 
mean is the (necessarily unique) efficient estimator, and thus also the minimum variance 
unbiased estimator (MVUE), in addition to being the maximum likelihood estimator.

Maximum of a Uniform Distribution

One of the simplest non-trivial examples of estimation is the estimation of the maxi-
mum of a uniform distribution. It is used as a hands-on classroom exercise and to illus-
trate basic principles of estimation theory. Further, in the case of estimation based on a 
single sample, it demonstrates philosophical issues and possible misunderstandings in 
the use of maximum likelihood estimators and likelihood functions. 

Given a discrete uniform distribution 1 2, , , N… with unknown maximum, the UMVU 
estimator for the maximum is given by, 

1 1 1k mm m
k k
+

− = + −

Where, m is the sample maximum and k is the sample size, sampling without replace-
ment. This problem is commonly known as the German tank problem, due to application 
of maximum estimation to estimates of German tank production during World War II. 
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The formula may be understood intuitively as; 

“The sample maximum plus the average gap between observations in the sample”.

The gap being added to compensate for the negative bias of the sample maximum as an 
estimator for the population maximum. 

This has a variance of: 

2

2

1 1
2

( )( )
 for small samples 

( )
N k N N k N

k k k
− +

≈
+



So, a standard deviation of approximately /N k , the (population) average size of a gap 

between samples; compare 
m
k

above. 

The sample maximum is the maximum likelihood estimator for the population maxi-
mum. 

Applications

Numerous fields require the use of estimation theory. Some of these fields include (but 
are by no means limited to): 

•	 Interpretation of scientific experiments.

•	 Signal processing.

•	 Clinical trials.

•	 Opinion polls.

•	 Quality control.

•	 Telecommunications.

•	 Project management.

•	 Software engineering.

•	 Control theory (in particular Adaptive control).

•	 Network intrusion detection system.

•	 Orbit determination.

Measured data are likely to be subject to noise or uncertainty and it is through statisti-
cal probability that optimal solutions are sought to extract as much information from 
the data as possible. 
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Economic statistics

Economic Statistics is the branch of statistical science that studies the quantitative as-
pect of economic processes and phenomena in the national economy in conjunction 
with their qualitative aspect. Unlike more specialized forms of statistics, which study 
economic processes in particular branches of the national economy, economic statistics 
studies the national economy as an integrated whole.

Marxist-Leninist political economy constitutes the theoretical foundation of economic 
statistics. Political economy investigates and identifies the most important features of 
social-production relations and reveals the laws governing the production and distri-
bution of material goods; economic statistics makes use of these principles to provide 
a quantitative description of phenomena and processes in the national economy and 
shows, with the help of economic-statistical indicators, how social production is devel-
oping in a particular place and time. In V. I. Lenin’s definition, the purpose of economic 
statistics is to give “statistical expression” to the phenomena and laws of socioeconomic 
development of society. A preliminary and comprehensive socioeconomic analysis of 
the phenomena under study is a major precondition for the scientific organization of 
economic statistics.

Economic statistics is both an integral part of statistical science and an important 
branch of practical activity. Although it emerged as an independent scientific disci-
pline and a subject taught in educational institutions before the Great Patriotic War of 
1941–45, economic statistics underwent its greatest development after the war. In the 
investigation of economic processes and in the collection, processing, and analysis of 
statistical data, it makes extensive use of such techniques as mass statistical observa-
tion, grouping, indexing, the analysis of time series, and the balance method. Mathe-
maticoeconomic research methods involving computers are coming to be used more 
widely.

In a socialist society, economic statistics is an important tool in the management and 
planning of the national economy. It describes the condition and development of a so-
cialist economy, progress toward the fulfillment of national economic plans, and the 
way the branches of the economy are developing in relation to one another. In addition, 
it provides a picture of the introduction of new technology, the location of productive 
forces in the country, and improvements in public welfare. The most important tasks of 
economic statistics include the economic-statistical description of the efficiency of social 
production and the improvement of performance at all levels of the national economy.

In bourgeois statistics, economic statistics does not exist as an independent scientific 
discipline for the integrated investigation of processes and phenomena of social repro-
duction. The statistical literature of capitalist countries treats economic statistics as the 
application of general methods of statistics and mathematical statistics to the measure-
ment of economic phenomena.
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The system of indexes in economic statistics comprehensively describes economic pro-
cesses and phenomena. The crucial indexes—the comprehensive, general indexes of 
economic development and of the growth of the people’s material prosperity—include 
the total social product, national income, real incomes of the population, nonproduc-
tive consumption, accumulation, national wealth and its constituent elements, and the 
social productivity of labor.

Statisticians dealing with particular branches of the economy-apply the general prin-
ciples that have been developed by economic statistics in order to construct a system 
of economic indexes and a methodology for calculating them. A major division of eco-
nomic statistics is the balance of the national economy of the USSR, which makes it 
possible to ascertain whether the economy is developing in a balanced manner.
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Statistical measures refer to the individual quantitative variable values for the statis-
tical units in a specific group. Such measures include stastical mean, mode, median, 
range, skewness, quantile, quartile, variance, quartile deviation, pooled variance, stan-
dard deviation, etc. The topics elaborated in this chapter will help in gaining a better 
perspective of these statistical measures.

Statistical Mean

The statistical mean refers to the mean or average that is used to derive the central 
tendency of the data in question. It is determined by adding all the data points in a 
population and then dividing the total by the number of points. The resulting number 
is known as the mean or the average.

In mathematics and statistics, the term arithmetic mean is preferred over simply 
“mean” because it helps to differentiate between other means such as geometric and 
harmonic mean. Statistical mean is the most common term for calculating the mean of 
a statistical distribution.

An arithmetic mean is calculated using the following equation:

1

1:
n

i
i

A a
n =

= ∑
The statistical mean has a wide range of applicability in various types of experimen-
tation. This type of calculation eliminates random errors and helps to derive a more 
accurate result than a result derived from a single experiment.

The statistical mean can also be used to interpret statistical data. Some important prop-
erties make statistical mean very useful for measuring central tendency. They are follows:

If numbers have average X, then:

Since Xi - X is the distance from a given number to the average. The numbers to the left 
of the mean are balanced by the numbers to the right of the mean. The residuals sum 

3
Statistical Measures
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to zero only if a number is a statistical mean. A single number X is used as an estimate 
for the value of numbers, then the statistical mean minimizes the sum of the squares 
(xi - X)2 of the residuals.

Statistical mean is popular because it includes every item in the data set and it can 
easily be used with other statistical measurements. However, the major disadvantage 
in using statistical mean is that it can be affected by extreme values in the data set and 
therefore be biased.

The statistical mean is widely used not only in the fields of mathematics and statistics, 
but also in economics, sociology and history. It gives important information about a 
data set and provides insight into the experiment and nature of the data.

The other terms used to measure central tendency (an average) are median and mode. 
In a normal distribution the statistical mean is equal to median and mode.

Arithmetic Mean

Arithmetic Mean in the most common and easily understood measure of central ten-
dency. We can define mean as the value obtained by dividing the sum of measurements 
with the number of measurements contained in the data set and is denoted by the sym-
bol x.

Individual Data Series

When data is given on individual basis. Following is an example of individual series:

Items 5 10 20 30 40 50 60 70

Discrete Data Series

When data is given alongwith their frequencies. Following is an example of discrete 
series:

Items 5 10 20 30 40 50 60 70

Frequency 2 5 1 3 12 0 5 7

Continuous Data Series

When data is given based on ranges alongwith their frequencies. Following is an exam-
ple of continous series:

Items 0-5 5-10 10-20 20-30 30-40

Frequency 2 5 1 3 12

. 
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Median

Finding the median in sets of data with  
an odd and even number of values.

The median is the value separating the higher half from the lower half of a data sample 
(a population or a probability distribution). For a data set, it may be thought of as the 
“middle” value. For example, in the data set [1, 3, 3, 6, 7, 8, 9], the median is 6, the 
fourth largest, and also the fourth smallest, number in the sample. For a continuous 
probability distribution, the median is the value such that a number is equally likely to 
fall above or below it. 

The median is a commonly used measure of the properties of a data set in statistics and 
probability theory. The basic advantage of the median in describing data compared to 
the mean (often simply described as the “average”) is that it is not skewed so much by 
a small proportion of extremely large or small values, and so it may give a better idea 
of a “typical” value. For example, in understanding statistics like household income or 
assets, which vary greatly, the mean may be skewed by a small number of extremely 
high or low values. Median income, for example, may be a better way to suggest what a 
“typical” income is. 

Because of this, the median is of central importance in robust statistics, as it is the 
most resistant statistic, having a breakdown point of 50%: so long as no more than 
half the data are contaminated, the median will not give an arbitrarily large or small 
result. 

Finite Data Set of Numbers

The median of a finite list of numbers can be found by arranging all the numbers from 
smallest to greatest. 

If there is an odd number of numbers, the middle one is picked. For example, consider 
the list of numbers 

1, 3, 3, 6, 7, 8, 9

This list contains seven numbers. The median is the fourth of them, which is 6. 
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If there is an even number of observations, then there is no single middle value; the 
median is then usually defined to be the mean of the two middle values. For example, 
in the data set 

1, 2, 3, 4, 5, 6, 8, 9

the median is the mean of the middle two numbers: this is (4 5) / 2,+ , which is 4.5 . 
(In more technical terms, this interprets the median as the fully trimmed mid-range). 

The formula used to find the index of the middle number of a data set of n numerically 
ordered numbers is ( 1) / 2n + . This either gives the middle number (for an odd number 
of values) or the halfway point between the two middle values. For example, with 14 
values, the formula will give an index of 7.5, and the median will be taken by averaging 
the seventh (the floor of this index) and eighth (the ceiling of this index) values. So the 
median can be represented by the following formula: 

( ) ( )# 1 2 # 1 2
median( )

2

a aa a
a

 + ÷ + + ÷    =

where a is an ordered list of numbers, #a denotes its length, and .   and .   denotes 
the floor and ceiling function, respectively. 

Comparison of common averages of values [ 1, 2, 2, 3, 4, 7, 9 ] 
Type Description Example Result 

Arithmetic 
mean 

Sum of values of a data set divided by 

number of values: 
1

1 n
ii

x x
n =

= ∑
(1 + 2 + 2 + 3 + 4 + 7 + 9) / 7 4 

Median Middle value separating the greater and 
lesser halves of a data set 

1, 2, 2, 3, 4, 7, 9 3 

Mode Most frequent value in a data set 1, 2, 2, 3, 4, 7, 9 2 

One can find the median using the Stem-and-Leaf Plot. 

There is no widely accepted standard notation for the median, but some authors repre-
sent the median of a variable x either as x͂ or as μ1/2 sometimes also M. In any of these 
cases, the use of these or other symbols for the median needs to be explicitly defined 
when they are introduced. 

The median is used primarily for skewed distributions, which it summarizes differ-
ently from the arithmetic mean. Consider the multiset { 1, 2, 2, 2, 3, 14 }. The median 
is 2 in this case, (as is the mode), and it might be seen as a better indication of central 
tendency (less susceptible to the exceptionally large value in data) than the arithmetic 
mean of 4. 

The median is a popular summary statistic used in descriptive statistics, since it is sim-
ple to understand and easy to calculate, while also giving a measure that is more robust 
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in the presence of outlier values than is the mean. The widely cited empirical relation-
ship between the relative locations of the mean and the median for skewed distribu-
tions is, however, not generally true. There are, however, various relationships for the 
absolute difference between them. 

With an even number of observations no value need be exactly at the value of the me-
dian. Nonetheless, the value of the median is uniquely determined with the usual defi-
nition. A related concept, in which the outcome is forced to correspond to a member of 
the sample, is the medoid. 

In a population, at most half have values strictly less than the median and at most half 
have values strictly greater than it. If each set contains less than half the population, 
then some of the population is exactly equal to the median. For example, if a < b < c, 
then the median of the list {a, b, c} is b, and, if a < b < c < d, then the median of the 
list {a, b, c, d} is the mean of b and c; i.e., it is (b + c)/2. As a median is based on the 
middle data in a set, it is not necessary to know the value of extreme results in order to 
calculate it. For example, in a psychology test investigating the time needed to solve a 
problem, if a small number of people failed to solve the problem at all in the given time 
a median can still be calculated. 

The median can be used as a measure of location when a distribution is skewed, when 
end-values are not known, or when one requires reduced importance to be attached to 
outliers, e.g., because they may be measurement errors. 

A median is only defined on ordered one-dimensional data, and is independent of any 
distance metric. A geometric median, on the other hand, is defined in any number of 
dimensions. 

The median is one of a number of ways of summarising the typical values associated 
with members of a statistical population; thus, it is a possible location parameter. The 
median is the 2nd quartile, 5th decile, and 50th percentile. A median can be worked out 
for ranked but not numerical classes (e.g. working out a median grade when students 
are graded from A to F), although the result might be halfway between grades if there 
is an even number of cases. 

When the median is used as a location parameter in descriptive statistics, there are 
several choices for a measure of variability: the range, the interquartile range, the mean 
absolute deviation, and the median absolute deviation. 

For practical purposes, different measures of location and dispersion are often com-
pared on the basis of how well the corresponding population values can be estimated 
from a sample of data. The median, estimated using the sample median, has good prop-
erties in this regard. While it is not usually optimal if a given population distribution 
is assumed, its properties are always reasonably good. For example, a comparison of 
the efficiency of candidate estimators shows that the sample mean is more statistically 
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efficient than the sample median when data are uncontaminated by data from heavy-
tailed distributions or from mixtures of distributions, but less efficient otherwise, and 
that the efficiency of the sample median is higher than that for a wide range of dis-
tributions. More specifically, the median has a 64% efficiency compared to the min-
imum-variance mean (for large normal samples), which is to say the variance of the 
median will be ~50% greater than the variance of the mean. 

Aho give a divide-and-conquer algorithm to compute the k th smallest element of an 

unordered list a in linear time, which is faster than sorting. Running it with 
#
2
ak  =   computes the median of a.

Probability Distributions

Geometric visualisation of the mode, median and  
mean of an arbitrary probability density function.

For any probability distribution on the real line R with cumulative distribution function 
F, regardless of whether it is any kind of continuous probability distribution, in partic-
ular an absolutely continuous distribution (which has a probability density function), 
or a discrete probability distribution, a median is by definition any real number m that 
satisfies the inequalities: 

1 1P( )  and P( )
2 2

X m X m≤ ≥ ≥ ≥

or, equivalently, the inequalities, 

( , ] [ , )

1 1( )  and ( )
2 2m m

dF x dF x
∞ ∞−

≥ ≥∫ ∫
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in which a Lebesgue–Stieltjes integral is used. For an absolutely continuous probability 
distribution with probability density function ƒ, the median satisfies, 

1P( ) P( ) ( ) .
2

m
X m X m f x dx

−∞
≥ = ≤ = =∫

Any probability distribution on R has at least one median, but in specific cases there 
may be more than one median. Specifically, if a probability density is zero on an inter-
val [a, b], and the cumulative distribution function at a is 1/2, any value between a and 
b will also be a median. 

Medians of Particular Distributions

The medians of certain types of distributions can be easily calculated from their param-
eters; furthermore, they exist even for some distributions lacking a well-defined mean, 
such as the Cauchy distribution: 

•	 The median of a symmetric unimodal distribution coincides with the mode.

•	 The median of a symmetric distribution which possesses a mean μ also takes 
the value μ. 

◦◦ The median of a normal distribution with mean μ and variance σ2 is μ. In 
fact, for a normal distribution, mean = median = mode.

◦◦ The median of a uniform distribution in the interval [a, b] is (a + b) / 2, 
which is also the mean.

•	 The median of a Cauchy distribution with location parameter x0 and scale pa-
rameter y is x0, the location parameter.

•	 The median of a power law distribution x−a, with exponent a > 1 is 21/(a − 1)xmin, 
where xmin is the minimum value for which the power law holds.

•	 The median of an exponential distribution with rate parameter λ is the natural 
logarithm of 2 divided by the rate parameter: λ−1ln 2.

•	 The median of a Weibull distribution with shape parameter k and scale param-
eter λ is λ(ln 2)1/k.

Populations

Optimality Property

The mean absolute error of a real variable c with respect to the random variable X is, 

( )E X c−
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Provided that the probability distribution of X is such that the above expectation exists, 
then m is a median of X if and only if m is a minimizer of the mean absolute error with 
respect to X. In particular, m is a sample median if and only if m minimizes the arith-
metic mean of the absolute deviations. 

More generally, a median is defined as a minimum of 

(| | | |),E X c X− −  

This optimization-based definition of the median is useful in statistical data-analysis, 
for example, in k-medians clustering. 

Unimodal Distributions

Comparison of mean, median and mode of two  
log-normal distributions with different skewness.

It can be shown for a unimodal distribution that the median X and the mean X lie 
within (3/5)1/2 ≈ 0.7746 standard deviations of each other. In symbols, 

1/2| 3
5

X X
s
−  ≤  

 



where |·| is the absolute value. 

A similar relation holds between the median and the mode: they lie within 31/2 ≈ 1.732 
standard deviations of each other: 

1/2| mode | 3 .X
s
−

≤


Inequality Relating Means and Medians

If the distribution has finite variance, then the distance between the median and the 
mean is bounded by one standard deviation. 
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This bound was proved by Mallows, who used Jensen’s inequality twice, as follows. We 
have, 

( )2

| | | E( ) | E(| |)
E(| |)

E ( ) .

m X m X m
X

X

µ
µ

µ s

− = − ≤ −
≤ −

≤ − =

The first and third inequalities come from Jensen’s inequality applied to the abso-
lute-value function and the square function, which are each convex. The second in-
equality comes from the fact that a median minimizes the absolute deviation function, 

E(| |).a X a−

This proof also follows directly from Cantelli’s inequality. The result can be generalized 
to obtain a multivariate version of the inequality, as follows: 

( ) ( )2

E( ) E
E( )

E trace var( )

m X m X m
X

X X

µ
µ

µ

− = − ≤ −
≤ −

≤ − =

     

 

 

where m is a spatial median, that is, a minimizer of the function E(| |).a X a− The 
spatial median is unique when the data-set’s dimension is two or more. An alternative 
proof uses the one-sided Chebyshev inequality; it appears in an inequality on location 
and scale parameters. 

Jensen’s Inequality for Medians

Jensen’s inequality states that for any random variable x with a finite expectation E(x) 
and for any convex function f,

[ ( )] [ ( )]f E x E f x≤

It has been shown that if x is a real variable with a unique median m and f is a C func-
tion then, 

( ) Median[ ( )]f m f x≤

A C function is a real valued function, defined on the set of real numbers R, with the 
property that for any real t,

( )1 ( , ] { ( ) }f t x R f x t− −∞ = ∈ ≤|

is a closed interval, a singleton or an empty set. 
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Medians for Samples

Efficient Computation of the Sample Median

Even though comparison-sorting n items requires Ω(n log n) operations, selection al-
gorithms can compute the k’th-smallest of n items with only Θ(n) operations. This in-
cludes the median, which is the (n/2)’th order statistic (or for an even number of sam-
ples, the arithmetic mean of the two middle order statistics). 

Selection algorithms still have the downside of requiring Ω(n) memory, that is, they 
need to have the full sample (or a linear-sized portion of it) in memory. Because 
this, as well as the linear time requirement, can be prohibitive, several estimation 
procedures for the median have been developed. A simple one is the median of three 
rule, which estimates the median as the median of a three-element subsample; this 
is commonly used as a subroutine in the quicksort sorting algorithm, which uses an 
estimate of its input’s median. A more robust estimator is Tukey’s ninther, which is 
the median of three rule applied with limited recursion: if A is the sample laid out as 
an array, 

med3(A) = median(A, A[n/2], A[n]),

then, 

ninther(A) = med3(med3(A[1 ... 1/3n]), med3(A[1/3n ... 2/3n]), med 
3(A[2/3n ... n]))

The remedian is an estimator for the median that requires linear time but sub-linear 
memory, operating in a single pass over the sample. 

Easy Explanation of the Sample Median

In individual series (if number of observation is very low) first one must arrange all the 
observations in order. Then count(n) is the total number of observation in given data. 

If n is odd then Median (M) = value of ((n + 1)/2)th item term. 

If n is even then Median (M) = value of [(n/2)th item term + (n/2 + 1)th item 
term]/2 

For an Odd Number of Values

As an example, we will calculate the sample median for the following set of observa-
tions: 1, 5, 2, 8, 7. 

Start by sorting the values: 1, 2, 5, 7, 8. 

In this case, the median is 5 since it is the middle observation in the ordered list. 
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The median is the ((n + 1)/2)th item, where n is the number of values. For example, for 
the list {1, 2, 5, 7, 8}, we have n = 5, so the median is the ((5 + 1)/2)th item. 

median = (6/2)th item

median = 3rd item

median = 5.

For an Even Number of Values

As an example, we will calculate the sample median for the following set of observa-
tions: 1, 6, 2, 8, 7, 2. 

Start by sorting the values: 1, 2, 2, 6, 7, 8. 

In this case, the arithmetic mean of the two middlemost terms is (2 + 6)/2 = 4. There-
fore, the median is 4 since it is the arithmetic mean of the middle observations in the 
ordered list. 

Sampling Distribution

The distributions of both the sample mean and the sample median were determined 
by Laplace. The distribution of the sample median from a population with a density 
function ( )f x is asymptotically normal with mean m and variance,

2

1
4 ( )nf m

where m is the median of ( )f x and n is the sample size. For normal samples, the den-

sity is 2( ) 1/ 2 ,f m πs= , thus for large samples the variance of the median equals 
2( / 2) ( / ).nπ s⋅

These results have also been extended. It is now known for the p -th quantile that the 
distribution of the sample p -th quantile is asymptotically normal around the p -th 
quantile with variance equal to:

2

(1 )
( )p

p p
nf x

−

where ( )pf x is the value of the distribution density at the p -th quantile.

Numerical Experimentation	

In the case of a discrete variable, the sampling distribution of the median for small-sam-
ples can be investigated as follows. We take the sample size to be an odd number 
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2 1.N n= +  If a given value v is to be the median of the sample then two conditions 
must be satisfied. The first is that at most observations can have a value of 1v − or 
less. The second is that at most n observations can have a value of 1v + or more. Let i be 
the number of observations that have a value of 1v + or less and let 1v − be the number 
of observations that have a value of 1v + or more. Then i and k both have a minimum 
value of 0 and a maximum of n . If an observation has a value below v , it is not relevant 
how far below v it is and conversely, if an observation has a value above v , it is not rel-
evant how far above v it is. We can therefore represent the observations as following a 
trinomial distribution with probabilities ( 1)F v − , ( )f v and 1 ( )F v− . The probability 
that the median m will have a value v is then given by, 

0 0

!Pr( ) [ ( 1)] [ ( )] [1 ( )] .
!( )! !

n n
i N i k k

i k

Nm v F v f v F v
i N i k k

− −

= =

= = − −
− −∑∑

Summing this over all values of v defines a proper distribution and gives a unit sum. 
In practice, the function ( )f v will often not be known but it can be estimated from an 
observed frequency distribution. An example is given in the following table where the 
actual distribution is not known but a sample of 3,800 observations allows a sufficient-
ly accurate assessment of ( )f v .

v 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

f(v) 0.000 0.008 0.010 0.013 0.083 0.108 0.328 0.220 0.202 0.023 0.005 

F(v) 0.000 0.008 0.018 0.031 0.114 0.222 0.550 0.770 0.972 0.995 1.000 

Using these data it is possible to investigate the effect of sample size on the stan-
dard errors of the mean and median. The observed mean is 3.16, the observed raw 
median is 3 and the observed interpolated median is 3.174. The following table gives 
some comparison statistics. The standard error of the median is given both from 
the above expression for ( )pr m v= and from the asymptotic approximation given 
earlier. 

Sample Size

Statistic 3 9 15 21 

Expected value of median 3.198 3.191 3.174 3.161 

Standard error of median (above formula) 0.482 0.305 0.257 0.239 

Standard error of median (asymptotic approximation) 0.879 0.508 0.393 0.332 

Standard error of mean 0.421 0.243 0.188 0.159

The expected value of the median falls slightly as sample size increases while, as would 
be expected, the standard errors of both the median and the mean are proportionate to 
the inverse square root of the sample size. The asymptotic approximation errs on the 
side of caution by overestimating the standard error. 

In the case of a continuous variable, the following argument can be used. If a given 
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value v is to be the median, then one observation must take the value v. The elemen-
tal probability of this is ( )f v dv . Then, of the remaining 2n observations, exactly n
of them must be above v and the remaining n below. The probability of this is the n
th term of a binomial distribution with parameters ( )F v and 2n . Finally we multiply 
by 2 1n + since any of the observations in the sample can be the median observation. 
Hence the elemental probability of the median at the point v is given by, 

(2 )!( ) [ ( )] [1 ( )] (2 1) .
! !

n nnf v F v F v n dv
n n

− +

Now we introduce the beta function. For integer arguments α and b , this can be ex-
pressed as B( , ) ( 1)!( 1)!/ ( 1)!α b α b α b= − − + − . Also, ( ) ( ) /f v dF v dv= . Using these 
relationships and setting both α and b , equal to ( 1)n + allows the last expression to 
be written as, 

[ ( )] [1 ( )] ( )
B( 1, 1)

n nF v F v dF v
n n

−
+ +

Hence the density function of the median is a symmetric beta distribution over the unit 
interval which supports ( )F v . Its mean, as we would expect, is 0.5 and its variance is 
1/ (4( 2)).N + . The corresponding variance of the sample median is, 

2

1 .
4( 2) ( )N f m+

However this finding can only be used if the density function ( )f v is known or can be 
assumed. As this will not always be the case, the median variance has to be estimated 
sometimes from the sample data. 

Estimation of Variance from Sample Data

The value of 2(2 ( ))f x − —the asymptotic value of 
1
2 ( )n mν

−
− where ν is the population 

median—has been studied by several authors. The standard “delete one” jackknife 
method produces inconsistent results. An alternative—the “delete k” method—where k
grows with the sample size has been shown to be asymptotically consistent. This meth-

od may be computationally expensive for large data sets. A bootstrap estimate is known 

to be consistent, but converges very slowly (order of 
1
4n

−
). Other methods have been 

proposed but their behavior may differ between large and small samples.

Efficiency

The efficiency of the sample median, measured as the ratio of the variance of the mean 
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to the variance of the median, depends on the sample size and on the underlying 
population distribution. For a sample of size 2 1N n= + from the normal distribution, 
the efficiency for large N is, 

2 2N
Nπ
+

The efficiency tends to 
2
π

as N tends to infinity. 

In other words, the relative variance of the median will be / 2 1.57,π ≈ , or 57% greater 
than the variance of the mean – the standard error of the median will be 25% greater 
than that of the mean.

Other Estimators

For univariate distributions that are symmetric about one median, the Hodges–Leh-
mann estimator is a robust and highly efficient estimator of the population median. 

If data are represented by a statistical model specifying a particular family of proba-
bility distributions, then estimates of the median can be obtained by fitting that family 
of probability distributions to the data and calculating the theoretical median of the 
fitted distribution. Pareto interpolation is an application of this when the population is 
assumed to have a Pareto distribution. 

Coefficient of Dispersion

The coefficient of dispersion (CD) is defined as the ratio of the average absolute devia-
tion from the median to the median of the data. It is a statistical measure used by the 
states of Iowa, New York and South Dakota in estimating dues taxes. In symbols, 

| |1 m x
CD

n m
−

= ∑

where n is the sample size, m is the sample median and x is a variate. The sum is taken 
over the whole sample. 

Confidence intervals for a two-sample test in which the sample sizes are large have 
been derived by Bonett and Seier. This test assumes that both samples have the same 
median but differ in the dispersion around it. The confidence interval (CI) is bounded 
inferiorly by, 

1/2

exp log var loga a

b b

t tz
t tα

       −              
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where tj is the mean absolute deviation of the jth sample, var() is the variance and zα is 
the value from the normal distribution for the chosen value of α: for α = 0.05, zα = 1.96. 
The following formulae are used in the derivation of these confidence intervals, 

22

2

1var[log( )] 1a a
a

a a

s x xt
n t t

  −
 = + − 
   

1/2var log var[log( )] var[log( )] 2 (var[log( )]var[log( )])a
a b a b

b

t t t r t t
t

  
= + −  

  

where r is the Pearson correlation coefficient between the squared deviation scores, 

| |ia ia ad x x= − and | |ib ib bd x x= −

a and b here are constants equal to 1 and 2, x is a variate and s is the standard deviation 
of the sample. 

Multivariate Median

When the dimension is two or higher, there are multiple concepts that extend the defi-
nition of the univariate median; each such multivariate median agrees with the univar-
iate median when the dimension is exactly one. 

Marginal Median

The marginal median is defined for vectors defined with respect to a fixed set of coordi-
nates. A marginal median is defined to be the vector whose components are univariate 
medians. The marginal median is easy to compute, and its properties were studied by 
Puri and Sen. 

Centerpoint

An alternative generalization of the median in higher dimensions is the centerpoint. 

Other Median-related Concepts

Interpolated Median

When dealing with a discrete variable, it is sometimes useful to regard the observed 
values as being midpoints of underlying continuous intervals. An example of this is a 
Likert scale, on which opinions or preferences are expressed on a scale with a set num-
ber of possible responses. If the scale consists of the positive integers, an observation 
of 3 might be regarded as representing the interval from 2.50 to 3.50. It is possible to 
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estimate the median of the underlying variable. If, say, 22% of the observations are of 
value 2 or below and 55.0% are of 3 or below (so 33% have the value 3), then the median 
m is 3 since the median is the smallest value of x for which ( )F x is greater than a half. 
But the interpolated median is somewhere between 2.50 and 3.50. First we add half 
of the interval width w to the median to get the upper bound of the median interval. 
Then we subtract that proportion of the interval width which equals the proportion of 
the 33% which lies above the 50% mark. In other words, we split up the interval width 
pro rata to the numbers of observations. In this case, the 33% is split into 28% below 
the median and 5% above it so we subtract 5/33 of the interval width from the upper 
bound of 3.50 to give an interpolated median of 3.35. More formally, if the values ( )f x
are known, the interpolated median can be calculated from, 

int

1( )1 2 .
2 ( )

F m
m m w

f m

 − 
= + − 

 
 

Alternatively, if in an observed sample there are k scores above the median category, j
scores in it and i scores below it then the interpolated median is given by, 

int .
2
w k im m

j
 −

= −  
 

Pseudo-median

For univariate distributions that are symmetric about one median, the Hodges–Leh-
mann estimator is a robust and highly efficient estimator of the population median; for 
non-symmetric distributions, the Hodges–Lehmann estimator is a robust and highly 
efficient estimator of the population pseudo-median, which is the median of a symme-
trized distribution and which is close to the population median. The Hodges–Lehmann 
estimator has been generalized to multivariate distributions. 

Variants of Regression

The Theil–Sen estimator is a method for robust linear regression based on finding me-
dians of slopes. 

Median Filter

In the context of image processing of monochrome raster images there is a type of 
noise, known as the salt and pepper noise, when each pixel independently becomes 
black (with some small probability) or white (with some small probability), and is un-
changed otherwise (with the probability close to 1). An image constructed of median 
values of neighborhoods (like 3×3 square) can effectively reduce noise in this case. 
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Cluster Analysis

In cluster analysis, the k-medians clustering algorithm provides a way of defining clus-
ters, in which the criterion of maximising the distance between cluster-means that is used 
in k-means clustering, is replaced by maximising the distance between cluster-medians. 

Median–median Line

This is a method of robust regression. The idea dates back to Wald in 1940 who sug-
gested dividing a set of bivariate data into two halves depending on the value of the 
independent parameter x: A left half with values less than the median and a right half 
with values greater than the median. He suggested taking the means of the dependent 
x and independent variables of the left and the right halves and estimating the slope of 
the line joining these two points. The line could then be adjusted to fit the majority of 
the points in the data set. 

Nair and Shrivastava in 1942 suggested a similar idea but instead advocated divid-
ing the sample into three equal parts before calculating the means of the subsamples. 
Brown and Mood in 1951 proposed the idea of using the medians of two subsamples 
rather the means. Tukey combined these ideas and recommended dividing the sample 
into three equal size subsamples and estimating the line based on the medians of the 
subsamples. 

Median-unbiased Estimators

Any mean-unbiased estimator minimizes the risk (expected loss) with respect to the 
squared-error loss function, as observed by Gauss. A median-unbiased estimator min-
imizes the risk with respect to the absolute-deviation loss function, as observed by La-
place. Other loss functions are used in statistical theory, particularly in robust statistics. 

The theory of median-unbiased estimators was revived by George W. Brown in 1947: 

“An estimate of a one-dimensional parameter θ will be said to be median-un-
biased if, for fixed θ, the median of the distribution of the estimate is at the 
value θ; i.e., the estimate underestimates just as often as it overestimates. This 
requirement seems for most purposes to accomplish as much as the mean-un-
biased requirement and has the additional property that it is invariant under 
one-to-one transformation”.

Further properties of median-unbiased estimators have been reported. Median-unbi-
ased estimators are invariant under one-to-one transformations. 

There are methods of constructing median-unbiased estimators that are optimal (in a 
sense analogous to the minimum-variance property for mean-unbiased estimators). Such 
constructions exist for probability distributions having monotone likelihood-functions. 
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One such procedure is an analogue of the Rao–Blackwell procedure for mean-unbiased 
estimators: The procedure holds for a smaller class of probability distributions than 
does the Rao—Blackwell procedure but for a larger class of loss functions. 

Mode

The mode of a set of data values is the value that appears most often. If X is a discrete 
random variable, the mode is the value x (i.e, X = x) at which the probability mass 
function takes its maximum value. In other words, it is the value that is most likely to 
be sampled. 

Like the statistical mean and median, the mode is a way of expressing, in a (usually) 
single number, important information about a random variable or a population. The 
numerical value of the mode is the same as that of the mean and median in a normal 
distribution, and it may be very different in highly skewed distributions. 

The mode is not necessarily unique to a given discrete distribution, since the probability 
mass function may take the same maximum value at several points x1, x2, etc. The most 
extreme case occurs in uniform distributions, where all values occur equally frequently. 

When the probability density function of a continuous distribution has multiple local 
maxima it is common to refer to all of the local maxima as modes of the distribution. 
Such a continuous distribution is called multimodal (as opposed to unimodal). A mode 
of a continuous probability distribution is often considered to be any value x at which 
its probability density function has a locally maximum value, so any peak is a mode. 

In symmetric unimodal distributions, such as the normal distribution, the mean (if 
defined), median and mode all coincide. For samples, if it is known that they are drawn 
from a symmetric unimodal distribution, the sample mean can be used as an estimate 
of the population mode. 

Mode of a Sample

The mode of a sample is the element that occurs most often in the collection. For exam-
ple, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 
1, 2, 4, 4] the mode is not unique – the dataset may be said to be bimodal, while a set 
with more than two modes may be described as multimodal. 

For a sample from a continuous distribution, such as [0.935..., 1.211..., 2.430..., 3.668..., 
3.874...], the concept is unusable in its raw form, since no two values will be exactly the 
same, so each value will occur precisely once. In order to estimate the mode of the un-
derlying distribution, the usual practice is to discretize the data by assigning frequency 
values to intervals of equal distance, as for making a histogram, effectively replacing 
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the values by the midpoints of the intervals they are assigned to. The mode is then the 
value where the histogram reaches its peak. For small or middle-sized samples the out-
come of this procedure is sensitive to the choice of interval width if chosen too narrow 
or too wide; typically one should have a sizable fraction of the data concentrated in a 
relatively small number of intervals (5 to 10), while the fraction of the data falling out-
side these intervals is also sizable. An alternate approach is kernel density estimation, 
which essentially blurs point samples to produce a continuous estimate of the probabil-
ity density function which can provide an estimate of the mode. 

The following MATLAB (or Octave) code example computes the mode of a sample: 

X = sort(x);

indices = find(diff([X; realmax]) > 0); % indices where repeated values 
change

[modeL,i] = max (diff([0; indices])); % longest persistence length of 
repeated values

mode = X(indices(i));

The algorithm requires as a first step to sort the sample in ascending order. It then 
computes the discrete derivative of the sorted list, and finds the indices where this de-
rivative is positive. Next it computes the discrete derivative of this set of indices, locat-
ing the maximum of this derivative of indices, and finally evaluates the sorted sample 
at the point where that maximum occurs, which corresponds to the last member of the 
stretch of repeated values. 

Comparison of Mean, Median and Mode

Geometric visualisation of the mode, median and  
mean of an arbitrary probability density function.
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Comparison of common averages of values { 1, 2, 2, 3, 4, 7, 9 } 
Type Description Example Result 

Arithmetic mean Sum of values of a data set divided by number 
of values: 

(1+2+2+3+4+7+9) / 7 4 

Median Middle value separating the greater and lesser 
halves of a data set 

1, 2, 2, 3, 4, 7, 9 3 

Mode Most frequent value in a data set 1, 2, 2, 3, 4, 7, 9 2 

Use

Unlike mean and median, the concept of mode also makes sense for “nominal data” 
(i.e., not consisting of numerical values in the case of mean, or even of ordered values 
in the case of median). For example, taking a sample of Korean family names, one 
might find that “Kim” occurs more often than any other name. Then “Kim” would be 
the mode of the sample. In any voting system where a plurality determines victory, a 
single modal value determines the victor, while a multi-modal outcome would require 
some tie-breaking procedure to take place. 

Unlike median, the concept of mode makes sense for any random variable assuming 
values from a vector space, including the real numbers (a one-dimensional vector 
space) and the integers (which can be considered embedded in the reals). For example, 
a distribution of points in the plane will typically have a mean and a mode, but the con-
cept of median does not apply. The median makes sense when there is a linear order 
on the possible values. Generalizations of the concept of median to higher-dimensional 
spaces are the geometric median and the centerpoint. 

Uniqueness and Definedness

For some probability distributions, the expected value may be infinite or undefined, 
but if defined, it is unique. The mean of a (finite) sample is always defined. The median 
is the value such that the fractions not exceeding it and not falling below it are each 
at least 1/2. It is not necessarily unique, but never infinite or totally undefined. For a 
data sample it is the “halfway” value when the list of values is ordered in increasing 
value, where usually for a list of even length the numerical average is taken of the two 
values closest to “halfway”. Finally, as said before, the mode is not necessarily unique. 
Certain pathological distributions (for example, the Cantor distribution) have no de-
fined mode at all. For a finite data sample, the mode is one (or more) of the values in 
the sample. 

Properties

Assuming definedness, and for simplicity uniqueness, the following are some of the 
most interesting properties. 

•	 All three measures have the following property: If the random variable (or each 
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value from the sample) is subjected to the linear or affine transformation, which 
replaces X by aX+b, so are the mean, median and mode.

•	 Except for extremely small samples, the mode is insensitive to “outliers” (such 
as occasional, rare, false experimental readings). The median is also very robust 
in the presence of outliers, while the mean is rather sensitive.

•	 In continuous unimodal distributions the median often lies between the mean 
and the mode, about one third of the way going from mean to mode. In a for-
mula, median ≈ (2 × mean + mode)/3. This rule, due to Karl Pearson, often 
applies to slightly non-symmetric distributions that resemble a normal distri-
bution, but it is not always true and in general the three statistics can appear in 
any order.

•	 For unimodal distributions, the mode is within standard deviations of the mean, 
and the root mean square deviation about the mode is between the standard de-
viation and twice the standard deviation.

Example for a Skewed Distribution

An example of a skewed distribution is personal wealth: Few people are very rich, but 
among those some are extremely rich. However, many are rather poor. 

Comparison of mean, median and mode of two  
log-normal distributions with different skewness.

A well-known class of distributions that can be arbitrarily skewed is given by the 
log-normal distribution. It is obtained by transforming a random variable X having a 
normal distribution into random variable Y = eX. Then the logarithm of random vari-
able Y is normally distributed, hence the name. 

Taking the mean μ of X to be 0, the median of Y will be 1, independent of the standard 
deviation σ of X. This is so because X has a symmetric distribution, so its median is also 
0. The transformation from X to Y is monotonic, and so we find the median e0 = 1 for Y. 
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When X has standard deviation σ = 0.25, the distribution of Y is weakly skewed. Using 
formulas for the log-normal distribution, we find: 

2 2

2 2

/2 0 0.25 /2

0 0.25

0

mean 1.032

mode 0.939
median 1

e e

e e
e e

µ s

µ s

µ

+ +

− −

= = ≈

= = ≈
= = =

Indeed, the median is about one third on the way from mean to mode. 

When X has a larger standard deviation, σ = 1, the distribution of Y is strongly skewed. 
Now 

2 2

2 2

/2 0 1 /2

0 1

0

mean 1.649

mode 0.368
median 1

e e

e e
e e

µ s

µ s

µ
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Here, Pearson’s rule of thumb fails. 

Van Zwet Condition

Van Zwet derived an inequality which provides sufficient conditions for this inequality 
to hold. The inequality 

Mode ≤ Median ≤ Mean

holds if 

F( Median - x ) + F( Median + x ) ≥ 1

for all x where F() is the cumulative distribution function of the distribution. 

Unimodal Distributions

It can be shown for a unimodal distribution that the median X and the mean X lie 
within (3/5)1/2 ≈ 0.7746 standard deviations of each other. In symbols, 

1/2(3 / 5)
X X
s

−
≤



where | |⋅ is the absolute value. 

A similar relation holds between the median and the mode: they lie within 31/2 ≈ 1.732 
standard deviations of each other: 

1/2
mode

3 .
X

s

−
≤


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Range

In statistics, the range of a set of data is the difference between the largest and smallest 
values. Difference here is specific, the range of a set of data is the result of subtracting 
the smallest value from largest value. 

However, in descriptive statistics, this concept of range has a more complex meaning. 
The range is the size of the smallest interval (statistics) which contains all the data and 
provides an indication of statistical dispersion. It is measured in the same units as the 
data. Since it only depends on two of the observations, it is most useful in representing 
the dispersion of small data sets. 

For Continuous IID Random Variables

For n independent and identically distributed continuous random variables X1, X2, ..., Xn 
with cumulative distribution function G(x) and probability density function g(x). Let T 
denote the range of a sample of size n from a population with distribution function G(x). 

Distribution

The range has cumulative distribution function,

1( ) ( )[ ( ) ( )] d .nF t n g x G x t G x x
∞ −

−∞
= + −∫

Gumbel notes that the “beauty of this formula is completely marred by the facts that, 
in general, we cannot express G(x + t) by G(x), and that the numerical integration is 
lengthy and tiresome.” 

If the distribution of each Xi is limited to the right (or left) then the asymptotic distribu-
tion of the range is equal to the asymptotic distribution of the largest (smallest) value. 
For more general distributions the asymptotic distribution can be expressed as a Bessel 
function. 

Moments

The mean range is given by,

1 1 1

0
( )[ (1 ) ]dn nn x G G G G− −− −∫

where x(G) is the inverse function. In the case where each of the Xi has a standard nor-
mal distribution, the mean range is given by,

(1 (1 ( )) ( ) )d .n nx x x
∞

∞−
− −F −F∫
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For Continuous Non-IID Random Variables

For n nonidentically distributed independent continuous random variables X1, X2, ..., 
Xn with cumulative distribution functions G1(x), G2(x), ..., Gn(x) and probability density 
functions g1(x), g2(x), ..., gn(x), the range has cumulative distribution function,

1 1,

( ) ( ) [ ( ) ( )]d .
n n

i j j
i j j i

F t g x G x t G x x
∞

∞−
= = ≠

= + −∑ ∏∫

For Discrete IID Random Variables

For n independent and identically distributed discrete random variables X1, X2, ..., 
Xn with cumulative distribution function G(x) and probability mass function g(x) the 
range of the Xi is the range of a sample of size n from a population with distribution 
function G(x). We can assume without loss of generality that the support of each Xi is 
{1,2,3,...,N} where N is a positive integer or infinity. 

Distribution

The range has probability mass function,

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
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  + − −    
  = = −− + −       − + − − −       + + − −   

∑

∑

Example:

If we suppose that g(x) = 1/N, the discrete uniform distribution for all x, then we find,

1

1

1 0
( )

1 1[ ] 2[ ] [ ] 1,2,3 , 1.

n

N t n n n
x

t
Nf t

t t t t N
N N N

−

−

=

 ==  + −  − + = … −   
∑

Derivation

The probability of having a specific range value, t, can be determined by adding the 
probabilities of having two samples differing by t, and every other sample having a 
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value between the two extremes. The probability of one sample having a value of x is 
( )n g x∗ . The probability of another having a value t greater than x is: 

( ) ( )1 .n g x t− +

The probability of all other values lying between these two extremes is: 

( )( ) ( ) ( )( )
21 2

d .
nx n

x
g x x G x t G x

−+ −
= + −∫

Combining the three together yields: 

( ) ( ) ( ) ( ) ( ) 2
( ) 1

n
f t n n g x g x t G x t G x dx

∞ −

−∞
= − + + −  ∫

Related Quantities

The range is a simple function of the sample maximum and minimum and these are 
specific examples of order statistics. In particular, the range is a linear function of order 
statistics, which brings it into the scope of L-estimation. 

Interquartile Range

Boxplot (with an interquartile range) and a probability  
density function (pdf) of a Normal N(0,σ2) Population.
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In descriptive statistics, the interquartile range (IQR), also called the midspread or 
middle 50%, or technically H-spread, is a measure of statistical dispersion, being equal 
to the difference between 75th and 25th percentiles, or between upper and lower quar-
tiles, IQR = Q3 − Q1. 

In other words, the IQR is the first quartile subtracted from the third quartile;  
these quartiles can be clearly seen on a box plot on the data. It is a trimmed estima-
tor, defined as the 25% trimmed range, and is a commonly used robust measure of 
scale. 

The IQR is a measure of variability, based on dividing a data set into quartiles. Quar-
tiles divide a rank-ordered data set into four equal parts. The values that separate parts 
are called the first, second, and third quartiles; and they are denoted by Q1, Q2, and Q3, 
respectively. 

Use

Unlike total range, the interquartile range has a breakdown point of 25%, and is thus 
often preferred to the total range. 

The IQR is used to build box plots, simple graphical representations of a probability 
distribution. 

The IQR is used in businesses as a marker for their income rates. 

For a symmetric distribution (where the median equals the midhinge, the average 
of the first and third quartiles), half the IQR equals the median absolute deviation 
(MAD). 

The median is the corresponding measure of central tendency. 

The IQR can be used to identify outliers. 

The quartile deviation or semi-interquartile range is defined as half the IQR. 

Algorithm

The IQR of a set of values is calculated as the difference between the upper and lower 
quartiles, Q3 and Q1. Each quartile is a median calculated as follows. 

Given an even 2n or odd 2n+1 number of values: 

First quartile Q1 = median of the n smallest values,

Third quartile Q3 = median of the n largest values.

The second quartile Q2 is the same as the ordinary median. 
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Data Set in a Table

The following table has 13 rows, and follows the rules for the odd number of entries. 

i x[i] Median Quartile 
1 7 Q2=87 

(median of whole table) 
Q1=31 
(median of upper half, from row 1 to 6) 2 7 

3 31 
4 31 
5 47 
6 75 
7 87 
8 115 Q3=119 

(median of lower half, from row 8 to 13) 9 116 
10 119 
11 119 
12 155 
13 177 

For the data in this table the interquartile range is IQR = Q3 − Q1 = 119 - 31 = 88. 

Data Set in a Plain-text Box Plot
 +−−−−−+−+ 

 * |−−−−−−−−−−−| | |−−−−−−−−−−−|

 +−−−−−+−+ 

 

 +−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+ number line
 0   1   2   3   4   5   6   7   8   9  10   11  12 

For the data set in this box plot: 

•	 lower (first) quartile Q1 = 7

•	 median (second quartile) Q2 = 8.5

•	 upper (third) quartile Q3 = 9

•	 interquartile range, IQR = Q3 - Q1 = 2

•	 lower 1.5*IQR whisker = Q1 - 1.5 * IQR = 7 - 3 = 4. (If there is no data point at 4, 
then the lowest point greater than 4.)

•	 upper 1.5*IQR whisker = Q3 + 1.5 * IQR = 9 + 3 = 12. (If there is no data point at 
12, then the highest point less than 12.)

This means the 1.5*IQR whiskers can be uneven in lengths. 
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Distributions

The interquartile range of a continuous distribution can be calculated by integrating the 
probability density function (which yields the cumulative distribution function—any 
other means of calculating the CDF will also work). The lower quartile, Q1, is a number 
such that integral of the PDF from -∞ to Q1 equals 0.25, while the upper quartile, Q3, 
is such a number that the integral from -∞ to Q3 equals 0.75; in terms of the CDF, the 
quartiles can be defined as follows: 

1
1 CDF (0.25),Q −=

1
3 CDF (0.75),Q −=

where CDF−1 is the quantile function. 

The interquartile range and median of some common distributions are shown below: 

Distribution Median IQR 
Normal μ 2 Φ−1(0.75)σ ≈ 1.349σ ≈ (27/20)σ 
Laplace μ 2b ln(2) ≈ 1.386b 
Cauchy μ 2γ 

Interquartile Range Test for Normality of Distribution

The IQR, mean, and standard deviation of a population P can be used in a simple test of 
whether or not P is normally distributed, or Gaussian. If P is normally distributed, then 
the standard score of the first quartile, z1, is −0.67, and the standard score of the third 
quartile, z3, is +0.67. Given mean = X and standard deviation = σ for P, if P is normally 
distributed, the first quartile, 

1 1( )Q z Xs= +

and the third quartile, 

3 3( )Q z Xs= +

If the actual values of the first or third quartiles differ substantially from the calculated 
values, P is not normally distributed. However, a normal distribution can be trivially 
perturbed to maintain its Q1 and Q2 std. scores at 0.67 and −0.67 and not be normally 
distributed (so the above test would produce a false positive). A better test of normality, 
such as Q-Q plot would be indicated here. 

Outliers

The interquartile range is often used to find outliers in data. Outliers here are defined 
as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR. In a boxplot, the 
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highest and lowest occurring value within this limit are indicated by whiskers of the 
box (frequently with an additional bar at the end of the whisker) and any outliers as 
individual points. 

Box-and-whisker plot with four mild outliers and one extreme  
outlier. In this chart, outliers are defined as mild above Q3 + 1.5  

IQR and extreme above Q3 + 3 IQR.

Statistical dispersion

Example of samples from two populations with the same mean but different  
dispersion. The blue population is much more dispersed than the red population.

In statistics, dispersion (also called variability, scatter, or spread) is the extent to which 
a distribution is stretched or squeezed. Common examples of measures of statistical 
dispersion are the variance, standard deviation, and interquartile range. 
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Dispersion is contrasted with location or central tendency, and together they are the 
most used properties of distributions. 

Measures

A measure of statistical dispersion is a nonnegative real number that is zero if all the 
data are the same and increases as the data become more diverse. 

Most measures of dispersion have the same units as the quantity being measured. In 
other words, if the measurements are in metres or seconds, so is the measure of disper-
sion. Examples of dispersion measures include: 

•	 Standard deviation.

•	 Interquartile range (IQR).

•	 Range.

•	 Mean absolute difference (also known as Gini mean absolute difference).

•	 Median absolute deviation (MAD).

•	 Average absolute deviation (or simply called average deviation).

•	 Distance standard deviation.

These are frequently used (together with scale factors) as estimators of scale parame-
ters, in which capacity they are called estimates of scale. Robust measures of scale are 
those unaffected by a small number of outliers, and include the IQR and MAD. 

All the above measures of statistical dispersion have the useful property that they are 
location-invariant and linear in scale. This means that if a random variable X has a 
dispersion of SX then a linear transformation Y = aX + b for real a and b should have 
dispersion SY = |a|SX, where |a| is the absolute value of a, that is, ignores a preceding 
negative sign –. 

Other measures of dispersion are dimensionless. In other words, they have no units 
even if the variable itself has units. These include: 

•	 Coefficient of variation.

•	 Quartile coefficient of dispersion.

•	 Relative mean difference, equal to twice the Gini coefficient.

•	 Entropy: While the entropy of a discrete variable is location-invariant and 
scale-independent, and therefore not a measure of dispersion in the above sense, 
the entropy of a continuous variable is location invariant and additive in scale: 
If Hz is the entropy of continuous variable z and y=ax+b, then Hy=Hx+log(a).
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There are other measures of dispersion: 

•	 Variance (the square of the standard deviation) – location-invariant but not 
linear in scale.

•	 Variance-to-mean ratio – mostly used for count data when the term coefficient 
of dispersion is used and when this ratio is dimensionless, as count data are 
themselves dimensionless, not otherwise.

Some measures of dispersion have specialized purposes, among them the Allan vari-
ance and the Hadamard variance. 

For categorical variables, it is less common to measure dispersion by a single number. 
One measure that does so is the discrete entropy. 

Sources

In the physical sciences, such variability may result from random measurement errors: 
instrument measurements are often not perfectly precise, i.e., reproducible, and there 
is additional inter-rater variability in interpreting and reporting the measured results. 
One may assume that the quantity being measured is stable, and that the variation 
between measurements is due to observational error. A system of a large number of 
particles is characterized by the mean values of a relatively few number of macroscop-
ic quantities such as temperature, energy, and density. The standard deviation is an 
important measure in fluctuation theory, which explains many physical phenomena, 
including why the sky is blue. 

In the biological sciences, the quantity being measured is seldom unchanging and sta-
ble, and the variation observed might additionally be intrinsic to the phenomenon: It 
may be due to inter-individual variability, that is, distinct members of a population 
differing from each other. Also, it may be due to intra-individual variability, that is, 
one and the same subject differing in tests taken at different times or in other differing 
conditions. Such types of variability are also seen in the arena of manufactured prod-
ucts; even there, the meticulous scientist finds variation. 

In economics, finance, and other disciplines, regression analysis attempts to explain 
the dispersion of a dependent variable, generally measured by its variance, using one 
or more independent variables each of which itself has positive dispersion. The fraction 
of variance explained is called the coefficient of determination. 

A Partial Ordering of Dispersion

A mean-preserving spread (MPS) is a change from one probability distribution A to 
another probability distribution B, where B is formed by spreading out one or more 
portions of A’s probability density function while leaving the mean (the expected val-
ue) unchanged. The concept of a mean-preserving spread provides a partial ordering 
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of probability distributions according to their dispersions: of two probability distribu-
tions, one may be ranked as having more dispersion than the other, or alternatively 
neither may be ranked as having more dispersion. 

Skewness

Example distribution with non-zero (positive) skewness.  
These data are from experiments on wheat grass growth.

In probability theory and statistics, skewness is a measure of the asymmetry of the 
probability distribution of a real-valued random variable about its mean. The skewness 
value can be positive or negative, or undefined. 

For a unimodal distribution, negative skew commonly indicates that the tail is on the 
left side of the distribution, and positive skew indicates that the tail is on the right. In 
cases where one tail is long but the other tail is fat, skewness does not obey a simple 
rule. For example, a zero value means that the tails on both sides of the mean balance 
out overall; this is the case for a symmetric distribution, but can also be true for an 
asymmetric distribution where one tail is long and thin, and the other is short but fat. 

Consider the two distributions in the figure just below. Within each graph, the values 
on the right side of the distribution taper differently from the values on the left side. 
These tapering sides are called tails, and they provide a visual means to determine 
which of the two kinds of skewness a distribution has: 

•	 Negative skew: The left tail is longer; the mass of the distribution is concen-
trated on the right of the figure. The distribution is said to be left-skewed, left-
tailed, or skewed to the left, despite the fact that the curve itself appears to be 
skewed or leaning to the right; left instead refers to the left tail being drawn out 
and, often, the mean being skewed to the left of a typical center of the data. A 
left-skewed distribution usually appears as a right-leaning curve.
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•	 Positive skew: The right tail is longer; the mass of the distribution is concen-
trated on the left of the figure. The distribution is said to be right-skewed, right-
tailed, or skewed to the right, despite the fact that the curve itself appears to be 
skewed or leaning to the left; right instead refers to the right tail being drawn 
out and, often, the mean being skewed to the right of a typical center of the data. 
A right-skewed distribution usually appears as a left-leaning curve.

Skewness in a data series may sometimes be observed not only graphically but by sim-
ple inspection of the values. For instance, consider the numeric sequence (49, 50, 51), 
whose values are evenly distributed around a central value of 50. We can transform this 
sequence into a negatively skewed distribution by adding a value far below the mean, 
which is probably a negative outlier, e.g. (40, 49, 50, 51). Therefore, the mean of the se-
quence becomes 47.5, and the median is 49.5. Based on the formula of nonparametric 
skew, defined as ( ) / ,µ ν s− the skew is negative. Similarly, we can make the sequence 
positively skewed by adding a value far above the mean, which is probably a positive 
outlier, e.g. (49, 50, 51, 60), where the mean is 52.5, and the median is 50.5. 

Relationship of Mean and Median

The skewness is not directly related to the relationship between the mean and median: 
a distribution with negative skew can have its mean greater than or less than the medi-
an, and likewise for positive skew. 

A general relationship of mean and median under differently skewed unimodal distribution.
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In the older notion of nonparametric skew, defined as ( ) / ,µ ν s− where µ is the mean, 
v is the median, and s is the standard deviation, the skewness is defined in terms of 
this relationship: positive/right nonparametric skew means the mean is greater than 
(to the right of) the median, while negative/left nonparametric skew means the mean 
is less than (to the left of) the median. However, the modern definition of skewness and 
the traditional nonparametric definition do not always have the same sign: while they 
agree for some families of distributions, they differ in some of the cases, and conflating 
them is misleading. 

If the distribution is symmetric, then the mean is equal to the median, and the distri-
bution has zero skewness. If the distribution is both symmetric and unimodal, then 
the mean = median = mode. This is the case of a coin toss or the series 1,2,3,4,... Note, 
however, that the converse is not true in general, i.e. zero skewness does not imply that 
the mean is equal to the median. 

A study points out:

“Many textbooks teach a rule of thumb stating that the mean is right of the median 
under right skew, and left of the median under left skew. This rule fails with sur-
prising frequency. It can fail in multimodal distributions, or in distributions where 
one tail is long but the other is heavy. Most commonly, though, the rule fails in dis-
crete distributions where the areas to the left and right of the median are not equal. 
Such distributions not only contradict the textbook relationship between mean, 
median, and skew, they also contradict the textbook interpretation of the median”.

Distribution of adult residents across US households.

For example, in the distribution of adult residents across US households, the skew is to 
the right. However, due to the majority of cases is less or equal to the mode, which is 
also the median, the mean sits in the heavier left tail. As a result, the rule of thumb that 
the mean is right of the median under right skew failed. 
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Definition:

Pearson’s Moment Coefficient of Skewness

The skewness of a random variable X is the third standardized moment 3µ , defined as:

33
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where μ is the mean, σ is the standard deviation, E is the expectation operator, μ3 is 
the third central moment, and κt are the t-th cumulants. It is sometimes referred to as 
Pearson’s moment coefficient of skewness, or simply the moment coefficient of skew-
ness, but should not be confused with Pearson’s other skewness statistics. The last 
equality expresses skewness in terms of the ratio of the third cumulant κ3 to the 1.5th 
power of the second cumulant κ2. This is analogous to the definition of kurtosis as the 
fourth cumulant normalized by the square of the second cumulant. The skewness is 
also sometimes denoted Skew[X]. 

If σ is finite, μ is finite too and skewness can be expressed in terms of the non-central 
moment E[X3] by expanding the previous formula, 
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Examples:

Skewness can be infinite, as when, 

[ ] 2Pr   1, Pr[ 1] 0X x x for x X−> = > < =

where the third cumulants are infinite, or as when, 
3 3Pr[ ] (1 ) / 2 for negative  and Pr[ ] (1 ) / 2 for positive .X x x x X x x x− −< = − > = +

3 3Pr[ ] (1 ) / 2 for negative  and Pr[ ] (1 ) / 2 for positive .X x x x X x x x− −< = − > = +

where the third cumulant is undefined. 
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Examples of distributions with finite skewness include the following. 

•	 A normal distribution and any other symmetric distribution with finite third 
moment has a skewness of 0.

•	 A half-normal distribution has a skewness just below 1.

•	 An exponential distribution has a skewness of 2.

•	 A lognormal distribution can have a skewness of any positive value, depending 
on its parameters.

Properties

Starting from a standard cumulant expansion around a normal distribution, one can 
show that: 

skewness = 3 (mean − median)/standard deviation + O (skewness2).

If Y is the sum of n independent and identically distributed random variables, all with 
the distribution of X, then the third cumulant of Y is n times that of X and the second 
cumulant of Y is n times that of X, so Skew[ ] Skew[ ] /Y X n= . This shows that the 
skewness of the sum is smaller, as it approaches a Gaussian distribution in accordance 
with the central limit theorem. Note that the assumption that the variables be indepen-
dent for the above formula is very important because it is possible even for the sum of 
two Gaussian variables to have a skewed distribution. 

Sample Skewness

For a sample of n values, a natural method of moments estimator of the population 
skewness is:
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where x is the sample mean, s is the sample standard deviation, and the numerator 
m3 is the sample third central moment. This formula can be thought of as the average 
cubed deviation in the sample divided by the cubed sample standard deviation. 

Another common definition of the sample skewness is:
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where 3k is the unique symmetric unbiased estimator of the third cumulant and 2
2k s=

is the symmetric unbiased estimator of the second cumulant (i.e. the variance). 

In general, the ratios 1b and 1G are both biased estimators of the population skewness 
1γ ; their expected values can even have the opposite sign from the true skewness. (For 

instance, a mixed distribution consisting of very thin Gaussians centred at −99, 0.5, 
and 2 with weights 0.01, 0.66, and 0.33 has a skewness of about −9.77, but in a sample 
of 3, 1G has an expected value of about 0.32, since usually all three samples are in the 
positive-valued part of the distribution, which is skewed the other way.) Nevertheless, 

1b and 1G each have obviously the correct expected value of zero for any symmetric dis-
tribution with a finite third moment, including a normal distribution. 

Under the assumption that the underlying random variable X is normally distributed, 
it can be shown that 1 (0,6)dnb N→ , i.e., its distribution converges to a normal dis-
tribution with mean 0 and variance 6. The variance of the skewness of a random sample 
of size n from a normal distribution is:

1
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An approximate alternative is 6/n, but this is inaccurate for small samples. 

In normal samples, 1b has the smaller variance of the two estimators, with: 
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where m2 in the denominator is the (biased) sample second central moment. 

The adjusted Fisher–Pearson standardized moment coefficient 1G is the version found 
in Excel and several statistical packages including Minitab, SAS and SPSS. 

Applications

Skewness is a descriptive statistic that can be used in conjunction with the histogram 
and the normal quantile plot to characterize the data or distribution. 

Skewness indicates the direction and relative magnitude of a distribution’s deviation 
from the normal distribution. 
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With pronounced skewness, standard statistical inference procedures such as a confi-
dence interval for a mean will be not only incorrect, in the sense that the true coverage 
level will differ from the nominal (e.g., 95%) level, but they will also result in unequal 
error probabilities on each side. 

Skewness can be used to obtain approximate probabilities and quantiles of distribu-
tions (such as value at risk in finance) via the Cornish-Fisher expansion. 

Many models assume normal distribution; i.e., data are symmetric about the mean. 
The normal distribution has a skewness of zero. But in reality, data points may not 
be perfectly symmetric. So, an understanding of the skewness of the dataset indicates 
whether deviations from the mean are going to be positive or negative. 

D’Agostino’s K-squared test is a goodness-of-fit normality test based on sample skew-
ness and sample kurtosis. 

Other Measures of Skewness

Comparison of mean, median and mode of two  
log-normal distributions with different skewnesses.

Other measures of skewness have been used, including simpler calculations suggested 
by Karl Pearson These other measures are: 

Pearson’s First Skewness Coefficient (Mode Skewness)

The Pearson mode skewness, or first skewness coefficient, is defined as: 

(mean − mode)/standard deviation.

Pearson’s Second Skewness Coefficient (Median Skewness)

The Pearson median skewness, or second skewness coefficient, is defined as: 

3 (mean − median)/standard deviation.

Which is a simple multiple of the nonparametric skew. 
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Quartile-based Measures

Bowley’s measure of skewness, also called Yule’s coefficient is defined as: 
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When writing it as 
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, it is easier to see that the numerator is the average 

of the upper and lower quartiles (a measure of location) minus the median while the 
denominator is (Q3-Q1)/2 which (for symmetric distributions) is the MAD measure of 
dispersion. 

Other names for this measure are Galton’s measure of skewness, the Yule–Kendall in-
dex and the quartile skewness, 

A more general formulation of a skewness function was described by Groeneveld, R. A. 
and Meeden, G:
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where F is the cumulative distribution function. This leads to a corresponding over-
all measure of skewness defined as the supremum of this over the range 1/2 ≤ u < 1. 
Another measure can be obtained by integrating the numerator and denominator of this 
expression. The function γ(u) satisfies −1 ≤ γ(u) ≤ 1 and is well defined without requiring 
the existence of any moments of the distribution. Quantile-based skewness measures are 
at first glance easy to interpret, but they often show significantly larger sample variations, 
than moment-based methods. This means that often samples from a symmetric distribu-
tion (like the uniform distribution) have a large quantile-based skewness, just by chance.

Bowley’s measure of skewness is γ(u) evaluated at u = 3/4. Kelley’s measure of skew-
ness uses u = 0.1. 

Groeneveld and Meeden’s Coefficient

Groeneveld and Meeden have suggested, as an alternative measure of skewness,

3
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E X
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where μ is the mean, ν is the median, |...| is the absolute value, and E() is the expecta-
tion operator. This is closely related in form to Pearson’s second skewness coefficient. 
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L-moments

Use of L-moments in place of moments provides a measure of skewness known as the 
L-skewness. 

Distance Skewness

A value of skewness equal to zero does not imply that the probability distribution is 
symmetric. Thus there is a need for another measure of asymmetry that has this prop-
erty: such a measure was introduced in 2000. It is called distance skewness and denot-
ed by dSkew. If X is a random variable taking values in the d-dimensional Euclidean 
space, X has finite expectation, X’ is an independent identically distributed copy of X, 
and ⋅ denotes the norm in the Euclidean space, then a simple measure of asymme-
try with respect to location parameter θ is, 
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and dSkew(X) := 0 for X = θ (with probability 1). Distance skewness is always between 
0 and 1, equals 0 if and only if X is diagonally symmetric with respect to θ (X and 2θ−X 
have the same probability distribution) and equals 1 if and only if X is a constant c (
c θ≠ ) with probability one. Thus there is a simple consistent statistical test of diagonal 
symmetry based on the sample distance skewness: 
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Medcouple

The medcouple is a scale-invariant robust measure of skewness, with a breakdown 
point of 25%. It is the median of the values of the kernel function, 
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taken over all couples ( , )i jx x such that i m jx x x≥ ≥ , where mx is the median of the sample 
1 2{ , , , }.nx x x… . It can be seen as the median of all possible quantile skewness measures.

Standard Deviation

In statistics, the standard deviation (SD, also represented by the lower case Greek let-
ter sigma σ for the population standard deviation or the Latin letter s for the sample 
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standard deviation) is a measure of the amount of variation or dispersion of a set of 
values. A low standard deviation indicates that the values tend to be close to the mean 
(also called the expected value) of the set, while a high standard deviation indicates that 
the values are spread out over a wider range.

A plot of normal distribution (or bell-shaped curve) where  
each band has a width of 1 standard deviation. 

Cumulative probability of a normal distribution with  
expected value 0 and standard deviation 1.

The standard deviation of a random variable, statistical population, data set, or proba-
bility distribution is the square root of its variance. It is algebraically simpler, though in 
practice less robust, than the average absolute deviation. A useful property of the stan-
dard deviation is that, unlike the variance, it is expressed in the same units as the data. 

In addition to expressing the variability of a population, the standard deviation is com-
monly used to measure confidence in statistical conclusions. For example, the margin 
of error in polling data is determined by calculating the expected standard deviation 
in the results if the same poll were to be conducted multiple times. This derivation of 
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a standard deviation is often called the “standard error” of the estimate or “standard 
error of the mean” when referring to a mean. It is computed as the standard deviation 
of all the means that would be computed from that population if an infinite number of 
samples were drawn and a mean for each sample were computed. 

The standard deviation of a population and the standard error of a statistic derived 
from that population (such as the mean) are quite different but related (related by the 
inverse of the square root of the number of observations). The reported margin of error 
of a poll is computed from the standard error of the mean (or alternatively from the 
product of the standard deviation of the population and the inverse of the square root 
of the sample size, which is the same thing) and is typically about twice the standard 
deviation—the half-width of a 95 percent confidence interval. 

In science, many researchers report the standard deviation of experimental data, and 
by convention, only effects more than two standard deviations away from a null ex-
pectation are considered statistically significant—normal random error or variation 
in the measurements is in this way distinguished from likely genuine effects or as-
sociations. The standard deviation is also important in finance, where the standard 
deviation on the rate of return on an investment is a measure of the volatility of the 
investment. 

When only a sample of data from a population is available, the term standard devia-
tion of the sample or sample standard deviation can refer to either the above-men-
tioned quantity as applied to those data, or to a modified quantity that is an unbiased 
estimate of the population standard deviation (the standard deviation of the entire 
population). 

Sample Standard Deviation of Metabolic Rate of Northern Fulmars

Logan gives the following example. Furness and Bryant measured the resting metabolic 
rate for 8 male and 6 female breeding northern fulmars. The table shows the Furness 
data set. 

Furness data set on metabolic rates of northern fulmars 

Sex Metabolic rate Sex Metabolic rate 

Male 525.8 Female 727.7 

Male 605.7 Female 1086.5 

Male 843.3 Female 1091.0 

Male 1195.5 Female 1361.3 

Male 1945.6 Female 1490.5 

Male 2135.6 Female 1956.1 

Male 2308.7

Male 2950.0

____________________ WORLD TECHNOLOGIES ____________________



WT

67Statistical Measures

The graph shows the metabolic rate for males and females. By visual inspection, it ap-
pears that the variability of the metabolic rate is greater for males than for females. 

The sample standard deviation of the metabolic rate for the female fulmars is calculat-
ed as follows. The formula for the sample standard deviation is, 
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where 1 2{ , , , }Nx x x… are the observed values of the sample items, x is the mean value of 
these observations, and N is the number of observations in the sample. 

In the sample standard deviation formula, for this example, the numerator is the sum of 
the squared deviation of each individual animal’s metabolic rate from the mean metabolic 
rate. The table below shows the calculation of this sum of squared deviations for the female 
fulmars. For females, the sum of squared deviations is 886047.09, as shown in the table. 

Sum of squares calculation for female fulmars 

Animal Sex Metabolic rate Mean Difference from mean Squared difference 
from mean 

1 Female 727.7 1285.5 -557.8 311140.84 
2 Female 1086.5 1285.5 -199.0 39601.00 
3 Female 1091.0 1285.5 -194.5 37830.25 
4 Female 1361.3 1285.5 75.8 5745.64 
5 Female 1490.5 1285.5 205.0 42025.00 
6 Female 1956.1 1285.5 670.6 449704.36 

Mean of metabolic rates 1285.5 Sum of squared differences 886047.09 
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The denominator in the sample standard deviation formula is N – 1, where N is the 
number of animals. In this example, there are N = 6 females, so the denominator is 6 – 
1 = 5. The sample standard deviation for the female fulmars is therefore, 
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For the male fulmars, a similar calculation gives a sample standard deviation of 894.37, 
approximately twice as large as the standard deviation for the females. The graph shows 
the metabolic rate data, the means (red dots), and the standard deviations (red lines) 
for females and males. 

Use of the sample standard deviation implies that these 14 fulmars are a sample from a 
larger population of fulmars. If these 14 fulmars comprised the entire population (per-
haps the last 14 surviving fulmars), then instead of the sample standard deviation, the 
calculation would use the population standard deviation. In the population standard 
deviation formula, the denominator is N instead of N - 1. It is rare that measurements 
can be taken for an entire population, so, by default, statistical computer programs 
calculate the sample standard deviation. 

Population Standard Deviation of Grades of Eight Students

Suppose that the entire population of interest was eight students in a particular class. 
For a finite set of numbers, the population standard deviation is found by taking the 
square root of the average of the squared deviations of the values subtracted from their 
average value. The marks of a class of eight students (that is, a statistical population) 
are the following eight values: 

2,  4,  4,  4,  5,  5,  7,  9.
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These eight data points have the mean (average) of 5: 

2 4 4 4 5 5 7 9 5.
8

µ + + + + + + +
= =

First, calculate the deviations of each data point from the mean, and square the result 
of each: 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

(2 5) ( 3) 9 (5 5) 0 0
(4 5) ( 1) 1 (5 5) 0 0
(4 5) ( 1) 1 (7 5) 2 4
(4 5) ( 1) 1 (9 5) 4 16.
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The variance is the mean of these values: 

2 9 1 1 1 0 0 4 16 4.
8

s + + + + + + +
= =

and the population standard deviation is equal to the square root of the variance: 

4 2.s = =

This formula is valid only if the eight values with which we began form the complete 
population. If the values instead were a random sample drawn from some large parent 
population (for example, they were 8 students randomly and independently chosen 
from a class of 2 million), then one often divides by 7 (which is n − 1) instead of 8 (which 
is n) in the denominator of the last formula. In that case the result of the original for-
mula would be called the sample standard deviation. Dividing by n − 1 rather than by 
n gives an unbiased estimate of the variance of the larger parent population. This is 
known as Bessel’s correction. 

Standard Deviation of Average Height for Adult Men

If the population of interest is approximately normally distributed, the standard devi-
ation provides information on the proportion of observations above or below certain 
values. For example, the average height for adult men in the United States is about 70 
inches (177.8 cm), with a standard deviation of around 3 inches (7.62 cm). This means 
that most men (about 68%, assuming a normal distribution) have a height within 3 
inches (7.62 cm) of the mean (67–73 inches (170.18–185.42 cm)) – one standard devi-
ation – and almost all men (about 95%) have a height within 6 inches (15.24 cm) of the 
mean (64–76 inches (162.56–193.04 cm)) – two standard deviations. If the standard 
deviation were zero, then all men would be exactly 70 inches (177.8 cm) tall. If the stan-
dard deviation were 20 inches (50.8 cm), then men would have much more variable 
heights, with a typical range of about 50–90 inches (127–228.6 cm). Three standard 
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deviations account for 99.7% of the sample population being studied, assuming the 
distribution is normal (bell-shaped). 

Definition of Population Values

Let X be a random variable with mean value μ: 

E[ ] .X µ=

Here the operator E denotes the average or expected value of X. Then the standard 
deviation of X is the quantity 
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(derived using the properties of expected value). 

In other words, the standard deviation σ (sigma) is the square root of the variance of X; 
i.e., it is the square root of the average value of (X − μ)2. 

The standard deviation of a (univariate) probability distribution is the same as that of 
a random variable having that distribution. Not all random variables have a standard 
deviation, since these expected values need not exist. For example, the standard devi-
ation of a random variable that follows a Cauchy distribution is undefined because its 
expected value μ is undefined. 

Discrete Random Variable

In the case where X takes random values from a finite data set x1, x2, ..., xN, with each 
value having the same probability, the standard deviation is, 
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or, using summation notation, 

2

1 1

1 1( ) , where .
N N

i i
i i

x x
N N

s µ µ
= =

= − =∑ ∑

____________________ WORLD TECHNOLOGIES ____________________



WT

71Statistical Measures

If, instead of having equal probabilities, the values have different probabilities, let x1 
have probability p1, x2 have probability p2, ..., xN have probability pN. In this case, the 
standard deviation will be, 

2

1 1

( ) ,   where  .
N N

i i i i
i i

p x p xs µ µ
= =

= − =∑ ∑

Continuous Random Variable

The standard deviation of a continuous real-valued random variable X with probability 
density function p(x) is, 

2( ) ( )d , where ( )d ,x p x x x p x xs µ µ= − =∫ ∫
X X

and where the integrals are definite integrals taken for x ranging over the set of possible 
values of the random variable X. 

In the case of a parametric family of distributions, the standard deviation can be ex-
pressed in terms of the parameters. For example, in the case of the log-normal distri-
bution with parameters μ and σ2, the standard deviation is, 

2 22( 1) .e es µ s+−

Estimation

One can find the standard deviation of an entire population in cases (such as stan-
dardized testing) where every member of a population is sampled. In cases where that 
cannot be done, the standard deviation σ is estimated by examining a random sample 
taken from the population and computing a statistic of the sample, which is used as an 
estimate of the population standard deviation. Such a statistic is called an estimator, 
and the estimator (or the value of the estimator, namely the estimate) is called a sample 
standard deviation, and is denoted by s (possibly with modifiers). 

Unlike in the case of estimating the population mean, for which the sample mean is a 
simple estimator with many desirable properties (unbiased, efficient, maximum likeli-
hood), there is no single estimator for the standard deviation with all these properties, 
and unbiased estimation of standard deviation is a very technically involved problem. 
Most often, the standard deviation is estimated using the corrected sample standard 
deviation (using N − 1), defined below, and this is often referred to as the ‘‘sample 
standard deviation’’, without qualifiers. However, other estimators are better in other 
respects: the uncorrected estimator (using N) yields lower mean squared error, while 
using N − 1.5 (for the normal distribution) almost completely eliminates bias. 
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Uncorrected Sample Standard Deviation

The formula for the population standard deviation (of a finite population) can be applied to 
the sample, using the size of the sample as the size of the population (though the actual pop-
ulation size from which the sample is drawn may be much larger). This estimator, denoted 
by sN, is known as the uncorrected sample standard deviation, or sometimes the standard 
deviation of the sample (considered as the entire population), and is defined as follows:

2

1

1 ( ) ,
N

N i
i

s x x
N =

= −∑

where 1 2{ , , , }Nx x x… are the observed values of the sample items and x is the mean val-
ue of these observations, while the denominator N stands for the size of the sample: this 
is the square root of the sample variance, which is the average of the squared deviations 
about the sample mean. 

This is a consistent estimator (it converges in probability to the population value as 
the number of samples goes to infinity), and is the maximum-likelihood estimate when 
the population is normally distributed. However, this is a biased estimator, as the es-
timates are generally too low. The bias decreases as sample size grows, dropping off as 
1/N, and thus is most significant for small or moderate sample sizes; for 75N > the bias 
is below 1%. Thus for very large sample sizes, the uncorrected sample standard devia-
tion is generally acceptable. This estimator also has a uniformly smaller mean squared 
error than the corrected sample standard deviation. 

Corrected Sample Standard Deviation

If the biased sample variance (the second central moment of the sample, which is a 
downward-biased estimate of the population variance) is used to compute an estimate 
of the population’s standard deviation, the result is, 

2

1

1 ( ) .
N

N i
i

s x x
N =

= −∑

Here taking the square root introduces further downward bias, by Jensen’s inequality, 
due to the square root’s being a concave function. The bias in the variance is easily cor-
rected, but the bias from the square root is more difficult to correct, and depends on the 
distribution in question. 

An unbiased estimator for the variance is given by applying Bessel’s correction, using 
N − 1 instead of N to yield the unbiased sample variance, denoted s2: 

2 2

1

1 ( ) .
1

N

i
i

s x x
N =

= −
− ∑
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This estimator is unbiased if the variance exists and the sample values are drawn inde-
pendently with replacement. N − 1 corresponds to the number of degrees of freedom in 
the vector of deviations from the mean, 

1( , , ).nx x x x− … −

Taking square roots reintroduces bias (because the square root is a nonlinear function, 
which does not commute with the expectation), yielding the corrected sample stan-
dard deviation, denoted by s:

2

1

1 ( ) .
1

N

i
i

s x x
N =

= −
− ∑

As explained above, while s2 is an unbiased estimator for the population variance, s is 
still a biased estimator for the population standard deviation, though markedly less 
biased than the uncorrected sample standard deviation. This estimator is commonly 
used and generally known simply as the “sample standard deviation”. The bias may 
still be large for small samples (N less than 10). As sample size increases, the amount of 

bias decreases. We obtain more information and the difference between 
1
N

and 
1

1N −becomes smaller. 

Unbiased Sample Standard Deviation

For unbiased estimation of standard deviation, there is no formula that works across all 
distributions, unlike for mean and variance. Instead, s is used as a basis, and is scaled 
by a correction factor to produce an unbiased estimate. For the normal distribution, an 
unbiased estimator is given by s/c4, where the correction factor (which depends on N) 
is given in terms of the Gamma function, and equals: 

4
2 2( ) .

11
2

N

c N
NN

 G 
 =
−−  G 

 

This arises because the sampling distribution of the sample standard deviation fol-
lows a (scaled) chi distribution, and the correction factor is the mean of the chi dis-
tribution. 

An approximation can be given by replacing N − 1 with N − 1.5, yielding: 

2

1

1ˆ ( ) ,
1.5

N

i
i

x x
N

s
=

= −
− ∑
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The error in this approximation decays quadratically (as 1/N2), and it is suited for all 
but the smallest samples or highest precision: for N = 3 the bias is equal to 1.3%, and 
for N = 9 the bias is already less than 0.1%. A more accurate approximation is to replace 

1.5N − above with 1.5 1/ (8( 1)).N N− + −

For other distributions, the correct formula depends on the distribution, but a rule of 
thumb is to use the further refinement of the approximation: 

2

1
2

1 ( ) ,ˆ
11.5
4

N

i
i

x x
N

s
γ =

= −
− −

∑

where γ2 denotes the population excess kurtosis. The excess kurtosis may be either 
known beforehand for certain distributions, or estimated from the data. 

Confidence Interval of a Sampled Standard Deviation

The standard deviation we obtain by sampling a distribution is itself not absolutely 
accurate, both for mathematical reasons (explained here by the confidence interval) 
and for practical reasons of measurement (measurement error). The mathematical ef-
fect can be described by the confidence interval or CI. To show how a larger sample 
will make the confidence interval narrower, consider the following examples: A small 
population of N = 2 has only 1 degree of freedom for estimating the standard deviation. 
The result is that a 95% CI of the SD runs from 0.45 × SD to 31.9 × SD; the factors here 
are as follows: 

2

2 1
2 2

Pr 1 ,sq k qα α α
s −

 
< < = − 

 

where pq is the p-th quantile of the chi-square distribution with k degrees of freedom, 
and 1 α− is the confidence level. This is equivalent to the following: 

2 2
2

1
2 2

Pr 1 .s sk k
q qα α

s α
−

 
 < < = − 
 
 

With k = 1, 0.025 0.000982q = and 0.975 5.024.q = The reciprocals of the square roots of 
these two numbers give us the factors 0.45 and 31.9 given above. 

A larger population of N = 10 has 9 degrees of freedom for estimating the standard 
deviation. The same computations as above give us in this case a 95% CI running from 
0.69 × SD to 1.83 × SD. So even with a sample population of 10, the actual SD can still 
be almost a factor 2 higher than the sampled SD. For a sample population N=100, this 

____________________ WORLD TECHNOLOGIES ____________________



WT

75Statistical Measures

is down to 0.88 × SD to 1.16 × SD. To be more certain that the sampled SD is close to 
the actual SD we need to sample a large number of points. 

These same formulae can be used to obtain confidence intervals on the variance of 
residuals from a least squares fit under standard normal theory, where k is now the 
number of degrees of freedom for error. 

Bounds on Standard Deviation

For a set of N > 4 data spanning a range of values R, an upper bound on the standard de-
viation s is given by s = 0.6R. An estimate of the standard deviation for N > 100 data taken 
to be approximately normal follows from the heuristic that 95% of the area under the 
normal curve lies roughly two standard deviations to either side of the mean, so that, with 
95% probability the total range of values R represents four standard deviations so that s ≈ 
R/4. This so-called range rule is useful in sample size estimation, as the range of possible 
values is easier to estimate than the standard deviation. Other divisors K(N) of the range 
such that s ≈ R/K(N) are available for other values of N and for non-normal distributions. 

Identities and Mathematical Properties

The standard deviation is invariant under changes in location, and scales directly with 
the scale of the random variable. Thus, for a constant c and random variables X and Y: 

( ) 0cs =

( ) ( ),X c Xs s+ =

( ) | | ( ).cX c Xs s=

The standard deviation of the sum of two random variables can be related to their indi-
vidual standard deviations and the covariance between them: 

( ) var( ) var( ) 2cov( , ).X Y X Y X Ys + = + +

where 2var s= and cov stand for variance and covariance, respectively. 

The calculation of the sum of squared deviations can be related to moments calculated 
directly from the data. In the following formula, the letter E is interpreted to mean ex-
pected value, i.e., mean. 

2 2 2( ) E[( E[ ]) ] E[ ] (E[ ]) .X X X X Xs = − = −

The sample standard deviation can be computed as: 

2s( ) E[( E[ ]) ].
1

NX X X
N

= −
−
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For a finite population with equal probabilities at all points, we have: 

2
2 2 2 2

1 1 1 1

1 1 1 1( ) ( ) .
N N N N

i i i i
i i i i

x x x x x x
N N N N= = = =

     − = − = −     
     

∑ ∑ ∑ ∑

This means that the standard deviation is equal to the square root of the difference 
between the average of the squares of the values and the square of the average value. 

Interpretation and Application

Example of samples from two populations with the same mean  
but different standard deviations. Red population has mean 100  

and SD 10; blue population has mean 100 and SD 50.

A large standard deviation indicates that the data points can spread far from the mean 
and a small standard deviation indicates that they are clustered closely around the mean. 

For example, each of the three populations {0, 0, 14, 14}, {0, 6, 8, 14} and {6, 6, 8, 8} 
has a mean of 7. Their standard deviations are 7, 5, and 1, respectively. The third popu-
lation has a much smaller standard deviation than the other two because its values are 
all close to 7. It will have the same units as the data points themselves. If, for instance, 
the data set {0, 6, 8, 14} represents the ages of a population of four siblings in years, the 
standard deviation is 5 years. As another example, the population {1000, 1006, 1008, 
1014} may represent the distances traveled by four athletes, measured in meters. It has 
a mean of 1007 meters, and a standard deviation of 5 meters. 

Standard deviation may serve as a measure of uncertainty. In physical science, for ex-
ample, the reported standard deviation of a group of repeated measurements gives the 
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precision of those measurements. When deciding whether measurements agree with 
a theoretical prediction, the standard deviation of those measurements is of crucial 
importance: If the mean of the measurements is too far away from the prediction (with 
the distance measured in standard deviations), then the theory being tested probably 
needs to be revised. This makes sense since they fall outside the range of values that 
could reasonably be expected to occur, if the prediction were correct and the standard 
deviation appropriately quantified. 

While the standard deviation does measure how far typical values tend to be from the 
mean, other measures are available. An example is the mean absolute deviation, which 
might be considered a more direct measure of average distance, compared to the root 
mean square distance inherent in the standard deviation. 

Application Examples

The practical value of understanding the standard deviation of a set of values is in ap-
preciating how much variation there is from the average (mean). 

Experiment, Industrial and Hypothesis Testing

Standard deviation is often used to compare real-world data against a model to test 
the model. For example, in industrial applications the weight of products coming off 
a production line may need to comply with a legally required value. By weighing some 
fraction of the products an average weight can be found, which will always be slightly 
different from the long-term average. By using standard deviations, a minimum and 
maximum value can be calculated that the averaged weight will be within some very 
high percentage of the time (99.9% or more). If it falls outside the range then the pro-
duction process may need to be corrected. Statistical tests such as these are particularly 
important when the testing is relatively expensive. For example, if the product needs to 
be opened and drained and weighed, or if the product was otherwise used up by the test. 

In experimental science, a theoretical model of reality is used. Particle physics conven-
tionally uses a standard of “5 sigma” for the declaration of a discovery. A five-sigma 
level translates to one chance in 3.5 million that a random fluctuation would yield the 
result. This level of certainty was required in order to assert that a particle consistent 
with the Higgs boson had been discovered in two independent experiments at CERN, 
and this was also the significance level leading to the declaration of the first detection 
of gravitational waves. 

Weather

As a simple example, consider the average daily maximum temperatures for two cities, 
one inland and one on the coast. It is helpful to understand that the range of daily maxi-
mum temperatures for cities near the coast is smaller than for cities inland. Thus, while 
these two cities may each have the same average maximum temperature, the standard 
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deviation of the daily maximum temperature for the coastal city will be less than that 
of the inland city as, on any particular day, the actual maximum temperature is more 
likely to be farther from the average maximum temperature for the inland city than for 
the coastal one. 

Finance

In finance, standard deviation is often used as a measure of the risk associated with 
price-fluctuations of a given asset (stocks, bonds, property, etc.), or the risk of a port-
folio of assets (actively managed mutual funds, index mutual funds, or ETFs). Risk 
is an important factor in determining how to efficiently manage a portfolio of invest-
ments because it determines the variation in returns on the asset and/or portfolio and 
gives investors a mathematical basis for investment decisions (known as mean-vari-
ance optimization). The fundamental concept of risk is that as it increases, the ex-
pected return on an investment should increase as well, an increase known as the risk 
premium. In other words, investors should expect a higher return on an investment 
when that investment carries a higher level of risk or uncertainty. When evaluating 
investments, investors should estimate both the expected return and the uncertainty 
of future returns. Standard deviation provides a quantified estimate of the uncertain-
ty of future returns. 

For example, assume an investor had to choose between two stocks. Stock A over the 
past 20 years had an average return of 10 percent, with a standard deviation of 20 
percentage points (pp) and Stock B, over the same period, had average returns of 12 
percent but a higher standard deviation of 30 pp. On the basis of risk and return, an 
investor may decide that Stock A is the safer choice, because Stock B’s additional two 
percentage points of return is not worth the additional 10 pp standard deviation (great-
er risk or uncertainty of the expected return). Stock B is likely to fall short of the initial 
investment (but also to exceed the initial investment) more often than Stock A under 
the same circumstances, and is estimated to return only two percent more on average. 
In this example, Stock A is expected to earn about 10 percent, plus or minus 20 pp (a 
range of 30 percent to −10 percent), about two-thirds of the future year returns. When 
considering more extreme possible returns or outcomes in future, an investor should 
expect results of as much as 10 percent plus or minus 60 pp, or a range from 70 percent 
to −50 percent, which includes outcomes for three standard deviations from the aver-
age return (about 99.7 percent of probable returns). 

Calculating the average (or arithmetic mean) of the return of a security over a given 
period will generate the expected return of the asset. For each period, subtracting the 
expected return from the actual return results in the difference from the mean. Squar-
ing the difference in each period and taking the average gives the overall variance of 
the return of the asset. The larger the variance, the greater risk the security carries. 
Finding the square root of this variance will give the standard deviation of the invest-
ment tool in question. 
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Population standard deviation is used to set the width of Bollinger Bands, a widely ad-
opted technical analysis tool. For example, the upper Bollinger Band is given as x– + nσx. 
The most commonly used value for n is 2; there is about a five percent chance of going 
outside, assuming a normal distribution of returns. 

Financial time series are known to be non-stationary series, whereas the statistical cal-
culations above, such as standard deviation, apply only to stationary series. To apply 
the above statistical tools to non-stationary series, the series first must be transformed 
to a stationary series, enabling use of statistical tools that now have a valid basis from 
which to work. 

Geometric Interpretation

To gain some geometric insights and clarification, we will start with a population of 
three values, x1, x2, x3. This defines a point P = (x1, x2, x3) in R3. Consider the line L = 
{(r, r, r) : r ∈ R}. This is the “main diagonal” going through the origin. If our three 
given values were all equal, then the standard deviation would be zero and P would lie 
on L. So it is not unreasonable to assume that the standard deviation is related to the 
distance of P to L. That is indeed the case. To move orthogonally from L to the point P, 
one begins at the point: 

( , , )M x x x=

whose coordinates are the mean of the values we started out with. 

M is on L therefore ( , , )M =    for some .∈ . 

The line L is to be orthogonal to the vector from M to P . Therefore: 
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A little algebra shows that the distance between P and M (which is the same as the 

orthogonal distance between P and the line L) 2( )i
i

x x−∑ is equal to the standard 
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deviation of the vector (x1, x2, x3), multiplied by the square root of the number of dimen-
sions of the vector (3 in this case). 

Chebyshev’s Inequality

An observation is rarely more than a few standard deviations away from the mean. Che-
byshev’s inequality ensures that, for all distributions for which the standard deviation 
is defined, the amount of data within a number of standard deviations of the mean is at 
least as much as given in the following table. 

Distance from mean Minimum population 

2s 50% 

2σ 75% 
3σ 89% 
4σ 94% 
5σ 96% 
6σ 97% 

ks 2

11
k

−
 

1
1

s
− 



Rules for Normally Distributed Data

Dark blue is one standard deviation on either side of the mean. For the normal distri-
bution, this accounts for 68.27 percent of the set; while two standard deviations from 
the mean (medium and dark blue) account for 95.45 percent; three standard deviations 
(light, medium, and dark blue) account for 99.73 percent; and four standard deviations 
account for 99.994 percent. The two points of the curve that are one standard deviation 
from the mean are also the inflection points.

The central limit theorem states that the distribution of an average of many independent, 
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identically distributed random variables tends toward the famous bell-shaped normal 
distribution with a probability density function of: 

21
2 21( ; , )

2

x

f x e
µ

sµ s
s π

− −  
 =

where μ is the expected value of the random variables, σ equals their distribution’s 
standard deviation divided by n1/2, and n is the number of random variables. The stan-
dard deviation therefore is simply a scaling variable that adjusts how broad the curve 
will be, though it also appears in the normalizing constant. 

If a data distribution is approximately normal, then the proportion of data values with-
in z standard deviations of the mean is defined by: 

Proportion
2
zerf  =  

 

where erf is the error function. The proportion that is less than or equal to a number, 
x, is given by the cumulative distribution function: 

1 1Proportion 1 erf 1 erf .
2 22 2

x zx µ
s

   −   ≤ = + = +      
      

If a data distribution is approximately normal then about 68 percent of the data values 
are within one standard deviation of the mean (mathematically, μ ± σ, where μ is the 
arithmetic mean), about 95 percent are within two standard deviations (μ ± 2σ), and 
about 99.7 percent lie within three standard deviations (μ ± 3σ). This is known as the 
68-95-99.7 rule, or the empirical rule. 

For various values of z, the percentage of values expected to lie in and outside the sym-
metric interval, CI = (−zσ, zσ), are as follows: 

Percentage within (z).
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z (Percentage within).

Confidence 
interval

Proportion without
Percentage Percentage Fraction

0.318 639σ 25% 75% 3 / 4
0.674490σ 50% 50% 1 / 2
0.994458σ 68% 32% 1 / 3.125
1σ 68.2689492% 31.7310508% 1 / 3.1514872
1.281552σ 80% 20% 1 / 5
1.644854σ 90% 10% 1 / 10
1.959964σ 95% 5% 1 / 20
2σ 95.4499736% 4.5500264% 1 / 21.977895
2.575829σ 99% 1% 1 / 100
3σ 99.7300204% 0.2699796% 1 / 370.398
3.290527σ 99.9% 0.1% 1 / 1000
3.890592σ 99.99% 0.01% 1 / 10000
4σ 99.993666% 0.006334% 1 / 15787
4.417173σ 99.999% 0.001% 1 / 100000

4.5σ 99.9993204653751% 0.0006795346249% 1 / 147159.5358 
3.4 / 1000000 (on each side of mean)

4.891638σ 99.9999% 0.0001% 1 / 1000000
5σ 99.9999426697% 0.0000573303% 1 / 1744278
5.326724σ 99.99999% 0.00001% 1 / 10000000
5.730729σ 99.999999% 0.000001% 1 / 100000000
6σ 99.9999998027% 0.0000001973% 1 / 506797346
6.109410σ 99.9999999% 0.0000001% 1 / 1000000000
6.466951σ 99.99999999% 0.00000001% 1 / 10000000000
6.806502σ 99.999999999% 0.000000001% 1 / 100000000000
7σ 99.9999999997440% 0.000000000256% 1 / 390682215445
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Relationship between Standard Deviation and Mean

The mean and the standard deviation of a set of data are descriptive statistics usually re-
ported together. In a certain sense, the standard deviation is a “natural” measure of sta-
tistical dispersion if the center of the data is measured about the mean. This is because 
the standard deviation from the mean is smaller than from any other point. The precise 
statement is the following: suppose x1, ..., xn are real numbers and define the function: 

2

1

1( ) ( ) .
1

N

i
i

r x r
N

s
=

= −
− ∑

Using calculus or by completing the square, it is possible to show that σ(r) has a unique 
minimum at the mean: 

.r x=

Variability can also be measured by the coefficient of variation, which is the ratio of the 
standard deviation to the mean. It is a dimensionless number. 

Standard Deviation of the Mean

Often, we want some information about the precision of the mean we obtained. We 
can obtain this by determining the standard deviation of the sampled mean. Assuming 
statistical independence of the values in the sample, the standard deviation of the mean 
is related to the standard deviation of the distribution by: 

mean
1
N

s s=

where N is the number of observations in the sample used to estimate the mean. This 
can easily be proven with: 
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Resulting in:

mean .
N
ss =

It should be emphasized that in order to estimate the standard deviation of the 
mean means it is necessary to know the standard deviation of the entire population 
s beforehand. However, in most applications this parameter is unknown. For ex-
ample, if a series of 10 measurements of a previously unknown quantity is per-
formed in a laboratory, it is possible to calculate the resulting sample mean and 
sample standard deviation, but it is impossible to calculate the standard deviation 
of the mean. 

Rapid Calculation Methods

The following two formulas can represent a running (repeatedly updated) standard 
deviation. A set of two power sums s1 and s2 are computed over a set of N values of x, 
denoted as x1, ..., xN:

1

.
N

j
j k

k

s x
=

=∑

Given the results of these running summations, the values N, s1, s2 can be used at any 
time to compute the current value of the running standard deviation: 

2
2 1Ns s
N

s
−

=

Where N, as mentioned above, is the size of the set of values (or can also be regarded 
as s0). 

Similarly for sample standard deviation, 

2
2 1 .

( 1)
Ns s
N N

−
=

−

In a computer implementation, as the three sj sums become large, we need to con-
sider round-off error, arithmetic overflow, and arithmetic underflow. The method 
below calculates the running sums method with reduced rounding errors. This is 
a “one pass” algorithm for calculating variance of n samples without the need to 
store prior data during the calculation. Applying this method to a time series will 
result in successive values of standard deviation corresponding to n data points as 
n grows larger with each new sample, rather than a constant-width sliding window 
calculation. 
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For k = 1, ..., n: 
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where A is the mean value, 
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Weighted Calculation

When the values xi are weighted with unequal weights wi, the power sums s0, s1, s2 are 
each computed as: 
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And the standard deviation equations remain unchanged. s0 is now the sum of the 
weights and not the number of samples N. 

The incremental method with reduced rounding errors can also be applied, with some 
additional complexity. 

A running sum of weights must be computed for each k from 1 to n: 
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In the final division, 
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where n is the total number of elements, and n’ is the number of elements with non-ze-
ro weights. The above formulas become equal to the simpler formulas given above if 
weights are taken as equal to one. 

Quantile

Probability density of a normal distribution, with quartiles shown. The area below  
the red curve is the same in the intervals (−∞,Q1), (Q1,Q2), (Q2,Q3), and (Q3,+∞).
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In statistics and probability quantiles are cut points dividing the range of a probability 
distribution into continuous intervals with equal probabilities, or dividing the obser-
vations in a sample in the same way. There is one fewer quantile than the number of 
groups created. Thus quartiles are the three cut points that will divide a dataset into 
four equal-sized groups. Common quantiles have special names: for instance quartile, 
decile. The groups created are termed halves, thirds, quarters, etc., though sometimes 
the terms for the quantile are used for the groups created, rather than for the cut 
points. 

q-quantiles are values that partition a finite set of values into q subsets of (nearly) equal 
sizes. There are q − 1 of the q-quantiles, one for each integer k satisfying 0 < k < q. In some 
cases the value of a quantile may not be uniquely determined, as can be the case for the 
median (2-quantile) of a uniform probability distribution on a set of even size. Quantiles 
can also be applied to continuous distributions, providing a way to generalize rank sta-
tistics to continuous variables. When the cumulative distribution function of a random 
variable is known, the q-quantiles are the application of the quantile function (the inverse 
function of the cumulative distribution function) to the values {1/q, 2/q, …, (q − 1)/q}. 

Specialized Quantiles

Some q-quantiles have special names: 

•	 The only 2-quantile is called the median.

•	 The 3-quantiles are called tertiles or terciles → T.

•	 The 4-quantiles are called quartiles → Q; the difference between upper and low-
er quartiles is also called the interquartile range, midspread or middle fifty → 
IQR = Q3 − Q1.

•	 The 5-quantiles are called quintiles → QU.

•	 The 6-quantiles are called sextiles → S.

•	 The 7-quantiles are called septiles.

•	 The 8-quantiles are called octiles.

•	 The 10-quantiles are called deciles → D.

•	 The 12-quantiles are called duo-deciles or dodeciles.

•	 The 16-quantiles are called hexadeciles → H.

•	 The 20-quantiles are called ventiles, vigintiles, or demi-deciles → V.

•	 The 100-quantiles are called percentiles → P.

•	 The 1000-quantiles have been called permilles or milliles, but these are rare 
and largely obsolete.
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Quantiles of a Population

As in the computation of, for example, standard deviation, the estimation of a quantile 
depends upon whether one is operating with a statistical population or with a sample 
drawn from it. For a population, of discrete values or for a continuous population den-
sity, the k-th q-quantile is the data value where the cumulative distribution function 
crosses k/q. That is, x is a k-th q-quantile for a variable X if, 

Pr[X < x] ≤ k/q or, equivalently, Pr[X ≥ x] ≥ 1 − k/q

and 

Pr[X ≤ x] ≥ k/q and Pr[X ≥ x] ≥ k/q.

For a finite population of N equally probable values indexed 1, …, N from lowest to 
highest, the k-th q-quantile of this population can equivalently be computed via the 
value of Ip = N k/q. If Ip is not an integer, then round up to the next integer to get the 
appropriate index; the corresponding data value is the k-th q-quantile. On the other 
hand, if Ip is an integer then any number from the data value at that index to the data 
value of the next can be taken as the quantile, and it is conventional (though arbitrary) 
to take the average of those two values. 

If, instead of using integers k and q, the “p-quantile” is based on a real number p with 0 
< p < 1 then p replaces k/q in the above formulas. Some software programs regard the 
minimum and maximum as the 0th and 100th percentile, respectively; however, such 
terminology is an extension beyond traditional statistics definitions. 

The following two examples use the Nearest Rank definition of quantile with rounding. 
For an explanation of this definition. 

Even-sized Population

Consider an ordered population of 10 data values {3, 6, 7, 8, 8, 10, 13, 15, 16, 20}. What 
are the 4-quantiles (the “quartiles”) of this dataset? 

Quartile Calculation Result 
Zeroth quartile Although not universally accepted, one can also speak of the zeroth quartile. 

This is the minimum value of the set, so the zeroth quartile in this example 
would be 3. 

3 

First quartile The rank of the first quartile is 10×(1/4) = 2.5, which rounds up to 3, mean-
ing that 3 is the rank in the population (from least to greatest values) at 
which approximately 1/4 of the values are less than the value of the first 
quartile. The third value in the population is 7. 

7 

Second quartile The rank of the second quartile (same as the median) is 10×(2/4) = 5, which 
is an integer, while the number of values (10) is an even number, so the av-
erage of both the fifth and sixth values is taken—that is (8+10)/2 = 9, though 
any value from 8 through to 10 could be taken to be the median. 

9 
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Third quartile The rank of the third quartile is 10×(3/4) = 7.5, which rounds up to 8. The 
eighth value in the population is 15. 

15 

Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. 
This is the maximum value of the set, so the fourth quartile in this example 
would be 20. Under the Nearest Rank definition of quantile, the rank of the 
fourth quartile is the rank of the biggest number, so the rank of the fourth 
quartile would be 10. 

20 

So the first, second and third 4-quantiles (the “quartiles”) of the dataset {3, 6, 7, 8, 8, 
10, 13, 15, 16, 20} are {7, 9, 15}. If also required, the zeroth quartile is 3 and the fourth 
quartile is 20. 

Odd-sized Population

Consider an ordered population of 11 data values {3, 6, 7, 8, 8, 9, 10, 13, 15, 16, 20}. 
What are the 4-quantiles (the “quartiles”) of this dataset? 

Quartile Calculation Result 

Zeroth quartile Although not universally accepted, one can also speak of the zeroth quartile. 
This is the minimum value of the set, so the zeroth quartile in this example 
would be 3. 

3 

First quartile The first quartile is determined by 11×(1/4) = 2.75, which rounds up to 3, 
meaning that 3 is the rank in the population (from least to greatest values) 
at which approximately 1/4 of the values are less than the value of the first 
quartile. The third value in the population is 7. 

7 

Second quartile The second quartile value (same as the median) is determined by 11×(2/4) 
= 5.5, which rounds up to 6. Therefore, 6 is the rank in the population (from 
least to greatest values) at which approximately 2/4 of the values are less 
than the value of the second quartile (or median). The sixth value in the pop-
ulation is 9. 

9 

Third quartile The third quartile value for the original example above is determined by 
11×(3/4) = 8.25, which rounds up to 9. The ninth value in the population is 15. 

15 

Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. 
This is the maximum value of the set, so the fourth quartile in this example 
would be 20. Under the Nearest Rank definition of quantile, the rank of the 
fourth quartile is the rank of the biggest number, so the rank of the fourth 
quartile would be 11. 

20 

So the first, second and third 4-quantiles (the “quartiles”) of the dataset {3, 6, 7, 8, 8, 9, 
10, 13, 15, 16, 20} are {7, 9, 15}. If also required, the zeroth quartile is 3 and the fourth 
quartile is 20. 

Estimating Quantiles from a Sample

When one has a sample drawn from an unknown population, the cumulative distri-
bution function and quantile function of the underlying population are not known 
and the task becomes that of estimating the quantiles. There are several methods. 
Mathematica, Matlab, R and GNU Octave programming languages include nine 
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sample quantile methods. SAS includes five sample quantile methods, SciPy and 
Maple both include eight, EViews includes the six piecewise linear functions, Stata 
includes two, Python includes two, and Microsoft Excel includes two. Mathematica 
supports an arbitrary parameter for methods that allows for other, non-standard, 
methods. 

In effect, the methods compute Qp, the estimate for the k-th q-quantile, where p = k/q, 
from a sample of size N by computing a real valued index h. When h is an integer, the 
h-th smallest of the N values, xh, is the quantile estimate. Otherwise a rounding or inter-
polation scheme is used to compute the quantile estimate from h, x⌊h⌋, and x⌈h⌉.

The estimate types and interpolation schemes used include: 

Type h Qp Notes 

R-1, SAS-3, Maple-1 Np + 1/2 x⌈h – 1/2⌉ Inverse of empirical distribution 
function. 

R-2, SAS-5,  
Maple-2, Stata 

Np + 1/2 (x⌈h – 1/2⌉ + x⌊h + 1/2⌋) / 2 The same as R-1, but with averaging 
at discontinuities. 

R-3, SAS-2 Np x⌊h⌉ The observation numbered closest 
to Np. Here, ⌊h⌉ indicates rounding 
to the nearest integer, choosing the 
even integer in the case of a tie. 

R-4, SAS-1, 
SciPy-(0,1),  
Maple-3 

Np x⌊h⌋ + (h − ⌊h⌋) (x⌊h⌋ + 1 − x⌊h⌋) Linear interpolation of the empirical 
distribution function. 

R-5, SciPy-(.5,.5), 
Maple-4 

Np + 1/2 x⌊h⌋ + (h − ⌊h⌋) (x⌊h⌋ + 1 − x⌊h⌋) Piecewise linear function where the 
knots are the values midway through 
the steps of the empirical distribution 
function. 

R-6, Excel, Python, 
SAS-4, SciPy-(0,0), 
Maple-5,  
Stata-altdef 

(N + 1)p x⌊h⌋ + (h − ⌊h⌋) (x⌊h⌋ + 1 − x⌊h⌋) Linear interpolation of the expecta-
tions for the order statistics for the 
uniform distribution on [0,1]. That is, 
it is the linear interpolation between 
points (ph, xh), where ph = h/(N+1) is 
the probability that the last of (N+1) 
randomly drawn values will not ex-
ceed the h-th smallest of the first N 
randomly drawn values. 

R-7, Excel, Python, 
SciPy-(1,1), Maple-6, 
NumPy, Julia 

(N − 1)p + 1 x⌊h⌋ + (h − ⌊h⌋) (x⌊h⌋ + 1 − x⌊h⌋) Linear interpolation of the modes for 
the order statistics for the uniform 
distribution on [0,1]. 

R-8, SciPy-(1/3,1/3), 
Maple-7 

(N + 1/3)p 
+ 1/3 

x⌊h⌋ + (h − ⌊h⌋) (x⌊h⌋ + 1 − x⌊h⌋) Linear interpolation of the approxi-
mate medians for order statistics. 

R-9, 
SciPy-(3/8,3/8), 
Maple-8 

(N + 1/4)p 
+ 3/8 

x⌊h⌋ + (h − ⌊h⌋) (x⌊h⌋ + 1 − x⌊h⌋) The resulting quantile estimates are 
approximately unbiased for the ex-
pected order statistics if x is normally 
distributed. 
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•	 R-1 through R-3 are piecewise constant, with discontinuities.

•	 R-4 and following are piecewise linear, without discontinuities, but differ in 
how h is computed.

•	 R-3 and R-4 are not symmetric in that they do not give h = (N + 1)/2 when p = 
1/2.

•	 Excel’s PERCENTILE.EXC and Python’s default “exclusive” method are equiv-
alent to R-6.

•	 Excel’s PERCENTILE and PERCENTILE.INC and Python’s optional “inclusive” 
method are equivalent to R-7.

•	 Packages differ in how they estimate quantiles beyond the lowest and highest 
values in the sample. Choices include returning an error value, computing lin-
ear extrapolation, or assuming a constant value.

The standard error of a quantile estimate can in general be estimated via the bootstrap. 
The Maritz–Jarrett method can also be used. 

Quartile

A quartile is a type of quantile which divides the number of data points into four more 
or less equal parts, or quarters. The first quartile (Q1) is defined as the middle number 
between the smallest number and the median of the data set. It is also known as the 
lower quartile or the 25th empirical quartile and it marks where 25% of the data is be-
low or to the left of it (if data is ordered on a timeline from smallest to largest). The sec-
ond quartile (Q2) is the median of the data and 50% of the data lies below this point. The 
third quartile (Q3) is the middle value between the median and the highest value of the 
data set. It is also known as the upper quartile or the 75th empirical quartile and 75% 
of the data lies below this point. Due to the fact that the data needs to be ordered from 
smallest to largest in order to compute quartiles, quartiles are a form of Order statistic. 

Along with the minimum and the maximum of the data, which are also quartiles, the 
three quartiles described above provide a five-number summary of the data. This sum-
mary is important in statistics because it provides information about both the center 
and the spread of the data. Knowing the lower and upper quartile provides information 
on how big the spread is and if the dataset is skewed toward one side. Since quartiles di-
vide the number of data points evenly, the range is not the same between quartiles (ie. 
Q3-Q2 ≠ Q2-Q1). While the maximum and minimum also show the spread of the data, 
the upper and lower quartiles can provide more detailed information on the location 
of specific data points, the presence of outliers in the data, and the difference in spread 
between the middle 50% of the data and the outer data points. 
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Boxplot (with quartiles and an interquartile range) and a probability  
density function (pdf) of a normal N(0,1σ2) population.

Symbol Names Definition 
Q1 First quartile

lower quartile
25th percentile.

Splits off the lowest 25% of 
data from the highest 75%. 

Q2 Second quartile
median
50th percentile.

Cuts data set in half. 

Q3 Third quartile
upper quartile
75th percentile.

Splits off the highest 25% of 
data from the lowest 75%. 

Computing Methods

Discrete Distributions

For discrete distributions, there is no universal agreement on selecting the quartile 
values. 

Method 1

•	 Use the median to divide the ordered data set into two halves: 

◦◦ If there is an odd number of data points in the original ordered data set, do 
not include the median (the central value in the ordered list) in either half.
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◦◦ If there is an even number of data points in the original ordered data set, 
split this data set exactly in half.

•	 The lower quartile value is the median of the lower half of the data. The upper 
quartile value is the median of the upper half of the data.

This rule is employed by the TI-83 calculator boxplot and “1-Var Stats” functions. 

Method 2

•	 Use the median to divide the ordered data set into two halves: 

◦◦ If there are an odd number of data points in the original ordered data set, 
include the median (the central value in the ordered list) in both halves.

◦◦ If there are an even number of data points in the original ordered data set, 
split this data set exactly in half.

•	 The lower quartile value is the median of the lower half of the data. The upper 
quartile value is the median of the upper half of the data.

The values found by this method are also known as “Tukey’s hinges”. 

Method 3

•	 If there are even numbers of data points, then Method 3 is the same as either 
method above.

•	 If there are (4n+1) data points, then the lower quartile is 25% of the nth data 
value plus 75% of the (n+1)th data value; the upper quartile is 75% of the (3n+1)
th data point plus 25% of the (3n+2)th data point.

•	 If there are (4n+3) data points, then the lower quartile is 75% of the (n+1)th 
data value plus 25% of the (n+2)th data value; the upper quartile is 25% of the 
(3n+2)th data point plus 75% of the (3n+3)th data point.

Method 4

If we have an ordered dataset 1 2, ,..., nx x x , we can interpolate between data points to 
find the p th empirical quantile if ix is in the /( 1)i n + quantile. If we denote the integer 
part of a number by a by[ ]a , then the empirical quantile function is given by, 

( ) ( 1) ( )( ) ( )k k kq p x x xα += + − ,

where [ ( 1)]k p n= + and ( 1) [ ( 1)]p n p nα = + − +

To find the first, second, and third quartiles of the dataset we would evaluate (0.25)q , 
(0.5)q , and (0.75)q respectively. 
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Example: Ordered Data Set: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49 

Method 1 Method 2 Method 3 Method 4 

Q1 15 25.5 20.25 15 

Q2 40 40 40 40 

Q3 43 42.5 42.75 43 

Example: Ordered Data Set: 7, 15, 36, 39, 40, 41 

As there are an even number of data points, all three methods give the same results. 

Method 1 Method 2 Method 3 Method 4 

Q1 15 15 15 13 

Q2 37.5 37.5 37.5 37.5 

Q3 40 40 40 40.25 

Continuous Probability Distributions

Quartiles on a cumulative distribution function of a normal distribution.

If we define a continuous probability distributions as ( )P X where X is a real valued 
random variable, its cumulative distribution function (CDF) is given by, 

( ) ( )XF x P X x= ≤

The CDF gives the probability that the random variable X is less than the value x . 
Therefore, the first quartile is the value of x when ( ) 0.25XF x = , the second quartile 
is x when ( ) 0.5XF x = , and the third quartile is x when ( ) 0.75XF x = . The values of 

( )Q p can be found with the quantile function ( )Q p where 0.25p = for the first quar-
tile, 0.5p = for the second quartile, and 0.75p = for the third quartile. The quantile 
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function is the inverse of the cumulative distribution function if the cumulative distri-
bution function is monotonically increasing. 

Outliers

There are methods by which to check for outliers in the discipline of statistics and sta-
tistical analysis. Outliers could be a result from a shift in the location (mean) or in the 
scale (variability) of the process of interest. Outliers could also may be evidence of a 
sample population that has a non-normal distribution or of a contaminated population 
data set. Consequently, as is the basic idea of descriptive statistics, when encountering 
an outlier, we have to explain this value by further analysis of the cause or origin of 
the outlier. In cases of extreme observations, which are not an infrequent occurrence, 
the typical values must be analyzed. In the case of quartiles, the Interquartile Range 
(IQR) may be used to characterize the data when there may be extremities that skew 
the data; the interquartile range is a relatively robust statistic (also sometimes called 
“resistance”) compared to the range and standard deviation. There is also a mathemat-
ical method to check for outliers and determining “fences”, upper and lower limits from 
which to check for outliers. 

After determining the first and third quartiles and the interquartile range as outlined 
above, then fences are calculated using the following formula: 

1Lower fence 1.5(IQR)Q= −

3Upper fence 1.5(IQR),Q= +

Boxplot Diagram with Outliers.

where Q1 and Q3 are the first and third quartiles, respectively. The lower fence is the 
“lower limit” and the upper fence is the “upper limit” of data, and any data lying outside 
these defined bounds can be considered an outlier. Anything below the Lower fence or 
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above the Upper fence can be considered such a case. The fences provide a guideline 
by which to define an outlier, which may be defined in other ways. The fences define a 
“range” outside of which an outlier exists; a way to picture this is a boundary of a fence, 
outside of which are “outsiders” as opposed to outliers. It is common for the lower and 
upper fences along with the outliers to be represented by a boxplot. For a boxplot, only 
the vertical heights correspond to the visualized data set while horizontal width of the 
box is irrelevant. Outliers located outside the fences in a boxplot can be marked as any 
choice of symbol, such as an “x” or “o”. The fences are sometimes also referred to as 
“whiskers” while the entire plot visual is called a “box-and-whisker” plot. 

When spotting an outlier in the data set by calculating the interquartile ranges and box-
plot features, it might be simple to mistakenly view it as evidence that the population is 
non-normal or that the sample is contaminated. However, this method should not take 
place of a hypothesis test for determining normality of the population. The significance 
of the outliers vary depending on the sample size. If the sample is small, then it is more 
probable to get interquartile ranges that are unrepresentatively small, leading to nar-
rower fences. Therefore, it would be more likely to find data that are marked as outliers. 

Computer Software for Quartiles

Excel: 

The Excel function QUARTILE(array, quart) provides the desired quartile value for 
a given array of data. In the Quartile function, array is the dataset of numbers that is 
being analyzed and quart is any of the following 5 values depending on which quartile 
is being calculated. 

Quart Output QUARTILE Value 
0 Minimum value 
1 Lower Quartile (25th percentile) 
2 Median 
3 Upper Quartile (75th percentile) 
4 Maximum value 

MATLAB: 

In order to calculate quartiles in Matlab, the function quantile(A,p) can be used. Where 
A is the vector of data being analyzed and p is the percentage that relates to the quar-
tiles as stated below. 

p Output QUARTILE Value 
0 Minimum value 
0.25 Lower Quartile (25th percentile) 
0.5 Median 
0.75 Upper Quartile (75th percentile) 
1 Maximum value 
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Quartile Deviation and its Coefficient

The Quartile Deviation is a simple way to estimate the spread of a distribution about 
a measure of its central tendency (usually the mean). So, it gives you an idea about 
the range within which the central 50% of your sample data lies. Consequently, based 
on the quartile deviation, the Coefficient of Quartile Deviation can be defined, which 
makes it easy to compare the spread of two or more different distributions. 

The Quartile Deviation

Formally, the Quartile Deviation is equal to the half of the Inter-Quartile Range and 
thus we can write it as,

3 1

2d
Q QQ −

=

Therefore, we also call it the Semi Inter-Quartile Range.

•	 The Quartile Deviation doesn’t take into account the extreme points of the 
distribution. Thus, the dispersion or the spread of only the central 50% data is 
considered.

•	 If the scale of the data is changed, the Qd also changes in the same ratio.

•	 It is the best measure of dispersion for open-ended systems (which have 
open-ended extreme ranges).

•	 Also, it is less affected by sampling fluctuations in the dataset as compared to 
the range (another measure of dispersion).

•	 Since it is solely dependent on the central values in the distribution, if in any ex-
periment, these values are abnormal or inaccurate, the result would be affected 
drastically.

The Coefficient of Quartile Deviation

Based on the quartiles, a relative measure of dispersion, known as the Coefficient of 
Quartile Deviation, can be defined for any distribution. It is formally defined as,

Coefficient of Quartile Deviation 
−

= ×
+

3 1

3 1

Coefficient of Quartile Deviation 100
Q Q
Q Q

Since it involves a ratio of two quantities of the same dimensions, it is unit-less. Thus, 
it can act as a suitable parameter for comparing two or more different datasets which 
may or may not involve quantities with the same dimensions.

____________________ WORLD TECHNOLOGIES ____________________



WT

98 Introductory Statistics

Variance

Example of samples from two populations with the same mean but different  
variances. The red population has mean 100 and variance 100 (SD=10) while 

 the blue population has mean 100 and variance 2500 (SD=50).

In probability theory and statistics, variance is the expectation of the squared deviation 
of a random variable from its mean. Informally, it measures how far a set of (random) 
numbers are spread out from their average value. Variance has a central role in statis-
tics, where some ideas that use it include descriptive statistics, statistical inference, hy-
pothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important 
tool in the sciences, where statistical analysis of data is common. The variance is the 
square of the standard deviation, the second central moment of a distribution, and the 
covariance of the random variable with itself, and it is often represented by s 2, 2s  or 
Var(X).

The variance of a random variable X is the expected value of the squared deviation 
from the mean of X, µ =E[ ]X :

µ = − 
2Var( ) E ( )X X

This definition encompasses random variables that are generated by processes that 
are discrete, continuous, neither, or mixed. The variance can also be thought of as the 
covariance of a random variable with itself:

=Var( ) Cov( , ).X X X
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The variance is also equivalent to the second cumulant of a probability distribution that 
generates X . The variance is typically designated as Var(X) , s 2

X , or simply s 2 . The 
expression for the variance can be expanded: 

 = − 
 = − + 
 = − + 
 = − 

2

2 2

2 2

2 2

Var( ) E ( E[ ])

E 2 E[ ] E[ ]

E 2E[ ]E[ ] E[ ]

E E[ ]

X X X

X X X X

X X X X

X X

In other words, the variance of X is equal to the mean of the square of X minus the 
square of the mean of X. This equation should not be used for computations using 
floating point arithmetic because it suffers from catastrophic cancellation if the two 
components of the equation are similar in magnitude. There exist numerically stable 
alternatives. 

Discrete Random Variable

If the generator of random variable X is discrete with probability mass function 
…  1 1 2 2, , , n nx p x p x p then, 

µ
=

= ⋅ −∑ 2

1

Var( ) ( ) ,
n

i i
i

X p x

or equivalently, 

µ
=

 
= − 
 
∑ 2 2

1

Var( ) ,
n

i i
i

X p x

where µ is the expected value, i.e., 

µ
=

=∑
1

.
n

i i
i

p x

(When such a discrete weighted variance is specified by weights whose sum is not 1, 
then one divides by the sum of the weights.) 

The variance of a set of n equally likely values can be written as, 

µ
=

= −∑ 2

1

1
Var( ) ( ) ,

n

i
i

X x
n
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where µ is the average value, i.e., 

 
µ

=

= ∑
1

1
.

n

i
i

x
n

The variance of a set of n equally likely values can be equivalently expressed, without 
directly referring to the mean, in terms of squared deviations of all points from each 
other:

= = >

= − = −∑∑ ∑∑2 2
2 2

1 1

1 1 1
Var( ) ( ) ( ) .

2

n n

i j i j
i j i j i

X x x x x
n n

Absolutely Continuous Random Variable

If the random variable X has a probability density function ( )f x , and ( )F x is the cor-
responding cumulative distribution function, then: 

s µ

µ µ

µ µ

µ µ µ

µ

= = −

= − +

= − +

= − ⋅ + ⋅

= −

∫

∫ ∫ ∫
∫ ∫ ∫

∫
∫



  

 







2 2

2 2

2 2

2 2

2 2

Var( ) ( ) ( )

( ) 2 ( ) ( )

( ) 2 ( ) ( )

( ) 2 1

( ) ,

X x f x dx

x f x dx x f x dx f x dx

x dF x xdF x dF x

x dF x

x dF x

or equivalently, 

µ= −∫ 2 2Var( ) ( ) ,X x f x dx


where µ is the expected value of X given by, 

µ = =∫ ∫
 

( ) ( ).x f x dx xdF x

In these formulas, the integrals with respect to dx and ( )dF x are Lebesgue and Lebes-
gue–Stieltjes integrals, respectively. 

If the function 2 ( )x f x is Riemann-integrable on every finite interval ⊂ [ , ]a b then 

∞

∞
µ

+

−
= −∫ 2 2Var( ) ( ) ,X x f x dx

where the integral is an improper Riemann integral. 
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Examples:

Exponential Distribution

The exponential distribution with parameter λ is a continuous distribution whose prob-
ability density function is given by, 

λλ −=( ) xf x e

on the interval [0, ∞). Its mean can be shown to be, 

λλ
λ

∞ −= =∫0
1

E[ ] .xX xe dx

Using integration by parts and making use of the expected value already calculated: 

λ

λ λ

λ

λ

λ

∞ −

∞∞− −

=

 = − + 

= +

=

∫
∫

2 2

0

2

0 0

2

E[ ]

2

2
0 E[ ]

2
.

x

x x

X x e dx

x e xe dx

X

Thus, the variance of X is given by, 

λ λ λ
 = − = − = 
 

2
2 2

2 2

2 1 1
Var( ) E[ ] E[ ] .X X X

Fair Die

A fair six-sided die can be modeled as a discrete random variable, X, with out-
comes 1 through 6, each with equal probability 1/6. The expected value of X is 
+ + + + + =(1 2 3 4 5 6) / 6 7 / 2. Therefore, the variance of X is, 

( )
=

 = − 
 

= − + − + − + + +

= ≈

∑
26

1

2 2 2 2 2 2

1 7
Var( )

6 2
1

( 5 / 2) ( 3 / 2) ( 1 / 2) (1 / 2) (3 / 2) (5 / 2)
6
35

2.92.
12

i

X i
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The general formula for the variance of the outcome, X, of an n-sided die is, 

= =

= −

 
= −  

 

+ + + = −  
 

−
=

∑ ∑

2 2

2
2

1 1

2

2

Var( ) E( ) (E( ))

1 1

( 1)(2 1) 1
6 2

1
.

12

n n

i i

X X X

i i
n n

n n n

n

Commonly used Probability Distributions

The following table lists the variance for some commonly used probability distribu-
tions. 

Name of the probability 
distribution 

Probability distribution function Variance 

Binomial distribution 
− 

= −


= 


Pr( ) (1 )k n kn
X k p p

k
−(1 )np p

Geometric distribution −= = − 1Pr( ) (1 )kX k p p −
2

(1 )p
p

Normal distribution µ
sµ s

πs

−
−

=|
2

2
( )

2 2
2

1
( , )

2

x

f x e
s 2

Uniform distribution  
(continuous) 

 ≤ ≤= −
 < >

|
1

for ,
( , )

0 for or

a x b
f x a b b a

x a x b

− 2( )
12

b a

Exponential distribution λλ λ −=|( ) xf x e
λ2

1

Properties

Variance is non-negative because the squares are positive or zero: 

≥Var( ) 0.X

The variance of a constant is zero, 

=Var( ) 0.a
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If the variance of a random variable is 0, then it is a constant. That is, it always has the 
same value: 

= ⇔ = =Var( ) 0 ( ) 1.X P X a

Variance is invariant with respect to changes in a location parameter. That is, if a con-
stant is added to all values of the variable, the variance is unchanged: 

+ =Var( ) Var( ).X a X

If all values are scaled by a constant, the variance is scaled by the square of that con-
stant: 

= 2Var( ) Var( ).aX a X

The variance of a sum of two random variables is given by, 

+ = + +2 2Var( ) Var( ) Var( ) 2 Cov( , ),aX bY a X b Y ab X Y

− = + −2 2Var( ) Var( ) Var( ) 2 Cov( , ),aX bY a X b Y ab X Y

where Cov(⋅, ⋅) is the covariance. In general we have for the sum of N random variables 
…1{ , , } :NX X

= = = ≠

 
= = + 

 
∑ ∑ ∑ ∑

1 , 1 1

Var Cov( , ) Var( ) Cov( , ).
N N N

i i j i i j
i i j i i j

X X X X X X

	= = = ≠

 
= = + 

 
∑ ∑ ∑ ∑

1 , 1 1

Var Cov( , ) Var( ) Cov( , ).
N N N

i i j i i j
i i j i i j

X X X X X X

These results lead to the variance of a linear combination as: 

= =

= =/

= ≤ < ≤

 
= 

 

= +

= +

∑ ∑

∑ ∑

∑ ∑

1 , 1

2

1

2

1 1

Var Cov( , )

Var( ) Cov( , )

Var( ) 2 Cov( , ).

N N

i i i j i j
i i j

N

i i i j i j
i i j

N

i i i j i j
i i j N

a X a a X X

a X a a X X

a X a a X X

If the random variables …1 , , NX X are such that, 

= ∀ ≠Cov( , ) 0 , ( ),i jX X i j
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they are said to be uncorrelated. It follows immediately from the expression given ear-
lier that if the random variables …1 , , NX X are uncorrelated, then the variance of their 
sum is equal to the sum of their variances, or, expressed symbolically: 

= =

 
= 

 
∑ ∑

1 1

Var Var( ).
N N

i i
i i

X X

Since independent random variables are always uncorrelated, the equation above holds 
in particular when the random variables …1 , , nX X are independent. Thus indepen-
dence is sufficient but not necessary for the variance of the sum to equal the sum of the 
variances. 

Issues of Finiteness

If a distribution does not have a finite expected value, as is the case for the Cauchy 
distribution, then the variance cannot be finite either. However, some distributions 
may not have a finite variance despite their expected value being finite. An example is a 
Pareto distribution whose index k satisfies < ≤1 2.k

Sum of Uncorrelated Variables (Bienaymé Formula)

One reason for the use of the variance in preference to other measures of dispersion is 
that the variance of the sum (or the difference) of uncorrelated random variables is the 
sum of their variances: 

= =

 
= 

 
∑ ∑

1 1

Var Var( ).
n n

i i
i i

X X

This statement is called the Bienaymé formula and was discovered in 1853. It is often 
made with the stronger condition that the variables are independent, but being uncor-
related suffices. So if all the variables have the same variance σ2, then, since division by 
n is a linear transformation, this formula immediately implies that the variance of their 
mean is, 

( ) ( ) ss
= =

 
= = = = 

 
∑ ∑

2
2

2 2
1 1

1 1 1
Var Var Var .

n n

i i
i i

X X X n
n n n n

That is, the variance of the mean decreases when n increases. This formula for the 
variance of the mean is used in the definition of the standard error of the sample mean, 
which is used in the central limit theorem. 

To prove the initial statement, it suffices to show that, 

+ = +Var( ) Var( ) Var( ).X Y X Y
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The general result then follows by induction. Starting with the definition, 

+ = + − +

= + + − +

2 2

2 2 2

Var( ) E[( ) ] (E[ ])

E[ 2 ] (E[ ] E[ ]) .

X Y X Y X Y

X XY Y X Y

Using the linearity of the expectation operator and the assumption of independence (or 
uncorrelatedness) of X and Y, this further simplifies as follows: 

+ = + + − + +

= + − −
= +

2 2 2 2

2 2 2 2

Var( ) E[ ] 2E[ ] E[ ] (E[ ] 2E[ ]E[ ] E[ ] )

E[ ] E[ ] E[ ] E[ ]
Var( ) Var( ).

X Y X XY Y X X Y Y

X Y X Y
X Y

Sum of Correlated Variables

With Correlation and Fixed Sample Size

In general the variance of the sum of n variables is the sum of their covariances: 

= = = = ≤ < ≤

 
= = + 

 
∑ ∑∑ ∑ ∑

1 1 1 1 1

Var Cov( , ) Var( ) 2 Cov( , ).
n n n n

i i j i i j
i i j i i j n

X X X X X X

(The second equality comes from the fact that Cov(Xi,Xi) = Var(Xi).) 

Here Cov(⋅, ⋅) is the covariance, which is zero for independent random variables (if it 
exists). The formula states that the variance of a sum is equal to the sum of all elements 
in the covariance matrix of the components. The next expression states equivalently 
that the variance of the sum is the sum of the diagonal of covariance matrix plus two 
times the sum of its upper triangular elements (or its lower triangular elements); this 
emphasizes that the covariance matrix is symmetric. This formula is used in the theory 
of Cronbach’s alpha in classical test theory. 

So if the variables have equal variance σ2 and the average correlation of distinct vari-
ables is ρ, then the variance of their mean is, 

s ρs−
= +

2
21

( ) .
nVar X

n n

This implies that the variance of the mean increases with the average of the correlations. 
In other words, additional correlated observations are not as effective as additional in-
dependent observations at reducing the uncertainty of the mean. Moreover, if the vari-
ables have unit variance, for example if they are standardized, then this simplifies to: 

ρ−
= +

1 1
Var( ) .

nX
n n
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This formula is used in the Spearman–Brown prediction formula of classical test the-
ory. This converges to ρ if n goes to infinity, provided that the average correlation re-
mains constant or converges too. So for the variance of the mean of standardized vari-
ables with equal correlations or converging average correlation we have, 

ρ
→∞

=lim Var( ) .
n

X

Therefore, the variance of the mean of a large number of standardized variables is 
approximately equal to their average correlation. This makes clear that the sample 
mean of correlated variables does not generally converge to the population mean, even 
though the law of large numbers states that the sample mean will converge for inde-
pendent variables. 

I.i.d. with Random Sample size

There are cases when a sample is taken without knowing, in advance, how many obser-
vations will be acceptable according to some criterion. In such cases, the sample size N 
is a random variable whose variation adds to the variation of X, such that, 

Var(∑X) = E(N)Var(X) + Var(N)E2(X).

If N has a Poisson distribution, then E(N) = Var(N) with estimator N=n. So, the estima-
tor of Var(∑X) becomes nS2

X + nXbar2 giving, 

standard error(Xbar) = √[(S2
X + Xbar2)/n].

Matrix Notation for the Variance of a Linear Combination

Define X as a column vector of n random variables …1 , , nX X , and c as a column vec-
tor of n scalars …1 , , nc c . Therefore, Tc X is a linear combination of these random vari-
ables, where Tc denotes the transpose of c . Also let Σ be the covariance matrix of X . 
The variance of Tc X s then given by:

= ΣVar( ) .T Tc X c c

This implies that the variance of the mean can be written as (with a column vector of ones), 

′ ′= ⋅ = ⋅ Σ2Var( ) Var(1 / 1 ) 1 / 1 1.x n X n

Weighted Sum of Variables

The scaling property and the Bienaymé formula, along with the property of the covari-
ance Cov(aX, bY) = ab Cov(X, Y) jointly imply that, 

± = + ±2 2Var( ) Var( ) Var( ) 2 Cov( , ).aX bY a X b Y ab X Y
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This implies that in a weighted sum of variables, the variable with the largest weight 
will have a disproportionally large weight in the variance of the total. For example, if X 
and Y are uncorrelated and the weight of X is two times the weight of Y, then the weight 
of the variance of X will be four times the weight of the variance of Y. 

The expression above can be extended to a weighted sum of multiple variables: 

= ≤ < ≤

 
= + 

 
∑ ∑ ∑∑2

1 1

Var Var( ) 2 Cov( , )
n n

i i i i i j i j
i i i j n

a X a X a a X X

Product of Independent Variables

If two variables X and Y are independent, the variance of their product is given by,

= + +2 2Var( ) [E( )] Var( ) [E( )] Var( ) Var( )Var( ).XY X Y Y X X Y

Equivalently, using the basic properties of expectation, it is given by, 

= −2 2 2 2Var( ) E( )E( ) [E( )] [E( )] .XY X Y X Y

Product of Statistically Dependent Variables

In general, if two variables are statistically dependent, the variance of their product is 
given by: 

=

=

= −

+ −

+ + +

− +

2 2 2

2 2 2 2 2

2 2 2 2

2

Var( ) E[ ] [E( )]

Cov( , ) E( )E( ) [E( )]

Cov( , ) (Var( ) [E( )] )(Var( ) [E( )] )

[Cov( , ) E( )E( )]

XY X Y XY

X Y X Y XY

X Y X X Y Y

X Y X Y

Decomposition

The general formula for variance decomposition or the law of total variance is: If X and 
Y are two random variables, and the variance of X exists, then: 

= +Var[ ] E(Var[ ]) Var(E[ ]).X X Y X Y||

The conditional expectation |E( )X Y of X given Y , and the conditional variance 
|( )Var X Y may be understood as follows. Given any particular value y of the random 

variable Y, there is a conditional expectation =|E( )X Y y given the event Y = y. This 
quantity depends on the particular value y; it is a function = =|( ) E( ).g y X Y y  That 
same function evaluated at the random variable Y is the conditional expectation,

=|E( ) ( ).X Y g Y
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In particular, if Y is a discrete random variable assuming possible values …1 2 3, ,y y y
with corresponding probabilities …1 2 3, , ,p p p , then in the formula for total variance, 
the first term on the right-hand side becomes, 

s=∑| 2E(Var[ ]) ,i i
i

X Y p

where s = =|2 [ ]i iVar X Y y . Similarly, the second term on the right-hand side becomes, 

µ µ µ µ = − = − 
 

∑ ∑ ∑|
2

2 2 2Var(E[ ]) ,i i i i i i
i i i

X Y p p p

where µ = =|E[ ]i iX Y y and µ µ=∑ .i i
i

p . Thus the total variance is given by, 

s µ µ
 

= + − 
 

∑ ∑2 2 2Var[ ] .i i i i
i i

X p p

A similar formula is applied in analysis of variance, where the corresponding formula is, 

= +total between within ;MS MS MS

here MS refers to the Mean of the Squares. In linear regression analysis the corre-
sponding formula is, 

= +total regression residual .MS MS MS

This can also be derived from the additivity of variances, since the total (observed) 
score is the sum of the predicted score and the error score, where the latter two are 
uncorrelated. 

Similar decompositions are possible for the sum of squared deviations (sum of squares, 
SS): 

= +total between within ,SS SS SS

= +total regression residual .SS SS SS

Calculation from the CDF

The population variance for a non-negative random variable can be expressed in terms 
of the cumulative distribution function F using, 

( )∞ ∞
− − −∫ ∫

2

0 0
2 (1 ( )) (1 ( )) .u F u du F u du
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This expression can be used to calculate the variance in situations where the CDF, but 
not the density, can be conveniently expressed. 

Characteristic Property

The second moment of a random variable attains the minimum value when taken around 

the first moment (i.e., mean) of the random variable, i.e. ( )( )− =
2argmin E E( ).m X m X  

Conversely, if a continuous function ϕ satisfies ϕ − =argmin E( ( )) E( )m X m X  for all 
random variables X, then it is necessarily of the form ϕ = +2( )x ax b , where a > 0. This 
also holds in the multidimensional case.

Units of Measurement

Unlike expected absolute deviation, the variance of a variable has units that are the 
square of the units of the variable itself. For example, a variable measured in meters 
will have a variance measured in meters squared. For this reason, describing data sets 
via their standard deviation or root mean square deviation is often preferred over using 
the variance. In the dice example the standard deviation is 2.9 1.7≈ , slightly larger than 
the expected absolute deviation of 1.5. 

The standard deviation and the expected absolute deviation can both be used as an in-
dicator of the “spread” of a distribution. The standard deviation is more amenable to al-
gebraic manipulation than the expected absolute deviation, and, together with variance 
and its generalization covariance, is used frequently in theoretical statistics; however 
the expected absolute deviation tends to be more robust as it is less sensitive to outliers 
arising from measurement anomalies or an unduly heavy-tailed distribution. 

Approximating the Variance of a Function

The delta method uses second-order Taylor expansions to approximate the variance of 
a function of one or more random variables. For example, the approximate variance of 
a function of one variable is given by, 

[ ] [ ]( ) [ ]≈ ′
2

( ) (E )Var f X f X Var X

provided that f is twice differentiable and that the mean and variance of X are finite. 

Population Variance and Sample Variance

Real-world observations such as the measurements of yesterday’s rain throughout the day 
typically cannot be complete sets of all possible observations that could be made. As such, 
the variance calculated from the finite set will in general not match the variance that would 
have been calculated from the full population of possible observations. This means that one 
estimates the mean and variance that would have been calculated from an omniscient set 
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of observations by using an estimator equation. The estimator is a function of the sample 
of n observations drawn without observational bias from the whole population of potential 
observations. In this example that sample would be the set of actual measurements of yes-
terday’s rainfall from available rain gauges within the geography of interest. 

The simplest estimators for population mean and population variance are simply the 
mean and variance of the sample, the sample mean and (uncorrected) sample variance 
– these are consistent estimators (they converge to the correct value as the number of 
samples increases), but can be improved. Estimating the population variance by taking 
the sample’s variance is close to optimal in general, but can be improved in two ways. 
Most simply, the sample variance is computed as an average of squared deviations about 
the (sample) mean, by dividing by n. However, using values other than n improves the 
estimator in various ways. Four common values for the denominator are n, n − 1, n + 1, 
and n − 1.5: n is the simplest (population variance of the sample), n − 1 eliminates bias, 
n + 1 minimizes mean squared error for the normal distribution, and n − 1.5 mostly 
eliminates bias in unbiased estimation of standard deviation for the normal distribution. 

Firstly, if the omniscient mean is unknown (and is computed as the sample mean), 
then the sample variance is a biased estimator: it underestimates the variance by a 
factor of (n − 1) / n; correcting by this factor (dividing by n − 1 instead of n) is called 
Bessel’s correction. The resulting estimator is unbiased, and is called the (corrected) 
sample variance or unbiased sample variance. For example, when n = 1 the variance of 
a single observation about the sample mean (itself) is obviously zero regardless of the 
population variance. If the mean is determined in some other way than from the same 
samples used to estimate the variance then this bias does not arise and the variance 
can safely be estimated as that of the samples about the (independently known) mean. 

Secondly, the sample variance does not generally minimize mean squared error between 
sample variance and population variance. Correcting for bias often makes this worse: one 
can always choose a scale factor that performs better than the corrected sample variance, 
though the optimal scale factor depends on the excess kurtosis of the population, and 
introduces bias. This always consists of scaling down the unbiased estimator (dividing 
by a number larger than n − 1), and is a simple example of a shrinkage estimator: one 
“shrinks” the unbiased estimator towards zero. For the normal distribution, dividing by 
n + 1 (instead of n − 1 or n) minimizes mean squared error. The resulting estimator is 
biased, however, and is known as the biased sample variation. 

Population Variance

In general, the population variance of a finite population of size N with values xi is given 
by, 

( ) ( )s µ µ µ

µ µ

µ

= =

= =

=

= − = − +

   
= − +   
   
 

= − 
 

∑ ∑

∑ ∑

∑

22 2 2

1 1

2 2

1 1

2 2

1

1 1
2

1 1
2

1

N N

i i i
i i

N N

i i
i i

N

i
i

x x x
N N

x x
N N

x
N
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( ) ( )s µ µ µ

µ µ

µ

= =

= =

=

= − = − +

   
= − +   
   
 

= − 
 

∑ ∑

∑ ∑

∑

22 2 2

1 1

2 2

1 1

2 2

1

1 1
2

1 1
2

1

N N

i i i
i i

N N

i i
i i

N

i
i

x x x
N N

x x
N N

x
N

where the population mean is, 

µ
=

= ∑
1

1
.

N

i
i

x
N

The population variance can also be computed using, 

( ) ( )s
< =

= − = −∑ ∑
2 22

2 2
, 1

1 1
.

2

N

i j i j
i j i j

x x x x
N N

This is true because, 

( ) ( )

( ) ( )s µ µ s µ

s

= =

= = = =

= =

− = − +

    
= −     

    
 

+  
 

= + − + +

=

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

2 2 2
2 2

, 1 , 1

2

1 1 1 1

2

1 1

2 2 2 2 2

2

1 1
2

2 2

1 1 1 1
2

1 1
2

1 1
2 2

N N

i j i i j j
i j i j

N N N N

i i j
j i i j

N N

j
i j

x x x x x x
N N

x x x
N N N N

x
N N

The population variance matches the variance of the generating probability distribu-
tion. In this sense, the concept of population can be extended to continuous random 
variables with infinite populations. 

Sample Variance

In many practical situations, the true variance of a population is not known a priori 
and must be computed somehow. When dealing with extremely large populations, 
it is not possible to count every object in the population, so the computation must 
be performed on a sample of the population. Sample variance can also be applied 
to the estimation of the variance of a continuous distribution from a sample of that 
distribution. 
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We take a sample with replacement of n values Y1, ..., Yn from the population, where n 
< N, and estimate the variance on the basis of this sample. Directly taking the variance 
of the sample data gives the average of the squared deviations: 

( ) ( )s
= = <

 
= − = − = − 

 
∑ ∑ ∑

222 2 2
2

1 1 , :

1 1 1
.

n n

Y i i i j
i i i j i j

Y Y Y Y Y Y
n n n

Here, Y denotes the sample mean: 

=

= ∑
1

1
.

n

i
i

Y Y
n

Since the Yi are selected randomly, both Y and s 2
Y are random variables. Their expect-

ed values can be evaluated by averaging over the ensemble of all possible samples {Yi} 
of size n from the population. For s 2

Y this gives: 

( ) ( ) ( )

s

s µ µ µ

= =

= = =

= ≠ = = =

  
   = −      

 
= − + 

 
 −       = − + +       
 

−
= + − − + − +

∑ ∑

∑ ∑ ∑

∑ ∑ ∑∑ ∑

2

2

1 1

2
2

1 1 1

2 2
2 2

1 1 1 1 1

2 2 2 2
2

1 1
E E

1 2 1
E

1 2 2 1 1
E E E E

1 2 2 1 1
1 1

n n

Y i j
i j

n n n

i i j j
i j k

n n n n n

i i j j k j
i j j j j

Y Y
n n

Y Y Y Y
n n n

n Y Y Y Y Y Y
n n n n n

n n n n
n n n n ( )s µ

s

=

 +  
−

=

∑ 2 2

1

21

n

i n
n

n

Hence s 2
Y gives an estimate of the population variance that is biased by a factor of 

−1n
n

. For this reason, s 2
Y is referred to as the biased sample variance. Correcting for 

this bias yields the unbiased sample variance: 

( ) ( )s
= =

 
= = − = − − − − 

∑ ∑
2 22 2

1 1

1 1
1 1 1

n n

Y i i
i i

n ns Y Y Y Y
n n n n

Either estimator may be simply referred to as the sample variance when the version 
can be determined by context. The same proof is also applicable for samples taken from 
a continuous probability distribution. 
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The use of the term n − 1 is called Bessel’s correction, and it is also used in sample co-
variance and the sample standard deviation (the square root of variance). The square 
root is a concave function and thus introduces negative bias (by Jensen’s inequality), 
which depends on the distribution, and thus the corrected sample standard deviation 
(using Bessel’s correction) is biased. The unbiased estimation of standard deviation is a 
technically involved problem, though for the normal distribution using the term n − 1.5 
yields an almost unbiased estimator. 

The unbiased sample variance is a U-statistic for the function ƒ(y1, y2) = (y1 − y2)
2/2, 

meaning that it is obtained by averaging a 2-sample statistic over 2-element subsets of 
the population. 

Distribution of the Sample Variance

 
Distribution and cumulative distribution of S2/σ2, for various values  

of ν = n − 1, when the yi are independent normally distributed.

Being a function of random variables, the sample variance is itself a random variable, 
and it is natural to study its distribution. In the case that Yi are independent observa-
tions from a normal distribution, Cochran’s theorem shows that s2 follows a scaled chi-
squared distribution: 

χ
s −−

2
2

12( 1) ~ .n
sn

As a direct consequence, it follows that, 

s χ s−

 
= = − 

2
2 2 2

1E( ) E ,
1 ns

n

and

( )s s sχ χ− −

 
= = = − − − 

2 4 4
2 2 2

1 12

2
[ ] .

1 ( 1) 1n nVar s Var Var
n n n
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If the Yi are independent and identically distributed, but not necessarily normally dis-
tributed, then,

ss κ µ s−   = = − + = −   − −   

4
2 2 2 4

4
2 1 3

E[ ] , [ ] ( 1) ,
1 1

ns Var s
n n n n

where κ is the kurtosis of the distribution and μ4 is the fourth central moment. 

If the conditions of the law of large numbers hold for the squared observations, s2 is a 
consistent estimator of σ2. One can see indeed that the variance of the estimator tends 
asymptotically to zero. An asymptotically equivalent formula was given in Kenney and 
Keeping, Rose and Smith, and Weisstein. 

Samuelson’s Inequality

Samuelson’s inequality is a result that states bounds on the values that individual ob-
servations in a sample can take, given that the sample mean and (biased) variance have 
been calculated. Values must lie within the limits s± − 1/2( 1) .Yy n

Relations with the Harmonic and Arithmetic Means

It has been shown that for a sample {yi} of real numbers, 

s ≤ −2
max2 ( ),y y A H

where ymax is the maximum of the sample, A is the arithmetic mean, H is the harmonic 
mean of the sample and s 2

y is the (biased) variance of the sample. 

This bound has been improved, and it is known that variance is bounded by, 

s
− −

≤
−

2 max max

max

( )( )
,y

y A H y A
y H

s − −
≥

−
2 min min

min

( )( )
,y

y A H A y
H y

where ymin is the minimum of the sample. 

Tests of Equality of Variances

Testing for the equality of two or more variances is difficult. The F test and chi square tests 
are both adversely affected by non-normality and are not recommended for this purpose.

Several non parametric tests have been proposed: these include the Barton–David–
Ansari–Freund–Siegel–Tukey test, the Capon test, Mood test, the Klotz test and the 
Sukhatme test. The Sukhatme test applies to two variances and requires that both 
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medians be known and equal to zero. The Mood, Klotz, Capon and Barton–David–An-
sari–Freund–Siegel–Tukey tests also apply to two variances. They allow the median to 
be unknown but do require that the two medians are equal. 

The Lehmann test is a parametric test of two variances. Of this test there are several 
variants known. Other tests of the equality of variances include the Box test, the Box–
Anderson test and the Moses test. 

Resampling methods, which include the bootstrap and the jackknife, may be used to 
test the equality of variances. 

Moment of Inertia

The variance of a probability distribution is analogous to the moment of inertia in clas-
sical mechanics of a corresponding mass distribution along a line, with respect to rota-
tion about its center of mass. It is because of this analogy that such things as the vari-
ance are called moments of probability distributions. The covariance matrix is related 
to the moment of inertia tensor for multivariate distributions. The moment of inertia of 
a cloud of n points with a covariance matrix of Σ is given by,

×= Σ −Σ3 3( ( ) ).I n tr1

This difference between moment of inertia in physics and in statistics is clear for points 
that are gathered along a line. Suppose many points are close to the x axis and distrib-
uted along it. The covariance matrix might look like, 

 
 Σ =  
  

10 0 0
0 0.1 0 .
0 0 0.1

That is, there is the most variance in the x direction. Physicists would consider this to 
have a low moment about the x axis so the moment-of-inertia tensor is, 

 
 =  
  

0.2 0 0
0 10.1 0 .
0 0 10.1

I n

Semivariance

The semivariance is calculated in the same manner as the variance but only those ob-
servations that fall below the mean are included in the calculation:

µ

µ
<

= −∑ 2

:

1
Semivariance ( )

i

i
i x

x
n
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It is sometimes described as a measure of downside risk in an investments context. 
For skewed distributions, the semivariance can provide additional information that a 
variance does not. 

For inequalities associated with the semivariance.

Generalizations

For Complex Variables

If x is a scalar complex-valued random variable, with values in , then its variance is 

µ µ − − 
*E ( )( ) ,x x where *x is the complex conjugate of x .This variance is a real scalar.

For Vector-valued Random Variables

As a Matrix

If X is a vector-valued random variable, with values in  ,n and thought of as a col-

umn vector, then a natural generalization of variance is µ µ − − 
TE ( )( ) ,X X where 

µ = E( )X and TX is the transpose of µ µ − − 
†E ( )( ) ,X X

 
and so is a row vector. The result is a positive 

semi-definite square matrix, commonly referred to as the variance-covariance matrix 
(or simply as the covariance matrix). 

If X is a vector- and complex-valued random variable, with values in  ,n then the co-
variance matrix is µ µ − − 

†E ( )( ) ,X X where †X is the conjugate transpose of X  

This matrix is also positive semi-definite and square. 

As a Scalar

Another generalization of variance for vector-valued random variables X , which re-
sults in a scalar value rather than in a matrix, is the generalized variance det( ),C  the 
determinant of the covariance matrix. The generalized variance can be shown to be 
related to the multidimensional scatter of points around their mean.

A different generalization is obtained by considering the Euclidean distance between 

the random variable and its mean. This results in µ µ − − = 
TE ( ) ( ) tr( ),X X C which 

is the trace of the covariance matrix.

Coefficient of Variance

The coefficient of variation (CV) is a statistical measure of the dispersion of data points in a 
data series around the mean. The coefficient of variation represents the ratio of the standard 
deviation to the mean, and it is a useful statistic for comparing the degree of variation from 
one data series to another, even if the means are drastically different from one another.
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The coefficient of variation shows the extent of variability of data in a sample in relation 
to the mean of the population. In finance, the coefficient of variation allows investors 
to determine how much volatility, or risk, is assumed in comparison to the amount of 
return expected from investments. Ideally, the coefficient of variation formula should 
result in a lower ratio of the standard deviation to mean return, meaning the better 
risk-return trade-off. Note that if the expected return in the denominator is negative or 
zero, the coefficient of variation could be misleading.

The coefficient of variation is helpful when using the risk/reward ratio to select invest-
ments. For example, an investor who is risk-averse may want to consider assets with a 
historically low degree of volatility and a high degree of return, in relation to the overall 
market or its industry. Conversely, risk-seeking investors may look to invest in assets 
with a historically high degree of volatility.

While most often used to analyze dispersion around the mean, quartile, quintile, or 
decile CVs can also be used to understand variation around the median or 10th percen-
tile, for example.

Coefficient of Variation Formula

Below is the formula for how to calculate the coefficient of variation:
s
µ

=CV

where,

s =standard deviation

µ =mean​

Please note that if the expected return in the denominator of the coefficient of variation 
formula is negative or zero, the result could be misleading.

Coefficient of Variation in Excel

The coefficient of variation formula can be performed in Excel by first using the stan-
dard deviation function for a data set. Next, calculate the mean using the Excel function 
provided. Since the coefficient of variation is the standard deviation divided by the 
mean, divide the cell containing the standard deviation by the cell containing the mean.

Example of Coefficient of Variation for Selecting Investments

For example, consider a risk-averse investor who wishes to invest in an exchange-trad-
ed fund (ETF), which is a basket of securities that tracks a broad market index. The 
investor selects the SPDR S&P 500 ETF, Invesco QQQ ETF, and the iShares Russell 
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2000 ETF. Then, he analyzes the ETFs’ returns and volatility over the past 15 years and 
assumes the ETFs could have similar returns to their long-term averages.

For illustrative purposes, the following 15-year historical information is used for the 
investor’s decision:

•	 SPDR S&P 500 ETF has an average annual return of 5.47% and a standard devi-
ation of 14.68%. SPDR S&P 500 ETF’s coefficient of variation is 2.68.

•	 Invesco QQQ ETF has an average annual return of 6.88% and a standard devi-
ation of 21.31%. QQQ’s coefficient of variation is 3.09.

•	 iShares Russell 2000 ETF has an average annual return of 7.16% and a standard 
deviation of 19.46%. IWM’s coefficient of variation is 2.72.

Based on the approximate figures, the investor could invest in either the SPDR S&P 
500 ETF or the iShares Russell 2000 ETF, since the risk/reward ratios are compara-
tively the same and indicate a better risk-return trade-off than the Invesco QQQ ETF.

Pooled variance

Pooled Variance/Change is the weighted normal for assessing the fluctuations of two 
autonomous variables where the mean can differ between tests however the genuine 
difference continues as before.

Problem Statement:

Compute the Pooled Variance of the numbers 1, 2, 3, 4 and 5.

Solution:

Step 1:

Decide the normal (mean) of the given arrangement of information by including every 
one of the numbers then gap it by the aggregate include of numbers given the informa-
tion set.

+ + + +
= = =

1 2 3 4 5 15
3

5 5
Mean

Step 2:

At that point, subtract the mean worth with the given numbers in the information set.

⇒ − − − − − ⇒ − − 2( ) )1 3 , 2 3 , 3 3( 3 , 4 3 2) ( ) ( , 5 , 1,( 0,1,)
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Step 3:

Square every period’s deviation to dodge the negative numbers.

⇒ − − ⇒2 2 2 2 2( ) ( ) ( ) (2 , 1 , 0 , 1 , 2 4,1,0) ( ) ,1,4

Step 4:

Now discover Standard Deviation utilizing the underneath equation.

=
−

∑ − 2

1
X MS
n

Standard Deviation = =
10

1.58113
4

.

Step 5:

( ) ( )

( )

=

= − ×
−

×
= =

aggregate check of nu

5

mbers -1 × Var
 

((
  

aggregate tal
5

u
) )

( )
( )

2.
5 1 ,

5 1
4 2.

e

5

ly of n mb rs- 1

2.
4

PooledVarian

r

ce r

Hence, Pooled Variance (r) =2.5.
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Sampling distribution refers to the probability distribution of data obtained from a 
large number of samples. Sampling distribution of mean, median, mode and standard 
deviation are studied within statistics. This chapter sheds light on the sampling distri-
butions for an in-depth understanding of the subject.

Suppose we have a finite population and we draw all possible simple random samples 
of size n  without replacement or with replacement. For each sample we calculate a 
statistic (sample mean X  or proportion p̂ , etc.). All possible values of the statistic 
make a probability distribution which is called the sampling distribution. The number 
of all possible samples is usually very large and obviously the number of statistics (any 
function of the sample) will be equal to the number of samples if one and only one 
statistic is calculated from each sample. In fact, in practical situations, the sampling 
distribution has a very large number of values. The shape of the sampling distribution 
depends upon the size of the sample, the nature of the population and the statistic 
which is calculated from all possible simple random samples. 

Standard Error

The standard deviation of a statistic is called the standard error of that statistic. If the 
statistic is X , the standard deviation of all possible values of X  is called the standard 
error of X , which may be written as S.E.( X ) or Xs . Similarly, if the sample statistic is 
proportion p̂ , the standard deviation of all possible values of p̂  is called the standard 
error of p̂ and is denoted by s ^p

 or S.E. ( p̂ ).

Sampling Distribution of X

The probability distribution of all possible values of X  calculated from all possible 
simple random samples is called the sampling distribution of X . In brief, we shall call 
it the distribution of X . The mean of this distribution is called the expected value of X
and is written as ( )E X Xs The standard deviation (standard error) of this distribution 

is denoted by S.E.( X ) or Xs  and the variance of X  is denoted by Var( X ) ( )Var X  or 
2

Xs . The distribution of X  has some important properties:

•	 One important property of the distribution of X  is that it is a normal distribution 

4
Sampling Distributions
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when the size of the sample is large. When the sample size n is more than 30, 
we call it a large sample size. The shape of the population distribution does not 
matter. The population may be normal or non-normal, the distribution of X  is 
normal for n>30, but this is true when the number of samples is very large. As 
the distribution of random variable X  is normal, X  can be transformed into 

a standard normal variable Z where 
µ

s
−

=
/

XZ
n

. The distribution of X  has a 

t-distribution when the population is normal and n>30. Diagram (a) shows the 
normal distribution and diagram (b) shows the t-distribution.

•	 The mean of the distribution of X  is equal to the mean of the population. Thus
( ) µ µ= =XE X  (population mean). This relation is true for small as well as 

large sample sizes in sampling without replacement and with replacement.

•	 The standard error (standard deviation) of X  is related to the standard devia-
tion of the population σ through the relations:

S.E. ( ) XX
n
ss= =

This is true when population is infinite, which means NN is very large or the sampling 
is done with replacement from a finite or infinite population.

S.E ( )
1X

N nX
Nn

ss −
= =

−

This is true when sampling is without replacement from a finite population. The above 
two equations between Xs  and s  are true both for small as well as large sample sizes.
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Examples of Sampling Distribution

Draw all possible samples of size 2 without replacement from a population consisting 
of 3, 6, 9, 12, 15. Form the sampling distribution of sample means and verify the results.

•	 ( )E X µ=

•	 ( ) s − =  − 

2

Var
1

N nX
n N

Solution:

We have population values 3, 6, 9, 12, 15, population size N=5 and sample size n=2. 
Thus, the number of possible samples which can be drawn without replacement is,

5
10

2
N
n

   
= =   

   

Sample No. Sample Values Sample Mean X Sample No. Sample Values Sample Mean X
1 3, 6 4.5 6 6, 12 9.0
2 3, 9 6.0 7 6, 15 10.5
3 3, 12 7.5 8 9, 12 10.5
4 3, 15 9.0 9 9, 15 12.0
5 6, 9 7.5 10 12, 15 13.5

The sampling distribution of the sample mean X and its mean and standard deviation 
are:

X f ( )f X ( )Xf X ( )2X f X

4.5 1 1/10 4.5/10 20.25/10

6.0 1 1/10 6.0/10 36.00/10

7.5 2 2/10 15.0/10 112.50/10

9.0 2 2/10 18.0/10 162.00/10

10.5 2 2/10 21.0/10 220.50/10

12.0 1 1/10 12.0/10 144.00/10

13.5 1 1/10 13.5/10 182.25/10

Total 10 1 90/10 877.5/10

= ∑ = =
90

9
0

(
1

( ) )X X XE f

  = = = =    
∑ ∑

2
2

2 887.5 90
Var( ) ( )– ( ) – 87.75–81 6.75

10 10
X X f X X f X
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 The mean and variance of the population are:

X 3 6 9 12 15 45XΣ =

2X 9 36 81 144 225
2 5

495
XΣ =

=

45
9

5
X

N
µ = = =∑

 

and

 

222
2 495 45

– – 99 – 81 18
5 5

X X
N N

s ∑ ∑   = = = =      

Verification:

•	 ( ) 9E X µ= =

•	
2 – 5 – 2

182 6.75
–1 5 –

(
1

)
N nVar X

n N
s   = = =      

Example:

If random samples of size three are drawn without replacement from the popula-
tion consisting of four numbers 4, 5, 5, 7. Find the sample mean X  for each sample 
and make a sampling distribution of X . Calculate the mean and standard devia-
tion of this sampling distribution. Compare your calculations with the population 
parameters.

Solution:

We have population values 4, 5, 5, 7, population size N=4 and sample size n=3. Thus, 
the number of possible samples which can be drawn without replacement is,

4
4

3
N
n

   
= =   

   

Sample No. Sample Values Sample Mean ( X )

1 4, 5, 5 14/3

2 4, 5, 7 16/3

3 4, 5, 7 16/3

4 5, 5, 7 17/3
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The sampling distribution of the sample mean X  and its mean and standard deviation 
are:

X f ( )f X ( )Xf X ( )2X f X

14/3 1 1/4 14/12 196/36

16/3 2 2/4 32/12 512/36

17/3 1 1/4 17/12 289/36

Total 4 1 63/12 997/36

63
( ) 5.25

12X X f Xµ = = =∑

s  = ∑ ∑ = = 
 

 

2
22 997 63

– – 0.3632
36 12

( ) ( )X X f X Xf X

The mean and standard deviation of the population are:

X 4 5 5 7 21X∑ =

2X 16 25 25 49 2

115
X∑

=

21
5.25

4
X

N
µ ∑
= = =

 
and

 
s ∑ ∑   = = =      

222
2 115 21

– – 1.0897
4 4

X X
N N

s
= =

– 1.0897 4 – 3
0.3632

–1 4 –13
N n
Nn

Hence, 
Xµ µ=  and 

N n

Sampling Errors 

Suppose we are interested in the value of a population parameter, the true value of 
which is θ  but is unknown. The knowledge about θ  can be obtained either from sam-
ple data or from population data. In both cases, there is a possibility of not reaching the 
true value of the parameter. The difference between the calculated value (from the sam-
ple data or from population data) and the true value of the parameter is called an error.

Thus, error is something which cannot be determined accurately if the population is 
large and the units of the population are to be measured. Suppose we are interested in 
finding the total production of wheat in Pakistan in a certain year. Sufficient funds and 
time are at our disposal and we want to get the ‘true’ figure of the production of wheat. 

s
n –1N

=X
s
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The maximum we can do is contact all the farmers, and suppose all the farmers cooper-
ate completely and supply the information as honestly as possible. But the information 
supplied by the farmers will have errors in most cases, so we may not be able to identify 
the ‘true’ figure. In spite of all efforts, we shall be in the dark.

The calculated or observed figure may be good for all practical purposes but we can 
never claim that a true value of the parameter has been obtained. If the study of the 
units is based on counting, we can possibly get the true figure of the population pa-
rameter. There are two kinds of errors, (i) sampling errors or random errors and (ii) 
non-sampling errors.

Sampling Errors

Sampling errors occur due to the nature of sampling. The sample selected from the 
population is one of all possible samples. Any value calculated from the sample is based 
on the sample data and is called a sample statistic. The sample statistic may or may 
not be close to the population parameter. If the statistic is θ̂  and the true value of the 
population parameter is θ , then the difference θ̂ θ−  is called the sampling error. It is 
important to note that a statistic is a random variable and it may take any value.

A particular example of sampling error is the difference between the sample mean X
and the population mean µ . Thus sampling error is also a random term. The popula-
tion parameter is usually not known; therefore the sampling error is estimated from the 
sample data. The sampling error is due to the fact that a certain part of the population 
is incorporated in the sample. Obviously, one part of the population cannot give the 
true picture of the properties of the population. But one should not get the impression 
that a sample always gives a result which is full of errors. We can design a sample and 
collect sample data in a manner so that sampling errors are reduced. Sampling errors 
can be reduced by the following methods: (1) by increasing the size of the sample (2) 
by stratification.

Reducing Sampling Errors

•	 Increasing the size of the sample: The sampling error can be reduced by in-
creasing the sample size. If the sample size n is equal to the population size N, 
then the sampling error is zero.

•	 Stratification: When the population contains homogeneous units, a simple ran-
dom sample is likely to be representative of the population. But if the popula-
tion contains dissimilar units, a simple random sample may fail to be represen-
tative of all kinds of units in the population. To improve the result of the sample, 
the sample design is modified. The population is divided into different groups 
containing similar units, and these groups are called strata. From each group 
(stratum), a sub-sample is selected in a random manner. Thus all groups are 
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represented in the sample and the sampling error is reduced. This method is 
called stratified-random sampling. The size of the sub-sample from each stra-
tum is frequently in proportion to the size of the stratum.

Suppose a population consists of 1000 students, out of which 600 are intelligent and 
400 are unintelligent. We are assuming here that we do have much information about 
the population. A stratified sample of size n = 100 is to be selected. The size of the stra-
tum is denoted by N1 and N2 respectively, and the size of the samples from each stratum 
may be denoted by n1 and n2. It is written as:

Stratum # Size of stratum Size of sample from each stratum

1
1 600N = × ×

= = =1
1

100 600
60

1000
n N

n
N

2
2 400N = × ×

= = =2
2

100 400
40

1000
n N

n
N

1 2 1000N N N+ = = + = =1 2 100n n n

The size of the sample from each stratum has been calculated according to the size 
of the stratum. This is called proportional allocation. In the above sample design, the 

sampling fraction in the population is 
100 1

1000 10
n
N

= =  and the sampling fraction in 

both the strata is also 
1

10
. Thus this design is also called a fixed sampling fraction. This 

modified sample & sign is frequently used in sample surveys. But this design requires 
some prior information about the units of the population, and the population is divided 
into different strata based on this information. If the prior information is not available 
then the stratification is not applicable.

The size of the sample from each stratum has been calculated according to the size 
of the stratum. This is called proportional allocation. In the above sample design, the 

sampling fraction in the population is 
100 1

1000 10
n
N

= =  and the sampling fraction in 

both the strata is also 
1

.
10

 Thus this design is also called a fixed sampling fraction. This 

modified sample & sign is frequently used in sample surveys. But this design requires 
some prior information about the units of the population, and the population is divided 
into different strata based on this information. If the prior information is not available 
then the stratification is not applicable.

Non Sampling Errors

There are certain sources of errors which occur both in sample surveys as well as in the 
complete enumeration. These errors are common in nature. Suppose we study each 

3
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and every unit of the population. The population parameter under study is the popu-
lation mean, and the ‘true’ value of the parameter is μ which is unknown. We hope to 
get the value of µ  by a complete count of all the units of the population. We get a value 
called the ‘calculated’ or ‘observed’ value of the population mean. This observed value 
may be denoted by µcal. The difference between µcal  and µ  (true) is called a non-sam-
pling error.

Even if we study the population units under ideal conditions, there may still be a differ-
ence between the observed value of the population mean and the true value of the pop-
ulation mean. Non-sampling errors may occur due to many reasons. Some of them are:

•	 The units of the population may not be defined properly. Suppose we have to car-
ry out a study about the skilled labor force in our country. Who is a skilled person? 
Some people do more than one job. Some do the administrative jobs as well as 
the technical jobs. Some are skilled but they are working in an unskilled position. 
Thus it is important to clearly define the units of the population, otherwise there 
will be non-sampling errors both in the population count and the sample study.

•	 There may be a poor response on the part of respondents, and they do not supply 
correct information about their income, their children, their age and property, 
etc. These errors are likely to be of a high magnitude in population study than 
the sample study. To reduce these errors the respondents are to be persuaded.

•	 Data collection is subject to human error. The enumerators may be careless or 
they may not be able to maintain uniformity from place to place. The data may 
not be collected properly from the population or from the sample. These errors 
are likely to be more serious in the population data than the sample data.

•	 Another serious error is due to bias. Bias means an error on the part of the 
enumerator or the respondent when the data is being collected, and it may be 
intentional or unintentional. An enumerator may not be capable of reporting 
the correct data. If they have to report about the condition of crops in different 
areas after heavy rainfalls, their assessments may be biased due to lack of train-
ing or they may be inclined to give inaccurate reports. Bias is a serious error 
and cannot be reduced by increasing the sample size. Bias may be present in the 
sample study as well as the population study.

Importance of Sampling Distribution in Research Methodology

Some important sampling distributions, which are commonly used, are:

•	 Sampling distribution of mean.

•	 Sampling distribution of proportion.

•	 Student’s ‘t’ distribution.
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•	 F distribution.

•	 Chi-square distribution.

A brief mention of each one of these sampling distribution will be helpful:

•	 Sampling distribution of mean: Sampling distribution of mean refers to the prob-
ability distribution of all the possible means of random samples of a given size 
that we take from a population. If samples are taken from a normal population, 
N dm,s p i, the sampling distribution of mean would also be normal with mean 
mx = m and standard deviation = s p n, where m is the mean of the population, 
s p is the standard deviation of the population and n means the number of items 
in a sample. But when sampling is from a population which is not normal (may 
be positively or negatively skewed), even then, as per the central limit theorem, 
the sampling distribution of mean tends quite closer to the normal distribution, 
provided the number of sample items is large i.e., more than 30. In case we want 
to reduce the sampling distribution of mean to unit normal distribution i.e., N 
(0,1), we can write the normal variate Formula for the sampling distribution of 
mean. This characteristic of the sampling distribution of mean is very useful in 
several decision situations for accepting or rejection of hypotheses.

•	 Sampling distribution of proportion: Like sampling distribution of mean, we 
can as well have a sampling distribution of proportion. This happens in case 
of statistics of attributes. Assume that we have worked out the proportion of 
defective parts in large number of samples, each with say 100 items, that have 
been taken from an infinite population and plot a probability distribution of 
the said proportions, we obtain what is known as the sampling distribution of 
the said proportions, we obtain what is known as the sampling distribution of 
proportion. Usually the statistics of attributes correspond to the conditions of 
a binomial distribution that tends to become normal distribution as n becomes 
larger and larger. If p represents the proportion of defectives i.e., of successes 
and q the proportion of non- defectives i.e., of failures (or q = 1 – p) and if p 
is treated as a random variable, then the sampling distribution of proportion 
of successes has a mean = p with standard deviation = Formula where n is the 
sample size. Presuming the binomial distribution approximating the normal 
distribution for large n, the normal variate of the sampling distribution of pro-
portion z = Formula where $p (pronounced as p-hat) is the sample proportion 
of successes, can be used for testing of hypotheses.

•	 Student’s t-distribution: When population standard deviation Formula is not 
known and the sample is of a small size b i.e., n < 30 g , we use t distribution for 
the sampling distribution of mean and workout t variable as:

( ) ( )
( )

µ s

s

= −

Σ −
= −

2

/ /

where 1

s

i
s

t X n

X X
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( ) ( )
( )

µ s

s

= −

Σ −
= −

2

/ /

where 1

s

i
s

t X n

X X

n

i.e., the sample standard deviation. t-distribution is also symmetrical and is 
very close to the distribution of standard normal variate, z, except for small 
values of n. The variable t differs from z in the sense that we use sample 
standard deviation s s b g in the calculation of t, whereas we use standard 
deviation of population s p d i in the calculation of z. There is a different t 
distribution for every possible sample size i.e., for different degrees of free-
dom. The degrees of freedom for a sample of size n is n – 1. As the sample 
size gets larger, the shape of the t distribution becomes apporximately equal 
to the normal distribution. In fact for sample sizes of more than 30, the t 
distribution is so close to the normal distribution that we can use the normal 
to approximate the t-distribution. But when n is small, the t-distribution is 
far from normal but when n a, t-distribution is identical with normal distri-
bution. The t-distribution tables are available which give the critical values 
of t for different degrees of freedom at various levels of significance. The 
table value of t for given degrees of freedom at a certain level of significance 
is compared with the calculated value of t from the sample data, and if the 
latter is either equal to or exceeds, we infer that the null hypothesis cannot 
be accepted.

•	 F distribution: F ratio is computed in a way that the larger variance is always in 
the numerator. Tables have been prepared for F distribution that give critical 
values of F for various values of degrees of freedom for larger as well as smaller 
variances. The calculated value of F from the sample data is compared with the 
corresponding table value of F and if the former is equal to or exceeds the latter, 
then we infer that the null hypothesis of the variances being equal cannot be 
accepted. We shall make use of the F ratio in the context of hypothesis testing 
and also in the context of ANOVA technique.

•	 Chi-square Formula distribution: Chi-square distribution is encountered when 
we deal with collections of values that involve adding up squares. Variances 
of samples require us to add a collection of squared quantities and thus have 
distributions that are related to chi-square distribution. If we take each one of 
a collection of sample variances, divide them by the known population variance 
and multiply these quotients by (n – 1), where n means the number of items 
in the sample, we shall obtain a chi-square distribution. Thus, Formula would 
have the same distribution as chi-square distribution with (n – 1) degrees of 
freedom. Chi-square distribution is not symmetrical and all the values are pos-
itive. One must know the degrees of freedom for using chi-square distribution. 
This distribution may also be used for judging the significance of difference 

____________________ WORLD TECHNOLOGIES ____________________



WT

130 Introductory Statistics

between observed and expected frequencies and also as a test of goodness of fit. 
The generalised shape of c 2 distribution depends upon the d.f. and the c 2 value 
is worked out as under:

( )
χ

=

−
=∑

2

2

1

k
i i

i i

O E
E

.

Sampling Distributions Related to the 
Normal Distribution

Theorem: Let X1, X2, …, Xn L be a random sample of size n from a normal distribution 
with mean µ and variance σ2. Then, 

1

1 n

i
i

X X
n =

= ∑

is normally distributed with mean Xµ µ=  and ( )s s µ s=2 2 2/ , ~ , / .X n X N n

Proof: Since the moment-generating function of each X is, 

( ) ( )2 2exp / 2XM t t tµ s= +

the moment-generating function of 
1

1 n

i
i

X X
n =

= ∑  is equal to, 

( ) ( )( ) ( ) ( )2 2 22
/

1

//
exp exp

2 2
i

i

n
n

t n X
XX

i

n tt nt tM t E e M t
n n

ss
µ µΣ

=

           = = = + = +               
∏

	

( ) ( )( ) ( ) ( )2 2 22
/

1

//
exp exp

2 2
i

i

n
n

t n X
XX

i

n tt nt tM t E e M t
n n

ss
µ µΣ

=

           = = = + = +               
∏

However, the moment-generating function uniquely determines the distribution of the 
random variable. Since this one is that associated with the normal distribution N(µ, 
σ2 ⁄ n), the sample mean X

–
 is N(µ, σ2 ⁄ n). 

Theorem: Let 1 2, ,..., nZ Z Z  have standard normal distributions, N(0, 1). If these ran-
dom variables are mutually independent, then 

1 2

2 2 2, ,..., nW Z Z Z= has a 2χ  distribution 
with n degrees of freedom. 
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Proof: The moment-generating function of W is given by,

= = + + + = × × ×2 2 2
1 2

2 2 2
1 2( ) ( ) (exp{ ( ..... )}) ( ) ( ) ... ( )

n

tW
w n Z Z Z

M t E e E t Z Z Z M t M t M t

Since 2
iZ  is a 2χ  distributed random variable with 1 degree of freedom, we have,

( ) ( )−= − =2
1

1/21 2 , 1,2,..., .
Z

M t t i n

Hence, 

( ) ( ) ( ) ( ) ( )1/2 1/2 1/2 /2
w 1 2 1 2 ... 1 2 1 2 nM t t t t t− − − −

= − × − × × − = −

The uniqueness of the moment-generating function implies that W is 2χ (n). 

Corollary: If 1 2, ,..., nX X X  have mutually independent normal distributions 

( )2, , 1,2,..., ,i iN i nµ s = , respectively, then the distribution of, 

( )2

2
1

n
i i

i i

X
W

µ
s=

−
=∑

has a 2χ  distribution with n degrees of freedom. 

Proof: We simply note that ( )/i i i iZ X µ s= − is N(0,1), i = 1, 2,…,n. 

Theorem: Let 1 2, ,..., nX X X be a random sample of size n from a normal distribution, 
( )2,N µ s , 

=

= ∑
1

1 n

i
i

X X
n

( )22

1

1
1

n

i
i

S X X
n =

= −
− ∑

Then, 

•	 X and S2 are independent. 

•	
( ) ( )

2

2
1

2 2

1

n

i
i

X Xn S
s s

=

−−
=
∑

has a 
2χ  distribution with (n – 1) degrees of freedom. 

Proof:  

( ) ( ) ( )µ µ µ

s ss s
=

= =

−  − + − − −
 = = + 
    

∑
∑ ∑

2 2 22

1
2 2

1 1

( )
n

i n n
ii i

i i

X X X X n XX X
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since the cross-product term is equal to, 

( )( ) ( ) ( )
µ µ

s s= =

− − −
= − =∑ ∑2 2

1 1

2
2 0

n n
i

i
i i

X X X X
X X

But Yi = (Xi − µ ) /σ , i = 1,2,…,n , are mutually independent standard normal variables. 

Hence 2 2 2
1 2 ... nW Y Y Y= + + + is 2χ (n) 2χ  by Theorem. Moreover, since, 

( )2~ , / ,X N nµ s then 
( )22

2
2/

n XXZ
n

µµ
ss

− −
= = 
 

 is 2χ  thus,

( )
s
−

= +
2

2
2

1
.

n S
W Z

However, X  and S2 are independent; thus Z2 and S2 are also independent. In the mo-
ment-generating function of W, this independence permits us to write, 

( )( ) ( )( ) ( )( ) ( )s s s − + − −  = =
2 2 2 2 2 2 22 21 / 1 / 1 /t n S Z t n S t n StZ t ZE e E e e E e E e

Since W and Z2 have 
2χ  distributions, we can substitute their moment-generating func-

tions to obtain, 

( ) ( )( )( )s− −−− = −
2 2/2 1/21 /1 2 1 2n t n St E e t

Equivalently, we have, 

( )( ) ( ) ( )s − −− = − <
2 2 1 /21 / 1 2 , 1 / 2nt n SE e t t

This, of course, is the moment-generating function of a 2χ (n − 1) variable, and accord-
ingly (n − )S2/ σ2 has this distribution. 

Theorem: If Z is a standard normal distribution, N(0,1), if U is a 2χ  distribution with v 
degrees of freedom, and if Z and U are independent, then: 

/
ZT

U v
=

has a t distribution with v degrees of freedom. Its p.d.f. is, 

( )
( )
( )

( )1 /221 / 2 1
1 ,

/ 2

vv tf t t
v vvπ

− + G +   = + −∞ < < ∞ G  

This distribution was discovered by W. S. Gosset when he was working for an Irish 
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brewery. Because Gosset published under the pseudonym Student, this distribution is 
sometimes known as Student’s t distribution. 

Proof: Since Z and U are independent, the joint p.d.f. of Z and U is,

( ) ( )π
− − −= −∞ < < ∞ < < ∞

G
2/2 /2 1 /2

/2

1 1
, , ,0

/ 2 22
z v u

vg z u e u e z u
v

The distribution function F(t) = Pr(T ≤ t) of T is given by, 

( ) ( ) ( ) ( )
∞

−∞
= ≤ = ≤ = ∫ ∫

u/

0
Pr / / Pr / ,

t v
F t Z U v t Z t U v g z u dzdu

The p.d.f. of T is the derivative of the distribution function; so applying the Fundamen-
tal Theorem of Calculus to the inner integral we see that, 

( ) ( )
( )

( )( )
( )

( )
( )

( )
( )( )

π

π

−
∞ − −

+

+ − +−∞

+

= =
G

=
G

∫

∫

2

2

/2

/2 1 /2
1 /20

1 /2 1 1/2

1 /20

1
'

/ 2 2

1
/ 2 2

tu v
v u

v

v tu v
v

e uf t F t u e du
vv

u e du
v

In the integral make the change of variables ( )21 /y t v u= + so that ( )= + 2/ 1 / 1 / .du dy t v  
Thus we find that,

( ) ( )( )
( )

( ) ( )

( )( )π

− + + −
∞ −

+

G +  
= + G G + 

∫
1 /2 1 /2 12

/2
(v 1)/20

1 / 2 1
1 .

/ 2 1 / 2 2

v v
yv t yf t e dy

v v vv

The integral is equal to 1 since the integrand is the p.d.f of a chi-square distribution 
with (v + 1) degrees of freedom. Thus the p.d.f. is as given in the theorem. 

Note that the distribution of T is completely determined by the number v. Its p.d.f. is 
symmetrical with respect the vertical axis 0t =  and is very similar to the graph of the 
p.d.f. of the standard normal distribution N(0,1). It can be shown that ( ) 0E T =  for 

1v >  and ( ) ( )/ 2Var T v v= − for 12v >  When 1v = , the t distribution is the same as the 
standard Cauchy distribution in which the mean and the variance do not exist. 

Theorem : If 1 2, ,..., nX X X  denote a random sample from ( )2,N µ s , then:

( )~ 1 .
/

X t n
S n

µ−
−

Proof: This follows from Theorem , since ( ) ( ) ( )/ / ~ 0,1X n Nµ s−  and by Theorem , 

( ) ( )2 2 21 / ~ 1U n S ns χ= − − and X  and 2S  are independent. 
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Example: Let 1 2, ,..., nX X X  and 1 2, ,..., mY Y Y  be independent random samples from 
populations with respectively distributions ( )2~ ,i

x xX N µ s and ( )2~ ,j y yY N µ s The 

distributions of X  andY are ( )2, /x xN nµ s and ( )2, /y yN mµ s respectively. Since X  

and Y  are independent, the distribution X Y− is ( )2 2/ /x y x yN n mµ µ s s− + and

( ) ( ) ( )
µ µ

s s

− − −
=

+2 2
~ 0,1

/ /

x y

x y

X Y
Z N

n m

Since ( ) ( )2 2 21 / ~ 1x xn S ns χ− − and ( ) ( )2 2 21 / ~ 1y ym S ms χ− − , and both are indepen-
dent, 

( ) ( ) ( )
22

2
2 2

11
~ 2yx

x y

m Sn S
U n mχ

s s
−−

= + + −

A random variable T with the t distribution having v = n + m − 2 degrees of freedom is 
given by, 

( )
( ) ( )

( ) ( )( ) ( )

2 2

2 2 2 2

/ / /

/ 2 1 / 1 / / 2

x y x y

x x y y

X Y n mZT
U n m n S m S n m

µ µ s s

s s

 − − − + =
+ − − + − + −

In the statistical applications we sometimes assume that the two variances are the 
same, say 2 2 2

x ys s s+ = in which case, 

( ) ( )
( ) ( ) ( ){ } ( ) ( )2 21 1 / 2 1 / 1 /

x y

x y

X Y
T

n S m S n m n m

µ µ− − −
=

   − + − + − +  

and neither T  nor its distribution dependent on 2s . 

Theorem: If U1 and U2 are independent chi-square variables with v1 and v2 degrees of 
freedom, respectively, then: 

1 1

2 2

/
/

U v
F

U V
=

Has an F distribution with v1 and v2 degrees of freedom. Its p.d.f. is, 

( )
( )

( ) ( )
( )

− +
− G +     = + < < ∞   G G    
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1

/2 ( )/2
1 2 /2 11 1

1 2 2 2

/ 2
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/ 2 / 2

V v v
vv v v v

f y y y y
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Example: Let 1 2, ,..., nX X X  and 1 2, ,..., mY Y Y  be independent random samples from 
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populations with respectively distributions ( )2~ ,i
x xX N µ s and ( )2~ ,j y yY N µ s . Since 

( ) ( )2 2 21 / ~ 1x xn S ns χ− − and ( ) ( )2 2 21 / ~ 1y ym S ms χ− − ,

( )( ) ( )
( )( ) ( )

( ) ( )( )
2 2 2 2

2 22 2

1 / / 1
~ 1 , 1 .

1 / / 1
x x x y

y xy y

n s n S
F n m

Sm s m

s s
ss

− −
= − −

− −

Sampling Distribution of Sample Mean

Consider a population of N variates with mean μ and standard deviation σ, and draw all 
possible samples of r variates. Assume that the samples have been replaced before each 
drawing, so that the total number of different samples which can be drawn is the com-

bination of N things taken r at a time, that is M = ( N
r ). The mean of all these sample 

means ( )1 2, ,....., MY Y Y is denoted by Yµ and their standard deviation by Ys  , also known 
as the standard error of a mean. The mean of the sample means is the same as the mean 
of the parent population, μ , e.g,

µ µ= Σ = = Σ/ M /i iY Y Y N

The variance of the sample means ( 2
y

s ) equals the variance of the parent (σ2) popula-

tion divided by the sample size (r) and multiplied by a factor f. 

( ) ( )s µ s= Σ − = •
22 2/ / fi Yy

Y M r

where, f = (N - r)/(N - 1)

Note that the standard error of a mean approaches the standard deviation of the parent 
population divided by the square root of the sample size, /Y rs s=  for a large popu-
lation (i.e., f approaches unity). The larger the size of a sample, the smaller the variance 
of the sample mean.

Consider samples taken from a normal population. Figure illustrates the relationship of 
the parent population (r = 1) with the sampling distributions of the means of samples 
of size r = 8 and r = 16. 
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The relation of the frequencies of means for r = 3 from the  
population 1,2,3,4,5,6,7 and the normal distribution.

Even when the variates of the parent population are not normally distributed, the 
means generated by samples tend to be normally distributed. This can be illustrated 
by considering samples of size 3 from a simple non-normal population with variates 
1,2,3,4,5,6, and 7. Table presents all possible sample means, and figure shows the fre-
quency distribution of the means which approaches the normal frequency curve. 

All possible different samples of size 3 from the population 1, 2, 3, 4, 5, 6, 7 with μ = 4 
and σ = 2. 

Sample 
No. Sample Y

Sample 
No. Sample 

1 1 2 3 2 19 2 3 7 4 
2 1 2 4 2 1/3 20 2 4 5 3 2/3 
3 1 2 5 2 2/3 21 2 4 6 4
4 1 2 6 3 22 2 4 7 4 1/3 
5 1 2 7 3 1/3 23 2 5 6 4 1/3 
6 1 3 4 2 2/3 24 2 5 7 4 2/3
7 1 3 5 3 25 2 6 7 5
8 1 3 6 3 1/3 26 3 4 5 4
9 1 3 7 3 2/3 27 3 4 6 4 1/3 
10 1 4 5 3 1/3 28 3 4 7 4 2/3
11 1 4 6 3 2/3 29 3 5 6 4 2/3
12 1 4 7 4 30 3 5 7 5
13 1 5 6 4 31 3 6 7 5 1/3
14 1 5 7 4 1/3 32 4 5 6 5
15 1 6 7 4 2/3 33 4 5 7 5 1/3
16 2 3 4 3 34 4 6 7 5 2/3
17 2 3 5 3 1/3 35 5 6 7 6
18 2 3 6 3 2/3 
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The mean and standard deviation of the distribution of the sample means are: 

µ µ

ss

s

= + + + + + = =

−
= − + − + + − + − = • = • =

−

=

2
2 2 2 2 2

1
(2 21 / 3 22 / 3 ... 52 / 3 6) 4

35

1 4 4 8
{(2 4) (21 / 3 4) ... (52 / 3 4) (6 4) } ( ) ( )

35 1 3 6 9

8 / 9

y

y

y

N r
r N

     

µ µ

ss

s

= + + + + + = =

−
= − + − + + − + − = • = • =

−

=

2
2 2 2 2 2

1
(2 21 / 3 22 / 3 ... 52 / 3 6) 4

35

1 4 4 8
{(2 4) (21 / 3 4) ... (52 / 3 4) (6 4) } ( ) ( )

35 1 3 6 9

8 / 9

y

y

y

N r
r N

µ µ

ss

s

= + + + + + = =

−
= − + − + + − + − = • = • =

−

=

2
2 2 2 2 2

1
(2 21 / 3 22 / 3 ... 52 / 3 6) 4

35

1 4 4 8
{(2 4) (21 / 3 4) ... (52 / 3 4) (6 4) } ( ) ( )

35 1 3 6 9

8 / 9

y

y

y

N r
r N

Note that in this particular case, we have used a simple population with only seven 
elements. Sample means from samples with increasing size, from a large population 
will more closely approach the normal curve. This tendency of sample means to ap-
proach a normal distribution with increasing sample size is called the central limit 
theorem. 

Sampling Distribution of the Difference between Two Means

Above, we mentioned that the means of all possible samples of a given size (r1) drawn 
from a large population of Y’s are approximately normally distributed with y yµ µ=  and 
s s=2 2

1/yy
r . Now consider drawing samples of size r2 from another large population, 

X’s. The parameters of these sample means are also approximately normally distrib-
uted with x xµ µ=  and s s=2 2

2/xx
r . An additional approximately normal population is 

generated by taking differences between all possible means, dY X− = , with the param-
eters dµ  ands 2

d ,

x xd y yµ µ µ µ µ= − = −

and

s s s s s= + = +2 2 2 2 2
1 2/ /y xd y x

r r

When the variances of the parent populations are equal, 

( )22 2
xy

s s s= =  and sample sizes are the same, 1 2r r r= = then s s=2 22 / .
d

r

The square root of the variance of mean differences, 
ds  , is usually called the standard 

error of the difference between sample means. Figure diagrams the generation of a 
population of mean differences by repeated sampling from two populations of individ-
ual variates and indicates relationships among the parameters.
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The relationships among the population parameters developed are important in 
statistical evaluation. With information about the parent population one can estimate 
parameters associated with a sample mean or the difference between two sample 
means. 

Relationships between parameters of a population of 
sample mean differences and parent populations. 

Normal Approximation to Binomial

If the number of trials (n) is large the calculations become tedious. Since many prac-
tical problems involve large samples of repeated trials, it is important to have a more 
rapid method of finding binomial probabilities. 

When n > 30, the sample is usually considered large. In this topic we will show how 
the normal distribution is used to approximate a binomial distribution for ease in the 
calculation of probabilities. 

Since the normal frequency curve is always symmetric, whereas the binomial histogram 
is symmetric only when p = q = 1/2, it is clear that the normal curve is a better approxi-
mation of the binomial histogram if both p and q are equal to or nearly equal to 1/2. The 
more p and q differ from 1/2, the greater the number of trials are required for a close 
approximation. Figure shows how closely a normal curve can approximate a binomial 
distribution with n = 10 and p = q = 1/2. Figure illustrates a case where the normal dis-
tribution closely approximates the binomial when p is small but the sample size is large. 
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Binomial distribution for p = 0.5 and n = 10.

Binomial distribution for p = 0.08 and n = 100.

To use the normal curve to approximate discrete binomial probabilities, the area under 
the curve must include the area of the block of the histogram at any value of r, the num-
ber of occurrences under consideration. To include the block centered at r, the value of 
Y to be used in the normal curve equation for the normal deviate must be adjusted by 
adding 1/2 to, or subtracting 1/2 from the value of r. The calculation can be described 
by the following steps: 

Step 1. Compute the mean and the standard deviation, 

np, npqµ s= =

Step 2. In order to find the corresponding normal deviate (Y) for a given r, 1/2 must be 
either added to or subtracted from r to include the block centered at r. 

= − = +Y 1 / 2 or Y 1 / 2r r

Step 3. Standardize the normal deviate Y, by computing Z. 

( )= − /  Z Y np npq
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Step 4. The probability of the occurrence of a random standard normal deviate that is 
equal to or greater than, or equal to or smaller than Z. 

Step 5. Compute the required probability. This depends on the nature of the problem 
and is illustrated by the four cases below. 

Example. If 8% of a particular canned product is known to be underweight, what is the 
probability that a random sample of 100 cans will contain (a) 14 or more underweight 
cans (b) 4 or fewer underweight cans, (c) 5 or more underweight cans, (d) more than 4 
but less than 15 underweight cans? 

Step 1. μ = np = 100 (0.08) = 8.0, 

   10(0.08)(0.92) 2.71npqs = = =

(a) To find the probability of 14 or more underweight cans.

 

Step 2. Y = 5 - 1/2 = 14 - 1/2 = 13.5. 

Step 3. Z = (13.5 - 8.0) / 2.71 = 2.03.

Step 4. ≥ =( )2.03 0.0212P Z .

Step 5. The required probability in this case is the one obtained from Step 4, 0.0212.

(b) To find the probability of 4 or fewer underweight cans, 

 

Step 2. Y = r + 1/2 = 4 + 0.5 = 4.5. 
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Step 3. Z = (4.5 - 8.0) / 2.71 = 1.29. 

Step 4. Positive values for Z, i.e., for   0Z ≥ . since the distribution is symmetrical about 
Z = 0, probabilities for negative values of Z are determined by ignoring the sign. There-
fore, ( ) ( 1.29    1.29 0.0985. )P Z P Z≤ − = ≤ =

Step 5. The required probability in this case is the one obtained from Step 4, 0.0985, 
or about 10%. 

(c) To find the probability of 5 or more underweight cans,

Step 2. Y = r - 1/2 = 5 - 1/2 = 4.5. 

Step 3. Z = (4.5 - 8.0) / 2.71 = -1.29. 

Step 4. ( ) ( 1.29    1.29 0.0985. )P Z P Z≤ − = ≤ =

Step 5. The problem is to find the probability that ( ) ( 1.29    1.29 0.9015. )P Z P Z≤ − = ≤ =  

(d) To find the probability that more than 4 but less than 15 cans are underweight, we 
must find the probability of 5 more and 14 or less underweight cans as in Figure.

 

Step 2. Note in this case that we need to find the probability between two r values, r1 
and r2. 

Y1 = r1 - 1/2 = 5 - 1/2 = 4.5 

Y2 = r2 + 1/2 = 14 + 1/2 = 14.5 
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Step 3. Now we have to calculate two standardized Z values, Z1 and Z2. 

−
1

4.5 8.0
 =  1.29

 2.71
Z

−
2

14.5 8.0
 =  2.40

 2.71
Z

Step 4. The two probabilities: 

( ) ( 1.29    1.29 0.0985. )P Z P Z≤ − = ≤ =

≥ =( )2.40 0.0082 P Z

Step 5. The required probability is the area between the two Z values, which is equal to: 

( )
1 0.0985 0.0082
1 0.1067 0.8

1   1.29) (

93

.40

3

2P Z P Z
= − −
= − =

− ≤ − − ≥

Sample Distribution of the Median

In addition to the smallest (Y1) and largest (Yn) order statistics, we are often interested 

in the sample median, X . For a sample of odd size, n = 2m + 1, the sample median is 

defined as Ym+1. If n = 2m is even, the sample median is defined as ( )1
1
2 m mY Y ++ . We 

will prove a relation between the sample median and the population median µ . By 
definition, µ  satisfies, 

( ) 1
2

f x dx
µ

−∞
=∫



It is convenient to re-write the above in terms of the cumulative distribution function. 

If F is the cumulative distribution function of f , then F′ = f  and ( ) 1
2

f x dx
µ

−∞
=∫



becomes, 

( ) 1
2

F µ =

We are now ready to consider the distribution of the sample median.

Median Theorem: Let a sample of size n = 2m + 1 with n large be taken from an infinite 
population with a density function f ( x ) that is nonzero at the population median µ
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and continuously differentiable in a neighbourhood of µ . The sampling distribution of 

the median is approximately normal with mean µ  and variance
( )2

1

8 f mµ
.

Proof: Let the median random variable X  have values x  and density g( x ). The me-
dian is simply the (m + 1)th order statistic, so its distribution is given by the result. By 
Theorem,

( ) ( ) ( ) ( ) ( )
∞

−∞ −∞

+    =       ∫ ∫


  

2 1 !
! !

m mxm
g x f x dx f x f x dx

m m

We will first find an approximation for the constant factor in this equation. For this, we 

will use Stirling’s approximation, which tells us that ( )( )π− −= +  1!    2 1   .n nn n e n O n  
We will consider values sufficiently large so that the terms of order 1/n need not be 
considered. Hence, 

( )( )
( ) ( )

π
ππ

−

−

++ + +
= ≈ =

2 2

2 2

2 1 2 !(2 1)! (2 1)(2 ) 2 (2 ) (2 1)4
! ! ! 2

m m m

m m

m mm m m e m m
m m mm m e m

As F is the cumulative distribution function, ( )( )
x

F x f x dx
−∞

= ∫


, which implies,

( ) ( ) ( ) ( )~ (2 1)4
1

m
m mmg x F x f x F x

mπ
+

   ≈ −      

We will need the Taylor series expansion of F( x ) about µ , which is just, 

( ) ( ) ( )( ) ( )( )= + − + −     

2    '      F x F µ F µ x µ O x µ

Because µ  is the population median, ( )   1 / 2F µ = . Further, since F is the cumulative 
distribution function, F′ = f and we find, 

( ) ( )( ) ( )( )21
           

2
F x f µ x µ O x µ= + − + −    

This approximation is only useful if   x µ−   is small; in other words, we need, 

limm→∞ |   x µ−  | = 0. 

Letting t =   x µ−  (which is small and tends to 0 as m → ∞), substituting our Taylor 

series expansion into ( ) ( ) ( ) ( )~ (2 1)4
1

m
m mmg x F x f x F x

mπ
+

   ≈ −       yields,

( ) ( ) ( ) ( ) ( ) ( ) ( )2 22 1 4 1 1
1

2 2

mmmm
g x f t O t f x f t O t

m
µ µ

π

+     ≈ + + − + +       
 

 
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By rearranging and combining factors, we find that,

( ) ( ) ( ) ( ) ( ) ( ) ( )µ µ
π

+     ≈ + + − + +        
 

 

2 22 1 4 1 1
(x) 1

4 2

mmmm
g x f f t O t f x f t O t

m

Remember that one definition of ex is, 

( ) →∞
 = = + 
 

    1 
n

x
n

xe exp x lim
n

Using this, and ignoring higher powers of t for the moment, we have for large m that, 

( ) ( )( ) ( )( ) ( )( ) ( )
( )( )
µ

µ
π π µ

 + + − ≈ − ≈ −  
 

  







2
2 2

2

2 1 2 1
exp 4 exp

1 / 4

m x m x x
g x mf t

m m mf

x can be assumed arbitrarily close to u  with high probability, we can assume f( x ) ≈ f(µ ) 
so that,

( ) ( ) ( ) ( )
( )( )

2

2

2 1
exp

1 / 4

m f x
g x

m mf

µ µ

π µ

 + − ≈ −  
 


 





Looking at the exponential part of the expression for g( x ), we see that it appears to be a 
normal density with mean µ  and σ2 = 1/(8mf( µ )2 ). If we were instead to compute the 
variance from the normalization constant, we would find the variance to be, 

( ) ( ) 22 2   1 2   
m

m f µ+ 

We see that the two values are asymptotically equivalent, thus we can take the variance 
to be σ2 = 1/(8mf( µ )2 ). Thus to complete the proof of the theorem, all that we need 
to is prove that we may ignore the higher powers of t and replace the product with an 
exponential in passing from previous equations. We have 

( )( )( ) ( ) ( )( ) ( )( )( )µ
µ

 
 − + = − + 
 
 





2

23 3
4

1 exp log 1 4

m

m f t
O t m f t O t

m

We use the Taylor series expansion of log(1 − x): 

log(1 − x) = −x + O(x 2);
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We only need one term in the expansion as t is small. 

( )( ) ( ) ( )( ) ( )( )

( )
( )( ) ( )( )

µ
µ

µ

µ

 
 − + =
 


− +

 − −



=   
 










2 3

2

3

2

2

3 exp   · 4   

exp · exp .
1 / 4

4
1

m

m f t O
m f t

O t
m

mt

x
O mt

mf

One can show that as m → ∞, mt3 → 0. Thus the exp(O(mt3 )) term above tends to 1, 
which completes the proof.

Remark. Our justification of ignoring the higher powers of t and replacing the product 
with an exponential in passing from previous equation is a standard technique. Name-
ly, we replace some quantity (1 − P) m with (1 − P) m = exp(m log(1 − P)), Taylor expand 
the logarithm, and then look at the limit as m → ∞. 

Sampling Distribution of  
Standard Deviation

Consider the sample standard deviation,

( )2

1

1 N

i
i

s x x
N =

≡ −∑

for n  samples taken from a population with a normal distribution. The distribution of 
s  is then given by,

( )

( )

( )
( )ss

−

− −

 
 
 =
 G − 
 

2 2

1 /2

2
/ 2 222 ,

1 1
2

N

N s N
N

N

f s e s
N

where ( )zG  is a gamma function and

2
2

1
N s
N

s ≡
−
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The function ( )Nf s  is plotted above for 2N =  (red), 4 (orange), ..., 10 (blue), and 12 
(violet).

The mean is given by,

s

s

 G 
 =
− G 

 
≡

2 2
1

2
( ) ,

N

s
NN

b N

where,

 G 
 =
− G 

 

2 2( )
1

2

N

b N
NN

The function ( )b N  is known as 4c  in statistical process control (Duncan 1986, pp. 62 
and 134). Romanovsky showed that,

( ) 2 3

3 7 9
1 ...

4 32 128
b N

N N N
= − − − +

The raw moments are given by,

/2
2

1
2 2

1
2

r

r

N r

NN
µ s

− + G    ′ =   −   G 
 

and the variance of s  is,

( ) 2
2

2

2

2

var

2
1 21 .

1
2

s

N

N
NN

µ µ

s

′= −

  G     = − −
−  G     

( )/s b N  is an unbiased estimator of s .
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Statistical inference is the process that makes use of data analysis for deducing proper-
ties of a probability distribution. Algorithmic inference, fiducial inference and Bayesian 
inference fall under its domain. This chapter closely examines the varied aspects of 
statistical inference to provide an extensive understanding of the subject.

Statstical Inference is the process of drawing conclusions about a parameter one is 
seeking to measure or estimate. Often scientists have many measurements of an ob-
ject—say, the mass of an electron—and wish to choose the best measure. One principal 
approach of statistical inference is Bayesian estimation, which incorporates reasonable 
expectations or prior judgments (perhaps based on previous studies), as well as new 
observations or experimental results. Another method is the likelihood approach, in 
which “prior probabilities” are eschewed in favour of calculating a value of the param-
eter that would be most “likely” to produce the observed distribution of experimental 
outcomes.

In parametric inference, a particular mathematical form of the distribution function 
is assumed. Nonparametric inference avoids this assumption and is used to estimate 
parameter values of an unknown distribution having an unknown functional form.

Sampling in Statistical Inference

The use of randomization in sampling allows for the analysis of results using the meth-
ods of statistical inference. Statistical inference is based on the laws of probability, and 
allows analysts to infer conclusions about a given population based on results observed 
through random sampling. Two of the key terms in statistical inference are parameter 
and statistic:

A parameter is a number describing a population, such as a percentage or proportion.

A statistic is a number which may be computed from the data observed in a random 
sample without requiring the use of any unknown parameters, such as a sample mean.

Suppose an analyst wishes to determine the percentage of defective items which are 
produced by a factory over the course of a week. Since the factory produces thousands 
of items per week, the analyst takes a sample 300 items and observes that 15 of these 

5
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are defective. Based on these results, the analyst computes the statistic p̂ , 15/300 = 
0.05, as an estimate of the parameter p , or true proportion of defective items in the 
entire population.

Suppose the analyst takes 200 samples, of size 300 each, from the same group of items, 
and achieves the following results:

Number of Samples Percentage of  
Defective Items

20 3
30 4
50 5
45 6
35 7
30 8

The histogram corresponding to these results is shown below:

These results approximate a sampling distribution for the statistic p̂ , or the distri-
bution of values taken by the statistic in all possible samples of the size 300 from the 
population of factory items. The distribution appears to be approximately normal, 
with mean between 0.05 and 0.06. With repeated sampling, the sampling distribution 
would more closely approximate a normal distribution, although it would remain dis-
continuous because of the granularity caused by rounding to percentage points.

Bias and Variability

When a statistic p̂  is systematically skewed away from the true parameter p, it is consid-
ered to be a biased estimator of the parameter. In the factory example above, if the true 
percentage of defective items was known to be 8%, then our sampling distribution would 
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be biased in the direction of estimating too few defective items. An unbiased estimator 
will have a sampling distribution whose mean is equal to the true value of the parameter.

The variability of a statistic is determined by the spread of its sampling distribution. In 
general, larger samples will have smaller variability. This is because as the sample size 
increases, the chance of observing extreme values decreases and the observed values 
for the statistic will group more closely around the mean of the sampling distribution. 
Furthermore, if the population size is significantly larger than the sample size, then the 
size of the population will not affect the variability of the sampling distribution (i.e., a 
sample of size 100 from a population of size 100,000 will have the same variability as a 
sample of size 100 from a population of size 1,000,000).

Algorithmic inference

Algorithmic inference gathers new developments in the statistical inference methods 
made feasible by the powerful computing devices widely available to any data analyst. 
Cornerstones in this field are computational learning theory, granular computing, bio-
informatics, and, long ago, structural probability. The main focus is on the algorithms 
which compute statistics rooting the study of a random phenomenon, along with the 
amount of data they must feed on to produce reliable results. This shifts the interest of 
mathematicians from the study of the distribution laws to the functional properties of 
the statistics, and the interest of computer scientists from the algorithms for processing 
data to the information they process. 

The Fisher Parametric Inference Problem

Concerning the identification of the parameters of a distribution law, the mature reader 
may recall lengthy disputes in the mid-20th century about the interpretation of their 
variability in terms of fiducial distribution , structural probabilities, priors/posteriors, 
and so on. From an epistemology viewpoint, this entailed a companion dispute as to the 
nature of probability: is it a physical feature of phenomena to be described through ran-
dom variables or a way of synthesizing data about a phenomenon? Opting for the latter, 
Fisher defines a fiducial distribution law of parameters of a given random variable that 
he deduces from a sample of its specifications. With this law he computes, for instance 
“the probability that μ (mean of a Gaussian variable is less than any assigned value, or 
the probability that it lies between any assigned values, or, in short, its probability dis-
tribution, in the light of the sample observed”. 

The Classic Solution

Fisher fought hard to defend the difference and superiority of his notion of parameter 
distribution in comparison to analogous notions, such as Bayes’ posterior distribution, 
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Fraser’s constructive probability and Neyman’s confidence intervals. For half a cen-
tury, Neyman’s confidence intervals won out for all practical purposes, crediting the 
phenomenological nature of probability. With this perspective, when you deal with a 
Gaussian variable, its mean μ is fixed by the physical features of the phenomenon you 
are observing, where the observations are random operators, hence the observed val-
ues are specifications of a random sample. Because of their randomness, you may com-
pute from the sample specific intervals containing the fixed μ with a given probability 
that you denote confidence. 

Example:

Let X be a Gaussian variable with parameters µ and s 2 and 1{ , , }mX X… a sample 
drawn from it. Working with statistics, 

1

m

i
i

S Xµ
=

=∑

and 

2
2

1

( ) ,  where 
m

i
i

S
S X X X

m
µ

s
=

= − =∑

is the sample mean, we recognize that, 

2 2

1
/ ( ( 1))

S m m XT
mS S m m

µ

s s

µ µ− − −
= =

−

follows a Student’s t distribution with parameter (degrees of freedom) m − 1, so that, 

/22( / 2) 1
( ) 1 .

(( 1) / 2) 1( 1)

m

T
m tf t

m mmπ
 G

= + G − −−  

Gauging T between two quantiles and inverting its expression as a function of µ you 
obtain confidence intervals forµ . 

With the sample specification: 

{7.14,6.3,3.9,6.46,0.2,2.94,4.14,4.69,6.02,1.58}=x

having size m = 10, you compute the statistics 43.37sµ = and 2 46.07,s
s
= , and obtain 

a 0.90 confidence interval for µ with extremes (3.03, 5.65). 

Inferring Functions with the Help of a Computer

From a modeling perspective the entire dispute looks like a chicken-egg dilemma: Either 
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fixed data by first and probability distribution of their properties as a consequence, or 
fixed properties by first and probability distribution of the observed data as a corollary. 
The classic solution has one benefit and one drawback. The former was appreciated 
particularly back when people still did computations with sheet and pencil. Per se, the 
task of computing a Neyman confidence interval for the fixed parameter θ is hard: you 
don’t know θ, but you look for disposing around it an interval with a possibly very low 
probability of failing. The analytical solution is allowed for a very limited number of 
theoretical cases. Vice versa a large variety of instances may be quickly solved in an 
approximate way via the central limit theorem in terms of confidence interval around 
a Gaussian distribution – that’s the benefit. The drawback is that the central limit theo-
rem is applicable when the sample size is sufficiently large. Therefore, it is less and less 
applicable with the sample involved in modern inference instances. The fault is not in 
the sample size on its own part. Rather, this size is not sufficiently large because of the 
complexity of the inference problem. 

With the availability of large computing facilities, scientists refocused from isolated 
parameters inference to complex functions inference, i.e. re sets of highly nested pa-
rameters identifying functions. In these cases we speak about learning of functions (in 
terms for instance of regression, neuro-fuzzy system or computational learning) on the 
basis of highly informative samples. A first effect of having a complex structure linking 
data is the reduction of the number of sample degrees of freedom, i.e. the burning of a 
part of sample points, so that the effective sample size to be considered in the central 
limit theorem is too small. Focusing on the sample size ensuring a limited learning er-
ror with a given confidence level, the consequence is that the lower bound on this size 
grows with complexity indices such as VC dimension or detail of a class to which the 
function we want to learn belongs. 

A sample of 1,000 independent bits is enough to ensure an absolute error of at most 
0.081 on the estimation of the parameter p of the underlying Bernoulli variable with a 
confidence of at least 0.99. The same size cannot guarantee a threshold less than 0.088 
with the same confidence 0.99 when the error is identified with the probability that a 
20-year-old man living in New York does not fit the ranges of height, weight and waist-
line observed on 1,000 Big Apple inhabitants. The accuracy shortage occurs because 
both the VC dimension and the detail of the class of parallelepipeds, among which the 
one observed from the 1,000 inhabitants’ ranges falls, are equal to 6. 

General Inversion Problem Solving the Fisher Question

With insufficiently large samples, the approach: fixed sample – random properties 
suggests inference procedures in three steps:

•	 Sampling mechanism: It consists of a pair θ( , ),Z g , where the seed Z is a ran-
dom variable without unknown parameters, while the explaining function θg
is a function mapping from samples of Z to samples of the random variable X 

____________________ WORLD TECHNOLOGIES ____________________



WT

153Statistical Inference

we are interested in. The parameter vector θ is a specification of the random 
parameter Θ. Its components are the parameters of the X distribution law. The 
Integral Transform Theorem ensures the existence of such a mechanism for 
each (scalar or vector) X when the seed coincides with the random variable U 
uniformly distributed in [0,1] . 

Example: For X following a Pareto distribution with parameters a and k, i.e,

[ , )( ) 1 ( ),
a

X k
kF x I x
x ∞

 
= −  
 

a sampling mechanism ( , )( , )a kU g for X with seed U reads:
1

( , )( ) (1 ) ,a
a kg u k u

−
= −

or, equivalently, 1/
( , )( ) .a
a kg u ku−=

•	 Master equations: The actual connection between the model and the observed 
data is tossed in terms of a set of relations between statistics on the data and 
unknown parameters that come as a corollary of the sampling mechanisms. We 
call these relations master equations. Pivoting around the statistic.

θ θ= … = …1 1( , , ) ( ( ), , ( ))m ms h x x h g z g z , the general form of a master equation is: 

ρ θ= …1( ; , , ).ms z z

With these relations we may inspect the values of the parameters that could have gen-
erated a sample with the observed statistic from a particular setting of the seeds repre-
senting the seed of the sample. Hence, to the population of sample seeds corresponds 
a population of parameters. In order to ensure this population clean properties, it is 
enough to draw randomly the seed values and involve either sufficient statistics or, 
simply, well-behaved statistics w.r.t. the parameters, in the master equations. 

For example, the statistics 1
1

log
m

i
i

s x
=

=∑ and 2 1, ,
min { }ii m

s x
= …

=  prove to be sufficient for 

parameters a and k of a Pareto random variable X. Thanks to the (equivalent form of 
the) sampling mechanism ( , )a kg we may read them as, 

1
1

log 1 / log
m

i
i

s m k a u
=

= + ∑

1

2 1, ,min { },a
i m is ku

−

= …=

respectively. 
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•	 Parameter population: Having fixed a set of master equations, you may map 
sample seeds into parameters either numerically through a population boot-
strap, or analytically through a twisting argument. Hence from a population of 
seeds you obtain a population of parameters. 

Example: From the above master equation we can draw a pair of parameters, compati-
ble with the observed sample by solving the following system of equations,

1 2

log log min{ }
.

log
i iu m u

a
s m s
−

=
−

∑

1 log

e
ias u

mak
−∑

=

where 1s and 2s are the observed statistics and 1 , , mu u… a set of uniform seeds. Trans-
ferring to the parameters the probability (density) affecting the seeds, you obtain the 
distribution law of the random parameters A and K compatible with the statistics you 
have observed.

Compatibility denotes parameters of compatible populations, i.e. of populations that 
could have generated a sample giving rise to the observed statistics. You may formalize 
this notion as follows: 

For a random variable and a sample drawn from it a compatible distribution is a dis-
tribution having the same sampling mechanism θ= ( , )X Z g of X with a value θ  of 
the random parameter Θ derived from a master equation rooted on a well-behaved 
statistic s. 

Example:

Joint empirical cumulative distribution function of  
parameters ( , )A K of a Pareto random variable.
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Cumulative distribution function of the mean M of a Gaussian random variable.

You may find the distribution law of the Pareto parameters A and K as an implementation 
example of the population bootstrap method as in the figure on the left. 

Implementing the twisting argument method, you get the distribution law ( ) MF µ  of 

the mean M of a Gaussian variable X on the basis of the statistic 
1

m

M i
i

s x
=

=∑  when 2Σ  is 
known to be equal to s 2 . Its expression is: 

( ) ,M
M

m s
F

m
µµ
s

− 
= F 

 

shown in the figure on the right, where F is the cumulative distribution function of a 
standard normal distribution. 

Upper (purple curve) and lower (blue curve) extremes of a 90% confidence  
interval of the mean M of a Gaussian random variable for a fixed s and  

different values of the statistic sm.

Computing a confidence interval for M given its distribution function is straightforward: 
we need only find two quantiles (for instance δ/2  and δ−1 /2  quantiles in case we 
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are interested in a confidence interval of level δ symmetric in the tail’s probabilities) 
as indicated on the left in the diagram showing the behavior of the two bounds for 
different values of the statistic sm. 

The Achilles heel of Fisher’s approach lies in the joint distribution of more than one 
parameter, say mean and variance of a Gaussian distribution. On the contrary, with 
the last approach (and above-mentioned methods: population bootstrap and twisting 
argument) we may learn the joint distribution of many parameters. For instance, focus-
ing on the distribution of two or many more parameters, in the figures below we report 
two confidence regions where the function to be learnt falls with a confidence of 90%. 
The former concerns the probability with which an extended support vector machine 
attributes a binary label 1 to the points of the (x, y) plane. The two surfaces are drawn 
on the basis of a set of sample points in turn labelled according to a specific distribution 
law. The latter concerns the confidence region of the hazard rate of breast cancer recur-
rence computed from a censored sample. 

90% confidence region for the family of support vector  
machines endowed with hyperbolic tangent profile function.

90% confidence region for the hazard function of breast cancer recurrence computed from  
the censored sample (9,13, 13,18,12,23,31,34, 45,48, 161)t = > > > with > t denoting a censored time.
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Twisting Properties

Starting with a sample 1{ , , }mx x… observed from a random variable X having a given 
distribution law with a non-set parameter, a parametric inference problem consists of 
computing suitable values – call them estimates – of this parameter precisely on the 
basis of the sample. An estimate is suitable if replacing it with the unknown parameter 
does not cause major damage in next computations. In algorithmic inference, suitabil-
ity of an estimate reads in terms of compatibility with the observed sample. 

In turn, parameter compatibility is a probability measure that we derive from the prob-
ability distribution of the random variable to which the parameter refers. In this way 
we identify a random parameter Θ compatible with an observed sample. Given a sam-
pling mechanism ( , ),XM g Zθ=  the rationale of this operation lies in using the Z seed 
distribution law to determine both the X distribution law for the given θ, and the Θ 
distribution law given an X sample. Hence, we may derive the latter distribution direct-
ly from the former if we are able to relate domains of the sample space to subsets of Θ 
support. In more abstract terms, we speak about twisting properties of samples with 
properties of parameters and identify the former with statistics that are suitable for this 
exchange, so denoting a well behavior w.r.t. the unknown parameters. The operational 
goal is to write the analytic expression of the cumulative distribution function ( ),F θΘ

, in light of the observed value s of a statistic S, as a function of the S distribution law 
when the X parameter is exactly θ.

Method

Given a sampling mechanism ( , )XM g Zθ= for the random variable X, we model 
1{ , , }mX X= …x to be equal to 1{ ( ), , ( )}mg Z g Zθ θ… . Focusing on a relevant statistic 

1 1( , , )mS h X X= … for the parameter θ, the master equation reads, 

1 1( ( ), , ( )) ( ; , , ).m ms h g z g z z zθ θ ρ θ= … = …

When s is a well-behaved statistic w.r.t the parameter, we are sure that a monotone 
relation exists for each z 1{ , , }mz z= …z between s and θ. We are also assured that Θ, as a 
function of Z for given s, is a random variable since the master equation provides solu-
tions that are feasible and independent of other (hidden) parameters.

The direction of the monotony determines for any z a relation between events of the 
type s s θ θ′ ′≥ ↔ ≥ or vice versa s s θ θ′≥ ≤ ′↔ , where s′ is computed by the master 
equation with θ ′ . In the case that s assumes discrete values the first relation chang-
es into s s s sθ θ′ ′ ′≥ → ≥ → ≥ + where 0> is the size of the s discretization grain, 
idem with the opposite monotony trend. Resuming these relations on all seeds, for s 
continuous we have either, 

θθΘ = Θ=( ) = ( )| |S s SF F s
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or

θθΘ = Θ=( ) = − ( )| |1S s SF F s

For s discrete we have an interval where θΘ = ( )|S sF lies, because of 0.>  The whole 
logical contrivance is called a twisting argument. A procedure implementing it is as 
follows.

Algorithm

Generating a Parameter Distribution law through a Twisting  
Argument 

Given a sample 1{ , , }mx x… from a random variable with parameter θ unknown, 

•	 Identify a well behaving statistic S for the parameter θ and its discretization 
grain  (if any).

•	 Decide the monotony versus.

•	 Compute θ θθΘ Θ= Θ=∈ 1 | 2 |( ) ( ( ( )), ( ( )))S SF q F s q F s where: 

◦◦ if S is continuous 1 2q q= .

◦◦ if S is discrete. 

▪▪ 2 1( ( )) ( ( )S Sq F s q F s= −  if s does not decrease with θ.

▪▪ = − 1 2( ( )) ( ( )S Sq F s q F s if s does not increase with θ.

▪▪ ( ) 1i S Sq F F= − if s does not decrease with θ and ( )i S Sq F F= if s does 
not increase with θ for 1,2.i =

The rationale behind twisting arguments does not change when parameters are vec-
tors, though some complication arises from the management of joint inequalities. 
Instead, the difficulty of dealing with a vector of parameters proved to be the Achil-
les heel of Fisher’s approach to the fiducial distribution of parameters. Also Fraser’s 
constructive probabilities devised for the same purpose do not treat this point com-
pletely. 

Example:

For x drawn from a gamma distribution, whose specification requires values for the 
parameters λ and k, a twisting argument may be stated by following the below proce-
dure. Given the meaning of these parameters we know that, 

( ) ( ) for fixed ,k kk k s s λ′′≤ ↔ ≤
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( ) ( ) for fixed ,s s kλ λλ λ ′′≤ ↔ ≤

where 
1

m

k i
i

s x
=

=∏ and 
1

.
m

i
i

s xλ
=

=∑ . This leads to a joint cumulative distribution function 

λλ λ λΛ Λ = Λ= Λ= = |, |( , ) ( ) ( ) ( ) ( ).K K k K KF k F F k F k F

Using the first factorization and replacing ks with k
k m

s
r

sλ
= in order to have a distribu-

tion of K that is independent of Λ, we have, 

λλ Λ
Λ =

G
= −

G|

( , )
( ) 1

( )K k
km s

F
km

( ) 1 ( )
kK R KF k F r= −

with m denoting the sample size, Λs and Kr are the observed statistics (hence with in-
dices denoted by capital letters), Ã( , )a b the incomplete gamma function and ( )

kR KF r
the Fox’s H function that can be approximated with a gamma distribution again with 
proper parameters (for instance estimated through the method of moments) as a func-
tion of k and m. 

Joint probability density function of parameters ( , )K Λ of a Gamma random variable.

Marginal cumulative distribution function of parameter K of a Gamma random variable.
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With a sample size Λ= =30, 72.82m s and Kr = 464.5 10−× , you may find the joint 
p.d.f. of the Gamma parameters K and Λ on the left. The marginal distribution of K is 
reported in the picture on the right. 

Fiducial inference

Fiducial inference is one of a number of different types of statistical inference. These 
are rules, intended for general application, by which conclusions can be drawn from 
samples of data. In modern statistical practice, attempts to work with fiducial inference 
have fallen out of fashion in favour of frequentist inference, Bayesian inference and de-
cision theory. However, fiducial inference is important in the history of statistics since 
its development led to the parallel development of concepts and tools in theoretical sta-
tistics that are widely used. Some current research in statistical methodology is either 
explicitly linked to fiducial inference or is closely connected to it. 

The general approach of fiducial inference was proposed by Ronald Fisher. Here “fidu-
cial” comes from the Latin for faith. Fiducial inference can be interpreted as an attempt to 
perform inverse probability without calling on prior probability distributions. Fiducial in-
ference quickly attracted controversy and was never widely accepted. Indeed, counter-ex-
amples to the claims of Fisher for fiducial inference were soon published. These count-
er-examples cast doubt on the coherence of “fiducial inference” as a system of statistical 
inference or inductive logic. Other studies showed that, where the steps of fiducial infer-
ence are said to lead to “fiducial probabilities” (or “fiducial distributions”), these probabil-
ities lack the property of additivity, and so cannot constitute a probability measure. 

The concept of fiducial inference can be outlined by comparing its treatment of the 
problem of interval estimation in relation to other modes of statistical inference. 

•	 A confidence interval, in frequentist inference, with coverage probability γ has the 
interpretation that among all confidence intervals computed by the same meth-
od, a proportion γ will contain the true value that needs to be estimated. This has 
either a repeated sampling (or frequentist) interpretation, or is the probability 
that an interval calculated from yet-to-be-sampled data will cover the true value. 
However, in either case, the probability concerned is not the probability that the 
true value is in the particular interval that has been calculated since at that stage 
both the true value and the calculated interval are fixed and are not random.

•	 Credible intervals, in Bayesian inference, do allow a probability to be given for 
the event that an interval, once it has been calculated does include the true val-
ue, since it proceeds on the basis that a probability distribution can be associ-
ated with the state of knowledge about the true value, both before and after the 
sample of data has been obtained.
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Fisher designed the fiducial method to meet perceived problems with the Bayesian 
approach, at a time when the frequentist approach had yet to be fully developed. 
Such problems related to the need to assign a prior distribution to the unknown 
values. The aim was to have a procedure, like the Bayesian method, whose results 
could still be given an inverse probability interpretation based on the actual data ob-
served. The method proceeds by attempting to derive a “fiducial distribution”, which 
is a measure of the degree of faith that can be put on any given value of the unknown 
parameter and is faithful to the data in the sense that the method uses all available 
information. 

Unfortunately Fisher did not give a general definition of the fiducial method and he 
denied that the method could always be applied. His only examples were for a single 
parameter; different generalisations have been given when there are several parame-
ters. A relatively complete presentation of the fiducial approach to inference is given by 
Quenouille, while Williams describes the application of fiducial analysis to the calibra-
tion problem (also known as “inverse regression”) in regression analysis. 

The Fiducial Distribution

Fisher required the existence of a sufficient statistic for the fiducial method to apply. 
Suppose there is a single sufficient statistic for a single parameter. That is, suppose that 
the conditional distribution of the data given the statistic does not depend on the value 
of the parameter. For example, suppose that n independent observations are uniformly 
distributed on the interval [0, ]ω . The maximum, X, of the n observations is a sufficient 
statistic for ω. If only X is recorded and the values of the remaining observations are 
forgotten, these remaining observations are equally likely to have had any values in 
the interval[0, ].X  This statement does not depend on the value of ω. Then X contains 
all the available information about ω and the other observations could have given no 
further information. 

The cumulative distribution function of X is, 

( )( ) ( ) all observations .
nxF x P X x P x

ω
 = ≤ = ≤ =  
 

Probability statements about X/ω may be made. For example, given α, a value of a can 
be chosen with 0 < a < 1 such that, 

( ) 1 .nP X a aω α> = − =

Thus, 

1

(1 ) .na α= −
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Then Fisher might say that this statement may be inverted into the form, 

.
XP
a

ω α < = 
 

In this latter statement, ω is now regarded as variable and X is fixed, whereas previous-
ly it was the other way round. This distribution of ω is the fiducial distribution which 
may be used to form fiducial intervals that represent degrees of belief. 

The calculation is identical to the pivotal method for finding a confidence interval, but 
the interpretation is different. In fact older books use the terms confidence interval 
and fiducial interval interchangeably. Notice that the fiducial distribution is uniquely 
defined when a single sufficient statistic exists. 

The pivotal method is based on a random variable that is a function of both the obser-
vations and the parameters but whose distribution does not depend on the parameter. 
Such random variables are called pivotal quantities. By using these, probability state-
ments about the observations and parameters may be made in which the probabilities 
do not depend on the parameters and these may be inverted by solving for the param-
eters in much the same way as in the example above. However, this is only equivalent 
to the fiducial method if the pivotal quantity is uniquely defined based on a sufficient 
statistic. 

A fiducial interval could be taken to be just a different name for a confidence interval 
and give it the fiducial interpretation. But the definition might not then be unique. 
Fisher would have denied that this interpretation is correct: for him, the fiducial 
distribution had to be defined uniquely and it had to use all the information in the 
sample. 

Status of the Approach

Fisher admitted that “fiducial inference” had problems. Fisher wrote to George A. Bar-
nard that he was “not clear in the head” about one problem on fiducial inference, and, 
also writing to Barnard, Fisher complained that his theory seemed to have only “an 
asymptotic approach to intelligibility”. Later Fisher confessed that “I don’t understand 
yet what fiducial probability does. We shall have to live with it a long time before we 
know what it’s doing for us. But it should not be ignored just because we don’t yet have 
a clear interpretation”. 

Lindley showed that fiducial probability lacked additivity, and so was not a probability 
measure. Cox points out that the same argument applies to the so-called “confidence 
distribution” associated with confidence intervals, so the conclusion to be drawn from 
this is moot. Fisher sketched “proofs” of results using fiducial probability. When the 
conclusions of Fisher’s fiducial arguments are not false, many have been shown to also 
follow from Bayesian inference. 
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In 1978, J. G. Pederson wrote that “the fiducial argument has had very limited success 
and is now essentially dead”. Davison wrote “A few subsequent attempts have been made 
to resurrect fiducialism, but it now seems largely of historical importance, particularly in 
view of its restricted range of applicability when set alongside models of current interest.”

However, fiducial inference is still being studied and its principles appear valuable for 
some scientific applications. In the mid-2010s, the psychometrician Yang Liu devel-
oped generalized fiducial inference for models in item response theory and demon-
strated favorable results compared to frequentist and Bayesian approaches. Other cur-
rent work in fiducial inference is ongoing under the name of confidence distributions. 

Bayesian inference

Bayesian inference is a method of statistical inference in which Bayes’ theorem is used 
to update the probability for a hypothesis as more evidence or information becomes 
available. Bayesian inference is an important technique in statistics, and especially in 
mathematical statistics. Bayesian updating is particularly important in the dynamic 
analysis of a sequence of data. Bayesian inference has found application in a wide range 
of activities, including science, engineering, philosophy, medicine, sport, and law. In 
the philosophy of decision theory, Bayesian inference is closely related to subjective 
probability, often called “Bayesian probability”. 

Introduction to Bayes’ Rule
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A geometric visualisation of Bayes’ theorem. In the table, the values 2, 3, 6 and 9 give 
the relative weights of each corresponding condition and case. The figures denote the 
cells of the table involved in each metric, the probability being the fraction of each fig-

ure that is shaded. This shows that P(A|B) P(B) = P(B|A) P(A) i.e. P(A|B) 
 ( )( | )

( )
P BA P A

P B
= . 

Similar reasoning can be used to show that P(Ā|B)  ( )( | )
( )

P B A P A
P B

=  etc.

Formal Explanation

Bayesian inference derives the posterior probability as a consequence of two anteced-
ents: a prior probability and a “likelihood function” derived from a statistical model for 
the observed data. Bayesian inference computes the posterior probability according to 
Bayes’ theorem: 

P E H P HP H E
P E

( )· ( )
( )

( )
=

∣
∣

where, 

•	 H stands for any hypothesis whose probability may be affected by data (called 
evidence below). Often there are competing hypotheses, and the task is to de-
termine which is the most probable.

•	 P H( ) , the prior probability, is the estimate of the probability of the hypothesis 
H before the data E , the current evidence, is observed.

•	 E , the evidence, corresponds to new data that were not used in computing the 
prior probability.

•	 P H E( )∣ , the posterior probability, is the probability of H given E , i.e., after 
E is observed. This is what we want to know: the probability of a hypothesis 
given the observed evidence.

•	 P E H( )∣ is the probability of observing E given H,  and is called the likelihood. 
As a function of E with H fixed, it indicates the compatibility of the evidence 
with the given hypothesis. The likelihood function is a function of the evidence, 
H,  while the posterior probability is a function of the hypothesis, H.

•	 P E( ) is sometimes termed the marginal likelihood or “model evidence”. This 
factor is the same for all possible hypotheses being considered (as is evident 
from the fact that the hypothesis H does not appear anywhere in the symbol, 
unlike for all the other factors), so this factor does not enter into determining 
the relative probabilities of different hypotheses.

For different values of H , only the factors P H( ) and P E H( )∣ , both in the numerator, 
affect the value of P H E( )∣ – the posterior probability of a hypothesis is proportional 
to its prior probability (its inherent likeliness) and the newly acquired likelihood (its 
compatibility with the new observed evidence). 
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Bayes’ rule can also be written as follows: 

P E HP H E P H
P E
( )

( ) · ( )
( )

=
∣

∣

where the factor 
P E H

P E
( )

( )
∣

can be interpreted as the impact of E on the probability of 
H.

Probability of a Hypothesis

Suppose there are two full bowls of cookies. Bowl #1 has 10 chocolate chip and 30 plain 
cookies, while bowl #2 has 20 of each. Our friend Fred picks a bowl at random, and 
then picks a cookie at random. We may assume there is no reason to believe Fred treats 
one bowl differently from another, likewise for the cookies. The cookie turns out to be 
a plain one. How probable is it that Fred picked it out of bowl #1? 

Intuitively, it seems clear that the answer should be more than a half, since there are 
more plain cookies in bowl #1. The precise answer is given by Bayes’ theorem. Let 1H
correspond to bowl #1, and 2H to bowl #2. It is given that the bowls are identical from 
Fred’s point of view, thus 1 2P H P H( ) ( )= , and the two must add up to 1, so both are 
equal to 0.5. The event E is the observation of a plain cookie. From the contents of the 
bowls, we know that 1 30 40 0 75P E H( ) / .= =∣ and 2 20 40 0 5P E H( ) / . .= =∣ Bayes’ for-
mula then yields, 

1 1
1

1 1 2 2

0 75 0 5
0 75 0 5 0 5 0 5
0 6

P E H P H
P H E

P E H P H P E H P H
( ) ( )

( )
( ) ( ) ( ) ( )

. .
. . . .
.

=
+

×
=

× + ×
=

∣
∣

∣ ∣

Before we observed the cookie, the probability we assigned for Fred having chosen bowl 
#1 was the prior probability, 1P H( ) , which was 0.5. After observing the cookie, we 
must revise the probability to 1  P H E( ),∣ , which is 0.6.

Making a Prediction

An archaeologist is working at a site thought to be from the medieval period, between 
the 11th century to the 16th century. However, it is uncertain exactly when in this pe-
riod the site was inhabited. Fragments of pottery are found, some of which are glazed 
and some of which are decorated. It is expected that if the site were inhabited during 
the early medieval period, then 1% of the pottery would be glazed and 50% of its area 
decorated, whereas if it had been inhabited in the late medieval period then 81% would 
be glazed and 5% of its area decorated. How confident can the archaeologist be in the 
date of inhabitation as fragments are unearthed? 
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Example results for archaeology example. This simulation was generated using c=15.2.

The degree of belief in the continuous variable C  (century) is to be calculated, with the 
discrete set of events GD GD GD GD{ , , , } as evidence. Assuming linear variation of glaze 
and decoration with time, and that these variables are independent, 

0 81 0 01 0 5 0 050 01 11 0 5 11
16 11 16 11

P E GD C c c c. . . .
( ) ( . ( ))( . ( ))

− −
= = = + − − −

− −
∣

0 81 0 01 0 5 0 050 01 11 0 5 11
16 11 16 11

P E GD C c c c. . . .
( ) ( . ( ))( . ( ))

− −
= = = + − + −

− −
∣

0 81 0 01 0 5 0 051 0 01 11 0 5 11
16 11 16 11

P E GD C c c c. . . .
( ) (( . ) ( ))( . ( ))

− −
= = = − − − − −

− −
∣

0 81 0 01 0 5 0 051 0 01 11 0 5 11
16 11 16 11

P E GD C c c c. . . .
( ) (( . ) ( ))( . ( ))

− −
= = = − − − + −

− −
∣

Assume a uniform prior of 0 2Cf c( ) . ,=  and that trials are independent and identically 
distributed. When a new fragment of type e is discovered, Bayes’ theorem is applied to 
update the degree of belief for each c:

( ) ( )
( ) ( ) ( )

( ) ( )
( )16

11

= = = =
= = =

= = =∫
| |

|
|

C C C

C

P E e C c P E e C c
f c E e f c f c

P E e P E e C c f c dc

A computer simulation of the changing belief as 50 fragments are unearthed is shown 
on the graph. In the simulation, the site was inhabited around 1420, or 15 2c  . .= . By cal-
culating the area under the relevant portion of the graph for 50 trials, the archaeologist 
can say that there is practically no chance the site was inhabited in the 11th and 12th 
centuries, about 1% chance that it was inhabited during the 13th century, 63% chance 
during the 14th century and 36% during the 15th century. The Bernstein-von Mises 
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theorem asserts here the asymptotic convergence to the “true” distribution because the 
probability space corresponding to the discrete set of events { }GD GD GD GD, , , is finite.

In Frequentist Statistics and Decision Theory

A decision-theoretic justification of the use of Bayesian inference was given by Abra-
ham Wald, who proved that every unique Bayesian procedure is admissible. Converse-
ly, every admissible statistical procedure is either a Bayesian procedure or a limit of 
Bayesian procedures. 

Wald characterized admissible procedures as Bayesian procedures (and limits of Bayes-
ian procedures), making the Bayesian formalism a central technique in such areas of 
frequentist inference as parameter estimation, hypothesis testing, and computing con-
fidence intervals. For example: 

•	 “Under some conditions, all admissible procedures are either Bayes procedures 
or limits of Bayes procedures (in various senses). These remarkable results, at 
least in their original form, are due essentially to Wald. They are useful because 
the property of being Bayes is easier to analyze than admissibility”.

•	 “In decision theory, a quite general method for proving admissibility consists in 
exhibiting a procedure as a unique Bayes solution”.

•	 “In the first chapters of this work, prior distributions with finite support and 
the corresponding Bayes procedures were used to establish some of the main 
theorems relating to the comparison of experiments. Bayes procedures with re-
spect to more general prior distributions have played a very important role in 
the development of statistics, including its asymptotic theory.” “There are many 
problems where a glance at posterior distributions, for suitable priors, yields 
immediately interesting information. Also, this technique can hardly be avoid-
ed in sequential analysis”.

•	 “A useful fact is that any Bayes decision rule obtained by taking a proper prior 
over the whole parameter space must be admissible”.

•	 “An important area of investigation in the development of admissibility ideas 
has been that of conventional sampling-theory procedures, and many interest-
ing results have been obtained”.

Probabilistic Programming

While conceptually simple, Bayesian methods can be mathematically and numerical-
ly challenging. Probabilistic programming languages (PPLs) implement functions to 
easily build Bayesian models together with efficient automatic inference methods. This 
helps separate the model building from the inference, allowing practitioners to focus on 
their specific problems and leaving PPLs to handle the computational details for them. 
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Applications

Computer Applications

Bayesian inference has applications in artificial intelligence and expert systems. Bayes-
ian inference techniques have been a fundamental part of computerized pattern rec-
ognition techniques since the late 1950s. There is also an ever-growing connection be-
tween Bayesian methods and simulation-based Monte Carlo techniques since complex 
models cannot be processed in closed form by a Bayesian analysis, while a graphical 
model structure may allow for efficient simulation algorithms like the Gibbs sampling 
and other Metropolis–Hastings algorithm schemes. Recently Bayesian inference has 
gained popularity among the phylogenetics community for these reasons; a number 
of applications allow many demographic and evolutionary parameters to be estimated 
simultaneously. 

As applied to statistical classification, Bayesian inference has been used in recent years 
to develop algorithms for identifying e-mail spam. Applications which make use of 
Bayesian inference for spam filtering include CRM114, DSPAM, Bogofilter, SpamAssas-
sin, SpamBayes, Mozilla, XEAMS, and others. 

Solomonoff’s Inductive inference is the theory of prediction based on observations; 
for example, predicting the next symbol based upon a given series of symbols. The 
only assumption is that the environment follows some unknown but computable prob-
ability distribution. It is a formal inductive framework that combines two well-studied 
principles of inductive inference: Bayesian statistics and Occam’s Razor. Solomonoff’s 
universal prior probability of any prefix p of a computable sequence x is the sum of the 
probabilities of all programs (for a universal computer) that compute something start-
ing with p. Given some p and any computable but unknown probability distribution 
from which x is sampled, the universal prior and Bayes’ theorem can be used to predict 
the yet unseen parts of x in optimal fashion. 

Bioinformatic and Healthcare Applications

Bayesian inference has been applied in different Bioinformatics applications, includ-
ing differential gene expression analysis. Bayesian inference is also used in a general 
cancer risk model, called CIRI (Continuous Individualized Risk Index), where serial 
measurements are incorporated to update a Bayesian model which is primarily built 
from prior knowledge. 

In the Courtroom

Bayesian inference can be used by jurors to coherently accumulate the evidence for and 
against a defendant, and to see whether, in totality, it meets their personal threshold for 
‘beyond a reasonable doubt’. Bayes’ theorem is applied successively to all evidence pre-
sented, with the posterior from one stage becoming the prior for the next. The benefit 
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of a Bayesian approach is that it gives the juror an unbiased, rational mechanism for 
combining evidence. It may be appropriate to explain Bayes’ theorem to jurors in odds 
form, as betting odds are more widely understood than probabilities. Alternatively, a 
logarithmic approach, replacing multiplication with addition, might be easier for a jury 
to handle. 

Adding up evidence.

If the existence of the crime is not in doubt, only the identity of the culprit, it has been 
suggested that the prior should be uniform over the qualifying population. For exam-
ple, if 1,000 people could have committed the crime, the prior probability of guilt would 
be 1/1000. 

The use of Bayes’ theorem by jurors is controversial. In the United Kingdom, a de-
fence expert witness explained Bayes’ theorem to the jury in R v Adams. The jury 
convicted, but the case went to appeal on the basis that no means of accumulating 
evidence had been provided for jurors who did not wish to use Bayes’ theorem. The 
Court of Appeal upheld the conviction, but it also gave the opinion that “To introduce 
Bayes’ Theorem, or any similar method, into a criminal trial plunges the jury into in-
appropriate and unnecessary realms of theory and complexity, deflecting them from 
their proper task”. 

Gardner-Medwin argues that the criterion on which a verdict in a criminal trial should 
be based is not the probability of guilt, but rather the probability of the evidence, giv-
en that the defendant is innocent (akin to a frequentist p-value). He argues that if the 
posterior probability of guilt is to be computed by Bayes’ theorem, the prior probability 
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of guilt must be known. This will depend on the incidence of the crime, which is an 
unusual piece of evidence to consider in a criminal trial. Consider the following three 
propositions: 

•	 The known facts and testimony could have arisen if the defendant is guilty.

•	 The known facts and testimony could have arisen if the defendant is innocent.

•	 The defendant is guilty.

Gardner-Medwin argues that the jury should believe both A and not-B in order to con-
vict. A and not-B implies the truth of C, but the reverse is not true. It is possible that B 
and C are both true, but in this case he argues that a jury should acquit, even though 
they know that they will be letting some guilty people go free. 

Bayesian Epistemology

Bayesian epistemology is a movement that advocates for Bayesian inference as a means 
of justifying the rules of inductive logic. 

Karl Popper and David Miller have rejected the idea of Bayesian rationalism, i.e. using 
Bayes rule to make epistemological inferences: It is prone to the same vicious circle as 
any other justificationist epistemology, because it presupposes what it attempts to jus-
tify. According to this view, a rational interpretation of Bayesian inference would see it 
merely as a probabilistic version of falsification, rejecting the belief, commonly held by 
Bayesians, that high likelihood achieved by a series of Bayesian updates would prove 
the hypothesis beyond any reasonable doubt, or even with likelihood greater than 0. 

Other

•	 The scientific method is sometimes interpreted as an application of Bayesian in-
ference. In this view, Bayes’ rule guides (or should guide) the updating of prob-
abilities about hypotheses conditional on new observations or experiments. The 
Bayesian inference has also been applied to treat stochastic scheduling prob-
lems with incomplete information by Cai.

•	 Bayesian search theory is used to search for lost objects.

•	 Bayesian inference in phylogeny.

•	 Bayesian tool for methylation analysis.

•	 Bayesian approaches to brain function investigate the brain as a Bayesian mech-
anism.

•	 Bayesian inference in ecological studies.

•	 Bayesian inference is used to estimate parameters in stochastic chemical kinetic 
models.
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Bayesian Inference in Marketing

Bayes’ Theorem.

In marketing, Bayesian inference allows for decision making and market research eval-
uation under uncertainty and with limited data. 

Bayes’ theorem is fundamental to Bayesian inference. It is a subset of statistics, providing 
a mathematical framework for forming inferences through the concept of probability, in 
which evidence about the true state of the world is expressed in terms of degrees of belief 
through subjectively assessed numerical probabilities. Such a probability is known as a 
Bayesian probability. The fundamental ideas and concepts behind Bayes’ theorem, and 
its use within Bayesian inference, have been developed and added to over the past cen-
turies by Thomas Bayes, Richard Price and Pierre Simon Laplace as well as numerous 
other mathematicians, statisticians and scientists. Bayesian inference has experienced 
spikes in popularity as it has been seen as vague and controversial by rival frequen-
tist statisticians. In the past few decades Bayesian inference has become widespread in 
many scientific and social science fields such as marketing. Bayesian inference allows 
for decision making and market research evaluation under uncertainty and limited data. 

Bayes’ Theorem

Bayesian probability specifies that there is some prior probability. Bayesian statisti-
cians can use both an objective and a subjective approach when interpreting the prior 
probability, which is then updated in light of new relevant information. The concept is 
a manipulation of conditional probabilities:

( ) ( | ) ( ) ( | ) ( )P AB P A B P B P B A P A= =

Alternatively, a more simple understanding of the formula may be reached by substi-
tuting the events A and B to become respectively the hypothesis ( )H and the data ( )D . 
The rule allows for a judgment of the relative truth of the hypothesis given the data. 

This is done through the calculation shown below, where ( | )P D H is the likelihood 
function. This assesses the probability of the observed data ( )D arising from the hypoth-
esis ( )H ; ( )P H is the assigned prior probability or initial belief about the hypothesis; 
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the denominator ( )P D is formed by the integrating or summing of ( | ) ( )P D H P H ; 
( | )P H D is known as the posterior which is the recalculated probability, or updated be-

lief about the hypothesis. It is a result of the prior beliefs as well as sample information. 
The posterior is a conditional distribution as the result of collecting or in consideration 
of new relevant data.

( | ) ( )
( | )

( )
P D H P HP H D

P D
=

To sum up this formula: the posterior probability of the hypothesis is equal to the prior 
probability of the hypothesis multiplied by the conditional probability of the evidence 
given the hypothesis, divided by the probability of the new evidence. 

Use in Marketing

Bayesian decision theory can be applied to all four areas of the marketing mix. Assess-
ments are made by a decision maker on the probabilities of events that determine the 
profitability of alternative actions where the outcomes are uncertain. Assessments are 
also made for the profit (utility) for each possible combination of action and event. The 
decision maker can decide how much research, if any, needs to be conducted in order 
to investigate the consequences associated with the courses of action under evalua-
tion. This is done before a final decision is made, but in order to do this costs would be 
incurred, time used and may overall be unreliable. For each possible action, expected 
profit can be computed, that is a weighted mean of the possible profits, the weights 
being the probabilities. The decision maker can then choose the action for which the 
expected profit is the highest. The theorem provides a formal reconciliation between 
judgment expressed quantitatively in the prior distribution and the statistical evidence 
of the experiment. 

New Product Development

The use of Bayesian decision theory in new product development allows for the use of 
subjective prior information. Bayes in new product development allows for the com-
parison of additional review project costs with the value of additional information in 
order to reduce the costs of uncertainty. The methodology used for this analysis is in 
the form of decision trees and ‘stop’/‘go’ procedures. If the predicted payoff (the poste-
rior) is acceptable for the organisation the project should go ahead, if not, development 
should stop. By reviewing the posterior (which then becomes the new prior) on regular 
intervals throughout the development stage managers are able to make the best possi-
ble decision with the information available at hand. 

Pricing Decisions

Bayesian decision theory can be used in looking at pricing decisions. Field information 
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such as retail and wholesale prices as well as the size of the market and market share 
are all incorporated into the prior information. Managerial judgement is included in 
order to evaluate different pricing strategies. This method of evaluating possible pric-
ing strategies does have its limitations as it requires a number of assumptions to be 
made about the market place in which an organisation operates. As markets are dy-
namic environments it is often difficult to fully apply Bayesian decision theory to pric-
ing strategies without simplifying the model. 

Promotional Campaigns

When dealing with promotion a marketing manager must account for all the market 
complexities that are involved in a decision. As it is difficult to account for all aspects of 
the market, a manager should look to incorporate both experienced judgements from 
senior executives as well modifying these judgements in light of economically justifi-
able information gathering. An example of the application of Bayesian decision theory 
for promotional purposes could be the use of a test sample in order to assess the effec-
tiveness of a promotion prior to a full scale rollout. By combining prior subjective data 
about the occurrence of possible events with experimental empirical evidence gained 
through a test market, the resultant data can be used to make decisions under risk. 

Channel Decisions and the Logistics of Distribution

Bayesian decision analysis can also be applied to the channel selection process. In or-
der to help provide further information the method can be used that produces results 
in a profit or loss aspect. Prior information can include costs, expected profit, training 
expenses and any other costs relevant to the decision as well as managerial experience 
which can be displayed in a normal distribution. Bayesian decision making under un-
certainty lets a marketing manager assess his/her options for channel logistics by com-
puting the most profitable method choice. A number of different costs can be entered 
into the model that helps to assess the ramifications of change in distribution method. 
Identifying and quantifying all of the relevant information for this process can be very 
time consuming and costly if the analysis delays possible future earnings. 

Strengths

The Bayesian approach is superior to use in decision making when there is a high level of 
uncertainty or limited information in which to base decisions on and where expert opin-
ion or historical knowledge is available. Bayes is also useful when explaining the findings 
in a probability sense to people who are less familiar and comfortable with comprehend-
ing statistics. It is in this sense that Bayesian methods are thought of as having created 
a bridge between business judgments and statistics for the purpose of decision-making. 

The three principle strengths of Bayes’ theorem that have been identified by scholars 
are that it is prescriptive, complete and coherent. Prescriptive in that it is the theorem 
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that is the simple prescription to the conclusions reached on the basis of evidence and 
reasoning for the consistent decision maker. It is complete because the solution is often 
clear and unambiguous, for a given choice of model and prior distribution. It allows for 
the incorporation of prior information when available to increase the robustness of the 
solutions, as well as taking into consideration the costs and risks that are associated 
with choosing alternative decisions. Lastly Bayes theorem is coherent. It is considered 
the most appropriate way to update beliefs by welcoming the incorporation of new in-
formation, as is seen through the probability distributions. This is further complement-
ed by the fact that Bayes inference satisfies the likelihood principle, which states that 
models or inferences for datasets leading to the same likelihood function should gen-
erate the same statistical information. Bayes methods are more cost effective than the 
traditional frequentist take on marketing research and subsequent decision making. 
The probability can be assessed from a degree of belief before and after accounting for 
evidence, instead of calculating the probabilities of a certain decision by carrying out a 
large number of trials with each one producing an outcome from a set of possible out-
comes. The planning and implementation of trials to see how a decision impacts in the 
‘field’ e.g. observing consumers reaction to a relabeling of a product, is time consuming 
and costly, a method many firms cannot afford. In place of taking the frequentist route 
in aiming for a universally acceptable conclusion through iteration, it is sometimes 
more effective to take advantage of all the information available to the firm to work out 
the ‘best’ decision at the time, and then subsequently when new knowledge is obtained, 
revise the posterior distribution to be then used as the prior, thus the inferences con-
tinue to logically contribute to one another based on Bayes theorem. 

Weaknesses

In marketing situations, it is important that the prior probability is (1) chosen correct-
ly, and (2) is understood. A disadvantage to using Bayesian analysis is that there is no 
‘correct’ way to choose a prior, therefore the inferences require a thorough analysis to 
translate the subjective prior beliefs into a mathematically formulated prior to ensure 
that the results will not be misleading and consequently lead to the disproportionate 
analysis of preposteriors. The subjective definition of probability and the selection and 
use of the priors have led to statisticians critiquing this subjective definition of proba-
bility that underlies the Bayesian approach. Bayesian probability is often found to be 
difficult when analysing and assessing probabilities due to its initial counter intuitive 
nature. Often when deciding between strategies based on a decision, they are inter-
preted as: where there is evidence X that shows condition A might hold true, is mis-
read by judging A’s likelihood by how well the evidence X matches A, but crucially 
without considering the prior frequency of A. In alignment with Falsification, which 
aims to question and falsify instead of prove hypotheses, where there is very strong 
evidence X, it does not necessarily mean there is a very high probability that A leads 
to B, but in fact should be interpreted as a very low probability of A not leading to B. 
In the field of marketing, behavioural experiments which have dealt with managerial 
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decision-making, and risk perception, in consumer decisions have utilised the Bayesian 
model, or similar models, but found that it may not be relevant quantitatively in pre-
dicting human information processing behaviour. Instead the model has been proven 
as useful as a qualitative means of describing how individuals combine new evidence 
with their predetermined judgements. Therefore, “the model may have some value as a 
first approximation to the development of descriptive choice theory” in consumer and 
managerial instances. 

An advertising manager is deciding whether or not to increase the advertising for a prod-
uct in a particular market. The Bayes approach to this decision suggests: 1) These alter-
native courses of action for which the consequences are uncertain are a necessary con-
dition in order to apply Bayes’; 2) The advertising manager will pick the course of action 
which allows him to achieve some objective i.e. a maximum return on his advertising in-
vestment in the form of profit; 3) He must determine the possible consequences of each 
action into some measure of success (or loss) with which a certain objective is achieved. 

This 3 component example explains how the payoffs are conditional upon which out-
comes occur. The advertising manager can characterize the outcomes based on past ex-
perience and knowledge and devise some possible events that are more likely to occur 
than others. He can then assign to these events prior probabilities, which would be in 
the form of numerical weights. 

He can test out his predictions (prior probabilities) through an experiment. For ex-
ample, he can run a test campaign to decide if the total level of advertising should be 
in fact increased. Based on the outcome of the experiment he can re-evaluate his prior 
probability and make a decision on whether to go ahead with increasing the advertising 
in the market or not. However gathering this additional data is costly, time consuming 
and may not lead to perfectly reliable results. As a decision makers he has to deal with 
experimental and systematic error and this is where Bayes’ comes in. 

It approaches the experimental problem by asking; is additional data required? If so, how 
much needs to be collected and by what means and finally, how does the decision maker 
revise his prior judgment in light of the results of the new experimental evidence? In this 
example the advertising manager can use the Bayesian approach to deal with his dilemma 
and update his prior judgments in light of new information he gains. He needs to take into 
account the profit (utility) attached to the alternative acts under different events and the 
value versus cost of information in order to make his optimal decision on how to proceed. 

Bayes in Computational Models

Markov chain Monte Carlo (MCMC) is a flexible procedure designed to fit a variety of 
Bayesian models. It is the underlying method used in computational software such as 
the LaplacesDemon R Package and WinBUGS. The advancements and developments 
of these types of statistical software have allowed for the growth of Bayes by offering 
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ease of calculation. This is achieved by the generation of samples from the posterior 
distributions, which are then used to produce a range of options or strategies which are 
allocated numerical weights. MCMC obtains these samples and produces summary and 
diagnostic statistics while also saving the posterior samples in the output. The decision 
maker can then assess the results from the output data set and choose the best option 
to proceed. 

Bayesian Tool for Methylation Analysis

Batman workflow.

Bayesian tool for methylation analysis, also known as BATMAN, is a statistical tool 
for analysing methylated DNA immunoprecipitation (MeDIP) profiles. It can be ap-
plied to large datasets generated using either oligonucleotide arrays (MeDIP-chip) or 
next-generation sequencing (MeDIP-seq), providing a quantitative estimation of abso-
lute methylation state in a region of interest. 

MeDIP (methylated DNA immunoprecipitation) is an experimental technique used to 
assess DNA methylation levels by using an antibody to isolate methylated DNA se-
quences. The isolated fragments of DNA are either hybridized to a microarray chip 
(MeDIP-chip) or sequenced by next-generation sequencing (MeDIP-seq). While this 
tells you what areas of the genome are methylated, it does not give absolute methyl-
ation levels. Imagine two different genomic regions, A and B. Region A has six CpGs 
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(DNA methylation in mammalian somatic cells generally occurs at CpG dinucleotides), 
three of which are methylated. Region B has three CpGs, all of which are methylated. As 
the antibody simply recognizes methylated DNA, it will bind both these regions equally 
and subsequent steps will therefore show equal signals for these two regions. This does 
not give the full picture of methylation in these two regions (in region A only half the 
CpGs are methylated, whereas in region B all the CpGs are methylated). Therefore, to 
get the full picture of methylation for a given region you have to normalize the signal 
you get from the MeDIP experiment to the number of CpGs in the region, and this is 
what the Batman algorithm does. Analysing the MeDIP signal of the above example 
would give Batman scores of 0.5 for region A (i.e. the region is 50% methylated) and 
1 for region B (i.e. The region is 100% methylated). In this way Batman converts the 
signals from MeDIP experiments to absolute methylation levels. 

Development of Batman

The core principle of the Batman algorithm is to model the effects of varying density 
of CpG dinucleotides, and the effect this has on MeDIP enrichment of DNA fragments. 
The basic assumptions of Batman: 

•	 Almost all DNA methylation in mammals happens at CpG dinucleotides.

•	 Most CpG-poor regions are constitutively methylated while most CpG-rich re-
gions (CpG islands) are constitutively unmethylated.

•	 There are no fragment biases in MeDIP experiment (approximate range of DNA 
fragment sizes is 400–700 bp).

•	 The errors on the microarray are normally distributed with precision.

•	 Only methylated CpGs contribute to the observed signal.

•	 CpG methylation state is generally highly correlated over hundreds of bases, so 
CpGs grouped together in 50- or 100-bp windows would have the same meth-
ylation state.

Basic parameters in Batman: 

•	 Ccp: Coupling factor between probe p and CpG dinucleotide c, is defined as the 
fraction of DNA molecules hybridizing to probe p that contain the CpG c.

•	 Ctot: Total CpG influence parameter, is defined as the sum of coupling factors for 
any given probe, which provides a measure of local CpG density.

•	 mc: The methylation status at position c, which represents the fraction of chro-
mosomes in the sample on which it is methylated. mc is considered as a continu-
ous variable since the majority samples used in MeDIP studies contain multiple 
cell-types.
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Based on these assumptions, the signal from the MeDIP channel of the MeDIP-chip or 
MeDIP-seq experiment depends on the degree of enrichment of DNA fragments over-
lapping that probe, which in turn depends on the amount of antibody binding, and thus 
to the number of methylated CpGs on those fragments. In Batman model, the complete 
dataset from a MeDIP/chip experiment, A, can be represented by a statistical model in 
the form of the following probability distribution: 

1− 
= φ + 

 
∑∏ p base cp

cp

f A m A A r C v( ) , ,∣ ∣

where φ  (x|μ, σ2) is a Gaussian probability density function. Standard Bayesian 
techniques can be used to infer f(m|A), that is, the distribution of likely methyl-
ation states given one or more sets of MeDIP-chip/MeDIP-seq outputs. To solve 
this inference problem, Batman uses nested sampling to generate 100 independent 
samples from f(m|A) for each tiled region of the genome, then summarizes the most 
likely methylation state in 100-bp windows by fitting beta distributions to these 
samples. The modes of the most likely beta distributions were used as final methyl-
ation calls. 

Limitations

It may be useful to take the following points into account when considering using Bat-
man: 

•	 Batman is not a piece of software; it is an algorithm performed using the com-
mand prompt. As such it is not especially user-friendly and is quite a computa-
tionally technical process.

•	 Because it is non-commercial, there is very little support when using Batman 
beyond what is in the manual.

•	 It is quite time consuming (it can take several days to analyse one chromo-
some). (In one government lab, running Batman on a set of 100 Agilent Human 
DNA Methylation Arrays (about 250,000 probes per array) took less than an 
hour to complete in Agilent’s Genomic Workbench software. Our computer had 
a 2GHz processor, 24 GB RAM, 64-bit Windows 7.)

•	 Copy number variation (CNV) has to be accounted for. For example, the score 
for a region with a CNV value of 1.6 in a cancer (a loss of 0.4 compared to nor-
mal) would have to be multiplied by 1.25 (=2/1.6) to compensate for the loss.

•	 One of the basic assumptions of Batman is that all DNA methylation occurs at 
CpG dinucleotides. While this is generally the case for vertebrate somatic cells, 
there are situations where there is widespread non-CpG methylation, such as in 
plant cells and embryonic stem cells.
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Bayesian Inference in Phylogeny

Bayesian inference of phylogeny uses a likelihood function to create a quantity called 
the posterior probability of trees using a model of evolution, based on some prior prob-
abilities, producing the most likely phylogenetic tree for the given data. The Bayesian 
approach has become popular due to advances in computing speeds and the integra-
tion of Markov chain Monte Carlo (MCMC) algorithms. Bayesian inference has a num-
ber of applications in molecular phylogenetics and systematics.

Bayesian Inference of Phylogeny Background and Bases

Metaphor illustrating MCMC method steps.

Bayesian inference refers to a probabilistic method developed by Reverend Thomas 
Bayes based on Bayes’ theorem. Published posthumously in 1763 it was the first expres-
sion of inverse probability and the basis of Bayesian inference. Independently, unaware 
of Bayes work, Pierre-Simon Laplace developed Bayes’ theorem in 1774. 

Bayesian inference was widely used until 1900s when there was a shift to frequen-
tist inference, mainly due to computational limitations. Based on Bayes’ theorem, the 
bayesian approach combines the prior probability of a tree P(A) with the likelihood 
of the data (B) to produce a posterior probability distribution on trees P(A|B). The 
posterior probability of a tree will indicate the probability of the tree to be correct, 
being the tree with the highest posterior probability the one chosen to represent best 
a phylogeny. It was the introduction of Markov Chain Monte Carlo (MCMC) methods 
by Nicolas Metropolis in 1953 that revolutionized Bayesian Inference and by the 1990s 
became a widely used method amongst phylogeneticists. Some of the advantages over 
traditional maximum parsimony and maximum likelihood methods are the possibility 
of account for the phylogenetic uncertainty, use of prior information and incorpora-
tion of complex models of evolution that limited computational analyses for traditional 
methods. Although overcoming complex analytical operations the posterior probability 
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still involves a summation over all trees and, for each tree, integration over all possible 
combinations of substitution model parameter values and branch lengths. 

MCMC methods can be described in three steps: first using a stochastic mechanism 
a new state for the Markov chain is proposed. Secondly, the probability of this new 
state to be correct is calculated. Thirdly, a new random variable (0,1) is proposed. If 
this new value is less than the acceptance probability the new state is accepted and 
the state of the chain is updated. This process is run for either thousands or millions 
of times. The amount of time a single tree is visited during the course of the chain 
is just a valid approximation of its posterior probability. Some of the most common 
algorithms used in MCMC methods include the Metropolis-Hastings algorithms, 
the Metropolis-Coupling MCMC (MC³) and the LOCAL algorithm of Larget and 
Simon. 

Metropolis-Hastings Algorithm

One of the most common MCMC methods used is the Metropolis-Hastings algorithm, 
a modified version of the original Metropolis algorithm. It is a widely used method to 
sample randomly from complicated and multi-dimensional distribution probabilities. 
The Metropolis algorithm is described in the following steps: 

•	 An initial tree, Ti, is randomly selected.

•	 A neighbour tree, Tj, is selected from the collection of trees.

•	 The ratio, R, of the probabilities (or probability density functions) of Tj and Ti is 
computed as follows: R = f(Tj)/f(Ti).

•	 If R ≥ 1, Tj is accepted as the current tree.

•	 If R < 1, Tj is accepted as the current tree with probability R, otherwise Ti is kept.

•	 At this point the process is repeated from Step 2 N times.

The algorithm keeps running until it reaches an equilibrium distribution. It also as-
sumes that the probability of proposing a new tree Tj when we are at the old tree state 
Ti, is the same probability of proposing Ti when we are at Tj. When this is not the case 
Hastings corrections are applied. The aim of Metropolis-Hastings algorithm is to pro-
duce a collection of states with a determined distribution until the Markov process 
reaches a stationary distribution. The algorithm has two components: 

•	 A potential transition from one state to another (i → j) using a transition prob-
ability function qi,j.

•	 Movement of the chain to state j with probability αi,j and remains in i with prob-
ability 1 – αi,j.
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Metropolis-coupled MCMC

Metropolis-coupled MCMC algorithm (MC³) has been proposed to solve a practical 
concern of the Markov chain moving across peaks when the target distribution has 
multiple local peaks, separated by low valleys, are known to exist in the tree space. 
This is the case during heuristic tree search under maximum parsimony (MP), max-
imum likelihood (ML), and minimum evolution (ME) criteria, and the same can be 
expected for stochastic tree search using MCMC. This problem will result in samples 
not approximating correctly to the posterior density. The (MC³) improves the mixing of 
Markov chains in presence of multiple local peaks in the posterior density. It runs mul-
tiple (m) chains in parallel, each for n iterations and with different stationary distribu-
tions (.)jπ , 1,2, , ,j m= … , where the first one, 1π π= is the target density, while  jπ , 

2,3, ,  j m= … are chosen to improve mixing. For example, one can choose incremental 
heating of the form: 

1/[1 ( 1)]( ) ( ) , 0,j
j

λπ θ π θ λ+ −= >

so that the first chain is the cold chain with the correct target density, while chains 2,3, ,m…
are heated chains. Note that raising the density (.)π to the power 1 /T with 1 T > has the 
effect of flattening out the distribution, similar to heating a metal. In such a distribution, it 
is easier to traverse between peaks (separated by valleys) than in the original distribution. 
After each iteration, a swap of states between two randomly chosen chains is proposed 
through a Metropolis-type step. Let ( )jθ be the current state in chain  j, 1,2, ,  j m= … . A 
swap between the states of chains i and  j is accepted with probability: 

( ) ( )

( ) ( )

( ) ( )
 

( ) ( )

j i
i j

i j
i j

π θ π θ
α

π θ π θ
=

At the end of the run, output from only the cold chain is used, while those from the 
hot chains are discarded. Heuristically, the hot chains will visit the local peaks rather 
easily, and swapping states between chains will let the cold chain occasionally jump 
valleys, leading to better mixing. However, if ( )/ ( )i jπ θ π θ is unstable, proposed swaps 
will seldom be accepted. This is the reason for using several chains which differ only 
incrementally. 

An obvious disadvantage of the algorithm is that m chains are run and only one chain 
is used for inference. For this reason, 3MC  is ideally suited for implementation on par-
allel machines, since each chain will in general require the same amount of computa-
tion per iteration. 

LOCAL Algorithm of Larget and Simon

The LOCAL algorithms offers a computational advantage over previous methods and 
demonstrates that a Bayesian approach is able to assess uncertainty computationally 
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practical in larger trees. The LOCAL algorithm is an improvement of the GLOBAL al-
gorithm presented in Mau, Newton and Larget in which all branch lengths are changed 
in every cycle. The LOCAL algorithms modifies the tree by selecting an internal branch 
of the tree at random. The nodes at the ends of this branch are each connected to two 
other branches. One of each pair is chosen at random. Imagine taking these three se-
lected edges and stringing them like a clothesline from left to right, where the direction 
(left/right) is also selected at random. The two endpoints of the first branch selected 
will have a sub-tree hanging like a piece of clothing strung to the line. The algorithm 
proceeds by multiplying the three selected branches by a common random amount, 
akin to stretching or shrinking the clothesline. Finally the leftmost of the two hanging 
sub-trees is disconnected and reattached to the clothesline at a location selected uni-
formly at random. This would be the candidate tree. 

Suppose we began by selecting the internal branch with length 8  t that separates 
taxa  A and B from the rest. Suppose also that we have (randomly) selected branch-
es with lengths 1t and 9t from each side, and that we oriented these branches. Let 

1 8 9m t t t= + + , be the current length of the clothesline. We select the new length to be 

1exp( ( 0.5))m m Uλ= − , where 1U is a uniform random variable on (0,1) . Then for 
the LOCAL algorithm, the acceptance probability can be computed to be: 

3

3

( )
( )

h y m
h x m

×


Assessing Convergence

To estimate a branch length t of a 2-taxon tree under JC, in which 1n sites are unvaried 
and 2n are variable, assume exponential prior distribution with rate  λ . The density is 

( ) tp t e λλ −= . The probabilities of the possible site patterns are: 

( )4/31 / 4 1 / 4 3 / 4 te−+

for unvaried sites, 

( )4/31 / 4 1 / 4 1 / 4 te−−

Thus the unnormalized posterior distribution is: 

1 2 14/3( ) (1 / 4) (1 / 4 3 / 4 ) n n nth t e+ −= +

or, alternately, 

( )24/3( ) 1 / 4 1 / 4 ( )nt th t e e λλ− −= −
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Update branch length by choosing new value uniformly at random from a window of 
half-width  w centered at the current value: 

| |t t U= +

where  U is uniformly distributed between w− and w. The acceptance probability is: 

( )/ ( )h t h t

Example: 1 70n = , 2 30n = . We will compare results for two values of w, 0.1w =  and 
0.5w = . In each case, we will begin with an initial length of 5 and update the length 

2000 times. 

Maximum Parsimony and Maximum Likelihood

Tiger phylogenetic relationships, bootstrap values shown in branches.

There are many approaches to reconstructing phylogenetic trees, each with advantages 
and disadvantages, and there is no straightforward answer to “what is the best meth-
od?”. Maximum parsimony (MP) and maximum likelihood (ML) are traditional meth-
ods widely used for the estimation of phylogenies and both use character information 
directly, as Bayesian methods do.

____________________ WORLD TECHNOLOGIES ____________________



WT

184 Introductory Statistics

Example of long branch attraction. Longer branches  
(A & C) appear to be more closely related. 

Maximum Parsimony recovers one or more optimal trees based on a matrix of discrete 
characters for a certain group of taxa and it does not require a model of evolutionary 
change. MP gives the most simple explanation for a given set of data, reconstructing 
a phylogenetic tree that includes as few changes across the sequences as possible, this 
is the one that exhibits the smallest number of evolutionary steps to explain the rela-
tionship between taxa. The support of the tree branches is represented by bootstrap 
percentage. For the same reason that it has been widely used, its simplicity, MP has 
also received criticism and has been pushed into the background by ML and Bayesian 
methods. MP presents several problems and limitations. As shown by Felsenstein, MP 
might be statistically inconsistent, meaning that as more and more data (e.g. sequence 
length) is accumulated, results can converge on an incorrect tree and lead to long 
branch attraction, a phylogenetic phenomenon where taxa with long branches (numer-
ous character state changes) tend to appear more closely related in the phylogeny than 
they really are. 

As in maximum parsimony, maximum likelihood will evaluate alternative trees. How-
ever it considers the probability of each tree explaining the given data based on a model 
of evolution. In this case, the tree with the highest probability of explaining the data 
is chosen over the other ones. In other words, it compares how different trees pre-
dict the observed data. The introduction of a model of evolution in ML analyses pres-
ents an advantage over MP as the probability of nucleotide substitutions and rates of 
these substitutions are taken into account, explaining the phylogenetic relationships of 
taxa in a more realistic way. An important consideration of this method is the branch 
length, which parsimony ignores, with changes being more likely to happen along long 
branches than short ones. This approach might eliminate long branch attraction and 
explain the greater consistency of ML over MP. Although considered by many to be the 
best approach to inferring phylogenies from a theoretical point of view, ML is computa-
tionally intensive and it is almost impossible to explore all trees as there are too many. 
Bayesian inference also incorporates a model of evolution and the main advantages 
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over MP and ML are that it is computationally more efficient than traditional methods, 
it quantifies and addresses the source of uncertainty and is able to incorporate complex 
models of evolution. 

Pitfalls and Controversies

• Bootstrap values vs Posterior Probabilities: It has been observed that bootstrap
support values, calculated under parsimony or maximum likelihood, tend to
be lower than the posterior probabilities obtained by Bayesian inference. This
fact leads to a number of questions such as: Do posterior probabilities lead to
overconfidence in the results? Are bootstrap values more robust than posterior
probabilities?

• Controversy of using prior probabilities: Using prior probabilities for Bayesian
analysis has been seen by many as an advantage as it will provide a hypothesis a
more realistic view of the real world. However some biologists argue about the sub-
jectivity of Bayesian posterior probabilities after the incorporation of these priors.

• Model choice: The results of the Bayesian analysis of a phylogeny are directly
correlated to the model of evolution chosen so it is important to choose a model
that fits the observed data, otherwise inferences in the phylogeny will be errone-
ous. Many scientists have raised questions about the interpretation of Bayesian
inference when the model is unknown or incorrect. For example, an oversim-
plified model might give higher posterior probabilities or simple evolutionary
model are associated to less uncertainty than that from bootstrap values.

MrBAyeS Software

MrBayes is a free software tool that performs Bayesian inference of phylogeny. Orig-
inally written by John P. Huelsenbeck and Frederik Ronquist in 2001. As Bayesian 
methods increased in popularity MrBayes became one of the software of choice for 
many molecular phylogeneticists. It is offered for Macintosh, Windows, and UNIX op-
erating systems and it has a command-line interface. The program uses the standard 
MCMC algorithm as well as the Metropolis coupled MCMC variant. MrBayes reads 
aligned matrices of sequences (DNA or amino acids) in the standard NEXUS format. 

MrBayes uses MCMC to approximate the posterior probabilities of trees. The user can 
change assumptions of the substitution model, priors and the details of the MC³ anal-
ysis. It also allows the user to remove and add taxa and characters to the analysis. The 
program uses the most standard model of DNA substitution, the 4x4 also called JC69, 
which assumes that changes across nucleotides occurs with equal probability. It also 
implements a number of 20x20 models of amino acid substitution, and codon models 
of DNA substitution. It offers different methods for relaxing the assumption of equal 
substitutions rates across nucleotide sites. MrBayes is also able to infer ancestral states 
accommodating uncertainty to the phylogenetic tree and model parameters. 
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MrBayes 3 was a completely reorganized and restructured version of the original Mr-
Bayes. The main novelty was the ability of the software to accommodate heterogeneity 
of data sets. This new framework allows the user to mix models and take advantages 
of the efficiency of Bayesian MCMC analysis when dealing with different type of data 
(e.g. protein, nucleotide, and morphological). It uses the Metropolis-Coupling MCMC 
by default. 

MrBayes 3.2 new version of MrBayes was released in 2012. The new version allows the 
users to run multiple analyses in parallel. It also provides faster likelihood calculations 
and allow these calculations to be delegated to graphics processing unites (GPUs). Ver-
sion 3.2 provides wider outputs options compatible with FigTree and other tree viewers. 

Applications

Chronogram obtained from molecular clock analysis using BEAST. Pie chart 
in each node indicates the possible ancestral distributions inferred from  

Bayesian Binary MCMC analysis (BBM).

Bayesian Inference has extensively been used by molecular phylogeneticists for a wide 
number of applications. Some of these include: 

• Inference of phylogenies.

• Inference and evaluation of uncertainty of phylogenies.

• Inference of ancestral character state evolution.

• Inference of ancestral areas.

• Molecular dating analysis.
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•	 Model dynamics of species diversification and extinction.

•	 Elucidate patterns in pathogens dispersal.

Bayesian Information Criterion

In statistics, the Bayesian information criterion (BIC) or Schwarz information criterion 
(also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; the 
model with the lowest BIC is preferred. It is based, in part, on the likelihood function 
and it is closely related to the Akaike information criterion (AIC). 

When fitting models, it is possible to increase the likelihood by adding parameters, but 
doing so may result in overfitting. Both BIC and AIC attempt to resolve this problem 
by introducing a penalty term for the number of parameters in the model; the penalty 
term is larger in BIC than in AIC. 

The BIC is formally defined as, 

BIC ln( ) 2 ). ˆln(n k L= −

where, 

•	 L̂ = the maximized value of the likelihood function of the model M , i.e. 
ˆˆ ( | , ),L p x Mθ=  where θ̂ are the parameter values that maximize the likeli-

hood function.

•	 x = the observed data.

•	 n = the number of data points in x, the number of observations, or equivalently, 
the sample size.

•	 k = the number of parameters estimated by the model. For example, in multi-
ple linear regression, the estimated parameters are the intercept, the q slope 
parameters, and the constant variance of the errors; thus, 2k q= + .

Konishi and Kitagawa derive the BIC to approximate the distribution of the data, inte-
grating out the parameters using Laplace’s method, starting with the following: 

( ) ( , ) ( )p x M p x M M dθ π θ θ= ∫| | |

where ( )Mπ θ | is the prior for θ under model M . 

The log(likelihood), ln( ( | , ))p x Mθ , is then expanded to a second order Taylor series 
about the MLE, θ̂ , assuming it is twice differentiable as follows: 

θ θ θ θ θ θ θ′= − − − +p x M L n R xln( ( , )) ln( ) 0.5( ) ( )( ) ( , ),ˆ ˆ ˆ| 
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where θ is the average observed information per observation, and prime ( ' ) denotes 
transpose of the vector ˆ( ).θ θ− . To the extent that ( , )R x θ is negligible and π θ M( )| is 
relatively linear near θ̂ , we can integrate out θ to get the following:

π θ π θ−≈ kp x M L n /2 1/2( ) (2 / ) | ( )|ˆ ˆ ( )ˆ| 

As n increases, we can ignore θ̂| ( )| and ˆ( )π θ as they are (1).O  Thus, 

= − + = − +p x M L k n O O( ) exp{ln ( / 2)ln( ) (1)} exp( BIC / 2 ( ,ˆ 1))|

where BIC is defined as above, and L̂ either (a) is the Bayesian posterior mode or (b) 
uses the MLE and the prior π θ M h( )| has nonzero slope at the MLE. Then the posterior 

∝ ≈ −p M x p x M p M p M( ) ( ) ( ) exp( BIC / 2) ( )| |

Properties

•	 It is independent of the prior.

•	 It can measure the efficiency of the parameterized model in terms of predicting 
the data.

•	 It penalizes the complexity of the model where complexity refers to the number 
of parameters in the model.

•	 It is approximately equal to the minimum description length criterion but with 
negative sign.

•	 It can be used to choose the number of clusters according to the intrinsic com-
plexity present in a particular dataset.

•	 It is closely related to other penalized likelihood criteria such as Deviance infor-
mation criterion and the Akaike information criterion.

Limitations

The BIC suffers from two main limitations: 

•	 The above approximation is only valid for sample size n much larger than the 
number k of parameters in the model.

•	 The BIC cannot handle complex collections of models as in the variable selec-
tion (or feature selection) problem in high-dimension.

Gaussian Special Case

Under the assumption that the model errors or disturbances are independent and 

____________________ WORLD TECHNOLOGIES ____________________



WT

189Statistical Inference

identically distributed according to a normal distribution and that the boundary con-
dition that the derivative of the log likelihood with respect to the true variance is zero, 
this becomes (up to an additive constant, which depends only on n and not on the 
model):

2BIC ln( ) ln( )en k ns= +

where 2
es is the error variance. The error variance in this case is defined as, 





2 2

1

1
( )

n

e i i
i

x x
n

s
=

= −∑

which is a biased estimator for the true variance. 

In terms of the residual sum of squares (RSS) the BIC is, 

= +BIC ln( / ) ln( )n RSS n k n

When testing multiple linear models against a saturated model, the BIC can be rewrit-
ten in terms of the deviance 2χ as: 

2BIC ln( )k nχ= +

where k is the number of model parameters in the test. 

When picking from several models, the one with the lowest BIC is preferred. The BIC is 
an increasing function of the error variance s 2

e and an increasing function of k. That is, 
unexplained variation in the dependent variable and the number of explanatory vari-
ables increase the value of BIC. Hence, lower BIC implies either fewer explanatory vari-
ables, better fit, or both. The strength of the evidence against the model with the higher 
BIC value can be summarized as follows:

ΔBIC Evidence against higher BIC 

0 to 2 Not worth more than a bare mention 

2 to 6 Positive 

6 to 10 Strong 

>10 Very strong 

The BIC generally penalizes free parameters more strongly than the Akaike informa-
tion criterion, though it depends on the size of n and relative magnitude of n and k. 

It is important to keep in mind that the BIC can be used to compare estimated models 
only when the numerical values of the dependent variable are identical for all estimates 
being compared. The models being compared need not be nested, unlike the case when 
models are being compared using an F-test or a likelihood ratio test. 
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BIC for High-dimensional Model

For high dimensional model with the number of potential variables np ∞→ , and 
the true model size is bounded by a constant, modified BICs has been proposed in 
Chen and Chen and Gao and Song. For high dimensional model with the number of 
variables np ∞→ , and the true model size is unbounded, a high dimensional BIC has 
been proposed in Gao and Carroll. The high dimensional BIC is of the form: 

ˆBIC 6(1 )ln( ) 2ln( ),np k Lγ= + −

where γ can be any number greater than zero. 

Gao and Carroll proposed a pseudo-likelihood BIC for which the pseudo log-likelihood 
is used instead of the true log-likelihood. The high dimensional pseudo-likelihood BIC 
is of the form: 

* ˆpseudo-BIC 6(1 ) ln( ) 2ln( ),np k Lγ ω= + −

where k∗ is an estimated degrees of freedom, and the constant 1ω ≥ is an unknown 
constant. 

To achieve the theoretical model selection consistency for divergent np , the two high 
dimensional BICs above require the multiplicative factor 6(1 ) .γ ω+  However, in prac-
tical use, the high dimensional BIC can take a simpler form: 

ˆBIC ln( ) 2ln( ),nc p k L= −

where various choices of the multiplicative factor c can be used. In empirical studies, 
1c = or 2c = can be used and it is shown to have good empirical performance. 

Bayesian Linear Regression

In statistics, Bayesian linear regression is an approach to linear regression in which the 
statistical analysis is undertaken within the context of Bayesian inference. When the 
regression model has errors that have a normal distribution, and if a particular form of 
prior distribution is assumed, explicit results are available for the posterior probability 
distributions of the model’s parameters.

Model Setup

Consider a standard linear regression problem, in which for 1, ,i n= … we specify the 
mean of the conditional distribution of iy given a 1k× predictor vector ix : 

b ε= +i i iy T ,x
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where b is a 1k× vector, and the iε are independent and identically normally distrib-
uted random variables: 

2~ (0, ).i Nε s

This corresponds to the following likelihood function: 

ρ b s s b b
s

−  ∝ − − − 
 

n2 2 /2 T
2

1
( , , ) ( ) exp ( ) ( ) .

2
y x y x y x|

The ordinary least squares solution is used to estimate the coefficient vector using the 
Moore–Penrose pseudoinverse: 

b −= T 1 T( )x x x y

where x is the n k× design matrix, each row of which is a predictor vector T
ix ; and y

is the column n -vector T
1[ ]ny y .

This is a frequentist approach, and it assumes that there are enough measurements to 
say something meaningful about b. In the Bayesian approach, the data are supplement-
ed with additional information in the form of a prior probability distribution. The prior 
belief about the parameters is combined with the data’s likelihood function according 
to Bayes theorem to yield the posterior belief about the parameters b and s . The prior 
can take different functional forms depending on the domain and the information that 
is available a priori. 

With Conjugate Priors

Conjugate Prior Distribution

For an arbitrary prior distribution, there may be no analytical solution for the posterior 
distribution. here, we will consider a so-called conjugate prior for which the posterior 
distribution can be derived analytically. 

A prior ρ b s 2( , ) is conjugate to this likelihood function if it has the same functional 
form with respect toâ and s. Since the log-likelihood is quadratic in b, the log-likeli-
hood is re-written such that the likelihood becomes normal in b b( − ) . Write, 

b b b b b b b b− − = − − + − −T T T Tˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )( ).y x y x y x y x x x

The likelihood is now re-written as, 

ρ b s s s b b b b
s s

−
− −
2  , ∝ ( ) (− )( ) − − − 

 

2
2 2 2 T T2

2 2

1 ˆ ˆ( | , ) exp exp ( ) ( )( ) ,
2 2

n vv vsy X X X
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Where,

b b= − − = −2 Tˆ ˆ( ) ( )  and ,vs v n ky X y X

where k is the number of regression coefficients. 

This suggests a form for the prior: 

ρ b s ρ s ρ b s=2 2 2( , ) ( ) ( ),|

where 2( )ρ s is an inverse-gamma distribution,

0 212 2 0 02
2( ) ( ) exp .

2

v v s
ρ s s

s
− −  

∝ − 
 

This is the density of an 0 0Inv-Gamma ( , )a b distribution with 0
0 2

va a= and 2
0 0 0

1
2

b v s=

with 0v and 2
0s as the prior values of v and 2s , respectively. Equivalently, it can also be 

described as a scaled inverse chi-squared distribution, 2 2
0 0Scale-inv- ( , )v sχ .

Further the conditional prior density ρ b s 2( | ) is a normal distribution, 

ρ b s s b µ b µ
s

−  ∝ − − Λ − 
 

k2 2 /2 T
0 0 02

1
( ) ( ) exp ( ) ( ) .

2
|

In the notation of the normal distribution, the conditional prior distribution is, 

µ s −Λ2 1
0 0( , ).

Posterior Distribution

With the prior now specified, the posterior distribution can be expressed as, 

ρ b s ρ b s ρ b s ρ s

s b b s
s

− −

∝

 ∝ − − − 
 

2 2 2 2

2 /2 T 2 /2
2

( , , ) ( , , ) ( ) ( )

1 ˆ( ) exp ( ) ( ) ( )
2

n kX

| | |y X y X

y y X
ρ b s ρ b s ρ b s ρ s

s b b s b µ b µ s
s s s

− +− −

∝

    ∝ − − − − − Λ − −          
an k

y X y X

b
y X y X 0

2 2 2 2

( 1)2 /2 T 2 /2 T 2 0
0 0 02 2 2

( , , ) ( , , ) ( ) ( )

1 1ˆ( ) exp ( ) ( ) ( ) exp ( ) ( ) ( ) exp
2 2

| | |

With some re-arrangement, the posterior can be re-written so that the posterior mean µn

of the parameter vector b can be expressed in terms of the least squares estimator and 
the prior mean b̂ , with the strength of the prior indicated by the prior precision matrix Λ0,

µ b µ−= + Λ +ΛT 1 T
0 0 0( ) ( ).n X X X X
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To justify that µn is indeed the posterior mean, the quadratic terms in the exponential 
can be re-arranged as a quadratic form in b µ− n ..

b b b µ b µ

b µ b µ µ µ µ µ

− − + − Λ −

= − +Λ − + − +Λ + Λ .

T T
0 0 0

T T T T T T
0 0 0 0 0

( ) ( ) ( ) ( )
ˆ( ) ( )( ) ( )n n n n

y X y X

X X y y X X

Now the posterior can be expressed as a normal distribution times an inverse-gamma 
distribution: 

ρ b s s b µ b µ
s

µ µ µ µ
s

s

−

+
− −

 ∝ − − + Λ − 
 

 + − + Λ + Λ
− 
 

0

2 2 /2 T T
02

2 T T T T12 0 0 0 0 02
2

1
( , , ) ( ) exp ( ) ( )( )

2

2 ( )
( ) exp .

2

k
n n

n a
n nb

| y X X X

y y X X

Therefore, the posterior distribution can be parametrized as follows. 

ρ b s ρ b s ρ s∝2 2 2( , , ) ( , , ) ( , ),| | |y X y X y X

where the two factors correspond to the densities of µ s −Λn n
2 1( , ) and Inv-Gamma 

( )Inv-Gamma ,n na b distributions, with the parameters of these given by, 

µ b µ−Λ = +Λ = Λ +ΛT 1 T
0 0 0

ˆ( ), ( ) ( ),n n nX X X X

µ µ µ µ= + = + + Λ − ΛT T T
0 0 0 0 0

1
, ( ).

2 2n n n n n
na a b b y y

This can be interpreted as Bayesian learning where the parameters are updated accord-
ing to the following equations. 

µ µ b µ− −= + Λ Λ + = +Λ Λ +T 1 T T 1 T
0 0 0 0 0 0

ˆ( ) ( ) ( ) ( ),n X X X X X X X y

Λ = +ΛT
0( ),n X X

= +0 ,
2n
na a

µ µ µ µ= + + Λ − ΛT T T
0 0 0 0

1
( ).

2n n n nb b y y

Model Evidence

The model evidence p m( )y | is the probability of the data given the model m. It is 
also known as the marginal likelihood, and as the prior predictive density. Here, the 
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model is defined by the likelihood function b sp( , , )y x| and the prior distribution on 
the parameters, i.e. b sp( , ).. The model evidence captures in a single number how well 
such a model explains the observations. The model evidence of the Bayesian linear re-
gression model presented in this topic can be used to compare competing linear models 
by Bayesian model comparison. These models may differ in the number and values of 
the predictor variables as well as in their priors on the model parameters. Model com-
plexity is already taken into account by the model evidence, because it marginalizes out 
the parameters by integrating b sp y X( , , )| over all possible values of b and s . 

b s b s b s= ∫p m p p d d( | ) ( , , ) ( , )y y x|

This integral can be computed analytically and the solution is given in the following 
equation.

π
Λ G

=
Λ G

0
0 0

/2
0

det( ) ( )1
( ) · ·

(2 ) det( ) ( )n

a
n

an
n n

b a
p m

ab
|y

Here G denotes the gamma function. Because we have chosen a conjugate prior, the 
marginal likelihood can also be easily computed by evaluating the following equality 
for arbitrary values of â and s . 

b s b s
b s

=
( , | ) ( , , , )

( )
( , , , )

p m p mp m
p m

|
|

|
y Xy
y X

Note that this equation is nothing but a re-arrangement of Bayes theorem. Inserting 
the formulas for the prior, the likelihood, and the posterior and simplifying the result-
ing expression leads to the analytic expression given above. 

Other Cases

In general, it may be impossible or impractical to derive the posterior distribution ana-
lytically. However, it is possible to approximate the posterior by an approximate Bayes-
ian inference method such as Monte Carlo sampling or variational Bayes. 

The special case µ = Λ = Ιc0 00, is called ridge regression. 

Bayesian Multivariate Linear Regression

In statistics, Bayesian multivariate linear regression is a Bayesian approach to multi-
variate linear regression, i.e. linear regression where the predicted outcome is a vector 
of correlated random variables rather than a single scalar random variable. 

Details

Consider a regression problem where the dependent variable to be predicted is not 
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a single real-valued scalar but an m-length vector of correlated real numbers. As 
in the standard regression setup, there are n observations, where each observation 
i consists of k-1 explanatory variables, grouped into a vector ix of length k (where 
a dummy variable with a value of 1 has been added to allow for an intercept coeffi-
cient). This can be viewed as a set of m related regression problems for each obser-
vation i: 

= +bT
,1 1 ,1i i iy x 



= +bT
, ,i m i m i my x 

where the set of errors …i i m,1 ,{ , , }  are all correlated. Equivalently, it can be viewed as 
a single regression problem where the outcome is a row vector T

iy and the regression 
coefficient vectors are stacked next to each other, as follows: 

= +i i i
T T T .y x B 

The coefficient matrix B is a k m× matrix where the coefficient vectors b … b1 , , m for 
each regression problem are stacked horizontally: 

        
        = =         

                 

b



b b
b

b b
   

1,1 1,

1

,1 ,

.
m

m

k k m

B

The noise vector i  for each observation i is jointly normal, so that the outcomes for a 
given observation are correlated: 

Σ~ (0, ).i N 

We can write the entire regression problem in matrix form as: 

,= +y xB e

where Y and E are n m× matrices. The design matrix X is an matrix with the observa-
tions n k× stacked vertically, as in the standard linear regression setup: 

T
1,1 1,1

T
2,1 2,2

T
,1 ,

.

k

k

n n kn

x x
x x

x x

   
   
   
   
   

     

=

x
x

x

x =





  




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The classical, frequentists linear least squares solution is to simply estimate the matrix 
of regression coefficients B̂ using the Moore-Penrose pseudoinverse: 

T 1 T( )ˆ −=B x x x y

To obtain the Bayesian solution, we need to specify the conditional likelihood and then 
find the appropriate conjugate prior. As with the univariate case of linear Bayesian re-
gression, we will find that we can specify a natural conditional conjugate prior (which 
is scale dependent). 

Let us write our conditional likelihood as,

ρ − −Σ ∝ Σ − Σ/2 T 11
( | ) | | exp( tr( )),

2
n

  E E E

writing the error e in terms of , ,y x and B yields, 

ρ − −Σ ∝ Σ − − − Σ/2 T 11
( | , , ) | | exp( tr(( ) ( ) )),

2
n

  Y X B Y XB Y XB

We seek a natural conjugate prior—a joint density ( , )ρ ΣB  which is of the same func-
tional form as the likelihood. Since the likelihood is quadratic in B , we re-write the 
likelihood so it is normal in ( )−B B (the deviation from classical sample estimate). 

Using the same technique as with Bayesian linear regression, we decompose the expo-
nential term using a matrix-form of the sum-of-squares technique. Here, however, we 
will also need to use the Matrix Differential Calculus. 

First, let us apply sum-of-squares to obtain new expression for the likelihood: 

 ρ − − − − −Σ ∝ Σ − Σ Σ − − − Σn k k( )/2 T 1 /2 T T 11 1
( | , , ) | | exp( tr( ))| | exp( tr(( ) ( ) )),

2 2
y x B S S B B x x B B    

 ρ − − − − −Σ ∝ Σ − Σ Σ − − − Σn k k( )/2 T 1 /2 T T 11 1
( | , , ) | | exp( tr( ))| | exp( tr(( ) ( ) )),

2 2
y x B S S B B x x B B    

= −S y xB

We would like to develop a conditional form for the priors: 

ρ ρ ρΣ = Σ Σ( , ) ( ) ( | ),B Bò ò ò

where ρ Σ( )ò  is an inverse-Wishart distribution and ρ Σ( | )B  is some form of normal 
distribution in the matrix B . This is accomplished using the vectorization transforma-
tion, which converts the likelihood from a function of the matrices ,B B to a function of 
the vectors  b b= =vec( ), vec( ).B B
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Write, 

   

− −− − Σ = − − ΣT T 1 T T 1tr(( ) ( ) ) vec( ) vec( ( ) )B B x x B B B B x x B B 

Let,

− −

∈ ∈
− = ⊗∑ ∑1 1ˆ ˆvec( ( ) ) ( ) vec ( ),T Tx x B B x x B – B

where ⊗A B denotes the Kronecker product of matrices A and B, a generalization of the 
outer product which multiplies an m n× matrix by a p q× matrix to generate an mp nq×
matrix, consisting of every combination of products of elements from the two matrices. 

Then, 

 

−− Σ ⊗ −T 1 Tvec( ) ( )vec( )B B x x B B

b b b b−= − Σ ⊗ −T 1 T( ) ( )( )ˆ ˆx xò

which will lead to a likelihood which is normal in b b−( ˆ) .

With the likelihood in a more tractable form, we can now find a natural (conditional) 
conjugate prior. 

Conjugate Prior Distribution

The natural conjugate prior using the vectorized variable b is of the form:

ρ b ρ ρ bΣ = Σ Σ( , ) ( ) ( | ),  

where,

ρ −Σ V v1
0( ) ~ ( , )0 

and

ρ b b −Σ Σ ⊗ΛN 1
0 0( | ) ~ ( , ). 

Posterior Distribution

Using the above prior and likelihood, the posterior distribution can be expressed as:

ρ b − + + −Σ ∝ Σ − Σm0( 1)/2 11
( , | , ) | | exp( tr( ))

2
í

0y x V  

− −× Σ − − Λ − Σ/2 T 1
0

1
| | exp( tr(( ) ( ) ))

2
k

0 0B B B B 
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− −× Σ − − − Σn/2 T 11
| | exp( tr(( ) ( ) )),

2
y xB y xB 

where b= 0vec( )0B . The terms involving B can be grouped (with Λ = T
0 U U ) using: 

− Λ − + − −T T
0( ) ( ) ( ) ( )0 0B B B B y xB y xB

   
= − − + − + Λ −

     
       

       

T

T T
0( ) ( )( )n n n n

0 0

y yx x
B B B B x x B B

UB UBU U

T T T T
0 0( ) ( ) ( ) ( ) ( ) ( )( )= − − + − Λ − + − +Λ −n n 0 n 0 n n ny xB y xB B B B B B B x x B B

T T T T
0 0( ) ( ) ( ) ( ) ( ) ( )( )= − − + − Λ − + − +Λ −n n 0 n 0 n n ny xB y xB B B B B B B x x B B

with, 



T 1 T T 1 T
0 0 0 0( ) ( ) ( ) ( ).− −= + Λ +Λ = +Λ +Λn 0 0B x x x xB B x x x y B

This now allows us to write the posterior in a more useful form: 

m n0( 1)/2 T T 1
0

1
( , | , ) | | exp( tr(( ( ) ( ) ( ) ( )) ))

2
− + + + −Σ ∝ Σ − + − − + − Λ − Σρ b í

0 n n n 0 n 0y x V y xB y xB B B B B  

m n0( 1)/2 T T 1
0

1
( , | , ) | | exp( tr(( ( ) ( ) ( ) ( )) ))

2
− + + + −Σ ∝ Σ − + − − + − Λ − Σρ b í

0 n n n 0 n 0y x V y xB y xB B B B B  

k T/2 T 1
0

1
| | exp( tr(( ) ( )( ) ))

2
− −× Σ − − + Λ − Σn nB B x x B B 

This takes the form of an inverse-Wishart distribution times a Matrix normal distribu-
tion: 

ρ −(Σ ) ∼ 1| , ( , )n nv Y X V

and 

ρ −( Σ ∼ Λ Σ1
,| , , ) ( , , )k m n nò òB Y X B

The parameters of this posterior are given by: 

T T
0( ) ( ) ( ) ( )= + − − + − Λ −n 0 n n n 0 n 0V V y xB y xB B B B B

nv v n0= +
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T 1 T
0 0( ) ( )−= + Λ +Λn 0B x x x y B

n
T

0Λ = +Λx x

Bayes Factor

A Bayes factor is the ratio of the likelihood of one particular hypothesis to the likelihood 
of another. It can be interpreted as a measure of the strength of evidence in favor of one 
theory among two competing theories.

That’s because the Bayes factor gives us a way to evaluate the data in favor of a null 
hypothesis, and to use external information to do so. It tells us what the weight of the 
evidence is in favor of a given hypothesis.

When we are comparing two hypotheses, H1 (the alternate hypothesis) and H0 (the null 
hypothesis), the Bayes Factor is often written as B10. It can be defined mathematically as

( )
( )

11

0 0

|
|

P D Hliklihood of data given H
liklihood of data given H P D H

=

The Schwarz criterion is one of the easiest ways to calculate rough approximation of the 
Bayes Factor.

Interpreting Bayes Factors

A Bayes Factor can be any positive number. One of the most common interpretations 
is this one—first proposed by Harold Jeffereys (1961) and slightly modified by Lee and 
Wagenmakers in 2013:

I F  B 1 0  I S … T H E N  Y O U  H A V E …
> 100 Extreme evidence for H1

30 – 100 Very strong evidence for H1

10 – 30 Strong evidence for H1

3 – 10 Moderate evidence for H1

1 – 3 Anecdotal evidence for H1

1 No evidence
1/3 – 1 Anecdotal evidence for H1

1/3 – 1/10 Moderate evidence for H1

1/10 – 1/30 Strong evidence for H1

1/30 – 1/100 Very strong evidence for H1

< 1/100 Extreme evidence for H1
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Central limit theorem, Basu’s theorem, Cochran’s theorem, Fieller’s theorem, Fisher–
Tippett–Gnedenko theorem, Hajek–Le Cam convolution theorem, Neyman–Pearson 
lemma, etc. are some of the theorems that are used in statistics. This chapter discusses 
these theorems of statistics in detail.

Law of large numbers

Law of large numbers, in statistics is the theorem that, as the number of identically 
distributed, randomly generated variables increases, their sample mean (average) ap-
proaches their theoretical mean.

The law of large numbers was first proved by the Swiss mathematician Jakob Bernoulli 
in 1713. He and his contemporaries were developing a formal probability theory with 
a view toward analyzing games of chance. Bernoulli envisaged an endless sequence of 
repetitions of a game of pure chance with only two outcomes, a win or a loss. Labeling 
the probability of a win p, Bernoulli considered the fraction of times that such a game 
would be won in a large number of repetitions. It was commonly believed that this frac-
tion should eventually be close to p. This is what Bernoulli proved in a precise manner 
by showing that, as the number of repetitions increases indefinitely, the probability of 
this fraction being within any prespecified distance from p approaches 1.

There is also a more general version of the law of large numbers for averages, proved 
more than a century later by the Russian mathematician Pafnuty Chebyshev.

The law of large numbers is closely related to what is commonly called the law of aver-
ages. In coin tossing, the law of large numbers stipulates that the fraction of heads will 
eventually be close to 1/2. Hence, if the first 10 tosses produce only 3 heads, it seems 
that some mystical force must somehow increase the probability of a head, producing 
a return of the fraction of heads to its ultimate limit of 1/2. Yet the law of large numbers 
requires no such mystical force. Indeed, the fraction of heads can take a very long time 
to approach 1/2. For example, to obtain a 95 percent probability that the fraction of 
heads falls between 0.47 and 0.53, the number of tosses must exceed 1,000. In other 
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words, after 1,000 tosses, an initial shortfall of only 3 heads out of 10 tosses is swamped 
by results of the remaining 990 tosses.

The law of large numbers has a very central role in probability and statistics. It states 
that if you repeat an experiment independently a large number of times and average 
the result, what you obtain should be close to the expected value. There are two main 
versions of the law of large numbers. They are called the weak and strong laws of the 
large numbers. The difference between them is mostly theoretical. 

For i.i.d. random variables 1 2, ,..., nX X X  the sample mean, denoted by X  is defined as,

1 2 ... nX X X
X

n
+ + +

=

Another common notation for the sample mean is nM . If the iX ’s have CDF ( )XF x , 
we might show the sample mean by ( )nM X  to indicate the distribution of the iX ’s.

Note that since the iX ’s is random variables, the sample mean ( )nX M X=  is also a 
random variable. In particular, we have,

( )+ + +
=

=

=

1 2

i

...
by linearity of expectatio[ ]

( )

n

since EX = EX

.

nEX EX EX
E X

n
nEX

n
EX

Also, the variance of X  is given by,

+ + +
=

+ + +
=

=

=

2

2

21 2

1 2
i

i2

Var ...
since Var aX = a Var X

Var Var ...
since the X 's are independent

since Var X = Var X

( )
( ) ( ( ) ( ))

( ) ( ) ( )
( )

( )
( ( ) (

.

))

( )

n

n

X X X
Var X

n
X X Var X

n
nVar X

n
Var X

n

Now let us state and prove the weak law of large numbers (WLLN).

The weak law of large numbers (WLLN).

Let X1, X2, ... ,Xn be i.i.d. random variables with a finite expected value .iEX µ= < ∞  
Then, for any 0> ,

n
lim 0.(| | )P X µ
→∞

− ≥ =
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Central limit theorem

In probability theory, the central limit theorem (CLT) establishes that, in some situa-
tions, when independent random variables are added, their properly normalized sum 
tends toward a normal distribution (informally a “bell curve”) even if the original vari-
ables themselves are not normally distributed. The theorem is a key concept in prob-
ability theory because it implies that probabilistic and statistical methods that work 
for normal distributions can be applicable to many problems involving other types of 
distributions. 

For example, suppose that a sample is obtained containing many observations, each 
observation being randomly generated in a way that does not depend on the values of 
the other observations, and that the arithmetic mean of the observed values is com-
puted. If this procedure is performed many times, the central limit theorem says that 
the distribution of the average will be closely approximated by a normal distribution. 
A simple example of this is that if one flips a coin many times the probability of getting 
a given number of heads in a series of flips will approach a normal curve, with mean 
equal to half the total number of flips in each series; in the limit of an infinite number 
of flips, it will equal a normal curve. 

The central limit theorem has a number of variants. In its common form, the random 
variables must be identically distributed. In variants, convergence of the mean to the 
normal distribution also occurs for non-identical distributions or for non-independent 
observations, given that they comply with certain conditions. 

The earliest version of this theorem, that the normal distribution may be used as an 
approximation to the binomial distribution, is now known as the de Moivre–Laplace 
theorem. 

In more general usage, a central limit theorem is any of a set of weak-convergence the-
orems in probability theory. They all express the fact that a sum of many independent 
and identically distributed (i.i.d.) random variables, or alternatively, random variables 
with specific types of dependence, will tend to be distributed according to one of a small 
set of attractor distributions. When the variance of the i.i.d. variables is finite, the at-
tractor distribution is the normal distribution. In contrast, the sum of a number of i.i.d. 
random variables with power law tail distributions decreasing as |x|−α − 1 where 0 < α < 
2 (and therefore having infinite variance) will tend to an alpha-stable distribution with 
stability parameter (or index of stability) of α as the number of variables grows.

Independent Sequences

Classical CLT

Let {X1, …, Xn} be a random sample of size n—that is, a sequence of independent and 
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identically distributed (i.i.d.) random variables drawn from a distribution of expected 
value given by µ and finite variance given by σ2. 

1: n
n

X X
S

n
+ +

=


A distribution being “smoothed out” by summation, showing original  
density of distribution and three subsequent summations.

Whatever the form of the population distribution, the sampling distribution  
tends to a Gaussian, and its dispersion is given by the Central Limit Theorem.

Suppose we are interested in the sample average of these random variables. By the law 
of large numbers, the sample averages converge in probability and almost surely to the 
expected value µ as n → ∞. The classical central limit theorem describes the size and 
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the distributional form of the stochastic fluctuations around the deterministic number 
µ during this convergence. More precisely, it states that as n gets larger, the distribution 
of the difference between the sample average Sn and its limit µ, when multiplied by the 
factor ( )−    ,(  )nn that is n S µ approximates the normal distribution with mean 0 and 
variance σ2. For large enough n, the distribution of Sn is close to the normal distribution 
with mean µ and variance σ2/n. The usefulness of the theorem is that the distribution 
of ( )−   nn S µ approaches normality regardless of the shape of the distribution of the 
individual Xi. Formally, the theorem can be stated as follows:

Lindeberg–Lévy CLT:

Suppose {X1, X2, …} is a sequence of i.i.d. random variables with E[Xi] = µ and Var[Xi] 
= σ2 < ∞. Then as n approaches infinity, the random variables ( )−   nn S µ converge in 
distribution to a normal N(0,σ2):

( ) ( )20, .d
nn S Nµ s− →

In the case σ > 0, convergence in distribution means that the cumulative distribution 
functions of ( )−  nn S µ converge pointwise to the cdf of the N(0, σ2) distribution: for 
every real number z, 

( )
limPr ( ) limPr ,n

nn n

n S z zn S z
µ

µ
s s s→∞ →∞

 −   − ≤ = ≤ = F        

Where, Φ(z) is the standard normal cdf evaluated at z. The convergence is uniform in z 
in the sense that, 

limsup Pr ( ) 0,nn z

zn S zµ
s→∞ ∈

  − ≤ −F =    

Where, sup denotes the least upper bound (or supremum) of the set. 

Lyapunov CLT

The theorem is named after Russian mathematician Aleksandr Lyapunov. In this vari-
ant of the central limit theorem the random variables Xi have to be independent, but 
not necessarily identically distributed. The theorem also requires that random vari-
ables |Xi| have moments of some order (2 + δ), and that the rate of growth of these 
moments is limited by the Lyapunov condition given below:

Lyapunov CLT: Suppose {X1, X2, …} is a sequence of independent random variables, 
each with finite expected value μi and variance s 2 .i . Define,

2 2

1

n

n i
i

s s
=

=∑
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If for some δ > 0, Lyapunov’s condition,

2
2

1

1
lim E | | 0

n

i in
in

X
s

δ
δ µ +

+→∞
=

 − = ∑

is satisfied, then a sum of i i

n

X
s
µ−

, converges in distribution to a standard normal ran-

dom variable, as n goes to infinity: 

( )
1

1
(0,1).

n
d

i i
in

X N
s

µ
=

− →∑

In practice it is usually easiest to check Lyapunov’s condition for δ = 1. 

If a sequence of random variables satisfies Lyapunov’s condition, then it also satisfies 
Lindeberg’s condition. The converse implication, however, does not hold. 

Lindeberg CLT

In the same setting and with the same notation as above, the Lyapunov condition can 
be replaced with the following weaker one.

Suppose that for every ε > 0,

2
{| | }2

1

1
lim E ( ) 0

i i n

n

i i X sn
in

X
s µ ε∞

µ − >→
=

 − ⋅ = ∑ 1

where µ ε− >{| | }i i nX s1  is the indicator function. Then the distribution of the standardized 
sums, 

( )
1

1 n

i i
in

X
s

µ
=

−∑

converges towards the standard normal distribution N(0,1). 

Multidimensional CLT

Proofs that use characteristic functions can be extended to cases where each individ-
ual Xi is a random vector in k , with mean vector μ = E(Xi) and covariance matrix Σ 
(among the components of the vector), and these random vectors are independent and 
identically distributed. Summation of these vectors is being done componentwise. The 
multidimensional central limit theorem states that when scaled, sums converge to a 
multivariate normal distribution. 

Let, 

(1)

( )

i

i

i k

X
X

X

 
 =  
  


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be the k-vector. The bold in Xi means that it is a random vector, not a random (univar-
iate) variable. Then the sum of the random vectors will be, 

(1)
11(1) 2(1) (1)

1
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in n
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and the average is, 
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and therefore, 
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The multivariate central limit theorem states that, 

( )µ− → Σ  (0, )
D

n kn X N

where the covariance matrix Σ is equal to,
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Var kX

The rate of convergence is given by the following Berry–Esseen type result: 

Theorem: Let 1 , , nX X… be independent dR -valued random vectors, each having 

mean zero. Write 
1

n

i
i

S X
=

=∑ and assume Cov[ ]SΣ = is invertible. Let ∼ Σ(0, )Z N be 
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a d -dimensional Gaussian with the same mean and covariance matrix as S .Then for 
all convex sets dU R⊆ , 

1/4|Pr[ ] Pr[ ]| ,S U Z U Cd γ∈ − ∈ ≤

where C is a universal constant, γ −

=

= Σ∑ 


1 3
2

/2

1

E[ ],
n

i
i

X , and 2⋅|| ||

denotes the Euclidean norm on dR . 

It is unknown whether the factor 1/4d is necessary.

Generalized Theorem

The central limit theorem states that the sum of a number of independent and identical-
ly distributed random variables with finite variances will tend to a normal distribution 
as the number of variables grows. A generalization due to Gnedenko and Kolmogorov 
states that the sum of a number of random variables with a power-law tail (Paretian 
tail) distributions decreasing as |x|−α − 1 where 0 < α < 2 (and therefore having infinite 
variance) will tend to a stable distribution f(x;α,0,c,0) as the number of summands 
grows. If α > 2 then the sum converges to a stable distribution with stability parameter 
equal to 2, i.e. a Gaussian distribution. 

Dependent Processes

CLT under Weak Dependence

A useful generalization of a sequence of independent, identically distributed random 
variables is a mixing random process in discrete time; “mixing” means, roughly, that 
random variables temporally far apart from one another are nearly independent. Sev-
eral kinds of mixing are used in ergodic theory and probability theory.  

A simplified formulation of the central limit theorem under strong mixing is: 

Theorem: Suppose that X1, X2, … is stationary and α-mixing with αn = O(n−5) and that 
E(Xn) = 0 and E( 12

nX ) < ∞. Denote Sn = X1 + … + Xn, then the limit, 

( )2
2

E
lim n

n

S

n
s =

exists, and if σ ≠ 0 then nS
ns

 converges in distribution to N(0,1).

In fact, 

( ) ( )2 2
1 1 1

1

E 2 E ,k
k

X X Xs
∞

+
=

= + ∑

where the series converges absolutely. 
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The assumption σ ≠ 0 cannot be omitted, since the asymptotic normality fails for Xn = 
Yn − Yn − 1 where Yn are another stationary sequence. 

There is a stronger version of the theorem: the assumption E(X12
n) < ∞ is replaced with 

E(|Xn|2 + δ) < ∞, and the assumption αn = O(n−5) is replaced with,

2(2 ) .n
n

δ
δα ∞+ <∑

Existence of such δ > 0 ensures the conclusion. 

Martingale Difference CLT

Theorem: Let a martingale Mn satisfy, 

•	 ( )( )2
1 1 1
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1
E | , , 1

n

k k k
k

M M M M
n − −

=

− … →∑ in probability as n → ∞,

•	 For every ε > 0,

( )( )2
1 1

1

1
E ;| | 0

n

k k k k
k

M M M M n
n

ε− −
=

− − > →∑
 

as n → ∞,

then Mn/√n converges in distribution to N(0,1) as n → ∞.

Caution: The restricted expectation  E(X ; A) should not be confused with the condi-
tional expectation E(X | A) = E(X ; A)/ P(A). 

Proof of Classical CLT

The central limit theorem has a simple proof using characteristic functions. It is similar 
to the proof of the (weak) law of large numbers. 

Assume {X1, …, Xn} are independent and identically distributed random variables, each 
with mean µ and finite variance σ2. The sum X1 + … + Xn has mean nµ and variance nσ2. 
Consider the random variable, 

1
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where in the last step we defined the new random variables Yi = (Xi – μ)/ σ, each with 
zero mean and unit variance (var(Y) = 1). The characteristic function of Zn is given by, 

ϕ ϕ ϕ ϕ ϕ ϕ
=

        
= = =         

       ∑  


1

1 21
( )  ( )    ,n

i
i

n

n n n
Y

n

t t t tZ t t Y Y Y Y
n n n n

where in the last step we used the fact that all of the Yi are identically distributed. The 
characteristic function of Y1 is, by Taylor’s theorem, 

ϕ  
 


 




= − + →  

   

2 2

1 1 , 0
2

t t t tY o
n nn n

where o(t2/n) is “little o notation” for some function of t that goes to zero more rapidly 
than t2/n. By the limit of the exponential function (ex= lim(1 + x/ n)n), the characteristic 
function of Zn equals, 

ϕ
−  

= − + → →∞  
  

212 2
2( ) 1 , .

2

n
t

n
t tZ t o e n
n n

All of the higher order terms vanish in the limit n → ∞. The right hand side equals the 
characteristic function of a standard normal distribution N(0,1), which implies through 
Lévy’s continuity theorem that the distribution of Zn will approach N(0,1) as n → ∞. 
Therefore, the sum X1 + … + Xn will approach that of the normal distribution N(nµ,nσ2), 
and the sample average,

1 n
n

X X
S

n
+ +

=


converges to the normal distribution N(µ,σ2/ n), from which the central limit theorem 
follows. 

Convergence to the Limit

The central limit theorem gives only an asymptotic distribution. As an approximation 
for a finite number of observations, it provides a reasonable approximation only when 
close to the peak of the normal distribution; it requires a very large number of observa-
tions to stretch into the tails. 

The convergence in the central limit theorem is uniform because the limiting cumula-
tive distribution function is continuous. If the third central moment E((X1 − μ)3) exists 
and is finite, then the speed of convergence is at least on the order of 1/ n. Stein’s meth-
od can be used not only to prove the central limit theorem, but also to provide bounds 
on the rates of convergence for selected metrics. 
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The convergence to the normal distribution is monotonic, in the sense that the entropy 
of Zn increases monotonically to that of the normal distribution. 

The central limit theorem applies in particular to sums of independent and identically 
distributed discrete random variables. A sum of discrete random variables is still a 
discrete random variable, so that we are confronted with a sequence of discrete ran-
dom variables whose cumulative probability distribution function converges towards 
a cumulative probability distribution function corresponding to a continuous variable 
(namely that of the normal distribution). This means that if we build a histogram of 
the realisations of the sum of n independent identical discrete variables, the curve that 
joins the centers of the upper faces of the rectangles forming the histogram converges 
toward a Gaussian curve as n approaches infinity, this relation is known as de Moivre–
Laplace theorem. 

Relation to the Law of Large Numbers

The law of large numbers as well as the central limit theorem are partial solutions to 
a general problem: “What is the limiting behaviour of Sn as n approaches infinity?” In 
mathematical analysis, asymptotic series are one of the most popular tools employed 
to approach such questions. 

Suppose we have an asymptotic expansion of f(n): 

ϕ ϕ ϕ= + + →∞1 1 2 2 3( ) ( ) ( ) ( ( )) ( ).f n a n a n O n n

Dividing both parts by φ1(n) and taking the limit will produce a1, the coefficient of the 
highest-order term in the expansion, which represents the rate at which f(n) changes 
in its leading term. 

1
1

( )
lim .

( )n

f n a
n∞ ϕ→

=

Informally, one can say: “f(n) grows approximately as a1φ1(n)”. Taking the difference 
between f(n) and its approximation and then dividing by the next term in the expan-
sion, we arrive at a more refined statement about f(n): 

1 1
2

2

( ) ( )
lim .

( )n

f n a n
a

n
ϕ

ϕ→∞

−
=

Here one can say that the difference between the function and its approximation grows 
approximately as a2φ2(n). The idea is that dividing the function by appropriate nor-
malizing functions, and looking at the limiting behavior of the result, can tell us much 
about the limiting behavior of the original function itself. 
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Informally, something along these lines happens when the sum, Sn, of independent 
identically distributed random variables, X1, …, Xn, is studied in classical probability 
theory. If each Xi has finite mean μ, then by the law of large numbers, Sn/n → μ. If in 
addition each Xi has finite variance σ2, then by the central limit theorem, 

,nS n
n
µ

ξ
−

→

where ξ is distributed as N(0,σ2). This provides values of the first two constants in the 
informal expansion, 

.nS n nµ ξ≈ +

In the case where the Xi do not have finite mean or variance, convergence of the shifted 
and rescaled sum can also occur with different centering and scaling factors: 

,n n

n

S a
b
−

→Ξ

or informally, 

.n n nS a b≈ +Ξ

Distributions Ξ which can arise in this way are called stable. Clearly, the normal dis-
tribution is stable, but there are also other stable distributions, such as the Cauchy dis-
tribution, for which the mean or variance are not defined. The scaling factor bn may be 
proportional to nc, for any c ≥1/2; it may also be multiplied by a slowly varying function 
of n. 

The law of the iterated logarithm specifies what is happening “in between” the law of 
large numbers and the central limit theorem. Specifically it says that the normalizing 
function log log , n n  intermediate in size between n of the law of large numbers and n  
of the central limit theorem, provides a non-trivial limiting behavior. 

Alternative Statements of the Theorem

Density Functions

The density of the sum of two or more independent variables is the convolution of their 
densities (if these densities exist). Thus the central limit theorem can be interpreted as 
a statement about the properties of density functions under convolution: the convo-
lution of a number of density functions tends to the normal density as the number of 
density functions increases without bound. These theorems require stronger hypothe-
ses than the forms of the central limit theorem given above. Theorems of this type are 
often called local limit theorems. 
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Characteristic Functions

Since the characteristic function of a convolution is the product of the characteristic 
functions of the densities involved, the central limit theorem has yet another restate-
ment: the product of the characteristic functions of a number of density functions be-
comes close to the characteristic function of the normal density as the number of den-
sity functions increases without bound, under the conditions stated above. Specifically, 
an appropriate scaling factor needs to be applied to the argument of the characteristic 
function. 

An equivalent statement can be made about Fourier transforms, since the characteris-
tic function is essentially a Fourier transform. 

Calculating the Variance

Let Sn be the sum of n random variables. Many central limit theorems provide condi-
tions such that ( )/n nS Var S  converges in distribution to N(0,1) (the normal distribution 
with mean 0, variance 1) as n→ ∞. In some cases, it is possible to find a constant σ2 and 
function f(n) such that ( )/( )nS n f ns ⋅  converges in distribution to N(0,1) as n→ ∞. 

Suppose 1 2, ,X X … is a sequence of real-valued and strictly stationary random vari-

ables with ( ) 0iX = for all i , : [0,1] ,g →  and 
1
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i
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n
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=

= ∑

•	 If in addition 0s > and / Var( )n nS S converges in distribution to (0,1) as 

n →∞ then / ( )n nS ns γ also converges in distribution to (0,1) as n →∞ .

Extensions

Products of Positive Random Variables

The logarithm of a product is simply the sum of the logarithms of the factors. There-
fore, when the logarithm of a product of random variables that take only positive values 
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approaches a normal distribution, the product itself approaches a log-normal distribu-
tion. Many physical quantities (especially mass or length, which are a matter of scale 
and cannot be negative) are the products of different random factors, so they follow 
a log-normal distribution. This multiplicative version of the central limit theorem is 
sometimes called Gibrat’s law. 

Whereas the central limit theorem for sums of random variables requires the condition 
of finite variance, the corresponding theorem for products requires the corresponding 
condition that the density function be square-integrable. 

Beyond the Classical Framework

Asymptotic normality, that is, convergence to the normal distribution after appropriate 
shift and rescaling, is a phenomenon much more general than the classical framework 
treated above, namely, sums of independent random variables (or vectors). New frame-
works are revealed from time to time; no single unifying framework is available for now. 

Convex Body

Theorem: There exists a sequence εn ↓ 0 for which the following holds. Let n ≥ 1, and 
let random variables X1, …, Xn have a log-concave joint density f such that f(x1, …, xn) = 
f(|x1|, …, |xn|) for all x1, …, xn, and E(X2

k) = 1 for all k = 1, …, n. Then the distribution of, 

1 nX X
n

+ +

is εn-close to N(0,1) in the total variation distance.

These two εn-close distributions have densities (in fact, log-concave densities), thus, 
the total variance distance between them is the integral of the absolute value of the 
difference between the densities. Convergence in total variation is stronger than weak 
convergence. 

An important example of a log-concave density is a function constant inside a given 
convex body and vanishing outside; it corresponds to the uniform distribution on the 
convex body, which explains the term “central limit theorem for convex bodies”. 

Another example: f(x1, …, xn) = const · exp( − (|x1|
α + … + |xn|α)β) where α > 1 and αβ > 

1. If β = 1 then f(x1, …, xn) factorizes into const · exp (−|x1|
α) … exp(−|xn|α), which means 

X1, …, Xn are independent. In general, however, they are dependent. 

The condition f(x1, …, xn) = f(|x1|, …, |xn|) ensures that X1, …, Xn are of zero mean and 
uncorrelated; still, they need not be independent, nor even pairwise independent. By 
the way, pairwise independence cannot replace independence in the classical central 
limit theorem. 
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Here is a Berry–Esseen type result. 

Theorem: Let X1, …, Xn satisfy the assumptions of the previous theorem, then,

21
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for all a < b; here C is a universal (absolute) constant. Moreover, for every c1, …, cn ∈ 
such that c2
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The distribution of (X1 + … + Xn)/ n  need not be approximately normal (in fact, it can 
be uniform). However, the distribution of c1X1 + … + cnXn is close to N(0,1) (in the total 
variation distance) for most vectors (c1, …, cn) according to the uniform distribution on 
the sphere c2

1 + … + c2
n = 1. 

Lacunary Trigonometric Series

Theorem: (Salem–Zygmund): Let U be a random variable distributed uniformly on 
(0,2π), and Xk = rk cos(nkU + ak), where, 

•	 nk satisfy the lacunarity condition: there exists q > 1 such that nk + 1 ≥ qnk for 
all k,

•	 rk are such that,
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•	 0 ≤ ak < 2π.

Then,
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converges in distribution to N(0, 1/2).
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Gaussian Polytopes

Theorem: Let A1, …, An be independent random points on the plane  2 each having 
the two-dimensional standard normal distribution. Let Kn be the convex hull of these 
points, and Xn the area of Kn. Then,

E( )
Var( )
n n

n

X X
X

−

converges in distribution to N(0,1) as n tends to infinity.

The same also holds in all dimensions greater than 2. 

The polytope Kn is called a Gaussian random polytope. 

A similar result holds for the number of vertices (of the Gaussian polytope), the number 
of edges, and in fact, faces of all dimensions. 

Linear Functions of Orthogonal Matrices

A linear function of a matrix M is a linear combination of its elements (with given coef-
ficients), M ↦ tr(AM) where A is the matrix of the coefficients; 

A random orthogonal matrix is said to be distributed uniformly, if its distribution is the 
normalized Haar measure on the orthogonal group O(n, ). 

Theorem: Let M be a random orthogonal n × n matrix distributed uniformly, and A a 
fixed n × n matrix such that tr(AA*) = n, and let X = tr(AM). Then the distribution of X 
is close to N(0,1) in the total variation metric up to 2√3/n − 1.

Subsequences

Theorem: Let random variables X1, X2, … ∈ L2(Ω) be such that Xn → 0 weakly in L2(Ω) 
and Xn → 1 weakly in L1(Ω). Then there exist integers n1 < n2 < … such that, 

1 kn nX X

k

+ +

converges in distribution to N(0,1) as k tends to infinity.

Random Walk on a Crystal Lattice

The central limit theorem may be established for the simple random walk on a crystal 
lattice (an infinite-fold abelian covering graph over a finite graph), and is used for de-
sign of crystal structures. 
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Applications and Examples

This figure demonstrates the central limit theorem. The sample means are generated 
using a random number generator, which draws numbers between 0 and 100 from a 
uniform probability distribution. It illustrates that increasing sample sizes result in the 
500 measured sample means being more closely distributed about the population mean 
(50 in this case). It also compares the observed distributions with the distributions that 
would be expected for a normalized Gaussian distribution, and shows the chi-squared 
values that quantify the goodness of the fit (the fit is good if the reduced chi-squared val-
ue is less than or approximately equal to one). The input into the normalized Gaussian 
function is the mean of sample means (~50) and the mean sample standard deviation 
divided by the square root of the sample size (~28.87/√n), which is called the standard 
deviation of the mean (since it refers to the spread of sample means).

A simple example of the central limit theorem is rolling many identical, unbiased dice. 
The distribution of the sum (or average) of the rolled numbers will be well approximated 
by a normal distribution. Since real-world quantities are often the balanced sum of many 
unobserved random events, the central limit theorem also provides a partial explanation 
for the prevalence of the normal probability distribution. It also justifies the approxima-
tion of large-sample statistics to the normal distribution in controlled experiments. 
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Comparison of probability density functions, **p(k) for the sum of n fair 6-sided dice to 
show their convergence to a normal distribution with increasing n, in accordance to the 
central limit theorem. In the bottom-right graph, smoothed profiles of the previous graphs 
are rescaled, superimposed and compared with a normal distribution (black curve).
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Another simulation using the binomial distribution. Random 0s and 1s were generated, 
and then their means calculated for sample sizes ranging from 1 to 512. Note that as 
the sample size increases the tails become thinner and the distribution becomes more 
concentrated around the mean.

Real Applications

Published literature contains a number of useful and interesting examples and appli-
cations relating to the central limit theorem. One source states the following examples: 

•	 The probability distribution for total distance covered in a random walk (biased 
or unbiased) will tend toward a normal distribution.

•	 Flipping many coins will result in a normal distribution for the total number of 
heads (or equivalently total number of tails).

From another viewpoint, the central limit theorem explains the common appearance of 
the “bell curve” in density estimates applied to real world data. In cases like electronic 
noise, examination grades, and so on, we can often regard a single measured value as 
the weighted average of many small effects. 

Using generalisations of the central limit theorem, we can then see that this would 
often (though not always) produce a final distribution that is approximately normal. 

In general, the more a measurement is like the sum of independent variables with equal 
influence on the result, the more normality it exhibits. This justifies the common use 
of this distribution to stand in for the effects of unobserved variables in models like the 
linear model. 

Regression

Regression analysis and in particular ordinary least squares specifies that a dependent 
variable depends according to some function upon one or more independent variables, 
with an additive error term. Various types of statistical inference on the regression as-
sume that the error term is normally distributed. 

This assumption can be justified by assuming that the error term is actually the sum of 
many independent error terms; even if the individual error terms are not normally dis-
tributed, by the central limit theorem their sum can be well approximated by a normal 
distribution. 

Other Illustrations

Given its importance to statistics, a number of papers and computer packages are avail-
able that demonstrate the convergence involved in the central limit theorem. 
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Basu’s theorem

In statistics, Basu’s theorem states that any boundedly complete minimal sufficient 
statistic is independent of any ancillary statistic. This is a 1955 result of Debabrata 
Basu. 

It is often used in statistics as a tool to prove independence of two statistics, by first 
demonstrating one is complete sufficient and the other is ancillary, then appealing to 
the theorem. An example of this is to show that the sample mean and sample variance 
of a normal distribution are independent statistics, This property (independence of 
sample mean and sample variance) characterizes normal distributions. 

Statement:

Let θ θ ∈Θ( ; )P be a family of distributions on a measurable space ( , )X  and ,T A mea-
surable maps from ( , )X  to some measurable space ( , )Y  . (Such maps are called a 
statistic.) If T is a boundedly complete sufficient statistic for θ , and A is ancillary to θ , 
then T is independent of A. 

Proof:

Let TPθ and APθ be the marginal distributions of T and A respectively. 

Denote by 1( )A B− the preimage of a set B under the map A . For any measurable set 
B∈ we have,

θ θ θ θ
− −= = =∫1 1( ) ( ( )) ( ( ) ) ( ).A T

Y

P B P A B P A B T t P dt|

The distribution APθ does not depend on θ because A is ancillary. Likewise, θ ⋅ =( )P T t|
does not depend on θ because T is sufficient. Therefore, 

θ
− = − =∫ 1[ ( ( )| ) ( )] ( ) 0.A T

Y
Y P A B T t P B P dt

Note the integrand (the function inside the integral) is a function of t and not θ . There-
fore, since T is boundedly complete the function, 

−= = −1( ) ( ( )| ) ( )Ag t P A B T t P B

is zero for TPθ almost all values of t and thus, 

− = =1( ( )| ) ( )AP A B T t P B

for almost all t. Therefore, A is independent of T . 
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Independence of Sample Mean and Sample Variance of a Normal 
Distribution (Known Variance)

Let X1, X2, ..., Xn be independent, identically distributed normal random variables with 
mean μ and variance σ2. 

Then with respect to the parameter μ, one can show that, 

ˆ ,iX
n

µ
∑

=

the sample mean, is a complete sufficient statistic – it is all the information one can 
derive to estimate μ, and no more – and 

( )2

2ˆ ,
1

iX X

n
s

−
=

−
∑

the sample variance, is an ancillary statistic – its distribution does not depend on μ. 

Therefore, from Basu’s theorem it follows that these statistics are independent. 

This independence result can also be proven by Cochran’s theorem. 

Further, this property (that the sample mean and sample variance of the normal distri-
bution are independent) characterizes the normal distribution – no other distribution 
has this property.

Cochran’s theorem

In statistics, Cochran’s theorem, devised by William G. Cochran, is a theorem used to 
justify results relating to the probability distributions of statistics that are used in the 
analysis of variance.

Statement:

Suppose U1, ..., UN are i.i.d. standard normally distributed random variables, and there 

exist matrices (1) (2) ( ), , , kB B B… , with ( )

1

k
i

N
i

B I
=

=∑ . 

Further suppose that 1 ,kr r N+ + = , where ri is the rank of ( )iB . If we write, 

( )
,

1 1

N N
i

i j j
j

Q U B U
= =

=∑∑
 


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so that the Qi are quadratic forms, then Cochran’s theorem states that the Qi are inde-
pendent, and each Qi has a chi-squared distribution with ri degrees of freedom. 

Less formally, it is the number of linear combinations included in the sum of squares 
defining Qi, provided that these linear combinations are linearly independent. 

Proof:

We first show that the matrices B(i) can be simultaneously diagonalized and that their 
non-zero eigenvalues are all equal to +1. We then use the vector basis that diagonalize 
them to simplify their characteristic function and show their independence and distri-
bution. 

Each of the matrices B(i) has rank ri and thus ri non-zero eigenvalues. For each i, the 

sum ( ) ( )i j

j i

C B
≠

≡∑ has at most rank .j i
j i

r N r
≠

= −∑ . Since 

( ) ( )i i
N NB C I ×+ = , it follows that C(i) has exactly rank N − ri. 

Therefore B(i) and C(i) can be simultaneously diagonalized. This can be shown by first 
diagonalizing B(i). In this basis, it is of the form: 

1

2

0 0 0
0 0 0
0 0

.

0
0
0 0 0

ir

λ
λ

λ

 
 
 
 
 
 
 
 
 
 … 

 

 

 

 

 

 

Thus the lower ( )iN r− rows are zero. Since ( ) ( )i iC I B= − , it follows that these rows 
in C(i) in this basis contain a right block which is a ( ) ( )i iN r N r− × − unit matrix, with 
zeros in the rest of these rows. But since C(i) has rank N − ri, it must be zero elsewhere. 
Thus it is diagonal in this basis as well. It follows that all the non-zero eigenvalues of 
both B(i) and C(i) are +1. Moreover, the above analysis can be repeated in the diagonal 

basis for (1) (2) ( )

2

j

j

C B B
>

= +∑ . In this basis (1)C  is the identity of an 1 1( ) ( )N r N r− × −

vector space, so it follows that both B(2) and ( )

2

j

j

B
>
∑ are simultaneously diagonalizable 

in this vector space (and hence also together with B(1)). By iteration it follows that all B-s 
are simultaneously diagonalizable. 

Thus there exists an orthogonal matrix S such that for all i , T ( ) ( )i iS B S B ′≡ is diagonal, 
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where any entry ( )
, 'i

x yB with indices x y= , 
1

1 1

i i

j j
j j

r x y r
−

= =

< = ≤∑ ∑ , is equal to 1, while any 
entry with other indices is equal to 0. 

Let iU ′ denote some specific linear combination of all iU after transformation by .S  

Note that 2 2

1 1

( )
N N

i i
i i

U U′

= =

=∑ ∑ due to the length preservation of the orthogonal matrix S, 

that the Jacobian of a linear transformation is the matrix associated with the linear 
transformation itself, and that the determinant of an orthogonal matrix has modulus 1. 

The characteristic function of Qi is: 

22 2
1 2

2
1

1 2 2
1 11 1

2

/2/2 /2/2
1 2

/2/2

1

( ) /2/2

1

1( )/2 2

( ) (2 )

(2 )

(2 )

( )

.

2

i N

N
jji

r r Ni
m jm r r ji

i

itQ uu uN
i N

N uitQN
j

j

N it u uN
j

j

r
u itN

t du du du e e e e

du e e

du e e

e du e

ϕ π

π

π

π

=

+ + ′ ′
= + + + =−

−− −−

−−

=

⋅ −− ′

=

−−

= ⋅ ⋅

  ∑= ⋅ 
 
  ∑ ∑= ⋅ 
 

 
=  

 

∫ ∫ ∫

∏∫

∏∫

∫





 

2

2

/2(1 2 )

i

i

N r
u

r

du

it

−
−

−

 
  
 

= −

∫

This is the Fourier transform of the chi-squared distribution with ri degrees of freedom. 
Therefore this is the distribution of Qi.

Moreover, the characteristic function of the joint distribution of all the Qis is:

ϕ π

π

π

ϕ

==

+ + ′ ′
= = + + + =−

−⋅−

=

⋅ −− ′

=

−−

=

−

= =

  ∑∑… = ⋅ 
 
  ∑ ∑ ∑= ⋅ 
 

 
=  

 

= − =

∏∫

∏∫

∏ ∫

∏





2
11

1 2 2
1 1 11 1

2

/2/2
1 2

1

( ) /2/2

1

1( )/2 2

1

/2

1 1

( , , , ) (2 )

(2 )

(2 )

(1 2 )

Nk
ji i ji

k r r Ni
i k ji k r r ji

i
i

i

N Ui t QN
k j

j

N i t U UN
j

j

r
k u itN

i

k k
r

i i
i i

t t t dU e e

dU e e

e du

it ∏ ( )it

From this it follows that all the Qis are independent. 
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Sample Mean and Sample Variance

If X1, ..., Xn are independent normally distributed random variables with mean μ and 
standard deviation σ then, 

i
i

X
U

µ
s
−

=

is standard normal for each i. It is possible to write, 

2 2
2

1 1

n n
i

i
i i

X X XU n µ
s s= =

   − −
= +   

  
∑ ∑

(here X is the sample mean). To see this identity, multiply throughout by 2s and note 
that, 

2 2( ) ( )i iX X X Xµ µ− = − + −∑ ∑
and expand to give, 

2 2 2( ) ( ) ( ) 2 ( )( ).i i iX X X X X X Xµ µ µ− = − + − + − −∑ ∑ ∑ ∑
The third term is zero because it is equal to a constant times, 

( ) 0,iX X− =

and the second term has just n identical terms added together. Thus, 

2 2 2( ) ( ) ( ) ,i iX X X n Xµ µ− = − + −∑ ∑
and hence, 

2 22

1 2.i iX X X Xn Q Q
µ µ

s s s
   − − − ∑ = ∑ + = +    

    

Now the rank of B(2) is just 1 (it is the square of just one linear combination of the stan-
dard normal variables). The rank of B(1) can be shown to be n − 1, and thus the condi-
tions for Cochran’s theorem are met. 

Cochran’s theorem then states that Q1 and Q2 are independent, with chi-squared dis-
tributions with n − 1 and 1 degree of freedom respectively. This shows that the sample 
mean and sample variance are independent. This can also be shown by Basu’s theorem, 
and in fact this property characterizes the normal distribution – for no other distribu-
tion are the sample mean and sample variance independent. 
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Distributions

The result for the distributions is written symbolically as, 

( )2 2 2
1~ .i nX X s χ −−∑

2 2 2
1( ) ,n X µ s χ− ∼

Both these random variables are proportional to the true but unknown variance σ2. 
Thus their ratio does not depend on σ2 and, because they are statistically independent. 
The distribution of their ratio is given by, 

( )
( )

2
2
1

1, 12 2
1

~ ~
1 1

1 1

n

i n

n X
F

X X
n n

µ χ

χ
−

−

−

−
− −∑

where F1,n − 1 is the F-distribution with 1 and n − 1 degrees of freedom. The final step here 
is effectively the definition of a random variable having the F-distribution. 

Estimation of Variance

To estimate the variance σ2, one estimator that is sometimes used is the maximum like-
lihood estimator of the variance of a normal distribution, 

( )22 1ˆ .iX X
n

s = −∑

Cochran’s theorem shows that, 

2
2

12

ˆ
n

ns χ
s −∼

and the properties of the chi-squared distribution show that, 

( )

( )

( )

s χ
s

s
s

ss

−

 
= 

 

= −

−
=

2
2

12

2
2

2
2

( 1)

( 1)

ˆ

ˆ

ˆ

n
nE E

n E n

nE
n

( )

( )

( )

s χ
s

s
s

ss

−

 
= 

 

= −

−
=

2
2

12

2
2

2
2

( 1)

( 1)

ˆ

ˆ

ˆ

n
nE E

n E n

nE
n

( )
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( )
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s

s
s

ss

−

 
= 

 
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−
=

2
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____________________ WORLD TECHNOLOGIES ____________________



WT

226 Introductory Statistics

Alternative Formulation

The following version is often seen when considering linear regression. Suppose that 
2(0, )n nY N Is∼ is a standard multivariate normal random vector (here nI denotes 

the n-by-n identity matrix), and if 1 , , kA A… are all n-by-n symmetric matrices with 

1

k

i n
i

A I
=

=∑ . Then, on defining ( )i ir Rank A= , any one of the following conditions im-

plies the other two: 

•	
1

,
k

i
i

r n
=

=∑

•	 2 2~
i

T
i rY A Y s χ (thus the iA are positive semidefinite),

•	 T
iY A Y is independent of T

jY A Y for .i j≠

Fieller’s theorem

In statistics, Fieller’s theorem allows the calculation of a confidence interval for the 
ratio of two means. 

Approximate Confidence Interval

Variables a and b may be measured in different units, so there is no way to directly 
combine the standard errors as they may also be in different units. The most complete 
discussion of this is given by Fieller.

Fieller showed that if a and b are (possibly correlated) means of two samples with 
expectations aµ and bµ , and variances 2

11ν s and 2
22ν s and covariance 2

12ν s , and if 
11 12 22, ,ν ν ν are all known, then a (1 − α) confidence interval (mL, mU) for /a bµ µ is given 

by, 

22
,12 12

11 12 22 112
22 22

1
( , ) 2

(1 )
r

L U

t sga a am m g
g b b b b

αν νν ν ν ν
ν ν

  
 = − − + − − −    



where,

2 2
, 22

2 .rt s
g

b
α ν

=

Here 2s is an unbiased estimator of s 2 based on r degrees of freedom, and ,rt α is the α
-level deviate from the Student’s t-distribution based on r degrees of freedom. 
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Three features of this formula are important in this context: 

•	 The expression inside the square root has to be positive, or else the resulting 
interval will be imaginary. 

•	 When g is very close to 1, the confidence interval is infinite. 

•	 When g is greater than 1, the overall divisor outside the square brackets is neg-
ative and the confidence interval is exclusive. 

Other Methods

One problem is that, when g is not small, the confidence interval can blow up when 
using Fieller’s theorem. Andy Grieve has provided a Bayesian solution where the CIs 
are still sensible, albeit wide. Bootstrapping provides another alternative that does not 
require the assumption of normality.

Fisher–Tippett–Gnedenko theorem

Ronald Fisher.

In statistics, the Fisher–Tippett–Gnedenko theorem (also the Fisher–Tippett theorem 
or the extreme value theorem) is a general result in extreme value theory regarding 
asymptotic distribution of extreme order statistics. The maximum of a sample of iid 
random variables after proper renormalization can only converge in distribution to one 
of 3 possible distributions, the Gumbel distribution, the Fréchet distribution, or the 
Weibull distribution. Credit for the extreme value theorem (or convergence to types 
theorem) is given to Gnedenko, previous versions were stated by Ronald Fisher and 
Leonard Henry Caleb Tippettin 1928 and Fréchet in 1927.
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The role of the extremal types theorem for maxima is similar to that of central limit 
theorem for averages, except that the central limit theorem applies to the average of a 
sample from any distribution with finite variance, while the Fisher–Tippet–Gnedenko 
theorem only states that if the distribution of a normalized maximum converges, then 
the limit has to be one of a particular class of distributions. It does not state that the 
distribution of the normalized maximum does converge.

Statement:

Let 1 2, , nX X X… …  be a sequence of independent and identically-distributed random 
variables, and 1max{ , , }.n nM X X= … . If a sequence of pairs of real numbers ( , )n na b  

exists such that each 0na >  and lim ( ),n n

n
n

M b
P x F x

a→∞

 −
≤ = 

 
 where F  is a non-

degenerate distribution function, then the limit distribution F  belongs to either the 
Gumbel, the Fréchet or the Weibull family. These can be grouped into the generalized 
extreme value distribution.

Conditions of Convergence

If G is the distribution function of X, then Mn can be rescaled to converge in distribution 
to

• A Fréchet if and only if G (x) < 1 for all real x and
1 ( )

, 0.
1 ( ) t

G tx x x
G t

θ−
→+∞

−
→ >

−
 

In this case, possible sequences are,

bn = 0 and 1 1
1 .na G

n
−  = − 
 

• A Weibull if and only if ω = < < +∞sup{ 1}G ,

•	 θω
ω +→

−
− +

→ <
− − 0

1
(

( )
) , 0

1 ( ) t

G tx x x
G t

 In this case possible sequences are,

bn = ω and 1 1
1 .na G

n
ω −  = − − 

 
Convergence conditions for the Gumbel distribution are more involved.

Gauss–Markov theorem

The Gauss-Markov theorem states that if your linear regression model satisfies the first 
six classical assumptions, then ordinary least squares (OLS) regression produces unbi-
ased estimates that have the smallest variance of all possible linear estimators.

____________________ WORLD TECHNOLOGIES ____________________



WT

229Theorems in Statistics

The Gauss-Markov Theorem: OLS is BLUE

The Gauss-Markov theorem famously states that OLS is BLUE. BLUE is an acronym 
for the following:

Best Linear Unbiased Estimator

The definition of “best” refers to the minimum variance or the narrowest sampling dis-
tribution. More specifically, when your model satisfies the assumptions, OLS coeffi-
cient estimates follow the tightest possible sampling distribution of unbiased estimates 
compared to other linear estimation methods.

What does olS estimate?

Regression analysis is like any other inferential methodology. Our goal is to draw a ran-
dom sample from a population and use it to estimate the properties of that population. 
In regression analysis, the coefficients in the equation are estimates of the actual 
population parameters.

The notation for the model of a population is the following:

0 1 1 2 2 k kY X X Xb b b b= + + + + + 

The hats over the betas indicate that these are parameter estimates while e represents 
the residuals, which are estimates of the random error.

Typically, statisticians consider estimates to be useful when they are unbiased (correct 
on average) and precise (minimum variance). To apply these concepts to parameter 
estimates and the Gauss-Markov theorem, we’ll need to understand the sampling dis-
tribution of the parameter estimates.

Sampling Distributions of the Parameter Estimates

Imagine that we repeat the same study many times. We collect random samples of the 
same size, from the same population, and fit the same OLS regression model repeated-
ly. Each random sample produces different estimates for the parameters in the regres-
sion equation. After this process, we can graph the distribution of estimates for each 
parameter. Statisticians refer to this type of distribution as a sampling distribution, 
which is a type of probability distribution.

Keep in mind that each curve represents the sampling distribution of the estimates for 
a single parameter. The graphs below tell us which values of parameter estimates are 
more and less common. They also indicate how far estimates are likely to fall from the 
correct value.
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Hájek–Le Cam convolution theorem

In statistics, the Hájek–Le Cam convolution theorem states that any regular estima-
tor in a parametric model is asymptotically equivalent to a sum of two independent 
random variables, one of which is normalwith asymptotic variance equal to the inverse 
of Fisher information, and the other having arbitrary distribution.

The obvious corollary from this theorem is that the “best” among regular estimators are 
those with the second component identically equal to zero. Such estimators are called 
efficient and are known to always exist for regular parametric models.

The theorem is named after Jaroslav Hájek and Lucien Le Cam.

Statement:

Let ℘ = {Pθ | θ ∈ Θ ⊂ ℝk} be a regular parametric model, and q(θ): Θ → ℝm be a parameter 
in this model (typically a parameter is just one of the components of vector θ). Assume 
that function q is differentiable on Θ, with the m × k matrix of derivatives denoted as 
q̇θ. Define,

1 1
( ) ( ) ( ) ( )qI q I qθ θ θ θ− − ′=    — the information bound for q,

1
( ) ( ) ( ) ( )q q Iθψ θ θ θ−= 



  — the efficient influence function for q,

where I(θ) is the Fisher information matrix for model ℘, ( )θ  is the score function, 
and′ denotes matrix transpose.

Theorem: Suppose Tn is a uniformly (locally) regular estimator of the parameter q. 
Then,

•	 There exist independent random m-vectors 1
( )(0, )qZ Iθ θ
−∼  and Δθ such that,

( ( )) ,d
nn T q Zθ θθ− → +∆

where d denotes convergence in distribution. More specifically,

1
( )

1

1
( )

1

( ( )) ( )
.

( )

n

n q in
i d

n

q in
i

n T q x

Z
x

θ
θ

θ
θ

θ ψ

ψ

=

=

 
− −  ∆   →    

 
 

∑

∑

•	 If the map θ → q̇θ is continuous, then the convergence in (A) holds uniformly on 
compact subsets of Θ. Moreover, in that case Δθ = 0 for all θ if and only if Tn is 
uniformly (locally) asymptotically linear with influence function ψq(θ).
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Lehmann–Scheffé theorem

In statistics, the Lehmann–Scheffé theorem is a prominent statement, tying together 
the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. 
The theorem states that any estimator which is unbiased for a given unknown 
quantity and that depends on the data only through a complete, sufficient statistic 
is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé the-
orem is named after Erich Leo Lehmann and Henry Scheffé, given their two early 
papers.

If T is a complete sufficient statistic for θ and E(g(T)) = τ(θ) then g(T) is the uniformly 
minimum-variance unbiased estimator (UMVUE) of τ(θ).

Statement:

Let 1 2, , , nX X X X= …


 be a random sample from a distribution that has p.d.f (or p.m.f 
in the discrete case) ( : )f x θ  where θ ∈Ω  is a parameter in the parameter space. 
Suppose ( )Y u X=



 is a sufficient statistic for θ, and let θ θ ∈Ω{ ( : ) : }Yf y  be a 

complete family. If : E[ ( )]Yϕ ϕ θ=  then ( )Yϕ  is the unique MVUE of θ.

Proof:

By the Rao–Blackwell theorem, if Z  is an unbiased estimator of θ then ϕ =( ) : E[ | ]Y Z Y
defines an unbiased estimator of θ with the property that its variance is not greater than 
that of Z .

Now we show that this function is unique. Suppose W  is another candidate MVUE 
estimator of θ. Then again ψ = |( ) : E[ ]Y W Y  defines an unbiased estimator of θ with 
the property that its variance is not greater than that of W . Then,

E[ ( ) ( )] 0, .Y Yϕ ψ θ− = ∈Ω

Since { ( : ) : }Yf y θ θ ∈Ω  is a complete family,

E[ ( ) ( )] 0 ( ) ( ) 0,Y Y y yϕ ψ ϕ ψ θ− = ⇒ − = ∈Ω

and therefore the function ϕ  is the unique function of Y with variance not greater than 
that of any other unbiased estimator. We conclude that ( )Yϕ  is the MVUE.

Example for when using a Non-complete Minimal Sufficient Statistic

An example of an improvable Rao–Blackwell improvement, when using a min-
imal sufficient statistic that is not complete, was provided by Galili and Meili-
json in 2016. Let 1 , , nX X b…  be a random sample from a scale-uniform distribution 

~ ((1 ) ,(1 ) ),X U k kθ θ− +  with unknown mean E[ ]X θ=  and known design parameter 
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(0,1)k∈ . In the search for “best” possible unbiased estimators for θ , it is natural to 
consider 1X as an initial (crude) unbiased estimator for θ  and then try to improve 
it. Since 1X  is not a function of ( )(1) ( ), nT X X= , the minimal sufficient statistic for 
θ  (where (1) min ii

X X=  and ( ) maxn ii
X X b= ), it may be improved using the Rao–

Blackwell theorem as follows:

θθ
+

= = (1) ( )
1 (1) ( )

ˆ |E [ , ] .
2

n
RB n

X X
X X X

However, the following unbiased estimator can be shown to have lower variance: 

(1) ( )

2

(1 ) (1 )1ˆ .
1 21
1

n
LV

k X k X
nk
n

θ
− + +

= ⋅
−

+
+

And in fact, it could be even further improved when using the following estimator: 

(1)

( ) ( )
BAYES 1

(1)

( )

(1 )
1

(1 )1ˆ 1
1(1 )

1
(1 )

n n
n

n

X k
X k Xn

n kX k
X k

θ +

 + −
− +

= −  + + −   −  

Neyman–Pearson lemma

Neyman Pearson Lemma is used for testing a statistical hypothesis to test whether the 
performed test is the most powerful test about the population parameter with the con-
sideration of the supposed probability distribution. 

It allows seeing whether the rejection region which has been selected is the best one or 
not. It helps to assess the statistical power of the hypothesis test. The statistical power 
of the hypothesis test states that the null hypothesis has been correctly rejected in favor 
of the alternative hypothesis.

A test with the highest power of all the tests for the same level of significance is called 
the most-powerful test. Suppose if the results of the observations are used to test the 
null hypothesis as against the simple alternative hypothesis, the error arises from the 
rejection of null hypothesis being verified, as per a statistical test formulated to test a 
null hypothesis against the alternative hypothesis if the null hypothesis is actually true. 

The most powerful tests are constructed by Neyman-Pearson lemma. As per this, the 
most powerful test is the likelihood-ratio. A test proposed for testing the simple null 
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hypothesis against a simple alternative hypothesis which offers the least probability of 
error among all the tests is the most powerful test. As the statistical test power is ob-
tained by subtracting the probability of a type II error by one, the most powerful test is 
formulated in terms of probabilities of errors of type I and type II errors. 

Neyman-Pearson lemma test is defined as below:

Assume the random samples 1 2, ,... nY Y Y  with parameter are from a probability distribution.  
Then if the critical region is D of size ‘a’ and a constant k such that:

( )
( )
( )
( )

θ

θ

θ

θ

∞

∞

≤

≥

0

0

inside thecriticalreligionD,

outside thecriticalreligionD.

L
k

L

L
k

L

Here, D is the most powerful critical region and hence the most powerful test. 

References
•	 Law-of-large-numbers, science: britannica.com, Retrieved 15 June, 2019

•	 Bárány, Imre; Vu, Van (2007). “Central limit theorems for Gaussian polytopes”. Annals of 
Probability. Institute of Mathematical Statistics. 35 (4): 1593–1621. arXiv:math/0610192. 
doi:10.1214/009117906000000791

•	 Casella, George (2001). Statistical Inference. Duxbury Press. p. 369. ISBN 978-0-534-24312-8

•	 O’Hagan A, Stevens JW, Montmartin J (2000). “Inference for the cost-effectiveness acceptability 
curve and cost-effectiveness ratio”. Pharmacoeconomics. 17 (4): 339–49. doi:10.2165/00019053-
200017040-00004. PMID 10947489

•	 Gauss-markov-theorem-ols-blue, regression: statisticsbyjim.com, Retrieved 06 February, 2019

•	 Neyman-pearson-lemma-31: chegg.com, Retrieved 28 March, 2019

____________________ WORLD TECHNOLOGIES ____________________



WT
Statistics has applications in the fields of actuarial science, business analytics, foren-
sics, finance, engineering, operations research, signal processing, psychology, machine 
learning, etc. This chapter has been carefully written to provide an easy understanding 
of the diverse applications of statistics.

Business Statistics

Business statistics takes the data analysis tools from elementary statistics and applies 
them to business. For example, estimating the probability of a defect coming off a fac-
tory line, or seeing where sales are headed in the future. Many of the tools used in 
business statistics are built on ones you’ve probably already come across in basic math: 
mean, mode and median, bar graphs and the bell curve, and basic probability. Hy-
pothesis testing (where you test out an idea) and regression analysis (fitting data to an 
equation) builds on this foundation.

Describing Populations and Samples

The process of describing populations and samples is called Descriptive Statistics. A 
population includes everyone in the area of interest. For example, every person in the 
United States, every dog owner in Florida, or every computer user in the world. A sam-
ple is a small piece of the whole (i.e. 1000 people in the United States, 250 Floridian 
dog owners, 2500 worldwide computer users). There are three main ways to describe 
populations and samples: central tendency, dispersion and association.

Measures of Central Tendency

In this area, you find where the bulk of the data lies. It includes finding the mean, mode 
and median. The formulas for finding the population mean and sample mean have 
slightly different symbols:

Sample mean formula: = Σ  ( / .) ix x n

Population mean: μ = (Σ * X)/ N.

7
Applications
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They are solved in the same way: add the items together and then divide by the number 
of items in the set.

Measures of Dispersion

How much is your data set spread out around the mean? Is there a big difference between 
your highest and lowest values? These are questions that can be answered by finding the 
interquartile range, variance and standard deviation. The interquartile range is espe-
cially useful if you are more interested in where the bulk of your data lies and less inter-
ested in extreme values. For example, a business geared towards 20-somethings might 
want to plot the age range for customers who walk in the door. This makes sure they are 
marketing to the right age group; ideally, most customers should be in their 20s.

Measures of Association

Measures of association tell you about trends in data. For example, you could make a 
plot showing current manufacturing costs. This might show a high or low connection 
(“correlation”) between different factors and final cost. The factors could include em-
ployee time off, the price of oil, or location of the plant. Covariance is how two variables 
change together. If the price of tomatoes goes up, it directly affects the price of ketchup. 
The price of corn (to make high fructose corn syrup) also affects the price of ketchup, 
but in a smaller way.

Probabilities and Random Variables

Probability is the foundation of business statistics. Several formulas are used, including 
the basic formula:

P(A) = number of outcomes that give A/number of possible outcomes = r/n.

A simple example: A box of factory rejects contains 5 balls that are too small, 3 balls 
that are too big and 2 under-inflated balls. If a ball is chosen at random from the box, 
what is the probability that it is: (a) too small; (b) too small or under-inflated; (c) not 
under-inflated?

Answers:

a.	 P(A) = r/n = 5/10 = 0.5;

b.	 P(A) = r/n = 5+2/10 = 0.7;

c.	 P(A) = r/n = 8/10 = 0.8.

There are dozens of ways to figure out probabilities. It largely depends on what you 
want to know. For example, something happening or not happening, choosing people 
or items.
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In algebra, and “x” or “y” can represent a number, like 3,14 or 22.5. In statistics, a ran-
dom variable must be linked to a random event or experiment. Let’s say you wanted to 
know how many faulty televisions are produced on a certain line. Your random variable, 
X could be the number of faulty televisions produced in 24 hours. A business decision 
model takes data and applies logic to arrive at a business decision. In the case of the faulty 
televisions, data could be measured each time a change is made to the production line. 
This data could be used to see what changes lead to improve quality, and which do not.

Probability Distributions

Probability distributions can be discrete or continuous.

Discrete Distributions

Examples of discrete distributions include the Binomial Distribution.

In a binomial experiment, there are only two outcomes (like yes/no or success/failure). 
The formula is:

( ) ( ) ( ) −
= ⋅ ⋅

−
!

( )
! !

X n XnP X p q
n X X

An employment test has 10 multiple choice questions with five choices for each question. 
If someone guesses randomly (i.e. without reading the questions), what is the probabil-
ity they get exactly 6 questions right?

Plugging the values into the formula, you get:

P(X) = 10! / (10 – 6)! 6! * (.2)6 * (.8)10-6 = 0.005505024

The “p” here is 0.2 because you have a 1 out of 5, or 20% chance of getting a question 
right if you guess. “q” is just 1-p (100% – 20% = 80%). You might actually see “1-P” in 
some versions of this formula.

Similar Distributions to the binomial:

•	 The Negative Binomial distribution is similar to the binomial, but it does not 
have a fixed number of trials.

•	 The Geometric Distribution represents the number of failures before you get a 
success in a series of Bernoulli trials.

•	 Poisson Distribution: Used to predict the probability of certain events from 
happening when you know how often the event has occurred. For example, if a 
store that rents books has an average rental of 200 books every Saturday night. 
Using this data, you can predict how many more books will sell on the following 
Saturday nights.
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Continuous probability distributions can take on an infinite number of different values. 
Examples include:

•	 Normal distribution: Commonly known as the “bell curve”, it’s used to model 
lots of situations, like exam scores, IQ, and heights.

•	 Student’s T distribution: Similar to the normal, but used for small samples (un-
der 30 items).

•	 Chi-square distribution: Has many used in stats, like comparing categorical 
variables.

•	 F Distribution: Used for a specific type of test called Analysis of Variance.

Standard normal distribution. 

Of all these, the normal distribution (the “bell curve”) is probably the most recognizable 
and is widely used in business. Businesses use the model for lots of reasons, including 
compensation and performance reviews. While the curve is relatively easy to under-
stand and use, caution should be used when applying it to people: New research is 
showing that the distribution isn’t actually a good predictor of people’s performance. 
“As a result,” states Forbes, “HR departments and business leaders inadvertently create 
agonizing problems with employee performance and happiness”.

Inferential Statistics

While descriptive statistics “describes” data, inferential statistics make inferences. In 
other words, you take data and make some sort of conclusion. The two main areas are 
parameter estimation and hypothesis testing.

Parameter Estimation

With parameter estimation, you take a sample of data (say, 100 out of 1,000) and find a 
statistic. Let’s say you find the average salary of 100 workers is $20 per hour. You take 
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that statistic ($20 per hour) and infer that the population of 1,000 probably has a sala-
ry of about $20. It might not be exactly $20, but it’s probably going to be close, around 
$19 to $21. The range is called a confidence interval. This interval is part of the results 
you get from a hypothesis test.

Hypothesis Test

If you’re in business, you might come up with some good ideas about how to improve 
sales or other metrics. For example, you might think that your average customer is old-
er than average, or that placing certain products at the front of the store can raise the 
bottom line. These guesses are just shots in the dark without some hard data to back 
them up. A hypothesis test gives you a solid way to back your guess (called a hypothe-
sis) with some hard data (via a statistical test).

Of course, it isn’t quite as simple as just running a test. You’ll have a lot of decisions to 
make before you run the test, like what level of accuracy you want (called a significance 
level). You’ll also need to carefully gather the data to go into the test: If poor quality 
data goes in, you’ll get poor quality results out. Hypothesis testing is one of the most 
complex procedures you’ll come across in business statistics. 

Sampling of Business Data

When you want to get a sample in business statistics, you can’t just pick a few random 
items from the stack. You have to be careful to make sure your sample is representative 
of the entire population. This isn’t as simple as it seems; sampling can be a complicated 
process. There are literally dozens of methods to choose from. These include picking 
numbers from a hat (called simple random sampling) and using your contacts to make 
other contacts (called snowball sampling). 

Simple Linear Regression and Correlation

Regression fits data to a line.

Simple linear regression and correlation are used in business statistics to predict 
trends. For example, you might have a list of sales data from a group of stores. You 
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can use that data to make predictions about where the sales are headed; regression can 
create a model for the future sales. Correlation takes a set of variables and tells you how 
well they are related. 

Time Series Analysis

A time series graph (also called a timeplot), plots values against time. They are exactly 
the same as a basic x-y graph with one restriction: the x-axis can only display time.

A Dow Jones Timeplot from the Wall Street Journal shows how the stock market changes over time.

Use of Index Numbers in Economic Data

Index numbers tell you how something performs over time. The index always starts at a 
given year at 100%. Over time, the percentage increases over 100%. For example, an in-
dex of 190% shows an increase of 90% from the base year. A decrease shows a decrease 
compared to the index year. Let’s say the mean wage in 1980 was $20,000 and the 
index for 1990 shows 110%. This means wages increased by 10%, or $2,000. A decrease 
to 90% in 1990 would mean that wages dropped, on average, by $2,000.

Statistical semantics

In linguistics, statistical semantics applies the methods of statistics to the problem of 
determining the meaning of words or phrases, ideally through unsupervised learning, 
to a degree of precision at least sufficient for the purpose of information retrieval. 

The term statistical semantics was first used by Warren Weaver in his well-known pa-
per on machine translation. He argued that word sense disambiguation for machine 
translation should be based on the co-occurrence frequency of the context words near 
a given target word. The underlying assumption that “a word is characterized by the 
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company it keeps” was advocated by J.R. Firth. This assumption is known in linguistics 
as the distributional hypothesis. Emile Delavenay defined statistical semantics as the 
“statistical study of meanings of words and their frequency and order of recurrence”. 
“Furnas et al. 1983” is frequently cited as a foundational contribution to statistical se-
mantics. An early success in the field was latent semantic analysis. 

Applications

Research in statistical semantics has resulted in a wide variety of algorithms that use 
the distributional hypothesis to discover many aspects of semantics, by applying statis-
tical techniques to large corpora: 

•	 Measuring the similarity in word meanings.

•	 Measuring the similarity in word relations.

•	 Modeling similarity-based generalization.

•	 Discovering words with a given relation.

•	 Classifying relations between words.

•	 Extracting keywords from documents.

•	 Measuring the cohesiveness of text.

•	 Discovering the different senses of words.

•	 Distinguishing the different senses of words.

•	 Subcognitive aspects of words.

•	 Distinguishing praise from criticism.

Forensic statistics

Forensic statistics is the application of probability models and statistical techniques 
to scientific evidence, such as DNA evidence, and the law. In contrast to “everyday” 
statistics, to not engender bias or unduly draw conclusions, forensic statisticians report 
likelihoods as likelihood ratios (LR). This ratio of probabilities is then used by juries or 
judges to draw inferences or conclusions and decide legal matters. Jurors and judges 
rely on the strength of a DNA match, given by statistics, to make conclusions and deter-
mine guilt or innocence in legal matters. 

In forensic science, the DNA evidence received for DNA profiling often contains a mix-
ture of more than one person’s DNA. DNA profiles are generated using a set procedure, 
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however, the interpretation of a DNA profile becomes more complicated when the sam-
ple contains a mixture of DNA. Regardless of the number of contributors to the forensic 
sample, statistics and probabilities must be used to provide weight to the evidence and 
to describe what the results of the DNA evidence mean. In a single-source DNA profile, 
the statistic used is termed a random match probability (RMP). RMPs can also be used 
in certain situations to describe the results of the interpretation of a DNA mixture. Other 
statistical tools to describe DNA mixture profiles include likelihood ratios (LR) and com-
bined probability of inclusion (CPI), also known as random man not excluded (RMNE). 

Computer programs have been implemented with forensic DNA statistics for assessing 
the biological relationships between two or more people. Forensic science uses several 
approaches for DNA statistics with computer programs such as; match probability, ex-
clusion probability, likelihood ratios, Bayesian approaches, and paternity and kinship 
testing. 

Although the precise origin of this term remains unclear, it is apparent that the term 
was used in the 1980s and 1990s. Among the first forensic statistics conferences were 
two held in 1991 and 1993. 

Random Match Probability

Random match probabilities (RMP) are used to estimate and express the rarity of a 
DNA profile. RMP can be defined as the probability that someone else in the popula-
tion, chosen at random, would have the same genotype as the genotype of the contrib-
utor of the forensic evidence. RMP is calculated using the genotype frequencies at all 
the loci, or how common or rare the alleles of a genotype are. The genotype frequencies 
are multiplied across all loci, using the product rule, to calculate the RMP. This statistic 
gives weight to the evidence either for or against a particular suspect being a contribu-
tor to the DNA mixture sample. 

RMP can only be used as a statistic to describe the DNA profile if it is from a single 
source or if the analyst is able to differentiate between the peaks on the electrophero-
gram from the major and minor contributors of a mixture. Since the interpretation of 
DNA mixtures with more than two contributors is very difficult for analysts to do with-
out computer software, RMP becomes difficult to calculate with a mixture of more than 
two people. If the major and minor contributor peaks can not be differentiated, there 
are other statistical methods that may be used. 

If the DNA mixture contains a ratio of 4:1 of major to minor contributors, a modified 
random match probability (mRMP) may be able to be used as a statistical tool. For 
calculation of mRMP, the analyst must first deduce a major and minor contributor and 
their genotypes based on the peak heights given in the electropherogram. Computer 
software is often used in labs conducting DNA analysis in order to more accurately 
calculate the mRMP, since calculations for each of the most probable genotypes at each 
locus become tedious and inefficient for the analyst to do by hand. 
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Likelihood Ratio

Sometimes it can be very difficult to determine the number of contributors in a DNA 
mixture. If the peaks are easily distinguished and the number of contributors is able 
to be determined, a likelihood ratio (LR) is used. LRs consider probabilities of events 
happening and rely on alternative pairs of hypotheses against which the evidence is 
assessed. These alternative pairs of hypotheses in forensic cases are the prosecutor’s 
hypothesis and the defense hypothesis. In forensic biology cases, the hypotheses often 
state that the DNA came from a particular person or the DNA came from an unknown 
person. For example, the prosecution may hypothesize the DNA sample contains DNA 
from the victim and the suspect, while the defense may hypothesize that the sample 
contains DNA from the victim and an unknown person. The probabilities of the hy-
potheses are expressed as a ratio, with the prosecutor’s hypothesis being in the numer-
ator. The ratio then expresses the likelihood of both of the events in relation to each 
other. For the hypotheses where the mixture contains the suspect, the probability is 
1, because one can distinguish the peaks and easily tell if the suspect can be excluded 
as a contributor at each locus based on his/her genotype. The probability of 1 assumes 
the suspect can not be excluded as a contributor. To determine the probabilities of the 
unknowns, all genotype possibilities must be determined for that locus. 

Once the calculation of the likelihood ratio is made, the number calculated is turned 
into a statement to provide meaning to the statistic. For the previous example, if the LR 
calculated is x, then the LR means that the probability of the evidence is x times more 
likely if the sample contains the victim and the suspect than if it contains the victim and 
an unknown person. Likelihood ratio can also be defined as 1/RMP. 

Combined Probability of Inclusion

Combined probability of inclusion (CPI) is a common statistic used when the analyst 
can not differentiate between the peaks from a major and minor contributor to a sample 
and the number of contributors can not be determined. CPI is also commonly known as 
random man not excluded (RMNE). This statistical calculation is done by adding all the 
frequencies of observed alleles and then squaring the value, which yields the value for 
probability of inclusion (PI). These values are then multiplied across all loci, resulting 
in the value for CPI. The value is squared so that all the possible combinations of geno-
types are included in the calculation. 

Once the calculation is done, a statement is made about the meaning of this calcula-
tion and what it means. For example, if the CPI calculated is 0.5, this means that the 
probability of someone chosen at random in the population not being excluded as a 
contributor to the DNA mixture is 0.5. 

CPI relates to the evidence (the DNA mixture) and it is not dependent on the profile 
of any suspect. Therefore, CPI is a statistical tool that can be used to provide weight 
or strength to evidence when no other information about the crime is known. This is 
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advantageous in situations where the genotypes in the DNA mixture can not be distin-
guished from one another. However, this statistic is not very discriminating and is not 
as powerful of a tool as likelihood ratios and random match probabilities can be when 
some information about the DNA mixture, such as the number of contributors or the 
genotypes of each contributor, can be distinguished. Another limitation to CPI is that it 
is not usable as a tool for the interpretation of a DNA mixture. 

Blood Stains

Blood stains are an important part of forensic statistics, as the analysis of blood drop 
collisions may help to picture the event that had previously gone on. Commonly blood 
stains are an elliptical shape, because of this blood stains are usually easy to determine 
the blood droplets angle through the formula “α = arcsin d/a”. In this formula ‘a’ and 
‘d’ are simply estimations of the axis of the ellipse. From these calculations, a visualiza-
tion of the event causing the stains is able to be drawn, and alongside further informa-
tion such as the velocity of the entity that caused such stains. 

Survey methodology

A field of applied statistics of human research surveys, survey methodology studies 
the sampling of individual units from a population and associated techniques of sur-
vey data collection, such as questionnaire construction and methods for improving the 
number and accuracy of responses to surveys. Survey methodology includes instru-
ments or procedures that ask one or more questions that may or may not be answered. 

Researchers carry out statistical surveys with a view towards making statistical infer-
ences about the population being studied, and such inferences depend strongly on the 
survey questions used. Polls about public opinion, public-health surveys, market-re-
search surveys, government surveys and censuses are all examples of quantitative re-
search that use survey methodology to answer questions about a population. Although 
censuses do not include a “sample”, they do include other aspects of survey methodolo-
gy, like questionnaires, interviewers, and non-response follow-up techniques. Surveys 
provide important information for all kinds of public-information and research fields, 
e.g., marketing research, psychology, health-care provision and sociology. 

A single survey is made of at least a sample (or full population in the case of a cen-
sus), a method of data collection (e.g., a questionnaire) and individual questions or 
items that become data that can be analyzed statistically. A single survey may focus on 
different types of topics such as preferences (e.g., for a presidential candidate), opin-
ions (e.g., should abortion be legal?), behavior (smoking and alcohol use), or factual 
information (e.g., income), depending on its purpose. Since survey research is almost 
always based on a sample of the population, the success of the research is dependent 
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on the representativeness of the sample with respect to a target population of interest 
to the researcher. That target population can range from the general population of a 
given country to specific groups of people within that country, to a membership list of 
a professional organization, or list of students enrolled in a school system. The persons 
replying to a survey are called respondents, and depending on the questions asked their 
answers may represent themselves as individuals, their households, employers, or oth-
er organization they represent. 

Survey methodology as a scientific field seeks to identify principles about the sample 
design, data collection instruments, statistical adjustment of data, and data process-
ing, and final data analysis that can create systematic and random survey errors. Sur-
vey errors are sometimes analyzed in connection with survey cost. Cost constraints 
are sometimes framed as improving quality within cost constraints, or alternatively, 
reducing costs for a fixed level of quality. Survey methodology is both a scientific field 
and a profession, meaning that some professionals in the field focus on survey errors 
empirically and others design surveys to reduce them. For survey designers, the task 
involves making a large set of decisions about thousands of individual features of a 
survey in order to improve it. 

The most important methodological challenges of a survey methodologist include mak-
ing decisions on how to: 

•	 Identify and select potential sample members.

•	 Contact sampled individuals and collect data from those who are hard to reach 
(or reluctant to respond).

•	 Evaluate and test questions.

•	 Select the mode for posing questions and collecting responses.

•	 Train and supervise interviewers (if they are involved).

•	 Check data files for accuracy and internal consistency.

•	 Adjust survey estimates to correct for identified errors.

Selecting Samples

The sample is chosen from the sampling frame, which consists of a list of all members 
of the population of interest. The goal of a survey is not to describe the sample, but the 
larger population. This generalizing ability is dependent on the representativeness of 
the sample, as stated above. Each member of the population is termed an element. 
There are frequent difficulties one encounters while choosing a representative sam-
ple. One common error that results is selection bias. Selection bias results when the 
procedures used to select a sample result in over representation or under represen-
tation of some significant aspect of the population. For instance, if the population of 
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interest consists of 75% females, and 25% males, and the sample consists of 40% fe-
males and 60% males, females are under represented while males are overrepresent-
ed. In order to minimize selection biases, stratified random sampling is often used. 
This is when the population is divided into sub-populations called strata, and random 
samples are drawn from each of the strata, or elements are drawn for the sample on 
a proportional basis. 

Modes of Data Collection

There are several ways of administering a survey. The choice between administration 
modes is influenced by several factors, including: 

• Costs,

• Coverage of the target population,

• Flexibility of asking questions,

• Respondents’ willingness to participate,

• Response accuracy.

Different methods create mode effects that change how respondents answer, and dif-
ferent methods have different advantages. The most common modes of administration 
can be summarized as: 

• Telephone,

• Mail (post),

• Online surveys,

• Personal in-home surveys,

• Personal mall or street intercept survey,

• Hybrids of the above.

There are several different designs, or overall structures, that can be used in survey 
research. The three general types are cross-sectional, successive independent samples, 
and longitudinal studies. 

Cross-sectional Studies

In cross-sectional studies, a sample (or samples) is drawn from the relevant population 
and studied once. A cross-sectional study describes characteristics of that population 
at one time, but cannot give any insight as to the causes of population characteristics 
because it is a predictive, correlational design. 
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Successive Independent Samples Studies

A successive independent samples design draws multiple random samples from a pop-
ulation at one or more times. This design can study changes within a population, but 
not changes within individuals because the same individuals are not surveyed more 
than once. Such studies cannot, therefore, identify the causes of change over time nec-
essarily. For successive independent samples designs to be effective, the samples must 
be drawn from the same population, and must be equally representative of it. If the 
samples are not comparable, the changes between samples may be due to demographic 
characteristics rather than time. In addition, the questions must be asked in the same 
way so that responses can be compared directly. 

Longitudinal Studies

Longitudinal studies take measure of the same random sample at multiple time points. 
Unlike with a successive independent samples design, this design measures the dif-
ferences in individual participants’ responses over time. This means that a researcher 
can potentially assess the reasons for response changes by assessing the differences in 
respondents’ experiences. Longitudinal studies are the easiest way to assess the effect 
of a naturally occurring event, such as divorce that cannot be tested experimentally. 
However, longitudinal studies are both expensive and difficult to do. It’s harder to find 
a sample that will commit to a months- or years-long study than a 15-minute interview, 
and participants frequently leave the study before the final assessment. This attrition 
of participants is not random, so samples can become less representative with succes-
sive assessments. To account for this, a researcher can compare the respondents who 
left the survey to those that did not, to see if they are statistically different populations. 
Respondents may also try to be self-consistent in spite of changes to survey answers. 

Questionnaires
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Questionnaires are the most commonly used tool in survey research. However, the re-
sults of a particular survey are worthless if the questionnaire is written inadequately. 
Questionnaires should produce valid and reliable demographic variable measures and 
should yield valid and reliable individual disparities that self-report scales generate. 

Questionnaires as Tools

A variable category that is often measured in survey research are demographic vari-
ables, which are used to depict the characteristics of the people surveyed in the sam-
ple. Demographic variables include such measures as ethnicity, socioeconomic status, 
race, and age. Surveys often assess the preferences and attitudes of individuals, and 
many employ self-report scales to measure people’s opinions and judgements about 
different items presented on a scale. Self-report scales are also used to examine the 
disparities among people on scale items. These self-report scales, which are usually 
presented in questionnaire form, are one of the most used instruments in psychology, 
and thus it is important that the measures be constructed carefully, while also being 
reliable and valid. 

Reliability and Validity of Self-report Measures

Reliable measures of self-report are defined by their consistency. Thus, a reliable 
self-report measure produces consistent results every time it is executed. A test’s re-
liability can be measured a few ways. First, one can calculate a test-retest reliability. 
A test-retest reliability entails conducting the same questionnaire to a large sample at 
two different times. For the questionnaire to be considered reliable, people in the sam-
ple do not have to score identically on each test, but rather their position in the score 
distribution should be similar for both the test and the retest. Self-report measures will 
generally be more reliable when they have many items measuring a construct. Further-
more, measurements will be more reliable when the factor being measured has greater 
variability among the individuals in the sample that are being tested. Finally, there 
will be greater reliability when instructions for the completion of the questionnaire are 
clear and when there are limited distractions in the testing environment. Contrastingly, 
a questionnaire is valid if what it measures is what it had originally planned to measure. 
Construct validity of a measure is the degree to which it measures the theoretical con-
struct that it was originally supposed to measure. 

Composing a Questionnaire

Six steps can be employed to construct a questionnaire that will produce reliable and 
valid results. First, one must decide what kind of information should be collected. Sec-
ond, one must decide how to conduct the questionnaire. Thirdly, one must construct a 
first draft of the questionnaire. Fourth, the questionnaire should be revised. Next, the 
questionnaire should be pretested. Finally, the questionnaire should be edited and the 
procedures for its use should be specified. 
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Guidelines for the Effective Wording of Questions

The way that a question is phrased can have a large impact on how a research partic-
ipant will answer the question. Thus, survey researchers must be conscious of their 
wording when writing survey questions. It is important for researchers to keep in mind 
that different individuals, cultures, and subcultures can interpret certain words and 
phrases differently from one another. There are two different types of questions that 
survey researchers use when writing a questionnaire: free response questions and 
closed questions. Free response questions are open-ended, whereas closed questions 
are usually multiple choice. Free response questions are beneficial because they allow 
the responder greater flexibility, but they are also very difficult to record and score, 
requiring extensive coding. Contrastingly, closed questions can be scored and coded 
more easily, but they diminish expressivity and spontaneity of the responder. In gener-
al, the vocabulary of the questions should be very simple and direct, and most should 
be less than twenty words. Each question should be edited for “readability” and should 
avoid leading or loaded questions. Finally, if multiple items are being used to measure 
one construct, the wording of some of the items should be worded in the opposite di-
rection to evade response bias. 

A respondent’s answer to an open-ended question can be coded into a response scale 
afterwards, or analysed using more qualitative methods. 

Order of Questions

Survey researchers should carefully construct the order of questions in a question-
naire. For questionnaires that are self-administered, the most interesting questions 
should be at the beginning of the questionnaire to catch the respondent’s attention, 
while demographic questions should be near the end. Contrastingly, if a survey is be-
ing administered over the telephone or in person, demographic questions should be 
administered at the beginning of the interview to boost the respondent’s confidence. 
Another reason to be mindful of question order may cause a survey response effect in 
which one question may affect how people respond to subsequent questions as a result 
of priming. 

The following ways have been recommended for reducing nonresponse in telephone 
and face-to-face surveys: 

• Advance letter: A short letter is sent in advance to inform the sampled respon-
dents about the upcoming survey. The style of the letter should be personal-
ized but not overdone. First, it announces that a phone call will be made, or
an interviewer wants to make an appointment to do the survey face-to-face.
Second, the research topic will be described. Last, it allows both an expression
of the surveyor’s appreciation of cooperation and an opening to ask questions
on the survey.
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•	 Training: The interviewers are thoroughly trained in how to ask respondents 
questions, how to work with computers and making schedules for callbacks to 
respondents who were not reached.

•	 Short introduction: The interviewer should always start with a short introduc-
tion about him or herself. She/he should give her name, the institute she is 
working for, the length of the interview and goal of the interview. Also it can be 
useful to make clear that you are not selling anything: this has been shown to 
lead to a slightly higher responding rate.

•	 Respondent-friendly survey questionnaire: The questions asked must be clear, 
non-offensive and easy to respond to for the subjects under study.

Interviewer Effects

Survey methodologists have devoted much effort to determining the extent to 
which interviewee responses are affected by physical characteristics of the inter-
viewer. Main interviewer traits that have been demonstrated to influence survey re-
sponses are race, gender, and relative body weight (BMI). These interviewer effects 
are particularly operant when questions are related to the interviewer trait. Hence, 
race of interviewer has been shown to affect responses to measures regarding racial 
attitudes, interviewer sex responses to questions involving gender issues, and in-
terviewer BMI answers to eating and dieting-related questions. While interviewer 
effects have been investigated mainly for face-to-face surveys, they have also been 
shown to exist for interview modes with no visual contact, such as telephone sur-
veys and in video-enhanced web surveys. The explanation typically provided for 
interviewer effects is social desirability bias: Survey participants may attempt to 
project a positive self-image in an effort to conform to the norms they attribute to 
the interviewer asking questions. Interviewer effects are one example survey re-
sponse effects. 

Role of Statistics in Research

The role of statistics in research is to function as a tool in designing research, analysing 
its data and drawing conclusions therefrom. Most research studies result in a large 
volume of raw data which must be suitably reduced so that the same can be read easily 
and can be used for further analysis. Clearly the science of statistics cannot be ignored 
by any research worker, even though he may not have occasion to use statistical meth-
ods in all their details and ramifications. Classification and tabulation, as stated earlier, 
achieve this objective to some extent, but we have to go a step further and develop cer-
tain indices or measures to summarise the collected/classified data. Only after this we 
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can adopt the process of generalisation from small groups (i.e., samples) to population. 
If fact, there are two major areas of statistics viz., descriptive statistics and inferential 
statistics. Descriptive statistics concern the development of certain indices from the 
raw data, whereas inferential statistics concern with the process of generalisation. In-
ferential statistics are also known as sampling statistics and are mainly concerned with 
two major type of problems:

• The estimation of population parameters.

• The testing of statistical hypotheses.

The important statistical measures that are used to summarise the survey/research 
data are:

• Measures of central tendency or statistical averages.

• Measures of dispersion.

• Measures of asymmetry (skewness).

• Measures of relationship.

• Other measures.

Amongst the measures of central tendency, the three most important ones are the 
arithmetic average or mean, median and mode. Geometric mean and harmonic mean 
are also sometimes used.

From among the measures of dispersion, variance, and its square root—the standard 
deviation are the most often used measures. Other measures such as mean deviation, 
range, etc. are also used. For comparison purpose, we use mostly the coefficient of stan-
dard deviation or the coefficient of variation.

In respect of the measures of skewness and kurtosis, we mostly use the first measure 
of skewness based on mean and mode or on mean and median. Other measures of 
skewness, based on quartiles or on the methods of moments, are also used some-
times. Kurtosis is also used to measure the peakedness of the curve of the frequency 
distribution.

Amongst the measures of relationship, Karl Pearson’s coefficient of correlation is the 
frequently used measure in case of statistics of variables, whereas Yule’s coefficient of 
association is used in case of statistics of attributes. Multiple correlation coefficient, 
partial correlation coefficient, regression analysis, etc., are other important measures 
often used by a researcher. Index numbers, analysis of time series, coefficient of con-
tingency, etc., are other measures that may as well be used by a researcher, depending 
upon the nature of the problem under study.
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