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Preface

This book has been a concerted effort by a group of academicians, researchers and scientists, who have 
contributed their research works for the realization of the book. This book has materialized in the wake of 
emerging advancements and innovations in this field. Therefore, the need of the hour was to compile all the 
required researches and disseminate the knowledge to a broad spectrum of people comprising of students, 
researchers and specialists of the field. 

General relativity is the theory of gravitation which provides a complete description of gravity as a geometric 
property of space and time. The understanding of how matter and radiation warps the geometry of space 
and time is governed by the Einstein field equations. This theory departs significantly from classical physics 
especially in relation to the geometry of space, the passage of time, the propagation of light and the motion of 
bodies in free fall. This is evident in its treatment of gravitational time delay, gravitational time dilation, the 
gravitational redshift of light and gravitational lensing. The study of the origin and evolution of the universe, 
starting from the Big Bang to the present and the description of its ultimate fate in the future is under the 
domain of cosmology. It further studies the large scale dynamics and structures of the universe. There have 
been significant advances in our understanding of the universe, due to advances in the observations of the 
microwave background, gravitational lensing and distant supernovae. The detection of gravitational waves in 
recent times has further strengthened the theories of the Big Bang and cosmic inflation. This book contains 
some path-breaking studies in the field of cosmology. It provides comprehensive insights into general relativity 
and its ramifications relative to the understanding of the universe and its dynamics. Scientists and students 
actively engaged in these areas will find this book full of crucial and unexplored concepts.

At the end of the preface, I would like to thank the authors for their brilliant chapters and the publisher for 
guiding us all-through the making of the book till its final stage. Also, I would like to thank my family for 
providing the support and encouragement throughout my academic career and research projects.

Editor
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Absorption of electromagnetic and gravitational waves by 
Kerr black holes

Luiz C.S. Leite a,b, Sam R. Dolan b,∗, Luís C.B. Crispino a

a Faculdade de Física, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
b Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH,
United Kingdom

a r t i c l e i n f o a b s t r a c t

Editor: M. Trodden

We calculate the absorption cross section for planar waves incident upon Kerr black holes, and present
a unified picture for scalar, electromagnetic and gravitational waves. We highlight the spin-helicity effect
that arises from a coupling between the rotation of the black hole and the helicity of a circularly-
polarized wave. For the case of on-axis incidence, we introduce an extended ‘sinc approximation’ to
quantify the spin-helicity effect in the strong-field regime.
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W1. Introduction

Black holes, once dismissed as a mathematical artifact of Ein-
stein’s theory of general relativity (GR), have come to play a central
role in modern astronomy and theoretical physics [1,2]. In astron-
omy, black holes provide a solution: in galaxy formation scenar-
ios, in active galactic nuclei and in core-collapse supernovae, for
instance. In theoretical physics, black holes pose a challenge: as
spacetime curvature grows without bound in GR, the classical the-
ory breaks down. Yet, novel quantum gravity effects apparently
remain shrouded by a horizon endowed with generic thermody-
namic properties [3].

Two recent advances in interferometry have opened new data
channels on astrophysical black holes. In September 2015, LIGO
detected the first gravitational-wave signal: a characteristic ‘chirp’
from a black hole binary merger [4]. Hundreds more chirps are
anticipated over the next decade [5]. In April 2017, the Event Hori-
zon Telescope (EHT) [6] – a global array of radio telescopes linked
by very long baseline interferometry – observed the supermassive
black hole candidates Sgr. A* and M87* at a resolution three orders
of magnitude beyond that of the Hubble telescope [7]. Ultimately,
the EHT will seek to study the black hole shadow itself [8–10], us-
ing techniques to surpass the diffraction limit [11].

These experimental advances motivate study of the interaction

of electromagnetic waves (EWs) and gravitational waves (GWs) 

* Corresponding author.
E-mail address: s.dolan@sheffield.ac.uk (S.R. Dolan).

____________________________WORLD TECH
Twith black holes [12–14]. EWs and GWs propagating on curved
spacetimes in vacuum share some traits. For example, both pos-
sess two independent (transverse) polarizations that are parallel-
transported along null geodesics in the ray-optics limit. Yet there
are key physical differences. GWs are tenuous, in the sense that
they are not significantly attenuated or rescattered by matter
sources. GWs are typically long-wavelength and polarized, because
rotating quadrupoles (for example, binary systems or asymmet-
ric neutron stars) predominantly emit circular-polarized waves at
twice the rotational frequency [15]. For example, λ ∼ 10−3 m for
EHT observations, whereas λ ∼ 107 m for GW150914.

In this Letter we examine the absorption of a monochromatic
planar wave of frequency ω incident upon a Kerr black hole of
mass M and angular momentum J in vacuum. We calculate the
absorption cross section σabs, i.e., the cross-sectional area of the
black hole shadow [8–10] beyond the ray-optics approximation.
For the first time, we present unifying results for scalar (s = 0),
electromagnetic (s = 1) and gravitational (s = 2) waves. Our results
highlight the influence of two key phenomena: superradiance and
the spin-helicity effect, described below.

The absorption scenario, illustrated in Fig. 1, is encapsulated
by several dimensionless parameters: the ratio of the gravitational
length to the (reduced) wavelength GMω/c3; the dimensionless

black hole spin a∗ ≡ a/M where a = J c2/GM (0 ≤ a∗ < 1); the 
spin of the field s = 0, 1, 2; the angle of incidence with respect to 
the black hole axis γ ; and the helicity of the circular polarization 
±1. We adopt natural units such that G = c = 1.

NOLOGIES____________________________
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W
ig. 1. A planar wave of frequency ω = 2πc/λ incident upon a rotating black hole 
f mass M and angular momentum J at an angle γ . Inset: the locus bc(χ) of the 
lack hole shadow on the wavefront.

. Concepts

.1. Black hole shadows

An observer studying a black hole in vacuum with a pinhole 
amera will see a dark region on the image plane defined by the 
et of null-geodesic rays entering the pinhole which, when traced 
ackwards in time, pass into the black hole. The boundary of the 
hadow is determined by those rays which asymptote towards an 
unstable) photon orbit, defining an angular radius α(χ) in terms 
f the projection angle χ . Alternatively, a shadow can be defined 
n a planar surface in terms of an impact parameter b(χ), using 
hose rays orthogonal the surface, as shown in Fig. 1. Far from the 
lack hole, there is an approximately linear relationship b(χ) =
0α(χ) + O  

(
GM
c2r0

)
; the two approaches are closely related. Here 

e extend the latter approach to consider monochromatic waves 
f a finite wavelength.

In the geometrical-optics limit (λ → 0), an observer at radial 
oordinate r0 sees a shadow of angular radius α where [16]

in2 α = 27

4

(ρ − 1)

ρ3
, ρ ≡ r0c2

GM
. (1)

or Sgr A*, α ≈ 25 μarcsec, with r0 ≈ 8.3 kpc and M ≈ 4.1 ×
06 M� [17]. In Kerr spacetime, α is a function of angle χ rel-
tive to the (projected) spin axis.

Here we seek to study Kerr shadows beyond the geometrical-
ptics regime. We shall focus on the difference between σabs(ω), 
he absorption cross section at fixed frequency ω, and the σgeo, the 
eometric cross section defined by

geo = 1
2

2π∫
0

b2
c (χ)dχ. (2)

.2. Superradiance and spin-helicity

Superradiance is a radiation-enhancement mechanism by which 
 black hole may shed mass and angular momentum and yet still 
ncrease its horizon area, and thus its entropy [18]. As a conse-
uence, σabs may become negative at low frequencies, through 
timulated emission. The effect is strongly enhanced by spin s.

The spin-helicity effect is a coupling between a rotating source, 
uch as a Kerr black hole, and the helicity of a polarized wave of 
nite wavelength λ [19]. A rotating spacetime distinguishes and 

eparates waves of opposite helicity [20–22]. In the weak-field, s

___________________________WORLD TECHN
T

ays are deflected through an angle ζ�E , with �E ≡ 4GM
c2b

the Ein-
tein angle and ζ = 1 + . . . an asymptotic series in which the spin-

elicity effect is anticipated at O  
(

Jλ
Mcb2

)
[19]. In the strong-field, 

e anticipate that waves with a counter-rotating circular polariza-
ion are preferentially absorbed (σ−

abs > σ+
abs).

. Method

.1. Waves on the Kerr spacetime

The Kerr spacetime is described in Boyer–Lindquist coordinates 
t, r, θ, φ} by the line element

s2 = − 1

�
(� − 2Mr)dt2 − 4Mar sin2 θ

�
dtdφ + �

�
dr2

+ �dθ2 + (r2 + a2)2 sin2 θ − �a2 sin4 θ

�
dφ2, (3)

here � ≡ r2 + a2 cos2 θ , and � ≡ r2 − 2Mr + a2. We focus on 
he a2 < M2 case of a rotating BH with two distinct horizons: an 
nternal (Cauchy) horizon located at r− = M − √

M2 − a2 and an 
xternal (event) horizon at r+ = M + √

M2 − a2.
In the vicinity of a Kerr black hole, perturbing fields are de-

cribed by a single master equation, first obtained by Teukolsky 
23] using the Newman–Penrose formalism. In vacuum the master 
quation takes the form

(r2 + a2)2

�
− a2 sin2 θ

]
∂2ψ

∂t2
+ 4Mar

�

∂2ψ

∂t∂φ

+
[

a2

�
− 1

sin2 θ

]
∂2ψ

∂φ2
− �−s ∂

∂r

(
�s+1 ∂φ

∂r

)

− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ (s2 cot2 θ − s)ψ

− 2s

[
a(r − M)

�
+ i cos θ

sin2 θ

]
∂ψ

∂φ

− 2s

[
M(r2 − a2)

�
− r − ia cos θ

]
∂ψ

∂t
= 0, (4)

here s is the spin-weight of the field. We use s = −s through-
ut, where s = 0, 1, 2 for scalar, electromagnetic and gravitational 
elds, respectively. One can separate variables in Eq. (4) using the 
tandard ansatz

slmω(t, r, θ, φ) = Rslmω(r)Sslmω(θ)e−i(ωt−mφ), (5)

o obtain angular and radial equations,

1

in θ

d

dθ

(
sin θ

dSslmω

dθ

)
+ Uslmω(θ)Sslmω = 0, (6)

−s d

dr

(
�s+1 dRslmω

dr

)
+ Vslmω(r)Rslmω = 0, (7)

here

slmω ≡ λslmω + 2amω − 2aωs cos θ − (m + a cos θ)2

sin2 θ
+ s,

slmω ≡ 1

�

[
K 2 − 2(r − M)K

]
− λslmω + 4iωsr, (8)

nd K ≡ (r2 + a2)ω − am. The angular functions Sslmω(θ) are 
nown as spin-weighted spheroidal harmonics, and have as limit-

ng cases the spheroidal harmonics (s = 0) and the spin-weighted 

pherical harmonics (aω = 0).

OLOGIES____________________________



3Absorption of electromagnetic and gravitational waves by Kerr black holes
Fig. 2. The absorption cross section σ for massless bosonic fields incident on a rapidly–rotating Kerr BH (a = 0.99M , γ = 0). For circularly-polarized fields (s > 0), the 
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co-rotating (ω > 0) and counter-rotating (ω < 0) helicities are absorbed differently,

We seek solutions of Eq. (7) that are purely ingoing at the event
horizon, satisfying the following boundary conditions:

Rslmω ∼
{
Tslmωe−ı(ω−m�h)r��−s, r → r+,

Islmωr−1e−ıωr� + Rslmωr−(2s+1)eıωr� , r → +∞,

(9)

where �h ≡ a
2Mr+ is the angular frequency of the black hole hori-

zon. Here r� is the tortoise coordinate r� ≡ ∫
dr (r2+a2)

�
such that

r� → +∞ when r → +∞ and r� → −∞ when r → r+ .

3.2. The absorption cross section

For an asymptotic incident plane wave traveling in the direc-
tion n̂ = sinγ x̂ + cosγ ẑ the absorption cross section σabs is given
by [24]

σabs = 4π2

ω2

+∞∑
l=|s|

+l∑
m=−l

∣∣Sslmω(γ )
∣∣2

�slmω. (10)

The transmission factor �slmω is the ratio of the energy passing
into to the hole to that encroaching from infinity, dEhole

dE in
[18]. It

takes the same sign as ω(ω − m�h), so it is negative for low-
frequency co-rotating modes. Using energy balance, dEhole = dE in −
dEout, one obtains [24]

�0lmω = 1 −
∣∣∣∣R0lmω

I0lmω

∣∣∣∣
2

, (11a)

�−1lmω = 1 − B2
lmω

16ω4

∣∣∣∣R−1lmω

I−1lmω

∣∣∣∣
2

, (11b)

�−2lmω = 1 − Re2(C) + 144M2ω2

256ω8

∣∣∣∣R−2lmω

I−2lmω

∣∣∣∣
2

, (11c)

for the scalar (s = 0), electromagnetic (s = −1), and gravita-
tional (s = −2) cases, respectively. Here B2

lmω ≡ λ2
−1lmω + 4amω −

4a2ω2, Re2(C) = [(λ−2lmω + 2)2 + 4amω − 4(aω)2](λ2
−2lmω +

36amω − 36a2ω2) + (2λ−2lmω + 3)(96a2ω2 − 48amω) − 144a2ω2,
and I , R are the coefficients appearing in the ingoing so-
slmω slmω

lutions of Eq. (9).

____________________________WORLD TECH
T
 a coupling between the field helicity and the BH rotation.

3.3. Numerical method

In order to determine the absorption cross section via Eq. (10)
we first computed the spin-weighted spheroidal harmonics Sslmω

and the transmission factors �slmω by solving Eqs. (6) and (7) with
numerical methods.

We obtained the spin-weighted spheroidal harmonics Sslmω

and its corresponding eigenvalues λslmω using the spectral eigen-
value method as described in Ref. [13,25]. We have tested the angu-
lar eigenvalues λslmω obtained via the spectral eigenvalue method
against the low-aω formula provided in Ref. [26], obtaining a sat-
isfying concordance.

The transmission factors were obtained as follows: in the scalar
case (s = 0), we rewrote the radial equation into a Schrödinger-
like form and numerically integrated it using the scheme de-
tailed in Ref. [14]; in the electromagnetic (s = −1) and gravita-
tional (s = −2) cases, we rewrote the radial Teukolsky equation us-
ing the Detweiler [27] and Sasaki–Nakamura [28] transformations,
respectively. We numerically integrated the Detweiler and Sasaki–
Nakamura equations from r = rh to r = r∞ , where rh ∼ 1.001r+
and r∞ ∼ 103r+ are within the near-horizon and the far-field
regimes, respectively. At r = r∞ , we extract the values of the ingo-
ing and outgoing coefficients via (9) and compute the transmission
factors via (11). To assure the reliability of our results, we have
checked them using independent codes [13].

4. Results

4.1. Absorption cross sections

Fig. 2 shows the absorption cross section σabs for planar waves
in all massless bosonic fields (s = 0, 1 and 2) impinging upon a
rapidly-rotating Kerr BH (a∗ = 0.99) parallel to the rotation axis
(γ = 0). At long wavelengths, the incident wave stimulates su-
perradiant emission from the black hole [29], with transmission
turning negative for modes satisfying ω(ω − m�h) < 0. For on-
axis incidence γ = 0, only the m = −s modes contribute to the
mode sum (10). Thus, σabs is negative for polarized fields (s > 0),
but not for the scalar field (s = 0). The superradiant effect occurs
principally in the l = m = −s mode, and is much stronger for grav-
itational waves than for electromagnetic waves.

The absorption cross section for the co- and counter-rotating
helicities are quite distinct, with the latter (ω < 0) more strongly

absorbed than the former (ω > 0). This is a clear manifestation of 

NOLOGIES____________________________
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able 1
he impact parameter bc , orbital frequency �c and Lyapunov exponent �c for cir-
ular polar null geodesics, to 4 decimal places. See Eq. (13).

a∗ 0 0.5 0.8 0.99 1

bc/M
√

27 5.1205 4.9849 4.8383 4.8284
�c M 1√

27
0.1958 0.2019 0.2089 0.2094

�c M 1√
27

0.1884 0.1788 0.1633 0.1620

he spin-helicity effect for electromagnetic and gravitational waves. 
n the limit M|ω| → ∞, the difference falls off at O (M|ω|)−1 and 
abs approaches the geodesic capture cross section σgeo. We now 
ttempt to quantify this effect.

.2. High frequency model

Fig. 2 exhibits regular oscillations in σabs(ω) arising from suc-
essive l modes in Eq. (10). For scalar fields it was previously 
hown [30,14] that such oscillations are linked to the Regge pole 
pectrum of the black hole, whose asymptotic properties are set by 
he angular frequency �c and Lyapunov exponent �c of the circu-
ar photon orbits of the spacetime. At high frequencies for γ = 0, 

e find that σabs is well described by the sinc approximation [31,
0,14],

abs ≈ σsinc ≡ Cs + εAs sin (Bs/ε) , (12)

here ε ≡ (M|ω|)−1 and {As, Bs, Cs} are spin-dependent terms to 
e described more fully below.

A sinc approximation of this form was first developed by 
anchez [31] in 1977, for scalar fields on the Schwarzschild space-
ime. For the Kerr spacetime with a scalar field incident along the 
xis (γ = 0), it was shown in Ref. [14] (based on the method of 
ef. [30]) that Eq. (12) that remains valid with

0 = −4π�ce−π�c/�c

�2
c

, B0 = 2π

M�c
, (13)

nd C0 = σgeo = πb2
c . Sample values for bc , �c and �c are given 

n Table 1. The method for obtaining these values is covered in 
ef. [14].

For s > 0, we now propose an extended model to include terms 
t O (ε):

s>0 = A0, (14a)

s>0 = B0

[
1 + ε

(
b̄s ± s a∗�bs

)
+ O (ε2)

]
, (14b)

Cs>0 = C0

[
1 + ε

(
c̄s ± s a∗�cs

) + O (ε2)
]
. (14c)

he coefficients �bs and �cs encapsulate the effect of the spin-
elicity interaction, with + in Eq. (14) for the co-rotating helicity, 
nd − for the counter-rotating helicity. To find the coefficients 
e fitted the model to our numerical data σabs across the do-
ain M|ω| ∈ [2.5, 4] for 0 ≤ a∗ ≤ 0.99. Fig. 3 shows that the model 

12)–(14) fits the data well across the domain in ω.
We may draw several inferences from the best-fit parameter 

alues shown in Fig. 3(c). First, that �b1 = �b2 and �c1 = �c2
o within the fitting error. This implies that the spin-helicity ef-
ect for gravitational waves is twice as large as for electromagnetic 

aves, as expected. Second, that Cs�bs < 0, so counter-rotating 
elicities are preferentially absorbed. Third, that �cs → �bs as 
∗ → 0, which was not anticipated a priori. Fourth, that B0�bssa∗ , 
he spin-helicity part of the phase term in the sinc approximation 
12), varies monotonically from 0 in the Schwarzschild case up to 
pproximately sπ in the extremal limit (a → M). Evidence of this 

hase shift can be seen in Fig. 3(a). p

___________________________WORLD TECHN
Tig. 3. (a) Fitting the sinc approximation model (12)–(14) to numerical data for
∗ ∈ {0, 0.5, 0.8, 0.99} across the domain M|ω| ∈ [2.5, 4]. (b) The residuals of the 
t, |σabs − σsinc|/π M2. (c) The best-fit values for the parameters {c̄s, ̄bs, �cs, �bs}
 Eq. (14).

. Final remarks

We have calculated the absorption cross section for scalar, elec-
romagnetic, and gravitational massless plane waves impinging 
pon a Kerr BH along its rotation axis. For the first time, we have 
resented a unified picture of the absorption spectrum for all the 
osonic fields. We showed that superradiance leads to stimulated 
mission, rather than absorption, at low frequencies for co-rotating 
ircular polarizations; and that counter-rotating polarizations are 
ore heavily absorbed in general. We have proposed and tested 

n extended version of the sinc approximation, to encapsulate the 
pin-helicity effect at short wavelengths, where its effect falls off 
ith λ/M .

An open question is whether the spin-helicity effect shown 
ere can be quantitatively described using spinoptics [20–22]. That 

s, can a modified geometric-optics approximation, incorporating 
ext-to-leading order helicity-dependent corrections in the eikonal 
quations, successfully reproduce the 1/M|ω| terms in Eqs. (14)? 
uture work in this direction could prove illuminating.
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Non-perturbative quantum-gravity effects can change the fate of black holes and make them bounce in
a time scale shorter than the Hawking evaporation time. In this article, we show that this hypothesis
can account for the GeV excess observed from the galactic center by the Fermi satellite. By carefully
taking into account the secondary component due to the decay of unstable hadrons, we show that the
model is fully self-consistent. This phenomenon presents a specific redshift-dependence that could allow

2

to distinguish it from other astrophysical phenomena possibly contributing to the GeV excess.
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W1. Introduction

The Planck scale is currently out of reach from any direct lo-
cal experiment by a factor of approximately 1015. It is therefore
hard to test quantum gravity. Many efforts have however been de-
voted to quantum gravity phenomenology in the last decade (see
e.g., [1–3] and references therein for some general arguments) and
it is not unreasonable to expect measurable consequences. Most
efforts in the recent years have focused on the early Universe
or on modified dispersion relations impacting the propagation of
gamma-rays on huge distances. In this article, we focus on a re-
cent result associated with black holes physics, first exposed in
[4]. The main idea is grounded in a robust result of loop quantum
cosmology: quantum gravity might manifest itself in the form of
an effective pressure that counterbalances the classically attractive
gravity when matter reaches the Planck density [5]. For a black
hole, this means that matter’s collapse could stop before the cen-
tral singularity forms. The classical singularity is replaced in the
quantum theory by a phase of maximum density – a “Planck star”
[4]. The absence of the central singularity allows for the dynami-
cal trapping horizon (shrinking of light surfaces) to be converted
in an anti-trapping horizon (expanding of light surfaces), that re-
leases matter and eventually disappears. This is a non-perturbative
quantum-gravity process that tunnels a classical black hole into a
* Corresponding author.
E-mail addresses: Aurelien.Barrau@cern.ch (A. Barrau), Bolliet@lpsc.in2p3.fr

(B. Bolliet), M.Shutten@students.ru.nl (M. Schutten), F.Vidotto@science.ru.nl
(F. Vidotto).
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Tclassical white hole. Because of the gravitational redshift, the pro-
cess is almost instantaneous in proper time but appears as very
long if measured by an external distant observer.

The viability of the model is supported by the existence of a
classical metric satisfying the Einstein equations outside the space-
time region where matter collapses into a black hole and then
emerges from a white hole1 [7]. This can be achieved without vi-
olating causality nor the semiclassical approximation, as quantum
effects piles up outside the horizon over a very long time.

The time quantum effects take to pile up outside the horizon
determines the lifetime of the black hole, and its phenomenology.
This was first investigated in [8] for a long lifetime (comparable
but shorter than the Hawking evaporation time). Further studies in
[9] and [10] were developed considering a wider range of possible
lifetimes and the integrated signal coming from a diffuse emission.

The tunneling process connects two classically disconnected so-
lutions. Einstein equations should therefore be violated during the
evolution, but the model allows for a violation that takes place
only over a finite region. This is where full quantum gravity dom-
inates.2 This process seems to be quite generically allowed for a
wide range of viable quantum theories of gravity. Interestingly, in
covariant loop quantum gravity (LQG) it is possible to perform the
1 A modifications was suggested in [6] where the scenario was made asymmetric,
with a black hole phase longer than the white hole one. Such a modification over-
comes complications coming from a possible instability in the white-hole phase.

2 A possibility could be to study an effective metric associated with this finite re-
gion, as originally done by Hayward [11]. See [12] for recent results in this direction,
recently extended to rotating metrics [13].
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alculation of the tunneling amplitudes [14] that provides an esti-
ation of the black-hole lifetime.

In this work, we address the puzzle posed by the observation 
y the Fermi telescope of a GeV photon excess, coming from the 
alactic center. Different explanations – including standard astro-
hysical sources – have been considered to explain it. Here we 
vestigate whether bouncing (primordial) black holes could ex-

lain this specific excess and if this hypothesis has specific features 
hat could allow to distinguish it from more conventional explana-
ions.

In the first part, we briefly explain what are the parameters of 
he model and their possible values. In the second part, we present 
he way we have calculated and modeled the gamma-ray emission 
rom bouncing black holes. In the third part we show the fit to 
he GeV Fermi excess we are interested in. In the fourth part, we 
uggest ways to discriminate our model from other possible ex-
lanations and normalize the mass spectrum. Some prospects are 
hen discussed in the conclusion.

. Parameters of the model

A precise astrophysical model for the emission from a bouncing 
lack hole is not available, but heuristic arguments lead to con-
ider two different emission mechanisms [9]. One, designated as 
he low-energy component, is grounded in a simple and conserva-
ive dimensional analysis. The mean energy of the emitted signal 
s assumed to be such that the corresponding wavelength matches 
he size of the horizon. This is a reasonable expectation, agree-

g with the Hawking spectrum. The other one, designated as the 
igh-energy component, has a smaller wavelength and depends on 
he conditions at which the black hole formed. In the model, the 

atter forming the black hole reemerges rapidly in the white-hole 
hase. The gravitational blueshift felt by radiation in the contract-
g phase is precisely compensated by the very same amount of 

edshift in the expanding phase.
If the considered model is correct, the bounce should take place 

or all kinds of black holes, but observable effects become ex-
erimentally accessible only for primordial black holes (PBHs), i.e.
lack holes that formed in the early universe with a potentially 
ide mass spectrum. In particular, they can form with masses 

maller than the Solar mass so that their bouncing time can be 
f the order of the age of the Universe (more massive black holes 
ould require much more than the Hubble time to bounce and 
othing would be visible). Studying the phenomenology of bounc-
g black holes, we are interested only by primordial black holes. 
any different processes that can lead to the formation of black 

oles in the early Universe were suggested, see, e.g., [15] for a 
ecent review. In the simplest models, PBHs form by collapse of 
ver-dense regions. Given the mass of a black hole, its formation 
ime is then (approximately) known and so is the spectrum of the 
adiation that collapsed to form it – and that will emerge from 
he bounce in the high-energy component of the signal considered 
ere.

The most important parameter of the model is the bouncing 
ime of black holes. It can be written as [7]

= 4kM2, (1)

n Planck units, where M is the mass of the black hole and k is a 
ree parameter. This is a key-point: the bounce time scales as M2

hereas the Hawking evaporation requires a time of order M3. The 
arameter k is bounded from below at the value kmin = 0.05 which 
nsures that the quantum effects do pile up enough to appear out-
ide of the black hole horizon so that the bounce can take place. 
t is also bounded from above at a value k (M) which trans-
max

tes the fact that the bouncing time needs to be smaller than the 
H
w

___________________________WORLD TECHN
T

awking time,3 otherwise the black hole would disappear before 
ouncing and the evaporation could not be considered anymore 
s a small correction associated with a dissipative process, as as-
umed in the model.

A signal detected today comes from black holes that have lived 
or a time equal to the Hubble time tH . Fixing the lifetime to 
H , Eq. (1) gives the corresponding mass of the bouncing black 
ole, that determines the energy of the emitted radiation. We 
sk the following question: is there an allowed value of k such 
hat this emission can explain the GeV excess observed by the 
ermi telescope? We note immediately that the GeV energy scale is 
ar below any possible contribution coming from the high-energy 
omponent of our model: even for the smaller possible value of 

the emitted energy is of order a TeV. On the other hand, the 
w-energy component can indeed match the observed signal. Our 

nalysis therefore focuses on this component. To have an emitted 
nergy of the order of 1 GeV, that is of order 10−19 E Pl , the size 
f the black hole should be of the order of 1019lPl and its mass 
f the oder M ∼ 1019M Pl . The Hubble time is tH ∼ 1060tPl . Re-
uiring the Hubble time to be equal to the bouncing time leads 
o k ∼ 1022. How does this compare with the Hawking time? The 
awking time is roughly tHaw ∼ 103M3, that is of the order of 
060tPl for the mass we are interested in. This is of the same or-
er of magnitude than the bouncing time.4 This is therefore a quite 
teresting situation from the theoretical point of view in the sense 

hat the required value of the parameter is not random or arbitrary 
 the (very large) allowed interval but a near-extremal one.

To summarize, the high-energy component of the signal emit-
ed by bouncing black holes cannot explain the Fermi excess but 
he low-energy component might do so if the free parameter k is 
hosen near its highest possible value.

. Modeling of the gamma-ray emission

Whatever the details of the emission mechanism, as soon as 
undamental particles are emitted at energies higher than the QCD 
onfinement scale, quarks and gluons are emitted and do fragmen-
ate into subsequent hadrons. For a bouncing black hole emitting 
uanta with energies greater than, say, 100 MeV, it is required to 
onsider not only the primary (i.e. direct) emission of gamma-rays 
ut also the secondary component, due to the decay of unstable 
adrons produced by fragmentation. This has been studied with 
nalytical approximations for evaporating black holes in [17,18]. 
n this work we use a full Monte Carlo analysis based the “Lund” 
YTHIA code (with some scaling approximations in the low energy 
ange) [19] to determine the normalized differential fragmentation 
unctions dg(ε, E)/dε , where E is the quark energy and ε is the 
hoton energy. This takes into account a large number of physical 
spects, including hard and soft interactions, parton distributions, 
itial- and final-state parton showers, multiple interactions, frag-
entation and decay.

For all energies, we have found that the obtained spectra can 
e well fitted by a function

(E, ε) = aεb

πγ

[
γ 2

(ε − ε0)2 + γ 2

]
e
−

(
4ε
E

)3

, (2)

3 More precisely, the bounce time is constrained to be smaller than “Page time” 
t which the black holes would have lost half of its mass by Hawking evaporation 
ecause this time signs the entrance in the full quantum gravity regime [16].
4 In our study we disregard the mass loss due to Hawking evaporation. In fact, 
ven if the bouncing time considered here is comparable with the Hawking one, 

awking radiation decreases the mass of the black hole only by a small amount 
ithout changing its order of magnitude.
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Fig. 1. Spectrum of gamma-rays generated by 5 × 102 GeV jets. The green histogram
corresponds to the output of the simulation and the blue curve to the analytical
fit. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Zoom on the low-energy part of the spectrum of gamma-rays generated by
5 × 102 GeV jets. The green histogram corresponds to the output of the simulation
and the blue curve to the analytical fit. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

with a = 50.7, b = 0.847, γ = 0.0876 and ε0 = 0.0418 if the ener-
gies are given in GeV. The low-energy peak of the spectrum is well
approximated by a Cauchy function. It is then roughly a power law,
followed by an exponential cutoff around the initial jet energy (see
Figs. 1 and 2).

As soon as the jet reaches an energy much higher that the as-
sociated quark mass, the result does not depend substantially on
the quark type. Depending on the mean energy E of the primary
component, the number of types of emitted quarks – that is with
m < E – is accounted for. The normalization is chosen to be con-
sistent with the primary emission.

For the low-energy component, the shape of the primary signal
is not completely determined by the model. We have used a Gaus-
sian function, centered on the energy estimated in the previous
Section, with a relative width taken as the second free parameter
of the model. Its exact value depends on the details of the astro-
physical phenomena occurring during the bounce and this is far

beyond the scope of this study. The full signal can be written as

____________________________WORLD TECH
T
Fig. 3. Best fit to the Fermi excess with bouncing black holes. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Ae
− (ε−E)2

2σ2 + 3N
√

2π Aσ f (E, ε), (3)

where N is the number of species of quarks with m < E .
For the high-energy component, which is irrelevant for this

study but potentially interesting for other works, the same strat-
egy can be followed. The primary component is then a Planck law
and the full signal can be written as

A
ε2

eE/T − 1
+ 36AT 3ζ(3) f (E, ε). (4)

Interestingly, this formula can also be used to model the full spec-
trum of an evaporating black hole since the Hawking spectrum is
also very close to a Planck law.

4. Fitting Fermi data

The Fermi Gamma-ray Space Telescope is a space observa-
tory being used for gamma-ray astronomy observations from low
Earth orbit. Its main instruments are the Large Area Telescope
(LAT), intended to perform an all-sky survey studying astrophysical
and cosmological phenomena, and the Gamma-ray Burst Monitor
(GBM), used to study transients.

An excess in the Fermi-LAT data has been reported within the
inner 10 arcmin of the Galactic center (see, e.g., [20–22]) and up
to larger galactic latitudes (see, e.g., [23–26]). A huge number of
works have been published on possible explanations. Our opinion
is that an astrophysical origin, notably associated with millisecond
pulsars, is the most convincing one (see, e.g., [27]). It is however
not fully satisfactory and dark-matter like hypotheses are worth
being considered (see, e.g., [23]). Here we investigate whether this
signal can be due to bouncing black holes.

We stress that the explanation we suggest is specifically asso-
ciated with the quantum gravity scenario considered in this work.
The time integrated spectrum of black holes evaporating by the
usual Hawking process is scaling as E−3 and there is no way it
can account for the Fermi excess. As explained before, two param-
eters are required to fully determine the low-energy component
of bouncing black holes: their bouncing time and the width of
the primary Gaussian. The best fit (with a near-extremal bouncing
time) is shown in Fig. 3. The agreement with data is good, with a
χ2 per degree of freedom of 1.05. Notice that what is plotted here

is not the differential spectrum but the spectral energy density 
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ε2dN/dε), as used for most experimental publications. The key 
oint we want to stress is that although the number of secondary 
amma-rays is higher than the number of primary gamma-rays, 
heir spectral energy density is much lower. This is of utmost im-
ortance for this study: as the background has a basically constant 
pectral energy density, this means that the anomaly can be ac-
ounted for without any spurious excess in the 10–100 MeV range, 
here is situated the peak of the secondary component. This peak 

emains much below the background and the signal can be ex-
lained with no contradiction with the data.

This also shows why the high-energy component cannot be used 
o explain the excess. The energy of its primary component is in 
ll cases too high and its secondary component would not have a 
igh enough spectral energy density.

. Discrimination with dark matter and mass spectrum

The model presented in this work is unquestionably quite exotic 
hen compared with astrophysical hypotheses. But the important 

oint is than it can, in principle, be distinguished both from astro-
hysical explanations and from other “beyond the Standard Model” 
cenarios. The reason for that is a peculiar redshift dependence. 

hen looking at a galaxy at redshift z, the measured energy of 
he signal emitted either by decaying WIMPS or by astrophysical 
bjects will be E/(1 + z) if the rest-frame energy is E . But this is 
ot true for the bouncing black holes signal. The reason for this 

s that black holes that have bounced far away and are observed 
ow must have a shorter bouncing time and therefore a smaller 
ass. Their emission energy – in the low energy channel we are 

onsidering in this article – is therefore higher and this partly 
ompensates for the redshift effect. Following [9], we can write 
own the observed wavelength of the signal from a host galaxy at 
edshift z, taking into account both the expansion of the universe 
nd the change of bouncing time, as:

B H
obs ∼

2Gm

c2
(1 + z) × (5)√√√√ H−1

0

6 k

1/2
�

sinh−1

[(

�


M

)1/2

(z + 1)−3/2

]
,

here we have reinserted the Newton constant G and the speed 
f light c; H0, 
� and 
M being the Hubble constant, the cos-
ological constant, and the matter density. On the other hand, for 

tandard sources, the measured wavelength is just related to the 
bserved wavelength by

other
obs = (1 + z)λother

emitted . (6)

he redshift dependence specific of our model makes it possibly 
estable against other proposals. Obviously, detecting such a sig-
al from far away galaxies is challenging but we hope this work 
ight motivate some experimental prospects for the next gener-

tion of gamma-ray satellites. On Fig. 4, we have displayed the 
volution of the wavelength, normalized to the rest-frame wave-
ength, as a function of the redshift for both a conventional source 
upper curve) and the model considered in this work (lower curve). 
y “conventional” we mean here basically all other models we are 
ware of, including astrophysical sources and the decay of super-
ymmetric particles. Obviously it is easy to distinguish between 
oth cases: in the hypothesis of bouncing black holes, the wave-

ength does not vary much because black holes bouncing far away 
re smaller and therefore emit higher-energy photons.

Interestingly, there might be another specific observational sig-
ature for this model. In addition to specific signals coming from 
dentified galaxies, one should also expect a diffuse background. As p

___________________________WORLD TECHN
T
ig. 4. Measured wavelength, normalized to the rest-frame wavelength, as a function 
f the redshift. The upper curve is for a conventional signal and the lower curve is 
r the model considered in this article.

e have demonstrated in [10], for the low energy component of the 
ouncing signal, considered here, the integrated emission exhibits 
n interesting feature. The integrated spectrum, defined as

dNmes

EdtdS
=

∫
�ind((1 + z)E, R) · n(R) · A(E) · f (E, R)dR, (7)

where �ind(E, R) denotes the individual flux emitted by a sin-
le bouncing black hole at distance R and at energy E , A(E) is 
he angular acceptance of the detector multiplied by its efficiency, 
(E, R) is the absorption function, and n(R) is the number of black 
oles bouncing at distance R per unit time and volume) was in-
eed shown to be nearly the same than the individual spectrum 
ut with a slight distortion on the left tail [10]. This is another 
ignature for this specific model.

The order of magnitude of the number of bouncing black holes 
n the galactic-center region required to account for the observed 
ux is around 100 per second. The associated mass is negligible 
hen compared to the expected dark matter density, even when 

ntegrated over a long time interval. If the mass spectrum of pri-
ordial black holes was known, which is not the case, in principle 

t would be possible to fix the total mass associated with bounc-
ng black holes. As a reasonable toy model, let us assume that the 

ass spectrum is given by

d2N

MdV
= pM−α. (8)

f the number of exploding black holes required to explain the data 
n a time interval dτ is Nexp , one can estimate the associated mass 
ariation

M = dτ

8kM
. (9)

alling M0 the mass corresponding to a black hole exploding today, 
ne then gets

exp =
M0+dM∫

M0

pM−αdM . (10)

his allows, in principle, to determine p and therefore to normalize 
he spectrum.

. Conclusion

Black holes could bounce once they have reached the “Planck 
tar” stage. This can be seen as a tunneling into an expanding ex-

losive phase. The process appears generic in quantum gravity. In 
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10 General Relativity and Cosmology
this article, we have shown that this phenomenon could explain
the GeV excess measured by the Fermi satellite. This would open
the fascinating possibility to observe (non perturbative) quantum
gravity processes at energies 19 orders of magnitude below the
Planck scale. Interestingly, the explanation we suggest is fully self-
consistent in the sense that the hadronic “noise” due to decaying
pions remains much below the observed background. Unquestion-
ably, there are other – less exotic – ways to explain the Fermi
excess. But the important point we have made is that this model
has a specific redshift dependence which, in principle, can lead to
a clear signature for future experiments. On the theoretical side
the important next step would be to fix the free parameter of the
model from the full theory so that the energy of the signal is fixed
from first principle and not anymore tuned to fit the data (see [28]
for a recent step in this direction). Another interesting possible im-
provement would be to take into account the distribution of actual
bouncing times for individual black holes around the mean time τ
fixed by the theory.
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When we consider charged AdS black holes in higher dimensional spacetime and a molecule number
density along coexistence curves is numerically extended to higher dimensional cases. It is found that
a number density difference of a small and large black holes decrease as a total dimension grows up.
In particular, we find that a configurational entropy is a concave function of a reduced temperature and
reaches a maximum value at a critical (second-order phase transition) point. Furthermore, the bigger a
total dimension becomes, the more concave function in a configurational entropy while the more convex
function in a reduced pressure.
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W. Introduction

It has been found that there is a first-order phase transition 
n the Schwarzschild–AdS black hole from analogy between black 
ole and standard thermodynamic system [1]. It has been sug-
ested that the critical behavior of charged AdS black holes remind 
an der Waals liquid-gas phase transition [2,3]. Thermodynamics 
f black holes in the extended space has been recently investi-
ated by treating the cosmological constant as the thermodynamic 
ressure [4]. It has been found that the thermodynamic pressure 
f charged AdS black holes is proportional to their thermodynamic 
olume [5]. The P − V criticality of charged AdS black holes in the 
xtended space has been investigated [6,7]

A present-day concept of configurational entropy has been sug-
ested in Ref. [8] in search for the informational entropy in the 
ontext of communication theory. It was recently obtained in 
ef. [9] through investigation of measure of ordering in field con-
guration space for spatially localized energy solutions of nonlin-
ar models and used to study instability of a variety of objects 
10–17].

The number density of black hole molecules was recently intro-
uced in Ref. [18] for investigation of measure of the microscopic 
egrees of freedom of black holes. It was extensively studied for 
(R) AdS black holes and Gauss–Bonnet AdS black holes [19] and 

or the generalization of charged AdS black hole specific volume 
nd number density [20].

The paper is organized as follows: in the next section we inves-

igate configurational entropy in charged AdS black holes in higher 

E-mail address: cohlee@gmail.com.
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Timensional spacetime. In the four-dimensional case, we explicitly 
resent the configurational entropy. In the five-dimensional/six-
imensional case, its numerical result is given. In the last subsec-
ion we discuss their thermodynamic properties. In the last section 
e give our conclusion.

. Configurational entropy

In statistical thermodynamics the most general formula be-
ween the entropy and the set of probabilities of their microscopic 
tates is given as the Boltzmann–Gibbs entropy S BG

BG = −kB

∑
pi ln pi, (2.1)

ith 
∑

pi = 1 where kB is the Boltzmann constant, and pi is the 
robability of a microstate. Each microstate has equal probability 
s the following

i = 1

W
, (2.2)

here W is the number of microstates. Then the Boltzmann–Gibbs 
ntropy S BG (2.1) reduces to

BG = kB ln W , (2.3)

here W is treated as the number of possible configurations at the 
iven energy, and the Boltzmann–Gibbs entropy S BG (2.3) becomes 
he configurational entropy in the microcanonical ensemble. Espe-

ially, supposing there are two different molecules with the total 
umber of molecules N0, then the number of one type of molecule 

s N1 and the number of another type of molecule N1. The config-
rational entropy S is written as
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W

S = kB ln W = kB ln

(
N0!

N1! N2!
)

, (2.4)

which leads to

S = kB(N0 ln N0 − N1 ln N1 − N2 ln N2), (2.5)

by employing sterling’s approximation ln N! ≈ N ln N . Since the ef-
fective number density n for the AdS black hole is given as [6,7]

n = N

V
= 1

2l2P rh
(2.6)

where V is the thermodynamic volume and lP is Planck length

lP =
√

h̄G/c3, (2.7)

the configurational entropy of charged AdS black holes per unit
volume sconf reduces to

sconf = −
[

n1 ln

(
n1

n1 + n2

)
+ n2 ln

(
n2

n1 + n2

)]
(2.8)

by using geometric units G = c = kB = h̄ = 1.
The charged AdS black hole metric in higher dimensional space-

time is given as

ds2 = − f (r)dt2 + dr2

dr2
+ r2d�2

d−2, (2.9)

with

f (r) = 1 − m

rd−3
+ q2

r2(d−3)
+ r2

l2
, (2.10)

where parameter m relates to the ADM mass M , which is identified
with enthalpy H (M ≡ H = U + P V ) [4]

M ≡ H = π
d−1

2 (d − 2)m

8π�(d−1
2 )

, (2.11)

and parameter q relates to the black hole charge Q [2,3]

Q = π
d−1

2
√

2(d − 2)(d − 3)q

4π�(d−1
2 )

. (2.12)

One may treat the cosmological constant � as the thermodynamic
pressure P

P = − �

8π
= (d − 1)(d − 2)

8π l2
, (2.13)

and its conjugate quantity as the thermodynamic volume [5].

V = 2π
d−1

2 rd−1
h

�(d−1
2 )

. (2.14)

The d-dimensional black hole temperature T can read

T = 1

4πrh

[
(d − 3) + 16π P

d − 2
r2

h − (d − 3)q2

r2(d−3)

h

]
, (2.15)

which leads to the thermodynamic pressure P

P = (d − 2)T

4rh
− (d − 2)(d − 3)

16πr2
h

+ (d − 2)(d − 3)q2

16πr2(d−2)

h

. (2.16)
Employing the Legendre transform of enthalpy G̃ = H − T S , the 
Gibbs free energy G̃ is given as

____________________________WORLD TECH
T

G̃ = π
d−1

2

8π�(d−1
2 )

[
rd−3

h − 16π Prd−1
h

(d − 1)(d − 2)
+ (2d − 5)q2

rd−3
h

]
. (2.17)

The specific volume v of the black hole fluid is identified with
the horizon radius of the black hole through comparing with the
Van der Waals equation [6,7]

v = 4ld−2
P

d − 2
, (2.18)

and the equation of state is given as

P = T

v
− d − 3

π(d − 2)v2
+ 42d−5(d − 3)q2

4π(d − 2)2d−5 v2(d−2)
. (2.19)

The critical point is obtained by solving the following two equa-
tions

∂ P

∂v
= 0,

∂2 P

∂v2
= 0, (2.20)

which leads to

Pc = (d − 3)2

π(d − 2)2 v2
c
, (2.21)

Tc = 4(d − 3)2

π(d − 2)(2d − 5)vc
, (2.22)

vc = 4

d − 2

[
(d − 2)(2d − 5)q2

] 1
2(d−3)

, (2.23)

G̃c = π
d−1

2
√

(d − 2)(2d − 5)q

2π�(d−1
2 )(d − 1)

. (2.24)

Employing the reduced physical parameters as

p = P

Pc
, τ = T

Tc
, ν = v

vc
, G = G̃

G̃c
, (2.25)

the Gibbs free energy (2.17) is written as

G = 1

4

[
(d − 1)νd−3 − (d − 3)2 pνd−1

d − 2
+ d − 1

(d − 2)νd−3

]
, (2.26)

and the equation of state is

p = 4(d − 2)τ

(2d − 5)ν
− d − 2

(d − 3)ν2
+ 1

(d − 3)(2d − 5)ν2(d−2)
, (2.27)

which leads to

τ = (2d − 5)pν

4(d − 2)
− 2d − 5

4(d − 3)ν
− 1

4(d − 2)(d − 3)ν2d−5
. (2.28)

Since the first-order phase transition occurs between the small
and large black hole along the coexistence curve except the critical
point τ = τc , the two states have the same Gibbs free energy, and
Eqs. (2.26) and (2.28) are written as

G1 = 1

4

[
(d − 1)νd−3

1 − (d − 3)2 pνd−1
1

d − 2
+ d − 1

(d − 2)νd−3
1

]
,

= 1

4

[
(d − 1)νd−3

2 − (d − 3)2 pνd−1
2

d − 2
+ d − 1

(d − 2)νd−3

]

2

= G2, (2.29)

NOLOGIES____________________________
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ig. 1. Plot of the reduced pressure p as the function of the reduced temperature τ
red solid curve for d = 4, blue dotted curve for d = 5, and purple dashed curve for 
 = 6, respectively).

= (2d − 5)pν1

4(d − 2)
− 2d − 5

4(d − 3)ν1
− 1

4(d − 2)(d − 3)ν2d−5
1

,

= (2d − 5)pν2

4(d − 2)
− 2d − 5

4(d − 3)ν2
− 1

4(d − 2)(d − 3)ν2d−5
2

.

(2.30)

.1. The four-dimensional case

In the case of d = 4, the above Eqs. (2.29) and (2.30) reduce 
o [18,19]

ν4
1 − 6ν2

1 − 3

8ν1
= pν4

2 − 6ν2
2 − 3

8ν2
, (2.31)

pν4
1 + 6ν2

1 − 1

8ν3
1

= 3pν4
2 + 6ν2

2 − 1

8ν3
2

, (2.32)

τ = 3pν4
1 + 6ν2

1 − 1

8ν3
1

+ 3pν4
2 + 6ν2

2 − 1

8ν3
2

. (2.33)

or convenience, we now employ the parameters as the following

= ν1 + ν2, y = ν1ν2, (2.34)

nd the above Eqs. (2.31)∼(2.33) are written as

px2 y + py2 + 6y − 3 = 0, (2.35)

py3 + x2 − 6y2 − y = 0, (2.36)

3pxy3 + x3 − 6xy2 − 3xy + 16τ y3 = 0. (2.37)

hese equations can be analytically solved, and the corresponding 
educed pressure p is obtained as

= 2
4
3 τ 2(−τ + √

τ 2 − 2)
2
3

[2 1
3 + (−τ + √

τ 2 − 2)
2
3 ]2

, (2.38)

hich is shown as red solid curve in Fig. 1.
Introducing the number density of black hole molecules n =

/v , we have

1 − n2

nc
= ν2 − ν1

ν1ν2
= x2 − 4y

y
=
√

6 − 6
√

p√√√ 6 × 2
2
3 τ (−τ + √

τ 2 − 2)
1
3
=√6 −

2
1
3 + (−τ + √

τ 2 − 2)
2
3

, (2.39)

___________________________WORLD TECHN
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ig. 2. Plot of the number density difference of the small and large black holes 
n1 −n2)/nc as the function of the reduced temperature τ (red solid curve for d = 4, 
lue dotted curve for d = 5, and purple dashed curve for d = 6, respectively).

hich is shown as red solid curve in Fig. 2. Here, n1 and n2 are 
xplicitly calculated as

1 = 1

v1
=
√

x2 − 4y + x

2y
=

(√
3 − √

p +√3 − 3
√

p

)√
p

√
2

,

= 1√
2

⎛
⎜⎝
√√√√3 − 2

2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

+
√√√√3 − 3 × 2

2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

⎞
⎟⎠

× 2
2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

, (2.40)

2 = 1

v2
=
√

x2 − 4y − x

2y
=

(√
3 − √

p −√3 − 3
√

p

)√
p

√
2

,

= 1√
2

⎛
⎜⎝
√√√√3 − 2

2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

−
√√√√3 − 3 × 2

2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

⎞
⎟⎠

× 2
2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

. (2.41)

ubstituting with the configurational entropy (2.8), we get

conf = −
[(√3 − √

p +√3 − 3
√

p

)√
p

√
2{ ( √ √ )}
× ln
1

2
1 + 3 − 3 p√

3 − √
p
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W

+

(√
3 − √

p −√3 − 3
√

p

)√
p

√
2

× ln

{
1

2

(
1 −

√
3 − 3

√
p√

3 − √
p

)}]

= −
[

1√
2

⎛
⎜⎝
√√√√3 − 2

2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

+
√√√√3 − 3 × 2

2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

⎞
⎟⎠

× 2
2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

× ln

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

⎛
⎜⎜⎜⎜⎝1 +

√
3 − 3 × 2

2
3 τ (−τ+

√
τ 2−2)

1
3

2
1
3 +(−τ+

√
τ 2−2)

2
3√

3 − 2
2
3 τ (−τ+

√
τ 2−2)

1
3

2
1
3 +(−τ+

√
τ 2−2)

2
3

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ 1√
2

⎛
⎜⎝
√√√√3 − 2

2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

−
√√√√3 − 3 × 2

2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

⎞
⎟⎠

× 2
2
3 τ (−τ + √

τ 2 − 2)
1
3

2
1
3 + (−τ + √

τ 2 − 2)
2
3

× ln

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

⎛
⎜⎜⎜⎜⎝1 −

√
3 − 3 × 2

2
3 τ (−τ+

√
τ 2−2)

1
3

2
1
3 +(−τ+

√
τ 2−2)

2
3√

3 − 2
2
3 τ (−τ+

√
τ 2−2)

1
3

2
1
3 +(−τ+

√
τ 2−2)

2
3

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(2.42)

which is shown as red solid curve in Fig. 3.

2.2. The five-dimensional case

As discussed in the previous section we will apply a similar
analysis to the five-dimensional case.

pν6
1 − 3ν4

1 − 1

3ν2
1

= pν6
2 − 3ν4

2 − 1

3ν2
2

, (2.43)

10pν6
1 + 15ν4

1 − 1

24ν5
1

= 10pν6
2 + 15ν4

2 − 1

24ν5
2

, (2.44)

2τ = 10pν6
1 + 15ν4

1 − 1

24ν5
1

+ 10pν6
2 + 15ν4

2 − 1

24ν5
2

, (2.45)

which leads to

−px2 y2 + 2py3 + 3y2 − 1 = 0 (2.46)

10py5 + x4 − 3x2 y − 15y4 + y2 = 0 (2.47)
10pxy5 − x5 + 5x3 y + 15xy4 − 5xy2 + 48τ y5 = 0, (2.48)

____________________________WORLD TECH
T
Fig. 3. Plot of the reduced configurational entropy sconf as the function of the re-
duced temperature τ (red solid curve for d = 4, blue dotted curve for d = 5, and
purple dashed curve for d = 6, respectively).

which is a complicated high-order polynomial equation and it is
difficult to analyze exactly. However some numerical investigation
can be employed and the reduced pressure p as the function of
the reduced temperature τ is numerically calculated as blue dot-
ted curve in Fig. 1. The number density difference of the small, and
large black holes (n1 − n2)/nc as the function of the reduced tem-
perature τ is numerically obtained as blue dotted curve in Fig. 2,
and the configurational entropy sconf as the function of the re-
duced temperature τ is numerically given as blue dotted curve in
Fig. 3.

2.3. The six-dimensional case

We now apply similar numerical investigations to the six-
dimensional case.

9pν8
1 − 20ν6

1 − 5

16ν3
1

= 9pν8
2 − 20ν6

2 − 5

16ν3
2

, (2.49)

21pν8
1 + 28ν6

1 − 1

48ν7
1

= 21pν8
2 + 28ν6

2 − 1

48ν7
2

, (2.50)

2τ = 21pν8
1 + 28ν6

1 − 1

48ν7
1

+ 21pν8
2 + 28ν6

2 − 1

48ν7
2

, (2.51)

which leads to

−9px4 y3 + 27px2 y4 − 9py5 + 20x2 y3 − 5x2 − 20y4 + 5y

= 0, (2.52)

21py7 + x6 − 5x4 y + 6x2 y2 − 28y6 − y3 = 0, (2.53)

−21pxy7 + x7 − 7x5 y + 14x3 y2 − 28xy6 − 7xy3 + 96τ y7

= 0, (2.54)

which is numerically solved and the reduced pressure p as the
function of the reduced temperature τ , the number density dif-
ference of the small, and large black holes (n1 − n2)/nc as the
function of the reduced temperature τ , and the configurational en-
tropy sconf as the function of the reduced temperature τ are given
as purple dashed curve in Fig. 1, Fig. 2, and Fig. 3, respectively.

2.4. The thermodynamic properties
We now discuss the thermodynamic properties in charged AdS 
black holes in higher dimensional spacetime.

NOLOGIES____________________________
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ig. 4. Plot of the maximum number density difference of the small and large black 
oles (n1 − n2)/nc as the function of the total dimension d.

As shown in Fig. 1, and Fig. 2, as the reduced temperature τ
rows up the reduced pressure p monotonically increases while 
he number density difference of the small, and large black holes 
n1 − n2)/nc decreases. As shown in Fig. 3, the bigger the total 
imension d becomes, the more concave function in the config-
rational entropy sconf . Especially, as the reduced temperature τ
rows up, scong monotonically increases, and reaches the maxi-
um value at the critical (second-order phase transition) point. 

he maximum number density difference of the small and large 
lack holes (n1 − n2)/nc at τ = 0 is obtained as

1 − n2

nc
=
[
(d − 2)(2d − 5)

] 1
2(d−3)

. (2.55)

s shown in Fig. 4, it decreases as the total dimension d increases.

. Conclusion

We considered higher dimensional charged AdS black holes and 
nvestigated the number density difference of the small and large 
lack holes (n1 − n2)/nc , and the reduced configurational entropy 
conf in the context of the molecule number density. We explic-
tly obtained the general form of maximum value of (n1 − n2)/nc
t τ = 0, and found that its maximum value decreases as the total 
imension d increases. Especially, the configurational entropy sconf
onotonically increases as the reduced temperature τ grows up. It 

nally reaches a maximum value at a critical (second-order phase 
ransition) point. This result is natural since in any system con-
aining two different types of molecules, when they have the same 
___________________________WORLD TECHN
T

umber of molecules, the number of microstates W reaches maxi-
um value. Furthermore, such result is consistent with that of the 

an der Waals system. It was shown that the critical behaviour of 
harged AdS black holes coincides with those of the Van der Waals 
ystem [6]. In particular, when the second-order phase transition 
etween liquid and gas occurs at the critical point, the distinction 
etween the liquid and gas phases of the Van der Waals fluid is 
lmost non-existent near the critical point and the molecules in 
he liquid and gas states are almost identical. Then, the number of 

icrostates W becomes maximum.
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Cutoff in the Lyman-α forest power spectrum: Warm IGM or 
warm dark matter?
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We re-analyse high redshift and high resolution Lyman-α forest spectra considered in [1], seeking to
constrain the properties of warm dark matter particles. Compared to this previous work, we consider
a wider range of thermal histories of the intergalactic medium. We find that both warm and cold dark
matter models can explain the cut-off observed in the flux power spectra of high-resolution observations
equally well. This implies, however, very different thermal histories and underlying reionization models
We discuss how to remove this degeneracy.
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1. Introduction

Dark matter is a central ingredient of the current standard cos-
mological model. It drives the formation of structures, and explains
the masses of galaxies and galaxy clusters. If dark matter is made
of particles, these yet-unseen particles should have been created
in the early Universe long before the recombination epoch. If such
particles were relativistic at early times, they would stream out
from overdense regions, smoothing out primordial density fluctu-
ations. The signature of such warm dark matter (WDM) scenario
would be the suppression of the matter power spectrum at scales
below their free-streaming horizon. From cosmological data at
large scales (CMB and galaxy surveys) we know that such a sup-
pression should be sought at comoving scales well below a Mpc.

The Lyman-α forest has been used for measuring the matter
power spectrum at such scales [2–4]. In previous works only upper
bounds had been reported on the mass of the thermal relic [5–10]
However, while in the SDSS spectra there is no cut-off in the
transmitted flux power spectrum, there is a cut-off in the high res-
olution spectra, for example [4,11,7]. Recently [1] has observed the
cut-off of the flux power spectrum at scales k ∼ 0.03 s/km and
redshifts z = 4.2–5.4.
* Corresponding author.
E-mail address: garzilli@lorentz.leidenuniv.nl (A. Garzilli).
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However, the Lyman-α forest method measures not the distri-

bution of dark matter itself, but only the neutral hydrogen density
as a proxy for the overall matter density. The process of reioniza-
tion heats the hydrogen and prevents it from clustering at small
scales at the redshifts in question [12]. Therefore, the observed hy-
drogen distribution eventually stops to follow the DM distribution.
Indeed, it was demonstrated in [1] that within �CDM cosmol-
ogy there exists a suitable thermal history of intergalactic medium
(IGM) that is consistent with the observed cutoff. This does not
mean, however, that this scenario is realized in nature.

In this Letter we investigate this issue in depth. We ask whether
the cutoff in the flux power spectrum can be attributed to the suppression
of small scales with warm dark matter and what this means for the
thermal history of IGM. To this end we reanalyze the data used
in [1]. We use the same suite of hydrodynamical simulations of the
IGM evolution with cold and warm dark matter models as in [1]
and demonstrate that the data is described equally well by the
model, where flux power spectrum suppression is mainly due to
WDM.

2. Data and model

The data set is constituted by 25 high-resolution quasar spec-

tra, in the redshift interval 4.48 ≤ zQSO ≤ 6.42. The spectra were 
taken with the Keck High Resolution Echelle Spectrometer (HIRES) 
and the Magellan Inamory Kyocera Echelle (MIKE) spectrograph on 
the Magellan clay telescope. The QSO spectra are divided into four 

NOLOGIES____________________________

http://dx.doi.org/10.1016/j.physletb.2017.08.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:garzilli@lorentz.leidenuniv.nl
http://dx.doi.org/10.1016/j.physletb.2017.08.022
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.08.022&domain=pdf


r
o

s
t
o
i
s
a
l
m
I
i
e
r

τ
t
o
i
h
t

T

w
u
s
w
i
I
v

p
w
d
h
γ
f
s
g
t
s
d
s
t
t
τ

u
o
t
s
d
n
d
w
t

�

d
f

b

T
P
in

F
c
ic
t
c
h
S
t
w

b
0

3

s
o
i
h
t
a
F

a
s
I
fl
w
p

m
c
s
T

17Cutoff in the Lyman-α forest power spectrum: Warm IGM or warm dark...

_

W

edshift bins centered on: z = 4.2, 4.6, 5.0, 5.4. The resulting range 
f wave-numbers probed by this dataset is k = 0.005–0.08 s/km.

At these redshifts, the IGM is thought to be in a highly ionized 
tate, being photo-ionized and photo-heated by early sources. Both 
he WDM cosmology and the IGM temperature affect the amount 
f flux power spectrum at small scales through three distinct phys-

cal mechanisms: (1) a suppression in the initial matter power 
pectrum; (2) Jeans broadening; and (3) Doppler broadening of the 
bsorption lines [12–17]. The first mechanism is cosmological, the 
atter two are astrophysical. The Doppler broadening is a one di-

ensional smoothing effect that originates from observing the hot 
GM along a line of sight. The Maxwellian distribution of velocities 
n the gas then leads to the broadening effect. The Jeans broad-
ning smooths the three-dimensional underlying gas distribution 
elative to the dark matter.

The level of ionization is captured by the effective optical depth, 
eff, that is computed from the mean flux, 〈F 〉, through the rela-
ion 〈F (z)〉 = exp(−τeff(z)). Because the IGM spans a wide range 
f density, describing the IGM temperature may be complicated 

n principle. But, assuming that the IGM is heated by photo-
eating, the temperature of the IGM follows a simple power-law 

emperature-density relation [18]:

(δ) = T0(z)
(
1 + δ

)γ (z)−1
, (1)

here δ = δρm/ρ̄m is the matter overdensity and T0(z), γ (z) are 
nknown functions of redshift. The results of Ref. [1] are based on 
ingle power-law parametrizations, T0(z) and γ (z). In this letter 
e let the parameters of the IGM thermal state vary independently 

n each redshift bin, with a total of 8 parameters describing the 
GM thermal state (T0(zi) and γ (zi) in 4 distinct redshift inter-
als).1

We want to point out that T0 and γ are not varied in post-
rocessing. The original work of [1] considered 9 simulation runs 
ith distinct thermal histories for each cosmology considered. The 

ifferent thermal histories are realized by changing the photo-
eating function in the simulations. The resulting values of T0 and 

are approximately distributed on a regular grid. In [1] the ef-
ect of Jeans smoothing is accounted by considering two additional 
imulation runs, where the time at which the ultraviolet back-
round is switched on, zreion, is varied. We caution the reader that 
he resulting constraints on zreion must not be intended as a mea-
urement of the time of reionization, because this depends on the 
etails of the implementation of the ultraviolet background. In-
tead, varying zreion must be considered as a way to account for 
he unknown level of Jeans smoothing. Finally, as in [1], we allow 
he effective optical depth vary independently in each redshift bin, 
eff[zi].

It should be noted that this interpolation scheme between sim-
lations with different temperatures may also vary the amount 
f Jeans broadening (also known as the “filtering scale”). While 
he degeneracy between the WDM cosmologies and the Doppler 
moothing has been extensively considered in the literature, the 
egeneracy between Jeans smoothing and WDM cosmology has 
ot been considered in depth so far. In particular this has not been 
one for the suite of simulations in the original work [1] on which 
e base our analysis. We leave the study of the degeneracy be-

ween the Jeans smoothing and WDM for future work.
The results also depend on the cosmological parameters ns , 

M , σ8, H0. However the small scale Lyman-α data by itself 
oes not sufficiently constrain the cosmological parameters. There-

ore, in the final likelihood function for these parameters we used 

1
 Ref. [1] also performed such a “binned analysis”, see the detailed comparison
elow. r
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able 1
arameter estimation from Bayesian analysis. We show the 1-σ and 2-σ confidence
tervals. We only show the parameters that are constrained at 1 or 2-σ level.

parameter mean 1-σ 2-σ

H0 [km/s/Mpc] 63 < 67 –
mWDM [keV] 3.9 [143,2.3] > 2.1
T0(z = 4.2) [103 K] 10.6 [9.4,11.8] [8.3,12.9]
T0(z = 4.6) [103 K] 9.8 [8.6,11.1] [7.5,12.2]
T0(z = 5.0) [103 K] 4.0 [2.0,5.6] < 6.9
T0(z = 5.4) [103 K] 3.8 < 4.5 < 8.2
τeff(z = 4.2) 1.12 [1.05,1.19] [1.00,1.25]
τeff(z = 4.6) 1.30 [1.21,1.39] [1.15,1.47]
τeff(z = 5.0) 1.88 [1.74,2.00] [1.64,2.13]
τeff(z = 5.4) 2.91 [2.69,3.10] [2.54,3.31]
γ (z = 4.2) 1.3 > 1.1 –
γ (z = 5.4) 1.3 > 1.1 –

ig. 1. Measured flux power spectrum in dimensionless units, 
2
F (k) = P F (k) × k/π , 

ompared with the theoretical model with the best-fitting values of the astrophys-
al and cosmological parameters for WDM and CDM cosmologies. The solid refer

he best-fitting values for WDM cosmology. The dotted lines refer to the best-fitting
ase for CDM cosmology. These best-fitting models largely overlap, except at the
ighest redshift and on the smallest scales. The blue, gray and green points are
DSS-III/BOSS DR9 data for z = 4.0, z = 4.2 and z = 4.4 from [20]. (For interpreta-
ion of the references to color in this figure legend, the reader is referred to the
eb version of this article.)

est fit Planck values [19] with Gaussian priors (as in [1]), �M =
.315 ± 0.017, σ8 = 0.829 ± 0.013, ns = 0.9603 ± 0.0073.

. Results

In Table 1 we give the result of the parameter estimation. Fig. 1
hows the theoretical flux power spectrum for the mean values 
f the parameters, compared with the MIKE and HIRES data used 

n this analysis. In order to clarify the effect of different thermal 
istories on our constraints, we show the effect of changing the 
hermal parameters (T0 and γ ) and ionization parameters (τeff) 
nd the mass of the thermal relic (1/mwdm) in Fig. 2, analogous to 
igs. 5 and 6 of [1].

In Fig. 3 we show the 2D confidence regions between mwdm, 
nd T0 ≡ T (δ = 0) (marginalizing over the other parameters). We 
ee that at redshifts z = 4.2, 4.6 there is no degeneracy and an 
GM temperature T0 ∼ 104 K is needed to explain the observed 
ux power spectrum independently of mwdm. If dark matter is “too 
arm” (mwdm < 1.5 keV) it produces too sharp of a cut-off in the 
ower spectrum and is inconsistent with the data.

At the z = 5.0 bin the situation is different. For the masses 
wdm ∼ 2.2–3.3 keV even very low temperatures T0 � 2500 K are 

onsistent with the data. In this case the cutoff in the flux power 
pectrum is explained by WDM rather than by the temperature. 
he situation is analogous at z = 5.4. Table 1 summarizes the pa-

ameter estimation.
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Fig. 2. Effect of the IGM parameters and mwdm on the flux power spectrum in dimensionless units, 
2

F (k) = P F (k) ×k/π . In the top-left (top-right, bottom-left, bottom-right)
panel we show the effect of varying T0 (γ , τeff , 1/mwdm) by ±10% with respect to the best-fitting values for WDM cosmology. The solid line corresponds to the best-fitting
case for WDM cosmology, the dashed (dotted) line corresponds to the relevant parameter increased (decreased) by 10%. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Confidence regions between mwdm, and T0 and γ at all redshift, and zreion. We show 1/mwdm instead of mwdm for visualization purposes. mwdm is degenerate with
zreion , that is the redshift at which the ultraviolet background has been switched on in the simulations, and T0 at the redshift z = 5.0. mwdm is not degenerate with the
T0 for the other redshift intervals. There is no obvious degeneracy with γ . Regarding mwdm and T0, at the redshifts z = 4.2, 4.6 there is no degeneracy and T0 ∼ 104 K is
needed to explain the observed flux power spectrum, independently of m . At z = 5.0 even very low temperatures T � 2500 K are consistent with the data, and the
wdm 0

cutoff in the flux power spectrum is explained by WDM rather than by the temperature. At z = 5.4 the analysis prefers low values of T0 ∼ 5 × 103 K, independently of mwdm.
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ig. 4. The evolution of the IGM mean temperature, T0, in redshift. Black vertical
ars are 1-σ confidence limits; red vertical bars are 2-σ confidence limits. Filled
ots are the parameter mean; the arrows mark the upper limits. The horizontal
ars span the redshift interval of Lyman α absorbers considered for each measure-
ent of the flux power spectrum. The solid (dotted) lines refer to the constraints on
mperature for WDM (CDM) cosmology (the constraints in CDM have been shifted

y z = 0.05 for improving the readability of the figure). At z = 5.0 there is a 1-σ
vel detection and only an upper limit at 2-σ level in WDM cosmology, instead

here are both 1 and 2-σ detections for CDM cosmology. At z = 5.4, there are only
pper limits at 1 and 2-σ levels for WDM cosmology and 1-σ detection and 2-σ
pper limit for CDM cosmology. Hence, the constraints on the temperature are sub-
tantially equivalent in the two cosmologies. The blue dashed line is the asymptotic

M mean temperature in the case of early hydrogen and first helium reioniza-
ion from a stellar ionizing spectrum with slope α = 2, being the ionizing spectrum
ν ∝ ν−α . (For interpretation of the references to color in this figure legend, the 
eader is referred to the web version of this article.)

Another important property of Fig. 3 is that even assuming 
DM cosmology, the temperature T0 is a non-monotonic function 
f redshift and should be colder than ∼ 8000 K at z = 5.0–5.4, see 
ig. 4.2

The resulting χ2 for the Bayesian analysis is ∼ 25, for 30 de-
rees of freedom (49 data points − 19 free parameters). This is 
n agreement with the fact that the covariance matrix is uncertain 
nd that has been multiplied by a factor that boosts the result-
ng error bars by 30%, with respect to the error bars computed 
y bootstrapping. This is done in the original analysis in order 
o account for presumed sample variance effect that affect other 
tatistics like the transmitted flux PDF. The sample variance effect 
ay affect the transmitted flux power spectrum, even if a detailed 

omputation has not been performed.
For completeness we have also performed frequentist analysis 

or the same χ2 considered in the Bayesian analysis. As shown in 
ig. 5 the two analyses are in broad agreement with each other.

We would like to stress that our results depend crucially on al-
owing for a non-monotonic redshift dependence of T0(z). In [1] it 

as shown that assuming a power-law (monotonic) redshift depen-
ence for T0(z) and γ (z), one predicts higher temperatures of IGM 

or the same data. In this case the CDM cosmology is preferred 
ver WDM, leading to the 2σ lower bound mwdm ≥ 3.3 keV [1]. 
he “binned analysis” of [1] gave results similar to those, reported 
ere. The authors of [1] however rejected these results, considering 
 temperature jump at z = 5–5.4 to be “unphysical” and arguing 
hat the low χ2 is a sign of overfitting.

In our opinion the present analysis implies that more data is 
eeded to study such a scenario, as it currently does not allow 
o make any definitive conclusion and in particular does not al-
ow to rule it out. Moreover, as mentioned above, the error bars 
n [1] were inflated by 30% and therefore we consider the re-
uced χ2 = 25/30 ≈ 0.83 to be consistent with 1. We see that 2σ

2
 The temperature values that we have estimated at high redshift could be inac-
urate, because the lowest temperature in the simulation grid was 5400 K. d
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ig. 5. The results of the frequentist analysis: the χ2 − χ2

min versus the WDM mass,

WDM. There are two minima of the χ2 curve, CDM and mwdm = 2.7 keV.

ower bound on the WDM mass relaxes down to mwdm ≥ 2.1 keV 
consistently with the results of binned analysis of [1]). More-
ver, the non-monotonic thermal history makes the WDM with 
wdm = 2–3 keV an equally good fit as CDM. The best fit values 

f T0 can be inaccurate as they lie below the lowest simulation 
oint in T0 grid. Therefore more simulations are needed to settle 
his question. This is currently work in progress. In the absence of 
uch additional studies the proposed non-monotonic thermal his-
ory cannot be ruled out based on the existing Lyman-α data.

For the interpretation of these results it is crucial to overview 
hat is known about the thermal state of the IGM both theo-

etically and observationally. We argue below that the measured 
hermal history is in agreement with current models of galaxy for-

ation and reionization.

. State of the IGM at z ∼ 5

The IGM temperature can be determined from the broadening
f the Lyman-α absorption lines in QSO spectra [21–31,16]. Alter-
atively, it has been proposed to determine the IGM temperature 
y measuring the level of the transmitted flux [32–34,30], however 
here is no agreement between the two methods yet, see [35].

All the measurement of the IGM temperature in the literature 
ssumed CDM cosmology. Because of the existing degeneracy be-
ween the IGM temperature and WDM, the assumption of the 

DM cosmology could change the deduced values of the IGM 
emperature. Nevertheless, in the absence of such measurements, 
e compare our estimates for the IGM temperature with the mea-

urements based on the CDM assumption.
The IGM temperature at z < 5 is constrained relatively well 

o be at the level T0 � (8–10) × 103 K [25,22,27,28]. At z = 6.0
here is a single measurement, [29], that restricts T0 to the range 
000 < T0 < 10000 K (68% CL) (see e.g. [1] for discussion). The 
implest interpretation of these data (also adopted in [1]) is that 
he temperature is growing monotonically with redshift. Instead, 
iven the large error bars of the measurements, and taking into 
ccount adiabating cooling one may expect a drop of temperature 
t z ∼ 5 with a subsequent rise to ∼ 104 K at z ∼ 4.6 in agreement 
ith other measurements from [25,22,27,28]. This increase in IGM 

emperature can be explained with an early start of HeII reion-
zation predicted by some models of reionization by quasars, [36]
see recent discussion of such “two-component” reionization mod-
ls in [37]).

In such a scenario, the temperature at 5 < z < 6 depends on 
ow long the first stage of reionization lasted and what the tem-
erature of IGM was at z � 6. As mentioned above, the measure-
ent [29] at z ∼ 6 has large uncertainties. Theoretically, T (z = 6)
0

epends on how early the first stage of hydrogen (and HeI) reion-
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Fig. 6. Comparison between the linear transfer functions, T (k), of thermal relic
(WDM) and sterile neutrinos (SN). The dashed (dotted) black line is the linear
transfer function for mWDM = 2.1 keV (mWDM = 3.3 keV) as computed in [10]. The
colored (green, red, cyan) lines are realistic linear transfer functions for some of
the sterile neutrino models with mNRP

SN = 7 keV. The linear transfer functions with
L6 = 10 and 12 (red and cyan lines) are partially warmer that the lower bound
of [1] (the dotted black line), but still satisfy the constraints from this letter (the
dashed black line) until the maximum k-mode used in the reference numerical sim-
ulations. The linear transfer function with L6 = 8 (green line) is colder than the
bound of [1]. The linear transfer function with L6 = 0 (blue line) violates the con-
straint from this letter. The solid vertical line is the maximum k-mode used in the
reference simulations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

izations has ended, and what sources drove it (cf. [38,39]). It has
been speculated that hydrogen is reionized by the metal-free (Pop-
ulation III) stars, whose spectral hardness predicts high values of
the temperature. However, the properties of Population III stars are
purely speculative – we do not know how long they lasted and
whether they were indeed the sources of reionization. For exam-
ple, reionization could be due to a more metal rich population of
stars with softer stellar spectra [40], leading to a lower values of
IGM temperature at z ∼ 6. To settle this question, an independent
constraint on the ultraviolet background at high redshift would
be needed, however there are no such measurements to-date. The
lower limit of [29] is T0(z = 6) ≈ 5 × 103 K or even slightly be-
low, fully consistent with the low values at z = 5.0–5.4 (Table 1)
reached via adiabatic cooling.

We note that an indirect argument in favour of the IGM tem-
peratures at high redshifts being ∼ 104 K, is the “missing satellite
problem” – high temperature would prevent gas from collapsing
into dark matter halos with a mass below ∼ 107M� , thus sup-
pressing the formation of small galaxies (see e.g. [41–44]), explain-
ing in particular the small number of satellites of the Milky Way.
However, in WDM cosmologies the matter power spectrum is sup-
pressed at the smallest scales, thus solving the missing satellite
problem even if the gas was sufficiently cooler.

Finally, we use our results to explore the constraints on ster-
ile neutrino dark matter [45], resonantly produced in the presence
of lepton asymmetry [46–48]. This is a non-thermal warm dark
matter, whose primordial phase-space density distribution resem-
bles a mixture of cold + warm dark matter components [49,50],
demonstrating a shallower cut-off. In Fig. 6 we compare the lin-
ear transfer function (the square root of the ratio of the modified
linear matter power spectrum to that of cold dark matter, T (k) =√

PWDM(k)/PCDM(k)) of thermal relic WDM with a mass mwdm =
2.1 keV (lower bound from this work) and a mwdm = 3.3 keV [1]
with those of resonantly produced sterile neutrinos with the mass
7 keV (motivated by the recent reports of an unidentified spec-
tral line at the energy E ∼ 3.5 keV in the stacked X-ray spec-
tra of Andromeda galaxy, Perseus galaxy clusters, stacked galaxy
clusters and the Galactic Center of the Milky Way [51–53]). We

show that depending on the value of the lepton asymmetry, L6 ≡

____________________________WORLD TECH
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106(nνe − nν̄e )/s (see [50] for details) the linear power can be
colder than that of thermal relics with mwdm = 2.1 keV (Fig. 6),
thus being fully admissible by the data.3 Notice that the non-
resonant sterile neutrino dark matter with a 7 keV mass would
be excluded at more than 3σ level by previous constraints from
the SDSS [7,6].

5. Conclusion and future work

We demonstrated that the cut-off in the flux power spectrum,
observed in the high resolution Lyman-α forest data may either
be due to free-streaming of dark matter particles or be explained
by the temperature of the intergalactic medium. Taking into ac-
count measurements at redshifts z ∼ 6 and at z < 5 we see that if
dark matter is warm, this requires non-monotonic dependence on
the IGM temperature on z with the local minimum at z ∼ 5.0–5.4.
Even cold dark matter slightly prefers a non-monotonic T0(z).4 Im-
proving our knowledge of the IGM temperature at z ∼ 5–6 will
therefore either result in very strong Lyman-α bounds on DM free-
streaming, essentially excluding its influence on observable small-
scale structures, or (if temperature will be found to be well below
5000 K) would lead to the discovery of WDM.

A method that would allow to measure the IGM temperature at
the redshifts of interest was presented in [16]. It is based on the
following idea: for high resolution spectra it is not necessary to
study average deviation from the QSO continuum per redshift bins
(as it is done in lower resolution case) but it is possible to identify
individual absorption lines and to measure their broadening. The
thermal Doppler effect broadens the natural lorentzian line profile
of the Lyman-α transition proportionally to the square root of the
temperature, and one would like to use this information to deter-
mine the temperature of the IGM directly. However, there are other
effects that contribute to the line width – the physical extent and
the clustering of the underlying filaments. The method of [16] po-
tentially allows to disentangle these effects. In view of our results
it is important to attempt to apply this method to observational
data. This is a method that has been tested with simulations at
redshift ∼ 3, and it still has to be seen if it works at redshift 5.
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conclusions about the IGM state. We leave this for future work.

NOLOGIES____________________________
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We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically
equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid hav-
ing an equation of state with a constant parameter w . For the range of w near −1 this dark fluid can 
play the role of dark energy, while for w = 0 this dark dust admits spatial inhomogeneities and can be 
interpreted as dark matter. We discuss possible implications of this model in the cosmological initial con-
ditions problem. In particular, this is the extension of known microcanonical density matrix predictions
for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on
the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of
this model necessarily involving the method of gauge systems with reducible constraints and the effect
of this method on the treatment of recently! suggested mechanism of vacuum energy sequestering.
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. Introduction

Dark matter and dark energy phenomena form a dark side
f modern precision cosmology and, therefore, represent an un-
recedentedly rich playground for various modifications of general 
elativity (GR). Perhaps, conceptually the most interesting versions 
f these modifications are the ones which do not involve special 
ypes of gravitating matter and originate from the purely metric 
ector of the theory, like local f (R)-gravity or nonlocal cosmology 
odels [1,2]. Usually such modifications are equivalent to adding 

r removing some local degrees of freedom. Even more interesting 
 the case when a nontrivial modification occurs without chang-
g the balance of local physical variables – darkness arises with-

ut dark energy or dark matter constituents. Known examples of 
uch a concept include, in particular, the unimodular (UM) gravity 
3–5], the theory of vacuum energy sequestering [6,7], QCD holon-
my mechanism of dark energy [8] and others. Unimodular gravity 
iffers from the Einstein GR by the requirement that at the kine-
atical level the full set of metric coefficients is subject to the 
* Corresponding author.
E-mail addresses: barvin@td.lpi.ru (A.O. Barvinsky), kamenshchik@bo.infn.it

.Yu. Kamenshchik).
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estriction of the unit determinant of the metric tensor. Rather 
nti-intuitive conclusion that this theory has the same number 
f local degrees of freedom as GR [9] can be explained by the 
act that reduction in the number of independent field variables is 
ompensated by the reduction of the local gauge invariance group, 
nd the main effect of the unimodular modification is the origin of 
ne global degree of freedom playing the role of the cosmological 
onstant.

Extension of the physical sector of the theory by a partial vi-
lation of gauge invariance is a well-known and rather popular 
henomenon. In particular, reduction from Lorentz symmetry to 
nisotropic scaling invariance in Lifshitz models is very productive 
 condensed matter theory context [10], while a similar modifica-

ion in Horava gravity models [11] opens prospects for renormal-
able unitarity preserving gravity theories. Other examples can be 

ound in [12,13]. Here we will consider the synthesis of Lorentz 
iolation with the concept of unimodular gravity [3–5]. This gen-
ralized UM gravity incorporates Lorentz violation in the definition 
f the reduced configuration space of metric coefficients – instead 

f the requirement of a unit metric determinant this theory is 
ased on the metric field satisfying the following constraint

= N(γ ), γ ≡ detγi j, (1)
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where N = (−g00)−1/2 is the lapse function and N(γ ) is some
function of γ – the determinant of the spatial metric γi j in the
ADM (3 + 1)-decomposition of metric coefficients gμν ,

gμνdxμdxν = (Ni Ni − N2)dt2 + 2Ni dt dxi + γi jdxi dx j. (2)

Here xμ = (t, xi), μ = 0, 1, 2, 3, i = 1, 2, 3 and Ni = g0i is the cor-
responding shift function.

The motivation for such a generalization of the unimodular
gravity is as follows. To begin with, the class of metrics subject
to (1) includes the original unimodular theory corresponding to
N(γ ) = 1/

√
γ . The right hand side of (1) is invariant under spatial

rotations, so that this is a minimal breakdown of Lorentz sym-
metry from O (1, 3) to O (3). Another reason to consider it is an
interesting fact that at the classical level such a theory effectively
incorporates a special type of matter source – dark fluid with a
nonlinear (general barotropic) equation of state. Thus it goes be-
yond a conventional unimodular gravity by generating the perfect
fluid characterized not by just vacuum energy with p = −ε, but by
a nontrivial pressure as well. Finally, for a simple class of power-
like functions N(γ ) in (1) it generates an equation of state p = wε
with a constant w and, moreover, in the comoving reference frame
of this fluid renders the density and pressure constant both in
space and time.1 Thus, similarly to the original unimodular gravity
it can incorporate as a spacetime constant of motion the analogue
of dark energy which is free from clustering but has a constant
polytropic parameter w different from −1. In the particular case
of a pressureless dust with w = 0, corresponding to N(γ ) = const,
the density of this dust is characterized by a single function of spa-
tial coordinates entirely fixed by the initial conditions, which can
be interpreted as a model of inhomogeneous distribution of dark
matter similar to the mechanism of mimetic model [14].

Here we analyze this model at the classical level and show that
on shell (without extra matter sources) it is equivalent to general
relativity with this special type of perfect fluid. Its “darkness” can
be intuitively interpreted as the absence of local degrees of free-
dom of this fluid, and its effective manifestation can in principle
be either the dark energy or dark matter. Rigorous counting its de-
grees of freedom, which is important for the quantization of this
model, requires the analysis of its local gauge invariance. Usual dif-
feomorphism invariance is obviously broken by the restriction (1)
on metric coefficients, which leads to a preferred spacetime fo-
liation by spacelike hypersurfaces. However, there exist reduced
diffeomorphisms which leave the theory locally gauge invariant
and turn out to be a generalization of volume preserving diffeo-
morphisms of the unimodular gravity. We briefly discuss them and
show that their origin naturally leads to the theory with reducible
(linearly dependent) generators. At the quantum level it is subject
to Batalin–Vilkovisky technique [16] which allows one to quantize
the theory without explicitly disentangling its physical sector.

We conclude the paper by the discussion of how this model can
be used within the initial conditions problem in cosmology. Dark
fluid of generalized UM gravity can be used to imitate the effect of
spatial curvature. This might extend the predictions of the cosmo-
logical density matrix construction [17], which are valid only in the
spatially closed model, to the phenomenologically more preferable
open model with flat space foliation. Another potential application
could be the mechanism of sequestering the back reaction effect of
quantum vacuum energy recently suggested as a possible solution
of Planckian hierarchy and cosmological constant problems [6,7].
Remarkably, the method of careful treatment of the global phys-
ical mode responsible for the locally inert dark fluid is the same

1
 Since this model violates general coordinate invariance this property of density 
and pressure becomes frame dependent.
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as that of the sequestering mechanism – the canonical version of
the BV method [16], which might clarify acausality puzzles of this
mechanism and extend it to noncompact spacetimes.

2. Dark fluid and its generalized unimodular invariance

The simplest way to handle the constraint (1) on metric coef-
ficients is not to explicitly substitute it in the Einstein action, but
rather incorporate it into the action with the Lagrange multiplier λ,

S =
∫

d4x

{
M2

P

2
g1/2 R(g) − λ

(
1√−g00

− N(γ )

)}
. (3)

Varying this action with respect to λ and gμν one obtains the
restriction (1) on the metric and the Einstein equation with the
perfect fluid matter stress tensor

Rμν − 1

2
gμν R = 1

M2
P

T μν, (4)

T μν ≡ − 2

g1/2

δ

δgμν

∫
d4xλ

(
1√−g00

− N(γ )

)

= ε uμuν + p
(

gμν + uμuν
)
, (5)

where the four-velocity uμ = −gμ0N is a future pointing vector
normal to spacelike hypersurfaces of the ADM foliation (2), and its
energy density and pressure read

ε = λ

2
√

γ
, p = λ√

γ

(
γ

N

dN

dγ

)
. (6)

Thus, this dark fluid satisfies the equation of state p = wε with a
generally nonconstant parameter w = w(γ ) given by

w = 2
γ

N

dN

dγ
= 2

d ln N

d lnγ
. (7)

Similarly to the UM gravity [3] the generalized unimodularity
condition (1) is not invariant under generic diffeomorphisms of the
metric – Lie derivatives with respect to the 4-dimensional vector
field ξμ which in the (3 + 1)-decomposition can be written down
as a column,

δξ gμν = −∇μξν − ∇νξμ, ξμ =
[

ξ0

ξ i

]
. (8)

However, this condition remains invariant under reduced diffeo-
morphisms with respect to the subset of vector fields ξμ satisfying
the equation

δξ
(
N − N(γ )

) ∣∣∣
N=N(γ )

= N
[
∂tξ

0 − (1 + w) Ni∂iξ
0 − w ∂iξ

i ]
= 0, (9)

which in the UM gravity case, w = −1, obviously reduces to the
equation on parameters of volume preserving diffeomorphisms
∂μξμ = 0 [3].

With the decomposition of ξ i into the longitudinal and trans-
verse parts,2

ξ i = √
γ

(
γ i j∂ jϕ + ξ i⊥

)
, ∂i(

√
γ ξ i⊥) = 0, (10)

2 Since general diffeomorphism invariance is broken, the transformation proper-
i √
ties of ϕ and ξ⊥ are no longer of a scalar and vector type, and the γ -factor is 
added merely for reasons of convenience.
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he equation (9) can be solved with respect to ϕ in terms of the 
patially nonlocal Green’s function of the Laplacian operator Δ

eighted by the function w ,

= 1

wΔ
Dtξ

0, Δ = ∂iγ
i j√γ ∂ j, Dt = ∂t − (1 + w) Ni∂i .

(11)

he gauge parameter ξα can be represented in terms of a projector 
α
β acting on a generic diffeomorphism parameter ξβ

α = Πα
β ξβ, Πα

β =
[

1 0√
γ ∂ i 1

wΔ
Dt

√
γ

(
δi

j − ∂ i 1
Δ

∂ j

) ]
,

(12)

o that the generators

μν
β = −2∇(μΠ

ν)
β (13)

f the gauge invariance transformations of the action (3) are not 
inearly independent. They are annihilated by the zero vector Zβ

0
f the projector Πα

β ,

μν
β Zβ

0 = 0, Zβ

0 =
[

0√
γ ∂ i

]
(14)

hus, this is the gauge theory with reducible generators, which 
hould be subject to the BV technique of [16]. It is important that 
he generators (13) are nonlocal, and this would present certain 
ifficulties in the framework of the Lagrangian quantization which 

s strongly based on the locality of gauge generators and structure 
onstants. However, this nonlocality is in space rather than in time, 
o that time locality of the formalism is preserved and, therefore, 
uarantees applicability of the canonical quantization to be imple-
ented in the future [18].3

. Dynamics of dark fluid in the comoving frame

The dynamics of the Lagrange multiplier λ and the correspond-
ng density and pressure is determined from the conservation law 
or the stress tensor (5)

μTμν = ∇μ[ (ε + p)uμuν ] + ∇ν p = 0, (15)

here in the definition of covariant derivatives we interpret ε and 
as scalars, that is ∇ν p = ∂ν p and ∇νε = ∂νε, to match with 

he definition of covariant derivatives acting on Einstein tensor 
n the l.h.s. of Einstein equation. Since the theory is not invari-
nt with respect to general coordinate transformations the density 
nd pressure are not scalars, and their properties are frame de-
endent. Three independent diffeomorphisms preserving the con-
ition (1) derived above are sufficient to make a transform to 
he distinguished comoving frame of the dark fluid. In this frame 
i ∼ g0i = 0, and the temporal component of (15), ∇μTμνuν ≡
uμ∇με − (ε + p)∇μuμ = 0, gives

= ε̇

ε
+ (1 + w)

γ̇

2γ
= ∂t

(
lnε + 1

2
lnγ + ln N

)
, (16)

here we took into account that ∇μuμ = γ̇ /2Nγ and wγ̇ /2γ =
t ln N . Therefore

3 Of course, transition from the canonical path integral to the Lagrangian one will 
gain raise the issue of locality accompanied by the associated issues of renormal-

ability, etc., but this problem definitely goes beyond the present discussion of the 
uantization of the model.

lo
e
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N
√

γ = S(x), (17)

here S(x) is a time integration constant – some function of spa-
ial coordinates.

Space components of the conservation law (15) give in the 
ame gauge

= ∇μTμi = ∂i(wε) + ∂i N

N
(1 + w)ε, (18)

here we took into account that uμ∇μui = ∂i N/N . For the 
ase of w �= 0, dividing this equation by wε we immediately 
ave ∂i(ln w + lnε + lnγ /2 + ln N) = 0 in virtue of the relation 
i ln N/w = ∂i lnγ /2, so that

ε N
√

γ = T (t). (19)

Combining (17) and (19) together, one finds

= T (t)

S(x)
, (20)

hich means that for a class of models with a constant nonvan-
shing w both functions also degenerate to constants in space and 
ime,

= constγ w/2, ε = const

γ (w+1)/2
, w = const �= 0. (21)

For the case of the dust with zero w and a constant lapse (orig-
nally considered in [19]) only the first term of Eq. (18) remains, 
o that one nontrivial function of spatial coordinates S(x) still sur-
ives

= const, ε = S(x)

N
√

γ
≡ S̃(x)√

γ
, w = 0. (22)

In fact, these two cases of dark energy with a constant w close 
o −1 and dark dust seem to saturate physically reasonable cos-

ological setups in the generalized UM theory. This follows from 
 simple observation that a nontrivial function S(x) is obviously a 
art of initial conditions, but the parameter w is determined by a 
inematical restriction (1) of the configuration space of the theory 
nd should not depend on its particular initial conditions like (20)
nless it is some universal constant.4

This can easily be illustrated by a simple example which shows 
hat the attempt to model a fairly generic equation of state p =
(ε) by an appropriate choice of function N(γ ) in (1) actually 

ails. Consider a popular Chaplygin gas model with p = −A/ε. In-
ependently of the unimodular setup, the conservation of its stress 
ensor, ε̇ + (p + ε)γ̇ /2γ = 0, gives a well known relation between 
he energy density and γ [20,21], ε = √

A + B(x)/γ , where B(x) is 
 time integration constant – some function of spatial coordinates. 
ogether with the equations (17) and (19) this relation yields the 
xpression for N in terms of γ , N = √−S(x) T (t)/

√
γ . According 

o the assumptions of our generalized unimodular gravity both N
nd w are the functions of one variable γ , which means that both 
he ratio (20) and the product of S(x) and T (t) should be the func-
ions of γ . This is possible only when S(x) and B(x) are constant 
nd γ is a function of time, which means that this case, in contrast 
o the w = const case above, is valid only for a spatially homoge-
eous model. Similar situation holds for other equations of state 
ith w �= const .

4 Boundary conditions can in principle be incorporated into the Lagrangian as 

cal total derivative terms forming boundary integrals in the action, which is how-

ver not the case of (1).
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4. Conclusions

Thus, we see that there exists a class of models with a broken
Lorentz invariance generalizing unimodular gravity theory, which
generate dark fluid with a barotropic equation of state with a con-
stant w . Similarly to UMG the gravitational dynamics of this fluid
is characterized by an independent of space and time constant
which is fixed by initial conditions. The spacetime rigidity of this
constant implies that this fluid does not carry local degrees of free-
dom, but rather describes a global variable incapable of clustering
Therefore it can play the role of dark energy, especially in view of
the fact that the parameter w can occupy a continuous range of
values near w = −1. For a special case of w = 0 the rigidity condi-
tion relaxes to one constant in time function of space coordinates
S(x), so that this dark dust can be interpreted, similarly to mimetic
gravity [14], as a candidate for dark matter.

Our work, in fact, suggests a new concept in cosmology and
gravity theory which can be called “darkness” designating the gen-
eral mechanism based not on local degrees of freedom, but rather
on global, topological ones, that could underlie the whole bunch
of phenomena and their models, including dark energy, Horava
gravity theory [11], quantum initial value problem [17,22], cosmo-
logical constant sequestering formalism [6,7], etc.

Breakdown of Lorentz invariance is perhaps too high a price
for the generation of darkness phenomena in cosmology. However
Lorentz symmetry violation has become very popular in recent
years due to the fact that the extension of Lifshitz anisotropic
scaling invariance to gravity – Horava gravity models – is a way
to recover unitarity in renormalizable higher derivative quantum
gravity [10,11]. Moreover, breakdown of Lorentz invariance can be
an inalienable feature of cosmological initial conditions. The sug-
gestion of the initial quantum state of the Universe in the form
of the microcanonical density matrix [17] implies existence of the
distinguished foliation of spacetime by spatial hypersurfaces. This
foliation underlies the construction of this initial state density ma-
trix and persists in the further cosmological evolution. Therefore
there is no reason to reject violation of Lorentz symmetry at a
deeper kinematical level, like in the condition (1).

The density matrix state [17] is conceptually very attractive be-
cause of the minimum set of assumptions underlying it [22] and
moreover, because of a mechanism restricting the cosmological en-
semble to subplanckian domain in UV limit and avoiding the IR
catastrophe, characteristic of the no-boundary wavefunction. How-
ever, it applies only to a closed Universe with a negative contribu-
tion ΩK = −K/H2a2 of the positive spatial curvature, K = +1, in
the full set of cosmological density parameters, ΩK +ΩΛ +Ωm = 1
where a is a scale factor of the FRW metric, H = ȧ/Na is its Hub-
ble factor and K = ±1, 0 is the sign of the 3-metric curvature
scalar respectively for closed, open or spatially flat FRW cosmology
Therefore, even though the density matrix prescription generates
good hill-top initial conditions for inflation (at the maximum of the
inflaton potential) [23], it does not include the case of a spatially
flat FRW model, K = 0, most natural from the viewpoint of the
observational status of inflationary scenario (ΩK = 0.000 ± 0.005
according to combined Planck, lensing and BAO data [24]).

Remarkably, the generalized UM model with w = −1/3 can im-
itate the effect of positive/negative spatial curvature in the Fried-
mann equation with K = ±1, γ ∼ a3, provided the integration
constant in the expression (21) for a dark fluid density ε is nega-
tive/positive. Under a proper normalization of the flat space scale
factor a the dark fluid density becomes εK = −3M2

P K/a2 and fully
imitates the spatial curvature contribution ΩK = εK /3M2

P H2 to the
flat space Friedmann equation

εm + εΛ + εK

H2 =

3M2
P

. (23)

____________________________WORLD TECH
T

This would allow one to extend the conclusions of [17] to FRW
models in the flat and even hyperbolic space foliations, and this is
one of the motivations for our generalized UM gravity model.

What underlies this phenomenon, which as we see can effec-
tively change even the space topology [25], is a global degree
of freedom encoded at the level of the Lagrangian formalism in
the integration constant. Like in a conventional unimodular gravity
the mechanism of this is based on a subtle interplay of physical
and gauge degrees of freedom – in the generalized version it is
technically more involved, but conceptually similar to the origi-
nal unimodular case. A similar mechanism due to the interplay of
conformal invariance and field reparametrization can be observed
in the mimetic gravity theory [14], though the latter incorporates
a new local (dust matter) degree of freedom [15], whereas in our
case this is the global topological variable parameterizing the dark
fluid.

It should be emphasized that our generalized model is not a
gauge fixed version of general relativity. In UM gravity the cos-
mological constant Λ is incorporated as an integration constant of
equations of motion and this makes a great conceptual difference
from GR with a given Λ. A similar situation happens here, but
the integration “constant” is much richer – this is the perfect fluid
stress tensor without local degrees of freedom.

Here we analyzed the generalized UM gravity at the classi-
cal level. At the quantum level its global mode should either be
disentangled explicitly or treated within the quantization method
for constrained systems. In either case rigorous quantization re-
quires the construction of the canonical formalism. As is known
UM gravity in this formalism [9] has instead of the GR Hamiltonian
constraint the vanishing of the spatial gradient of this constraint
which eventually results in a freely chosen value of Λ as an in-
tegration constant. As will be shown in a forthcoming paper [18]
a similar but more involved constraint appears here. At the La-
grangian level this is a conservation of perfect fluid stress tensor
leading to the rigidity of its energy density and pressure, which
can be interpreted as the absence of clustering of dark energy (or
in a particular case of a zero pressure, as dark matter).

At the quantum level, especially in the transition from the
canonical to the Lagrangian quantization, the situation becomes
nontrivial because linear dependence of the gauge invariance gen-
erators (14) implies reducibility of the first class constraints of the
canonical formalism, which is subject to BV formalism for sys-
tems with linearly dependent generators [16]. Additional difficulty
is that this reducibility is of a spatially nonlocal nature because of
nonlocal generators (13).

Treatment of this problem was endeavored in [9,26] and has
lead to a special procedure of averaging over 3-dimensional space
– the counterpart to the analogous spacetime averaging in the
vacuum energy sequestering mechanism of [6,7].5 Weak point in
this averaging procedure is an ad hoc choice of the integration
measure. In particular, it fails to be well defined in noncompact
asymptotically flat spacetimes. Moreover, physical predictions of
[6,7,9,26] depend on this measure, whereas the freedom in its
choice should be physically irrelevant because it reflects invari-
ance of the BV quantization scheme under the change of the basis
of gauge generators (13) or canonical constraints. Careful analy-
sis of this problem will be a subject of our future work [18]

5 It should be emphasized that this mechanism, which is an interesting part o
solution of hierarchy and cosmological constant problems, can also be generalized
in a Lorentz non-invariant way, what can be done by a covariantization analogous
to the covariant formulation of UM gravity [4,9] – parametrization of the distin-
guished spacetime foliation by an auxiliary antisymmetric tensor or vector density

This, however, will have to be achieved by parameterizing all 4-dimensional coordi-
nates in terms of four embedding functions [18].
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his analysis should, perhaps, resolve the conundrum of nonlocal-
ty and acausality in sequestering mechanism of [6], change the 
onclusions on spacetime compactness in the epoch of transient 
osmological expansion [7] and, thus, extend cosmological applica-
ions to spatially open models.
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By far cosmology is one of the most exciting subject to study, even more so with the current bulk
of observations we have at hand. These observations might indicate different kinds of doomsdays, if
dark energy follows certain patterns. Two of these doomsdays are the Little Rip (LR) and Little Sibling
of the Big Rip (LSBR). In this work, aside from proving the unavoidability of the LR and LSBR in the
Eddington-inspired-Born-Infeld (EiBI) scenario, we carry out a quantum analysis of the EiBI theory with
a matter field, which, from a classical point of view would inevitably lead to a universe that ends with
either LR or LSBR. Based on a modified Wheeler–DeWitt equation, we demonstrate that such fatal endings
seems to be avoidable.
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1. Introduction

The scrutiny of extensions on General Relativity (GR) is a well
motivated topic in cosmology. Some phenomena, such as the cur-
rent red accelerating expansion of the universe or gravitational
singularities like the big bang, would presage extensions of GR in
the infra-red as well as in the ultra-violet limits. Among these ex-
tensions, the EiBI theory [1], which is constructed on a Palatini
formalism, is an appealing model in the sense that it is inspired
by the Born-Infeld electrodynamics [2] and the big bang singularity
can be removed through a regular stage with a finite physical cur-
vature [1]. Various important issues of the EiBI theory have been
addressed such as cosmological solutions [3–9], compact objects
[10–15], cosmological perturbations [16–18], parameter constraints
[19–21], and the quantization of the theory [22,23]. However, some
possible drawbacks of the theory were discovered in Ref. [24]. Fi-
nally, some interesting generalizations of the theory were proposed
in Refs. [25–28].
* Corresponding author.
E-mail addresses: imanol@ubi.pt (I. Albarran), mariam.bouhmadi@ehu.eus

(M. Bouhmadi-López), b97202056@gmail.com (C.-Y. Chen),
pisinchen@phys.ntu.edu.tw (P. Chen).

____________________________WORLD TECH
T
As is known, the cause of the late time accelerating expansion

of the universe can be resorted to phantom dark energy, which vi-
olates the null energy condition (at least from a phenomenological
point of view) while remains consistent with observations so far.
Nonetheless, the phantom energy may induce more cosmological
singularities in GR (curvature singularities). In particular there are
three kinds of behaviors intrinsic to phantom models, which can
be characterized by the behaviors of the scale factor a, the Hubble
rate H = ȧ/a, and its cosmic derivatives Ḣ near the singular points:
(a) The big rip singularity (BR) happens at a finite cosmic time t
when a → ∞, H → ∞, and Ḣ → ∞ [29–38], (b) the LR happens at
t → ∞ when a → ∞, H → ∞ and Ḣ → ∞ [39–47], (c) the LSBR
happens at t → ∞ when a → ∞, H → ∞, while Ḣ → constant
[48–50]. All these three scenarios would lead to the universe to
rip itself as all the structures in the universe would be destroyed
no matter what kind of binding energy is involved.

Interestingly, even though the EiBI theory can cure the big bang,
in Refs. [5,6] it was found that the BR and LR are unavoidable in

the EiBI setup, hinting that the EiBI theory is still not complete and 
some quantum treatments near these singular events may be nec-
essary. In this paper, we will extend the investigations in Ref. [22]
where we showed that the BR in the EiBI phantom model is ex-
pected to be cured in the context of quantum geometrodynamics. 
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e will carry an analysis to encompass the rest of truly phantom 
ark energy abrupt events; i.e. the LR and LSBR.

. The EiBI model: the LR and LSBR

The EiBI action proposed in [1] is (from now on, we assume 
πG = c = 1)

EiB I = 2

κ

∫
d4x

[√
|gμν + κ Rμν(�)| − λ

√−g
]
+ Sm(g), (1)

here |gμν + κ Rμν | is the determinant of the tensor gμν + κ Rμν . 
he parameter κ , which characterizes the theory, is assumed to 
e positive to avoid the imaginary effective sound speed instabil-

ties usually associated with a negative κ [20] and λ is related to 
he effective cosmological constant. Sm is the matter Lagrangian. 
he field equations are obtained by varying (1) with respect to 
μν and the connection �. In a flat, homogeneous and isotropic 

FLRW) universe filled with a perfect fluid whose energy density 
nd pressure are ρ and p, respectively, the Friedmann equations 
f the physical metric gμν and of the auxiliary metric compatible 
ith � are [6]

H2 =8

3

[
ρ̄ + 3p̄ − 2 + 2

√
(1 + ρ̄)(1 − p̄)3

]

× (1 + ρ̄)(1 − p̄)2

[(1 − p̄)(4 + ρ̄ − 3p̄) + 3 dp̄
dρ̄ (1 + ρ̄)(ρ̄ + p̄)]2

, (2)

nd

H2
q = κ

(1

b

db

dt̃

)2 = 1

3
+ ρ̄ + 3p̄ − 2

6
√

(1 + ρ̄)(1 − p̄)3
, (3)

here ρ̄ ≡ κρ and p̄ ≡ κ p.1 On the above equations a and b are 
he scale factor of the physical and auxiliary metrics, respectively. 
is a rescaled time such that the auxiliary metric can be written 

n a FLRW form.
In GR, the LR and LSBR can be driven (separately) by two phan-

om energy models as follows [44,48]

LR = −ρLR − ALR
√

ρLR , pL S B R = −ρL S B R − AL S B R ,

here ALR and AL S B R are positive constants. Therefore,

ρLR

ρ0
=

( 3ALR

2
√

ρ0
ln(a/a0) + 1

)2
,

L S B R = 3AL S B R ln(a/a0) + ρ0 , (4)

here we take ρLR = ρL S B R = ρ0 when a = a0 [44,48]. The abrupt 
vents happen at an infinite future where a and ρ diverge. In-
erting these phantom energy contents into the EiBI model, i.e., 
qs. (2) and (3), and considering the large a limit (for ρ given in 
qs. (4)), we have

H2 ≈ ρ̄

3
→ ∞ , κ H2

q ≈ 1

3
, (5)

nd

1 Notice that we are dealing with Palatini type of models which are also known 
s affine models. On these types of theories (cf. the action (1)) there is a metric 
μν and a connection � which does not correspond to the Christoffel symbols of 
he metric. However, it is always possible to define a metric compatible with that 
onnection [51] and this is the metric that we are referring to as the auxiliary met-
ic. The same applies to the action (7) where we denote the auxiliary metric as 

μν and the physical metric gμν . This is the standard and usual nomenclature in 
alatini/affine theories. t
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≈

⎧⎪⎨
⎪⎩

ALR

2

√
ρLR , LR

AL S B R

2
, LSBR

(6)

or these two phantom energy models. Therefore, the LR and LSBR 
f the physical metric are unavoidable within the EiBI model while 
he auxiliary metric behaves as a de-Sitter phase at late time.

. The EiBI quantum geometrodynamics: the LR and LSBR 
inisuperspace model

The deduction of the WDW equation of the EiBI model is based 
n the construction of a classical Hamiltonian that is promoted 
o a quantum operator. As shown in [22], this can be achieved 

ore straightforwardly by considering an alternative action which 
s dynamically equivalent to the EiBI action (1):

a = λ

∫
d4x

√−q
[

R(q) − 2λ

κ
+ 1

κ

(
qαβ gαβ − 2

√
g

q

)]
+ Sm(g).

(7)

n Ref. [8] it has been shown that the field equations obtained by 
arying the action (7) with respect to gμν and the auxiliary metric 
μν are the same to those derived from the action (1). Starting 
rom action (7) and inserting the FLRW ansatz, the Lagrangian of 
his model in which matter field is described by a perfect fluid can 
e written as (see Ref. [22])

= λMb3
[
− 6ḃ2

M2b2
− 2λ

κ
+ 1

κ
(X2 +3Y 2 −2XY 3)

]
−2ρMb3 XY 3,

(8)

here X ≡ N/M and Y ≡ a/b. N and M are the lapse functions 
f gμν and qμν , respectively. Note that ρ is a function of a, i.e., 
= ρ(bY ) and it is given in Eqs. (4).

.1. The classical analysis of the Hamiltonian system

The system described by the Lagrangian L is a constrained sys-
em. The conjugate momenta can be obtained as follows:

pb ≡ ∂L
∂ḃ

= −12λbḃ

M
, (9)

X ≡ ∂L
∂ Ẋ

= 0, (10)

Y ≡ ∂L
∂ Ẏ

= 0, (11)

M ≡ ∂L
∂ Ṁ

= 0. (12)

herefore, the system has three primary constraints [52,53]:

X ∼ 0, (13)

Y ∼ 0, (14)

M ∼ 0, (15)

here ∼ denotes the weak equality, i.e., equality on the constraint 
urface. The total Hamiltonian of the system can be defined by 
52,53]

T = ḃpb −L+ λX p X + λY pY + λM pM , (16)

here λX , λY , and λM are Lagrangian multipliers associated 
ith each primary constraint. According to the consistent condi-
ions of each primary constraint, i.e., their conservation in time: 
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[p X , HT ] ∼ 0, [pY , HT ] ∼ 0, and [pM , HT ] ∼ 0, one further obtains
three secondary constraints2 [52,53]:

C X ≡λX − Y 3(λ + κρ) ∼ 0, (17)

CY ≡3λ − 3XY (λ + κρ) − XY 2bκρ ′ ∼ 0, (18)

CM ≡ p2
b

24λb
− 2λ2b3

κ
+ λ

κ
b3 X2 + 3λ

κ
b3Y 2

− 2XY 3b3

κ
(λ + κρ) ∼ 0. (19)

The prime denotes the derivative with respect to a = bY . Further-
more, it can be shown that the total Hamiltonian is a constraint of
the system:

HT = −MCM + λX p X + λY pY + λM pM ∼ 0. (20)

Because the Poisson brackets of the total Hamiltonian with all
the constraints should vanish weakly by definition, HT is a first
class constraint and we will use it to construct the modified WDW
equation.

This system has six independent constraints: p X , pY , pM , C X

CY , and CM . After calculating their Poisson brackets with each
other, we find that except for pM , which is a first class constraint
the other five constraints are second class [52,53]. The existence
of the first class constraint pM implies a gauge degree of freedom
in the system and one can add a gauge fixing condition into the
system to make the constraint second class. An appropriate choice
of the gauge fixing condition is M = constant and after fixing the
gauge, the conservation in time of this gauge fixing condition, i.e.
[M, HT ] = 0, implies λM = 0.

3.2. Quantization of the system

To construct the WDW equation, we impose the first class con-
straint HT as a restriction on the Hilbert space where the wave
function of the universe |�〉 is defined, ĤT |�〉 = 0. The hat de-
notes the operator. The remaining constraints χi = {M, pM , p X ,

pY , C X , CY } are all second class and we need to consider the Dirac
brackets to construct the commutation relations and promote the
phase space functions to operators [53]. Note that CM can be used
to construct the first class constraint HT , i.e., Eq. (20), so it is ex-
cluded from the set χi .

The Dirac bracket of two phase space functions F and G are
defined by [53]

[F , G]D ≡ [F , G] − [F ,χi]i j[χ j, G], (21)

where i j is the matrix satisfying

i j[χ j,χk] = δik. (22)

The existence of the matrix i j is proven in Dirac’s lecture [53].
According to Ref. [53], the second class constraints can be

treated as zero operators after promoting them to quantum op-
erators as long as the Dirac brackets are used to construct the
commutation relations:

[ F̂ , Ĝ] = ih̄[F , G]D, (F= F̂ , G=Ĝ)
. (23)

2 We remind that the Poisson bracket is defined as

[F , G] = ∂ F

∂qi

∂G

∂ pi
− ∂ F

∂ pi

∂G

∂qi
,

where qi are the variables and pi their conjugate momenta. Notice that the repeat-
ing suffices denote the summation.
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This is due to the fact that the Dirac brackets of the constraints χi
with any phase space function vanish strongly (they vanish with-
out inserting any constraint). After some calculations, the Dirac
brackets between the fundamental variables take the forms

[b, pb]D = [b, pb] = 1,

[b, X]D = 0,

[b, Y ]D = 0,

[X, Y ]D = 0,

[X, pb]D = f1(X, Y ,b) = f1(b),

[Y , pb]D = f2(X, Y ,b) = f2(b), (24)

where f1 and f2 are two non-vanishing functions. Notice that f1
and f2 can be written as functions of b because it is legitimate to
insert the constraints C X and CY to replace X and Y with b when
calculating the Dirac brackets.

On the XY b basis, if we define

〈XY b|b̂|�〉 =b〈XY b|�〉,
〈XY b| X̂ |�〉 =X〈XY b|�〉,
〈XY b|Ŷ |�〉 =Y 〈XY b|�〉,

〈XY b|p̂b|�〉 = − ih̄
∂

∂b
〈XY b|�〉

− f1
∂

∂ X
〈XY b|�〉 − f2

∂

∂Y
〈XY b|�〉, (25)

it can be shown that the resulting commutation relations satisfy
Eqs. (23) and (24). Furthermore, the momentum operator p̂b can
be written as

〈ξζb|p̂b|�〉 = −ih̄
∂

∂b
〈ξζb|�〉, (26)

after an appropriate redefinition of the wave functions: 〈XY b| →
〈ξ(X, Y , b), ζ(X, Y , b), b|. Therefore, in the new ξζb basis, the
modified WDW equation 〈ξζb|ĤT |�〉 = 0 can be written as

−1

24λ
〈ξζb| p̂b

2

b
|�〉 + V (b)〈ξζb|�〉 = 0, (27)

where the term containing p̂b
2 is determined by Eq. (26) and its

explicit form depends on the factor orderings. Note that the eigen-
values X and Y can be written as functions of b according to the
constraints C X and CY , hence it leads to the potential V (b) as fol-
lows

V (b) = 2λ2b3

κ
+ λ

κ
b3 X(b)2 − 3λ

κ
b3Y (b)2. (28)

3.3. Wheeler–DeWitt equation: factor ordering 1

In order to prove that our results are independent of the
factor ordering, we make two choices of it. First, we consider
〈ξζb|b3ĤT |�〉 = 0 and choose the following factor ordering:

b2 p̂b
2 = −h̄2

(
b

∂

∂b

)(
b

∂

∂b

)
= −h̄2

( ∂

∂x

)( ∂

∂x

)
, (29)

where x = ln(
√

λb). Near the LR singular event, the energy density
ρ behaves as ρ ∝ (ln a)2. On that regime, the dependence between
the auxiliary scale factor b and a is b ∝ a ln a. On the other hand
near the LSBR event the energy density behaves as ρ ∝ ln a and b
behaves as b ∝ a

√
ln a. For both cases, the WDW equation can be
written as
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d2

dx2
+ 48

κh̄2
e6x

)
�(x) = 0, (30)

hen x and a go to infinity. Note that we have replaced the par-
ial derivatives with ordinary derivatives and �(x) ≡ 〈ξζb|�〉. The 
ave function reads [55]

(x) = C1 J0(A1e3x) + C2Y0(A1e3x), (31)

nd consequently when x → ∞, its asymptotic behavior reads [55]

(x) ≈
√

2

π A1
e−3x/2

[
C1 cos

(
A1e3x − π

4

)

+ C2 sin
(

A1e3x − π

4

)]
, (32)

here

1 ≡ 4√
3κh̄2

. (33)

ere Jν(x) and Yν(x) are Bessel function of the first kind and 
econd kind, respectively. It can be seen that the wave function 
anishes when a and x go to infinity.

.4. Wheeler–DeWitt equation: factor ordering 2

From the WDW equation (27), we can as well derive a quantum 
amiltonian by choosing another factor ordering

b̂
2

b
= −h̄2

( 1√
b

∂

∂b

)( 1√
b

∂

∂b

)
. (34)

efore proceeding further, we highlight that this quantization is 
ased on the Laplace–Beltrami operator which is the Laplacian op-
rator in minisuperspace [54]. This operator depends on the num-
er of degrees of freedom involved. For the case of a single degree 
f freedom, it can be written as in Eq. (34).

Under this factor ordering and after introducing a new variable 
 ≡ (

√
λb)3/2, in both cases (LR and LSBR) the WDW equation can 

e written as

d2

dy2
+ 64

3κh̄2
y2

)
�(y) = 0, (35)

hen a and y approach infinity. The solution of the previous equa-
ion reads [55]

(y) = C1
√

y J1/4(A1 y2) + C2
√

yY1/4(A1 y2), (36)

nd when y → ∞, therefore, [55]

(y) ≈
√

2

π A1 y

[
C1 cos

(
A1 y2 − 3π

8

)
+ C2 sin

(
A1 y2 − 3π

8

)]
.

(37)

onsequently, the wave functions approach zero when a goes to in-
nity. According to the DeWitt criterium for singularity avoidance 

56], the LR and LSBR is expected to be avoided independently of 
he factor orderings considered in this work.

.5. Expected values

We have shown that the DeWitt criterium of singularity avoid-
nce is fulfilled hinting that the universe would escape the LR and 
SBR in the EiBI model once the quantum effects are important. 
e next estimate the expected value of the scale factor of the 
niverse a by estimating the expected value of b. The reason we t
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T

ave to resort to the expected value of b rather than a is that in 
he classical theory [8] that we have quantized the dynamics is 
nly endowed to the scale factor b. We remind at this regard that 
hen approaching the LR and LSBR, b ∝ a ln a and b ∝ a

√
ln a, re-

pectively, at least within the classical framework. Therefore if the 
xpected value of b, which we will denote as b, is finite, then we 
xpect that the expected value of a; i.e. a would be finite as well. 
herefore, none of the cosmological and geometrical divergences 
resent at the LR and LSBR would take place.

We next present a rough estimation for an upper limit of b for 
he two quantization procedures presented on the previous sub-
ection.

• Factor ordering I:
The expected value of b at late-time can be estimated as fol-
lows:

b =
∞∫

x1

�∗ (x)
ex

√
λ

� (x)dx, (38)

where x1 is large enough to ensure the validity of the ap-
proximated potential in (30), i.e., δ → 0. In this limit, we can 
use the asymptotic behavior for the wave function cf. Eq. (32). 
Then, it can be shown that the approximated value of b is 
bounded as

∞∫
x1

�∗ (x)
ex

√
λ

� (x)dx <
|C1|2 + |C2|2

π A1
√

λ
e−2x1 . (39)

Therefore, we can conclude that b has an upper finite limit. 
Consequently, the LR and LSBR are avoided.

• Factor ordering II:
In this case the expected value of b can be written as

b =
∞∫

y1

�∗ (y)
y

2
3√
λ

� (y) f (y)dy, (40)

where y1 is large enough to ensure the validity of the approxi-
mated potential in (35), i.e., η → 0. In addition, we have intro-
duced a phenomenological weight f (y) such that the norm 
of the wave function is well defined and finite for large y
[57–59]. In fact, we could as well choose f (y) = y−α with 
2/3 < α. After some simple algebra, we obtain

b <
2
(|C1|2 + |C2|2

)
π A1

√
λ

∞∫
y1

y− 1
3 f (y) . (41)

Consequently, we get

b <
2
(|C1|2 + |C2|2

)
π A1

√
λ (α − 2/3)

y
2
3 −α

1 . (42)

Once again, we reach the conclusion that b is finite. Therefore, 
the LR and LSBR are avoided.

. Conclusions

Singularities seem inevitable in most theories of gravity. It is 
herefore natural to ask whether by including quantum effects 
ould the singularities be removed. In the case of the EiBI sce-
ario, while the big bang singularity can be removed, the intrinsic 
hantom dark energy doomsday remains inevitable [6]. We solved 

he modified Wheeler–DeWitt equation of the EiBI model for a 
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homogeneous and isotropic universe whose matter content corre-
sponds to two kinds of perfect fluid. Those fluids within a classi-
cal universe would unavoidably induce LR or LSBR. We show that
within the quantum approach we invoked, the DeWitt criterion is
fulfilled and it leads toward the potential avoidance of the LR and
LSBR. Our conclusion appears unaffected by the choice of factor
ordering.
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ffect of the chameleon scalar field on brane cosmological 
volution

. Bisabr, F. Ahmadi ∗
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 r t i c l e i n f o a b s t r a c t

ditor: H. Peiris

We have investigated a brane world model in which the gravitational field in the bulk is described both
by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon
with an appropriate potential function. The scalar field interacts with matter and there is an energy
transfer between the two components. We find a late-time asymptotic solution which exhibits late-time
accelerating expansion. We also show that the Universe recently crosses the phantom barrier without
recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the
direction of energy transfer and dynamics of the extra dimension.
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W. Introduction

General Relativity has brilliant successes in explaining gravita-
ional phenomena in Solar System. It is also a powerful tool to 
xplain theoretically many observational facts about the Universe 
uch as expansion of the universe, light element abundances and 
ravitational waves. Despite all the successes, there are also some 
nresolved problems such as inflation, the cosmological constant 
roblem and the problems associated with the dark sector, i.e., 
ark matter and dark energy. These problems have motivated peo-
le to seek for some modifications of the theory. Among many 
ossibilities, there are models that deal with extra dimensions. 
ost of these models propose that our four-dimensional world 

s a hypersurface (or brane) embedded in a higher dimensional 
pace–time (or bulk). The gravitational field propagates into the 
ulk while matter systems or standard fields are confined to live 

n the brane. The most well-known model in this context is the 
odel proposed by Randall and Sundrum (RS). In the so-called 

SI model [1], they proposed a mechanism to solve the hierar-
hy problem with use of two branes, while in the RSII model [2]
hey considered a single brane with a positive tension. In the latter 

odel, the extra-dimension is compactified and a four-dimensional 
ewtonian gravity is recovered at low energies. The cosmological 
volution of such a brane world scenario has been extensively in-
estigated and modifications of the gravitational equations have 

een studied [3,4].

* Corresponding author.
E-mail addresses: y-bisabr@srttu.edu (Y. Bisabr), fahmadi@srttu.edu (F. Ahmadi).
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TThe basic idea in the brane world models can be extended to 
calar-tensor brane models in which gravity in the bulk is de-
cribed by a five-dimensional spacetime metric together with a 
calar field (see for instance [5]). There are different motivations 
or introducing a bulk scalar field in brane world scenarios. This 
calar field may be used to formulate a low-energy effective the-
ry [6] or to address the gauge hierarchy problem [7]. One of the 

mportant motivations to introduce such a bulk scalar field is to 
tabilize the distance between the two branes in the RSI model 
8]. Another explored possibility is formulating inflation without 
n inflaton field on the brane [9]. It is also shown that decaying of 
he bulk scalar field can lead to entropy production [10].

There is also a recent tendency in the Literature [11] to inter-
ret the scalar field as a chameleon field [12]. In these chameleon 
rane world models the scalar field interacts with the matter sys-
em via the metric tensor and it is assumed that it can be heavy 
nough in the environment of the laboratory tests so that the local 
ravity constraints are satisfied. Meanwhile, it can be light enough 
n the low-density environment to be considered as cosmologically 
iable. In the present work we will investigate such a gravitational 
odel with the assumption that the scalar field has a minimal 

oupling with gravity in the bulk. We will focus on the late-time 
ehavior of the Universe and show that even though the scalar 
eld is normal in the sense that its energy–momentum tensor sat-

sfies weak energy condition, it causes the Universe to cross the 

hantom boundary.

The present work is organized as follows: In section 2, we in-
roduce the chameleon brane world model and derive the field 
quations. In section 3, we write the field equations for a five-
imensional metric and then induce them on the brane with ap-
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propriate boundary conditions. In section 4, we will consider some
cosmological aspects of the model. We first show that due to
interaction of the scalar field and matter evolution of both cor-
responding energy densities are modified. One immediate impli-
cation of such a modification is an energy transfer between the
two components. In our analysis the chameleon actually appears
as a normal field satisfying weak energy condition. By finding a
late-time asymptotic solution for the field equations we will show
that the Universe suffers a late-time accelerating expansion and a
recent cross-over from a decelerated to an accelerated phase. In
section 5, we provide some thermodynamic arguments for the in-
teraction process. In section 6, we draw our conclusions.

2. The model

We consider the following action1

S = 1

2

∫
d5x

√−g
[

R − g AB∇Aφ∇Bφ − 2V (φ)
]

+
∫

d4xLm(ψmh̄μν) (1)

where the first term is the five-dimensional gravity in the presence
of a minimally coupled scalar field φ. The second term is the action
of some matter fields on the brane which is taken to be coupled
to the scalar field via h̄μν = A2(φ)hμν with hμν and h̄μν

2 being
four-dimensional metrics on the brane.

Varying the action with respect to the metric g AB , gives

G AB = [T AB |bulk + T AB |brane] (2)

where

T AB |bulk = ∇Aφ∇Bφ − 1

2
g AB∇C φ∇C φ − g AB V (φ) (3)

and

T AB |brane = δ
μ
A δν

Bτμν
δ(y)

b
(4)

Here we take g ABdzAdzB = hμνdxμdxν + b2(t, y)dy2 and τμν =
A2(φ)τm

μν with τm
μν = −2√

−h̄

δLm

δh̄μν
. We will consider τμν as the stress-

tensor of a perfect fluid with energy density ρb and pressure Pb .
Variation of the action with respect to φ, leads to

�φ − dV

dφ
= −β(φ)T |brane (5)

where β(φ) = d ln A(φ)
dφ

. By applying Bianchi identities to (2), we
obtain

∇A T AB |brane = −∇A T AB |bulk = β(φ)T |brane∇Bφ (6)

3. The brane-world paradigm

We use the five-dimensional metric

dS2 = hμνdxμdxν + b2(t, y)dy2

= −ñ2(t, y)dt2 + ã2(t, y)[ dr2

(1 − kr2)
+ r2(dθ2 + sin2 θdφ2)]

+ b̃2(t, y)dy2 (7)

1 We work in the unit system in which k5 = 1.
2 Latin indices denote 5-dimensional components A, B, ... = 0, .., 4 while Greek
indices run over four-dimensional brane μ, ν, ... = 0, ..., 3 and y is the coordinate 
transverse to the brane.
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with k = 0, +1, −1. The metric coefficients are subjected to the
conditions

ñ(t, y)|brane = 1, ã(t, y)|brane = a(t), b̃(t, y)|brane = b(t)
(8)

with a(t) being the scale factor. To write the bulk field equations
in compact form, we define [4]

F (t, y) ≡ (ã′ã)2

b̃2
− ( ˙̃aã)2

ñ2
− kã2 (9)

where a prime denotes a derivative with respect to y. The (0,0)
and (5,5) components of the field equations become

F ′ = 2ã′ã3

3
T 0

0 |bulk (10)

Ḟ = 2 ˙̃aã3

3
T 5

5 |bulk (11)

If we take

T A
B |bulk = diag[−ρφ, Pφ, Pφ, Pφ, P T ] (12)

and assume that φ and therefore T 0
0 |bulk = −ρφ are independent

of y, then we can integrate (10) which gives

F − 1

6
ã4T 0

0 |bulk + C1 = F + 1

6
ã4ρφ + C1 = 0 (13)

where C1 is a constant of integration. Since φ is only time-
dependent, we have

T 0
0 |bulk = 1

2
∇0φ∇0φ − V (φ) (14)

T 5
5 |bulk = −1

2
∇0φ∇0φ − V (φ) (15)

This results in T 0
0 |bulk − T 5

5 |bulk = ∇0φ∇0φ. From time-derivative
of (10) and derivative of (11) with respect to y, one then finds

d

dt
T 0

0 |bulk = − (dã4

dt )(∇0φ∇0φ)

ã4
(16)

Using this equation and (13), we arrive at

Ḟ = 2

3
˙̃aã3T 5

5 |bulk − dC1

dt
(17)

Comparing this with (11), indicates that C1 is time-independent.
From (9) and (13), we can write

(
˙̃a

ñã
)2 = 1

6
ρφ + (

ã′

b̃ã
)2 − K

ã2
+ C1

ã4
(18)

For inducing the field equations on the brane, one usually uses
the junction conditions. They simply relate the jumps of derivative
of the metric across the brane to the stress-energy tensor inside
the brane. To do this, we first note that homogeneity and isotropy
imply that

T A
B |brane = δ(y)

b
diag[−ρb, Pb, Pb, Pb,0] (19)

and

T μ
ν |brane(xα,0) = lim

ε→0

ε
2∫

− ε
2

T μ
ν |branebdy = τ

μ
ν (xα) (20)

where the energy density ρ and pressure P are only functions of
b b
time. The junction condition is

NOLOGIES____________________________
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ã′]
ab

= −1

3
ρb (21)

here [Q ] = Q (0+) − Q (0−) denotes the jump of function Q
cross y = 0. Assuming the symmetry y ↔ −y, the generalized 
riedmann equation becomes

2 = 1

6
ρφ + 1

36
ρ2

b + C1

a4
− k

a2
(22)

here H ≡ ȧ
a is the Hubble parameter.

. Cosmological implications

In this section we will consider some cosmological implications 
f the above model.

.1. The conservation equation on the brane

We would like to consider a class of solutions of the field equa-
ions (2) under the assumption that the metric coefficients in (7)
re separable functions of their arguments [13]. In this class, we 
ave

(t, y) = n(y), ã(t, y) = a(t)Y (y), b̃(t, y) = b(t) (23)

ogether with Y (y)|brane = Y (0) = 1 and n(y)|brane = n(0) = 1. 
rom G05 = 0, it follows that

n′

n
) = (1 − s)(

Y ′

Y
),

ḃ

b
= s

ȧ

a
(24)

here s is an arbitrary constant. This leads to a relation between 
(t) and b(t), namely b(t) = C2as with C2 being a constant of in-
egration.

There is a constraint on the parameter s coming from argu-
ents related to temporal variation of the gravitational coupling. 

hese arguments lead to ( Ġ
G ) = −sH [1] [2].3 On the other hand, 

bservations on the time variation of G give Ġ
G = g H , with g being 

ounded by | g |≤ 0.1 [15]. Thus the absolute value of s is con-
trained to be |s| ≤ 0.1.

One can use the equation (20) to write (6) on the brane (y = 0)

˙φ + 3H(ωφ + 1)ρφ + ḃ

b
φ̇2 = Q (25)

ḃ + 3H(ωb + 1 + s

3
)ρb = −Q (26)

here Q = β(φ)(3ωb − 1)φ̇ρb . The solution of the latter is

b = ρ0ba−3(ωb+1+ s
3 )e(1−3ωb)

∫
βdφ (27)

ith ρ0b being an integration constant. This solution indicates that 
he evolution of the matter density is modified due to interaction 
ith φ. This expression can be also written as [16]

b = ρ0ba−3(ωb+1+ s
3 )+ε (28)

ith ε being defined by

= (1 − 3ωb)
∫

βdφ

ln a
(29)

efore going further, we would like to show that contrary to the 
sual dark energy fields the scalar field φ satisfies the weak energy 

3 If spacetime has one spatial extra dimension, then there will be a relation such 
s bG = G∗ [14] where G and G∗ are, respectively, four and five dimensional grav-

Ġ ḃ
ational couplings and b is radius of the extra dimension. Then G = − b = −sH
here G∗ is assumed to be a constant. w
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ondition. To do this, we first use the relation (23) to write (5) on 
he brane

+ (3 + s)Hφ̇ + dV

dφ
= β(φ)(3ωb − 1)ρb (30)

oreover, equation (16) on the brane gives

+ dV

dφ
= −4Hφ̇ (31)

ombining these two equations leads to

s − 1)Hφ̇ = β(φ)(3ωb − 1)ρb (32)

e then write (25) in the following form

φ̇ + 3
ȧ

a
(ωφ + 1)ρφ + ȧ

a
φ̇2 = 0, (33)

here (23) and (32) have been used. From the definition ρφ =
φ̇2 + V (φ), we have

˙φ = (φ̈ + dV

dφ
)φ̇ (34)

ow combining (33), (34) and using (31) gives

2 = (ωφ + 1)ρφ (35)

hich means that (ωφ + 1) > 0 and the scalar field φ satisfies the 
eak energy condition.

.2. Late-time behavior

We are interested in late-time behavior of the Universe. To deal 
ith this issue we look for late-time asymptotic solutions of the 
eld equations. When t → ∞ (or a → ∞), equations (22) and (30)
educe to

2 ≈ 1

6
ρφ = 1

6
(

1

2
φ̇2 + V (φ)) (36)

−(s+3) d

dt
(φ̇a(s+3)) ≈ −dV (φ)

dφ
(37)

s a usual rule for solving this set of equations, one usually gives 
he potential function V (φ) as an input and then finds the func-
ions a(t) and φ(t). However, we would like to follow a different 
trategy. We will take φ̇ = an , with n being a constant parameter, 
s an input and find V (φ) and a(t) so that the equations (36) and 
37) are satisfied. The solutions are

(t) = C− 1
n t− 1

n (38)

(φ) = V 0e−2Cφ (39)

here C = (−n)

2
√

3
(

−(s+3)
n )

1
2 and V 0 = 6(n+(s+3))

n2(s+3)
. This set of solu-

ions indicates that the Universe is accelerating for −1 < n < 0. The 
unctions a(t) and V (φ) are plotted in Fig. 1. The figure shows that 
(φ) has a run-away form as it should be since φ is a chameleon 
eld [12].

The Universe has not been in an accelerating phase at all the 
ime and has suffered a transition from an early decelerating phase 
o a recent accelerating one. To check that whether or nor the 
resent model can generate such a phase transition, we look at 
he effective equation of state parameter ωef f . We first re-write 
26) in the form

ḃ + 3H(ωef f + 1)ρb = 0 (40)
here

OLOGIES____________________________
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Fig. 1. The plot of a(t) and V (φ) for n = −0.8 and s = 0.08 (dashed), n = −0.85 and s = 0.09 (dotted) and n = −0.95 and s = 0.1 (solid).

Fig. 2. The plot of ω in terms of z for β(φ) = φ panel (a) and β(φ) = φ3 panel (b). The curves correspond to n = −0.65 and s = 0.08 (dashed), n = −0.7 and s = 0.09
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W(dotted) and n = −0.75 and s = 0.1 (solid).

ωef f = ωb + s

3
+ Q

3Hρb
(41)

ωef f = s

3
− 1

3
β(φ)

φ̇

H
(ωb = 0)

Using the solution (38) and (39), gives φ̇
H = 2

√
3( −n

(s+3)
)

1
2 which

is a constant. This means that deceleration to acceleration phase
transition needs β(φ) not to be a constant.

Among many possible choices for β(φ), let us choose a sim-
ple one β(φ) = φ as an input coupling function. It corresponds to

A(φ) = e
1
2 φ2

. The resulting effective equation of state parameter is
plotted in Fig. 2. As it is clear from the figure, the function ωef f
exhibits a recent signature flip. It also shows that the Universe re-
cently enters the phantom region.

The choice β(φ) = φ is not the only one that leads to a transi-
tion from decelerating to accelerating phase. The panel (b) of the
Fig. 2 shows ωef f for another choice β(φ) = φ3. It should be re-
marked that in both cases deceleration to acceleration transition
takes place when β > 0 or Q < 0. It means that in the interacting
process described by (25) and (26), the direction of energy flow
is so that matter is created. This seems to be consistent with the
results reported in [17].

5. Thermodynamic analysis

A thermodynamic description of a homogeneous and isotropic
interacting perfect fluid requires a knowledge of the particle flux
Nα = nuα and the entropy flux Sα = suα where n = N/a3, s = nσ
and σ = S/N is specific entropy (per particle) of the created or

annihilated particles. Since energy density of matter is given by 

____________________________WORLD TECH
Tρb = nM with M being the mass of each particle, the appearance
of the extra term in the energy balance equation (26) means that
this term can be attributed to a change of n or M . Here we assume
that the mass of each matter particle remains constant and the
extra term in the energy balance equation only leads to a change
of the number density n. In this case, the equation (26) can be
written as4

ṅ + 3H(1 + s

3
)n = n� (42)

where � ≡ β(φ)φ̇ is the rate of creation (or annihilation) of par-
ticles. The direction of energy transfer between matter and the
scalar field depends on the sign of �. If � > 0 (or Q < 0), the
energy goes inside of the matter system and matter is created. If
� < 0 (or Q > 0) the direction of energy transfer is reversed and
matter is annihilated.

From σ = S/N , we have

σ̇

σ
= Ṡ

S
− Ṅ

N
(43)

With use of (42), the latter can be written as

Ṡ

S
= σ̇

σ
+ (� − sH) (44)

Since n ∝ a−3+(ε−s) , the total number of particles scale as N ∝
aε−s . Thus (43) can also be written as

Ṡ

S
= σ̇

σ
+ (ε − s)H (45)
4 Throughout this section we have set ωb = 0.
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n an adiabatic process, when the overall energy transfer is such 
hat the specific entropy per particle remains constant (σ̇ = 0) 
18], the second law of thermodynamics ( Ṡ ≥ 0) implies that 
− s ≥ 0 in an expanding Universe. In this case, when ε < 0 the 

arameter s is allowed to take only negative values. Alternatively 
peaking, the extra dimension shrinks with expansion of the Uni-
erse (see (24)).

In the non-adiabatic case, on the other hand, the second law of 
hermodynamics requires that

≥ sH − σ̇

σ
(46)

hich is also a constraint on the creation (or annihilation) rate and 
volution of the extra dimension.

. Conclusion

We have investigated a brane world scenario in which gravity is 
escribed by a five-dimensional metric together with a minimally 
oupled scalar field. The scalar field is a chameleon and interacts 
ith the matter sector. Due to this interaction the energy associ-

ted with both the scalar field and matter system are not sepa-
ately conserved. Thus evolution of matter energy density modifies 
nd is controlled by Q . When Q > 0 matter is created and energy 
s injecting into the matter system so that the latter will dilute 

ore slowly compared to its standard evolution ρb ∝ a−3(ωb+1) . 
n the other hand, when Q < 0 the reverse is true, namely that 
atter is annihilated and the direction of energy transfer is out-

ide of the matter system (and into the scalar field) so that the 
ate of dilution is faster than the standard one.

The main results of our analysis are the following:
1) We have found a late-time asymptotic solution that exhibits 

ccelerating expansion. There is also a recent transition from a de-
elerating phase to an accelerating one.

2) The interaction of chameleon field with matter plays an im-
ortant role in this phase transition. In order that this transition 
akes place, the coupling function should be an evolving function 
or β(φ) should not be a constant).

3) Our analysis also indicates that the Universe has recently en-
ered the phantom region. We emphasize that this behavior is not 
ttributed to any exotic matter system.

4) A thermodynamic analysis puts constraints on � and evolu-
ion of the extra dimension in adiabatic and non-adiabatic cases.

There are some problems that are not investigated in the 
resent analysis such as behavior of the Universe at early times 
r the cosmological constant problem. They are deserved to be in-
estigated elsewhere.
___________________________WORLD TECHN
T
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mbedding cosmological inflation, axion dark matter and 
eesaw mechanism in a 3-3-1 gauge model
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epartamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970, João Pessoa, PB, Brazil

 r t i c l e i n f o a b s t r a c t

ditor: M. Trodden

The Peccei–Quinn symmetry is an intrinsic global symmetry of the 3-3-1 gauge models. Its spontaneous
breaking mechanism engendering an invisible KSVZ-like axion links the 3-3-1 models with new physics
at ∼ 1010 GeV scale. The axion that results from this mechanism is an interesting candidate for the dark 
matter of the universe, while its real partner may drive inflation if radiative corrections are taken into
account. This is obtained by connecting the type I seesaw mechanism with the spontaneous breaking of
the Peccei–Quinn symmetry. In the end of the day we have a scenario providing a common answer to
the strong-CP problem, inflation, dark matter and neutrino mass.
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W. Introduction

The SU (3)C × SU (3)L × U (1)N (3-3-1) gauge models for the
lectroweak interactions are interesting in their own right. For ex-
mple, in these models generation cannot replicate unrestrictedly 
s in the standard model (SM), since it is not exact replica of one 
nother and each is separately anomalous. However, when three 
enerations are taken into account, gauge anomaly is automatically 
anceled [1,2], providing a reason for the existence of three fami-
ies of fermions.

Moreover, the set of constraints provided by the gauge invari-
nce of the Yukawa interactions together with those coming from 
he anomaly cancellation conditions are enough to fix the electric 
harges of the particles in the 3-3-1 model, thus providing an un-
erstanding of the pattern of electric charge quantization [3,4].

In what concerns the Peccei–Quinn (PQ) symmetry, it is an 
utomatic symmetry of these models, thus elegantly solving the 
trong CP-problem [5]. However, the original versions of the 3-3-1 
auge models furnish an unrealistic axion because of its sizable 
ouplings with the standard particles [6,7]. In order to have an 
nvisible axion a neutral scalar singlet must be added to the con-
entional scalar sector [8–11].

Regarding neutrino masses, canonical seesaw mechanisms, as 
ype I and type II, as well as the inverse seesaw mechanism are 

asily implemented in the framework of the 3-3-1 models [12–16].

* Corresponding author.
E-mail address: cpires@fisica.ufpb.br (C.A. de S. Pires).
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TFrom the phenomenological point of view, a remarkable aspect 
f the 3-3-1 models relies on flavor physics. Rare decays, lepton 
umber violation and flavor changing neutral current are natural 
utcome of the model [17–24]. Recent collider phenomenology of 
hese models are performed in Refs. [25–27].

Last in the sequence but not least in importance, we remember 
hat conventional particle content of some 3-3-1 models includes 
 stable and neutral particle that may play the role of cold dark 
atter in the WIMP form [28–31]. These interesting features turn 

he 3-3-1 models an appealing candidates for physics beyond the 
M. In this point we call the attention to the fact that the physics 
f the early universe, particularly inflation, has been poorly ex-
lored within these models [32,33]. Thus, in view of the recent 
xperimental advances in probing inflation observables, it turns 
mperative to search for mechanisms that allow implementation 
f inflation in the framework of the 3-3-1 gauge models.

Concerning implementation of cosmological issues within phe-
omenological gauge models, as the SM, we remark that there are 
wo distinct ways of providing a common solution to cosmologi-
al inflation, cold dark mater and neutrino masses within the SM. 
he first arises within the type I seesaw mechanism for small neu-
rino masses. By adding right handed neutrinos and at least one 
eutral scalar in the singlet form to the SM, besides considering 
pontaneous breaking of global lepton number within type I see-

aw mechanism, one has that the real part of the neutral singlet 
ay drive inflation while the imaginary part may be the dark mat-

er of the universe [34,35].
On the other hand, the implementation of the PQ symmetry in 

he standard model may be accomplished by adding exotic vector 
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like quarks, right-handed neutrinos and neutral scalar singlet to
its particle content. This scenario is called SMASH [36–40]. The PQ
symmetry is spontaneously broken when the neutral scalar singlet
develops vacuum expectation value (VEV) different from zero. In
this circumstance, the imaginary part of this scalar singlet will be
the invisible axion, which may play the role of dark matter, while
the real part may drive inflation. Moreover, on coupling the neutral
scalar singlet to the right-handed neutrino, through an Yukawa in-
teraction, the VEV of the neutral scalar, that must lie in the range
(1010–1011) GeV, will generate mass to heavy neutrinos that may
trigger the type I seesaw mechanism yielding small masses for the
standard neutrinos. The problem with this scenario is that it gen-
erates an inflaton potential of the type λφ4 which is practically
excluded by the current bounds from PLANCK15 [41]. A way of
circumventing such a problem is, either to consider that the in-
flaton couples non-minimally with the scalar curvature R , or take
into account radiative corrections to the inflaton potential.

The main difference among these two proposals relies on the
dark matter sector. In the former case the dark matter candidate,
a Majoron, gains mass from quantum gravity effect and then is
classified as warm dark matter, while in the latter case the dark
matter candidate is the axion and is classified as cold dark matter
candidate. The axion gains mass from QCD and quantum gravity
effects. Care must be taken because quantum gravity effect may
destabilize the axion as dark matter candidate. We take care of
this by means of large discrete symmetry.

Since the PQ symmetry is an automatic symmetry of the 3-3-1
gauge models, consequently its version involving right-handed
neutrinos realizes automatically the SMASH proposal. In this case
it turns imperative to check if the real partner of the axion will
drive inflation. We show that this is possible when radiative cor-
rections are taken into account. We examine also reheating phase.
It is engendered by the decay of the inflaton into the conven-
tional scalars. The model easily provides a reheating temperature
of 109 GeV for typical values of the parameters required by canoni-
cal inflation models. In addition, standard neutrinos will gain mass
through the type I seesaw mechanism and the axion is the natural
dark matter candidate of the model.

The paper is divided in the following way: In Sec. 2 we re-
visit the 3-3-1 model that contains an invisible axion in its spec-
trum. Next, in Sec. 3, we develop the inflationary paradigm in such
model. We finally conclude in Sec. 4.

2. The 3-3-1 model, the Peccei–Quinn symmetry and the 
invisible axion

The model developed here is one proposed in Ref. [42] which is
a modification of the original one [1,43,44]. To realize our proposal,
heavy neutrinos in the singlet form must be added to the leptonic
sector of the model

f a
L =

⎛
⎝ νa

L

ea
L

(νc
R)a

⎞
⎠ ∼ (1 , 3 , −1/3) , eaR ∼ (1,1,−1) ,

NaR ∼ (1,1,0) (1)

with a = 1, 2, 3 representing the three known generations. We are
indicating the transformation under 3-3-1 after the similarity sign,
“∼”.

The quark sector is kept intact with one generation of left-
handed fields coming in the triplet fundamental representation of
SU (3) and the other two composing an anti-triplet representation
L

with the content

____________________________WORLD TECH
T

Q iL =
⎛
⎝ diL

−uiL
d′

iL

⎞
⎠ ∼ (3 , 3̄ , 0) , Q 3L =

⎛
⎝ u3L

d3L

u′
3L

⎞
⎠ ∼ (3 , 3 , 1/3) ,

(2)

and the right-handed fields

uiR ∼ (3,1,2/3) , diR ∼ (3,1,−1/3) , d′
iR ∼ (3,1,−1/3)

u3R ∼ (3,1,2/3) , d3R ∼ (3,1,−1/3) , u′
3R ∼ (3,1,2/3), (3)

where j = 1, 2 represent different generations. The primed quarks 
are the exotic ones but with the usual electric charges.

In order to generate the masses for the gauge bosons and 
fermions, the model requires only three Higgs scalar triplets. For 
our proposal here we add a neutral scalar in the singlet form such 
that the scalar content is composed by

χ =
⎛
⎝ χ0

χ−
χ ′0

⎞
⎠ ∼ (1 , 3 , −1/3) , η =

⎛
⎝ η0

η−
η′0

⎞
⎠ ∼ (1 , 3 , −1/3),

ρ =
⎛
⎝ ρ+

ρ0

ρ ′+

⎞
⎠ ∼ (1 , 3 , 2/3) , φ ∼ (1,1,0). (4)

Thus the particle content of the model in Ref. [42] is extended by 
the fields NaR and φ.

In order to keep intact the physics results of the Ref. [42], the 
Lagrangian of the model must be invariant by the following set of 
discrete symmetries Z11 ⊗ Z2 but now with Z11 acting as

φ → ω−1
1 φ , faL → ω1 faL ,

ρ → ω−1
2 ρ , daR → ω2daR ,

χ → ω−1
3 χ , u′

3R → ω3u′
3R ,

Q iL → ω−1
4 Q iL , d′

iR → ω4d′
iR ,

η → ω−1
5 η , uaR → ω5uaR ,

Q 3L → ω0 Q 3L , NR → ω−1
5 NR ,

eaR → ω3eaR , (5)

where ωk ≡ e2π i k
11 , {k = 0, ±1, ..., ±5}.

The Z2 symmetry must act as

(ρ ,χ ,d′
R , u′

3R , uR ,dR , eR) → −(ρ ,χ ,d′
R , u′

3R , uR ,dR , eR) .

(6)

These discrete symmetries yield the following Yukawa couplings

LY = G1 Q̄ 3Lu′
3Rχ + Gij

2 Q̄ iLd′
jRχ∗ + G3a

3 Q̄ 3LuaRη + Gia
4 Q̄ iLdaRη∗

+ G3a
5 Q̄ 3LdaRρ + Gia

6 Q̄ iLuaRρ∗ + gab f̄aLebRρ

+ hab f̄aLηNbR + h′
abφN̄C

aR NbR + H.c. (7)

The transformations displayed in Eqs. (5) and (6) are a little differ-
ent from the original case [42]. The reason for this is to accommo-
date the last two terms in the Lagrangian above which are crucial 
for our proposal, as we will see later. The physics of the original 
case remains the same because the new terms involve heavy neu-
trinos that are standard model singlets.

The potential does not change. It is exactly the same as in the 

original case, i.e.,

NOLOGIES____________________________
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H = μ2
φφ2 + μ2

χχ2 + μ2
ηη

2 + μ2
ρρ2 + λ1χ

4 + λ2η
4 + λ3ρ

4

+ λ4(χ
†χ)(η†η) + λ5(χ

†χ)(ρ†ρ) + λ6(η
†η)(ρ†ρ)

+ λ7(χ
†η)(η†χ) + λ8(χ

†ρ)(ρ†χ) + λ9(η
†ρ)(ρ†η)

+ λ10(φφ∗)2 + λ11(φφ∗)(χ †χ) + λ12(φφ∗)(ρ†ρ)

+ λ13(φφ∗)(η†η) + λφε i jkηiρ jχkφ + H.c. (8)

Other tiny change arises in the definition of the PQ charges. In 
rder to have chiral quarks under U (1)P Q , we need the following 
ransformation

aL → e−iαXu uaL , uaR → eiαXu uaR ,

′
3L → e−iαX ′

u u′
3L , u′

3R → eiαX ′
u u′

3R ,

aL → e−iαXd daL , daR → eiαXd daR ,

′
iL → e−iαX ′

d d′
iL , d′

iR → eiαX ′
d d′

iR . (9)

For the leptons we can define their PQ charges by

aL → eiαXe eaL , eaR → eiαXeR eaR , NaL → eiαXN NaL

aL → eiαXν νaL , νaR → eiαXνR νaR . (10)

With these assignments and taking the Yukawa interactions in 
q. (7) into account, as well as the non-Hermitean terms ηρχφ, 
e easily see that the PQ charges for the scalars are constrained 

nd imply the following relations:

d = −Xu , Xd′ = −Xu′ , Xν = XeR , Xe = XνR . (11)

e can make the further choice Xd = Xd′ , leading to

d = Xd′ = −Xu = −Xu′ = −Xe = XeR = Xν = −XνR = XN ,

(12)

mplying that the PQ symmetry is chiral for the leptons, too. The 
calars transform as

φ → e−2iαXdφ , η0 → e2iαXdη0

η− → η− , η′0 → e2iαXdη′0
+ → ρ+ , ρ0 → e−2iαXdρ0

′+ → ρ ′+ , χ0 → e2iαXdχ0

− → χ− , χ ′0 → e2iαXdχ ′0.
(13)

It is now clear that the entire Lagrangian of the model is 
(1)P Q invariant, providing a natural solution to the strong-CP 
roblem.

To accomplish our proposal, let us consider that only χ ′0, ρ0, 
0 and φ develop VEV and expand such fields in the standard way,

′0 = 1√
2
(vχ ′ + Rχ ′ + i Iχ ′) , η0 = 1√

2
(vη + Rη + i Iη) ,

ρ0 = 1√
2
(vρ + Rρ + i Iρ) , φ = 1√

2
(vφ + Rφ + i Iφ) . (14)

ith such expansion, we obtain the set of constraint equations 
hat guarantee that the potential has a minimum

μ2
χ + λ1 v2

χ ′ + λ4

2
v2
η + λ5

2
v2
ρ + λ11

2
v2

φ + A

v2
χ ′

= 0,

λ4 λ6 λ13 A

w
o
g
fr

−

in

io

a

o
g⎛
⎜⎜⎜⎜⎜⎝

in
R

o
io
th
b
a
m
n
e
n
g

M

w
m
u
P
b
th
ti
in
in
μ2
η + λ2 v2

η +
2

v2
χ ′ +

2
v2
ρ +

2
v2

φ +
v2
η

= 0,
m
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μ2
ρ + λ3 v2

ρ + λ5

2
v2
χ ′ + λ6

2
v2
η + λ12

2
v2

φ + A

v2
ρ

= 0,

μ2
φ + λ10 v2

φ + λ11

2
v2
χ ′ + λ12

2
v2
ρ + λ13

2
v2
η + A

v2
φ

= 0 , (15)

here we have defined A ≡ λφ vηvρ vχ ′ vφ . The physical scalars are 
btained by substituting these constraints into the mass matrices 
iven by the second derivative of the potential. The axion arises 
om the mass matrix M2

I given by

A

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v2
χ ′

1
vη vχ ′

1
vρ vχ ′

1
vχ ′ vφ

1
vη vχ ′

1
v2
η

1
vη vρ

1
vη vφ

1
vρ vχ ′

1
vη vρ

1
v2
ρ

1
vη vρ

1
vχ ′ vφ

1
vη vφ

1
vη vρ

1
v2

φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(16)

 the basis (Iχ ′ , Iη , Iρ , Iφ). Its diagonalization furnishes an ax-

n given by, a = 1√√√√1+
v2
χ ′

v2
φ

(
Iφ − vχ ′

vφ
Iχ ′

)
. As vφ 	 vχ ′ we have that 

∼ Iφ .
Now let us focus on the CP-even component of φ. It will be 

ur inflaton candidate. It composes the following mass matrix M2
R

iven by

λ1 v2
χ ′ − A

2v2
χ ′

λ4 vχ ′ vη

2 + A
2vη vχ ′

λ5 vχ ′ vρ

2 + A
2vρ vχ ′

A
2vφ vχ ′

λ4 vχ ′ vη

2 + A
2vη vχ ′ λ2 v2

η − A
2v2

η

λ6 vη vρ

2 + A
2vρ vη

A
2vη vφ

λ5 vχ ′ vρ

2 + A
2vρ vχ ′

λ6 vη vρ

2 + A
2vρ vη

λ3 v2
ρ − A

2v2
ρ

A
2vρ vφ

A
2vφ vχ ′

A
2vη vφ

A
2vρ vφ

λ10 v2
φ − A

2v2
φ

⎞
⎟⎟⎟⎟⎟⎠

(17)

 the basis (Rχ ′ , Rη , Rρ , Rφ). As vφ 	 vρ , vη , vχ ′ , we have that 
φ decouples and its mass is predicted to be m2

Rφ
∼ λ10 v2

φ .
In this point we call the attention to the fact that the presence 

f large discrete symmetries has the function of stabilizing the ax-
n against quantum gravity effects. In order to see this, perceive 
at the effective operators responsible for the gravitational contri-

ution to the axion mass is of the form φn/Mn−4
Pl . A Z N symmetry 

utomatically suppress terms of this kind till some n = N − 1. The 
ain surviving term contributing to the axion mass is the one with 

 = N . It is true that with Z11 the axion is protected only for en-
rgy scales not bigger than 〈φ〉 � 1010 GeV. Nevertheless, this is 
ot a threat for the model since we still have values for the θ an-
le and axion mass (gravitationally induced) [45],

Grav
a �

√
〈φ〉N−2

MN−4
Pl

� 10−12 eV � 10−7ma ,

θef f � 〈φ〉N

MN−4
Pl 4

Q C D

� 10−19 , (18)

here we have used M Pl � 1019 GeV, Q C D � 300 MeV, and 
a � 10−5 eV is the instanton induced axion mass. These val-
es are consistent with astrophysical and cosmological bounds (see 
DG [46]). If we had taken 〈φ〉 � 1011 GeV, the axion would still 
e protected under gravitation, but the θ value would be on the 
reshold of its bound θef f � 10−9. So we can have a valid solu-

on to the strong-CP problem for Z11 for scales 〈φ〉 � 1010 GeV 
 this version of 3-3-1. We finish this section remarking that the 
corporation of PQ symmetry in 3-3-1 model as done here has as 

ain purpose the explanation of the strong CP-problem and, as a 
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byproduct, the invisible axion fulfilling the conditions to be a vi-
able dark matter candidate.

3. Implementing inflation

Here we consider inflation in the specific framework of the 
3-3-1 model presented in the previous section. Our aim is to show 
that the real component of the φ field will drive inflation with 
its potential satisfying the slow roll conditions while providing the 
current prediction for the scalar spectral index, ns , and obeying the 
current bound on the scalar to tensor ratio, r.

First thing to note is that the φ potential involves the terms,

Vφ = μ2
φφ∗φ + λ10(φ

∗φ)2 + λ11(φ
∗φ)(χ †χ)

+ λ12(φ
∗φ)(ρ†ρ) + λ13(φ

∗φ)(η†η) + λφε i jkηiρ jχkφ + H.c.
(19)

However, as vφ >> vη , ρ , χ , the terms in this potential that really 
matter during inflation are

Vφ = μ2
φφ∗φ + λ10(φ

∗φ)2. (20)

This is the chaotic inflation scenario with the inflaton being the 
real part of φ. From now on we use the notation Rφ ≡ �

A VEV around 1010 GeV for φ implies that the dominant term 
in the above potential is λ10�

4. However, as we know, the λ10�
4

chaotic inflation is not favored by recent values of r measured by 
PLANCK2015 [41]. Thus, in order to circumvent this problem, we 
take into account radiative corrections to the potential which now 
reads

V (�) = Vtree + V ef f , (21)

with Vtree = λ10�
4 and V ef f being the radiative corrections due to 

the coupling of � to the particle content of the 3-3-1 model. The 
radiative corrections are engendered by the couplings of our infla-
ton with the right-handed neutrinos and the scalars whose inten-
sities are determined by the parameters λ11 , λ12 , λ13 , λφ and h′ . 
As we will see below, successful reheating after inflation requires 
λφ ,11 , 12 , 13 very small. Thus the intensity of the radiative correc-
tions is practically determined by h′ which is the coupling of the 
inflaton, �, to the heavy neutrino, NR , and is given by the last 
term of the Lagrangian in Eq. (7).

According to Coleman–Weinberg approach[47], we obtain the 
following expression to the effective potential

V ef f = 1

64π2

∑
i

[
(−1)2 J (2 J + 1)m4

i ln
m2

i

�2

]
, (22)

where mi is the φ-field dependent mass where i = η , ρ , χ , φ , NR . 
J is the spin of the respective contribution. The intensities of 
the scalar contributions are dictated by the couplings λφ , 11 , 12 , 13
while the intensities of the heavy neutrino contributions are dic-
tated by h′ ’s. As we will see in the end of this section, efficient 
reheating implies λφ , 11 , 12 , 13  h′ . Thus, for reasons of simplicity, 
we just consider contributions due to NR . This means to take in 
Eq. (22) mi=NR = −√

2h′�. In this circumstance, for our proposal 
here, and for simplicity reasons, it is just sufficient to consider one 
family of heavy neutrinos. After all this the potential that really 
matters during the inflationary period is given by

V (�) ≈ λ′
(

�4 + a′�4 ln
�

�

)
, (23)

where λ′ = λ10
4 and a′ = a+160λ′2

32π2λ′ ≈ a
32π2λ′ . � is a renormalization 

scale. This approximation is justified because the amplitude of cur-
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vature perturbation demands a small λ10. The term a carries the 
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diative contribution and in our case it is given by a = −16h′4.
e negative sign is a characteristic feature of fermion contri-
tions. We would like to point out that, according to our as-
mptions, the loop dominant contribution that generates the ex-
ession above comes from box diagram composed by four heavy
utrinos running in the box. This is the reason why the loop cor-
ction given above gets proportional to h′4. If we go further with
e calculation, the two loop diagram is a correction of the box di-
ram and get proportional to h′6 which is smaller than one loop
ntribution for h′ < 1. Thus we do not need to worry about higher
der corrections than one-loop.

We can now treat the issue of inflation, which occurs as
ng as the slow roll approximation is satisfied (ε  1, η  1,
 1). Throughout this section we follow the approach given in

fs. [34,35]. The slow roll parameters are given by [48]

(�) = m2
P

16π

(
V ′

V

)2

, η (�) = m2
P

8π

(
V ′′

V

)
,

2 (�) = m4
P

64π2

(
V ′′′V ′′

V 2

)
, (24)

here mP = 1.22 × 1019 GeV.
The spectral index nS , the scalar to tensor ratio r and the run-

ng of spectral index α ≡ dnS
d ln k are defined as [49]

S = 1 − 6ε + 2η, r = 16ε,

= 16εη − 24ε2 − 2ζ 2. (25)

For a wave number k = 0.05 Mpc−1, the Planck results indicate
= 0.9644 ± 0.0049 and r < 0.149 [41].
The number of e-folds is given by

= −8π

m2
P

� f∫
�i

V

V ′ d�, (26)

here � f marks the end of inflation and is defined by (ε,η, ζ 2)=1
 find �i we set N = 50, 60 and 70 and solve Eq. (26) for �i .
Another important parameter is the amplitude of curvature per-

rbation

2
R = 8V

3m4
P ε

. (27)

Planck measurement of this parameter gives �2
R = 2.215 ×10−9

r a wave number k = 0.05 Mpc−1. We use this experimental
lue of �2

R to fix λ′ .
Let us discuss our results beginning with Fig. 1. There we show

e behavior of the scalar to tensor ratio, r, related to a′ for some
lues of �. First of all, so as to have an idea of the values of
i and � f , for the case of � = 3mP , and considering the setup
esented above, we have that inflation ends with � f ∼ 1018 GeV
d, for the particular case of 60 e-folds, we get the initial value

i ∼ 4 × 1019 GeV. Note that as a′ goes to zero all the curves con-
rge to a point around r = 0.26. This is the expected value for
provided by �4 chaotic inflation. Thus, in our case, the current
unds on r requires a′ �= 0. This means that radiative corrections
rn to be absolutely necessary in our analysis. We also stress that
e scalar to tensor ratio demands trans-Planckian regime for �
cause the sub-Planckian case faces problems in the integration
 the e-fold number to reach the value 60 unless a′ goes to
ro, again recovering the �4 chaotic inflation. Even for the trans-
anckian case, on assuming a′ < 0, the current values of r do not
ow � to exceed the regime of ∼ 6m . In other words, our infla-
P

tion model requires sizable radiative corrections in order to obey 
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Fig. 1. r vs a′ for several values of �. The region in gray is excluded by Planck.

Fig. 2. nS vs r for � = 3mP .

he current value of nS and the bound on r. All this run into a′ �= 0
nd � around few mP .

In Fig. 2 we present our results for nS and r in a plot con-
ronting ns with r for � = 3mP and a′ obeying the values corre-
ponding to the green curve in Fig. 1 for several e-fold values. As 
e can see in that plot, the model predictions for nS and r are 

n perfect agreement with the experimental bounds provided by 
LANCK2015. This result is valid for any other choice of the values 
or the parameter � presented in Fig. 1.

Another interesting outcome we have obtained concerns the 
nflaton mass. Its expression at tree level is extracted from the 
iagonalization of the mass matrix M2

R in Eq. (17). As reheating 
emands very tiny λφ and vφ 	 vρ , vη , vχ ′ , then the (M2

R)44
lement of that matrix decouples incurring into the following ex-
ression for the inflaton mass at tree level, m� ∼ √

2λ10 vφ . When 
adiative corrections are plugged in, this expression receives a cor-
ection that depends on the parameters a′ and �. In Fig. 3 we 
lot the behavior of the inflaton mass m� with a′ for some val-
es of �. Even if vφ is around 1010 GeV, but as the coupling λ10

s very small, as required by reheating phase, the inflaton gains a 
mall mass when compared to the conventional chaotic inflation 
ase. According to the prediction of our model, the inflaton may 
evelop mass until few tens of TeV. This has implications to the 
eheating phase, as discussed below.

For sake of completeness, in Fig. 4 we plot the running index α
ersus nS for some values of �. There we have a relatively small 

value for all points as it has to be in chaotic inflation.
We finish this section by discussing reheating [50]. First of all 

otice that our inflaton couples to the heavy neutrinos through 
he Yukawa coupling in Eq. (7), and to scalars according to the last 
our terms in the potential in Eq. (19). Because vφ ∼ 1010 GeV, 
he inflaton develops mass around tens of TeV, as shown in Fig. 3. 
his order of magnitude for the inflaton mass forbids that it de-

ays into a pair of heavy neutrinos because, as we will see below, u
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Fig. 3. mφ vs a′ for several values of �.

Fig. 4. α vs nS for several values of �.

n the model developed here heavy neutrinos gain mass around 
107 GeV. Thus reheating will be solely due to the decay of the 

nflaton into a pair of scalars.
Perceive that the 3-3-1 model in question has a complex scalar 

ector that turns quite impossible to obtain a well-behaved mixing 
atrix that connects the symmetrical scalars to the physical ones. 

his is particularly sure with the CP-even neutral scalars. This is 
ecause its mass matrix, given in Eq. (17), is a 4 × 4 one. Its diago-
alization requires numerical approach. For our proposal here it is 

ust enough to parametrizes the couplings among the inflaton and 
 pair of Higgs, provided by those last four terms in the poten-
ial in Eq. (19), by the general form: λ

8 vφ�hh where λ represents 
ny combination of the couplings λφ , 11 , 12 , 13 while h represents 
ny combination of the eigenstates Rη , Rρ and Rχ ′ , or simply the 
eavier one, that is practically Rχ ′ . This does not matter too much 
ecause the reheating phase puts constraint into the couplings λ’s. 
e assume that one of the couplings λφ , 11 , 12 , 13 will be the dom-

nant one and proceed with calculation.
In view of this, the expression for the decay width of the chan-

el � → hh is

(� → hh) ∼ λ2 v2
φ

32πm�

. (28)

n this case reheating temperature is estimated to be [51]

R ∼ 0.1
√

�(� → hh)mP . (29)

or vφ = 1010 GeV and m� ∼ 10 TeV, a reheating temperature 
round 109 GeV requires λ ∼ 10−6. This means that the couplings 
φ , 11 , 12 , 13 in the potential must develop values at most around 
his order of magnitude which are typical values in chaotic infla-
ion models [51]. In summary, although the inflaton has an un-

sual small mass, the model is efficient in reheating the universe.
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4. Some remarks and conclusions

When η0 and φ develop VEVs, the last two terms in the La-
grangian in Eq. (7) yields Dirac and Majorana mass terms for νL

and NR ,

L ⊃ MD ν̄L NR + MN̄C
R NR + H.c., (30)

where MD = h
vη√

2
and M = h′vφ√

2
. These terms provide the following

mass matrix for the six massive neutrinos,

Mν =
(

0 MD

MT
D M

)
. (31)

This is the mass matrix for the type I seesaw mechanism whose
diagonalization, for M 	 MD , leads to [52–56]

mνL � M2
D

M
and MR � M. (32)

We are interested in estimating the order of magnitude of the
masses, only. As a′ ≈ a

32π2λ′ and a = −16h′4, for a′ around 10 and

λ′ ∼ 10−14, as required by �2
R = 2.215 × 10−9, we get h′ ∼ 10−3

which results in MR ∼ 107 GeV. So as to obtain standard neutrinos
at eV scale in agreement with solar and atmospheric neutrino os-
cillation, we just need MD ∼ (10−1 − 10−2) GeV. This is obtained
for h in the range ∼ (10−3 − 10−4) for vη ∼ 102 GeV. Such range
of values for h are of the same order of the Yukawa couplings in
the standard model.

Axion dark matter is considered as an attractive alternative to
thermal WIMP dark matter. Our axion is invisible and receives

mass through chiral anomaly, m2
a ∼ 4

Q C D

f 2
pq

, which is about 10−3 eV

for f pq ∼ 1010 GeV and Q C D ∼ 10−1 GeV, turning our axion a
natural candidate for cold dark matter. As PQ symmetry is broken
during inflation, our axion will be produced in the early universe
through the misalignment mechanism and its relic abundance is
cast in Refs. [57,58].

Just few words about heavy neutrinos with masses around
107 GeV. These neutrinos interact with charged scalars, as allowed
by the Yukawa coupling h f̄ LηNR , and may give rise to baryogenesis
through leptogenesis. Because of the complexity and importance of
such subject, we treat it separately elsewhere. However, for a pre-
vious treatment of this issue in a similar situation, but different
scenario, we refer the reader to the Refs. [59,60].

In summary, several papers have proposed extensions of the
standard model that provide a common origin to the understand-
ing of the strong CP-problem, dark matter, inflation, and small
neutrino masses. In this paper we argued that such proposal is el-
egantly realized in the framework of a 3-3-1 gauge model. In it the
strong CP-problem is solved with the PQ symmetry whose associ-
ated axion is invisible and may constitute the dark matter of the
universe. Inflation is driven by the real part of the neutral scalar
singlet that contains the axion. Successful inflation was obtained
by considering radiative corrections to the inflaton potential. The
model has an unusual inflaton with mass of tens of TeV. Reheat-
ing is achieved through the decay of the inflaton into scalars, and
neutrinos gain small mass through the type I seesaw mechanism.

We end by saying that we do not expect that the 3-3-1 model
be the final theory valid in the range from TeV up to Planck scale
It is more probable that it is an effective theory of a more funda-
mental one that prevails in the high energy scale, as for example
grand unification theories. If this is the case, it is reasonable to ex-
pect that the predictions done here be preserved in the context of

such a final theory.
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We study the tachyon scalar field model in flat FRW cosmology with the particular potential φ−2 and the
scale factor behavior a(t) = tn . We consider the spherical collapse model and investigate the effects of
the tachyon scalar field on the structure formation in flat FRW universe. We calculate δc(zc), λ(zc), ξ(zc)

�V (zc), log[ν f (ν)] and log[n(k)] for the tachyon scalar field model and compare the results with the
results of EdS model and �CDM model. It is shown that in the tachyon scalar field model the structure
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formation may occur earlier, in comparison to the other models.

 
 
 

 

 
 

 
 

 

 
 
 
 
 
 
 

 

 

 

 
 
 

W1. Introduction

The last cosmological and astrophysical data of Large Scale
structure, the observations of type Ia and Cosmic Microwave Back-
ground radiation have demonstrated that currently there is an
acceleration expansion phase in the universe [4,18]. The cosmic
expansion can be well described by a negative pressure so-called
dark energy (DE). The simplest candidate for DE is the cosmologi-
cal constant. However, the cosmological constant suffers from the
fine-tuning and the cosmic coincidence problems [6,24]. There-
fore, to avoid these problems, different models for dark energy
have been proposed such as quintessence, K-essence, tachyon [20],
ghost [27], phantom, quintom [5], and the quantum gravity mod-
els, as well as holographic [28] and new agegraphic models [6,14].
The tachyon model as a scalar field model arises in particle physics
and string theory. Thus, it can be considered as one of the poten-
tial candidates to describe the nature of the DE.

On the other hand, the problem of structure formation in the
universe is a very important issue in theoretical cosmology. A sim-
ple model of structure formation is the spherical collapse model.
The spherical collapse model was presented by Gunn and Gott [8].
This model studies the evolution of growth of overdense structures
with respect to the dynamics of scale factor or cosmic redshift.
The dynamics of overdense structures depends on the dynamics
of the background Hubble flow and expansion of the universe. In
the frame of general relativity, the spherical collapse model has
been studied [7,9,19]. In this paper, we study the spherical col-
* Corresponding author.
E-mail addresses: rezakord@ipm.ir (M.R. Setare), falegari@azaruniv.ac.ir

(F. Felegary), f.darabi@azaruniv.ac.ir (F. Darabi).
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Tlapse and the evolution of spherical overdensities in the framework
of tachyon scalar field model and compare the results with the re-
sults of Einstein-de Sitter (EdS) and �-Cold Dark Matter (�CDM)
models.

2. Cosmology with Tachyon scalar field

The Lagrangian of tachyon scalar field over a cosmological back-
ground is given by [26]

L = −V (φ)
√

1 − ∂aφ ∂aφ, (1)

where φ and V (φ) are the tachyon scalar field and tachyon po-
tential, respectively, and we consider the Friedmann–Robertson–
Walker (FRW) metric having the cosmic time t dependent scale
factor a(t). For a homogeneous field, the equation of motion is ob-
tained as

φ̈

1 − φ̇2
+ 3Hφ̇ + V́ (φ)

V (φ)
= 0, (2)

where the symbols . and ′ denote the derivatives with respect to
t and φ, respectively, and H = ȧ/a is called the Hubble parameter.
In the flat FRW universe, the energy density ρ� and the pressure
p� of the tachyon field read as

ρ� = V (φ)√
1 − φ̇2

, (3)
p� = −V (φ)

√
1 − φ̇2. (4)

For the pressureless matter and tachyon scalar field matter, the 
Friedmann equation is given by
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2 = 1

3M2
pl

(ρm + ρ�), (5)

here ρ� is the energy density of tachyon scalar field, and ρm is 
he density of pressureless matter. We suppose that there is no 
nteraction between ρ� and ρm , so the continuity equations are 
iven separately by

˙� + 3Hρ�(1 + ω�) = 0, (6)

˙m + 3Hρm = 0. (7)

sing Eqs. (3) and (4) and also p� = ω�ρ� , the equation of state 
arameter (EoS) for tachyon scalar field is obtained as

� = φ̇2 − 1. (8)

he requirement for a real ρ� results in 0 < φ̇2 < 1 according to 
hich ω� should vary as −1 < ω� < 0. The fractional energy den-

ities are defined by

� = ρ�

3M2
pl H

2
, (9)

m = ρm

3M2
pl H

2
. (10)

aking time derivative of Eq. (9) and using Eq. (6) yields

�̇ = −��H
[

3(1 + ω�) + 2
Ḣ

H2

]
. (11)

lso, taking time derivative of Eq. (5) and using Eqs. (6) and (7)
ields

Ḣ

H2
= −3(1 + ω���). (12)

sing Eq. (12) and inserting Eq. (11), we obtain

� = 3ω���(�� − 1). (13)

ere, the prime is the derivative with respect to x = ln a where 
 = (1 + z)−1 and z is the cosmic redshift. Using d

dx = −(1 + z) d
dz

nd Eq. (8), one finds

��

dz
= −3��(�� − 1)(φ̇2 − 1)(1 + z)−1. (14)

he differential equation for the evolution of dimensionless Hubble 
arameter, E(z) = H

H0
, in tachyon scalar field model, is obtained by 

sing Eqs. (6), (7), (8) and (12) as follows

E

z
= 3

2

E

(1 + z)

[
1 + ��(φ̇2 − 1)

]
. (15)

ow, we consider the following particular potential which results 
n the scalar field with linear time dependence and the scale factor 

ith suitable power law behavior, as follows [26]

(φ) = 2n

M2
pl

(1 − 2

3n
)

1
2

1

φ2
, (16)

=
√

2

3n
t, (17)

(t) = tn. (18)

aking time derivative of Eq. (17), inserting in Eq. (8) and using 
q. (18), we can obtain the equation of state parameter for tachyon 
calar field model
� = 2

3n
− 1. (19) t

___________________________WORLD TECHN
T
ig. 1. The evolution of EoS parameter (top), dark energy density parameter (mid-
le), and dimensionless Hubble parameter (down) of tachyon scalar field model 
ith respect to the redshift parameter z. The thick line represents the tachyon 

calar field model for n = 1 and the dotted line shows the �CDM model.

n Eq. (19), we can see that if n ≥ 2
3 , then we will have −1 <

� < 0. Using Eq. (19) and inserting it in Eqs. (14), (15) we can 
et the evolution of EoS parameter (ω�), the density parameter 
f dark energy (��), and the dimensionless Hubble parameter 
E(z)) in tachyon scalar field model as a function of cosmic red-
hift. In Fig. 1, assuming the present values ��0 ≈ 0.7, �m0 ≈ 0.3
nd H0 ≈ 67.8 km

s Mpc , we have shown the evolution of EoS param-
ter, the evolution of density parameter and the evolution of di-
ensionless Hubble parameter of tachyon scalar field model with 

espect to the redshift parameter z for the typical value n = 1.

. Linear perturbation theory

In this section, we study the linear growth of perturbation of 
onrelativistic dust matter by computing the evolution of growth 

actor g(a) in tachyon scalar field model, and then compare it with 

he evolution of growth factor in EdS and �CDM models. The dif-

OLOGIES____________________________
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Fig. 2. Time evolution of the growth factor as a function of the scale factor. The thick
line represents the tachyon scalar field model for n = 1. The dotted line indicates
the �CDM model and the dashed line represent the EdS model.

ferential equation for the evolution of the growth factor g(a) is
given by [11,12,16] (see Appendix I)

g′′(a) + (
3

a
+ E ′(a)

E(a)
)g′(a) − 3

2

�m0

a5 E2(a)
g(a) = 0. (20)

In order to study the linear growth in tachyon scalar field model
using Eqs. (14), (15) and (19) for n = 1, we solve numerically
Eq. (20). To obtain the linear growth of structures in the EdS model
and the �CDM model, we use the procedure used in Ref. [28]. In
Fig. 2, we have plotted the evolution of growth factor g(a) with
respect to the scale factor. At first, namely for small scale factors
the growth factor in the tachyon scalar field model is larger than
those of EdS and �CDM models. However, for rather larger scale
factors, the growth factor in the tachyon scalar field model be-
comes smaller than the EdS model while it is still larger enough
than that of �CDM model. This means that, at the beginning, the
tachyon scalar field model predicts structure formation more effi-
cient than EdS and �CDM models. For later times, however, the
structure formation in the tachyon scalar field model is dropped
behind that of EdS model, whereas it precedes the structure for-
mation in the �CDM model.

4. Spherical collapse in the tachyon scalar field model

The structure formation is described by a non-linear differential
equation for the evolution of the matter perturbation δ in a mat-
ter dominated universe [3,13]. In [1] this differential equation was
Fig. 3. The thick line represents the tachyon scalar field model for n = 1. The dott

____________________________WORLD TECH
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dark energy component. Now, we consider the non-linear differen-
tial equation which is given by [11] (see Appendix I)

δ′′ +
(

3

a
+ E ′(a)

E(a)

)
δ′ − 4

3

δ′2

1 + δ
− 3

2

�m0

a5 E2(a)
δ(1 + δ) = 0, (21)

where ′ denotes the derivative with respect to a. In the linear
regime, we have

δ′′ +
(

3

a
+ E ′(a)

E(a)

)
δ′ − 3

2

�m0

a5 E2(a)
δ = 0. (22)

In EdS model, we consider the initial conditions δi = 20.9 ×
10−4, δ́i = 0 and ai = 10−4 [11]. In order to study the linear growth
of density perturbation and the non-linear growth of density per-
turbation in tachyon scalar field model, using Eqs. (14), (15) and
(19) for n = 1, we solve numerically Eqs. (21) and (22) (see Ap-
pendix II). To obtain the linear growth of density perturbation δ
in the EdS model and the �CDM model, we use the procedure
used in Ref. [28]. The Fig. 3(a) shows that the linear growth factor
in the tachyon scalar field model is larger than those of EdS and
the �CDM models, and the Fig. 3(b) shows that the non-linear
growth factor in the tachyon scalar field model is larger than the
EdS model.

5. Determination of δc and �V

As time passes, the perturbation is growing and one can no
longer use the linear regime. At this stage, the radius of perturba-
tion region becomes maximal R = Rmax and the perturbation stops
growing. This condition is called turn-around which points to the
epoch when the grows of perturbation decouples from the Hub-
ble flow of the homogenous background. After the turn-around the
perturbation starts contracting. For a perfect spherical symmetry
and perfect pressureless matter, the perturbation would collapse
to a single point becoming infinitely dense. Since there is hardly
any perfect spherical symmetric overdensity in the universe, the
perturbation does not collapse to a single point and finally a viri-
alized object of a certain finite size in equilibrium state is formed
that is called halo.

We call (zc , Rc) and (zta , Rta) as the redshift and radius corre-
sponding to virialization and the turn-around epochs, respectively
Now, we peruse two characterizing quantities of the spherical col-
lapse model for the tachyon scalar field model: the virial overden-
sity �V and the linear overdensity parameter δc . We consider a
spherical overdense region with matter density ρ in a surround-
ing universe described by its background dynamics and density ρ
b
generalized to the case of evolution of δ in a universe including a The virial overdensity �V is defined by [10]
ed line indicates the �CDM model and the dashed line indicates the EdS model.
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ig. 4. The time evolution of the linear overdensity, δc(z), in terms of a function of 
he collapse redshift for the �CDM model, the EdS model and the tachyon scalar 
eld model. The thick line represents the tachyon scalar field model for n = 1. The 
otted line indicates the �CDM model and the dashed line indicates the EdS model.

ig. 5. The virial radius λ(zc) in terms of the collapse redshift zc for the �CDM
odel, the EdS model and the tachyon scalar field model. The thick line represents 

he tachyon scalar field model for n = 1. The dotted line indicates the �CDM model 
nd the dashed line indicates the EdS model.

V = ρ

ρb

Rc

ac
, (23)

hich is a function of scale factor and redshift. We can rewrite the 
irial overdensity �V as follows [10]

V = 1 + δ(ac) = ξ(
xc

λ
)3, (24)
dicates the EdS model. (For interpretation of the references to color in this figure legend

___________________________WORLD TECHN
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c = ac

ata
, (25)

= ρ(Rta)

ρb(ata)
= 1 + δ(ata). (26)

ere, λ is the virial radius which is given by [23]

= 1 − ην
2

2 + ηt − 3
2ην

, (27)

here ηt and ηυ are the (Wang–Steinhardt) WS parameters

t = 2

ξ

��(ata)

�m(ata)
, (28)

ν = 2

ξ

��(ac)

�m(ac)

(ata

ac

)
. (29)

Now, we discuss the results obtained for the linear overdensity 
arameter and the virial overdensity for the models introduced in 
his work. The Fig. 4 shows the time evolution of linear overden-
ity, δc(z) in terms of a function of the collapse redshift for the 
CDM model, the EdS model and the tachyon scalar field model. 

n the EdS model, δc is independent of the redshift, hence it has 
 constant value i.e. δc = 1.686. In the �CDM model, δc is smaller 
han 1.686 but the time evolution of the linear overdensity ap-
roaches the value of the EdS model at high redshifts.

In fact, at high redshifts we have a matter dominated universe 
dust matter), but at lower redshifts we have a dark energy dom-
nated universe, thus the structure formation must occur earlier. 
n the tachyon scalar field model, δc drives more slowly than the 

CDM and the EdS models because in Fig. 1, the Hubble parame-
er in the tachyon scalar field model is larger than that of �CDM

odel.
In the Fig. 5, we represent λ(zc) in terms of zc for the �CDM

odel, the EdS model and the tachyon scalar field model. In the 
dS model, λ(zc) is independent of the redshift, thus it has a con-
tant value i.e. λ = 0.5. In the �CDM model, λ(zc) is smaller than 
.5 but it approaches the value of the EdS model at high redshifts. 

n the tachyon scalar field model, λ(zc) drives more slowly than 
he �CDM and the EdS models but its value approaches the value 
f the EdS model at high redshifts. Therefore, we can conclude 
hat the size of structures in the �CDM model is larger than the 
achyon scalar field model.

In the Fig. 6(a), we represent ξ(zc) in terms of zc for the �CDM
odel, the EdS model and the tachyon scalar field model. In the 
here EdS model, ξ(zc) is independent of redshift thus it has a constant 

ig. 6. The blue, green and red lines represent the tachyon scalar field model for n = 0.9, 1, 1.1, respectively. The dotted line indicates the �CDM model and the dashed line 

, the reader is referred to the web version of this article.)
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value i.e. ξ = 5.6. In the �CDM model, ξ(zc) is larger than 5.6 but
its value approaches the value of the EdS model in terms of high
redshifts. In the tachyon scalar field model, ξ(zc) drives faster than
the �CDM model and the EdS model but its value approaches the
value of the EdS model in terms of high redshifts. Therefore, we
can conclude that in the tachyon scalar field model the overdense
spherical regions in terms of zc are denser than the �CDM model
and the EdS model.

In the Fig. 6(b), we show the virial overdensity �V (zc) in terms
of zc for the �CDM model, the EdS model and the tachyon scalar
field model. In the EdS model, �V (zc) is independent of redshift,
thus it has a constant value, �V = 178. In the �CDM model,
�V (zc) drives more faster than 178, but its value approaches the
value of the EdS model in terms of high redshifts. In the tachyon
scalar field model, �V (zc) drives faster than the �CDM model and
its value approaches the value of the EdS model in terms of high
redshifts. The evolution of virial overdensity parameter �V (zc) is
the main quantity for the halo size. Therefore, we can conclude
that in the tachyon scalar field model the halo size is larger than
the EdS model and the �CDM model.

6. Number density and mass function

The average comoving number density of halos of mass M is
given by [2,15]

n(M, z) = (
ρ

M2
)

d logυ

d log M
ν f (ν), (30)

where f (υ) and ρ are the multiplicity function and the back-
ground density, respectively and ν is given by

ν = δ2
c

σ 2(M)
. (31)

Here σ(M) is the r.m.s of the mass fluctuation in sphere of
mass M. We can use the formula given by [22]

σ(M, z) = σ8(z)
( M

M8

)− γ (M)
3

, (32)

where σ8 is the mass variance of the overdensity on the scale of
R8, M8 = 6 × 1014�m0 h−1 M� and R8 = 8 h−1 Mpc are the mass
and the radius inside a sphere. Also, σ8(z) is given by
σ8(z) = g(z)σ8(M, z = 0), (33)
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l for n = 1 and The dotted line indicates the �CDM model.

where g(z) is the linear growth factor, σ8,DE(M, z = 0) = 0.8 ×(
δc,DE(z=0)

δc,�CDM(z=0)

)
and

γ (M) = (0.3� + 0.2)
[

2.92 + 1

3
log(

M

M8
)
]
, (34)

where � = �m0 h exp(−�b − �b
�m0

). Eqs. (32) and (34) have a val-

idation range [22]. They express that the fitting formula predicts
higher values of the variance for M < M8 and the fitting formula
predicts lower values of the variance for M > M8. Following [21],
we apply ST mass function

ν fST(ν) = 0.3222

√
0.707ν

2π

[
1 + (0.707ν)−0.3

]
exp(−0.707ν

2
).

(35)

We use the mass function introduced by del Popolo (PO mass func-
tion) [17]

ν f (ν) = 1.75

√
0.707ν

2π

[
1 + 0.1218

(0.707ν)0.585
+ 0.0079

(0.707ν)0.4

]

× exp
[
− 0.4019 × 0.707ν

(
1 + 0.5526

(0.707ν)0.585

+ 0.02

(0.707ν)0.4

)2]
. (36)

Also, we use the mass function (YNY mass function) presented
in [25]

ν f (ν) = 0.298
[

1+(0.893

√
ν

2
)1.39

]
ν( 0.408

2 ) exp
[
−(0.893

√
ν

2
)2

]
.

(37)

Now, we represent the evolution of the ST mass function with
respect to k (k = log( M

M8
)) in Fig. 7 for the tachyon scalar field

model and the �CDM model. We can see that the evolution of
ST mass function with respect to k is the same for tachyon scalar
field and the �CDM models in the z = 0 case, but it is different for
tachyon scalar field and �CDM models in the z = 1 case.

Using Eqs. (30) and (35), for the tachyon scalar field model and
the �CDM model, we obtain the average comoving number density
of halos of mass M in the cases z = 0, 1. In Fig. 8, we can see
explicitly the differences for the cases z = 0 and z = 1. We can see

that difference of the number densities of halo objects is negligible 
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Fig. 8. The thick line represents the tachyon scalar field mod

ig. 9. The evolution of the various mass functions with respect to k for the tachyon 
calar field model, n = 1, in the case z = 0. The blue thick line represent ST mass 
nction, the red thick line represent PO mass function and the green thick line 

epresent YNY mass function. (For interpretation of the references to color in this 
gure legend, the reader is referred to the web version of this article.)

or small objects in the case z = 1. Therefore, we can obtain the 
umber density of halo objects for high mass, and we find that 
he number of objects per unit mass is increasing for high mass in 
he tachyon scalar field model. Also, using Eqs. (35), (36) and (37), 
e can compare the various mass functions at k = 0 in Fig. 9. We 

an see that the PO mass function is larger than ST mass function 
nd YNY mass function for all mass scales.

. Conclusion

In this paper, we have studied the evolution of spherical over-
ensities in tachyon scalar field model by assuming a particular 
otential and the scale factor with power law behavior. We have 
hown the evolution of the EoS parameter, the evolution of the 
ensity parameter and the evolution of the dimensionless Hubble 
arameter of tachyon scalar field model with respect to a func-
ion of z, for a typical value n = 1. We have also shown that at 
arly times of the scale factor evolution, the growth factor in the 
achyon scalar field model drives faster than the EdS and �CDM

odels. So, it is concluded that in the tachyon scalar field model 
he structure formation may occur sooner than in the other mod-
ls. At later times, however, we have shown that the growth factor 
n the tachyon scalar field model drives more slower than that of 
dS model. Also, in the EdS model, δc is independent of the red-
hift and thus it has a constant value δ = 1.686. In the �CDM
c
odel, δc is smaller than 1.686, but the time evolution of the linear L
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r n = 1 and the dotted line indicates the �CDM model.

verdensity approaches the value of EdS model at high redshifts. 
n fact, at high redshifts, we have a matter dominated universe 
dust matter), but at lower redshifts we have a dark energy dom-
nated universe, thus the structure formation occurs earlier. In the 
achyon scalar field model, δc is driven more slower than that of 

CDM and EdS models, because in Fig. 1, the Hubble parameter in 
he tachyon scalar field model is larger than that of �CDM model.

Also, we have shown that in the EdS model, λ(zc) is inde-
endent of the redshift, thus it has a constant value i.e. λ = 0.5. 
oreover, the size of structures in the �CDM model was larger 

han that of tachyon scalar field model. In the EdS model, ξ(zc)

s independent of the redshift, hence it has a constant value i.e. 
= 5.6. We have shown that in tachyon scalar field model, the 

verdense spherical regions with respect to zc are denser than 
hose of �CDM and EdS models. In the EdS model, �V (zc) is inde-
endent of the redshift, so it has a constant value, �V = 178. The 
volution of virial overdensity parameter �V (zc) is the main quan-
ity for the halo size. Therefore, we have found that in the tachyon 
calar field model the halo size is larger than the EdS and �CDM
odels.

Finally, we have shown that the evolution of the ST mass func-
ion with respect to k is the same for tachyon scalar field and 

CDM models in the z = 0 case, but it is not the same for tachyon 
calar field model and the �CDM model in the z = 1 case. Also, 
he evolution of the number density with respect to k is the same 
or the tachyon scalar field and �CDM models in the z = 0 case, 
ut its evolution is not the same for the tachyon scalar field and 
CDM models in the z = 1 case. The difference of number densi-

ies of halo objects is negligible for small objects in the z = 1 case. 
herefore, in obtaining the number density of halo objects for high 
ass, we find that the number of objects per unit mass is increas-

ng for high mass in the tachyon scalar field model.
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ppendix I

The Lagrangian of tachyon scalar field over a cosmological back-
round is given by [26]
= −V (φ)
√

1 − ∂aφ ∂aφ , (38)
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where φ and V (φ) are the tachyon scalar field and tachyon poten-
tial, respectively. One can obtain the energy-momentum tensor of
the tachyon scalar field as follows [29]

Tμν = V (φ)∂μφ∂νφ√
1 + gαβ∂αφ∂βφ

− gμν V (φ)

√
1 + gαβ∂αφ∂βφ . (39)

Now, considering (39) as describing a perfect fluid, the energy den-
sity ρ and the pressure p for the tachyon scalar field are given by

ρ = −T 0
0 = V (φ)√

1 − φ̇2
,

p = T i
i = −V (φ)

√
1 − φ̇2.

The fundamental equations for cosmic fluid in Newtonian grav-
ity are defined as follows [11]

∂ρ

∂t
+ ��r .(ρ�v) + p

c2
��r .�v = 0, (40)

∂ �v
∂t

+ (�v .��r)�v + ��r� + c2 ��r p + �v ṗ

ρc2 + p
= 0, (41)

�2 � = 4πG
(
ρ + 3p

c2

)
, (42)

˙̄ρ + 3H
(
ρ̄ + p

c2

)
= 0, (43)

where �v is the velocity in three-space, � is the Newtonian gravi-
tational potential, �r is the physical coordinate and ρ̄ is the density
of cosmic background. Now, we use the comoving coordinates as
follows [11]:

�r = a�x. (44)

Here �r, a and �x are the physical coordinates, the scale factor and
the comoving coordinates, respectively. Taking time derivative of
Eq. (44), one can obtain

�v(�x, t) = a
[

H(a)�x + �u(�x, t)
]
, (45)

where

�v(�x, t) = dr(�x, t)

dt
, (46)

�u(�x, t) = dx(�x, t)

dt
. (47)

Here, H(a) is the Hubble function and �u(�x, t) is the comoving pe-
culiar velocity. Next, one can introduce the following definitions

��r = 1

a
��x , (48)

∂

∂t

∣∣∣
r
= ∂

∂t

∣∣∣
x
− 1

a
�v. ��x , (49)

ρ(�x, t) = ρ̄(1 + δ(�x, t)) , (50)

p = ωρ(�x, t)c2 , (51)

�(�x, t) = �0(�x, t) + φ(�x, t) , (52)

where ω is the equation of state parameter. Now, using Eqs. (45)
(48), (49), (50), (51), (52) and inserting Eqs. (40), (41), (42)
and (43), one can obtain [11]

δ̇ + (1 + ω)(1 + δ) ��x . �u = 0, (53)

∂ �u
∂t

+ 2H �u + (�u .��x)�u + 1

a2
��x φ = 0, (54)

2
( )

2
��x φ − 4πG 1 + 3ω a ρ̄δ = 0. (55)
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We take the divergence of the Eq. (54) and represent the analy-
sis [11]

� .
[
(�u.�)�u

]
= 1

3
θ2 + σ 2 − w2, (56)

where

θ = ��x . �u , (57)

σi j = 1

2

(∂u j

∂xi
+ ∂ui

∂x j

)
− 1

3
θδi j , (58)

wij = 1

2

(∂u j

∂xi
− ∂ui

∂x j

)
. (59)

Here, σ 2 = σi jσ
i j is the shear tensor and w2 = wij wij is the rota-

tion tensor. Taking time derivative of Eq. (53) and using Eqs. (53)
(54), (55) and (56), one can obtain [11]

δ̈ +
(

2H − ω̇

1 + ω

)
δ̇ − 4 + 3ω

3(1 + ω)

δ̇2

1 + δ

− 4πGρ̄(1 + ω)(1 + 3ω)δ(1 + δ)

− (1 + ω)(1 + δ)(σ 2 − w2) = 0. (60)

Now, we can introduce the following definition

∂

∂t
= aH(a)

∂

∂a
. (61)

Using Eq. (61) and inserting Eq. (60), one can rewrite Eq. (60) as
follows [11]

δ′′ +
(

3

a
+ E ′

E
− ω′

1 + ω

)
δ′ − 4 + 3ω

3(1 + ω)

δ′2

1 + δ

− 3

2

�fluid,0

a2 E2(a)
h(a)(1 + ω)(1 + 3ω)δ(1 + δ)

− 1

aH2(a)
(1 + ω)(1 + δ)(σ 2 − w2) = 0, (62)

where E = H/H0 is the dimensionless Hubble parameter, �fluid,0 =
8πGρ̄/3H2 is the density parameter of the fluid at a0 = 1, h(a) is
a function that describes the time evolution of dark energy with
scale factor, H0 is the Hubble parameter at the present time and
the prime sign denotes the derivative with respect to the scale
factor.

For the collapse of a homogeneous sphere, one can ignore the
shear and rotation tensors. Also, we limit ourselves to the spherical
perturbation filled with dust ω = 0, for which

h(a) = a−3.

Therefore, one can obtain the non-linear and linear perturbation
equations as follows [11,30]

δ′′ +
(

3

a
+ E ′

E

)
δ′ − 4

3

δ′2

1 + δ
− 3

2

�m0

a5 E2(a)
δ(1 + δ) = 0, (63)

δ′′ +
(

3

a
+ E ′

E

)
δ′ − 3

2

�m0

a5 E2(a)
δ = 0. (64)

Appendix II

In the numerical study of solving Eqs. (21) and (22), we have
used the procedure used in Ref. [11] to obtain the initial conditions
for drawing the curves of Fig. 3, in tachyon scalar field model, as
follows
g(ai) = 3.615 × 10−4, g′(ai) = 0,ai = 10−4. (65)
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he scale factor a at the redshift z is defined as follows

= (1 + z)−1. (66)

aking derivative of Eq. (66), one can obtain

d

z
= −a2 d

da
. (67)

sing Eqs. (8), (19) and (67) and inserting Eqs. (14), (15), we can 
btain
��

da
+ 3��

a
(1 − ��)(

2

3n
− 1) = 0, (68)

E

a
+ 3

2

E

a

[
1 + ��(

2

3n
− 1)

]
= 0. (69)

sing Eqs. (68), (69), (65) and inserting Eq. (22), we can plot the 
urve of Fig. 3(a) for tachyon scalar field model using the “Math-
matica” in the linear case. Also, using Eqs. (5), (9), (10) and 
m = ρm0 a−3 and ρ� = ρ�0a−3(1+ω�) , one can obtain

(a) =
√

�m0a−3 + ��0a−3(1+ω�). (70)

lso, using Eqs. (19), (65), (70) and inserting Eq. (21), we can 
lot the curve of Fig. 3(b) for tachyon scalar field model using the 
Mathematica” in the non-linear case.
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Friedmann–Lemaître–Robertson–Walker braneworlds
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a r t i c l e i n f o a b s t r a c t

We study the cosmological evolution with nonsingular branes generated by a bulk scalar field coupled to
gravity. The specific setup investigated leads to branes with a time-dependent warp factor. We calculate
the effective Hubble parameter and the effective scale factor for the FLRW branes obtained solutions. The
spatially dependent branes solutions also were found.
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W1. Introduction

Braneworld models were introduced as a genuine branch of
research in high energy physics since the outstanding works pre-
sented in Refs. [1–3]. After those works, several authors tried
to construct models compatible with the Friedmann–Lemaître–
Robertson–Walker (FLRW) cosmology. In fact, the modeling of re-
alistic braneworld scenarios from the large scale physics point of
view must include, at least in some level, the description encoded
in the cosmological standard model. The attempts put forward to
this program can be roughly separated into two categories: one
dealing with infinitely thin branes, in which the extra dimensional
effects enters as corrections to the Einstein equations via the pres-
ence of the Weyl tensor (the so-called ‘dark fluid’) and quadratic
contributions to the stress tensor, and another one, whose mod-
eling arrive at thick branes described by one or more bulk scalar
fields. We refer the reader to the references [4] and [5] for quite
complete reviews about thin and thick braneworld models and cos-
mological consequences, respectively. In the former approach, the
corrections to the gravitational equations comes from the Gauss–
Codazzi procedure and, potentially, all the relevant aspects of the
four-dimensional cosmology are revisited [6]. It turns out, however,
that an infinitely thin brane seems to be only an approximation of
the more realistic case, at best. In fact, by keeping in mind the
simple fact that at very short scales a classic gravitational theory
must be replaced by its quantum counterpart (whatever it is), it is
mandatory some thickness to the brane itself.

Unfortunately, in the thick brane context it is not possible
at the best of our knowledge, to apply the Gauss–Codazzi for-
* Corresponding author.
E-mail addresses: pmichel@fc.unesp.br (P.M.L.T. da Silva), dutra@feg.unesp.br

(A. de Souza Dutra), hoff@feg.unesp.br (J.M. Hoff da Silva).
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Tmalism. The reason is that it is not clear what (if any) are the
Israel–Darmois junction conditions in a thick brane context, for
early attempts see [7]. The junction conditions are at the heart
of the projection procedure, and its lack makes the whole pro-
gram fall apart. In this vein, the investigation of a five-dimensional
thick braneworld setup whose four-dimensional part describes a
FLRW universe is, indeed, in order. There are, nevertheless, only
a few works addressing this crucial point. The cumbersome alge-
braic task inevitably present in this endeavor can be attributed as
a cause for such. In Refs. [8,9] a more or less recent attempt to
find out thick braneworld scenarios whose four dimensional part
describes relevant cosmology, was taken into account. The gen-
eral approach used in both cases take advantage of a well known
functional form to the spacial part of the warp factor, as the one
presented in Ref. [10]. While this is a clever starting point, it would
be desirable to have a more powerful method arriving at relevant
cosmological setups. In this paper we address ourselves to this
task, starting from a five dimensional scalar field whose solution
describes a FLRW brane, i.e., a braneworld whose four-dimensional
part is given by a FLRW universe. The main braneworld character-
istic, the warp factor, is also taken into account in the solution
Part of the solutions obtained via a given ansatz in Refs. [8,9] are
recovered here as particular cases of a broad approach.

As a general procedure, we shall use a separable warp factor
function. This might be seen as an oversimplification. In fact, there
is an interesting discussion about non separable warp factors gen-
erating traveling-like defects in five dimensional space–times [11].
We stress, however, that in order to reproduce four-dimensional
cosmological solutions (which is not the aim of Ref. [11]) separa-

ble warp factors are indeed in order. Besides, the adoption of a 
separable warp factor (in addiction to being mathematically con-
sistent, although not the most general possibility) is in line with 
the hierarchy problem approach via thick branes [12].
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We organize this paper as follows. In Section 2, we present 
he mathematical preliminaries supporting the metric ansatz with 
he four-dimensional background metric given by the Friedmann–
emaître–Robertson–Walker. Then we derive gravitational equa-
ions and the expressions for the scalar field and its potential. In 
ection 3, we find the time-dependent FLRW brane solutions. We 
olve the field equations for two cases with respect to spatial cur-
ature, i.e., k = 0 and k �= 0. Going further we determine the spatial 
art of the set of equations in Section 4. In Section 5 we present 
he effective Hubble parameter as well as the effective scale fac-
or for all the possibilities found previously. In the final section we 
onclude.

. Field equations

The assumption of isotropy and homogeneity implies the large 
cale geometry described by a metric of the form

s2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sen2θdφ2)

]
, (1)

 a synchronized coordinate system (a suitable set of coordinates 
alled comoving coordinates). The comoving observers, also called 
ubble observers, are the ones located at spacelike hypersurfaces 
ccompanying the cosmic fluid, which is at rest with respect to 
uch hypersurfaces. Here a(t) is an arbitrary function of the cosmic 
ime called scale factor and k = 0, ±1, denotes the spatial cur-
ature of the universe for Minkowski, Riemann and Lobachevsky 
eometry, respectively.

Let us consider 5D spacetimes for which the metric takes the 
llowing form

s2 = a2(t, y)

{
−dt2 + u2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sen2θdφ2)

]}
+ b2(t, y)dy2, (2)

here the background metric in 4D is given by the Friedmann–
emaître–Robertson–Walker line element (1). The metric signature 
 given by (− + + + +). The function a(t, y) is an warp factor 
ith time and extra dimension dependence, while u(t) performs 

he usual scale factor for an homogeneous and isotropic universe. 
he function u(t) can, indeed, be absorbed in a rescaling of the 
ime coordinate. For the sake of exposition, however, we shall keep 
 explicitly along the text in order to be in touch with the FLRW 
osmological model. The function b(t, y) shows the dynamics of 
he extra dimension at different times and positions in the bulk.

Let us consider the 5D action in the presence of a bulk scalar 
eld with the potential V (φ) minimally coupled to the gravita-

ional sector

=
∫

d5x
√−g

{
2M3 R − 1

2
gMN∇Mφ∇Nφ − V (φ)

}
, (3)

here M is the Planck mass and R is the five-dimensional Ricci 
calar. In general we suppose that the scalar field φ depends only 
n time and the extra dimension y.

The Einstein equations read

MN − 1

2
gMN R = 1

4M3
T MN , (4)

nd the energy momentum-tensor T MN for the scalar field φ(t, y)

MN = ∇Mφ∇Nφ − gMN

(
1

2
g AB∇Aφ∇Bφ + V (φ)

)
. (5)

he time–time component of the field equations for the space–

ime under consideration is given by fo
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hilst the space components give

1
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he extra dimensional part contributes with
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a

.
a

a
+ a′

a

.

b

b
−

.
a
′

a
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= 1

3

.

φφ′, (8)

[
2

a′2

a2

1
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..
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1
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− 3

.
a
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.
u

u

1
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−
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1
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u

u

1
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− k

a2u2

]

= 1

2a2

.

φ2 + 1

2b2
φ′2 − V (φ). (9)

inally, the scalar equation of motion reads

1
2
φ′′ − 1

a2

..

φ + 4

b2

a′

a
φ′ − 2

a2

.
a

a

.

φ − 1

a2

.

b

b

.

φ − 3

a2

.
u

u

.

φ − 1

b2

b′

b
φ′

− dV

dφ
= 0, (10)

here a dot denotes a derivative with respect to t , and a prime 
epresents a derivative with respect to the extra dimension y.

By combining Eqs. (6)–(7) and (9), we arrive at convenient ex-
ressions for 

.

φ, φ′ and V (φ):

.
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−
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(
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)
, (12)

(φ) = 3

2

[
1

a2
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.
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2
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.
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a
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b2
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a

b′

b

]
. (13)

In what follows we shall depict several important cases re-
ulting from some relevant particularizations. Let us assume that 
(t, y) ≡ φ(y) and b(t, y) ≡ 1. Thus the G0

5 component of the 
eld equation becomes

′ .
a

a
−

.
a
′

a
= 0, (14)

plying the possibility of spatial and temporal separation, i.e., 
(y, t) ≡ α(y)β(t). Therefore, the equations (10)–(13) take the 
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φ′′ + 4

(
α′

α

)
φ′ − dV

dφ
= 0, (15)

.

φ2

2
=
⎡
⎣2

( .

β

β

)2

−
( ..

β

β

)
+
( .

β

β

)( .
u

u

)
−
( ..

u

u

)
+
( .

u

u

)2

+
(

k

u2

)]
≡ 0, (16)

φ′2 = 1

α2β2

⎡
⎣−

( ..

β

β

)
−
( .

β

β

)2

− 5

( .

β

β

)( .
u

u

)
− 2

( .
u

u

)2

−
( ..

u

u

)
−
(

2k

u2

)]
− 3

[(
α′′

α

)
−
(

α′

α

)2
]

= − �

α2
− 3

[(
α′′

α

)
−
(

α′

α

)2
]

, (17)

2

3
V (φ) = 1

α2β2

⎡
⎣( ..

β

β

)
+
( .

β

β

)2

+ 5

( .

β

β

)( .
u

u

)
+ 2

( .
u

u

)2

+
( ..

u

u

)
+
(

2k

u2

)]
− 3

(
α′

α

)2

−
(

α′′

α

)

= �

α2
− 3

(
α′

α

)2

−
(

α′′

α

)
. (18)

At this point we need to consider separately some different
regimes of the above equations. Afterwards, we solve the time-
dependent part of the solutions and, then, the spatial part is ana-
lyzed.

3. Time-dependent part of the solutions

From now on we shall evince all the relevant solutions, solving
the time dependent part of the solutions, after what we concen-
trate in the spacial part of the solutions.

3.1. The case � ≡ � ≡ 0 with k = 0 and k �= 0

Within the specifications outlined in this subsection epigraph
the time dependence of the equations (16)–(18) must vanish.1

Thus, the relevant equations read( ..

β

β

)
− 2

( .

β

β

)2

−
( .

β

β

)( .
u

u

)
+
( ..

u

u

)
−
( .

u

u

)2

−
(

k

u2

)
= 0,

(19)( ..

β

β

)
+
( .

β

β

)2

+ 5

( .

β

β

)( .
u

u

)
+ 2

( .
u

u

)2

+
( ..

u

u

)
+
(

2k

u2

)

= −�β2 = 0, (20)( ..

β

β

)
+
( .

β

β

)2

+ 5

( .

β

β

)( .
u

u

)
+ 2

( .
u

u

)2

+
( ..

u

u

)
+
(

2k

u2

)

= �β2 = 0. (21)

1
 Notice that as an equation on the spatial variable, Eq. (15) shall be faced in the 
next Section.
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When k = 0, Eqs. (19)–(21) constraint β(t) and u(t) as

β(t) = C

u(t)
, (22)

where C is an arbitrary constant of integration.
It is interesting to notice that the set of equations (19)–(21)

with k �= 0 and u = 1, recover the result obtained by [8], whose
solution is

β(t) = β0e±√−kt . (23)

On the other hand, for the case in which k �= 0 e u �= 1 and using
the following redefinition

u(t) = f (t)β(t) (24)

where f (t) is an arbitrary function, we have

β(t) = 1√
f (t)

⎡
⎣C ±

√
−k

t∫
0

dt′√
f (t′)

⎤
⎦ . (25)

3.2. The case � = −� with k = 0 and k �= 0

Now, for the case specified here, the set of equations to be
solved is( ..

β

β

)
− 2

( .

β

β

)2

−
( .

β

β

)( .
u

u

)
+
( ..

u

u

)
−
( .

u
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)2

−
(

k

u2

)
= 0,

(26)( ..
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)
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( .
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+ 5

( .
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u
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+ 2

( .
u
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)2

+
( ..

u

u

)
+
(

2k

u2

)

= −�β2, (27)( ..

β

β

)
+
( .
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)2
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( .
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β

)( .
u

u

)
+ 2

( .
u

u

)2

+
( ..

u

u

)
+
(

2k

u2

)

= �β2. (28)

All together, these equations implies � = −� and therefore the
solution is given by

β(t) =
⎡
⎣u(t)

⎛
⎝C1 ±

√
�

3

t∫
0

dt′

u(t′)

⎞
⎠
⎤
⎦

−1

. (29)

Note that as far as k = 0 and u(t) = 1, we recover result obtained
in [8], i.e.,

β(t) ∝ 1

t
,

as expected.
For k �= 0, the solution is given by

β(t) = − 1

u(t)

√
3

�
cot

⎡
⎣C1

√
3k − √

k

t∫
0

dt′

u(t′)

⎤
⎦

×

√√√√√k + k tan2

⎡
⎣C1

√
3k − √

k

t∫
0

dt′

u(t′)

⎤
⎦. (30)

Making use of the usual trigonometric relation sec2 x = 1 + tan2 x

we have
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(t) = − 1

u(t)

√
3

�
cot

⎡
⎣C1

√
3k − √

k

t∫
0

dt′

u(t′)

⎤
⎦

×

√√√√√k sec2

⎡
⎣C1

√
3k − √

k

t∫
0

dt′

u(t′)

⎤
⎦, (31)

r simply

(t) = − 1

u(t)

√
3k

�

1

sin

(
C1

√
3k − √

k
∫ t

0
dt′

u(t′)

) . (32)

hus Eq. (30) can be rewritten as

(t) = − 1

u(t)

√
3k

�
sec

⎛
⎝√

k

t∫
0

dt′

u(t′)

⎞
⎠ , (33)

here use was made of

sin x = ± cos(π/2 − x) with

x = −√
k

t∫
0

dt′

u(t′)
and C1

√
3k = π/2. (34)

Note that, similarly to the case of Eq. (23), one can reproduce 
he results obtained in [8], in which the solutions given in (33), for 
 = 1, k = −1 (both for u = 1) are respectively

(t) ∝ sec (t) , (35)

nd

(t) ∝ sec h (t) . (36)

We shall investigate the cosmological outputs of the obtained 
olutions in Section 5.

. Spatial-dependent part of the solutions

Now we shall consider the spatial part of the equations (15), 
17) and2 (18):

′′ + 4

(
α′

α

)
φ′ − dV

dφ
= 0, (37)

′2 = − �

α2
− 3

[(
α′′

α

)
−
(

α′

α

)2
]

, (38)

V (φ) = �

α2
− 3

(
α′

α

)2

−
(

α′′

α

)
. (39)

There are two interesting cases, concerning the separation con-
tants which we are going to investigate in detail. The first one is 
iven by the vanishing of both.

.1. The case � = � = 0

For better dealing with the system of equations we use the re-
efinition,

(y) = e A(y). (40)

n the light of (40), the Equations (38)–(37) become
2 Notice that the equation (16) has not spatial-dependence. T
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φ′2 = −A′′, 2

3
V (φ) = −A′′ − 4

(
A′)2

, (41)

nd

′′ + 4A′φ′ = dV

dφ
. (42)

ssuming, for ulterior convenience, that

′ = rWφ(φ), A′ = sW (φ), (43)

nd substituting the equations (43) in (42) we find s = −1/3. 
herefore the potential acquires the form

(φ) = r2
[

1

2

(
Wφ

)2 − 2

3
W (φ)2

]
. (44)

he derivative of Eq. (44) with respect to φ, Vφ , reads

φ = r2
[

Wφφ Wφ − 4

3
Wφ W (φ)

]

= r2

[
d

dφ

(
W 2

φ

2

)
− 4

3

d

dφ

(
W (φ)2

2

)]

= d

dφ

[
r2

(
W 2

φ

2
− 2

3
W (φ)2

)]
. (45)

herefore the potential itself can be expressed as

(φ) = W 2
φ

2
− 2

3
W (φ)2, (46)

nd the Eqs. (43) become

′ = Wφ(φ), A′ = −1

3
W (φ), (47)

ith

(y) = −1

3

∫
W [φ(y)] dy. (48)

Now we turn ourselves to a different arrangement of the sepa-
ation constants.

.2. The case � = −� �= 0

Making use of the expression (40) in (38)–(37), one gets

′2 = �e−2A − 3A′′, 2

3
V (φ) = �e−2A − 4

(
A′)2 − A′′, (49)

nd

′′ + 4A′φ′ = dV

dφ
. (50)

ombining the equations (49), we obtain

(φ) = 3[A′′ − 2
(

A′)2] + 3

2
φ′2. (51)

y assuming [13] that

′ = aW1φ(φ), A′ = bW2(φ) , (52)
′′ = a2W1φφ W1φ, A′′ = abW2φ W1φ, (53)

nd substituting Eqs. (52) and (53) into (51), we have

(φ) = 3[abW2φ W1φ − 2b2W 2
2 ] + 3

2
a2W 2

1φ. (54)
aking the derivative of (54) with respect to φ one gets
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dV

dφ
= 3[abW2φφ W1φ + abW1φφ W2φ − 4b2W2W2φ]

+ 3a2W1φ W1φφ, (55)

and inserting (55) in the scalar field equation (50), one arrives at
the following consistence equation for the superpotential

a[4bW2 − 3bW2φφ − 2aW1φφ]W1φ = 3b[aW1φφ − 4bW2]W2φ,

(56)
where a = 1 and b = 1/3.

Now we define the following quantities

W1 = W + λZ and W2 = W + σ Z , (57)

from which one can see that some terms can be written as a total
derivative, and the equation (56) takes the form

d

dφ

[
2

3
W 2 + 1

2
W 2

φ − 2

3
λσ Z 2 + α

2
(2σ − λ)Z 2

φ + 4

3
σ 2 Z 2

+ σ Wφ Zφ + 4

3
σ W Z

]
+ 4

3
(σ − λ)W Zφ = 0. (58)

In order to deal with a concrete and exact case, we assume that

W = C1 + C2 Z + C3 Zφφ. (59)

For simplicity, some authors consider Z(φ) = W (φ) [13,14]. Here
we shall consider a more general case, substituting (59) into
Eq. (58). This procedure leads to

2

3
C2

1 − C4 + 4

3
C1C3 Zφφ + 2

3
C3 Z 2

φφ + 1

2
C2

3 Z 2
φφφ

+ Zφ Zφφφ(C2C3 + C3β)

+ Z 2
φ

(
C2

2

2
− 2C3λ

3
− λ2

2
+ C2σ + 2

3
C3σ + λσ

)

+ Z 2

(
2C2

2

3
− 2C2λ

3
+ 2C2σ − 2λσ

3
+ 4σ 2

3

)

+ Z

[
4C1C2

3
− 4C1λ

3
+ 8C1σ

3
+ Zφφ

(
4C2C3

3
+ 4C3σ

3

)]
= 0. (60)

In order to keep some similarity with the well known litera-
ture, we look for a solution as the one presented in Ref. [15], for
instance. We choose thereof

Z(φ) = Z0 cos(vφ + s). (61)

In the light of Eq. (60), gathering Z , Z 2
φ and Z 2 terms together, we

have

2

3
C2

1 − C4 + 4Z

3

(
C2 − C3 v2 − λ + 2σ

)
C1 + Z 2

φ

[
C2

2

3
+ C3 v4

2

− 2C3λ

3
− λ2

2
+ C2σ + 2C3σ

3
+ λσ − v2(C2C3 + C3σ)

]

+ Z 2

[
2C2

2

3
+ 2C3 v4

3
− 2C2λ

3
+ 2C2σ − 2λσ

3
+ 4σ 2

3

− v2
(

4C2C3

3
+ 4C3σ

3

)]
= 0. (62)

By taking the Z coefficient equal to zero

C2 − C3 v2 − λ + 2σ = 0, (63)
we get as the solution for v , the following expression
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Fig. 1. Behavior of φ(y) as a function of y for � �= �, λ = 2 and σ = 1.

v =
√

C2 − λ + 2σ

C3
, (64)

where C1 = ± √
3/2C4 and C2 = C3 + λ − 2σ if v = 1, in order to

full accomplish the consistence constraint. In this vein, the expres-
sion (59) for W , becomes

W = C1 + (λ − 2σ) cosφ, (65)

with the choice Z0 = 1 and s = 0 in equation (61).
Using Eq. (65) into (52) and (53), we obtain

φ′ = 2(σ − λ) sin φ, (66)

and

A′ = 1

3
[C1 + (λ − σ) cos φ]. (67)

Therefore, the solutions for φ and A, are respectively given by

φ(y) = 2 arccot[e2y(λ−σ )], (68)

and

A(y) = 1

3
y(C1 + λ − σ) + 1

6
ln(1 + e4y(λ−σ )). (69)

By means of Eqs. (68) and (69) for the expression (51), we obtain
the following shape for the potential

V (φ) = −1

3
(λ − σ)2

{
− 11 + 13 cos

[
4arccot[cot(φ/2)]]}. (70)

In Figs. 1 and 2 we depict the profiles of φ(y) and Exp[A(y)]
in the relevant range where the scalar field is also varying. Before
to delve into the effective quantities study, we remark by passing
that, despite the rather non-trivial functional form of the obtained
solutions, the resulting spacetime is after all well behaved. In fact,
all the Kretschmann scalars associated to the solutions are finite.

5. Effective Hubble parameter and scale factor

In this section, from the found solutions for β(t), we obtain the
effective Hubble parameter as well as the effective scale factor. The
Hubble parameter, H = .

a/a, is used to measure the expansion rate
of the universe. The time elapsed in this scenario is the so called

proper time or cosmic time.

NOLOGIES____________________________
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ig. 2. The exponential of the warp factor function A(y) as a function of y for 
�= �, λ = 2, σ = 1 and C1 = −1.

In view of the transformation

τ = β(t)dt, (71)

t is possible to construct the effective Hubble parameter

ef f = 1

β(t)

d

dt
[ln(β(t)u(t)] = 1

aef f

daef f

dτ
=

.
aef f

aef f
, (72)

here

ef f (t) = β(t)u(t). (73)

.1. The case � = � = 0

Consider for a while the case that k = 0, so that

(t) = C

u(t)
(74)

nd therefore

ef f (τ ) = 0 and aef e = constant. (75)

his case leads, then, to the typical Hubble parameter describing a 
tatic universe, sometimes called Einstein’s universe.

Within this case (� = � = 0) but now with k �= 0, the solution 
s given by

(t) = 1√
f (t)

⎡
⎣C ±

√−k√
f (t)

t∫
0

dt′√
f (t′)

⎤
⎦ . (76)

ence we have

τ = β(t)dt = dt√
f (t)

⎡
⎣C ±

√−k√
f (t)

t∫
0

dt′√
f (t′)

⎤
⎦= dz[C ±

√
−kz],

(77)

here we defined that dz = dt/
√

f (t). Thus, we find the expres-
ion for the cosmic time τ as given by

= C z ± z2
√

−k/2. (78)

hoosing, for simplicity, C = 0 and using f (t) ≡ e−2at , we have 
= (1/a) eat and, consequently

√

= ± −k

2

1

a2
e2at . (79) a
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herefore

= 1

2a
ln

(
± 2a2τ√−k

)
, (80)

nd it is possible see that returning to Eq. (76) one arrives at

(t) = ±
√−k

a
e2at . (81)

inally, substituting the expressions (81) and (80) into (72), one 
an verify that the effective Hubble parameter decays with the in-
erse of τ , while that scale factor is linearly growing and real as 
ar as k < 0.

ef f (τ ) = 1

τ
and aef f (τ ) = 2

√
−k τ . (82)

t is reasonable that the behavior of Hef f (τ ) is the one expected 
oth for the matter and radiation dominated phase of the universe. 
nfortunately, however, the corresponding scale factor grows much 

aster than it should in a realistic scenario.

.2. The case � = −� �= 0

Now let us consider the case in which � = −� �= 0 both for 
 = 0 and k �= 0. Firstly, we analyze the simplest case with k = 0, 
eading to

(t) = 1

u(t)

1

C1 ±
√

�

3

∫ t
0

dt′

u(t′)

, (83)

nd from Eq. (67),

τ = β(t)dt = dt

u(t)(C1 ± bz)
→ τ = ∓1

b
ln(C1 ± bz) (84)

here b = √
�/3 and z = ∫ t

0 dt′/u(t′). Inserting Eqs. (83) and (84)
nto the expression (72), one gets

ef f (t) = u(t)(C1 ± bz)
d

dt

[
ln

(
1

(C1 ± bz)

)]
=

= u(t)(C1 ± bz)
d

dt
(±bτ )

= u(t)(C1 ± bz) ± b
1

u(t)(C1 ± bz)
= ±b, (85)

nd therefore

ef f (τ ) = ±
√

�

3
, (86)

hose integration leads to

ef f (τ ) = a0 exp

(
±
√

�

3
τ

)
. (87)

We can note that the above solution to aef e(τ ) with k = 0 is 
imilar to the solution found for an usual universe (without any 
rane), and dominated by the vacuum energy, i.e.,

(t) ∝ exp

(
±
√

�

3
t

)
. (88)

here � > 0 is the cosmological constant. This fact is more impor-
ant that it may sound. In fact, in the context of thick braneworlds, 

s discussed in the Introduction, there is no how to directly relate 
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the four-dimensional cosmological constant with some counter-
part quantity in five dimensions, or even some property of the
brane modeling. In this approach, however, we see that the separa-
tion constant (necessary to solve the gravitational system endowed
with a brane) takes the place of the four-dimension cosmological
constant. The solution given in (87) could, indeed, represent the
current phase of accelerated expansion of our universe in a �CDM
(Lambda Cold Dark Matter) model.

Finally, for the case in which k �= 0, and remembering that

β(t) = − 1

u(t)

√
3k

�
sec

(√
kz
)

, (89)

where z ≡ ∫ t
0

dt′

u(t′)
, it can be seen that

dτ = β(t)dt = −
√

3k

�
sec

(√
kz
)

dz. (90)

By taking dz = dt/u(t) and integrating the above expression, we
obtain

τ = −
√

3k

�
ln
∣∣∣sec

(√
kz
)

+ tan
(√

kz
)∣∣∣ . (91)

Now, by inverting the Eq. (91) for z as a function of τ , one gets

z = 2√
k

arccos

{[
1 + exp(τ

√
�/3)

]1/2

√
2

}
. (92)

The Hubble parameter, then, reads

Hef f = 1

β(t)

d

dt
[ln(β(t)u(t)] = d

dτ

[
ln

(
−
√

3k

�
sec

(√
kz
))]

.

(93)

In order to reach Eq. (93) we have used dτ = β(t)dt in the first
equality. Substituting Eq. (91) in (92) one arrives at

Hef f (τ )

= d

dτ

[
ln

(
−
√

3k

�
sec

(
2 arccos

{[
1 + exp(τ

√
�/3)

]1/2

√
2

}))]

(94)

and therefore

Hef f (τ ) =
√

�

3
tanh

[√
�

3
τ

]
. (95)

By means of (95) the effective scale factor is given by

aef f (τ ) = ln

[
cosh

√
�

3
τ

]
. (96)
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The above Hubble parameter, despite the fact that it presents an
expected behavior at large values of τ , is again too fast at lower
values of τ .

6. Concluding remarks

We have investigated exact solutions for a FLRW braneworld,
whose brane is performed by a bulk scalar field. The general idea
was to find out explicit solutions which could, at least in some
regime, to perform the large scale dynamics of the universe. In
the course of our analysis a plenty of possibilities had appeared.
Among them, we believe we pay attention to the most physically
appealing cases.

In some aspects, the physical outputs can model a specific era
of the known universe, as in the case represented by Eq. (82) in
which the matter and radiation phases can be reached. By the
same token, in the specific k = 0, � �= −� case, the separation
constant � can mimic a four-dimensional cosmological constant
for a de-Sitter-like universe. Therefore, the late-time acceleration
can be modeled without regarding to any type of dark energy.

Currently we are delving into the possibility to describe more
aspects of the cosmic evolution. To accomplish that, more bulk
scalar fields, as well as different potentials may be in order. We
shall postpone these generalizations for a future work.
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We discuss black hole spacetimes with a geometrically defined quasi-local horizon on which the
curvature tensor is algebraically special relative to the alignment classification. Based on many examples
and analytical results, we conjecture that a spacetime horizon is always more algebraically special (in
all of the orders of specialization) than other regions of spacetime. Using recent results in invariant
theory, such geometric black hole horizons can be identified by the alignment type II or D discriminant
conditions in terms of scalar curvature invariants, which are not dependent on spacetime foliations.
The above conjecture is, in fact, a suite of conjectures (isolated vs dynamical horizon; four vs higher
dimensions; zeroth order invariants vs higher order differential invariants). However, we are particularly
interested in applications in four dimensions and especially the location of a black hole in numerical
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computations.
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. Introduction

Black holes, which are exact solutions in general relativity (GR) 
representing, for example, physical objects formed out of the grav-
tational collapse of fuel-exhausted stars), are characterized by the 
oundary of the region from where light can still travel to asymp-
otic null infinity, called the event horizon, which is usually iden-
ified as the surface of the black hole and relates its area to the 
ntropy. The event horizon is essentially a global (teleological) ob-
ect, since it depends on the entire future history of the spacetime 
1].

There has been much effort to give a general quasi-local de-
cription of a dynamical black hole [1,2]. Of particular interest 
re quasi-local objects called marginally trapped tubes (MTTs) or 
rapping horizons, and the special cases of dynamical horizons or 
uture outer trapping horizons (FOTHs); in numerical work, these 
re also called apparent horizons. MTTs are hypersurfaces foliated 
y (closed compact space-like two-dimensional (2D) submanifolds 
ithout boundary) marginally trapped surfaces (MTSs) in which the 

xpansion of one of the null normals vanishes and the other is 
on-positive. A dynamical horizon is a smooth 3D submanifold of 
pacetime foliated by MTSs such that the expansion of one future-
* Corresponding author.
E-mail addresses: aac@mathstat.dal.ca (A.A. Coley), david.d.mcnutt@uis.no

D.D. McNutt), ashoom@ualberta.ca (A.A. Shoom).
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irected null normal to the foliation vanishes, while the expansion 
f the other future directed null normal is negative (a FOTH has 
he additional condition that the directional derivative along the 
econd null direction is negative).

A dynamical horizon is particularly well-suited to analyze dy-
amical processes involving black holes, such as black hole growth 
nd coalescence. The area of a dynamical horizon necessarily in-
reases with time [1]. An explicit example of a dynamical horizon 
s given by the Vaidya spacetime which admits spherically sym-

etric MTSs [3,4]. For a given mass function, the Vaidya spacetime 
lso provides explicit examples of the transition from the dynami-
al to isolated horizons. If a hypersurface admits a dynamical hori-
on structure, it is unique. However, because a spacetime may have 
everal distinct black holes, it may admit several distinct dynam-
cal horizons. For dynamical horizons which are also FOTHs, two 
on-intersecting horizons generally either coincide or one is con-
ained in the other [1].

It is believed that closed MTSs constitute an important ingre-
ient in the formation of black holes, which motivates the idea of 
sing MTTs as viable replacements for the event horizon of black 
oles [2]. Unfortunately, since the 2D apparent horizons depend 
n the choice of a reference foliation of spacelike hypersurfaces, 

TTs and consequently trapping horizons and dynamical horizons 

re highly non-unique [5]. There have been some attempts to pro-
ide a physically sound criterion for selecting a preferred MTT such 
s, for example, in which the shear scalars along ingoing/outgoing 
ull directions foliated by 2D spacelike surfaces vanish [6].
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Realistic black holes interact with their environment and are
consequently dynamical. The gravitational collapse leading to black
hole formation is also a highly dynamical process. It is crucial to
locate a black hole locally, which may not rely on the existence of
an event horizon alone. A significant fraction of research in numer-
ical relativity aims at predicting with high precision the waveforms
of gravitational waves generated in the merger of compact-object
binary systems or in stellar collapse to form black holes. Compari-
son with templates played a crucial role in the recent observations
of gravitational waves from black hole mergers by the LIGO Collab-
oration [7].

In numerical studies of time-dependent collapse, it is often
more practical to track apparent horizons or trapping horizons [8].
In contrast with the event horizon, which is a global concept de-
fined using the global structure of spacetime, the apparent horizon
is a quasi-local concept and is intrinsically foliation-dependent. In
this paper we propose a foliation invariant and more geometrical
approach, which is possible due to recent results in invariant the-
ory.

2. Scalar polynomial curvature invariants

The algebraic classification of the Weyl tensor and the Ricci
tensor in arbitrary dimensions using the boost weight decompo-
sition [9] can be refined utilizing the restricted eigenvector and
eigenvalue structure of their associated curvature operators [10],
allowing for necessary conditions to be defined for a particular
algebraic type in terms of a set of discriminants. A scalar poly-
nomial curvature invariant of order k (or, in short, a scalar polyno-
mial invariant or S P I) is a scalar obtained by contraction from
a polynomial in the Riemann tensor and its covariant derivatives
up to the order k. Black hole spacetimes are completely character-
ized by their S P Is [11]. In particular, we can use discriminants to
study the necessary conditions in arbitrary dimensions, in terms
of simple S P Is, allowing for the algebraic classification of the
higher dimensional Weyl and Ricci tensor when treated as curva-
ture operators, for the spacetime to be of algebraic type II or D
[12].

For example, in 5D the necessary condition for the trace-free
Ricci tensor, Sab = Rab − 1

5 Rgab , to be of algebraic type II/D is that
the discriminant (S P I) 5

S D5 is zero, and the necessary conditions
for the Weyl tensor to be of type II/D is that the S P Is 10

W Di (i =
8, 9, 10) vanish [12]. As an illustration, the 5D rotating black ring
[13] is generally of type Ii , but on the horizon the discriminant
5
T D5 of the trace-free part of the operator T a

b = CacdeCbcde vanishes
(and 5

T D4 > 0), which signals that the spacetime is of Weyl type II
on the horizon.

We are primarily interested in the 4D case here. The necessary
type II/D discriminant condition 4 D4 = 0 for the trace-free (s1 = 0)
symmetric Ricci tensor S in 4D is [12]:

D ≡ 4 D4 = −s2
3(4s3

2 − 144s2s4 + 27s2
3)

+ s4(16s4
2 − 128s4s2

2 + 256s2
4) = 0, (1)

where

s2 ≡ −1

2
Sa

b Sb
a, s3 ≡ −1

3
Sa

b Sb
c Sc

a,

s4 ≡ 1

4
(2s2

2 − Sa
b Sb

c Sc
d Sd

a). (2)

Similar conditions hold for any trace-free symmetric tensor Tab .
The necessary real conditions for the Weyl tensor to be of type
II/D are [12]:
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W1 ≡ −11W 3
2 + 33W2W4 − 18W6 = 0, (3)

W2 ≡ (W 2
2 − 2W4)(W 2

2 + W4)
2

+ 18W 2
3 (6W6 − 2W 2

3 − 9W2W4 + 3W 3
2 ) = 0, (4)

where

W2 = 1

8
CabcdCabcd, W3 = 1

16
CabcdCcd

pqC pqab,

W4 = 1

32
CabcdCcd

pqC pq
rsCrsab,

W6 = 1

128
CabcdCcd

pqC pq
rsCrs

tuCtu
v w C v wab. (5)

These 2 real conditions are equivalent to the real and imaginary
parts of the complex syzygy I3 −27 J 2 = 0 in terms of the complex
Weyl tensor in the Newman–Penrose (NP) formalism [14].

Alternatively we can use the discriminant analysis to provide
the type II/D syzgies expressed in terms of the S P Is W i (i ∈ [1, 6],
defined above) by treating the Weyl tensor as a trace-free oper-
ator acting on the 6-dimensional vector space of bivectors [12]
(however, these conditions are very large). More practical nec-
essary conditions can be obtained by considering the trace-free
symmetric operator CabcdCebcd −2W2δ

e
a ; applying the discriminant

analysis we find the coefficients of the characteristic equation are
w2 = 8(W 2

2 − 2W4) (and similarly for w3, w4) and so the neces-
sary condition for this operator to be type II/D is given by equation
(1) (with the si replaced by wi ).

The alignment classification can be applied to any rank tensor.
To consider whether the covariant derivatives of the Ricci tensor,
Rab;cd... , are of type II or D, we can use the eigenvalue structure
of the operators associated with the derivatives of the Ricci cur-
vature and impose the type II/D necessary conditions. This can be
repeated for the Weyl tensor and in arbitrary dimensions [15]. For
example, for the covariant derivative of the Weyl tensor, Cabcd;e ,
in 4D we can consider the second order symmetric and trace-free
operator 1T a

b defined by:

1T a
b ≡ Ccdef ;aCcdef ;b − 1

4
δa

b
1 I2 (6)

where 1 I2 ≡ Cabcd;eCabcd;e , and we have the corresponding 4th,
6th, 8th order invariants 1 I4, 1 I6, 1 I8. Computing the coefficients
of the characteristic equation we obtain 1s2 = − 1

2
1 I4 + 1

8
1 I2

2 (and
similarly for 1s3, 1s4). The necessary condition for this operator to
be of type II/D (of the form D ≡ 4 D4 = 0) is equivalent in form
to the condition given in equation (1) with si replaced by 1si , and
can be expanded out explicitly. For example, for the operator 1T a

b
defined above for the type D Kerr metric, the vanishing of 4

T D4
implies that Cabcd;e is of type D/II on the horizon.

It is known that differential invariants, constructed from S P Is
in terms of the Weyl tensor and its covariant derivatives, detect
horizons for several type D stationary solutions [16]. The construc-
tion of the class of Page–Shoom S P Is that detect the horizons of
stationary black holes exploits the fact that on the horizon the
timelike Killing vector becomes null and is, in fact, a generator of
the horizon [17]. Noting that stationary horizons are a special case
of weakly isolated horizons, the type II/D S P Is arising from the
discriminant analysis of Cabcd;e vanish on the horizon, and it can
be explicitly shown that the type II/D discriminants share common
zeros with the Page–Shoom invariant W for the Kerr spacetime
[18]. Similar results using Cartan invariants are possible [19].

3. Examples and motivation

There are many examples (some briefly discussed in this pa-

per, but see also [19]) that support the geometric conjectures to 
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ollow. Indeed, all of the known exact black hole solutions are alge-
raically special of Weyl (curvature) type II/D on the horizon [20]. 
his led to an earlier conjecture that asserted that stationary black 
oles in higher dimensions, possibly with the additional conditions 
f vacuum or asymptotic flatness, must be of Weyl type D [20].

There is also motivation for the conjectures from analytical re-
ults. Quasi-local isolated horizons, which account for equilibrium 
tates of black holes and cover all essential local features of event 
orizons [1], are essentially defined as a 3D null surface (submani-

old) with topology S2 × R with an outgoing expansion rate which 
anishes on the horizon. It follows that the null normal vector is 
 local time-translational Killing vector field on the horizon, and 
equires neither asymptotic structures nor foliations of spacetime. 
very such Killing horizon is an isolated horizon [1]. In partic-
lar, this implies that the event horizon of the Kerr geometry 

s an isolated horizon. However, in general, spacetimes with iso-
ated horizons need not admit any Killing vector fields even in a 
eighborhood. In [21] it was proven that if a stationary, real ana-
tic, asymptotically flat vacuum black hole spacetime of dimension 
 ≥ 4 contains a non-degenerate horizon with compact cross sec-

ions that are transverse to the stationarity generating Killing vec-
or field then, for each connected component of the black hole’s 
orizon, there is a Killing vector field which is tangent to the gen-
rators of the horizon.

In the 4D case, and assuming the “mild energy condition” im-
lied by the dominant energy condition, the existence of an in-
uced degenerate metric tensor which locally acts as a metric ten-
or on the 2D tangent space, and the induced covariant derivative, 
hich constitute the geometry of a nonexpanding null surface, was 

emonstrated; this then leads to the conditions that on the non-
xpanding weakly isolated horizon the Ricci and Weyl tensors are 
f type II/D [22]. This local result has been generalized to non-
xpanding null surfaces in arbitrary dimensions (and the result is 
pplicable to surfaces of any topology); indeed, it was shown that 
f the expansion of a null surface vanishes, then the shear must 
lso vanish and a covariant derivative can be induced on each 
on-expanding null surface [23]. It can also be shown [18] that for 
ny weakly-isolated horizon the Riemann tensor and the covariant 
erivatives of the Riemann tensor are of type II on the horizon.

We note that when a star collapses to form a black hole, the 
xterior of the black hole eventually settles down to a stationary 
tate, most likely described by the Kerr metric. Despite what the 
nterior of the black hole settles down to, this leads by continuity 
o the expectation that there will be a region of the interior near 
he horizon that should be close to the interior Kerr metric. Inside 
he black hole event horizon the Kerr metric has an inner horizon 
hich is also a null surface. However, the inner horizon is unsta-

le, so for a spacetime that begins close to the Kerr metric, the 
nner horizon should be replaced by something else, perhaps even 
 singularity [24–27]. There are a variety of analytic arguments, 
athematical results, and numerical simulations that indicate that 

his singularity maintains the inner horizon’s character as a null 
urface [1,22].

This supports the notion that the horizon is smooth and unique 
t later times and, in principle, can be identified by algebraic/geo-
etrical conditions. It is possible that as we follow this unique, 

mooth surface back in time (during the physics of collapse or 
erger), this surface suffers a bifurcation and this surface is no 

onger unique or smooth (or even differentiable). But it is plausible 
hat there exists a unique, smooth geometric horizon that shields 

ll other horizons (or at least identifies the region of interest). i
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. The geometric horizon conjecture

This consequently motivates us to conjecture that there is a ge-
metrically defined unique, locally determinable, smooth (dynami-
al) horizon on which the curvature tensor is algebraically special. 
n particular, this implies that a spacetime horizon is always more 
lgebraically special (in all of the orders of specialization) than (all) 
ther regions of spacetime. Such geometric black hole horizons can 
e identified and located by the type II/D conditions in terms of 
P Is, which are not dependent on spacetime foliations. To state 

he conjectures, we will say a tensor T is nth-order algebraically 
pecial if T and all covariant derivatives of T up to order n are of 
lgebraic type II or more special.

onjecture Part I: If a black hole spacetime is zeroth-order algebraically 
eneral, then on the geometric horizon the spacetime is algebraically 
pecial. We can identify this geometric horizon using scalar curvature 
variants.

This is the more practical part of the Conjecture and will hope-
ully be useful to numerical relativists who study the collapse or 

erger of real black holes, which are generically of general alge-
raic type away from the horizon. The conjecture might be qualita-
ively different for isolated and dynamical horizons. The issue then 
ecomes one of finding effective ways to do computations.

onjecture Part II: If a black hole spacetime is zeroth-order alge-
raically special (and on the horizon the spacetime is thus also alge-
raically special), then if the black hole spacetime is first-order alge-
raically general, then on the horizon the spacetime is first-order alge-
raically special. We can identify this geometric horizon using differen-
ial scalar curvature invariants.

If necessary, this can be repeated for higher order covariant 
erivatives. This is the more theoretical and analytical part of the 
onjecture, and can be applied to exact solutions. Note that in 
eneral we may not wish that the covariant derivatives be alge-
raically special (i.e., of type II/D) to each order (i.e., of type Dk) 
n the black hole horizon, as this might be too restrictive.

omments: The algebraic conditions expressed in terms of S P Is 
ssentially define a geometric horizon. In order to make the def-
nition more precise, we need to focus on physical black hole 
olutions (both exact black hole solutions and generic physical col-
apse and black hole coalescences) and in order to prove definitive 
esults we need to append some physical conditions to the defi-
ition such as, for example, energy conditions, a particular theory 
f gravity (e.g., we assume GR; in principle some conditions may 
e different for different theories), and perhaps other asymptotic 
onditions. We also note that S P Is may not specify the geomet-
ic horizon completely in the sense that they may also vanish at 
xed points of any isometries and along any axes of symmetry. 
owever, we expect that the identification of a smooth surface for 
hysical situtations is always possible. Unlike apparent horizons, a 
eometric horizon does not depend on a chosen foliation in the 
pacetime.

Although this conjecture is also intended to apply in higher 
imensions [19], we are primarily interested in applications in 
D, and particularly in numerical computations. Indeed, the above 
onjectures are, in fact, a suite of conjectures (isolated vs dynam-
cal horizon; 4D vs higher dimensions; zeroth order invariants vs 
igher order differential invariants). In physical problems with dy-
amical evolution the horizon might not be unique, or may not 
xist at all, and amendments to the conjecture may be necessary 
e.g., it may be appropriate to replace the vanishing of invariants 

n the definition of a geometric horizon as an algebraically special 
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hypersurface, with the conditions that the magnitudes of certain
S P Is take their smallest values).

In a sense the conjecture refers to “peeling properties” (of the
geometrical curvature) close to the horizon. The curvature is of al-
gebraically special type II close to the horizon but it is plausible
that, as gravitational wave modes (of algebraic types III and N) fall
off more quickly to infinity, the horizon eventually settles down to
be type D under some reasonable asymptotic conditions.

5. Discussion

The question of whether these definitions and conjectures are
useful will have to be further evaluated. Although we have at-
tempted to support the conjectures with analytical results and
practical examples (also see [18]), further work is required and
perhaps additional refinement of the conjectures will be necessary.
In particular, it is of primary importance to study geometric hori-
zons numerically in 4D in physically relevant asymmetric collapse
and black hole coalescences.

Dynamical horizons: The conjecture is intended to apply to dy-
namical horizons. It is much more difficult to study dynamical
horizons, but let us discuss some preliminary encouraging results
[18].

Let us first consider the imploding spherically symmetric metric
in advanced coordinates [14]:

ds2 = −e2β(v,r)
(

1 − 2m(v, r)

r

)
dv2 + 2eβ(v,r)dvdr + r2d�2

where m(v, r) is the mass function and β(v, r) is an arbitrary func-
tion. It is known that the unique spherically symmetric FOTH is
given by the surface r − 2m(v, r) = 0, which is expansion-free.

Using the NP formalism, the Riemann tensor for any spherically
symmetric black hole solution is found to be of type II/D on the
horizon; i.e., at the algebraic level the Ricci tensor always detects
the horizon [18]. However, the covariant derivatives of Ricci and
Weyl will generally be of type I. Note that for this class of metrics
the Ricci tensor cannot be globally type D unless m,v = 0, in which
case the horizon is isolated.

Let us assume that m,v �= 0 and consider dynamical horizons.
Since no field equations have been imposed, we need additional
conditions. For the class of spherically symmetric metrics admit-
ting a geodesic-lined horizon which is a shear-free MTT [2], with
the additional condition that the frame vectors normal to the sur-
face are geodesics, requires that the metric function β satisfies
β,v = 0 [18]. It can then be shown that the Riemann tensor and
its covariant derivatives for any spherically symmetric black hole
solution with β,v = 0 are of type II/D on the horizon [18]. Hence
the imploding exact Vaidya solution and the class of exact Tolman–
Bondi solutions admitting MTTs [8] satisfy the type II/D conditions
on the horizon.

We next consider the Kastor–Traschen dynamical two-black-
hole solution [28], which describes two charge-equal-to-mass black
holes in a spacetime with a positive cosmological constant. The
spatial part of the metric is written in coordinates centered at
each of the black hole positions (ri = 0, i = 1, 2) and represents
a 3D infinite cylinder with 2D cross-sectional area of 4πm2

i , where
m1 and m2 are the black hole masses. When the sum of the black
hole masses does not exceed a critical mass, the black holes coa-
lesce and form a larger black hole.

At earliest times W1 → 0 as τ → −∞ (in these spacetimes
τ ∈ (−∞, 0)), and there are two 3D geometric horizons enclos-
ing the 2 black holes. It is found [29] that W is identically zero,
2
and the type II/D discriminant W1 vanishes on segments of the 
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symmetry-axis, at the black hole coordinate locations ri = 0 and
on an additional “dynamical” 2D (cylindrical) surface around the
symmetry-axis (this 2D surface appears concurrently with the two
3D black hole horizons in the center of mass plane). At the earlier
stages of the coalescence the 2D surface has a finite cross-sectional
radius (from the symmetry-axis), but at later stages this surface
expands as the two black holes move toward one another. There
is a measure of the black hole separation that can be introduced
such that as τ → 0− this measure approaches zero as the two
black holes merge [29] and the 2D surface forms around the two
black holes, so that it is possible to identify the location of a geo-
metric horizon in the dynamical regime. As τ → 0− , W1 → 0 and
in the quasi-stationary regime there will be a single 3D horizon;
after merger the spacetime eventually settles down to a type D
Reissner–Nordstrom–de Sitter black hole of mass m1 + m2 (which
is known to have a 3D geometric horizon [19]).

In addition, it is found that there are 3D surfaces located at a
finite distance from the axis of symmetry for which the type II/D
discriminant for the trace-less Ricci tensor vanishes, and where
the Ricci tensor is consequently of type II/D. There is also numer-
ical evidence for a minimal 3D geometric surface evolving in time
where the invariant W1 locally takes on a constant non-zero min-
imum value. These results are suggestive and lend support for the
existence of a geometric horizon in the dynamical regime in these
exact spacetimes, but further analysis is necessary which will be
presented in the future.

Computability: The calculation of gravitational wave signals in the
theoretical modelling of 4D sources in the framework of GR is well
understood [30]. In higher dimensions, numerical simulations of
rapidly spinning objects have been studied [31]. Of course, if our
ultimate aim is to provide potentially useful results for numerical
relativists, computability is an important issue. In this regard us-
ing Cartan invariants in the NP approach is certainly an advantage.
Indeed, we have already used the NP approach to address certain
problems, proving its utility, and we aim to develop this further
in future research [18]. As an illustration, in the 4D Kerr-NUT-
AdS metric [14] the cohomogeneity is 2D, and the Page–Shoom
invariant W produces a degree eight, first order S P I that detects
the horizon [17]. On the other hand, the two NP spin coefficients
(Cartan scalars) ρ and μ, vanish on the event horizon, which also
implies that the first covariant derivative of the Weyl spinor is of
type D on the event horizon. These Cartan invariants are easier to
compute than the related SPIs [19].

Acknowledgements

This work was supported through NSERC (A.A.C.), NSERC Dis-
covery Grant 261429-2013 (A.A.S.), the AARMS collaborative re-
search group (A.A.S.), and the Research Council of Norway, Topp-
forsk grant no. 250367: Pseudo-Riemannian Geometry and Polyno-
mial Curvature Invariants: Classification, Characterisation and Ap-
plications (D.D.M.). GRTensorII was used in some of our calcula-
tions. We also would like to thank Ivan Booth, Kayll Lake and Mal-
colm MacCallum for discussions at the early stages of this work.

References

[1] A. Ashtekar, B. Krishnan, Phys. Rev. Lett. 89 (2002) 261101;
A. Ashtekar, B. Krishnan, Phys. Rev. D 68 (2003) 104030; see also, Living Rev
Relativ. 7 (2004) 10, http://www.livingreviews.org/lrr-2004-10.

[2] J.M.M. Senovilla, Int. J. Mod. Phys. D 20 (2011) 21392168, arXiv:1107.1344.
[3] P.C. Vaidya, Proc. Indian Acad. Sci. A 33 (1951) 264; reprinted Gen. Relativ

Gravit. 31 (1999) 119.

[4] W.B. Bonnor, P.C. Vaidya, Gen. Relativ. Gravit. 1 (1970) 127.
[5] A. Ashtekar, G.J. Galloway, Adv. Theor. Math. Phys. 9 (2005) 1.

NOLOGIES____________________________

http://refhub.elsevier.com/S0370-2693(17)30354-4/bib41736874656B61724B726973686E616Es1
http://www.livingreviews.org/lrr-2004-10
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib53656E6F76s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib566169647961s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib566169647961s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib426F6E6E6F72566169647961s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib414732303035s1


[1
[1

[1

[1

[1

[1

[1
[1
[1

[1

[2
[2
[2

[2

[2

[2
[2

[2
[2
[2

[3

[3

64 General Relativity and Cosmology

_

[6] N. Cipriani, J.M.M. Senovilla, J. Van der Veken, Umbilical properties of spacelike 
co-dimension two submanifolds, arXiv:1604.06375, 2016.

[7] B.P. Abbott, et al., LIGO Scientific Collaboration Virgo Collaboration, Observation 
of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 
(2016) 061102, arXiv:1606.04856.

[8] I. Booth, Can. J. Phys. 83 (2005) 1073, arXiv:gr-qc/0508107.
[9] A. Coley, R. Milson, V. Pravda, A. Pravdova, Class. Quantum Gravity 21 (2004) 

L35, arXiv:gr-qc/0401008;
A. Coley, R. Milson, V. Pravda, A. Pravdova, Class. Quantum Gravity 21 (2004) 
5519, arXiv:gr-qc/0410070.

0] A. Coley, S. Hervik, Class. Quantum Gravity 27 (2010) 015002, arXiv:0909.1160.
1] A. Coley, S. Hervik, N. Pelavas, Class. Quantum Gravity 26 (2009) 025013, 

arXiv:0901.0791.
2] A. Coley, S. Hervik, Gen. Relativ. Gravit. 43 (2011) 2199; see also arXiv:

1011.2175.
3] R. Emparan, H.S. Reall, Phys. Rev. Lett. 88 (2002) 101101;

R. Emparan, H.S. Reall, Living Rev. Relativ. 11 (2008) 6.
4] H. Stephani, D. Kramer, M.A.H. MacCallum, C.A. Hoenselaers, E. Herlt, Exact 

Solutions of Einstein’s Field Equations, second edition, Cambridge University 
Press, Cambridge, 2003.

5] A. Coley, S. Hervik, N. Pelavas, Class. Quantum Gravity 27 (2010) 102001, arXiv:
1003.2373.

6] M. Abdelqader, K. Lake, Phys. Rev. D 91 (2015) 084017, arXiv:1412.8757.
7] D.N. Page, A.A. Shoom, Phys. Rev. Lett. 114 (2015) 141102, arXiv:1501.03510.
8] A.A. Coley, D.D. McNutt, Identification of black hole horizons using discrimi-

nating scalar curvature invariants, preprint, 2017.
W
___________________________WORLD TECHN
9] D. Brooks, P. Chavy-Waddy, A. Coley, A. Forget, D. Gregoris, M.A.H. MacCallum, 
D. McNutt, Cartan Invariants as Event Horizon Detectors, preprint, 2016;
A.A. Coley, D.D. McNutt, Class. Quantum Gravity 34 (2016) 035008, arXiv:
1704.03055.

0] A. Coley, N. Pelavas, Gen. Relativ. Gravit. 38 (2006) 445.
1] J. Isenberg, V. Moncrief, Class. Quantum Gravity 9 (1992) 1683.
2] A. Ashtekar, C. Beetle, J. Lewandowski, Class. Quantum Gravity 19 (2002) 1195, 

arXiv:gr-qc/0111067.
3] J. Lewandowski, T. Pawlowski, Class. Quantum Gravity 22 (2005) 1573, arXiv:gr-

qc/0410146.
4] P.P. Avelino, A.J.S. Hamilton, C.A.R. Herdeiro, M. Zilhao, Phys. Rev. D 84 (2011) 

024019, arXiv:1105.4434 [gr-qc].
5] E. Poisson, W. Israel, Phys. Rev. D 41 (1990) 1796.
6] A. Ori, Phys. Rev. Lett. 67 (1991) 789;

A. Ori, Phys. Rev. Lett. 68 (1992) 2117.
7] D. Marolf, A. Ori, Phys. Rev. D 86 (2012) 124026.
8] D. Kastor, J. Traschen, Phys. Rev. D 47 (1993) 5370.
9] A.A. Coley, D.D. McNutt, A.A. Shoom, Geometric horizons in the Kastor–

Traschen solutions, 2017, in preparation.
0] J. Thornburg, Living Rev. Relativ. 10 (2007) 3, http://www.livingreviews.org/

lrr-2007-3.
1] W.G. Cook, U. Sperhake, Gravitational wave extraction in higher dimensional 

numerical relativity using the Weyl tensor, arXiv:1609.01292.
T
OLOGIES____________________________

http://refhub.elsevier.com/S0370-2693(17)30354-4/bib556D62696C6963616Cs1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib556D62696C6963616Cs1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4C49474Fs1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4C49474Fs1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4C49474Fs1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib426F6F746832303035s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib636C617373s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib636C617373s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib636C617373s2
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib636C617373s2
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4249564543544F52s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib696E76s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib696E76s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4348s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4348s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib524252s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib524252s2
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib6B72616D6572s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib6B72616D6572s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib6B72616D6572s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib696E76686967686572s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib696E76686967686572s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib416264656C71616465724C616B6532303135s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib5061676553686F6F6D32303135s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib47414E47s2
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib47414E47s2
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib50656C61766173s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4973656E62657267s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib41736874656B6172s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib41736874656B6172s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4C6577616E646F77736B69s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4C6577616E646F77736B69s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4D617373496E666C6174696F6Es1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4D617373496E666C6174696F6Es1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib506F6973736F6E49737261656Cs1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4F7269s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4F7269s2
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4D61726F6C664F7269s1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib4B54s1
http://www.livingreviews.org/lrr-2007-3
http://www.livingreviews.org/lrr-2007-3
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib636F6F6Bs1
http://refhub.elsevier.com/S0370-2693(17)30354-4/bib636F6F6Bs1


G
b

N
A

a

E

1

t
e
e
a

T

w
l
p
n

η

f
t
α

a

_

ravitational instabilities of the cosmic neutrino 
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We argue that a cosmic neutrino background that carries non-zero lepton charge develops gravitational
instabilities. Fundamentally, these instabilities are related to the mixed gravity-lepton number anomaly.
We have explicitly computed the gravitational Chern–Simons term which is generated quantum-
mechanically in the effective action in the presence of a lepton number asymmetric neutrino background.
The induced Chern–Simons term has a twofold effect: (i) gravitational waves propagating in such
a neutrino background exhibit birefringent behaviour leading to an enhancement/suppression of the
gravitational wave amplitudes depending on the polarisation, where the magnitude of this effect is
related to the size of the lepton asymmetry; (ii) Negative energy graviton modes are induced in the
high frequency regime, which leads to very fast vacuum decay producing, e.g., positive energy photons
and negative energy gravitons. From the constraint on the present radiation energy density, we obtain an
interesting bound on the lepton asymmetry of the universe.
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. Introduction

Along with the Cosmic Microwave Background radiation (CMB),
he existence of the Cosmic Neutrino Background (CνB) is an in-
scapable prediction of the standard hot big bang cosmology (see 
.g. [1] for a review). It is assumed to be a highly homogeneous 
nd isotropic distribution of relic neutrinos with the temperature:

ν =
(

4

11

) 1
3

Tγ ≈ 1.945 K , (1)

here Tγ = 2.725 K is the temperature of the CMB today. Un-
ike the CMB though, the CνB is extremely hard to detect and its 
roperties are largely unknown. Namely, the CνB may exhibit a 
eutrino–antineutrino asymmetry

να = nνα − n̄να

nγ
= π2

12ζ(3)

(
ξα + ξ3

α

π2

)
, (2)

or each neutrino flavour α = e, μ, τ . Here ξα = μα/T is 
he degeneracy parameter, μα being the chemical potential for 
-neutrinos. In fact, such an asymmetry is generically expected 
* Corresponding author.
E-mail addresses: neil.barrie@sydney.edu.au (N.D. Barrie),

rchilk@physics.usyd.edu.au (A. Kobakhidze).
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o be of the order of the observed baryon–antibaryon asymmetry, 
B = (nB − n̄B)/nγ ∼ 10−10, due to the equilibration by sphalerons 
f lepton and baryon asymmetries in the very early universe. How-
ver, there are also models [2,3] which predict an asymmetry 
n the neutrino sector that are many orders of magnitude larger 
han ηB . If so, this would have interesting cosmological implica-
ions for the QCD phase transition [4] and/or large-scale magnetic 
elds [5].

The most stringent bound on the neutrino asymmetry comes 
rom the successful theory of big bang nucleosynthesis (BBN). BBN 
rimarily constrains the electron neutrino asymmetry. However, 
his bound applies to all flavours, since neutrino oscillations below 
10 MeV are sizeable enough to lead to an approximate flavour

quilibrium before BBN, μe ≈ μμ ≈ μτ (≡ μν) [6–8].1 The updated 
nalysis presented in [9] leads to the following bound on the com-
on degeneracy parameter:

ξν |� 0.049 (3)

In this paper, we argue that the lepton asymmetry in the ac-
ive neutrino sector leads to gravitational instabilities. These insta-

ilities originate from the gravity-lepton number chiral quantum 

1 See, however, a recent analysis in [10], where a larger ηνμ,ντ asymmetry is 
ound to be allowed.
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Fig. 1. Parity violating contribution to the fermion propagator.

anomaly, which is present in the Standard Model when consider-
ing Majorana neutrinos. Indeed, in the case of Majorana neutrinos,
a non-zero lepton asymmetry for active neutrinos implies an im-
balance between neutrinos of left-handed chirality and antineutri-
nos of right-handed chirality which, as we demonstrate explicitly
below, leads to the inducement of the gravitational Chern–Simons
term in the effective action. This is analogous to the inducement
of Chern–Simons terms in gauge theories [11].

The induced Chern–Simons term causes birefringence of grav-
itational waves propagating in the lepton asymmetric neutrino
background, which can be sizeable for gravitational waves gen-
erated at very early times. More importantly, short-scale gravita-
tional fluctuations exhibit negative energy modes, which lead to a
rapid decay of the vacuum state, e.g., into negative energy graviton
and photons. Since the graviton energy is not bounded from below,
the phase space for this process is formally infinite, that is, the
instability is expected to develop very rapidly. Conservatively, we
introduce a comoving cut-off 
 and compute the spectrum of pro-
duced photons as a function of neutrino chemical potential. From
the constraint on the radiation energy density today, we then ob-
tain an interesting bound on the neutrino degeneracy parameter:

ξν � 2 · 10−41
(

Ta

1015 GeV

)4/3 (
Mp




)17/3

, (4)

provided that the lepton asymmetry has been generated above
T∗ � 440√

ξ

√
Mp/
 GeV (here Mp ≈ 2.4 · 1018 GeV is the reduced

Planck mass), where Ta is the temperature at which the asymme-
try is generated.

This paper is organised as follows; in Section 2 we describe
the calculation of the graviton polarisation tensor in the presence
of a lepton asymmetric CνB, and consider the associated effective
action. Section 3 illustrates the birefringent behaviour of gravita-
tional waves in such a background, while in Section 4 we derive
constraints on the CνB lepton asymmetry through the induced
gravitational instabilities, before concluding in Section 5.

2. Graviton polarisation tensor in the lepton asymmetric CνB

We calculate the inducement of the Chern–Simons like terms in
the effective graviton Lagrangian through the 1-loop graviton po-
larization diagram depicted in Fig. 1, influenced by a lepton asym-
metric neutrino background. The lepton asymmetry is enforced in
the Lagrangian through a chiral chemical potential Lμν = ν̄/bγ 5ν =
μνν̄γ0γ

5ν , for which we have considered the frame in which the
CνB is at rest (/b = μνγ0). The neutrino propagator is altered as
follows:

S(p) = i

/p − m − /bγ 5
= i

/p − m

∞∑
n=0

(
−i/bγ 5 i

/p − m

)n

∞∑

≡ S0(p) +

n=1

Sn(p) , (5)

____________________________WORLD TECH
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where S0(p) is the usual fermion propagator in vacuum. The above
modified neutrino propagator to first-order in μν is given by
S(p) ≈ S0(p) − iμν

i
/p−m γ0γ

5 i
/p−m . The higher order terms in bμ ,

or μ, are neglected because we are only interested in the linear
terms in bμ , which will result in a Chern–Simons like term. Tak-
ing this, and using the standard Feynman rules, we find that the
parity odd part of the full graviton polarization tensor is:

�μνρσ = −
∫

d4 p

(2π)4
(2p + k)ν(2p + k)σ

×
[

T r(γμS0(p + k)γρ S1(p))

+ T r(γρ S0(p)γμS1(p + k))

]
+ (μ ↔ ν) + (ρ ↔ σ) + (μ ↔ ν,ρ ↔ σ) . (6)

To evaluate the divergent loop integral in (6) we employ the di-
mensional regularization method (d = 4 − ε , ε → 0) and utilise the
relations given in Appendix A. We hence obtain:

�μνρσ = μν

8π2
kαεμρα0

1∫
0

dx

[
4π2λ2

M2

]ε

×
[

8x2(1 − x)2(1 − 2x)2 k2

M2
�(1 + ε)kνkσ

+ (24x2 − 44x + 18)�(ε − 1)M2ηνσ

− 16x2(1 − x)2�(ε)k2ηνσ

− (80x4 − 192x3 + 156x2 − 50x + 5)�(ε)kνkσ

]
(7)

+ (μ ↔ ν) + (ρ ↔ σ) + (μ ↔ ν,ρ ↔ σ) , (8)

where M2 = m2 − x(1 − x)k2 and the limit ε → 0 has been as-
sumed. In simplifying this result we find a divergent quantity of
the following form:

�
(div)
μνρσ = −1

ε

μν

2π2
kαεμρα0m2ηνσ

+ (μ ↔ ν) + (ρ ↔ σ) + (μ ↔ ν,ρ ↔ σ) , (9)

where γ is Euler’s constant. A straightforward inspection reveals
that this divergent term does not satisfy the gravitational Ward
identity, kν�

(div)
μνρσ 
= 0, and hence violates the gauge invariance of

the effective gravitational action. This has also been observed pre-
viously in a somewhat related calculation in Ref. [12]. The origin
of this violation is rooted in the method of dimensional regular-
ization, which violates Local Lorentz invariance explicitly through
the extrapolation to non-integer spacetime dimensions d = 4 − ε .
Therefore, following the standard lore, we introduce non-invariant
counter-terms to renormalise away this unphysical divergent term.
The polarisation tensor then takes the following simple form:

�μνρσ = μνεμρα0kα[kνkσ − k2ηνσ ]C(k2)

+ (μ ↔ ν) + (ρ ↔ σ) + (μ ↔ ν,ρ ↔ σ) , (10)

where

C(k2) = 1

192π2
− m2

16π2(k2)3/2[√ √ −1

( √
k2

)]

× k2 − 4m2 − k2 tan √

4m2 − k2
. (11)
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his further reduces to:

(k2) =
{− 1

1920π2
k2

m2 , if k2/m2 � 1
1

192π2 , if k2/m2 � 1
(12)

e wish to investigate the second of these two possible limiting 
ases, k2/m2

ν � 1. In this limit we obtain the following contribu-
ion to the graviton action,

ef f = − μν

192π2

∫
d4xεμρα0hμν∂α(�hρσ ηνσ − ∂ν∂σ hρσ )

= μν

48π2

∫
d4x K 0 , (13)

hich contains the same number of derivatives as the standard 
raviton kinetic term in the weak field approximation. In fact, 
0 is the linearised 0th component of the four dimensional Chern–

imons topological current:

β = εβαμν(�σ
αρ∂μ�

ρ
νσ − 2

3
�σ

αρ�
ρ
μλ�

λ
νσ ) . (14)

herefore, the presence of an asymmetry in the CνB replicates 
hern–Simons modified gravity:

C S =
∫

d4x (∂μθ)K μ =
∫

d4x θ(∗R R) , (15)

here ∂μθ = μν

48π2 .

. Gravitational wave propagation in asymmetric CνB

The Chern–Simons term in Eq. (13) is found to induce a bire-
ringence effect on the propagation of gravitational waves. The 
lanned gravitational wave detectors, such as eLISA, DECIGO and 
BO, can potentially measure the polarization of gravitational 
aves and hence this birefringence effect. With this in mind, we 

onsider the propagation of gravitational waves in a lepton asym-
etric background over cosmological distances. To this end we 

arametrise the gravitational waves as: hij = Ai j
a(η)

exp[−i(φ(η) −
 · x)], which can be decomposed into the two circularly polarised 
tates: eR

i j and eL
i j . These two possible circularly polarised states 

re defined as: eR
i j = 1√

2
(e+

i j + ie×
i j ) and eL

i j = 1√
2
(e+

i j − ie×
i j ), which 

atisfy niε
i jkeR,L

kl = iλR,L(e j
l )

R,L , where λR,L = ±1. The phase fac-
or λR,L leads to exponential suppression or enhancement of the 
eft and right circular polarisations of the propagating gravitational 

aves, the magnitude of which we shall now calculate.
From the equations of motion for the action S = S E H + Sef f [13]

e obtain:

iφR,L
,ηη + (φR,L

,η )2 +H,η +H2 − |k|2)
(

1 − λR,Lκθ,η

a2

)

= iλR,L |k|
a2

(θ,ηη − 2Hθ,η)(φR,L
,η − iH) . (16)

e will first solve the above equation, assuming propagation in 
he matter dominated epoch a(η) = a0η

2 = a0
1+z . The accumulated 

hase over the length of propagation, to first order in θ , is given 
y,

φ
R,L
mat = iλR,L |k|H0

1∫
η

[
1

4
θ,ηη − 1

η
θ,η

]
dη

η4
. (17)

n the case considered in this manuscript, we make the follow-( )

ng identification θ,η = a(η0)

a(η)

2
μ0

48π2 M2
p

, where μ0 = a(η)μν is the m

___________________________WORLD TECHN
T

resent neutrino chemical potential. For this lepton asymmetric 
νB,

φ
R,L
mat = −i

1

288π2

μν H0

M2
p

( |k|
1 GeV

)
(1 + z)4 . (18)

ence the ratio of the amplitudes of each polarisation is given by:

R

L
∝ e−2|�φ

R,L
mat | . (19)

Taking into account the current bounds on the CνB asymmetry 
arameter, ξ , we find |i�φR,L | � 10−87

( |k|
1 GeV

)
, for z ∼ 30. There-

ore, the accumulated phase difference for z ∼ 30 sources is too 
mall to be observable by any conceivable gravitational wave de-
ector.

The more interesting scenario to consider is the propagation of 
ravitational waves from sources in the very early in the universe. 
t early times the chemical potential would have been larger and 

he longer accumulated propagation time. Conceivably, any early 
niverse sources could provide constraints, if the different polar-

sations are measurable. Therefore, we now consider gravitational 
aves produced at very early times, during the radiation domi-
ated epoch after reheating. The accumulated phase now reads:

φ
R,L
rad = iλR,L

|k|
�r,0 H2

0

1∫
η

[
1

2
θ,ηη − 1

η
θ,η

]
dη

η2
, (20)

here �r,0 ∼ 9.2 · 10−5 is the radiation density parameter today. 
fter solving the integral we find:

φ
R,L
rad � −iλR,Lξν

( |k|
1 GeV

)(
Ts

1 TeV

)4

, (21)

here we have redefined the redshift in terms of the temperature 
t which the gravitational waves are produced, Ts , or when the 
symmetry is generated, whichever is lowest.

From Eq. (21), it can be seen that if an asymmetry in the CνB 
s present at early times, which equilibrium sphalerons transitions 

ay assure, then it is possible to get significant birefringent be-
aviour in the propagation of gravitational waves from primordial 
ources. This is dependent on the momenta |k| of the gravitational 
aves and size of the asymmetry.

. Induced ghost-like modes and vacuum decay

Another interesting consequence of the induced Chern–Simons 
erm in Eq. (13) is that short-scale gravitational fluctuations exhibit 
egative energy modes, which lead to a rapid decay of a vacuum 
tate e.g., into negative energy graviton and photons [14]. Since the 
raviton energy is not bounded from below, the phase space for 
his process is formally infinite [15,16], and as such will develop 
ery rapidly. We investigate the production of two photons and 
 negative energy graviton via this process, to obtain constraints 
n the neutrino asymmetry at early times. The relevant effective 

nteraction is of the form:

int ∼ 1

m∗

∫
d4xhcan

μν T μν (22)

= 1

m∗

∫
d4x

1

2
hcan Fμν F μν − hcan

μν F μα F ν
α ,

here the canonically normalised graviton field is: hcan
μν = mcanhcan

μν , 
ith √

|k|

can = Mp 1 + λR,L

amC S
, (23)
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where mC S is the analogous Chern–Simons mass scale:

mC S(t) = M2
p

μν
= M2

p

ξ T
= a(t)M2

p

μ0
. (24)

4.1. Photon energy spectrum from induced vacuum decay

To obtain a finite result for the decay rate we need to con-
strain the phase space. In the absence of a fundamental physical
reason for such a truncation, we, following [15,16], simply cut-off
the three momenta at |k|max = 
. In the analysis that follows, we
consider decays into this mode as it will have the largest contri-
bution to the energy density of the generated photons. In addition,
we take the reasonable approximation:

mcan �
√ |k|μν

a
, (25)

and consider the dynamics of our scenario after reheating and
prior to BBN, when the universe is radiation dominated and
evolves as follows,

a(t) = a0
√

t =
√

2�
1/2
r,0 H0t , (26)

where �r,0 ∼ 9.2 · 10−5 is the radiation density parameter today.
The time at which this ghost term is no longer present will be

defined as t∗ and can be found in terms of the scale factor:

1 � 


a(t∗)mC S(t∗)
⇒ a(t∗) �

√
μ0


M2
p

or a(t∗) � ξν T∗

M2

p
, (27)

where T∗ is the temperature at which the ghost terms stop con-
tributing.

This fixes the time at which the ghost modes no longer ex-
ist, and decay of the vacuum ceases. We can reinterpret this as
a temperature, so that it is possible to associate this with the
maximal reheating temperature, and also ensure it does not have
adverse implications on BBN. If we assume that the asymmetry is
present/produced during the reheating epoch, and prior to BBN
the scale factor has a 1

T dependence, if ignoring the decoupling of
radiation degrees of freedom. The scale factor takes the following
form:

a(t) �
(

90�r,0

g∗π2

) 1
4

√
H0Mp

T
, (28)

where g∗ = 106.75. Equating Eq. (27) and (28) to find the temper-
ature at which this effect ends we find:

T∗ =
(√

90�r,0

g∗π2

H0M3
p

ξ2
ν

) 1
4 √

Mp




� 440√
ξν

GeV

√
Mp



. (29)

Given that the maximum reheating temperature is ∼ 1015 GeV
Eq. (29) implies we can constrain the production temperature of
neutrino asymmetries to be in the range ξν � 2 · 10−25 Mp



, with

smaller ξ ’s not generating ghost like modes after reheating. We
also assume here that ξ is approximately constant, and hence is
the same parameter currently constrained by BBN measurements
in the calculation of the lepton asymmetry stored in the CνB.

Next we compute the spectrum of photons generated by the in-
duced vacuum decay, and subsequently the energy density, which

can be constrained by experiment. It is given by:

____________________________WORLD TECH
T

1

a3

d

dt
(a3n(k, t)) = �δ

( |k|



− 1

)
, (30)

where n(k, t) is the number of photons per unit logarithmic wave
number |k| and � is the total decay width, which we take to ap-
proximately be:

� ∼ 
6

m2
can

= a(t)
6

|k|μν
= a(t)2
5

μ0
. (31)

Since the above decay rate is much faster than the expansion rate
of the universe, we may safely assume that the decay happens
instantaneously. Therefore, we fix the scale factor in Eq. (31) at
time ta , when the asymmetric background is first produced. We
then integrate Eq. (30) between the time ta and when the ghost
terms are no longer present t∗:

|k|n∗(|k|) ∼ a(t∗)2
�a

5�
1/2
r,0 H0

. (32)

Taking into account the dilution factor due to the expansion of the

universe since the end of photon production to today, 
(

a(t∗)
a0

)3 =
a(t∗)3, we obtain:

|k|n0(|k|) ∼ a(t∗)5
�a

5�
1/2
r,0 H0

. (33)

Therefore, the energy density for a given momenta k is:

dE

d3xd ln |k| ∼ |k|n0(|k|) ∼ ξ4T 5∗
10T 2

a

√
M3

p

H0

(



Mp

)11

. (34)

We can obtain a bound on the energy density of the produced
photons, through the observation that the universe is not radiation
dominated today:

dE

d3xd ln |k| � M2
p H2

0 . (35)

This means we get the following constraint on ξν , assuming the
asymmetry is generated above the characteristic temperature T∗
when requiring consistency with observation:

ξν � 2 · 10−41
(

Ta

1015 GeV

)4/3 (
Mp




)17/3

, (36)

for which it is assumed Ta � 440√
ξν

GeV
√

Mp



. Equivalently,

T∗ � 1023 GeV

(
Ta

1015 GeV

)−2/3 (



Mp

)17/6

. (37)

Thus we arrive at the conclusion that, unless 
 � Mp , the result-
ing photon energy density from the induced vacuum decay can
hardly be accommodated with observation. Substituting the con-
straint in Eq. (36) into that for the asymmetry stored in the CνB
as a function of ξν , in Eq. (2), we find the following bound:

ην � 10−41
(

Ta

1015 GeV

)4/3 (
Mp




)17/3

. (38)

If we instead assume that Ta � 440√
ξν

GeV
√

Mp



, and hence vacuum

decay does not occur, then we get the following constraint on ην ,

ην � 0.033

(
2000 GeV

Ta

)2 Mp



(39)
where ην � 0.033 is the current upper limit from BBN constraints.
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. Conclusions

In this paper we have argued that the relic neutrino background 
ith non-zero lepton number exhibits gravitational instabilities. 

undamentally, these instabilities are related to the gravity-lepton 
umber mixed quantum anomaly. Indeed, in the relevant limit of 
anishing neutrino masses, we have explicitly calculated the parity 
dd part of the graviton polarization tensor in the presence of a 

epton asymmetric CνB, which replicates the gravitational Chern–
imons term in the effective action.

The induced Chern–Simons term leads to birefringent behaviour 
eading to an enhancement/suppression of the gravitational wave 
mplitudes depending on the polarisation. While this effect is neg-
igibly small for local sources, we demonstrate that it could be 
izeable for gravitational waves produced in very early universe, 
.g. during a first-order phase transition.

In addition to the above, we have also argued that short-scale 
ravitational fluctuations in the presence of an asymmetric CνB 
xhibit negative energy modes, which lead to a rapid decay of 
 vacuum state e.g., into negative energy graviton and photons. 
ince the graviton energy is not bounded from below, the phase 
pace for this process is formally infinite, that is the instability is 
xpected to develop very rapidly. From the constraint on the radi-
tion energy density today, we have obtained an interesting bound 
n the neutrino degeneracy parameter in Eq. (4).

We believe that the findings reported in this paper will prove 
o be useful for further understanding the properties of the CνB 
nd putting constraints on particle physics models with a lepton 
symmetry.
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ppendix A. Further details of calculations

Useful equations:

r(γμγαγργβγ 5) = −4iεμαρβ (40)

aking ε → 0:

(1 + ε)|ε→0 � 1, �(ε)|ε→0 � 1

ε
− γ ,

(ε − 1)|ε→0 � −1

ε
+ γ − 1 (41)

μνη
μν � 4 − 2ε (42)

4πλ2

2

]ε

|ε→0 � 1 + ε ln

(
4πλ2

2

)
(43)
M M
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Dimensional regularisation of loop integrals:∫
dN p

(2π)N

1

(p2 − m2)2
= − 1

16π2

[
4π2λ2

M2

]ε

�(ε) (44)

∫
dN p

(2π)N

1

(p2 − m2)3
= 1

32π2

[
4π2λ2

M2

]ε
�(1 + ε)

M2
(45)

∫
dN p

(2π)N

pμpν

(p2 − m2)2
= 1

32π2

[
4π2λ2

M2

]ε

M2�(ε − 1)gμν

(46)∫
dN p

(2π)N

pμpν

(p2 − m2)3
= − 1

64π2

[
4π2λ2

M2

]ε

�(ε)gμν (47)∫
dN p

(2π)N

pμpν pρ pσ

(p2 − m2)3

= 1

128π2

[
4π2λ2

M2

]ε

M2�(ε − 1)(gμν gρσ + gμσ gνρ

+ gμρ gνσ ) (48)
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Under gravity’s rainbow, we investigate its effects on the gravitational time advancement, which is a
natural consequence of measuring proper time span for a photon’s round trip. This time advancement
can be complementary to the time delay for testing the gravity’s rainbow, because they are sensitive to
different modified dispersion relations (MDRs). Its observability on ranging a spacecraft far from the Earth
by two radio and a laser links is estimated at superior conjunction (SC) and inferior conjunction (IC). We
find that (1) the IC is more favorable than the SC for measurement on the advancement caused by the
rainbow; (2) a specific type of MDR has a significantly larger effect on the advancement than others in
both SC and IC cases; and (3) a combination of available optical clocks and the realization of planetary
laser ranging in the future will benefit distinguishing the gravity’s rainbow from GR by measuring the
gravitational time advancement.
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1. Introduction

Einstein’s general relativity (GR) has been the most successful
theory of gravitation when it faces all of astronomical observations
and physical experiments [1,2]. However, it seems that GR might
be incomplete since it still cannot be rigorously unified with quan-
tum mechanics. If GR is indeed the classical limit of a theory of
quantum gravity, there should also have a semiclassical limit or
an effective field theory [3,4]. The leading order of such an effec-
tive theory can go back to GR and the next-to-leading-order might
phenomenologically have corrections depending on the Planck en-
ergy E p or the Planck length lp [5,6]. In the present work, we focus
on those corrections associated with E p , which can yield modified
dispersion relations (MDRs).

In order to incorporate MDRs into curved spacetime, an ap-
proach called gravity’s rainbow was proposed [7]. It is assumed that
the geometry of spacetime is also determined by the ratio of the
energy of a test particle to E p , which leads to a rainbow metric
Cosmology in the gravity’s rainbow scenario has been intensively
studied [8–19]. In the rainbow spacetime, black holes and neutron
stars [20–36], thermodynamics and Hawking radiation [37–49], its
quantum properties [50–54] and its application in modified grav-
* Corresponding author at: School of Astronomy and Space Science, Nanjing Uni-
versity, Nanjing 210093, China.

E-mail addresses: xmd@pmo.ac.cn (X.-M. Deng), yixie@nju.edu.cn (Y. Xie).
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ity [55–59] are also widely discussed. Dynamics of massive and
massless particles in the gravity’s rainbow is as well investigated
[60–63]. In [64], a proposal for testing gravity’s rainbow in the So-
lar System is raised and upper bounds on the parameters of the
rainbow functions are obtained based on the experiments on light
deflection, photon time delay, gravitational redshift and the weak
equivalence principle.

Recently, a new type observable of the Solar System experi-
ments, which is called gravitational time advancement, has been
proposed and studied [65,66]. The gravitational time advancement
is a natural consequence of a curved spacetime if an observer, who
is located at a stronger gravitational field, measures the proper
time span for the round trip of a photon passing through a weaker
field [65]. It was found [66] that dark energy and dark matter
can affect the gravitational time advancement, whose magnitude
is small but in principle observable.

In this work, as an extension of the previous works [65,66],
we will investigate the gravitational time advancement under the
gravity’s rainbow and examine its possible observables. In Sect. 2
the rainbow metric we adopt is briefly reviewed for complete-
ness. We detailedly investigate the gravitational time advancement
under this rainbow spacetime in Sect. 3, in which two generic con-

figurations for the observer and the turning point of the round 
trip of a photon are considered. Observability of the time advance-
ment within the rainbow scenario is discussed in Sect. 4. Finally, 
in Sect. 5, we summarize our results.
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. Rainbow spacetime

For the observations and experiments conducted in the So-
ar System, the dominance of the Sun ensures that a spherically 
ymmetric spacetime is a sufficiently good approximation. In the 
ramework of the gravity’s rainbow, the Sun’s Schwarzschild met-
ic is extended as [7]

s2 = −B(r)dt2 + A(r)dr2 + C(r)d�2, (1)

here r is the radial distance from the origin and d�2 = dθ2 +
in2 θdφ2 and the metric coefficients are

(r) = f (E)−2
(

1 − 2GM

r

)
, (2)

(r) = g(E)−2
(

1 − 2GM

r

)−1

, (3)

(r) = r2 g(E)−2. (4)

ere, f (E) and g(E) are the rainbow functions determined by 
DRs and their forms are based on phenomenological motivations:

1. Originated from loop quantum gravity and noncommutative 
spacetime, the rainbow functions are [5,67]

f (E/E p) = 1, g(E/E p) = √
1 − ηE/E p, (5)

where η is a model parameter. Following the notation of [64], 
we denote it as MDR1 for short.

2. In order to explain the hard spectra of gamma-ray bursts at 
cosmological distances, the rainbow functions are proposed to 
be [68]

f (E/E p) = eαE/E p − 1

αE/E p
, g(E/E p) = 1, (6)

where α is a model parameter. Following the notation of [64], 
we denote it as MDR2.

3. Providing a constant speed of light and a solution to the 
horizon problem [7], the rainbow functions are proposed to 
be [69]

f (E/E p) = g(E/E p) = 1

1 − λE/E p
, (7)

where λ is a model parameter. Following the notation of [64], 
we denote also it as MDR3.

Based on the rainbow metric (1) and MDRs (5)–(7), we can 
alculate the gravitational time advancement under the gravity’s 
ainbow.

. Gravitational time advancement under rainbow

The gravitational time delay is the fourth test of GR by measur-
ng the time delay between transmission of radar pulses towards 
ither Venus or Mercury and detection of the echoes [70]. This de-
ay is caused by the dependence of the (average) speed of a light 
ay on the strength of the gravitational potential along its path. 
owever, if we consider that an observer is located at a place 

loser to the Sun and the turning point of the round trip of the 
ight ray is farther to the Sun, then measurement of the proper 
ime span of the light’s round trip can give the gravitational time 
dvancement in GR [65] and in the presence of dark energy and 

ark matter [66].

___________________________WORLD TECHN
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For a photon moving in the gravity’s rainbow spacetime (1), its 
ull worldline leads to [71]

= −B(r)ṫ2 + A(r)ṙ2 + C(r)φ̇2, (8)

here the dot mean derivative against an affine parameter. Be-
ause of the spherical symmetry of the gravitational field, the orbit 
f the photon is confined to the equatorial plane θ = π/2. Along 
he light trajectory, we have two conserved quantities [71]:

= B(r)ṫ and L = C(r)φ̇. (9)

e can have [71]

φ

r
= ± 1

C(r)

[
1

A(r)B(r)

(
1

b2
− B(r)

C(r)

)]−1/2

, (10)

here b ≡L/E . At the closest approach d, dr/dφ = 0 gives

=
√

C(d)

B(d)
. (11)

hen, the relationship between t and r for light can be obtained 
s [71]

t

r
= ±1

b

[
B(r)

A(r)

(
1

b2
− B(r)

C(r)

)]−1/2

, (12)

hich leads to a generic expression for the time span of a photon 
rom d to r under the gravity’s rainbow as [71,64]

(r,d) ≡
r∫

d

1

b

[
B(r)

A(r)

(
1

b2
− B(r)

C(r)

)]−1/2

dr

= f (E)

g(E)

[√
r2 − d2 + GM

√
r − d

r + d

+ 2GM ln

(
r + √

r2 − d2

d

)]
+O(G2). (13)

ince there is a plus sign in the front of the logarithmic correction 
n Eq. (13), the photon is always delayed with respect to the one 
n absence of the Sun, i.e., f (E)[g(E)]−1

√
r2 − d2. When f (E) =

(E), Eq. (13) can effectively return to the one in GR [71]. It also 
eans that the gravity’s rainbow with MDR3 does not affect the 

ravitational time delay [64].
Now, we consider two points A and B in the spacetime (1). Ei-

her A or B can be set as the location of the observer and the 
ther will be the location of the turning point of the round trip of 
 photon. Without loss of generality, we assume rA is always larger 
han rB , i.e. rA > rB , where rA and rB are respectively the radial co-
rdinates of the points A and B. There are two cases: (i) as seen 
rom the point B, the point A is on the opposite side of the Sun, 

hich is denoted as “A-�-B”, and (ii) the points A and B are on the 
ame side of the Sun, denoted as “A-B-�”. See Fig. 1 for details.

.1. A-�-B: opposite sides case

According to Eq. (13), the total coordinate time required for the 
ime duration of a photon travelling from the point A to the point 
 and back to A is given by

t A�B = 2t(rA,d) + 2t(rB ,d)

f (E)
[ √ √
=
g(E)

2 r2
A − d2 + 2 r2

B − d2
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Fig. 1. Schematic diagram (not to scale) of configurations “A-�-B” and “A-B-�”.

+2GM

√
rA − d

rA + d
+ 2GM

√
rB − d

rB + d

+4GM ln

( rA +
√

r2
A − d2

d

)

+4GM ln

( rB +
√

r2
B − d2

d

)]
+O(G2), (14)

and its proper time span measured by an observer at the point A
is

	τA�B = 1

f (E)

(
1 − GM

rA

)
	t A�B

= 1

g(E)

[
2
√

r2
A − d2 + 2

√
r2

B − d2

+ 2GM

√
rA − d

rA + d
+ 2GM

√
rB − d

rB + d

+ 4GM ln

( rA +
√

r2
A − d2

d

)

+ 4GM ln

( rB +
√

r2
B − d2

d

)

− 2GM

√
r2

A − d2

rA
− 2GM

√
r2

B − d2

rA

]

+O(G2). (15)

The signal takes more time for the round trip than the one in ab-
sence of the Sun, i.e. 	τA�B(M = 0), and its delay is positive for
rA > rB ≥ d. Unlike the case of coordinate time span (14) which
is immune to MDR3, the proper time span under the gravity’s
rainbow (15) depends only on the rainbow function g(E), which
means that it cannot be influenced by MDR2.

Nevertheless, if the observer is located at the point B which is
closer to the Sun than the point A, the coordinate time delay for

the round trip from B to A and back to B will remain the same as 

____________________________WORLD TECH
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Table 1
Detectability on MDRs for gravitational time delay and advancement.

MDR Delay Advancement

1 Yes Yes
2 Yes No
3 No Yes

Eq. (14) but the proper time span measured by the observer at B
will become

	τA�B = 1

f (E)

(
1 − GM

rB

)
	t A�B

= 1

g(E)

[
2
√

r2
A − d2 + 2

√
r2

B − d2

+ 2GM

√
rA − d

rA + d
+ 2GM

√
rB − d

rB + d

+ 4GM ln

( rA +
√

r2
A − d2

d

)

+ 4GM ln

( rB +
√

r2
B − d2

d

)

− 2GM

√
r2

A − d2

rB
− 2GM

√
r2

B − d2

rB

]

+O(G2). (16)

Since the last two terms in Eq. (16) dominate those terms pro-
portional to GM due to their dependence of r−1

B , this proper time
span can be effectively decreased and even be less than the proper
time span in the absence of the Sun, i.e. 	τA�B(M = 0), if rA

is sufficiently larger than rB by a specific value depending on rB

and d. This effect is the gravitational time advancement (negative
time delay) under the gravity’s rainbow, which is caused by the
fact that clocks run differently at different positions in the gravi-
tational field [65]. When gravity’s rainbow vanishes, i.e., g(E) = 1
our result (16) can return to the one in GR given by [65].

If we consider the configuration of superior conjunction (SC)
that the points A and B are on the opposite sides of the Sun and
rA > rB � d which might happen in radio tracking a spacecraft, the
gravitational time advancement (16) can be reduced to a simpler
form as

	τ SC
A�B = 1

g(E)

[
2(rA + rB) + 2GM + 4GM ln

4rArB

d2

− 2GM
rA

rB

]
+O

(
G2,

d

rA
,

d

rB

)
. (17)

We can see that, from Eqs. (16) and (17), MDR1 and MDR3
can affect the gravitational time advancement but MDR2 cannot.
If η > 0 and g(E) < 1, MDR1 can amplify the advancement and
make it larger than the one in GR. On the contrary to the behav-
ior of MDR1, MDR3 can make the advancement smaller than the
one in GR when λ > 0 and g(E) > 1. However, the time delay (14)
cannot distinguish MDR3 from the others. It suggests that mea-
surements on the gravitational time delay and advancement can
be complementary to each other for constraining MDRs (see Ta-

ble 1 for a summary).
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.2. A-B-�: the same side case

If the points A and B are on the same side of the Sun and 
A > rB , the coordinate time span for a photon travelling from A 
o B and back to A can be worked out based on Eq. (13) as

t AB� = 2t(rA,d) − 2t(rB ,d)

= f (E)

g(E)

[
2
√

r2
A − d2 − 2

√
r2

B − d2

+ 2GM

√
rA − d

rA + d
− 2GM

√
rB − d

rB + d

+ 4GM ln

( rA +
√

r2
A − d2

d

)

− 4GM ln

( rB +
√

r2
B − d2

d

)]
+O(G2), (18)

here the minus sign on the right hand side at the first line is 
hysically caused by such a configuration. When an observer is at 
he point A, the measured proper time span is

τAB� = 1

f (E)

(
1 − GM

rA

)
	t AB�

= 1

g(E)

[
2
√

r2
A − d2 − 2

√
r2

B − d2

+ 2GM

√
rA − d

rA + d
− 2GM

√
rB − d

rB + d

+ 4GM ln

( rA +
√

r2
A − d2

d

)

− 4GM ln

( rB +
√

r2
B − d2

d

)

− 2GM

√
r2

A − d2

rA
+ 2GM

√
r2

B − d2

rA

]
+O(G2). (19)

ike one of the A-�-B cases that the observer is at the point A 
see Eq. (15)], the signal takes more time for the round trip and 
he delay is positive for rA > rB ≥ d.

If an observer in the A-B-� is at the point B instead of A, the 
oordinate time delay for the round trip from B to A and back to B 
s the same as Eq. (18) and the proper time span measured by the 
bserver at B reads as

τAB� = 1

f (E)

(
1 − GM

rB

)
	t AB�

= 1

g(E)

[
2
√

r2
A − d2 − 2

√
r2

B − d2

+ 2GM

√
rA − d

rA + d
− 2GM

√
rB − d

rB + d

+ 4GM ln

( rA +
√

r2
A − d2

d

)
( rB +

√
r2

B − d2 )

− 4GM ln

d
In
r
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− 2GM

√
r2

A − d2

rB
+ 2GM

√
r2

B − d2

rB

]
+O(G2). (20)

ike the situation of Eq. (16) for A-�-B, those terms depending 
n r−1

B dominate others proportional to GM in the above equation 
o that this proper time span can be smaller than the one in the 
bsence of the Sun if rA is sufficiently larger than rB . It can be 
asily checked that, when we consider a special case that rA = rB +
R , 	R � rB , d = 0 and g(E) = 1, Eq. (20) can give the equation 

or the “small distance travel” in GR discussed in [65].
Another interesting case, which was not discussed in [65,66], is 

he configuration of inferior conjunction (IC) of A-B-� where rA >

B � d so that the gravitational time advancement (20) becomes 
o

τ IC
AB� = 1

g(E)

[
2(rA − rB) + 2GM + 4GM ln

rA

rB

− 2GM
rA

rB

]
+O

(
G2,

d

rA
,

d

rB

)
. (21)

nlike the case of small distance travel that rA is comparable with 
B , rA in the IC condition of Eq. (21) can be much larger than rB , 
hich can be used to describe ranging measurement on a space-

raft in deep space far beyond the Earth orbit.

. Observability of time advancement under gravity’s rainbow

After working out the equations for the gravitational time ad-
ancement under gravity’s rainbow, we discuss its observability in 
his section.

.1. A-�-B

In the A-�-B configuration, a SC condition is favorable for mea-
urement on the time advancement due to the smallness of d. Ac-
ording to Eq. (17), we can find that the time advancement caused 
y the gravity’s rainbow is given by

τ SC
A�B ≡ 	τ SC

A�B − 	τ SC
A�B

∣∣∣∣
M=0

, (22)

he time advancement in GR is

τ SC
A�B ≡ 	τ SC

A�B

∣∣∣∣
g=1

− 	τ SC
A�B

∣∣∣∣ g=1
M=0

, (23)

nd their relative deviation is defined as

SC
A�B ≡ δτ SC

A�B − δ̄τ SC
A�B

	τ SC
A�B

. (24)

ince the time advancement is defined as negative time delay, 
τ SC

A�B − δ̄τ SC
A�B > 0 means that the advancement caused by the 

ravity’s rainbow is smaller than the one in GR, and vice versa. 
SC
A�B represents the theoretical resolution for time measurement 
equired to distinguish the gravity’s rainbow from GR.

We consider a SC condition that an observer on the Earth with 
B = 1 au1 conducts two radio-tracking measurements on X-band 
7.2 GHz) and Ka-band (34.3 GHz) to range a spacecraft at a dis-
ance of 40 au from the Sun, rA = 40 au, which is close to the 

1 We use lower-case ‘au’ to represent the astronomical unit, according to 

ternational Astronomical Union 2012 Resolution B2: http://www.iau.org/static/

esolutions/IAU2012_English.pdf.
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Table 2
Estimation of observability on the gravitational time advancement in SC condition with links of X-band, Ka-band and visible laser where rA = 40 au, rB = 1 au and d = 1.5
R� . The parameters in the rainbow functions are taken as η = 1.3 × 1020 and λ = 8.5 × 1021 [64] and their uncertainties are set as 10%.

MDR Band Frequency (GHz) δτ SC
A�B (μs) δ̄τ SC

A�B (μs) δτ SC
A�B − δ̄τ SC

A�B (s) rSC
A�B

1 X 7.2 −88.5348375693597 ± (1.4 × 10−12) −88.5348375693464 −(1.4 ± 0.1) × 10−17 −(3.4 ± 0.3) × 10−22

1 Ka 34.3 −88.5348375694125 ± (6.7 × 10−12) ibid. −(6.7 ± 0.7) × 10−17 −(1.6 ± 0.2) × 10−21

1 Visible 6 × 105 −88.5348387388309 ± (1.16949 × 10−7) ibid. −(1.2 ± 0.1) × 10−12 −(2.9 ± 0.3) × 10−17

3 X 7.2 −88.534837568 ± (1.8 × 10−8) ibid. (1.8 ± 0.2) × 10−15 (4.5 ± 0.5) × 10−20

3 Ka 34.3 −88.534837561 ± (8.7 × 10−8) ibid. (8.7 ± 0.9) × 10−15 (2.1 ± 0.2) × 10−19

3 Visible 6 × 105 −88.534684637 ± (1.529 × 10−5) ibid. (1.5 ± 0.2) × 10−10 (3.7 ± 0.4) × 10−15

Table 3
Estimation of observability on the gravitational time advancement in IC condition with links of X-band, Ka-band and visible laser where rA = 40 au and rB = 1 au. The
parameters in the rainbow functions are taken as η = 1.3 × 1020 and λ = 8.5 × 1021 [64] and their uncertainties are set as 10%.

MDR Band Frequency (GHz) δτ IC
AB� (μs) δ̄τ IC

AB� (μs) δτ IC
AB� − δ̄τ IC

AB� (s) rIC
AB�

1 X 7.2 −311.4174782731487 ± (4.9 × 10−12) −311.4174782730994 −(4.9 ± 0.5) × 10−17 −(1.3 ± 0.1) × 10−21

1 Ka 34.3 −311.4174782733345 ± (2.35 × 10−11) ibid. −(2.4 ± 0.2) × 10−16 −(6.0 ± 0.6) × 10−21

1 Visible 6 × 105 −311.4174823867135 ± (4.11361 × 10−7) ibid. −(4.1 ± 0.4) × 10−12 −(1.0 ± 0.1) × 10−16

3 X 7.2 −311.41747826664 ± (6.4 × 10−10) ibid. (6.5 ± 0.7) × 10−15 (1.7 ± 0.2) × 10−19

3 Ka 34.3 −311.41747824234 ± (3.08 × 10−9) ibid. (3.1 ± 0.3) × 10−14 (7.9 ± 0.8) × 10−19
3 Visible 6 × 105 −311.41694033895 ± (5.37934 × 10−5) ibid. (5.4 ± 0.5) × 10−10 (1.4 ± 0.1) × 10−14
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semi-major axis of Pluto, and the closest approach of the radio sig-
nals is d = 1.5 R� where R� is radius of the Sun. Following a trend
of developing interplanetary laser ranging [72–74], we take a laser
link with 600 THz into account. The values of parameters η for
MDR1 (5) and λ for MDR3 (7) are respectively taken as 1.3 × 1020

and 8.5 × 1021 based on the results from the time delay and red-
shift experiments according to [64], because these measurements
are of the same kind we discuss here.

Our results of observability for this case are listed in Table 2.
It is found that, in this SC condition, the gravitational time ad-
vancements under the gravity’s rainbow and the one in GR can
reach about −88 microsecond (μs). With MDR1, the contribution
caused by the gravity’s rainbow in the time advancement ranges
from −1.4 × 10−17 s to −1.2 × 10−12 s, where the minus signs
mean MDR1 enlarge the time advancement in GR and the absolute
values depend on the frequency of ranging signal; and the time
resolution for distinguishing the gravity’s rainbow from GR needs
to be from −3.4 × 10−22 to −2.9 × 10−17. With MDR3, the con-
tribution caused by the gravity’s rainbow in the time advancement
has values from 1.8 × 10−15 s to 1.5 × 10−10 s, where the positive
values mean MDR3 lessen the time advancement in GR; and the
time resolution is required to be from 4.5 × 10−20 to 3.7 × 10−15.

It shows that, the time advancement caused by the gravity’s
rainbow with MDR3 has a bigger deviation from the one in GR
than the advancement due to MDR1 in such a SC case by nearly
2 orders of magnitude. It also suggests that if the planetary laser
ranging become available in the future, the measurement on the
gravitational advancement might be able to detect the gravity’s
rainbow and obtain its new constraints, given the fact that opti-
cal clocks on the ground have achieved the accuracy and stability
at the 10−18 level [75–77].

4.2. A-B-�
According to Eq. (21), the time advancement at IC condition

caused by the gravity’s rainbow in the A-B-� configuration is given
by

δτ IC
AB� ≡ 	τ IC

AB� − 	τ IC
AB�

∣∣∣∣
M=0

, (25)

the time advancement in GR is
IC IC

∣∣∣ IC
∣∣∣
δ̄τAB� ≡ 	τAB�∣

g=1
− 	τAB�∣ g=1

M=0

, (26)
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and their relative deviation is defined as

rIC
AB� ≡ δτ IC

AB� − δ̄τ IC
AB�

	τ IC
AB�

, (27)

which represents the time resolution required for distinguishing
the gravity’s rainbow from GR in such an IC condition.

We consider an IC condition that an observer is at rB = 1 au
who conducts two radio ranging measurements (X-band and Ka-
band) and a laser ranging (600 THz) on a spacecraft at rA = 40
au. Our results of observability for this case are listed in Table 3.
We find that, in this IC condition, the gravitational time advance-
ments under the gravity’s rainbow and the one in GR can reach
about −311 μs, which is nearly 3.5 times larger than those in the
SC condition we discuss before. It demonstrates that the IC con-
dition is more favorable than the SC condition for measurement
on the gravitational advancement. With MDR1, the contribution
caused by the gravity’s rainbow in the time advancement ranges
from −4.9 × 10−17 s to −4.1 × 10−12 s and the time resolu-
tion for distinguishing the gravity’s rainbow from GR needs to be
from −1.3 × 10−21 to −1.1 × 10−16, which also depend on the
frequency. With MDR3, the contribution caused by the gravity’s
rainbow in the time advancement has values from 6.5 × 10−15 s
to 5.4 × 10−10 s and the time resolution is required to be from
1.7 × 10−19 to 1.4 × 10−14.

Like the case of SC condition, it shows the time advancement
caused by the gravity’s rainbow with MDR3 has a larger deviation
from the one in GR than the advancement due to MDR1 in this
IC case by nearly 2 orders of magnitude. It also suggests that the
planetary laser ranging will benefit the detection on the gravity’s
rainbow in the future.

5. Conclusions

Under the gravity’s rainbow with three various MDRs, we in-
vestigate its effects on the gravitational time advancement. If an
observer measures the proper time span for the round trip of a
photon passing through a weaker gravitational field, then such a
time advancement will be a natural consequence. We find that this
time advancement can be complementary to the classical test of
Shapiro time delay because they are sensitive to different MDRs

(see Table 1).
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Considering ranging a spacecraft at a distance of Pluto from the 
arth, we estimate its observability on the time advancement un-
er SC and IC configurations (see Fig. 1). We also assume that two 
adio links (at X-band and Ka-band) and a laser link (600 THz) are 
sed in the ranging. It is found that (1) the IC configuration is more 

avorable for measuring the time advancement; and (2) the time 
dvancement caused by MDR3 is significantly larger than others 
see Tables 2 and 3 for details). We expect that, with a combina-
ion of optical clocks and planetary laser ranging, measurements 
n the gravitational time advancement will benefit detecting the 
ravity’s rainbow in the future.
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We study the production of spin 1/2 gravitinos in a thermal Universe. Taking into account supersymme-
try breaking due to the finite thermal energy density of the Universe, there is a large enhancement in
the cross section of production of these gravitino states. We consider gravitinos with zero temperature
masses of 0.1 eV, 1 keV, 100 GeV and 30 TeV as representative of gauge mediated, gravity mediated and
anomaly mediated supersymmetry breaking scenarios. We find that the abundance of gravitinos produced
in the early Universe is very high for gravitinos of mass 1 keV and 100 GeV. The gravitino abundances
can be sufficiently suppressed if the reheat temperature is less than 100 GeV and 4 × 104 GeV respec-
tively. However such low reheat temperatures will rule out many models of baryogenesis including those
via leptogenesis.
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1. Introduction

Local supersymmetry, or supergravity, gives us a massless
spin 2 particle that one can identify with the graviton, the in-
termediate boson for gravitational interactions. The superpartner
of the graviton is the massless gravitino with spin states ±3/2.
When supersymmetry breaks, the gravitino gains mass and spin
±1/2 states via a super-Higgs mechanism. The spin ±1/2 states of
the gravitino are often referred to as goldstino modes.

Gravitinos are produced in the early Universe either in the ra-
diation dominated Universe after reheating [1–17], or during stan-
dard (perturbative) reheating [15–20], by the scattering of ther-
malised inflaton decay products. Gravitinos can also be produced
during preheating [15,21–29] or via direct inflaton decay [30–33],
or during and after inflation in warm inflation scenarios [34,35].
As argued in Ref. [12], the gravitino production rate in supersym-
metric QCD via scattering at high temperature is proportional to

1

M2
P

(
1 +

m2
g̃

3m2
G̃

)
(1)

where MP � 2.4 × 1018 GeV is the reduced Planck mass, mg̃ is the
explicit supersymmetry breaking gluino mass and mG̃ is the grav-
* Corresponding author.
E-mail addresses: richaarya@prl.res.in, richa.arya@iitgn.ac.in (R. Arya),

nmahajan@prl.res.in (N. Mahajan), raghavan@prl.res.in (R. Rangarajan).

____________________________WORLD TECH
T
itino mass. The first term within the parentheses is associated with
spin 3/2 gravitino production while the second term is associated
with spin 1/2 gravitino production.

Excessive abundance of gravitinos creates cosmological prob-
lems. A very light (mG̃ � 1 MeV) and stable gravitino acts as an
additional relativistic degree of freedom during primordial nucle-
osynthesis and can affect the expansion rate and thereby the light
nuclear abundances (depending on its contribution to the effec-
tive relativistic degrees of freedom). For a stable gravitino of mass
greater than 1 keV, its energy density today turns out to be higher
than the critical density and it can overclose the Universe. A grav-
itino of mass between 100 GeV � mG̃ � 10 TeV decays into ener-
getic particles after nucleosynthesis which dissociate light nuclei
created during primordial nucleosynthesis. The extent of impact of
the gravitinos on the cosmology of our Universe depends directly
on its abundance.

The initial calculation of the gravitino abundance done in
Refs. [1–5] considered gravitino production in the radiation dom-
inated Universe after reheating for spin 3/2 states. It was found
that the abundance YG̃ ≡ nG̃/s, where nG̃ is the gravitino number
density and s is the entropy density, is proportional to the reheat
temperature Treh. This then gave an upper bound on the reheat
temperature. Many subsequent estimates of the gravitino abun-

dance created in the radiation dominated Universe after reheating 
considered different channels for gravitino decay as a function of 
the gravitino mass and obtained associated upper bounds on the 
abundance or reheat temperature [6,16]. Again, these works also 
considered only spin 3/2 states. As mentioned in Ref. [16] consid-
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ring only the spin 3/2 states gives a conservative estimate of the 
ravitino abundance. Furthermore, for gravity mediated supersym-
etry breaking the second term in the parentheses in Eq. (1) is of 
(1) and so the abundance obtained is of the right order in this 

ase.
In the present work we study the production of spin 1/2 graviti-

os in the radiation dominated Universe after reheating. Spin 1/2 
ravitinos are associated with goldstino modes and, as we argue 
elow, their production cross section should not be Planck mass 
uppressed but instead suppressed by the supersymmetry break-
ng scale in the hidden sector. We then argue that the finite energy 
ensity of a thermal Universe also breaks supersymmetry, and in 
cenarios where interactions in the thermal bath are mediated by 
ight particles the finite energy density affects both the fermion–
oson mass squared splitting and the gravitino mass, and thus the 
oldstino production cross section.

In the standard picture of hidden sector supersymmetry break-
ng we have a hidden sector with fields [H], a visible sector with 
elds [V ] and a messenger sector that mediates the supersymme-

ry breaking with fields [X] with mass M X . Supersymmetry breaks 
n the hidden sector, say, by F-term breaking with 〈F H 〉 = f H . The 
oft supersymmetry breaking mass in the visible sector that gets 
enerated due to the interaction between the visible and hidden 
ectors mediated by the messenger sector is

soft ∼ 1

M X
〈F H 〉 . (2)

or phenomenological reasons, we require msoft ∼ 100 GeV. This 
hen, depending upon the mediation mechanism, sets the scale for 
F H 〉.

The goldstino coupling to matter will be proportional to the 
ass squared splitting between particles and their superpartners. 

rom Eq. (1) the production rate for spin 1/2 gravitino states is

s ∼ 1

M2
P

m2
g̃

m2
G̃

(3)

∼ 1

M2
P

m2
soft

m2
G̃

(4)

∼ 1

M2
P

m2
soft

(M2
S/MP)2

∼ 1

M2
S

m2
soft

M2
S

(5)

here m2
soft is the mass squared splitting between superpartners 

hile M S = √〈F H 〉 is the scale of supersymmetry breaking. It 
an be further noted that the goldstino production rate above is 
ot Planck mass suppressed but suppressed by the supersymmetry 
reaking scale M S . The production rate goes to zero in the super-
ymmetric case.

It is known that supersymmetry is broken by non-zero temper-
ture T . It has also been shown that the effect of the non-zero 
emperature is to split the boson and fermion masses, with the 
plitting m2

soft,T ∼ g2T 2, where g is a generic coupling constant, 
hich we refer to as soft mass generation due to finite tempera-

ure effects. That supersymmetry is broken by finite temperature 
ffects can also be seen by the following argument: in the high 
emperature limit we know that the theory gets dimensionally re-
uced to a lower dimension. All the fermion Matsubara modes 
recall that there is no n = 0 mode for fermions) become heavy 
hile for bosons all modes become heavy except the n = 0 mode. 
hus, the low energy effective theory will only contain a bosonic t

___________________________WORLD TECHN
T

eld and no fermionic field, and therefore supersymmetry is bro-
en. Moreover in Refs. [36,37] it has been shown, by invoking a 
hermal superspace approach and applying it to systems of thermal 
elds, that supersymmetry is explicitly broken at finite tempera-

ure and that the thermal action is not invariant under thermal 
upersymmetry. Unlike in other works, we consider supersym-
etry breaking due to the finite energy density of the radiation 

ominated Universe, ρ = (π2/30)g∗T 4, where g∗ ∼ 228.75 is the 
ffective number of relativistic degrees of freedom.

Let us now consider the effect of having a finite energy den-
ity, ρ ∼ T 4. Consider three chiral superfields, S , � and Y having 
 coupling λS�Y , where λ is the coupling, � belongs to [V ] and 

could belong to [V ], [H] or [X]. We assume that S contributes 
o the radiation energy density of the Universe. In the superfield 
anguage, the four point amplitude �†�S† S reads (we have em-
loyed the off-diagonal component of the GRS propagator for Y
nd retained the external fields)

(4) = |λ|2�† S†
[∫

d4xd4x′d4θd4θ ′

1

�2 − m2
Y

δ(z − z′)
]
�S (6)

here z = (x, θ, θ̄ ) and δ(z − z′) = δ4(x − x′)δ2(θ − θ ′)δ2(θ̄ − θ̄ ′). 
n a thermal bath, the typical Y momentum q ∼ Q , i.e. there is 
 distribution peaked at Q ∼ T (or Q ∼ √

T mY ), for T � mY (for 
� mY ), which for simplicity we take to be δ(q − Q ). For T � mY

e then get A(4) ∼ |λ|2/m2
Y (�† S†�S), while for T � mY , we ob-

ain A(4) ∼ |λ|2/T 2( �† S†�S). This is equivalent to having a term 
n the effective Lagrangian as

eff = |λ|2
m2

Y , T 2
�† S†�S . (7)

ow we expand Leff in all powers of θ and θ̄ . The relevant θθ θ̄ θ̄

erm for us will be, in a thermal environment,

|λ|2
2
Y , T 2

〈S† S|θθ θ̄ θ̄ 〉thermalφ
†φ , (8)

here φ is the scalar component of �. The term 〈S† S|θθθ̄ θ̄ 〉thermal
bove is 〈i∂mψ̄S σ̄

mψS + s∗�s + F ∗
S F S 〉thermal. The first two terms 

an be identified with the kinetic energy terms in the Lagrangian 
or the fermionic and scalar components of the superfield S . 
F S |2 = |∂W /∂s|2 = V (s) and one may consider, say, a quartic po-
ential for s. Then 〈S† S|θθθ̄ θ̄ 〉thermal ∼ T 4. Therefore we obtain

2
soft ∼ |λ|2 T 4

m2
Y

for T � mY (9)

nd

2
soft ∼ |λ|2T 2 for T � mY . (10)

The above example can be suitably extended to vector superfields. 
lso, there will be, in general, more than one such contribution to 

he soft masses. We have chosen the simplest one to bring out the 
ssence of the argument.)

Comparing Eq. (9) and Eq. (2), the two forms are quite similar, 
nd when S belongs to, say, [H], and the amplitude is mediated 
y a heavy field it is quite natural to assume mY ∼ M X . In such a 
ase, it appears that the finite temperature effects essentially look 
ike an additional contribution to the F-term breaking. For f H � T 2

ne does not have any large temperature dependent contribution 
o the soft breaking masses, and therefore no enhanced contribu-

ion to goldstino couplings. A similar conclusion is reached if S is 
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one of the visible sector fields and the interaction between S and
� is mediated by a third visible sector field which is very mas-
sive. Refs. [20,38,39] also argue that finite temperature effects will
not lead to enhanced goldstino production as originally argued in
Ref. [40].

Now consider the case when the four point superfield ampli-
tude is mediated by a light Y superfield. This is quite reasonable
to expect since in thermal equilibrium different fields in the visible
sector, for example, � and S , can interact via, say, gauge/Yukawa
interactions such that the mediator is a massless/light field. In this
case, i.e. when the amplitude is mediated by the light field, the soft
supersymmetry breaking mass in Eq. (10) contributes to the scale
of the mass splitting between the bosonic and fermionic partners.

From the above discussion we observe that depending up on
the mass scale of the field that mediates the four point amplitude,
the finite temperature contribution to the soft breaking mass takes
the form

m2
soft ∼ 1

M2
X

( f 2
H + δ2T 4), mY ∼ M X � T (11)

where δ is some parameter, or

m2
soft ∼ 1

M2
X

f 2
H + δT 2, mY � T . (12)

Below we shall assume that S is one of the visible sector fields
and there is naturally a massless/light field that mediates the four
point amplitude, and therefore what is relevant is Eq. (12). We
would like to emphasize that this is exactly where we differ from
the usual treatment of finite temperature effects in the context of
gravitinos. Then in Eq. (3)

m2
g̃ → m2

g̃ − m2
g ∼ δ3T 2 + m2

0 , (13)

where mg is the gluon mass, δ3 is some parameter and m0 ∼
100 GeV represents the zero temperature mass splitting, while

mG̃ ∼ √
ρ/(

√
3M P ) + mG̃0

= δ′T 2/(
√

3M P ) + mG̃0 (14)

where mG̃0 is the zero temperature gravitino mass (which depends
on the supersymmetry breaking mechanism relevant at low tem-
peratures), and δ′ is another parameter. Then the factor in the
scattering rate in Eq. (4)

γ3 ≡ m2
soft

3m2
G̃

= δ3T 2 + m2
0

3[δ′T 2/(
√

3M P ) + mG̃0]2
. (15)

When δ3T 2 � m2
0 and δ′T 2/(

√
3M P ) � mG̃0

γ3 ≈ δ3T 2

(δ′T 2/M P )2
= δ3

δ′ 2

M2
P

T 2
(16)

which can be much larger than 1. This can be much larger than the
zero temperature limit m2

0/(3m2
G̃0

) in �s , and therefore necessitates
a fresh look at the calculation of the gravitino abundance. (It may
be noted, however, that our final results will depend only on the
zero temperature form of the gravitino mass.)

Unlike in the standard calculations of the gravitino abundance,
in our scenario gravitinos will be in thermal equilibrium in the
early Universe because of the enhanced scattering rates. The grav-
itinos decouple when they are relativistic, and hence they have
a large abundance as a hot relic. Below we shall consider grav-
itinos with zero temperature masses of 0.1 eV, 1 keV, 100 GeV,
30 TeV. Typically one can obtain such masses in gauge mediated
(0.1 eV, 1 keV), gravity mediated and anomaly mediated super-

symmetry breaking scenarios respectively. We find that the very 
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light gravitinos (mG̃0 = 0.1 eV) have �G̃ � 1, and hence will not
overclose the Universe. The very heavy gravitinos (mG̃0 = 30 TeV)
have a very large abundance but have a short lifetime and de-
cay before nucleosynthesis and do not greatly alter the cosmology
of the Universe. However, the gravitinos with mass ∼ 1 keV have
�G̃ ∼ 1, so can affect the cosmology of our Universe. We further
find that the abundance of mG̃0 = 100 GeV gravitinos is orders of
magnitude higher than the cosmological upper bound. The abun-
dances can be suppressed by considering a low reheat temperature
less than 100 GeV and 4 × 104 GeV for the 1 keV and 100 GeV
gravitinos respectively. Such low reheat temperatures will rule out
models of high scale baryogenesis including those via leptogenesis.
Very low scale baryogenesis scenarios, and electroweak baryogene-
sis and low scale leptogenesis models respectively will then be the
preferred mechanisms for generating the matter–antimatter asym-
metry of the Universe.

In an earlier work we had studied the production of spin 1/2
gravitinos in the presence of supersymmetric flat directions which
give mass to some gauge bosons, gauginos, and sfermions and had
found that there is resonant production of (spin 1/2) gravitinos
leading to an extremely large abundance which is orders of mag-
nitude larger than the cosmological bound [41]. Below we do not
consider the presence of supersymmetric flat directions.1

2. Gravitino production

As mentioned earlier, gravitinos are produced by the scatter-
ing of the thermalised decay products of the inflaton. The dif-
ferent processes that produce gravitinos are listed in Table 1 in
Refs. [5,11] and Table 4.3 of Ref. [45]. These processes include, for
example, g g̃ → gG̃ , q̃g → qG̃ , qq̄ → g̃G̃ , etc. Besides these scatter-
ing processes there are also annihilation processes, G̃ G̃ → γ γ and
G̃ G̃ → f f̄ , as we shall see below.

The thermally averaged cross section 〈�tot|v|〉 for the scattering
processes in Refs. [5,11] is given by [14]

〈�tot|v|〉 ≡ α

M2
P

= 1

M2
P

3π

16ζ(3)

3∑
i=1

[
1 + m2

i

3m2
G̃

]
ci g2

i ln

(
ki

gi

)
(17)

where i = 1, 2, 3 refers to the three gauge groups U (1)Y , SU (2)L

and SU (3)c respectively, gi(T ) are the gauge coupling con-
stants (evaluated at the most relevant temperature), and c1,2,3 =
11, 27, 72 and k1,2,3 = 1.266, 1.312, 1.271 are constants associated
with the gauge groups (see Table 1 of Ref. [17]). The above ex-
pression includes corrections to the cross section for gravitino
production obtained earlier in Refs. [12] and [16]. We have also
replaced the gaugino mass squared in the original expression with
m2

i = δi T 2 + m2
0 = m2

soft representing the difference in gaugino and
gauge boson masses squared. (In the current analysis we have ig-
nored the possibility of a Breit–Wigner resonance associated with
incoming particles of energy ∼ T and the intermediate supersym-
metric particle having a mass of O (T ). We hope to return to this
issue in a future publication.)

The rate of production of gravitinos for the processes listed in
Table 1 of [5,11] is given by

�s = n〈�tot|v|〉

1 If the supersymmetric flat direction gives mass to all gauge bosons it delays
thermalization of the inflaton decay products leading to suppressed gravitino pro-

duction, as discussed in Refs. [42–44]. In these works, the thermal energy density 
contribution to supersymmetry breaking was not included.

NOLOGIES____________________________



w
a
m

�

W
c
s
a

c
b

σ

w√

σ

w

t

σ

a

σ

w

b

σ

w
s
t
σ

i

〈
w√

�

w

�

F
s

�

F
t

3

p
f
d
c
e
p
d
t
T
p

c
e
t

3

R
a
t

R
�

l

R
�

R
v

d

Y

F

80 General Relativity and Cosmology

_

W

here n = (ζ(3)/π2)T 3 is the number density of the scatterers, 
nd the Riemann zeta function ζ(3) = 1.2020.... Then, taking all 
i = m3, we get

s = 3T 3

16π M2
P

(
1 + m2

3

3mG̃2

)
3∑

i=1

ci g2
i ln

(
ki

gi

)
. (18)

We now consider different cases for γ3 defined in Eq. (15).

• Region I: δ3T 2 > m2
0 and δ′T 2/(

√
3M P ) > mG̃0. Then

γ3 ≈ δ3M2
P

δ′ 2T 2
.

• Region II: δ3T 2 > m2
0 and δ′T 2/(

√
3M P ) < mG̃0. Then

γ3 ≈ δ3T 2

3m2
G̃0

.

• Region III: δ3T 2 < m2
0 and δ′T 2/(

√
3M P ) < mG̃0. Then

γ3 ≈ m2
0

3m2
G̃0

.

e shall take δ3, δ′ ∼ 0.1. As we shall see below, scattering pro-
esses will maintain the gravitinos in thermal equilibrium in our 
cenario till they freeze out. Thereafter annihilation processes such 
s G̃ G̃ → γ γ and G̃ G̃ → f f̄ become relevant.

For the process G̃ G̃ → γ γ , if 
√

s � mγ̃ , where 
√

s ∼ T is the 
entre of mass energy, then the annihilation cross section is given 
y [46]

G̃ G̃→γ γ = 1

1728π

κ4

m4
G̃

m4
γ̃ s (19)

here κ = 1
M Pl

and M Pl = 1.2 × 1019 GeV is the Planck mass. If 
s � mγ̃ then the annihilation cross section is

G̃ G̃→γ γ = 1

576π

κ4

m4
G̃

m2
γ̃ s2 = σγγ s2 , (20)

here σγγ ≡ 1
576π

κ4

m4
G̃

m2
γ̃

. For the process G̃ G̃ → f f̄ , if 
√

s � m f̃

hen from Ref. [46]

G̃ G̃→ f f̄ = 1

180π

κ4

m4
G̃

m4
f̃
s , (21)

nd if 
√

s � m f̃ then

G̃ G̃→ f f̄ = 1

180π

κ4

m4
G̃

s3 = σ f f̄ s3 , (22)

here σ f f̄ ≡ 1
180π

κ4

m4
G̃

. The total annihilation cross section is given 

y

A = σγγ s2 +
∑

f

σ f f̄ s3

here all possible fermion pairs in the final state have been 
ummed over. The dominant contribution to the total cross sec-
ion for 

√
s � mγ̃ , as can be seen from Eqs. (20) and (22), is from 

˜ ˜ , and the thermally averaged cross section times velocity 
GG→γ γ

s approximately given by [46] Y
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σ vMoller〉 = 1800
ζ(5)2

ζ(3)2
σγγ T 4

here ζ(5) = 1.0369.... The annihilation rate for gravitinos for 
s � mγ̃ is given by

A = nG̃〈σA vMoller〉
here nG̃ = 3ζ(3)

2π2 T 3. Then

A = 75

16π3

ζ(5)2

ζ(3)

κ4

m4
G̃

m2
γ̃ T 7 � 0.135

κ4

m4
G̃

m2
γ̃ T 7. (23)

or 
√

s � mγ̃ ∼ δ1T 2 + m2
0, T � m0 and δ′T 2/(

√
3M P ) � mG̃0 and 

o

A = 0.135
κ4

m4
G̃0

m2
0T 7. (24)

or higher temperatures we use the appropriate expressions for 
he annihilation rate.

. Calculation of the gravitino freeze out temperature

In the standard scenario of gravitino production the rate for 
roduction is small compared to the Hubble parameter H . There-

ore one does not produce very many gravitinos. The small number 
ensity of gravitinos then implies that the inverse scattering pro-
ess is also suppressed. However, in our scenario, because of the 
nhanced gravitino production rate, �s > H . Moreover, the inverse 
rocess will be unsuppressed because of the large gravitino abun-
ance. Therefore the gravitinos maintain a thermal distribution, till 
heir interactions freeze out. (We can use the expression for �s till 
∼ max (mG̃ , mg̃) since the cross section in Eq. (17) presumes the 

articles are relativistic.)

The freeze out condition is �s(T f ) = H(T f ) = 5
T 2

f
M P

. We also 
onsider the gravitino annihilation processes discussed above. For 
ach (zero temperature) gravitino mass we consider each of the 
hree regions discussed in the previous section.

.1. Very light gravitino

mG̃0 = 0.1 eV.

egion I: T > 300 GeV and T > 6.5 ×104 GeV. We find that �s > �A
nd also �s > H . Hence, gravitinos are in thermal equilibrium in 
his domain and maintain a thermal abundance with nG̃ = 3ζ(3)

2π2 T 3.

egion II: T > 300 GeV and T < 6.5 × 104 GeV. We find that 
s > �A and also �s > H . Hence, gravitinos are in thermal equi-

ibrium in this domain and maintain a thermal abundance.

egion III: T < 300 GeV. Till T ∼ m0 = 100 GeV, �s > �A and 
s > H . For T < 100 GeV, scattering processes given in Table 1 in 
efs. [5,11] are kinematically forbidden and �G̃ G̃→γ γ is the rele-
ant process. However we find that �G̃ G̃→γ γ < H .

Therefore the freeze out temperature T f = 100 GeV. The abun-
ance of gravitinos at freeze out is given by

G̃ f = YG̃(T f ) = n(T f )

s(T f )
= 3ζ(3)

2π2

45

2π2 g∗s(T f )
.

or the MSSM particle content, g∗s ∼ 228.75. Then
G̃ f = 1.8 × 10−3.
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The lifetime of the gravitinos is given by [47]

t = M2
P

m3
G̃

= 1.2 × 1035 yr

which is much larger than the age of Universe. The density param-
eter of thermally produced gravitinos is given by

�G̃ = ρG̃/ρc = mG̃ YG̃ f s(T0)/ρc . (25)

Taking ρc/s(T0) = 1.95 × 10−9 GeV, we get �G̃ ≈ 0.92 × 10−4

which implies that the gravitinos will not overclose the Universe
Furthermore, there is no constraint from primordial nucleosyn-
thesis because the effective number of (nearly) massless neu-
trino flavors over and above the Standard Model value, �Nν =
[g∗(1 MeV)/g∗(T f )]4/3 will be 0.02, which is less than the current
upper bound of 0.4 from Planck 2015 [48]. However the Cosmic
Microwave Background Stage 4 experiments hope to probe �Nν

down to an accuracy of 0.027 [49].

3.2. Light gravitino

mG̃0 = 1 keV.

Region I: T > 300 GeV and T > 6.5 ×106 GeV. We find that �s > �A
and also �s > H . Hence, gravitinos are in thermal equilibrium in
this domain and maintain a thermal abundance.

Region II: T > 300 GeV and T < 6.5 × 106 GeV. We find that
�s > �A in this temperature range. But �s < H for T < 600 GeV
At this temperature, the gravitinos freeze out.

Region III: T < 300 GeV. Till T ∼ 100 GeV, �s > �A but �s < H . For
T < 100 GeV, �G̃ G̃→γ γ is the relevant process. But �G̃ G̃→γ γ < H
Hence, gravitinos are out of equilibrium in this domain.

Thus the freeze out temperature T f = 600 GeV and the abun-
dance of gravitinos is given by

YG̃ f = 1.8 × 10−3.

The lifetime of the gravitinos

t = M2
P

m3
G̃

= 1.2 × 1023 yr

which is much larger than the age of Universe. The density param-
eter in Eq. (25) �G̃ ≈ 0.92, which is in conflict with observations
In order to avoid this, the gravitino mass was bounded to be less
than a keV in Refs. [47,50]. Again, �Nν = 0.02 which is less than
the current upper bound.

3.3. Heavy gravitino

mG̃0 = 100 GeV.

Region I: T > 300 GeV and T > 6.5 × 1010 GeV. We find that
�s > �A and also �s > H . Hence, gravitinos are in thermal equi-
librium in this domain and maintain a thermal abundance.

Region II: T > 300 GeV and T < 6.5 × 1010 GeV. We find that
�s > �A in this temperature range. But �s < H for T < 1.2 ×
108 GeV. At this temperature, the gravitinos freeze.

Region III: T < 300 GeV. Till T ∼ 100 GeV, � > � but � < H
s A s
Thereafter �G̃ G̃→γ γ is the relevant process. But �G̃ G̃→γ γ < H
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which implies that the gravitinos are out of equilibrium in this
domain.

Thus the freeze out temperature T f = 1.2 × 108 GeV and the
abundance of gravitinos at freeze out is given by

YG̃ f = 1.8 × 10−3.

This is much larger than the cosmological upper bound on the
gravitino abundance of 10−14 [51].

3.4. Very heavy gravitino

mG̃0 = 30 TeV.

Region I: T > 300 GeV and T > 1 × 1012 GeV. We find that �s > �A

and also �s > H . Hence, gravitinos are in thermal equilibrium in
this domain and maintain a thermal abundance.

Region II: T > 300 GeV and T < 1 ×1012 GeV. We find that �s > �A

in this temperature range. But �s < H for T < 5.5 × 109 GeV. At
this temperature, the gravitinos freeze out.

Region III: T < 300 GeV. In this domain, the scattering processes
are kinematically forbidden as T < mG̃0. Hence, �G̃ G̃→γ γ is the rel-
evant process. But �G̃ G̃→γ γ < H which implies that the gravitinos
are out of equilibrium in this domain.

Thus the freeze out temperature T f = 5.5 × 109 GeV and the
abundance of gravitinos at freeze out is given by

YG̃ f = 1.8 × 10−3.

The lifetime of the gravitinos is

t = M2
P

m3
G̃

= 0.1 s

which implies that the gravitinos would have decayed before nu-
cleosynthesis and not lead to any cosmological problem.

In all the cases considered above, T f � mG̃ , mg̃ . Then the use
of the expression for 〈�tot|v|〉 in Eq. (17), which presumes rela-
tivistic incoming and outgoing particles, is justified. Note that in
all cases above freeze out occurs in Region II or III for which the
zero temperature gravitino mass is the relevant mass.

4. Discussion

For the (zero temperature) gravitino masses of 0.1 eV, 1 keV
100 GeV and 30 TeV that we have considered, the freeze out tem-
perature is higher than the gravitino mass (including thermal ef-
fects). Then the gravitinos are hot relics and their abundance at
freeze out is YG̃ f ∼ 1.8 × 10−3. For the gravitino with zero tem-
perature masses of 0.1 eV and 1 keV there is no constraint from
primordial nucleosynthesis because �Nν = 0.02 which is less than
the current upper bound. The abundance of the 0.1 eV gravitinos
today will not overclose the Universe. However, for the 1 keV grav-
itino, �G̃ ∼ 1.

The decay products of gravitinos with zero temperature mass
of 100 GeV will modify the light nuclei abundances adversely
– the corresponding upper bound on the gravitino abundance is
10−14 [51] which is 11 orders of magnitude lower than the abun-
dance obtained above. The gravitinos with zero temperature mass
of 30 TeV will decay before nucleosynthesis and will not modify

the cosmology substantially.
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Thus one needs to consider the cases of the 1 keV and 100 GeV 
ass gravitinos carefully. Now, in the above analysis it was pre-

umed that Treh > T f which allowed the gravitinos to be in ther-
al equilibrium. So to suppress the high abundance of the graviti-

os as a hot relic one may consider scenarios with Treh < T f for 
he 1 keV and 100 GeV gravitinos. Then one has to consider out 
f equilibrium gravitino production till T ∼ m0 (when the scat-
ering processes will be Boltzmann or kinematically suppressed) 
sing the Boltzmann equation, as in the standard calculation of 
he gravitino abundance.

We now consider the out of equilibrium production of graviti-
os with a zero temperature mass of 100 GeV and Treh < T f =
.2 × 108 GeV, and with a zero temperature mass of 1 keV and 
reh < T f = 600 GeV.

. Out of equilibrium production of gravitinos

The gravitino production rate is given by the integrated Boltz-
ann equation

nG̃

dt
+ 3HnG̃ = 〈�tot|v|〉n2. (26)

t is presumed that nG̃ = 0 at the beginning of the radiation dom-
nated era after reheating and the gravitinos are then produced 
hrough thermal scattering of the inflaton decay products. We can 
ewrite Eq. (26) as

dYG̃

dT
= n〈�tot|v|〉Y = �sY (27)

here Y = n/s is the abundance of the scatterers. T ∝ 1
a , where a

s the scale factor of Universe. So

˙ = − ȧ

a
= −H = −

√
8πG Nρ

3
(28)

= −
√

8πG N

3

π2

30
g∗T 4. (29)

his gives

= −
√

g∗π2

90

T 3

M P
. (30)

Then, on substituting Eqs. (18) and (30) in Eq. (27), we obtain 
or spin 1/2 gravitinos

YG̃

dT
= −βγ3

MP
, (31)

here γ3 is defined as in Eq. (15) and

=
(

90

g∗π2

)1/2 (
45

2π2 g∗s

)(
ζ(3)

π2

)2

(32)

×
3∑

i=1

3π

16ζ(3)
ci g2

i ln

(
ki

gi

)
. (33)

ereafter we shall assume β to be independent of temperature 
nd evaluate it at the dominant temperature limit in the integrals 
nvoked below.

We are analyzing the case when T f > Treh � T , which for 
G̃0 = 100 GeV can correspond to Regions II or III. Consider Re-

ion II where δ3T 2 > m2 and δ′T 2/(
√

3M P ) < m ˜ . Then γ3 =
0 G0

3T 2/(3m2
G̃0

) which gives a
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YG̃

dT
≈ −β

δ3T 2

3MPm2
G̃0

. (34)

n integrating from Treh to T � Treh, we get

(1)

G̃
(T ) = β

δ3

3MPm2
G̃0

1

3

(
T 3

reh − T 3
)

(35)

≈ β
δ3

9MPm2
G̃0

T 3
reh. (36)

ow consider Region III when δ3T 2 < m2
0 and δ′T 2/(

√
3M P ) < mG̃0, 

.e. T < 3m0 = 300 GeV. Then γ3 = m2
0

3m2
G̃0

≈ 1
3 , as in the standard 

alculation. On integrating Eq. (31) from T ∼ 3 m0 to T ∼ m0, we 
et the gravitino abundance

(2)

G̃
= 1

3

β

M P
2m0. (37)

hen the total gravitino abundance will be

G̃ = Y (1)

G̃
+ Y (2)

G̃

= β
δ3

9MPm2
G̃0

T 3
reh + 2

3

β

M P
m0 (38)

≈ β
δ3

9MPm2
G̃0

T 3
reh, (39)

s Y (2)

G̃
is much less than Y (1)

G̃
.

We find that the abundance of gravitinos is proportional to T 3
reh. 

n order that the abundance lie within the cosmological bound of 
rder 10−14 as given in Ref. [51], Treh should be less than 4 ×
04 GeV.

For the 1 keV zero temperature mass gravitinos with T f =
00 GeV, let Treh be 300 GeV. This will correspond to Region III
ith γ3 = m2

0
3m2

G̃0

= 3 × 1015. The gravitino abundance generated 

rom Treh = 300 GeV to T ∼ m0 = 100 GeV will be

G̃ = γ3
β

M P
2m0 = 1 × 10−4. (40)

hen from Eq. (25)

G̃ = 0.05 . (41)

his is large and inconsistent with current observations. This then 
mplies that Treh must be less than m0 = 100 GeV to shut off this 

ode of gravitino production.

. Results and conclusion

By considering supersymmetry breaking due to the finite en-
rgy density of the Universe we find that there is enhanced pro-
uction of the spin 1/2 states of gravitinos (goldstino modes). We 
ave considered gravitinos with zero temperature masses of 0.1 eV, 
 keV, 100 GeV and 30 TeV as representative of gauge mediated 
0.1 eV, 1 keV), gravity mediated and anomaly mediated super-
ymmetry breaking scenarios respectively and find that the pro-
uction processes are in thermal equilibrium in the early Universe. 
y studying the freeze out temperature for the gravitinos we have 
hown that the gravitinos decouple as hot relics with large abun-
ances. In particular, the 1 keV and 100 GeV mass gravitinos have 
 very high abundance that can respectively close the Universe or 

ffect light nuclear abundances through their decay products.
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For both these cases one can suppress the abundance by low-
ering the reheat temperature Treh below the freeze out tempera-
ture for gravitino production. Therefore we have further considered
gravitino production from Treh below T f till T ∼ m0 = 100 GeV
(when the production shuts off) using the Boltzmann equation
For the 100 GeV gravitino with a freeze out temperature T f of
108 GeV, we find that the abundance is proportional to T 3

reh and
that the reheat temperature must be less than 4 × 104 GeV to sat-
isfy cosmological constraints. Such a low reheat temperature will
be inconsistent with models of high scale baryogenesis including
those via leptogenesis. Models of electroweak baryogenesis and
low scale leptogenesis [52–55] will then be preferred mechanisms
for generating the matter–antimatter asymmetry of the Universe.

For the 1 keV gravitino with a freeze out temperature T f of
600 GeV, we first chose a reheat temperature of 300 GeV and cal-
culated the abundance generated till T ∼ m0. We found that the
gravitinos will contribute 5% of the total energy density of the
Universe today which is inconsistent with observations. This im-
plies that the reheat temperature should be less than m0. Such a
low reheat temperature may be obtained in models of electroweak
scale inflation [56] but will rule out electroweak baryogenesis and
leptogenesis scenarios. Then the preferred models of baryogene-
sis will be very low scale scenarios such as in Ref. [57] or those
involving neutron–antineutron oscillations [58] or black hole evap-
oration [59–62].

The above analysis clearly provides a new manifestation of the
gravitino problem.
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We propose a test of single-scalar inflation based on using the well-measured scalar power spectrum to
reconstruct the tensor power spectrum, up to a single integration constant. Our test is a sort of integrated
version of the single-scalar consistency relation. This sort of test can be used effectively, even when the
tensor power spectrum is measured too poorly to resolve the tensor spectral index. We give an example
using simulated data based on a hypothetical detection with tensor-to-scalar ratio r = 0.01. Our test can 
also be employed for correlating scalar and tensor features in the far future when the data is good.
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W. Introduction

The theory of primordial inflation [1–8] has had a profound ef-
ect on cosmology and fundamental theory. Particularly striking 
s the prediction that primordial tensor [9] and scalar [10] per-
urbations derive from quantum gravitational fluctuations which 
ossilized near the end of inflation. This not only affords us ac-
ess to quantum gravity at an intoxicating energy scale [11–13], 
t also provides information about the mechanism that powered 
nflation. This information can be accessed by comparing observa-
ions of the two power spectra, �2

R(k) and �2
h(k), to predictions 

rom the many models [14–16]. For example, the simplest mod-
ls of inflation are driven by the potential of a single, minimally 
oupled scalar. These models all obey the single-scalar consistency 
elation [17–19],

≈ −8nt , (1)

here r is the tensor-to-scalar ratio and nt is the tensor spectral 
ndex,

(k) ≡ �2
h(k)

�2
R(k)

, nt(k) ≡ ∂ ln(�2
h(k))

∂ ln(k)
. (2)

 statistically significant violation of (1) would falsify the entire 
lass of single-scalar models, as well as all models which are re-
* Corresponding author.
E-mail addresses: djbrooker@ufl.edu (D.J. Brooker), tsamis@physics.uoc.gr

N.C. Tsamis), woodard@phys.ufl.edu (R.P. Woodard).
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Tated to them by conformal transformation, such as f (R) infla-
ion [20].

Although the single-scalar consistency relation was a brilliant 
heoretical insight, the progress of observation has rendered it 
omewhat inconvenient. The scalar power spectrum was first re-
olved in 1992 [21], and is now quite well measured [22–25]. The 
ensor power spectrum has not yet been resolved [26,27], but po-
arization measurements are now providing the strongest limits on 
t [28]. It is not known if the current generation of polarization ex-
eriments [29–33] can resolve the tensor power spectrum at all, 
nd it is very unlikely that they will measure it well enough to 
onstrain the tensor spectral index with much accuracy.

In view of the observational situation, it makes sense to de-
elop a test of single-scalar inflation that is based primarily on the 
bundant data for �2

R(k), and does not require taking derivatives 
f the sparse data for �2

h(k) likely to result from the first positive 
etections. There is no reason not to do this because the close rela-
ion between the tensor and scalar mode functions of single-scalar 
nflation implies that either power spectrum determines the other, 
p to some integration constants. That is the purpose of this paper. 

n the next section we fix notation, recall the relation between the 
wo power spectra, and infer the tensor power spectrum from the 
calar one. Section 3 gives a comparison between the single scalar 
onsistency relation and the scatter test we propose, using simu-
ated data based on a hypothetical detection of r = 0.01 with the 

ame number of data points and the same fractional error as was 
n fact reported by the recent spurious BICEP2 detection [34]. The 
nal section mentions applications.
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2. Constructing �2
h(k) from �2

R(k)

We work in spatially flat, co-moving coordinates with scale fac-
tor a(t), Hubble parameter H(t) and first slow roll parameter ε(t),

ds2 = −dt2 + a2(t)d�x · d�x �⇒ H(t) ≡ ȧ

a
, ε(t) ≡ − Ḣ

H2
.

(3)

We assume a(t) is known, with the scalar background and po-
tential determined to enforce the background Einstein equations
[35–39],

ϕ0(t) = ϕ0(ti) ±
t∫

ti

dt′H(t′)
√

ε(t′)
4πG

⇐⇒ t(ϕ) , (4)

V (ϕ) = [3 − ε(t)]H2(t)

8πG

∣∣∣∣∣
t=t(ϕ)

. (5)

We fix the gauge so that the full scalar agrees with its background
value and the graviton field hij is transverse, with g00 and g0i
regarded as constraints. The two dynamical fields are hij and ζ
which reside in the 3-metric gij = a2e2ζ [eh]i j . At quadratic order
their Lagrangian is [40],

L2 = a3

64πG

[
ḣi jḣi j − hij,khij,k

a2

]
+ εa3

8πG

[
ζ̇ 2 − ζ,kζ,k

a2

]
. (6)

The spatial plane wave mode functions of the graviton are u(t, k)

with exactly the same polarization tensors as in flat space. From
(6) we see that the evolution equation, Wronskian and asymptoti-
cally early form of the tensor mode functions u(t, k) are,

ü + 3Hu̇ + k2

a2
u = 0 , uu̇∗ − u̇u∗ = i

a3
,

u(t,k) −→ exp[−ik
∫ t

ti

dt′
a(t′) ]√

2ka2(t)
. (7)

The scalar perturbation ζ has spatial plane wave mode functions
v(t, k). From (6) we see that their evolution equation, Wronskian
and asymptotically early form are,

v̈ +
(

3H + ε̇

ε

)
v̇ + k2

a2
v = 0 , v v̇∗ − v̇ v∗ = i

εa3
,

v(t,k) −→ exp[−ik
∫ t

ti

dt′
a(t′) ]√

2kε(t)a2(t)
. (8)

The two power spectra are determined (at tree order) by evolving
their respective mode functions from their early forms through the
time tk of first horizon crossing (k ≡ H(tk)a(tk)), after which they
approach constants,

�2
R(k) = k3

2π2
× 4πG ×

∣∣∣v(t,k)

∣∣∣2

t�tk

≈ G H2(tk)

πε(tk)
, (9)

�2
h(k) = k3

2π2
× 32πG × 2 ×

∣∣∣u(t,k)

∣∣∣2

t�tk

≈ 16G H2(tk)

π
. (10)

The relations (7) which define u(t, k) are carried into the rela-
tions (8) which define v(t, k) by making simultaneous changes in
the scale factor and the co-moving time [41,42],

a(t) −→ √
ε(t)a(t) ,

∂

∂t
−→ 1√

ε(t)

∂

∂t
. (11)

To understand what this means for the power spectra we must

consider them as nonlocal functionals of the expansion history 

____________________________WORLD TECH
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a(t), which will involve integrals and derivatives with respect to
time. We denote this functional dependence with square brackets
so relation (11) implies,

�2
R

[
a,dt

]
(k) = 1

16
�2

h

[√
εa,

√
εdt

]
(k) . (12)

Relation (12) is easy to check at leading slow roll order by compar-
ing the slow roll approximation for �2

R(k) on the right hand side
of (9) with the effect of making transformation (11) on the Hubble
parameter in the right hand side of expression (10),

H(t) ≡ ∂

∂t
ln[a(t)] −→ 1√

ε

∂

∂t
ln

[√
ε a

]
= H + ε̇

2ε√
ε

. (13)

However, we stress that relation (12) is exact, not just valid at
leading slow roll order, provided one employs the exact expres-
sions for �2

h(k) and �2
R(k).

We should also point out that very accurate functional expres-
sions are now available for the power spectra of single scalar infla-
tion, valid to all orders in the slow roll parameter ε(tk), and even
including nonlocal effects from times before and after first horizon
crossing [43,44]. These expressions take the form [45],

�2
R(k)  G H2(tk)

πε(tk)
× C

(
ε(tk)

)
× exp

[
σ [ε](k)

]
, (14)

�2
h(k)  16G H2(tk)

π
× C

(
ε(tk)

)
× exp

[
τ [ε](k)

]
, (15)

where the local slow roll correction factor is,

C(ε) ≡ 1

π

2

(1

2
+ 1

1 − ε

)[
2(1 − ε)

] 2
1−ε ≈ 1 − ε . (16)

For the nonlocal corrections σ [ε](k) and τ [ε](k) it is best to abuse
the notation by writing the first slow parameter ε(n) ≡ ε(t(n)) as a
function of n ≡ ln[a(t)/ai], the number of e-foldings since the start
of inflation,

σ [ε](k)

=
nk∫

0

dn

[
∂2

n ln[ε(n)] + 1

2

(
∂n ln[ε(n)]

)2 + 3∂n ln[ε(n)]
]

G
(

e�n
)

− ∂nk ln[ε(nk)] G(1) +
∞∫

nk

dn ∂n ln[ε(n)] 2G(e�n)

1 + e2�n
, (17)

τ [ε](k)

=
nk∫

0

dn

[
E1

(
e�n

)
ε′′(n) + E2

(
e�n

)(
ε′(n)

)2

+ E3

(
e�n

)
ε′(n)

]
G
(

e�n
)

− ε′(nk)E1(1)G(1)

−
∞∫

nk

dn

{
�ε(n) +

(4 + 2e2�n

1 + e2�n

) n∫
nk

dm �ε(m)

}
2G(e�n)

1 + e2�n
.

(18)

Here �n ≡ n −nk , �ε(m) ≡ ε(m) −εk , and the functions of x ≡ e�n

are,

G(x) = 1

2

(
x + x3

)
sin

[2

x
− 2arctan

(1

x

)]
, (19)

1 2 4 6 8
E1(x) = 2 x − 1.8x + 1.5x − 0.63x

1 + x2
, (20)
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ig. 1. The left hand figure shows the first slow roll parameter for a model which was proposed [46,47] to explain the observed features in the scalar power spectrum at 
 ≈ 22 and � ≈ 40 which are visible in the data reported from both WMAP [48,49] and PLANCK [50,51]. The right hand figure shows the resulting scalar power spectrum (in 
lue), with the result of our analytic approximation (14) (in yellow). The slow roll approximation (9) does not give a very accurate fit even to the main feature in the range 
4.5 < N < 53 e-foldings before the end of inflation, and it completely misses the secondary oscillations visible in the range 53.5 < N < 51.5. The nonlocal contributions 
17) are essential for correctly reproducing these features. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
t

�

E
s
B
c
d
s
t
o
t
a

3

l
s
g
f

�

w
1
p
t
[
r
e
σ
a

W
rticle.)

2(x)

 2.8x4 − 7x6 + 3x8 + 1.8x10 − 2.3x12 + 0.95x14 − 0.20x16

(1 + x2)2
,

(21)

3(x) 
9
2 x2 − 11.9x4 + 7.1x6 − 1.3x8 − 1.9x10

(1 + x2)2
. (22)

he 95% confidence bound on the tensor-to-scalar ratio of r < 0.12
27,28] implies ε < 0.0075, so τ [ε](k) is about a hundred times 
maller than σ [ε](k). Models with smooth potentials typically have 
′ ∼ ε2 and ε′′ ∼ ε3, so the leading contributions in σ [ε](k) come 

rom the 3rd and 5th terms of expression (17). In particular the 5th 
final) term is needed to correct for a systematic under-prediction 
f the local slow roll approximation [45]. For models with fea-
ures the leading contributions to σ [ε](k) come from the 1st, 3rd 
nd 4th terms of expression (17) [45]. These corrections can be 
ery important for realistic models such as the one depicted in 
ig. 1.

To keep the analysis simple, we illustrate the procedure for pre-
icting �2

h(k) from �2
R(k) using only the leading slow roll terms 

n expressions (14)–(15), without either of the nonlocal corrections 
r even the slow roll factor C(ε). The conversion from wave num-
er to time is,

= H(tk)a(tk) �⇒ dk

k
= (1 − ε)Hdt ≈ Hdt . (23)

he leading slow roll approximation (14) for the scalar power spec-
rum can be recognized as a differential equation for the Hubble 
arameter,

2
R(k)  G H2(tk)

πε(tk)
= − G H4(tk)

π Ḣ(tk)
. (24)

e can integrate this equation from some arbitrary time t∗ to tk ,( 1

H2

)
 2G d ln(k)

π�2
R(k)

�⇒ 1

H2(tk)
− 1

H2(t∗)
 2G

π

ln(k/k∗)∫
0

d ln(k′)
�2

R(k′)
. (25)

ubstituting the reconstructed Hubble parameter (25) into the 

eading slow roll approximation (10) for the tensor power spec- v

___________________________WORLD TECHN
T
rum gives,

2
h(k)  16G H2(tk)

π

 �2
h(k∗)

[
1 + r(k∗)

8

ln(k/k∗)∫
0

d ln(k′)
�2

R(k∗)
�2

R(k′)

]−1

. (26)

quation (26) is in some sense an integrated form of the single-
calar consistency relation (1) which can be applied more reliably. 
oth relations are valid to leading slow roll order, but whereas (1)
ompares a single value of the high quality data in �2

R(k) with a 
erivative of the poor data on �2

h(k), our relation (26) combines a 
ingle measurement of the tensor power spectrum at k = k∗ with 
he high quality scalar data to predict what �2

h(k) should be for 
ther wave numbers. This seems to be a better way of exploiting 
he sparse data on �2

h(k) which is likely to persist for some years 
fter a first positive detection.

. Comparison using simulated data

It is illuminating to compare the single scalar consistency re-
ation with the method we propose using simulated data. Let us 
uppose that the actual tensor power spectrum corresponds to sin-
le scalar inflation with r = 1

100 , and which implies nt = − 1
800 . We 

urther suppose the simplest possible k dependence,

2
h(k) = r A S

( k

k0

)nt

�⇒ ln
[
�2

h(k)
]

= ln
[

r A S

]
+ nt × ln

[ k

k0

]
, (27)

here the scalar amplitude (at the tensor pivot k0) is A S = 2.5 ×
0−9. Let us assume that the first positive detection of this tensor 
ower spectrum consists of results for five binned wave numbers, 
he same as was in fact reported for the spurious BICEP2 detection 
34]. To simplify matters we assume a linear relation for loga-
ithms of the observed wave numbers, ln[ki+1/ki] = 1

3 , and that 
ach measurement of ln[�2

h] has the same 1-sigma uncertainty of 
= 1

4 . These numbers are roughly consistent with what BICEP2 
ctually reported [34]. Hence the detection consists of five obser-

ations yi obeying the relation,

OLOGIES____________________________



 
 

 
 

 
 

 
 
 

 

 

 
 

 

 

 
 

 

 
 
 
 

 

 

 
 

 
 

 

 
 

 
 
 

 
 

 

 
 
 

 

87Improving the single scalar consistency relation
W

Table 1
Simulated data from relation (28), representing a hypothetical first detection of the
tensor power spectrum with r = 1

100 and nt = − 1
800 . The random errors ei follow a

normal distribution with mean zero and standard deviation σ = 1
4 .

i ln(2.5 × 10−11) − i
2400 ei yi

1 −24.412145 −0.000417 +0.226742 −24.185820
2 −24.412145 −0.000833 −0.176041 −24.589020
3 −24.412145 −0.001250 −0.091555 −24.504950
4 −24.412145 −0.001667 −0.164330 −24.578142
5 −24.412145 −0.002083 +0.331640 −24.082589

yi = ln
[

2.5 × 10−11
]
− i

2400
+ ei , i ∈

{
1,2,3,4,5

}
,

(28)

where the ei are independent Gaussian random variables with
mean zero and standard deviation σ = 1

4 . Table 1 simulates the
five data points using a random number generator to find the ei .

Because the relation (27) is linear we can use least squares to
determine the parameters. The least squares fit for N data points
obeying the relation yi = α + βxi (with xi = i/3) is,

α =
∑N

i=1 x2
i

∑N
j=1 y j − ∑N

i=1 xi
∑N

j=1 x j y j

N
∑N

i=1 x2
i − (

∑N
i=1 xi)

2

=
∑N

i=1
∑N

j=1 xi(xi − x j)y j∑N
i=2

∑i−1
j=1(xi − x j)

2
, (29)

β = N
∑N

i=1 xi yi − ∑N
i=1 xi

∑N
j=1 y j

N
∑N

i=1 x2
i − (

∑N
i=1 xi)

2

=
∑N

i=2
∑i−1

j=1(xi − x j)(yi − y j)∑N
i=2

∑i−1
j=1(xi − x j)

2
. (30)

Even in this general form it is obvious that expression (29) for α
represents a sort of average whereas expression (30) is a kind of
numerical derivative. So we expect the fractional error on β to be
larger than that on α. That becomes even more apparent when
specializing to N = 5 and xi = i/3,

α −→ (8y1 + 5y2 + 2y3 − y4 − 4y5)

10
 −24.453306 ± 0.262202 , (31)

β −→ (−6y1 − 3y2 + 3y4 + 6y5)

10
 +0.065202 ± 0.237171 . (32)

Hence the simulated data of Table 1 implies a reasonably accurate
reconstruction of the tensor-to-scalar ratio,

r = exp
[
α − ln

(
2.5 × 10−9

)]
= 0.0096 ± 0.0027 , (33)

but a miserably inaccurate value for the tensor spectral index,

nt = β = 0.065 ± 0.237 . (34)

The resulting check of the single scalar consistency relation is not
very sensitive,

0.010 ± 0.003 = −0.522 ± 1.897 . (35)

Because of the large (but statistically allowed) positive fluctuation
e5 the measured tensor spectral index (34) does not even have the
right sign!

We propose to instead use the much better measured scalar

spectral index to predict the tensor spectral index, up to an in-

____________________________WORLD TECH
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Table 2
Predicted results according to relation (36), with the parameters α and r taken from
expressions (31) and (33), respectively.

i α − r
24 × i zi yi − zi

1 −24.453306 −0.000400 −24.453706 +0.267886
2 −24.453306 −0.000800 −24.454106 −0.134914
3 −24.453306 −0.001200 −24.454506 −0.050445
4 −24.453306 −0.001599 −24.454906 −0.123236
5 −24.453306 −0.001999 −24.455306 +0.372717

tegration constant, and then to compare the fluctuation of the
observed data around this prediction. For the model in question
this might amount to assuming predictions of the form,

zi = α − r

24
× i , (36)

where α is (31) and r is (33). Table 2 reports these predictions,
along with the difference between each simulated observation yi
and the associated prediction zi . Of course the parameter r comes
from the parameter α through relation (33), so the final column
of Table 2 represents four statistically independent measurements.
The resulting estimate for the scatter between measurement and
prediction is,√√√√1

4

5∑
i=1

(yi − zi)
2  0.246614 . (37)

This is quite consistent with our assumed 1-sigma fluctuation of
σ = 1

4 for each observation.

4. Discussion

Resolving the tensor power spectrum �2
h(k) is crucial for the

progress of inflation because it constrains the causative mecha-
nism. This is already evident from the angst [52–55] elicited by
the increasingly tight bounds on the tensor-to-scalar ratio r [56].
A positive detection at several different wave lengths has the po-
tential to falsify entire classes of models. For example, any model
in which inflation is driven by the potential of a minimally coupled
scalar must obey relation (1) between r and the tensor spectral in-
dex nt [17–19]. Unfortunately, relation (1) requires taking a deriva-
tive of �2

h(k), and the first generation of detections will probably
be too sparse to provide a good bound because numerical differ-
entiation makes bad data worse.

It makes more sense to integrate the high quality data we
already possess for �2

R(k). If the leading slow roll expressions
(9)–(10) are assumed then the prediction (26) from �2

R(k) re-
quires only a single integration constant from �2

h(k). (The same
thing would be true even if the more accurate approximations
(14)–(15) were employed [45].) Fixing this constant uses up one
combination of whatever data we have for �2

h(k), leaving the scat-
ter of the remaining data about the prediction as a legitimate test
of single scalar inflation. Hence relation (26) is a sort of integrated
form of the single-scalar consistency relation (1) which can be ap-
plied more reliably. Section 3 compares this sort of scatter test
with checking r = −8nt for simulated data based on a hypotheti-
cal detection of r = 0.01 at five wave lengths with fractional errors
similar to those reported in the spurious BICEP2 detection [34]. Of
course no massaging of poorly resolved data is going to extract a
precision bound, but the scatter test seems clearly better.

Note that it is simple to adapt the scatter test to data fits. For
example, the usual parameterization of the scalar data [22–25] im-

plies,
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2
R(k)  As

( k

k0

)ns−1

�⇒ �2
h(k)  �2

h(k∗)
[

1 + r(k∗)
8(1 − ns)

[( k

k∗

)1−ns − 1
]]−1

.

(38)

ere As is the scalar amplitude, ns is the scalar spectral index, and 
0 is a fiducial wave number.

Finally, we can look forward to the day, in the far future, when 
he tensor power spectrum is well resolved. Then the sort of scat-
er test we propose could be employed to search for correlations 
etween features in the two power spectra. For example, Fig. 1
epicts the bump in the first slow roll parameter from a model 
46,47] introduced to explain the scalar power spectrum’s dip at 
 ≈ 22 and peak at � ≈ 40 [48–51]. These features are caused by 
he way the scalar nonlocal corrections (17) depend upon deriva-
ives of ε(n). The tensor nonlocal corrections (18) involve the same 
erivatives — although lacking the large factors of 1/ε — so it is 
bvious there will be corresponding features [45]. Resolving this 
ort of correlation probes the functional relation between the two 
ower spectra far more deeply than the single scalar consistency 
elation.
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Inception of self-interacting dark matter with dark charge 
conjugation symmetry

Ernest Ma
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a r t i c l e i n f o a b s t r a c t

Editor: A. Ringwald

A new understanding of the stability of self-interacting dark matter is pointed out, based on the simplest
spontaneously broken Abelian U (1) gauge model with one complex scalar and one Dirac fermion. The
key is the imposition of dark charge conjugation symmetry. It allows the possible existence of two stable
particles: the Dirac fermion and the vector gauge boson which acts as a light mediator for the former’s
self-interaction. Since this light mediator does not decay, it avoids the strong cosmological constraints
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1. Introduction

The Lagrangian of the simplest spontaneously broken Abelian
U (1) gauge model was written down by Peter Higgs over 50 years
ago [1]. Its particle content consists of a vector gauge boson (call
it Z D ) and a complex scalar (call it σ ). By itself it has automatic
charge conjugation invariance, i.e. Z D → −Z D , σ → σ ∗ , resulting
in gD → −gD . After spontaneous symmetry breaking, the above
still holds, i.e. Z D → −Z D , σR → σR , and σI → −σI which be-
comes the longitudinal component of the now massive Z D . This
fact has been used [2–5] to suggest that Z D may be dark matter.

The existence of two U (1) gauge factors allows for the gauge-
invariant kinetic mixing [6] of the two associated gauge bosons, so
Z D may mix with the U (1)Y gauge boson of the standard model
(SM), of which the photon is a component. This has led to many
theoretical studies of a possible light dark photon, and the ex-
periments which may be relevant in finding it [7]. However, this
kinetic mixing term breaks the dark charge conjugation symmetry,
so the former may be absolutely forbidden if the latter is chosen
to be exact.

In the Higgs model, Z D is the sole dark matter. Suppose a Dirac
fermion (call it N) is added, transforming also under U (1)D , then
the Lagrangian is also invariant under dark charge conjugation, as
well as the global U (1) transformation operating on N , i.e. dark
fermion number. Hence N is a dark-matter candidate. What about
Z D ? If mZ D > 2mN , then Z D will decay into N N̄ through the vec-

tor current N̄γμN which has charge conjugation C = −1, but if 
mZ D < 2mN , then Z D will be stable. Further, if Z D is much lighter 

E-mail address: ma@phyun8.ucr.edu.
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T models where the light mediator decays into standard-model particles.

than N , then it may act as a stable light mediator for N self-
interactions. Note that if Z D is unstable and decays to SM particles
then very strong constraints exist [8] which basically rule out [9]
this scenario for explaining [10] the core-cusp anomaly observed
in dwarf galaxies [11]. As for the dark Higgs boson hD = √

2Re(σ )

it may also be light, but it has an unavoidable mixing with the SM
Higgs boson h, so it will not be stable. In the following, mhD < mZ D

will be assumed.
With mN ∼ 100 GeV and mZ D ∼ 10 MeV, the N N̄ annihilation

to Z D Z D is assumed to have the right cross section for N to be
the main component of dark matter. The subsequent Z D Z D anni-
hilation to hDhD is assumed to have a large enough cross section
so that the relic abundance of Z D is small compared to that of N
In direct-search experiments, N does not interact with quarks, so
there will be no signal. As for the small Z D component, it interacts
through hD –h mixing, but since Z D is very light, current exper-
iments are not sensitive to its presence. On the other hand, the
hD –h mixing has to be large enough for it to decay away before
big bang nucleosynthesis (BBN). Even so, hD may be produced at
late times through Z D Z D annihilation, and affects the cosmic mi-
crowave background (CMB) through its decay. However, there is no
Sommerfeld enhancement [12] of this cross section, unlike the case
of N N̄ annihilation through a light mediator which decays. Hence
the proposed model is a natural resolution of this conundrum, as
detailed below.
2. Dark U (1)D model

This model assumes U (1)D gauge symmetry, implying thus a 
vector gauge boson Z D . It is spontaneously broken by a com-
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lex scalar σ with charge gD . A Dirac fermion N also exists with 
harge gN . The complete Lagrangian before symmetry breaking is

= −1

4
(∂μ Zν

D − ∂ν Zμ
D )(∂μ Z Dν − ∂ν Z Dμ)

+ (∂μσ − igD Zμ
D σ)(∂μσ ∗ + igD Z Dμσ ∗)

+ μ2
Dσ ∗σ − 1

2
λD(σ ∗σ)2 + iN̄γμ(∂μ − igN Zμ

D )N − mN N̄ N.

(1)

n the above, if we replace gD by −gD , σ by σ ∗ , gN by −gN , and 
by its dark charge conjugate, we have exactly the same physi-

al theory. The spontaneous breaking of U (1)D with 〈σ 〉 = v D/
√

2
hanges the Lagrangian to

= −1

4
(∂μ Zν

D − ∂ν Zμ
D )(∂μ Z Dν − ∂ν Z Dμ) + 1

2
m2

Z D
Zμ

D Z Dμ

+ 1

2
(∂μhD)(∂μhD) − 1

2
m2

hD
h2

D

− m2
hD

2v D
h3

D − m2
hD

8v2
D

h4
D + g2

D v DhD(Zμ
D Z Dμ) + 1

2
g2

Dh2
D(Zμ

D Z Dμ)

+ iN̄γμ∂μN − mN N̄ N + gN Zμ
D N̄γμN, (2)

here v2
D = 2μ2

D/λD , mZ D = gD v D , and m2
hD

= λD v2
D . The cru-

ial interaction terms are gN Zμ
D N̄γμN , g2

D v DhD(Zμ
D Z Dμ), and 

1/2)g2
Dh2

D(Zμ
D Z Dμ). We assume in the following mN ∼ 100 GeV, 

ith Z D , hD ∼ 10 MeV, with mhD < mZ D . Note that gN is indepen-
ent of gD .

. Three new particles

There are only three new particles beyond those of the stan-
ard model. Each serves a purpose and is an essential ingredient 
f this two-component dark-matter model. The dark fermion N is 
 Dirac particle with a conserved dark fermion number. It is the 
ominant component of the observed dark matter of the Universe. 

t has a dark gauge interaction mediated by Z D which is light, thus 
ealizing the requirement of a sufficiently large interaction to af-
ect the core-cusp discrepancy of dwarf galaxies. The imposition of 
ark charge conjugation symmetry means that Z D has C = −1. It 
ouples to the vector current N̄γμN which also has C = −1, so it 
ay decay into N N̄ , but if it is lighter than 2mN as assumed, then 

t is itself stable. As such, it may be overproduced in the early Uni-
erse. However, it is also assumed that the dark Higgs boson hD , 
hich breaks the U (1)D gauge symmetry and provides Z D with a 
ass through its vacuum expectation value v D , is lighter than Z D . 
ence the Z D Z D → hDhD annihilation should be strong enough 

o make it a very small fraction of the observed dark matter of 
he Universe. As for hD , which has C = +1, it must be unstable 
hrough its allowed mixing with the SM Higgs boson h, and de-
ays away early without affecting the standard BBN.

Consider the extended scalar potential involving both σ and the 
M Higgs doublet � = (φ+, φ0):

= −μ2
Dσ ∗σ + 1

2
λD(σ ∗σ)2 − μ2

h�†� + 1

2
λh(�

†�)2

+ λhD(σ ∗σ)(�†�). (3)

sing φ0 = (vh + h)/
√

2, the 2 × 2 mass-squared matrix spanning 
hD , h) is given by(

λ v2 λ v v
)

2
hD ,h = D D hD D h

λhD v D vh λh v2
h

. (4) t
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ssuming mhD << mh = 125 GeV, the hD –h mixing is then θhD =
hD v D vh/m2

h . For a light hD of order 10 MeV in mass, its dominant 
ecay is to e−e+ with the decay rate

(hD → e−e+) = mhD m2
e

8π v2
h

θ2
hD , (5)

here vh = 246 GeV. Assuming that 
−1 < 0.05 s, the constraint

mhD

10 MeV

)
θ2

hD > 7.66 × 10−9 (6)

s obtained. The SM Higgs boson h also decays into hDhD with 
oupling λhD vh . Its decay rate is

(h → hDhD) = λ2
hD v2

h

16πmh
= λ2

hD(9.63 GeV). (7)

ssuming that this is no more than 10% of the Higgs boson width 
n the SM (4.12 MeV), this gives a bound of

hD < 0.0066. (8)

omparing Eqs. (6) and (7), the constraint

v D

GeV

)
> 0.85

√
10 MeV

mhD

(9)

s obtained.

. Zd Zd annihilation

Consider first the process Zd Zd → hDhD at rest. There are four 
iagrams summing up to the amplitude

=
[

2g2
D(2 + r)

2 − r
− 6g2

Dr

4 − r

]
(�ε1 · �ε2) + 8g2

D

m2
Z D

(2 − r)
(�ε1 · �k)(�ε2 · �k),

(10)

here r = m2
hD

/m2
Z D

and the center-of-mass variables �k (momen-
um of hD ) and �ε1,2 (polarizations of Z D ) have been used. The 
esulting cross section × relative velocity is given by

(Z D Z D → hDhD) × vrel = g4
D

√
1 − r

64πm2
Z D

[
4[r2 + 4(2 − r)2]

(4 − r)2

− 24r(2 + r)

9(2 − r)(4 − r)
+ 8(2 + r)2

9(2 − r)2

]
.

(11)

et mZ D = 10 MeV and mhD = 8 MeV, then r = 0.64. The coupling 
D is adjustable. Let gD = 0.005 for example, then

(Z D Z D → hDhD) × vrel = 1.1 × 10−24 cm3/s, (12)

hich is 37 times the canonical σ0 × vrel = 3 × 10−26 cm3/s for 
btaining the correct dark-matter relic abundance of the Universe. 
his means that Z D will be underproduced and forms only a small 
omponent of the observed dark matter, which will be mainly N
s discussed in the next section. Note also that gD = 0.005 and 

= 10 MeV imply that v = 2 GeV, which is perfectly consis-
Z D D

ent with Eq. (9).
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5. N N̄ annihilation

The annihilation N N̄ → Z D Z D is analogous to e−e+ → γ γ . The
cross section at rest × relative velocity is given by

σ(N N̄ → Z D Z D) × vrel = g4
N

16πm2
N

. (13)

For mN = 100 GeV, this would be equal to 2σ0 × vrel = 6 ×
10−26 cm3/s if gN = 0.225. For the light mediator with mZ D =
10 MeV, Sommerfeld enhancement is expected. However, at the
time of thermal freezeout, this effect is only O(1) [13,14]. The
large enhancement will come at late times (because of the de-
creasing relative velocity of N N̄ annihilation) and may be as large
as a factor of 104. Whereas the fraction of N N̄ which would an-
nihilate is still negligible compared to the entire population, the
production of an unstable mediator would allow its decay prod-
ucts (photons and electrons) to affect the CMB, thus ruling out
(for s-wave annihilation) all models where the self-interactions are
large enough to address the small-scale problems of structure for-
mation, as pointed out recently [9].

Here the light mediator Z D is stable, so it does not affect the
CMB. As for hD , it may also be produced at late times from Z D Z D
annihilation, but this cross section has no Sommerfeld enhance-
ment, so even though hD decays to e−e+ , its effect is small.

6. Thermal history

The dark fermion N is kept in thermal equilibrium with its light
mediator Z D which couples to the dark Higgs boson hD . The bridge
connecting the dark sector with the SM is the quartic scalar inter-
action term λhD(σ ∗σ)(�†�) of Eq. (3). Hence hD is in thermal
equilibrium with the SM Higgs boson h, and through the latter, all
the SM particles, at temperatures even below mh . For example, the
annihilation amplitude of hD hD → bb̄ is proportional to λhDmb/m2

h .
This is strong enough to keep hD in thermal equilibrium with the
SM particles if the corresponding rate is greater than that of the
expansion of the Universe, i.e.

λ2
hDm2

b

m4
h

T 3 >
T 2

MPlanck
. (14)

At T ∼ mN = 100 GeV, this means that λhD > 10−7 is required,
a condition which is easily satisfied by both Eqs. (6) and (8). As
the Universe cools below mN , N freezes out with a relic abun-
dance which accounts for most of the observed dark matter of the
Universe. In structure formation, N has a large enough elastic cross
section due to the exchange of its light mediator Z D to explain the
flatter density profiles of dwarf galaxies near their centers [10].

The light vector boson Z D is stable and interacts with hD to re-
main in thermal equilibrium until the Universe cools below mZ D .
It then freezes out with a much smaller relic abundance than that
of N . The dark Higgs boson hD decays away quickly at early times
through its mixing with the SM Higgs boson h. All these hap-
pen before the onset of BBN so that the standard predictions of
all relevant cosmological parameters are unchanged. At late times,
Z D re-emerges from N N̄ annihilation, but it is stable and will not
disturb the CMB. The dark Higgs boson hD also re-emerges from
Z D Z D annihilation, but this cross section is not enhanced by the
Sommerfeld effect, so even though hD decays to e−e+ , its effect
on the CMB is harmless.

7. Phenomenological consequences

The model presented has a dark gauge U (1)D symmetry, with
exact dark charge conjugation invariance. It has two stable parti-

cles, the dark fermion N with mN ∼ 100 GeV and a light vector 
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mediator Z D with mZ D ∼ 10 MeV. As such, it explains the ob-
served relic abundance of dark matter, as well as the cusp-core
anomaly of dwarf galaxies. It avoids the strong constraints of de-
caying particles on the CMB [8,9]. The U (1)D symmetry is broken
with v D ∼ 2 GeV as constrained by Eq. (9). The associated dark
Higgs boson hD is lighter than Z D and mixes with the SM Higgs
boson h.

In direct-search experiments, N is essentially invisible because
it has only Z D interactions which do not affect SM particles at tree
level. As for Z D , its relic abundance is suppressed and its mass is
only about 10 MeV, so even though it interacts with SM particles
through hD –h mixing, it is insensitive to present underground ex-
periments. This would not be the case if mZ D ∼ 100 GeV. In fact,
it has been shown [15] that a light mediator would then be ruled
out because the direct-detection bound excludes its decay before
the onset of BBN. In indirect-search experiments, the N N̄ annihila-
tion is Sommerfeld-enhanced, but it only produces Z D at tree level
which cannot be detected. In one loop, SM particles may be pro-
duced, but the cross section is very small. Hence neither types of
the conventional search for dark matter would have much promise
in detecting such dark matter.

Since the light vector boson Z D has no kinetic mixing with the
photon because of the dark gauge conjugation symmetry, there is
also no effect on experiments searching for it through this portal.

A possible way to discover hD is from h → hDhD decay at an
accelerator, and the subsequent decay hD → e−e+ . The problem is
that hD has a lifetime of about 1 s, so the decay products are far
downstream and not easily observed.

8. Remarks

The idea of self-interacting dark matter is faced with a co-
nundrum [9]. If the interaction is strong enough to address the
small-scale problems of structure formation, the production of the
light mediator at late times would disrupt the cosmic microwave
background because of the inherent Sommerfeld enhancement for
s-wave annihilation and the apparently inescapable fact that the
mediator must decay into electrons or photons. Its resolution in
terms of a simple complete renormalizable model is the subject
matter of this paper. Unfortunately, this model predicts null or
negligible effects in all present attempts to discover the nature of
dark matter. On the other hand, it may be the answer to the ques-
tion of why dark matter has not been seen so far.
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Noether symmetry in teleparallel f (T ) gravity, where T is the torsion scalar, has been studied in the

background of Robertson–Walker space–time. It is found that Noether symmetry admits f (T ) ∝ T
3
2 and

the associated conserved current is � = aȧT
1
2 , in matter dominated era. In the process, the recent claim

by Wei et al. [1] that Noether symmetry admits f (T ) ∝ T n , (where n is an arbitrary constant) is found
not to be correct, since the conserved current satisfies the field equations only for a special choice of
n = 3

2 . Further, correspondence between f (R) and f (T ) theories of gravity has also been established.
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1. Introduction

Luminosity-distance versus redshift curve obtained from distant
SN1a supernovae data [2,3] unveils its non-linear feature beyond
redshift z = 0.2. For last two decades attempts have been made
to fit such a curve within a viable cosmological model. Almost
all the attempts equivocally predict that at present the universe is
undergoing an accelerated expansion. Since cosmological constant
(�) calculated in view of quantum field theory has been found
to be nearly 120 order of magnitudes larger than the same re-
quired to fit SN1a data, so it is ruled out. Two options therefore
are left. The first is to modify the right hand side of Einstein’s
equation by accommodating one or more scalar fields including
tachyonic fields or some more exotic ones having reverse sign in
kinetic term with some typical form of potential. Such fields inter-
act with none other than the gravitational field only, and therefore
dubbed as dark energy. However, the field mass responsible for
late time cosmic acceleration is very small on one hand and the
present technology does not support detection of dark energy in
any of its form, on the other. Therefore the second option has been
advocated in recent years and that is to modify the left hand side
of Einstein’s equation, viz. the geometry, and in the process by-
passing the dark energy issue. Such attempt is dubbed as modified
theory of gravity. Several types of modified theory of gravity exists
in the literature, such as, f (R) gravity, f (G) (Gauss–Bonnet) grav-
ity, f (T ) (Torsion) gravity, combination of all these, Gauss–Bonnet-
dilatonic coupled gravity, Lanczos–Lavlock gravity, Horava–Lifschitz
gravity and models with extra dimensions including Kaluza–Klein,
E-mail address: nayemsk1981@gmail.com.
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TRandall–Sundrum, DGP and higher co-dimension braneworlds, etc.
Out of these, Teleparallel gravity has drawn lot of attention in the
recent years.

To consider teleparallelism, one employs the orthonormal tetrad
components e A(xα), where the index A runs over 0, 1, 2, 3 to the
tangent space at each point xα of the manifold. Their relation to
the metric gαβ is given by

gαβ = ηAB e A
αeB

β , (1)

where α and β are coordinate indices on the manifold which again
run over 0, 1, 2, 3, while e A

α forms the tangent vector on the tan-
gent space over which the metric ηAB is defined. Instead of the
torsionless Levi-Civita connection which is used in General Theory
of Relativity, in Teleparallelism [4] one considers the curvatureless
Weitzenbock connection, whose non-null torsion T ρ

αβ and contor-

sion K αβ
ρ are defined by

T ρ
αβ ≡ eρ

A[∂αe A
β − ∂βe A

α ], (2)

K αβ
ρ ≡ −1

2
[T αβ

ρ − T βα
ρ − Tρ

αβ ], (3)

respectively. Moreover, instead of the Ricci scalar R , which is used
for the Lagrangian density in general relativity, the teleparallel La-
grangian density is represented by the torsion scalar T given by

T ≡ Sρ
αβ T ρ

αβ, (4)
where,

Sρ
αβ ≡ 1

2
[K αβ

ρ + δα
ρ T θβ

θ − δ
β
ρ T θα

θ ]. (5)
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ccordingly, in analogy to the f (R) theory of gravity, recently a 
ew modified theory of gravity, namely the so-called f (T ) theory 
f gravity has been proposed to explain the current accelerated 
xpansion of the cosmos, without invoking dark energy. Such a 
odified teleparallel action for f (T ) gravity is given by

=
∫

d4x | e | f (T ) + Sm, (6)

here |e| = det e A
α = √−g and the units has been chosen so that 

= 16πG = 1. It may mentioned that this is a generalized ver-
ion of the teleparallel gravity originally proposed almost a century 
ack by Einstein [5,6].

Now, in order to study the cosmological consequence of the so-
alled teleparallel gravity, a particular form of f (T ) is required. In-
tead of setting a form of f (T ) by hand or reconstruct it from the 
istory of cosmic evolution, it is always desirable to find its form 

ollowing some physical consideration, viz. in view of the loop 
uantum gravity or from some symmetry consideration. Since, loop 
uantum gravity does not provide a term suitable for late time cos-
ic acceleration, so Noether symmetry is usually preferred.

Noether symmetry was applied for the first time in scalar–
ensor theory of gravity by De Ritis and his collaborators [7] to 
nd a form of the potential. Noether symmetry was found to select 

7] exponential form of the potential which can trigger inflation 
n the early universe. This raise immense interest in the scientific 
ommunity, and thereafter Noether symmetry has been extensively 
tudied in cosmological models with minimally [8,9] and non-
inimally coupled [10–14] scalar–tensor theories, higher order 

heory [15] and f (R) theory [16–19] of gravity. Additionally, the 
ame has also been applied in different anisotropic Bianchi models 
20], induced gravity theory [21], Gauss–Bonnet gravity [22] and 
o on. Quantum cosmological models have also been expatiated in 
iew of Noether symmetry [23]. Here, we are therefore motivated 
o study Noether symmetry in teleparallel theory of gravity, to find 
 form of f (T ).

Recently, Wei et al. [1] has claimed that Noether symmetry for 
eleparallel f (T ) theory of gravity in the background of spatially 
at Robertson–Walker (R–W) metric described by

s2 = −dt2 + a2(t)dX2, (7)

here a(t) is the scale factor, admits f (T ) ∝ T n , where n is an 
rbitrary constant in matter domain era. However, in the present 
tudy we show that the associated conserved current satisfies the 
eld equations only for a special choice of n = 3

2 . Thus, it is found 
hat Noether Symmetry only admits f (T ) ∝ T

3
2 along with a con-

erved current � = aȧT
1
2 .

In the following section, the canonical formulations of f (T )

heory of gravity following Lagrange multiplier technique and 
ts scalar–tensor counterpart have been discussed. In section 3, 
oether symmetry has been invoked in both the canonical point 
agrangians corresponding to teleparallel f (T ) gravity. In section 4, 
nalogy of teleparallel gravity with f (R) theory of gravity has been 
iscussed in some detail. Finally we conclude in section 5.

. Canonical formulation of f (T ) gravity

It is not possible to find solutions to the field equations cor-
esponding to the above action (6) to study cosmological conse-
uence of teleparallel gravity, unless a specific form of f (T ) is 
nown a priori. As already mentioned, one can choose a form 
y hand out of indefinite possibilities, or reconstruct it in view 
f cosmic evolution history. Nevertheless, it is always desirable to 
nd the form in view of some physical consideration like Noether 

ymmetry. Nevertheless, this requires canonical formulation of the t
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heory under consideration. In fact, there exists two possible tech-
iques towards canonical formulation of f (T ) theory of gravity. 
ne is Lagrange multiplier technique, which is applicable with 
nite degrees of freedom, and the other is scalar-Tensor represen-

ation of f (T ) gravity.

.1. Lagrange multiplier technique

Unlike Scalar-Tensor representation of f (T ) Theory (as we see 
ext), canonical formulation following Lagrange multiplier tech-
ique may be performed with finite degrees of freedom only. 
herefore we restricting ourselves to the Robertson–Walker met-
ic (7), we can treat T + 6 ȧ2

a2 = 0 as a constraint and introduce it 
n the action (6) through a Lagrange multiplier λ as,

= 2π2
∫ [

f (T ) − λ
{

T + 6
( ȧ2

a2

)}
− ρm0

a3

]
a3dt. (8)

ow varying the action with respect to T one gets λ = f ′(T ), 
here f ′(T ) is the derivative of f (T ) with respect to T . Substitut-

ng the form of λ so obtained in the above action (8) the following 
anonical action is found, viz.

= 2π2
∫ [

f (T ) − f ′(T )
{

T + 6
( ȧ2

a2

)}
− ρm0

a3

]
a3dt. (9)

herefore, the point Lagrangian in the presence of ordinary matter 
ay be expressed in Robertson–Walker metric (7) as

(a, ȧ, T , Ṫ ) =
[
−6aȧ2 f ′ + a3( f − f ′T ) − ρm0

]
. (10)

n the above, ρm0 stands for the matter density at the present 
poch.

.2. Scalar–tensor representation of f (T ) gravity

As already mentioned, it is also possible to translate the action 
6) in its scalar–tensor equivalent form, in analogy to f (R) theory 
f gravity. The Scalar–Tensor representation [24] of f (T ) gravity 
eads

=
∫

d4x | h | [T − U ()] + Sm. (11)

here,

= f ′(T ); U () = T f ′(T ) − f (T ). (12)

he corresponding point Lagrangian in Robertson–Walker (7)
pace–time reads

(a,, ȧ, ̇) =
[

6aȧ2 − a3U () − ρm0

]
, (13)

here, ρm0 is the matter density at the present epoch, as already 
entioned.

. Noether symmetries

In view of the canonical Lagrangians obtained in the previous 
ubsections, we now move on to explore Noether symmetry. It 
s well known that Noether symmetry (£X L = X L = 0) in f (R)

heory of gravity yields nothing other than f (R) = f0 R
3
2 along 

ith a conserved current d
dt (a

√
R) in R–W metric, when cou-

led to pressure-less dust or in vacuum [16–18]. Despite such 
nique result, Noether symmetry of f (R) theory of gravity had 
een reopened by some authors [25,26], who claimed to find 
ew conserved currents in the name of Noether gauge symme-

ry. Particularly, it was claimed by Hussain et al. [25] that Noether 
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gauge symmetry admits f (R) ∝ Rn , where n is an arbitrary con-
stant. Jamil et al. [26] on the other hand found f (R) ∝ R2 and
V (φ) ∝ φ−4, considering Noether gauge symmetry with Tachyonic
field. The claim [25] had been reviewed by the present author and
his collaborator (Sk and Sanyal) [27] taking both vanishing and
non-vanishing gauge into account. It was found that the conserved
currents so obtained do not satisfy the field equations, particu-
larly the (0

0) equation of Einstein, unless n = 3
2 . Thus, the claim

that arbitrary power of R generates Noether symmetry is not cor-
rect. The claim of Jamil et al. [26] had also been reviewed by the
same authors Sk and Sanyal [28] and it was shown that f (R) ∝ R2

do not satisfy the Tachyonic field equations. Shamir et al. [29] on

the contrary, had claimed that Noether symmetry of f (R) ∝ R
3
2

admits four different generators corresponding to which four dif-
ferent conserved currents exist in the presence of non-zero gauge.
In a subsequent communication, the same authors Sk and Sanyal
[30] reviewed the work and proved that the claim is not correct,
for the same reason that not all the conserved currents satisfy
the (0

0) equation of Einstein. Later, Roshan et al. [31] claimed that
Noether symmetry in the context of Palatini f (�) theory of grav-
ity admits f (�) ∝ �n , (where n is again an arbitrary constant)
in matter dominated era. This claim had also been reviewed by
the present author [32] and it has been also shown that Noether

Symmetry only admits f (�) ∝ � 3
2 in Palatini gravity. Under such

circumstances, it would really be interesting if f (T ) theory of grav-
ity yields new forms of f (T ) as claimed by Wei et al. [1]. In the
following subsections we therefore review the claim [1] in the
process of finding Noether symmetries of f (T ) theory of gravity,
which satisfy the field equations.

3.1. Noether symmetry following Lagrange multiplier technique

The field equations constructed out of the point Lagrangian (13)
in the Robertson–Walker metric (7) are,(

f − f ′T + 2 f ′H2
)

+ 4

(
2 f ′ ä

a
+ H f ′′ Ṫ

)
= 0, (14)

a3 f ′′
(

T + 6
ȧ2

a2

)
= 0. (15)

In the above H = ȧ
a stands for the Hubble parameter. The (0

0) equa-
tion of Einstein is[
−6aȧ2 f ′ + a3( f − f ′T ) − ρm0

]
= 0. (16)

Now, Noether theorem state that, if there exists a vector field X ,
for which the Lie derivative of a given Lagrangian L vanishes i.e.
£X L = X L = 0, the Lagrangian admits a Symmetry and thus yields
a conserved current. For the Lagrangian (10) under consideration,
the configuration space is M(a, T ) and the corresponding tangent
space is TM(a, T , ̇a, Ṫ ). Hence the generic infinitesimal generator
of the Noether Symmetry is

X = γ
∂

∂a
+ ζ

∂

∂T
+ γ̇

∂

∂ȧ
+ ζ̇

∂

∂ Ṫ
, (17)

where, γ = γ (a, T ), ζ = ζ(a, T ). The constant of motion is given
by

� = γ
∂L

∂ȧ
+ ζ

∂L

∂ Ṫ
. (18)

Finding the Noether equation in view of the existence condition
£X L = X L = 0, and equating the coefficients of ȧ2, Ṫ 2, ȧṪ along
with the term free from derivative respectively to zero as usual,

we obtain the following set of partial differential equations,

____________________________WORLD TECH
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aγ ′ = 0, γ f ′ + ζaf ′′ + 2af ′γ,a = 0,

3γ
(

f − T f ′) − aζ T f ′′ = 0.
(19)

The above set of partial differential equations admit the following
set of solutions, viz.

γ = γ0a1−s, ζ = −2sγ0a−s T , f (T ) = f0T
3
2s . (20)

The corresponding conserved current is

� = a2−sȧ f ′(T ). (21)

It may be trivially checked that the above conserved current sat-
isfies the field equations (14) through (16) only for s = 1. The
expression of the conserved current (21) for s = 1 therefore reads,

� = aȧ f ′(T ). (22)

It is interesting to note that the reduced form of f (T ) turns out to
be,

f (T ) = f0T
3
2 . (23)

In view of the above form of f (T ) and the conserved current (22),
ȧ(t) turns out to be a constant, and therefore the cosmic scale fac-
tor a(t) admits the solution,

a(t) = a1t + a0, (24)

where a1, a0 are constants of integration. In this context we men-
tion that the same solution [32] has also been found in the context
of Palatini f (�) theory of gravity. However, the above coasting so-
lution although fits SnIa data perfectly in the matter dominated
era [33], does not fit to other available cosmological data.

3.1.1. Comments on Hao Wei et al. work
It is important to note that the (0

0) equation of Einstein is es-
sentially the Hamiltonian constraint equation, when expressed in
terms of phase-space variables. It is the outcome of diffeomor-
phic invariance of the theory of gravity. Since Noether equation
£X L = X L = 0 does not recognize the constraint, therefore one
can not expect that the solutions of Noether equations would sat-
isfy the Hamilton constraint equation automatically. This has been
proved by Wald and Zoupas [34]. This means that Noether theo-
rem is not on-shell for constrained system. Conserved current is
not an independent equation, but rather it is the first integral of
certain combination of the field equations. Thus, it is essential to
check if the conserved current satisfies the (0

0) equation of Ein-
stein. Like earlier authors [25,26,29,31] it has not been checked by
the present authors [1]. However, it is not difficult to check that
the conserved current satisfies the field equations only under the
special choice n = 3

2 . Therefore, the claim of finding f (T ) ∝ T n by
Wei et al. [1] is not correct.

3.2. Noether symmetry in scalar–tensor representation of f (T ) gravity

Let us now turn our attention in this subsection, to explore
Noether symmetry in scalar–tensor representation of f (T ) theory
of gravity. The field equations constructed out of the point La-
grangian (11) in the Robertson–Walker metric (7) are,[

ä

a
+ ȧ2

2a2
+ ȧ̇

a
+ U

4

]
= 0, (25)

[
ȧ2

a2
− U ,

6

]
= 0. (26)

The (0
0) equation of Einstein is[ ]
6aȧ2 + a3U () + ρm0 = 0. (27)
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n order to apply Noether symmetry approach, let us again in-
roduce the lift vector X as an infinitesimal generator of Noether 
ymmetry in the tangent space [a, ̇a, , ̇] as follows

= γ
∂

∂a
+ ζ

∂

∂
+ γ̇

∂

∂ȧ
+ ζ̇

∂

∂̇
, (28)

nd the existence condition for symmetry, X L = 0, leads to the 
ollowing system of partial differential equations

, = 0, γ + aζ + 2aγ,a = 0, 3γ U + aζ U , = 0. (29)

he solution of the above set of equations reads,

= −γ0da
1−d
2d , ζ = γ0a

1−3d
2d , U = U0

3d, (30)

hile the expression of conserved current is

= a
1+d
2d ȧ. (31)

gain, it has been shown that the above conserved current satisfies 
he field equations (25) to (27) only for d = 1. The expression for 
he conserved current for d = 1 is therefore,

= aȧ. (32)

ow, using the transformation relations (12), we rewrite U () as 
() = T f ′(T ) − f (T ) = U0

3 = U0[ f ′(T )]3. Equation (30) there-
ore yields the following form of f (T ), viz.

(T ) = f0T
3
2 , (33)

ote that the form of f (T ) and the associated conserved current 
o obtained is identical with those obtained following Lagrange 
ultiplier technique. The solution to the scale factor therefore re-
ains unchanged

(t) = a1t + a0, (34)

hich as already stated is not a viable solution to fit available 
osmological data. Nevertheless, one important issue has been re-
ealed and that is Noether symmetry is independent on the choice 
f the configuration space variables.

One of the main advantages of Noether conserved current is 
hat one can express the field equations in terms of a cyclic co-
rdinate, so that finding solutions becomes easier, and sometimes 
he cosmological solution emerges directly from Noether conserved 
urrent [35]. Being a first integral, one can even use it to find 
he solutions without even finding cyclic coordinate. In any case, 
ne has to use the conserved current to find the solutions to the 
eld equations. In a recent article [36], power-law teleparallel f (T )

ravity is discussed in details. The authors first applied Noether 
ymmetry to find the form f (T ) ∝ f0T n , and the associated con-
erved current. Thereafter, they explored the cosmological solution 
f the above mentioned form of f (T ) analytically with the help 
f the field equations and claimed the solutions to be outcome of 
oether symmetry. One can easily check that the solutions do not 

atisfy Noether conserved current. Therefore such solutions can-
ot be an outcome of Noether symmetry, rather, it is like setting a 

orm of f (T ) ∝ f0T n by hand, and solving the field equations.

. Analogy with f (R) gravity

The teleparallel f (T ) gravity is not equivalent to metric f (R)

ravity in general, since they differ by an appropriate boundary 
erm (B) [37,38]. The relation between torsion scalar (T ) and the 
icci scalar (R) is given by
= −T + 2

e
∂ρ(eT ρ) = −T +B, (35) s

___________________________WORLD TECHN
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here, B = 2
e ∂ρ(eT ρ) is the boundary term. The action generally 

an be expressed as

B,T =
∫

d4x | e | f (T ,B) + Sm. (36)

t has been mentioned in a recent article [38] that both the met-
ic f (R) and the teleparallel f (T ) gravity can be recovered from 
(T , B) theory of gravity under suitable limit. Now, the expres-

ions of torsion scalar (T ) and boundary term (B) in a flat R–W 
etric are, T = −6( ȧ2

a2 ) and B = −6( ä
a + 2 ȧ2

a2 ). Therefore, the Ricci 
calar is

= −T +B = −6(
ä

a
+ ȧ2

a2
). (37)

In this present article, we observe that Noether symmetry of 
eleparallel f (T ) theory of gravity in matter dominated only yields 
(T ) ∝ f0T

3
2 . Such a form of f (T ) admits a solution of the cosmo-

ogical scale factor, a(t) = a1t + a0, in a flat R–W metric. This par-

icular solution implies ä = 0. On the contrary, f (R) ∝ R
3
2 yields 

 cosmological solution a(t) =
√

a4t4 + a3t3 + a2t2 + a1t + a0. So, 
n general the two differs. However, when t is small enough, i.e. 
n the early matter dominated era, the two match. In particu-
ar, under the condition ä = 0, teleparallel f (T ) gravity becomes 
quivalent to metric f (R) gravity, since B = 2T and R = T , in 
iew of equation (37). Essentially, Noether symmetry puts up a 
imit under which the two theories become equivalent. This clearly 
emonstrates that at least in the context of Noether symmetry it 

s practically of no use to consider teleparallel gravity over f (R)

heory of gravity.

. Concluding remarks

In the present work we studied teleparallel gravity and ex-
lored the form of f (T ) invoking Noether symmetry in the 
ackground of isotropic and homogeneous R–W metric. Both the 
anonical point Lagrangians obtained following Lagrange multiplier 
ethod and the scalar–tensor equivalent one, have been found to 

dmit the only symmetry f (T ) = f0T
3
2 in the matter dominated 

ra. This reveals the fact that Noether symmetry, when applied to 
xplore the form of an unknown parameter, is independent of the 
hoice of the configuration space variables. We have also noticed 
hat in R–W metric, Noether symmetry yields identical form of 
he cosmic scale factor (a(t) = a1t + a0) both in teleparallel f (T )

heory of gravity and Palatini f (�) theory of gravity [32], in the 
atter dominated era. This establishes a sort of equivalence be-

ween the two. It has also been demonstrated that in the context 
f Noether symmetry teleparallel gravity turns out to be a special 
ase of f (R) theory of gravity.

It is clear that the form of f (T ) so obtained is not much ap-
reciable. This is because, the coasting solution so obtained al-
hough fits SnIa data perfectly in the matter dominated era [33]
ails to fit other available cosmological data. Particularly, it does 
ot admit a long Friedmann-like matter dominated era, prior to 
he recent accelerated expansion of the universe. So application of 
oether symmetry to choose a form of f (T ) becomes useless. In 

his context, we would like to mention that recently it has been 
bserved that indeed Noether symmetry of f (R) theory of grav-

ty yields forms other than f (R) ∝ R
3
2 [39]. In particular the other 

orms are f (R) ∝ R2, 1
R , R

7
5 . However, this requires a new sym-

etry generator, which includes the (0
0) equation of Einstein in 

he form £X L − ηH = X L − ηH = 0, where, H is the Hamiltonian 
onstraint of the theory being expressed in terms of configuration 

pace variables (the 0

0 equation of Einstein) and η is a function of 
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the coordinates in general. There is also possibility of finding other
forms of f (R) under proper investigation. Likewise, we do expect
that several other forms of f (T ) might also emerge in view of the
above mentioned symmetry generator. This we pose in a future
communication.
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Within the framework of inflationary models that incorporate a spontaneous reduction of the wave
function for the emergence of the seeds of cosmic structure, we study the effects on the primordial
scalar power spectrum by choosing a novel initial quantum state that characterizes the perturbations of
the inflaton. Specifically, we investigate under which conditions one can recover an essentially scale free
spectrum of primordial inhomogeneities when the standard Bunch–Davies vacuum is replaced by another
one that minimizes the renormalized stress–energy tensor via a Hadamard procedure. We think that this
new prescription for selecting the vacuum state is better suited for the self-induced collapse proposal
than the traditional one in the semiclassical gravity picture. We show that the parametrization for the
time of collapse, considered in previous works, is maintained. Also, we obtain an angular spectrum for
the CMB temperature anisotropies consistent with the one that best fits the observational data. Therefore
we conclude that the collapse mechanism might be of a more fundamental character than previously
suspected.
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1. Introduction

Inflation is considered as a fundamental component of the stan-
dard �CDM cosmological model characterizing the initial stages
of the universe [1–4]. Essentially, according to the inflationary
paradigm, the early universe underwent an accelerated expansion
induced by a scalar field named the inflaton. In addition, it is
widely accepted that the quantum fluctuations of the inflaton gave
birth to the primordial curvature perturbation, which in turn, gen-
erated the primeval density perturbations [5–9]. These primordial
perturbations are thus responsible for the origin of all the observed
structure in the universe. The predicted properties of such pertur-
bations are consistent with recent observational data from the cos-
mic microwave background (CMB) [10–12]. In particular, the data
are consistent with a nearly scale invariant spectrum associated to
the perturbations, which also favors the simplest inflationary mod-
els [12,13].

According to the standard inflationary picture, the dynamical
expansion of the early universe is governed by Einstein equa-

tions which are symmetry preserving; the symmetry being the 

* Corresponding author.
E-mail addresses: gabriel@iafe.uba.ar (G.R. Bengochea), gleon@fcaglp.unlp.edu.ar

(G. León).
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homogeneity and isotropy. Another important aspect is that, when
considering the quantum description of the fields, the vacuum
state associated to the inflaton is also homogeneous and isotropic,
i.e. it is an eigenstate of the operator generating spatial transla-
tions and rotations. Furthermore, the dynamical evolution of the
vacuum satisfies the Schrödinger equation, which does not break
translational and rotational invariance. As a consequence, we ar-
rive at an important conundrum: it is not clear how from a perfect
symmetric initial situation (both in the background spacetime and
in the quantum state that characterizes the inflaton), and based
on dynamics that preserves the symmetries (the homogeneity
and isotropy), one ends up with a final state that is inhomoge-
neous and anisotropic describing the late observed universe. The
aforementioned problem was originally introduced in [14] (and
extensively discussed in [15,16]) together with a possible solu-
tion: the self-induced collapse hypothesis. The collapse proposal
consists that at some point, during the inflationary epoch, a spon-
taneous change occurs, transforming the original quantum state of
the inflaton (the vacuum) into a new quantum state lacking the

symmetries of the initial state.

It is worthwhile to mention that the situation we are fac-
ing is connected with the so called quantum measurement prob-
lem. Sometimes in the literature, the problem is presented as the 
quantum-to-classical transition of the primordial quantum fluctua-
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ions, and then decoherence is introduced into the picture [17,18]. 
lthough, decoherence can provide a partial understanding of the 

ssue, it does not fully addresses the problem mainly because de-
oherence does not solve the quantum measurement problem. We 
ill not dwell in all the conceptual aspects regarding the appeal 

f decoherence during inflation, neither the perceived advantages 
hat the objective reduction models could offer when applied to 
he early universe. Instead, we referred the interested reader to 
efs. [14,15] for a more in depth analysis.

The collapse hypothesis during inflation has been analyzed 
sing two approaches: In the first, one characterizes the post-
ollapse state phenomenologically through the expectation values 
nd quantum uncertainties of the field, and its conjugated momen-
um, evaluated at the time of collapse [14,19–21]. In the second 
pproach, one employs a particular collapse mechanism called the 
ontinuous spontaneous localization model, where a modification 
f the Schrödinger equation is proposed, resulting in an objective 
ynamical reduction of the wave function [22–26]. In both ap-
roaches, one obtains a prediction for the scalar and tensor power 
pectra that, in principle, is different from the standard prediction 
27,28]. The first approach has been tested using the most recent 
ata provided by the Planck collaboration, and, under certain cir-
umstances, provides the same Bayesian evidence of the minimal 
tandard cosmological model �CDM [29]. Therefore, we will follow 
he first approach to characterize the self-induced collapse, but the 
ramework exposed in the present work can be extended to the 
econd approach.

Another important feature of the collapse proposal is the adop-
ion of semiclassical gravity [30], which serves to relate the space-
ime description in terms of the metric and the degrees of freedom 
f the inflaton. In the semiclassical picture, gravity is always clas-
ical while the matter fields are treated quantum mechanically. 

e assume such a framework to be a valid approximation during 
he inflationary era, which is well after the full quantum gravity 
egime has ended. This approach is different from the standards 

odels of inflation in which metric and matter fields are quantized 
imultaneously. We should mention that there are many argu-
ents suggesting that the spacetime geometry might emerge from 

eeper, non-geometrical and fundamentally quantum mechanical 
egrees of freedom [31–35]. Therefore, in this work, we will em-
loy Einstein semiclassical equations Gab = 8πG〈T̂ab〉.

On the other hand, the selection of the pre-collapse state, i.e. 
he vacuum state, which is perfectly homogeneous and isotropic, is 
ot generic. It is known that since we are dealing with a theory of 
 scalar field (the inflaton) in a curved spacetime, the choice of the 
acuum state is not unique [30,36]. Traditionally, the Bunch–Davies 
BD) vacuum is selected when considering the quantum theory of 
he inflaton. The criterion used for the BD vacuum is based on 
nding a state |0〉 such that it minimizes the expectation value 
0|Ĥ(ηi)|0〉 at some initial time ηi , with Ĥ the Hamiltonian asso-
iated to the perturbations [37,38]; this prescription is also called 
amiltonian diagonalization. On the other hand, there are known 
nresolved issues with such procedure. One is that 〈0|Ĥ(ηi)|0〉 can 
e minimized only at an instant ηi ; at some other time η1 > ηi , 
he BD vacuum does not achieve the sought minimization of the 
xpectation value. In other words, the zero “particle” state is only 
efined at the time ηi , and as inflation unfolds, the state |0〉 con-
ains “particles” at other time η1. Another related issue is that 
sual renormalization methods, which make 〈0|Ĥ(ηi)|0〉 finite, can 
nly be defined at ηi → −∞, that is, at the very early stages of in-
ation. Some authors consider those arguments sufficient to find 
lternatives to the Hamiltonian diagonalization method [39–41]. 
ere it is also important to mention that different choices other 

han the BD vacuum state have been analyzed previously. For ex-

mple in Refs. [42–44] it is presented an analysis regarding the w

___________________________WORLD TECHN
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bservable effects of trans-Planckian physics in the CMB and its 
elation with a non-BD vacuum. In addition, a non-BD vacuum is 
sually associated with large non-Gaussianities in the CMB [45,46].

One of the possible alternatives is proposed in Ref. [41]. Those 
uthors suggest that, instead of minimizing 〈0|Ĥ |0〉, one should 
ocus on minimizing the renormalized 〈T̂00(x)〉. Specifically, the 
acuum |0̃〉 (which is not the same as the BD vacuum), is such that 
t minimizes the 0–0 component of the renormalized expectation 
alue of the energy–momentum tensor, which can be considered 
s a local energy density. Moreover, the vacuum |0̃〉 only mini-
izes the renormalized 〈0̃|T̂00(x)|0̃〉 at some particular time η0. 
owever, conceptually, it is easier to handle a notion of an instan-

aneous local energy density minimum than dealing with a notion 
f “particle” that changes with time. Also, the time η0 does not 
eed to be taken in the limit η0 → −∞, although, if one chooses 
o set η0 at such early times, then |0̃〉 coincides with the prescrip-
ion of the BD vacuum, but not with its physical interpretation of 
 “particle-less” state.

All previous works regarding the self-induced collapse proposal, 
hen applied to the inflationary scenario, have been based on se-

ecting the BD vacuum, which is the usual choice in traditional 
odels of inflation as well. Nonetheless, one of the key objects in 

he inflationary collapse proposal, based on the semiclassical grav-
ty framework, is the expectation value 〈T̂ab(x)〉. In our approach, 
f the post-collapse state does not share the same symmetries as 
he initial-vacuum-state then 〈T̂ab〉, evaluated in the post-collapse 
tate, will result in a geometry that is no longer homogeneous and 
sotropic, thus, providing the primordial perturbations for cosmic 
tructure. Therefore, a criterion based on selecting a vacuum state 
hat minimizes the renormalized expectation value of T̂00 seems 
etter suited for our picture than one based on choosing a zero 
particle” state at a particular time. Furthermore, after the collapse, 
learly 〈T̂00〉 will no longer be the same as the one evaluated in 
he vacuum state. Hence, if one thinks the collapse as a dynamical 
rocess, changing continuously from |0̃〉 to the post-collapse state, 
hen it is clear to picture the expectation value of T̂00 also chang-
ng continuously. In particular, the value 〈0̃|T̂00|0̃〉 will transform 
rom a minimum, which produces a perfectly symmetric space-
ime, into a different value generating the perturbations of the 
eometry.

From discussion above the motivation for the present work is 
stablished. That is, we are interested in analyzing the possible ef-
ects on the primordial power spectrum generated by choosing the 
ovel prescription based on minimizing the renormalized 〈T̂00〉. In 
articular, we are interested in analyzing which aspects of the col-

apse proposal are modified when the initial conditions are also 
hanged. As we will show, one of our findings indicate that the 
arametrization of the time of collapse, for each mode of the field, 
urprisingly remains the same. This led us to think that the physics 
ehind the self-induced collapse of the wave function should be 
tudied in more detail.

The article is organized as follows: in Sect. 2, we review some 
asics about inflation in the semiclassical gravity framework; in 
ect. 3, we analyze the quantization of perturbations, the vac-
um choice and present the emergence of curvature perturbation 
ithin the collapse hypothesis. Then, we show our prediction for 

he scalar power spectrum. In Sect. 4 we make a discussion of our 
esults, and finally in Sect. 5 we summarize our conclusions.

Regarding conventions and notation, we will be using a (−, +,

, +) signature for the spacetime metric, and we will use units 

here c = 1 = h̄.
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2. Inflation in the semiclassical picture

In this section, we will summarize some basic concepts re-
garding the inflationary model in the framework of semiclassical
gravity. Extra details can be consulted in previous works (e.g. [14
19,47,48]).

In the inflationary regime, the dominant type of matter is mod-
eled by a scalar field φ, called the inflaton, with a potential V
responsible for the accelerating expansion. At the end of the in-
flationary epoch, the universe follows the standard Big Bang evo-
lution whose transition mechanism is provided by a reheating pe-
riod.

We begin describing the inflationary universe by the action of
a scalar field minimally coupled to gravity,

S[φ, gab] =
∫

d4x
√−g

[
1

16πG
R[g] − 1

2
∇aφ∇bφgab − V [φ]

]
.

(1)

Varying this last equation with respect to the metric yields the
Einstein field equations Gab = 8πGTab , with Gab the Einstein ten-
sor.

We will use conformal coordinates and, as usual, we will split
the metric and the scalar field into a background perfectly homo-
geneous and isotropic, plus small perturbations. That is, we write
the metric as gab = g(0)

ab + δgab , and φ = φ0(η) + δφ(x, η), where
the background will be represented by a spatially flat FLRW space-
time and the homogeneous part of the scalar field (in the slow-roll
regime) by φ0(η). From Einstein equations for the background, it
follows that G(0)

00 = 8πGT (0)
00 = 8πGa2ρ , so the Friedmann equa-

tion is 3H2 = 8πGa2ρ where H ≡ a′(η)/a(η) is the conformal
Hubble parameter, and a(η) is the scale factor. As is customary
the scale factor will be set to a = 1 at the present time. Remember
that the inflationary phase extends between −∞ < η < ηr , where
ηr ≈ −10−22 Mpc is the conformal time when inflation comes to
an end. From here on, primes over functions will denote deriva-
tives with respect to the conformal time η. During the inflationary
phase, the potential V is the major contribution to the energy den-
sity ρ .

In the slow-roll inflationary model, the conformal Hubble pa-
rameter is expressed by H � −1/[η(1 − ε1)], with ε1 ≡ 1 −H′/H2

the Hubble slow-roll parameter, which during inflation 1  ε1 �
constant.

We will only focus on first-order scalar perturbations; hence
the FLRW perturbed metric can be written as

ds2 = a2(η)
{ − (1 − 2ϕ)dη2 + 2(∂i B)dxidη +

+ [(1 − 2ψ)δi j + 2∂i∂ j E]dxidx j}. (2)

Within the semiclassical framework, it is convenient to work with
the well known gauge-invariant Bardeen potentials. They are de-
fined as � ≡ ϕ + 1

a [a(B − E ′)]′ and  ≡ ψ + H(E ′ − B). On
the other hand, the inflaton perturbation can be modeled by the
gauge-invariant fluctuation of the scalar field δφ(GI)(η, x) = δφ +
φ′

0(B − E ′).
Working with the perturbed Einstein equations (in the ab-

sence of anisotropic stress), it can be found that  = �. Also
these perturbed equations, along with the Friedmann equation and
the equation of motion for φ0 in the slow-roll approximation, i.e
3Hφ′

0 + a2∂φ V ≈ 0, imply that (see for instance Appendix A of
[49]):

∇2 + μ = 4πGφ′
0δφ

′ (GI), (3)
where μ ≡H2 −H′ = ε1H2. In Fourier space, Eq. (3) results,

____________________________WORLD TECH
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k(η) =
√

ε1

2

H

M P (k2 − μ)
aδφ′

k(η)(GI), (4)

with H the Hubble parameter, M P ≡ √
1/(8πG) is the reduced

Planck mass, and we have also used the definition of ε1 . Notice
that during most of the inflationary phase, the inequality k2  μ
is satisfied (both when |kη|  1 and |kη| � 1). Only when ε1
starts departing from being a constant (i.e. when ε1 → 1 which
means that inflation is ending) that inequality is violated. Given
that modes of observational interest are bigger than the Hubble
radius (|kη| � 1) while the inflationary phase is still going on, the
approximation k2  μ remains valid. Therefore, Eq. (4) can be ap-
proximated by

k(η) �
√

ε1

2

H

M P k2
aδφ′

k(η)(GI). (5)

In the semiclassical framework, Eq. (5) can be generalized to

k(η) �
√

ε1

2

H

M P k2
a〈 ˆδφ′

k(η)(GI)〉. (6)

Last equation is expressed in terms of gauge-invariant quantities
k(η) and ˆδφ′

k(η)(GI) . Note that, in our approach, the metric per-
turbation will be always a classical quantity.

3. Quantum perturbations, vacuum choice and collapse 
hypothesis

In this section, we perform the quantization of the perturba-
tions. However, before proceeding with the quantization, we will
first briefly address the subject of gauge and its relation with the
metric and field perturbations.

In the following, we will choose to work with a fixed gauge
and not in terms of the so-called gauge-invariant combinations. We
are forced to do so because, in our approach, the adoption of the
semiclassical gravity framework leads to consider a classical metric
perturbation and a quantum field perturbation, i.e. the metric and
field perturbations are treated on a different footing. This contrasts
with the standard treatment in which, normally, one chooses to
work with gauge invariant quantities which mix matter and geom-
etry degrees of freedom. Then, the quantization results essentially
the same for both types of perturbations (matter and geometry).

On the other hand, the choice of gauge implies that the time
coordinate is attached to some specific slicing of the perturbed
spacetime. And thus, our identification of the corresponding hy-
persurfaces, those of constant time as the ones associated with
the occurrence of collapses–something deemed as an actual phys-
ical change–turns what is normally a simple choice of gauge into
a choice of the distinguished hypersurfaces, tied to the putative
physical process behind the collapse. This naturally leads to ten-
sions with the expected general covariance of a fundamental the-
ory, a problem that afflicts all known collapse models, and which
in the non-gravitational settings becomes the issue of compatibility
with Lorentz or Poincare invariance of the proposals. We must ac-
knowledge that this generic problem of collapse models is indeed
an open issue for the present approach. One would expect that its
resolution would be tied to the uncovering of the actual physics
behind what we treat here as the collapse of the wave function
(which we view as a merely effective description). As it has been
argued in related works, and in ideas originally exposed by Pen-
rose [50], we hold that the physics that lies behind all this links
the quantum treatment of gravitation with the foundational issues
afflicting quantum theory in general; and in particular, those with
connection to the so-called “measurement problem”.

The gauge we choose is the longitudinal gauge (B = E = 0). The

advantage of working with this gauge is that the action at second 
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rder involving the matter and metric perturbations is mathemat-
cally the same as the one using gauge invariant quantities, i.e. the 
ardeen potentials and δφ(GI) . Also, note that  represents the cur-
ature perturbation in this gauge, and it is related to δφ in the 
xact same way as in Eq. (6) [51]. Therefore, we can be certain 
hat the field perturbations are actual physical degrees of freedom 
nd not pure gauge. Additionally, in our approach, before the col-
apse (i.e. in the vacuum state) there are no metric perturbations. 
ence, the resulting action is the one involving only δφ. After the 

ollapse, when the metric perturbations are indeed present, the 
uantum theory should be modified as presented in [20]. How-
ver, we will not consider such backreaction, mainly because we 
re interested in describing the quantum theory using a non-BD 
acuum.

Next, we will present the quantum theory for the field δφ(x, η), 
hich will be carried out by choosing a vacuum state different 

rom the BD vacuum. We point out that the criterion used is 
hysically different from the usual BD vacuum. Then, we will char-
cterize the collapse scheme, calculate the curvature perturbation, 
nd finally we will show our expression for the primordial scalar 
ower spectrum.

We start (for simplicity) re-scaling the field variable as y = aδφ. 
hen, we proceed by expanding the action (1) up to second order 

n the scalar field perturbation y. This results in:

S(2) =
∫

d4x
1

2

[
y′ 2 − (∇ y)2 +

(
a′

a

)2

y2

− 2

(
a′

a

)
yy′ − y2a2∂2

φφ V

]
. (7)

herefore, the canonical momentum conjugated to y is π ≡
δL(2)/∂ y′ = y′ − (a′/a)y = aδφ′ .

In order to facilitate the calculations, we will neglect the slow 
oll parameters ε1 and ε2 ≡ ε′

1/(Hε1) in the quantization proce-
ure. At the end of the computations, we will argue how we can 
eneralize our result to the quasi-de Sitter case, in which the slow 
oll parameters are considered.

Now, the field and momentum variables are promoted to op-
rators satisfying the equal time commutator relations [ ŷ(x, η),

(x′, η)] = iδ(x −x′) and [ ŷ(x, η), ŷ(x′, η)] = 0 = [π̂ (x, η), π̂ (x′, η)]. 
xpanding the fields operators in Fourier modes yields

ŷ(η,x) = 1

L3

∑
k

ŷk(η)eik·x (8)

(η,x) = 1

L3

∑
k

π̂k(η)eik·x (9)

here the sums are over the wave vectors k, satisfying ki L = 2πni
or i = 1, 2, 3 with ni integer. Also, we have defined ŷk(η) ≡
k(η)âk + y∗

k (η)â†
−k and π̂k(η) ≡ gk(η)âk + g∗

k (η)â†
−k , with gk(η) =

′
k(η) −Hyk(η) and âk, ̂a†

k being the usual annihilation/creator op-
rators, respectively. Note that the quantization is on a finite cubic 
ox of length L, and at the end of the calculations we will take the 
ontinuum limit (L → ∞, k → cont.).

From action (7), the equation of motion for yk(η) results in

′′
k (η) +

(
k2 − a′′

a

)
yk(η) = 0 (10)

ith a′′/a = 2/η2. The general solution is,

k(η) = Ak

(
1 − 1

kη

)
e−ikη + Bk

(
1 + 1

kη

)
eikη (11)

here A and B are two constants (dependent on k) that will be 
k k
xed by the initial conditions at some η0. i
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Therefore, to complete the quantization, we have to specify the 
olutions yk(η), through constants Ak and Bk . This choice is not 
ompletely free; to insure that canonical commutation relations 
etween ŷ and π̂ give [âk, ̂a†

k′ ] = L3δk,k′ , they must satisfy:

k g∗
k − y∗

k gk = i (12)

or all k at some (and hence any) time η.
The choice of the yk(η) corresponds to the choice of a vacuum 

tate |0〉 for the field, defined by âk|0〉 = 0 for all k. In the present 
ase, as on any non stationary spacetime, it is not unique. Condi-
ion (12) is not sufficient to fully determine yk(η). The traditional 
pproach in inflationary models is to consider the (homogeneous 
nd isotropic) so-called BD vacuum. In this case, the choice corre-
ponds to the situation in which, when kη0 → −∞, the solution 
k(η) → 1√

2k
e−ikη; this is, the solutions are the same as the ones 

ith positive frequencies in the flat Minkowski spacetime. In the 
ase of inflation in a quasi-de Sitter background, this last condition 
ogether with (12) correspond to fix Bk = 0 and |Ak| =

√
π
4k . Read-

rs interested in how the quasi-de Sitter case is analyzed within 
ollapse schemes, when the BD vacuum is chosen as the initial 
ondition (and where the prediction for the scalar spectral index 
s ns �= 1), are invited to see the work [49].

At this point, we must make a short digression regarding our 
onceptual approach and its differences with the standard pic-
ure. Any selection of a vacuum (made through the choice of the 
k(η) that we take as positive energy modes), would be a spa-

ially homogeneous and isotropic state of the field, as it can be 
een by evaluating directly the action of a translation or rotation 
perators (associated with the hypersurfaces η = constant of the 
ackground spacetime) on the state |0〉. A formal proof of this can 
e found, for instance, in Appendix A of [16]. As the dynamical 
volution (through Schrödinger equation) preserves such symme-
ries, the state of the system will be symmetric (homogeneous and 
sotropic) at all times. In fact, there is nothing, given the standard 
nitary evolution of the quantum theory, that could be invoked to 
void such conclusion. The issue is then: How do we account for a 
niverse with seeds of cosmic structure, starting from an isotropic 
nd homogeneous background spacetime and an equally symmet-
ic vacuum state? Note that this is an open issue in all current 

odels of inflation relying in the traditional treatment of the pri-
ordial perturbations.

As we mentioned in the Introduction, one possible solution 
o the aforementioned problem relies on supplementing the stan-
ard inflationary model with an hypothesis involving the modifica-
ion of quantum theory so as to include a spontaneous dynamical 
eduction of the quantum state (sometimes referred as the self-
nduced collapse of the wave function) [14,15]. The dynamical 
eduction can be considered as an actual physical process taking 
lace independently of observers or measuring devices. Therefore, 
ur approach regarding the origin of the primordial perturbations 
an be summarize as follows: a few e-folds after inflation has 
tarted, the universe finds itself in an homogeneous and isotropic 
uantum state. Then, during the inflationary regime, a quantum 
ollapse of the wave function is triggered (by novel physics that 
ould possibly be related to quantum gravitational effects), break-
ng in the process the unitary evolution of quantum mechanics and 
lso, in general, the symmetries of the original state. That is, the 
ost-collapse state will not be, in general, isotropic nor homoge-
eous. Also, the collapse mechanism functions as a generator of 
he metric perturbations, as will become clear below.

Readers familiar with the subject might take the posture that 
he problem we are characterizing is equivalent to the quantum-to-
lassical transition of the primordial perturbations. Several works 

n the literature, based on decoherence or evolution of the vacuum 
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state into a squeezed state, have dealt with such a problem (see
e.g. [17,18]). On the other hand, in Refs. [14–16] it is exposed why
such arguments are not entirely convincing. Nevertheless, in the
standard approach, at some point during inflation occurs the tran-
sition ̂k → k = Aeiαk , with αk a random phase (recall that k
represents the metric perturbation). The amplitude A is identified
with the quantum uncertainty of ̂k , i.e. A2 = 〈0|̂2

k|0〉. Moreover,
quantum expectation values are identified with ensemble averages
of classical stochastic fields based on postulate, and the theoreti-
cal predictions agree with the observational data. Finally, note that
in our approach, because our reliance on semiclassical gravity, the
primordial curvature perturbation is always a classical quantity.

In the next subsections, we are going to analyze whether the
replacement of the BD vacuum state by another one (motivated by
different physical criteria) can affect the primordial scalar power
spectrum, under the incorporation of the collapse hypothesis. As
we will see, under certain conditions, one can recover a scale free
spectrum for scalar perturbations, but generically there would be
some characteristic deviations thereof. Note that neglecting the
slow roll parameters indicates that our prediction for the primor-
dial scalar power spectrum should be an essentially scale free
spectrum, i.e. P(k) ∝ 1

k3 . On the other hand, the observations (e.g.

CMB [12]) suggest that P(k) ∝ k−3+O(ε1,ε2) . In other words, the
scalar spectral index is such that ns �= 1. We think that when rein-
corporating the slow-roll parameters in the equation of motion for
the field variable, we would obtain a prediction for ns consistent
with the observational data. However, the modification of the P(k)

induced by the collapse hypothesis, would be practically the same
as the one obtained using the mode functions, Eq. (11), which
neglects the slow roll parameters. In fact, one is led to a similar
conclusion in Refs. [14,21], in which the BD vacuum was chosen.

3.1. Novel vacuum conditions

As it is well known, the choice of a vacuum state is not unique
in spacetimes that do not possess a time-like Killing field. This is
precisely the case when, for example, we try to describe the in-
flationary phase of the early universe. There are several ways to
choose the initial conditions; some of which can be seen in [52,53].

Traditionally, quantum initial conditions for perturbations in in-
flation are set using the BD vacuum.

The typical selection of the BD vacuum, described previously,
can be deduced, for example, looking for the conditions that
modes yk(η) must satisfy to achieve the diagonalization of the
Hamiltonian of perturbations. However, those conditions are sat-
isfied for a given initial time η0; because as is known, in a curved
spacetime the vacuum is a time-dependent notion. Hamiltonian di-
agonalization is the simplest approach for setting quantum initial
conditions in a general spacetime, and derives the vacuum from
the minimization of the Hamiltonian density. However, this ap-
proach has been criticised in the past [36,39].

In order to avoid the issues raised against Hamiltonian diago-
nalization, the authors in [41] motivated different initial conditions
from the minimization of the renormalized stress–energy density.
The authors in [41], start from the action for a scalar field φ with
mass m,

S =
∫

d4x
√−g

[
− 1

2
∇aφ∇bφgab − 1

2
m2φ2

]
. (13)

By expanding the field φ in Fourier modes in the context of a
FLRW spacetime as∫

d3k [ ]

φ(x) =

(2π)3a(η)
âkχk(η)eik·x + â†

kχ
∗
k (η)e−ik·x , (14)

____________________________WORLD TECH
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if the field satisfies its equation of motion, and the commutation
relation between âk and â†

k is the standard one, then it is well
known that the mode functions χk must satisfy:

χ ′′
k +

[
k2 + m2a2 − a′′

a

]
χk = 0 (15)

χkχ
′ ∗
k − χ∗

kχ ′
k = i (16)

Later, the authors computed a renormalized stress–energy ten-
sor, 〈0|T̂ab|0〉ren, via a Hadamard point splitting procedure. To do
that, they build the stress-tensor 〈0|T̂ab|0〉ren using the Hadamard
Green function with the mode expansion (14), and subtracting off
de-Witt–Schwinger geometrical terms to obtain a non-divergent
quantity. Then, finally they write:

〈0|T̂00(x)|0〉ren = 1

2

∫
d3k

(2π)3a2
(χ ′

k − a′

a
χk)(χ ′ ∗

k − a′

a
χ∗

k )

+ (k2 + m2a2)χkχ
∗
k + T̃ (17)

where T̃ signifies additional terms arising from the renormal-
ization process that have no dependence on the variables � =
{χk, χ∗

k , χ ′
k, χ ′ ∗

k }. Minimizing (17) with respect to �, subject to
the normalization (16), yields the relations [41]:

|χk|2 = 1

2
√

k2 + m2a2
(18)

χ ′
k =

(
− i

√
k2 + m2a2 + a′

a

)
χk (19)

Conditions (18) and (19) will be our guide to determine the novel
vacuum conditions in the present work.

Now, let us return to our particular situation. Quantum field
theory in curved spacetime describes the effects of gravity upon
the quantum fields. The semiclassical Einstein equation describes
how quantum fields act as the source of gravity. This equation is
usually taken to be the classical Einstein equation, with the source
as the quantum expectation value of the matter field stress–energy
tensor operator T̂ab , that is,

Gab = 8πG〈T̂ab〉. (20)

But, this expectation value is only defined after suitable regulariza-
tion and renormalization.

As already mentioned, since we are not interested in the ef-
fects on the power spectrum (and its scalar spectral index) coming
from slow-roll parameters, we assume m = 0 in Eq. (15), which is
equivalent to neglect the second slow roll parameter ε2. Moreover,
note that the equation of motion for yk(η), Eq. (10), is identical to
Eq. (15), which is the one obtained by the authors of [41] when
m = 0. In particular, it involves the quantity a′′

a . This contrasts with
the traditional procedure involving the Mukhanov–Sasaki variable,
which results in an equation of motion similar in structure to
Eq. (15), but replacing a′′

a → z′′
z , where z ≡ √

2ε1aM P . In other
words, the quantum theory proposed by the authors of [41] is
better suited for the field yk(η), than for the Mukhanov–Sasaki
variable because strictly if ε′

1 �= 0, then a′′
a �= z′′

z .
Therefore, we consider once again, the general solution (11),

which is

yk(η) = Ak

(
1 − 1

kη

)
e−ikη + Bk

(
1 + 1

kη

)
eikη. (21)

Here, without loss of generality, we will assume Ak ∈ R and
Bk ∈ C. That is, only Bk will carry a complex phase. Normaliza-
tion (12) imposes that
A2
k − |Bk|2 = 1

2k
. (22)
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n the other hand, identifying χk with yk(η), conditions (18) and 
19) yield

k = +
√

4z2
0 + 1

8kz2
0

(23)

k = 1

+√
8k |z0|

eiβ (24)

here we have defined z0 ≡ kη0 and β ≡ −2z0 + arctan(2z0) + π . 
ote that when z0 → −∞, the BD vacuum is recovered; this is, 
k = 1√

2k
and Bk = 0.

Equation (21) together with Eqs. (23) and (24) constitute our 
hoice of initial vacuum conditions at time η0. In the next subsec-
ion, we will introduce the specific collapse scheme and calculate 
he primordial curvature perturbation.

.2. Emergence of curvature perturbation within a collapse scheme

In this subsection, we are going to consider a modification to 
he standard inflationary proposal, designed to account for break-
ng the symmetries of the initial quantum state, leading to the 
eneration of the primordial inhomogeneities.

As we have claimed, when considering a quantum description 
or the early universe, one must face the situation in which a com-
letely homogeneous and isotropic stage must nevertheless lead, 
fter some time, to a universe containing actual inhomogeneities 
nd anisotropies. This issue has been considered at length in other 
orks, including detailed discussions of the shortcomings of the 
ost popular attempts to address the problem, and we will not re-

eat such extensive discussions here. It is clear that such transition 
rom a symmetric situation to one that is not, cannot be simply 
he result of quantum unitary evolution, since, as we noted, the 
ynamics does not break these initial symmetries of the system. 
s discussed in [15], and despite multiple claims to the contrary 

e.g. [18]), there is no satisfactory solution to this problem within 
he standard physical paradigms.

The proposal to handle this shortcoming was considered for the 
rst time in [14]. There, the problem was addressed by introduc-

ng a new ingredient into the inflationary account of the origin of 
he seeds of cosmic structure: the self-induced collapse hypothesis. 
he basic idea is that an internally induced spontaneous collapse 
f the wave function of the inflaton field is the mechanism by 
hich inhomogeneities and anisotropies arise at each particular 

cale. That proposal was inspired on early ones for the resolution 
f the measurement problem in quantum theory [54–58], which 
egarded the collapse of the wave function as an actual physical 
rocess taking place spontaneously. Also, on the ideas by R. Pen-
ose and L. Diosi [50,59,60] who assumed that such process should 
e connected to quantum aspects of gravitation.

A collapse scheme [14,19] is a recipe to characterize and se-
ect the state into which each of the modes of the scalar field 
umps at the corresponding time of collapse. The collapse itself 
s described in a purely phenomenological manner, without ref-
rence to any particular mechanism. As reported in, for instance, 
14,29,48,61], the different collapse schemes generally give rise to 
ifferent characteristic departures from the conventional Harrison–
el’dovich flat primordial spectrum. There are, of course, more 
ophisticated theories describing the collapse dynamics, such as 
hose in [22–25,55–58,62]. However, we will not consider those in 
he present study, which is meant a first exploration of such ideas 
n the context of different choices of the initial quantum state.

The self-induced collapse hypothesis is based on assuming that 
he collapse acts similar to a “measurement” (in an early uni-
erse where, clearly, there are no external observers or measur-

ng devices), this lead us to consider Hermitian operators, which 

〈
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n ordinary quantum mechanics are the ones susceptible of di-
ect measurement. Therefore, we will separate ŷk(η) and π̂k(η)

nto their real and imaginary parts: ŷk(η) = ŷk
R(η) + i ŷk

I (η) and 
ˆk(η) = π̂k

R(η) + iπ̂k
I (η). In this way, the operators ŷR,I

k (η) and 
ˆ R,I

k (η) are Hermitian operators and then they can be written as,

R,I
k (η) = √

2Re[yk(η)âR,I
k ] (25a)

ˆ R,I
k (η) = √

2Re[gk(η)âR,I
k ] (25b)

here âR
k ≡ 1√

2
(âk + â−k), and âI

k ≡ −i√
2
(âk − â−k); and where the 

on-standard commutation relations for the âR,I
k are,

âR,I
k , âR,I†

k′ ] = L3(δk,k′ ± δk,−k′). (26)

n the last equation, the + and − signs correspond to the commu-
ators with the R and I labels respectively; and all other commu-
ators vanish.

Next, we will show how in our approach the quantum theory 
f the inflaton perturbations can be connected with the primor-
ial curvature perturbation. Moreover, we will illustrate how the 
ollapse process generates the seeds of cosmic structure. Here, we 
ill proceed by choosing to work in the longitudinal gauge, and 

hen, since π̂k = a ˆδφ′
k , we will express Eq. (6) in terms of the ex-

ectation value of the conjugated momentum. Thus,

k(η) �
√

ε1

2

H

M P k2
〈π̂k(η)〉. (27)

At the initial conformal time η0, the state |0〉 is perfectly sym-
etric, which implies that 〈π̂k(η)〉 = 0 and so, k = 0; i.e. there 

re no perturbations of the symmetric background spacetime. Af-
erwards, under the self-induced collapse hypothesis, at some later 
ime ηc

k , called the time of collapse, a transition to a new state 
0〉 → |�〉 is produced, which does not have the initial symme-
ries. And in this new state, we will have that 〈π̂k(η)〉� �= 0 for 
ll η ≥ ηc

k , and k �= 0. From Eq. (27), which was provided by the 
emiclassical framework, and given that all modes of the inflaton 
eld are now in the post-collapse state |�〉, we can clearly see that 

he expectation value 〈π̂k(η)〉 serves as a source for k for all k. 
hese collapses will be assumed to take place according to certain 
ollapse scheme which we will describe in detail below.

Taking into account Eq. (27), and that the collapse is somehow 
nalogous to an imprecise measurement of the operators ŷR,I

k (η)

nd π̂ R,I
k (η), our next objective is to find an equation for the dy-

amics of the expectation values of 〈π̂ R,I
k (η)〉, evaluated in the 

ost-collapse state. This equations, as we shall see, will be related 
o the values 〈 ŷR,I

k (ηc
k)〉 and 〈π̂ R,I

k (ηc
k)〉, through the proposed col-

apse scheme.
In the vacuum state, ŷk and π̂k individually are distributed ac-

ording to Gaussian wave functions centered at zero with spread 
� ŷk)2

0 and (�π̂k)2
0, respectively. Our assumption is that the effect 

f the collapse on a state is analogous to some sort of approximate 
easurement. Therefore, after the collapse the expectation values 

f the field and momentum operators, in each mode, will be re-
ated to the uncertainties of the initial state.

We will adopt a collapse scheme, where it is assumed that the 
xpectation values of the field mode ŷR,I

k and their conjugate mo-

entum π̂ R,I
k acquire independent values randomly, and where 

he expectation (in the new state |�〉) at the time of collapse is 
iven by:

ŷR,I
k (ηc

k)〉� = λ1 xR,I
k,1

√(
� ŷR,I

k (ηc
k)

)2

0
(28a)

R,I c R,I

√(
R,I c

)2

π̂k (ηk)〉� = λ2 xk,2 �π̂k (ηk) 0

(28b)
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The parameters λ1 and λ2 are viewed as “switch-off/on” param-
eters. This is, they can only take the values 0 or 1 depending
on which variable ŷR,I

k , π̂ R,I
k or both is affected by the collapse

For instance, in past works [14,63], the name independent scheme
was coined for the case λ1 = 1 = λ2, i.e. ŷR,I

k and π̂ R,I
k are both

affected independently by the collapse. In this scheme the ex-
pectation value jumps to a random value x(R,I)

k multiplied by the
uncertainty of the vacuum state of the field. The random variables
x(R)

k,1, x
(I)
k,1, x

(R)

k,2 and x(I)
k,2 are selected from a Gaussian distribution

centered at zero, with unity spread, and all of them are assumed
statistically uncorrelated. In Appendix A we show the quantum un-

certainties 
(
� ŷR,I

k (ηc
k)

)2

0
and 

(
�π̂ R,I

k (ηc
k)

)2

0
in the vacuum state

within this collapse scheme.
Having established the relation between the curvature pertur-

bation and the quantum matter fields [see Eq. (27)], as well as
the characterization of the collapse, the next aim is to present an
explicit expression for the curvature perturbation in terms of the
parameters characterizing the collapse scheme. In order to achieve
that goal, we must first find an expression for the evolution of the
expectation values of the fields. In fact, as can be seen from Eq.
(27), we will only be concerned with the expectation value of the
conjugated momentum 〈π̂k(η)〉.

In Appendix A, we show that:

〈π̂k(η)〉� = −L3/2
[

F (kη, zk) |yk(η
c
k)| λ1 Xk,1 +

+ G(kη, zk) |gk(η
c
k)| λ2 Xk,2

]
(29)

where Xk,1 ≡ xR
k,1 + i xI

k,1, Xk,2 ≡ xR
k,2 + i xI

k,2, and the functions
F (kη, zk), G(kη, zk), |yk(η

c
k)| and |gk(η

c
k)| are also defined in Ap-

pendix A. Notice that the constants Ak and Bk appear in all these
functions, and is in such constants that the information about the
initial conditions is found, through its dependence with z0 ≡ kη0
Also, the parameter zk is defined as zk ≡ kηc

k; thus, zk is directly
associated to the time of collapse ηc

k .
Finally, substituting Eq. (29) in Eq. (27), we find the expression

for the curvature perturbation (in the longitudinal gauge):

k(η) = −
√

ε1

2

H L3/2

M P k2

[
F (kη, zk) |yk(η

c
k)| λ1 Xk,1 +

+ G(kη, zk) |gk(η
c
k)| λ2 Xk,2

]
(30)

The curvature perturbation  in the longitudinal gauge, is a
constant quantity for modes “outside the horizon” during any
given cosmological epoch, but not during the transition between
epochs. In fact, during the transition from the inflationary stage
to the radiation dominated stage,  is amplified by a factor of
1/ε1 [51,64]. On the other hand, an useful gauge-invariant quan-
tity often encountered in the literature is the variable R(x). The
field R(x) is a field representing the curvature perturbation in the
comoving gauge. Its Fourier transform, represented by Rk, is con-
stant for modes greater than the Hubble radius (irrespectively of
the cosmological epoch), i.e. for modes with k � H = aH (and
assuming adiabatic perturbations). This is, the value of Rk dur-
ing inflation (in the limit k � H) will remain unchanged during
the post-inflationary evolution, until the mode “re-enters the hori-
zon”, namely when k � H, at the later radiation/matter dominatted
epochs. The curvature perturbation in the comoving gauge R and
the curvature perturbation in the longitudinal gauge  are related
by R ≡  + (2/3)(H−1′ + )/(1 + ω), with ω ≡ p/ρ . There-
fore, for modes such that k � H, during the inflationary epoch
ω + 1 � 2ε1/3, it is found that

 (η)

lim

k�H
Rk(η) � lim

k�H
k

ε1
(31)

____________________________WORLD TECH
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with k(η), calculated during inflation, in the limit such that the
modes are well outside the horizon.

In the next subsection, we are going to find an expression for
the scalar power spectrum of the perturbations Rk , namely P (k)

The power spectrum serves as the initial condition to obtain the
angular spectrum, denoted usually in the literature as Cl , which is
the theoretical prediction that is contrasted with the observations
directly. Henceforth, we will obtain an expression for Rk during
inflation explicitly, for the observationally relevant modes. Specif-
ically, we take the limit |kη| → 0 in the functions F (kη, zk) and
G(kη, zk), and we define M(z0, zk) ≡ lim|kη|→0 F (kη, zk) |yk(η

c
k)|

and N(z0, zk) ≡ lim|kη|→0 G(kη, zk) |gk(η
c
k)|. Thus,

Rk = −H L3/2

√
2ε1M P k2

[
M(z0, zk) λ1 Xk,1 + N(z0, zk) λ2 Xk,2

]
(32)

Note the explicit dependence on the initial time η0 through the
quantity z0 ≡ kη0. Equation (32) is the main result of this section.

We strongly remark that the random variables Xk correspond-
ing to the collapse scheme are fixed after the collapse of the wave
function has occurred. In other words, if we somehow knew their
exact value, we would be able to predict the exact value for Rk
We will do make use of the statistical properties of these random
variables to be able to make theoretical predictions for the obser-
vational quantities. For a more detailed comparison between our
approach and the traditional inflationary picture see Ref. [61].

Next, we will consider whether, and under what circumstances
one can obtain a prediction for the power spectrum of the scalar
perturbations Rk , for the case of the observationally relevant
modes, which have wavelengths greater than the Hubble radius at
the time of inflation.

3.3. Primordial scalar power spectrum

In this subsection, we will calculate the primordial power spec-
trum of the scalar perturbations Rk , and analyze its relation with
the CMB observations under our approach.

The temperature anisotropies of the CMB, δT /T0, are the most
direct observational quantity available, with T0 the mean tem-
perature today. Expanding δT /T0 using spherical harmonics, the
coefficients alm are

alm =
∫

�(n̂)Y ∗
lm(θ,ϕ)d�, (33)

with n̂ = (sin θ sinϕ, sin θ cosϕ, cos θ) and θ, ϕ the coordinates on
the celestial two-sphere. By defining �(n̂) ≡ δT (n̂)/T0 and assum-
ing instantaneous recombination, the relation between the primor-
dial perturbations and the observed CMB temperature anisotropies
is

�(n̂) = [ + 1

4
δγ ](ηD) + n̂ · �vγ (ηD) + 2

η0∫
ηD

′(η)dη, (34)

where ηD is the time of decoupling; δγ and �vγ are the density
perturbations and velocity of the radiation fluid.

On the other hand, the temperature anisotropies in Fourier
modes is

�(n̂) =
∑

k

�(k)

L3
eik·R Dn̂ (35)

being R D the radius of the last scattering surface. Then, the fluid
motion equations can be solved with the initial condition provided

by the curvature perturbation during inflation. Furthermore, using 
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hat eik·R Dn̂ = 4π
∑

lm il jl(kR D)Ylm(θ, ϕ)Y ∗
lm(k̂), expression (33) can 

e rewritten as

lm = 4π il

L3

∑
k

jl(kR D)Y ∗
lm(k̂)�(k), (36)

ith jl(kR D) the spherical Bessel function of order l. To incorpo-
ate the linear evolution that relates the initial curvature perturba-
ion Rk and the anisotropies �(k), is defined a transfer function 
(k). This function results of solving the fluid motion equations 

for each mode) with the initial condition provided by the cur-
ature perturbation Rk , and then make use of Eq. (34) to relate 
t with the temperature anisotropies. In this way, �(k) = T (k)Rk . 
herefore, the coefficients alm , in terms of the modes Rk , are given 
y

lm = 4π il

L3

∑
k

jl(kR D)Y ∗
lm(k̂)T (k)Rk (37)

ith Rk during inflation, and in the limit k � H.
Now, substituting the explicit form of Rk given by Eq. (32) in 

q. (37), the coefficients alm are directly related to the random 
ariables Xk . Notice that the coefficients alm are a sum of ran-
om complex numbers (i.e. a sum over k), where each term is 
haracterized by the random complex variables Xk . This leads to 
hat can be considered effectively as a two-dimensional random 
alk. As it is well known, one cannot give a perfect estimate for 

he direction of the final displacement resulting from the random 
alk. However, it is possible to give an estimate for the length 

f the total displacement. In the present case, such length can be 
aturally associated with the magnitude |alm|2. Hence, the most 

ikely value of |alm|2 can be estimated, and thus interpret it as our 
heoretical prediction for the observed |alm|2. Moreover, since the 
ollapse is being modeled by a random process, we can consider 
 set of possible realizations of such a process characterizing the 
niverse in an unique manner, i.e., through the random variables 
k . If the probability distribution function of Xk is Gaussian, then 
e can identify the most likely value |alm|2ML with the mean value 

alm|2 of all possible realizations. This is, |alm|2ML = |alm|2. The most 
ikely value |alm|2ML in our collapse scheme is explicitly given in 
ppendix B.

Since we are assuming that the xR,I
k variables are uncorrelated, 

he ensemble average of the product of these random variables 
atisfies

R
k xR

k′ = δk,k′ + δk,−k′ xI
kxI

k′ = δk,k′ − δk,−k′ (38)

e have also considered the correlation between the modes k and 
k in accordance with the commutation relation given by [âR

k , ̂aR†
k′ ]

nd [âI
k, ̂aI†

k′ ].
Typically, the observational CMB data is presented in terms of 

he angular power spectrum, Cl . The definition of Cl is given in 
erms of the coefficients alm as Cl = (2l + 1)−1 ∑

m |alm|2. There-
ore, we can use the prediction for |alm|2ML for our collapse scheme 
onsidered, and give a theoretical prediction for Cl . Thus, form Eqs. 
38) and using our values for the |alm|2ML we can write,

l = 4π

∞∫
0

dk

k
j2
l (kR D)T (k)2 A Q (z0, zk) (39)

here the explicit form of the function Q (z0, zk) is shown in Ap-
endix B, and A is:

H2
=
2π2M2

P ε1
(40) is

m

___________________________WORLD TECHN
T

lso, we have taken the limit L → ∞ and k → continuum in order 
o go from sums over discrete k to integrals over k.

In the standard inflationary paradigm, a well-known result is 
hat the dimensionless power spectrum P (k) for the perturbation 

k and the Cl are related by

l = 4π

∞∫
0

dk

k
j2
l (kR D)T (k)2 P (k). (41)

herefore, by comparing Eq. (39) with Eq. (41) we can extract an 
quivalent power spectrum,1 which finally turns out to be:

(k) = H2

2π2M2
P ε1

Q (z0, zk). (42)

quation (42) is the main result of this work. Notice that because 
f zk = kηc

k and z0 = kη0, the function Q (z0, zk) depends on k ex-
licitly.

In the next section, we will discuss the results, compare them 
ith previous works, and analyze under which conditions one can 

ecover an essentially scale free spectrum of primordial inhomo-
eneities, as suggested by the observations.

We would like to end this section by making some comments 
bout our prediction for the power spectrum. Our model gives a 
irect theoretical prediction for the observed Cl , Eq. (39), and then 

rom such expression we have read what can be identified as the 
power spectrum” in the traditional approach of inflation. How-
ver, note that this is conceptually different from the traditional 
pproach [65] in which the power spectrum is obtained from the 
wo-point correlation function 〈0|R̂kR̂∗

k′ |0〉. In contrast, our power 
pectrum is obtained from 〈π̂k〉〈π̂k′ 〉∗ , where the expectation val-
es are evaluated at the post-collapse state. In Appendix C, we 
how in detail the calculation of the CMB temperature angular 
pectrum and its relation with the scalar power spectrum. The in-
erested reader can find there an explanation on how to calculate 
he power spectrum within the collapse framework, and why our 
roposal does not rely on the quantum two-point correlation func-
ion.

. Results and discussion

Let us summarize briefly the results obtained in the present 
anuscript. We started by choosing a novel initial quantum vac-

um state for the perturbations of the inflaton [whose mathemat-
cal description is given by Eqs. (21), (23) and (24)]. Then, we 
ncluded the collapse hypothesis and finally arrived at Eq. (42) for 
he primordial scalar power spectrum. Note that, as already men-
ioned, the vacuum yk(η) in Eq. (21) includes the initial condition 
f the BD vacuum if z0 → −∞. However, notice that the physical 
riteria for the choice of both vacuum states are very different.

Now, from our result shown in Eq. (42) for P (k), we are go-
ng to analyze under which conditions a scale free spectrum can 
e obtained (this is, when the function Q (z0, zk) does not depend 
n k and results in a constant). Also, we will analyze those cases 
here P (k) shows small deviations from a scale invariant spec-

rum, but are still consistent with observational data. Here, we will 
dopt λ1 = 1 = λ2 (i.e. the independent collapse scheme).

We consider three cases, according to |z0| values:

1 Bear in mind that there are two power spectrum in the literature: the dimen-
ional power spectrum P(k) and the dimensionless power spectrum P (k). The latter 

3 2
 defined in terms of the former by P (k) ≡ (k /2π )P(k). We are expressing our 
ain result as the P (k).
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4.1. |z0| → 0

In this case, the (dimensional) scalar power spectrum results
in P(k) ∝ 1

k5 , both in the standard scenario and in ours having
included the hypothesis of collapse. In our approach, if |z0| → 0
then the time of collapse must satisfy |zk| → 0 since the collapse
always occurs for ηc

k > η0. There is no possible parametrization for
ηc

k , such that the spectrum is scale invariant; the proof can be seen
in the Appendix D. We stress that, the loss of scale invariance in
the resulting power spectrum, is not due to the physics behind
the collapses, but because the novel vacuum choice is not the best
option for smaller values of |z0|.
4.2. |z0| → ∞

In this case, we observe that taking the limit |z0| → ∞, implies
that the function Q (z0, zk) results in exactly the same function as
the one shown in Eq. (88) of Ref. [14], i.e.

Q (z0, zk) → C(zk) = 1

8

[
1 + 2

z2
k

sin2(zk) − 1

zk
sin(2zk)

]
(43)

Note that the aforementioned result of Ref. [14] was obtained us-
ing the BD vacuum state. Equation (43) is expected because if
|z0| → ∞, the initial condition of the BD vacuum is recovered.

In Ref. [14], it was shown that if |zk| → ∞ or |zk| → 0 then
the function C(zk) is a constant. Thus, leading to an exactly scale
invariant power spectrum. Also, if ηc

k = A
k is assumed (with A a

constant), whatever the value of zk , then the resulting spectrum
is scale free, and its observational analysis can be consulted, for
instance, in Refs. [29,61].

4.3. Other |z0| cases

For intermediate |z0| values, that is, values not included in the
cases A and B described previously, in Fig. 1 we plot Q (k) vs. k
having chosen the time of collapse as ηc

k = A
k (A a constant), with

|A| = 10−2 and |η0| = 104 Mpc. Note that when a parametriza-
tion for ηc

k is chosen and the time η0 is set, the function Q (k)

is only dependent on k. As it can be seen, the resulting function
Q (k) is constant for large values of k, while departures from a
constant behavior for lower k. Therefore, we expect that the (di-
mensional) scalar power spectrum results in P(k) ∼ 1

k3 for large
k values, while departures from the standard prediction affect the
smallest ones. Since the observational relevant modes are such that
k ∈ [10−6, 10−1] Mpc−1, only for observationally relevant small k
values (i.e. low multipoles l), a difference is expected between our
prediction for the Cl and that corresponding to a perfectly scale
invariant spectrum. Also, note that Fig. 1 includes a wide range of
intermediate |z0| values and, in addition, the graph is representa-
tive for |zk| → 0 and intermediate |zk| values.

Although here we will not perform a complete statistical anal-
ysis with the observational data, in Fig. 2 we show our predicted
angular spectrum Cl and compare it with a fiducial model.

In order to perform our analysis, we modified the public avail-
able CAMB code [66]. The cosmological parameters of our fidu-
cial flat �CDM model considered are: baryon density in units of
the critical density �bh2 = 0.02225, dark matter density in units
of the critical density �cdmh2 = 0.1198, Hubble constant H0 =
67.27 km s−1 Mpc−1, reionization optical depth τ = 0.079, and the
scalar spectral index, ns = 0.96. Those are the best-fit values pre-
sented by the Planck Collaboration [12]. Recall that, we have ne-
glected the effects on the power spectrum and the scalar spectral
index coming from the slow-roll parameters. Consequently, our an-
gular spectrum should be compared with a canonical scale free

spectrum.

____________________________WORLD TECH
T
Fig. 1. The function Q (k) vs. k, for intermediate |z0| values and when the
parametrization ηc

k = A
k is assumed. The values considered are |A| = 10−2 and

|η0| = 104 Mpc. The behavior of Q is nearly constant except for large scales (i.e
small k values), for which, small deviations from a scale free spectrum are expected
in our prediction for the Cl .

Fig. 2. Our prediction for the CMB angular spectrum within an inflationary collapse
model, with |zk| = |A| = 10−2, and having chosen a different vacuum state than
the traditional one, being |η0| = 104 Mpc. As a reference, we also show a fiducia
model coming from the best-fit to the Planck data [12], with scalar spectral index
ns = 0.96 (dotted line) and ns = 1 (dashed line). See the text for details.

In Fig. 2, we present three plots: One, is the fiducial model de-
scribed previously. Another one is a quasi fiducial model with the
best-fit values from Planck, except for the spectral index, for which
ns = 1. And, the remaining plot, corresponds to the predicted curve
in our model, also with ns = 1.

As it can be seen, our prediction agrees very well with the stan-
dard prediction curve plotted with the best-fit values from the
Planck data. As anticipated, only small differences for low multi-
pole values appear, where the cosmic variance is dominant.

We conclude this section with a final remark: the fact of having
chosen a vacuum different from that which is typically chosen as
the initial condition for inflation, led us to a function Q (z0, zk) that
is generically different from that of the authors in [14]. Then, one
could think that it would be very difficult to find a parametrization
for ηc , such that the shape of the power spectrum would be com-
k
patible with the CMB observations. However, as inferred from the 
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lots, the parametrization ηc
k = A

k is still valid for a wide range of 
0 values.

. Conclusions

In this work, we have analyzed under which conditions one can 
ecover an essentially scale free spectrum of primordial inhomo-
eneities, when the standard BD vacuum is replaced by another 
ne that minimizes the renormalized stress–energy tensor via a 
adamard procedure. This new prescription for selecting the ini-

ial vacuum state is better suited for cosmological models built to 
ive a description of the early universe, particularly those that in-
lude the self-induced collapse proposal within the semiclassical 
ravity picture.

We found that a scale invariant scalar power spectrum can be 
btained (and compatible with the CMB observations), for a wide 
ange of initial times η0. By choosing for the collapse time the 
arametrization ηc

k =A/k (being A a constant), in Fig. 2, we show 
hat our predicted angular spectrum Cl agrees very well with the 
tandard prediction curve plotted with the best-fit values from the 
ecent Planck data. As anticipated in our analysis, only small differ-
nces for low multipole l values appear, where the cosmic variance 
s dominant.

For |z0| = k|η0| → 0 the choice of this novel vacuum does not 
ead to a scale invariant scalar power spectrum, but not due to 
he collapse hypothesis. As a matter of fact, this is generically true 
or the standard inflationary model using the new vacuum choice. 
n other words, small values of |kη0| are not allowed by the ob-
ervations using the new vacuum state either within the standard 
nflation or using the self-induced collapse hypothesis.

On the other hand, for values |z0| � 1, it is possible to obtain a 
cale free spectrum concordant with observations. In particular, for 
z0|  1, the initial conditions are the same as the one provided 
y the BD vacuum.

The fact of having chosen a vacuum different from that which 
s typically chosen as the initial condition for inflation, led us to 
he function Q (z0, zk), shown explicitly in Eq. (B.4). The obtained 
unction is generically different from that of the authors in [14], 

ho also considered the collapse proposal but using the standard 
D vacuum. Therefore, one could think that it would be very diffi-
ult to find a parametrization for ηc

k , such that the power spectrum 
ould become scale free, and, as a consequence, compatible with 

he CMB data. However, we have found that the parametrization 
c
k = A

k , which is the same as the one originally proposed in all 
he previous works based on the collapse hypothesis, is still valid 
or a wide range of η0 values. Thus, we conclude that the collapse 

echanism might be of a more fundamental character than previ-
usly suspected.

Note that the model considered here involved some phe-
omenological characterization of the self-induced collapse pro-
osal. For instance, the dependence of the time of collapse on each 
ode k, and the Gaussian distribution in the random variables. 
owever, this characterization can be taken as ansatz modifica-

ions of the standard inflationary scenario, inspired by collapse 
chemes proposals based on spontaneous individual collapses (e.g. 
he GRW model [58]). The GRW objective reduction model has 
een originally proposed to deal with the quantum measurement 
roblem, independent of any cosmological context. In this work, 
e used a GRW-inspired collapse scheme, by incorporating some 

f its generic features. Nevertheless, we think that a dynamical re-
uction mechanism (which can be seen as less ad hoc than the 
ne considered here), such as the Continuous Spontaneous Local-

zation (CSL) model [57,67], can be subjected to the same analysis 

resented in the present paper. e

___________________________WORLD TECHN
T

Finally, it is also important to mention some previous results 
egarding other observables; specifically, the primordial bispectrum 
61,68] and tensor modes [27,28]. Those results were obtained un-
er our self-induced collapse proposal but maintaining the usual 
hoice of the BD vacuum. In respect to the bispectrum, we have 
btained a completely different shape than the usual one. As a 
atter of fact, the characterization is not based on the usual quan-

um three-point function. Meanwhile, a possible detection of pri-
ordial gravitational waves would be considered as the “smoking-

un” between our proposal, based on semiclassical gravity, and 
he traditional one. Our framework predicts a strong suppression 
f the tensor modes amplitude; essentially undetectable by any 
resent or future experiments. Based on the results obtained in 
his paper, we think that the aforementioned predictions will re-

ain unchanged.
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ppendix A. Explicit equations of Sect. 3.2

In this Appendix, we are going to show some steps to arrive at 
q. (29). We will use the collapse scheme chosen in Eq. (28), where 
ppear the expectation values of 〈 ŷR,I

k (ηc
k)〉� and 〈π̂ R,I

k (ηc
k)〉� , 

valuated at the collapse time, and related to the quantum un-
ertainties of the vacuum state.

From Eqs. (25), together with definitions of âR
k and âI

k and the 
on-standard commutation relations for the âR,I

k in Eq. (26), we 
an rewrite the quantum uncertainties of the vacuum state yk(η)

f Eq. (21) (at collapse time) as

� ŷR,I
k (ηc

k)
)2

0
= L3

4
|yk(η

c
k)|2

�π̂ R,I
k (ηc

k)
)2

0
= L3

4
|gk(η

c
k)|2

here gk = y′
k − Hyk . Then, the collapse scheme can be written 

s:

ŷR,I
k (ηc

k)〉� = λ1 xR,I
k,1

L
3
2

2
|yk(η

c
k)| (A.1a)

π̂ R,I
k (ηc

k)〉� = λ2 xR,I
k,2

L
3
2

2
|gk(η

c
k)| (A.1b)

Now, we need the values of ŷk(η) and π̂k(η) for η ≥ ηc
k , in the 

ost-collapse state. To do this, we introduce the quantity dR,I
k ≡

�|âR,I
k |�〉, that determines the expectation value of the field and 

omentum operator for the mode k at all times after the collapse. 
hat is, from Eq. (25), we have

ŷR,I
k (η)〉� = √

2Re[yk(η)dR,I
k ] (A.2)

π̂ R,I
k (η)〉� = √

2Re[gk(η)dR,I
k ] (A.3)

hich corresponds to expectation values at any time after the col-
apse in the post-collapse state |�〉. One can then relate the value 
f dR,I

k with the value of the expectation value of the fields op-
rators at the time of collapse 〈 ŷR,I
k (ηc

k)〉� = √
2Re[yk(η

c
k)d

R,I
k ], 
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〈π̂ R,I
k (ηc

k)〉� = √
2Re[gk(η

c
k)d

R,I
k ]. Using the latter relations to ex-

press dR,I
k in terms of the expectation values at the time of col-

lapse, and substituting it in Eq. (A.3), we obtain an expression for
the expectation value of the momentum field operator in terms
of the expectation value at the time of collapse. Since 〈π̂k(η)〉� =
〈π̂ R

k (η)〉� + i 〈π̂ I
k(η)〉� , we write

〈π̂k(η)〉� = 1

D(zk)

{
F (kη, zk)

[
〈 ŷR

k (ηc
k)〉� + i〈 ŷ I

k(ηc
k)〉�

]
+

+ G(kη, zk)
[
〈π̂ R

k (ηc
k)〉� + i〈π̂ I

k(ηc
k)〉�

]}
(A.4)

where zk ≡ kηc
k . On the other hand, functions D , F and G are de-

fined by:

D(zk) ≡ Im[gk(η
c
k)]Re[yk(η

c
k)] − Im[yk(η

c
k)]Re[gk(η

c
k)]

F (kη, zk) ≡ Re[gk(η)]Im[gk(η
c
k)] − Im[gk(η)]Re[gk(η

c
k)]

G(kη, zk) ≡ Im[gk(η)]Re[yk(η
c
k)] − Re[gk(η)]Im[yk(η

c
k)] (A.5)

Substituting in Eq. (A.4) what was found in Eqs. (A.1), we can fi-
nally write,

〈π̂k(η)〉� = L
3
2

2D(zk)

[
F (kη, zk) |yk(η

c
k)| λ1 xk,1 +

+ G(kη, zk) |gk(η
c
k)| λ2 xk,2

]
(A.6)

with Xk,1 ≡ xR
k,1 + i xI

k,1 and Xk,2 ≡ xR
k,2 + i xI

k,2. From the equation
for yk(η), Eq. (21) at ηc

k , together with the relation between Ak
and Bk given by Eq. (22), we obtain that D = −1/2. The explicit
forms for F and G functions turn out to be:

F (kη, zk) = (A2
k − |Bk|2) k2 sin(kη − zk)

G(kη, zk) = −k(A2
k − |Bk|2)

zk

×
[

zk cos(kη − zk) + sin(kη − zk)
]

(A.7)

On the other hand,

|yk(η
c
k)|2 = (A2

k + |Bk|2)(1 + z2
k )

z2
k

+ 2|Ak||Bk|(z2
k − 1)

× cos(2zk + β) − 4|Ak||Bk|zk sin(2zk + β)

|gk(η
c
k)|2 = k2

[
A2

k + |Bk|2 − 2|Ak||Bk| ×
× cos(2zk + β)

]
(A.8)

Remember that Ak and Bk [Eqs. (23) and (24)] have dependence
on z0 ≡ kη0, the initial condition of the vacuum state chosen.

Appendix B. The |alm|2
M L and the explicit form of Q (z0, zk)

Since we are interested in the observational relevant modes,
which have wavelengths greater than the Hubble radius during
inflation, as we mentioned in section 3.2, we will take the limit
|kη| → 0 in the functions F and G given in Eqs. (A.7), and we will
define M and N as:

M(z0, zk) ≡ lim
|kη|→0

F (kη, zk) |yk(η
c
k)|
N(z0, zk) ≡ lim
|kη|→0

G(kη, zk) |gk(η
c
k)| (B.1)

____________________________WORLD TECH
T

Note that we have explicitly written that there is a dependence on
z0 = kη0 in the functions M and N .

The explicit expressions for |alm|2ML can be found by substituting
Rk , given in Eq. (32), into Eq. (37) and then making the identifi-
cation |alm|2ML = |alm|2. This is,

|alm|2ML = 16π2

L6

∑
k,k′

jl(kR D) jl(k
′R D)

× Y ∗
lm(k̂)Ylm(k̂′)T (k)T (k′)RkR∗

k′ (B.2)

Therefore, it is

|alm|2ML = 8π2 H2

L3ε1M2
P

∑
k,k′

jl(kR D) jl(k′R D)

k2 k′ 2

× Y ∗
lm(k̂)Ylm(k̂′)T (k)T (k′)

[
λ2

1M(z0, zk)M(z0, zk′)

× Xk,1 X∗
k′,1 + λ2

2 N(z0, zk)N(z0, zk′)Xk,2 X∗
k′,2

]
(B.3)

where we have used that the random variables Xk,1 and Xk,2 are
uncorrelated, so Xk,1 X∗

k′,2 = 0 = Xk,2 X∗
k′,1.

From Eq. (B.3), and since we are assuming that the xR,I
k vari-

ables are uncorrelated, and thus the ensemble average of the prod-
uct of these random variables satisfies Eq. (38), we can finally
identify the function Q (z0, zk) with

Q (z0, zk) ≡ 1

k

[
λ2

1 M2(z0, zk) + λ2
2 N2(z0, zk)

]
which explicitly turns out to be:

Q (z0, zk) = 1

16 z2
k z2

0

{
λ2

2

[
1 + 2z2

0 − z0

√
4 + 1

z2
0

× cos[2zk − 2z0 + arctan(2z0)]
]
[zk cos(−zk) + sin(−zk)]2

+ λ2
1 sin2(−zk)

[
(1 + z2

k )(1 + 2z2
0) + z0

√
4 + 1

z2
0

×
[
(z2

k − 1) cos[2zk − 2z0 + arctan(2z0)]

− 2zk sin[2zk − 2z0 + arctan(2z0)]
]]}

(B.4)

Appendix C. Equivalent power spectra P (k)

In the traditional inflationary scenario, the power spectrum
P (k) is obtained by computing the quantum two-point correlation
function. That is, if R̂ represents the quantum field associated to
the scalar metric perturbation, then the power spectrum is taken
to be

〈0|R̂kR̂∗
k′ |0〉 = 2π2

k3
P (k)δ(k − k′) (C.1)

On the other hand, let us recall that in general, the definition of
the power spectrum is given in terms of Rk , i.e. a classical stochas-
tic field and not a quantum field. Therefore, the standard approach
is based on the identification:

〈0|R̂kR̂∗
k′ |0〉 = RkR∗

k′ (C.2)

with RkR∗
k′ denoting an average over an ensemble of classical

stochastic fields. The justification for the relation above relies on

arguments based on decoherence and the squeezing nature of the 
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volved vacuum state [18,69] (although we do not subscribe to 
uch arguments for the reasons exposed in [15,16]). It is also im-
ortant to mention that based on the above hypotheses, there is 
 strong matching between the predictions based on the standard 
pproach and the observational data.

On the other hand, in our proposal, the procedure to obtain 
n equivalent power spectrum is different from the traditional ap-
roach. We start by focusing on the temperature anisotropies of 
he CMB observed today on the celestial two-sphere and its re-
ation to the scalar metric perturbation R. In Fourier space, this 
elation can be written as (see Sect. 3.3),

(k) = T (k)Rk (C.3)

here T (k) is known as the transfer function, which contains the 
hysics between the beginning of the radiation-dominated era and 
he present, i.e the modifications associated with late-time physics. 
A well known result (the Sachs–Wolfe effect) is, for instance, that 
(k) � 1/5 for very large scales].

On the other hand, the observational data are described in 
erms of the coefficients alm of the multipolar series expansion

δT

T0
(θ,ϕ) =

∑
lm

almYlm(θ,ϕ),

lm =
∫

δT

T0
(θ,ϕ)Y ∗

lm(θ,ϕ)d�,

(C.4)

ere θ and ϕ are the coordinates on the celestial two-sphere, with 
lm(θ, ϕ) as the spherical harmonics.

The values for the quantities alm are then given by

lm = 4π il

3

∫
d3k

(2π)3
jl(kR D)Y ∗

lm(k̂)T (k)Rk (C.5)

ith jl(kR D) being the spherical Bessel function of order l, and R D
s the comoving radius of the last scattering surface. The metric 
erturbation Rk is the primordial curvature perturbation (in the 
omoving gauge).

By using Eq. (27) (with Rk � k/ε1) into Eq. (C.5) we obtain

lm = 4π il

3

H√
2ε1M P

∫
d3k

(2π)3
jl(kR D)Y ∗

lm(k̂)T (k)
〈π̂k〉

k2
. (C.6)

he previous expression shows how the expectation value of the 
omentum field in the post-collapse state acts as a source for the 

oefficients alm .
Furthermore, the angular power spectrum is defined by

l = 1

2l + 1

∑
m

|alm|2. (C.7)

or the reasons presented in Sect. 3.3, we can identify the observed 
alue |alm|2 with the most likely value of |alm|2ML and in turn, as-
ume that the most likely value coincides approximately with the 
verage |alm|2.

Thus, in our approach, the observed Cl coincides with

l � 1

2l + 1

∑
m

|alm|2. (C.8)

rom Eq. (C.6) we obtain

alm|2 =
(

4π

3

)2 ∫
d3kd3k′

(2π)6
jl(kR D) jl(k

′R D)

× Y ∗
lm(k̂)Ylm(k̂′)T (k)T (k′)RkR∗

k′(
4π

)2 ∫
d3kd3k′
=
3 (2π)6

jl(kR D) jl(k
′R D) P
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× Y ∗
lm(k̂)Ylm(k̂′)T (k)T (k′)

[
H2

2ε1M2
P

〈π̂k〉〈π̂k′ 〉∗
k2k′ 2

]
.

(C.9)

Consequently using the generic definition of the power spec-
rum,

kR∗
k′ ≡ 2π2

k3
P (k)δ(k − k′) (C.10)

nd also using Eq. (C.9), the power spectrum, associated to Rk , in 
ur approach is given by

(k) = H2

4π2ε1M2
P

〈π̂k(η)〉〈π̂k(η)〉∗
k

. (C.11)

he quantity 〈π̂k(η)〉〈π̂k(η)〉∗ is obtained by using Eq. (29) in the 
imit −kη → 0, i.e. when the proper wavelength of the modes of 
nterest are bigger than the Hubble radius.

ppendix D. A non-scale invariant power spectrum for |z0| → 0

In this Appendix, we will show that if |z0| → 0, in both ap-
roaches, i.e. in the standard inflationary model and in our picture 
ith the additional collapse hypothesis, then the resulting shape 

f the scalar power spectrum P(k) is not consistent with the ob-
ervational data.

In the standard approach, the modes vk of the Mukhanov–
asaki variable satisfy [37,65],

′′
k +

(
k2 − z′′

z

)
vk = 0 (D.1)

Note that the equation of motion for yk(η), Eq. (10), is identical 
o Eq. (D.1). That is, when neglecting the slow roll parameters z′′

z �
′′

a = 2
η2 . As we know, a general solution in such a case will be,

k(η) = Ak

(
1 − 1

kη

)
e−ikη + Bk

(
1 + 1

kη

)
eikη (D.2)

here we assumed Ak ∈R and Bk ∈C.
On the other hand, in the standard scenario, the (dimensional) 

calar power spectrum is obtained from

(k) � lim
−kη→0

|vk(η)|2
M2

P ε1a2(η)
(D.3)

y using Eq. (D.2) into Eq. (D.3) one obtains

(k) � H2

M2
P ε1k2

[
A2

k + |Bk|2 − 2AkRe(Bk)
]

(D.4)

From Eqs. (23) and (24) we have seen that if z0 → −∞, the 
nitial conditions provided by the BD vacuum are recovered, which 
mplies that, Ak = 1√

2k
and Bk = 0. In that case, Eq. (D.4) implies 

(k) ∝ 1
k3 , so a scale invariant power spectrum is obtained.

However, if |z0| → 0 then we can make the following approxi-
ations in Eqs. (23) and (24):

Ak|2 � 1

8k|z0|2 |Bk|2 = 1

8k|z0|2 (D.5)

k � 1√
8k|z0|

Re(Bk) � − 1√
8k|z0|

(D.6)

nd since z0 ≡ kη0, we obtain from Eq. (D.4),

H2 1 1

(k) �

8k3 |z0|2 ∝
k5 (D.7)
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Therefore, if |z0| → 0, then the shape of the power spectrum
which resulted from choosing a vacuum state such that it mini-
mizes the renormalized stress–energy tensor via a Hadamard pro-
cedure, is not compatible with the observational data. The initial
conditions obtained from the vacuum choice fix the value of Ak
and Bk given by Eqs. (23) and (24).

Now, let us show that under our approach, with the collapse
hypothesis included, we arrive at the same result. For simplicity,
we will assume λ1 = 1 = λ2.

For |z0| → 0, and taking into account that |zk| < |z0|, we per-
form a Taylor expansion in Eq. (B.4). At the leading order in |z0|
and |zk|, we obtain:

Q (z0, zk) � 1

8|z0|2 + |zk|2
12|z0|2 +O(|z0|, |zk|4) (D.8)

Again, keeping the first relevant term in Eq. (D.8), and since
z0 = kη0 we finally arrive at

P(k) ∝ 1

k5 (D.9)

We observe that the result is independent of the parametrization
for ηc

k . Therefore, as in the standard case, the shape of the power
spectrum is not consistent with the data. We attained this negative
result not due to the collapse hypothesis but because of the ini-
tial conditions, provided by the novel choice of the vacuum state
when |z0| → 0.
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CMB polarization data is usually analyzed using E and B modes because they are scalar quantities under
rotations along the lines of sight and have distinct physical origins. We explore the possibility of using
the Stokes parameters Q and U for complementary analysis and consistency checks in the context of
searches for non-Gaussianity. We show that the Minkowski Functionals (MFs) of Q , U are invariant under
local rotations along the lines of sight even though Q , U are spin-2 variables, for full sky analysis. The
invariance does not hold for incomplete sky. For local type primordial non-Gaussianity, when we compare
the non-Gaussian deviations of MFs for Q , U to what is obtained for E mode or temperature fluctuations,
we find that the amplitude is about an order of magnitude lower and the shapes of the deviations are
different. This finding can be useful in distinguishing local type non-Gaussianity from other origins of
non-Gaussianity in the observed data. Lastly, we analyze the sensitivity of the amplitudes of the MFs for
Q , U and the number density of singularities of the total polarization intensity to the tensor-to-scalar
ratio, r, and find that all of them decrease as r increases.
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. Introduction

Towards the last stages of the epoch of recombination quad-
upolar anisotropies must have been present in the intensity of 
hotons. This anisotropy would lead to a net linear polarization of 
he Cosmic Microwave Background (CMB) photons [1–6] as a re-
ult of Thompson scattering with free electrons. In addition to the 
emperature fluctuations, the CMB polarization is a vital reposi-
ory of clues about the physical properties, origin of primordial 
uctuations and history of the Universe. In the standard inflation-
ry [7–11] �CDM cosmology the quadrupolar anisotropies can be 
raced back to two physical origins, namely, anisotropies in the 
calar density fluctuations of the plasma, and tensor perturbations 
f the metric.

Observations of polarized CMB photons measure the Stokes pa-
ameters Q and U along each line of sight. They transform as 
pin-2 objects under rotations about the line of sight. Using spin 
* Corresponding author.
E-mail addresses: prava@iiap.res.in (P. Chingangbam), vidhya@iiap.res.in

V. Ganesan), yogendran@iisertirupati.ac.in (K.P. Yogendran), cbp@kias.re.kr
C. Park).
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wo spherical harmonics they can be re-expressed as the so-called 

and B modes [12,13]. To first order in perturbations, E mode is 
ourced by scalar density perturbations while B mode is sourced 
y tensor perturbations. Due to polarization taking place only dur-

ng the last stages of decoupling the rms of E mode is about 
ne order of magnitude lower than that of temperature fluctua-
ions. E mode has been measured [14] and used for cosmological 
nalysis [15–17]. Generic inflationary models predict that the ratio 
f the amplitudes of the primordial tensor and scalar perturba-
ions, denoted by r, is less than one, with the precise value being 

odel dependent. Currently, the detection of B mode sourced by 
rimordial tensor perturbations is one of the foremost goals of 
bservational cosmology. The precise knowledge of its rms value, 
hich translates into knowledge of r, will strongly constrain in-
ation models. From observations by BICEP2 and KECK Array the 

atest constraint on r is < 0.07 at 95% CL [18].
Inflation predicts that the fluctuations in the energy density and 

etric during the very early stages of the Universe are random 
ariables with a nearly Gaussian probability distribution function. 
he statistical properties of these fluctuations are inherited by the 

emperature fluctuations and polarization of the CMB. One of the 
mportant tools to analyze the statistical properties of these ran-
om fields are the Minkowski Functionals (MFs) [19–26]. They 
re quantities that characterize the geometrical and topological 
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properties of excursion sets of the CMB fields. They have been
applied to temperature fluctuations to constrain primordial non-
Gaussianity [27,28] and more recently on the E mode polariza-
tion [17,29]. They have also been used to identify traces of residual
foreground contamination in WMAP data [30]. In [31], they show
that MFs can be used to detect the presence of tiny foreground
residuals in lensed B mode.

In this paper we focus attention on MFs for CMB polarization
Most analysis of polarization data focus on using E and B modes
since they are scalar quantities under rotations along the lines
of sight and the clean separation of their physical origins. Their
invariance under rotations means that their MFs are invariant un-
der such rotations. When dealing with observed data, E , B are
obtained from the directly observed Q , U variables using spin-2
spherical harmonic functions. This step is complicated by the fact
that we need to work with incomplete sky coverage of the data
In the work by Santos et al. [32], they show that the process of
decomposition into E , B results in contamination in their morpho-
logical properties. Given that MFs are real space quantities it is
then a natural question to ask whether it is possible to extract the
physical information that we seek from MFs of E , B equally well
from Q , U .

An early work that uses the genus, which is one of the MFs, for
Q and U can be found in [33]. Because of their spin-2 nature it
is not immediately obvious whether their MFs measured by differ-
ent observers (or experiments) can be meaningfully compared. We
clarify this issue and show analytically that for full sky coverage
their MFs are invariant under rotations along the line of sight. We
then confirm the invariance by performing numerical calculations
of MFs. The invariance breaks down for incomplete sky.

Next, we investigate how non-Gaussian deviations of primordial
density fluctuations manifest in MFs of Q , U . We restrict our anal-
ysis to local type primordial non-Gaussianity. We find, in compari-
son to what is obtained for E mode and temperature fluctuations
the non-Gaussian deviations of the MFs for Q , U have correspond-
ing amplitudes that are about an order of magnitude lower, but the
deviation shapes are distinct. Analytic expressions for MFs and the
number density of singularities of the total polarization intensity
P , for Gaussian primordial perturbation, are derived in [34,35]. The
amplitudes of the MFs and the number density of singularities are
expressed in terms of the variances of Q , U . Their invariance un-
der rotations along the lines of sight relies on the above result. We
analyze the effect of tensor perturbations on the amplitudes of the
MFs and the number density of singularities and find that both de-
crease as the amplitude of tensor perturbations is increased. This
result is useful for searches for B mode and consistency checks of
the CMB data. We would like to mention that we do not take into
account observational effects, such as beam effect and instrument
noise, in this paper since our goal is to elucidate the theoretical
issues. It is expected that when such realistic effects are included
the statistical significance of the results on the non-Gaussian de-
viations and the sensitivity to the presence of primordial tensor
perturbations will weaken.

This paper is organized as follows. In Section 2 we briefly de-
scribe the CMB polarization simulation that we use for our analy-
sis. In Section 3 we analyze the effect of rotations of the coordinate
axes along the line of sight on the variances of Q and U . In Sec-
tion 4 we introduce MFs, discuss their numerical computation and
demonstrate their invariance under global rotations of the coordi-
nate axes along the lines of sights. Further, we calculate the MFs
for Q and U containing input primordial non-Gaussianity. In Sec-
tion 5 we present the effect of including B mode on the variances
and the amplitude of MFs of Q and U . We also show the effect on

the number of singularities of the total polarization intensity. We 
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end by summarizing the results along with a discussion of their 
implications in Section 6.

2. CMB polarization fields and their simulations

The Stokes parameters Q and U transform as spin-two objects 
under a rotation by angle α about each line of sight, given by(

Q ′
U ′

)
= R(2α)

(
Q
U

)
=

(
cos 2α Q + sin 2α U

− sin 2α Q + cos 2α U

)
. (1)

Equivalently, Eq. (1) can be written as 
(

Q ′ ± iU ′) = e∓i2α (Q ± iU ). 
They are related to the total polarization intensity as, P ≡√

Q 2 + U 2 and the polarization angle as, ϕ ≡ 1
2 tan−1 U/Q . P is 

invariant under rotations about the line of sight while ϕ is not. 
Further, Q and U can be expressed as E and B modes [12] by ex-
panding Q ± iU in terms of spin-two spherical harmonics, Y±2,�m ,

Q ± iU =
∑
�m

a±2,�mY±2,�m, (2)

and defining

aE,�m = −1

2

(
a2,�m + a−2,�m

)
aB,�m = i

2

(
a2,�m − a−2,�m

)
, (3)

and

E(n̂) =
∑(

� + 2

� − 2

)1/2

aE,�mY�m

B(n̂) =
∑(

� + 2

� − 2

)1/2

aB,�mY�m. (4)

It is useful for our subsequent analysis to invert Eq. (3). Inserting 
a±2,�m into Eq. (2) gives

Q = −1

2

∑
�m

{
aE,�m

(
Y2,�m + Y−2,�m

) + iaB,�m
(
Y2,�m − Y−2,�m

)}

U = i

2

∑
�m

{
aE,�m

(
Y2,�m − Y−2,�m

) + iaB,�m
(
Y2,�m + Y−2,�m

)}
.

(5)

For our analysis we produce simulations of E and B mode 
with Gaussian statistics for primordial scalar and tensor perturba-
tions and corresponding input angular power spectra. The �CDM 
cosmological parameters values used are �ch2 = 0.1198, �bh2 =
0.02225, H0 = 67.27, ns = 0.9645, ln(1010 As) = 3.094, τ = 0.079, 
taken from the 2015 PLANCK data [16]. The input angular power 
spectra were obtained using the CAMB package [36,37] and the 
map simulations were made using the HEALPIX package [38,39]. 
The map resolution corresponds to HEALPIX parameter NSIDE 
value 1024. The amplitudes of B mode maps are fixed by choosing 
values of the tensor-to-scalar ratio, r. Maps of Q , U are then made 
using the E and B maps.

3. Variances of Q , U and ∇ Q , ∇U

In this section we examine the transformation of the variances 
of Q , U and their gradients ∇ Q , ∇U , under rotations along the 
line of sight. Let us denote the following variances of field X by

�X
0 ≡ 〈X X〉, �X

1 ≡ 〈∇ X · ∇ X〉, (6)

where X can be either Q or U . Note that 〈〉 here means averaging 

over the surface of the sphere.
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For simplicity, we first consider rotation by the same angle α
long every line of sight. Then from Eq. (1) we get

〈Q ′ Q ′〉 = cos2(2α) 〈Q Q 〉 + sin2(2α) 〈U U 〉
+ sin 4α 〈Q U 〉, (7)

〈U ′U ′〉 = sin2(2α) 〈Q Q 〉 + cos2(2α) 〈U U 〉
− sin 4α 〈Q U 〉, (8)

∇ Q ′ · ∇ Q ′〉 = cos2(2α) 〈∇ Q · ∇ Q 〉 + sin2(2α) 〈∇U · ∇U 〉
+ sin 4α 〈∇ Q · ∇U 〉, (9)

〈∇U ′ · ∇U ′〉 = sin2(2α) 〈∇ Q · ∇ Q 〉 + cos2(2α) 〈∇U · ∇U 〉
− sin 4α 〈∇ Q · ∇U 〉, (10)

qs. (7)–(10) imply that 〈Q Q 〉 	= 〈Q ′ Q ′〉 and 〈∇ Q · ∇ Q 〉 	= 〈∇ Q ′ ·
Q ′〉 if the cross-correlations 〈Q U 〉 and 〈∇ Q · ∇U 〉 are non-zero. 
sing Eq. (5) we get

Q U 〉 = i

4

∑
�m�′m′

{
aE,�ma∗

E,�′m′

∫
d�

(
Y2,�m + Y−2,�m

)

×
(

Y ∗
2,�′m′ − Y ∗

−2,�′m′
)

+ aB,�ma∗
B,�′m′

∫
d�

(
Y2,�m − Y−2,�m

)
×

(
Y ∗

2,�′m′ + Y ∗
−2,�′m′

)
+ cross terms

}
(11)

Let 〈〉ens denote averaging over an ensemble of Universes. Using 
he following relations which follow from isotropy of the linear 
erturbations,

aE,�ma∗
E,�′m′

〉
ens = δ��′δmm′

〈|aE,�m|2〉ens (12)

aB,�ma∗
B,�′m′

〉
ens = δ��′δmm′

〈|aB,�m|2〉ens (13)

aE,�ma∗
B,�′m′

〉
ens = 0, (14)

he ensemble average of 〈Q U 〉 becomes

〈Q U 〉〉ens = i

4

∑
�m

{〈|aE,�m|2〉ens

∫
d�

(
Y2,�m + Y−2,�m

) (
Y ∗

2,�m − Y ∗−2,�m

)
+ 〈|aB,�m|2〉ens

∫
d�(

Y2,�m − Y−2,�m
) (

Y ∗
2,�m + Y ∗−2,�m

) }
. (15)

s,�m satisfy the conjugacy relation

∗
s,�m = (−1)m+sY−s,�−m, (16)

here s is the spin index. Using the conjugacy relation and the 
eality condition for a∗

E,�m , we get

〈Q U 〉〉ens = i

4

∑
�m

{〈|aE,�m|2〉ens − 〈|aB,�m|2〉ens

}

×
∫

d�
( − Y2,�mY ∗−2,�m

+ Y−2,�mY ∗
2,�m

)
. (17)

he two terms in the integrand above are complex conjugates. 
gain using the conjugacy relation we get
2,�mY ∗−2,�m = (−1)m−2 Y2,�mY2,�−m (18) a

___________________________WORLD TECHN
T

ince the dependence of Y2,�m on the coordinates θ , φ is like 
2,�m = f (θ)eimφ and Y2,�−m = g(θ)e−imφ , each term in the inte-
rand of Eq. (17) is real. Therefore, the relative sign in the inte-
rand leads to the two terms canceling. Thus we get

〈Q U 〉〉ens = 0. (19)

ince the cancellation occurs before we have integrated over the 
ky, we actually have

Q U
〉
ens = 0, (20)

hich holds at every point (θ, φ). Using Eq. (19) in Eq. (7) we get

�
Q ′
0

〉
ens = cos2(2α)

〈〈Q Q 〉〉ens + sin2(2α)
〈〈U U 〉〉ens. (21)

sing 〈Q Q 〉ens = 〈U U 〉ens we get

�
Q ′
0 〉ens = 〈�Q

0 〉ens. (22)

nd similarly for U .
Next, to calculate 〈∇ Q · ∇U 〉 we need to simplify the factor 

ontaining gradients of the Y±2,�m ’s, given below,

(
Y2,�m + Y−2,�m

) · ∇ (
Y ∗

2,�m − Y ∗−2,�m

)
= ∇Y2,�m · ∇Y ∗

2,�m − ∇Y−2,�m · ∇Y ∗−2,�m

− ∇Y2,�m · ∇Y ∗−2,�m + ∇Y−2,�m · ∇Y ∗
2,�m. (23)

he first two terms cancel using the conjugacy relation in Eq. (16). 
o we are left with

〈∇ Q · ∇U 〉〉ens

= i

4

∑
�m

{〈|aE,�m|2〉ens − 〈|aB,�m|2〉ens

}∫
d�

(
− ∇Y2,�m · ∇Y ∗−2,�m + ∇Y−2,�m · ∇Y ∗

2,�m

)
(24)

gain using the conjugacy relation, and using the fact that the de-
endence of Y2,�m on φ is eimφ while that of Y2,�−m is e−imφ , we 
an show that each term inside the integrand is a real function 
nd hence the two terms cancel. Therefore,

〈∇ Q · ∇U 〉〉ens = 0. (25)

gain, the zero correlation holds at every (θ, φ).
We have shown that the variances are invariant under a global

otation by the same angle about every line of sight. If we allow 
he rotation angle to vary for different lines of sight and retrace 
he above calculation, then the rotation factors will be part of the 
ntegrand over the sphere. However, in order to prove Eqs. (19)
nd (25) we only use the properties of Y±2,�m and do not need 
o carry out the integration at any step. Therefore, the invariance 
olds for direction dependent rotations also.

In the case of incomplete sky due to Galactic and point sources 
asks, the relations (12) and (13) no longer hold because isotropy 

s broken. Therefore, in this case

〈Q U 〉〉ens 	= 0,
〈〈∇ Q · ∇U 〉〉ens 	= 0,

hich implies that �X and �X are not invariant under rotations 
0 1
long the lines of sight.
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4. Minkowski Functionals

A useful way to study the statistical properties of a random
field is to choose suitable threshold values of the field and analyze
regions that have field values above each threshold. Such regions
are called excursion sets. The morphological properties of the ex-
cursion sets and their variation with the threshold value can reveal
the statistical nature of the field. The shapes of the excursion sets
can be quantified in terms of geometrical and topological quan-
tities, namely, the Minkowski Functionals (MFs). There are three
MFs for two-dimensional manifolds such as the excursion sets of
the CMB. The first, denoted by V 0, is the area fraction of the
excursion set. The second, denoted by V 1, is the total length of
iso-temperature contours or boundaries of the excursion set. The
third, denoted by V 2, is the genus which is the difference between
the numbers of hot spots and cold spots. Let f denote a generic
random field, σ0 = √

�0 is the rms of f , and let u ≡ f /σ0. Let ν
be the threshold value chosen from the range of u. Then, the MFs
are defined mathematically as follows:

V 0(ν) ≡
∫

da, V 1(ν) ≡ 1

4

∫
C

dl, V 2(ν) ≡ 1

2π

∫
C

K dl, (26)

where da is the area element of the excursion set, C denotes con-
tours that form the boundaries of the excursion sets, dl is the line
element on C and K is the curvature of the contours. Closely re-
lated to the MFs are the two Betti numbers [40,41], of which the
first is the number of the connected regions and the second is the
number of holes in the connected regions. The difference of the
first and second Betti numbers gives the genus.

In this section, we study the effect of rotations along the line
of sight on the MFs of Q and U . Further, we analyze how primor-
dial non-Gaussianity will show up in the MFs of Q and U . For all
calculations shown in this section we set the B mode to be zero.

4.1. Numerical computation of Minkowski Functionals for random fields

In general, for a given random field we may not know the
analytic form for the MFs or we may need to test whether an
observed random field has the statistical property that we expect
from theory. In such situations we need to calculate MFs using nu-
merical methods. For the numerical calculation of MFs we employ
the method due to Schmalzing and Gorski [24], which relies on ex-
pressing Eq. (26) as a discrete sum involving first and second order
covariant derivatives on the sphere and a δ-functional of the field.
The discretization of the δ-function introduces numerical inaccu-
racies [42]. For a given random field, let V i and V an

i denote the
numerically calculated MFs and the exact value, respectively. Then
we can write V i = V an

i + R�ν
i , where R�ν

i denotes the residual nu-
merical error. The superscript �ν is the threshold bin size and it
indicates that the residual error is dependent on it. R�ν

i is given
by

R�ν
i (ν) = 1

�ν

ν+�ν/2∫
ν−�ν/2

duV i(u) − V an
i (ν). (27)

4.2. Minkowski functionals for Gaussian Q and U

For a Gaussian random field, f , the MFs as functions of the
threshold ν , are given by

Vk(ν) = Ak Hk−1(ν) e−ν2/2, k = 0,1,2. (28)

Here H (ν) is the k-th Hermite polynomial and the amplitudes
k
are

____________________________WORLD TECH
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Fig. 1. Upper panels show plots of the contour length, V 1, for Gaussian Q , Q ′ (left)
and U , U ′ (right), for smoothing angles θs = 20′ (red) and θs = 40′ (blue). Q ′ , U ′
have been obtained by rotating Q , U about each line of sight by angle α = 45◦ . The
two plots in each panel are indistinguishable, demonstrating numerically that the
amplitudes are invariant under global rotations along the line of sight. All plots are
average over 1000 simulations and the error bars are the sample variances. Lower
panels show the genus, V 2. We have repeated the calculations for other rotation
angles and the results remain the same. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

A0 = 1√
2π

, A1 = 1

8

σ1√
2σ0

, A2 = 1

(2π)3/2

(
σ1√
2σ0

)2

, (29)

where σ1 = √
�1 is the rms of the gradient of the field.

If the primordial scalar and tensor fluctuations are Gaussian,
we expect Q and U to be Gaussian for linear perturbations and
their MFs should be of the form given in Eq. (28). The ratio rc ≡
σ0/σ1 is usually referred to as the correlation length of hot and
cold structures in a given random field. The amplitudes of the MFs
depend on powers of rc . As shown in Section 3, σ X

i , and hence rc ,
are invariant under rotations by the same angle about every line of
sight. Hence the MFs should be invariant. However, for incomplete
sky they are not invariant. Our subsequent analyses focus on full
sky calculations.

We have computed the MFs for simulated Gaussian Q , U and
their corresponding Q ′ , U ′ obtained by rotating Q , U by angle α.
In Fig. 1 we plots of the contour length and the genus for Gaussian
Q , Q ′ and U , U ′ for rotation angle α = 45◦ , demonstrating their
invariance. We show results for two smoothing angles θs = 20′, 40′ .
We have obtained the same result for other choices of α. B mode
has been set to zero for these calculation.

The residual error defined in Eq. (28) calculated numerically for
Q and U (dashed lines) and the analytic form obtained from inte-
grating the first term of Eq. (28) for a Gaussian scalar field (black
dotted lines), are shown in Fig. 2. We chose two smoothing angles
θs = 20′, 40′ . The bin sizes used are �ν = 0.25, 0.65, 1. The ana-
lytic form of the residuals grow larger for larger bin sizes and are
not affected much by changes in the smoothing scale. It is inter-
esting to note that the residual errors for the contour length for Q
and U are nearly the same and seems to agree with what is ex-
pected from Eq. (27) for Gaussian scalar fields (see Fig. (2) or (3)
of [42]). If we zoom in the figure we find that at small bin sizes
there is noticeable difference between the dashed and dotted lines.
The difference gets more pronounced at larger smoothing angles.
They agree very well at larger bin size, such as can be seen for the
case �ν = 1. The genus residuals exhibit similar behavior but we

find much stronger disagreement between the dashed lines and 
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ig. 2. Left: Upper panels show of the residuals defined in Eq. (27) of V 1, obtained numerically for Gaussian Q for smoothing angles θs = 20′ (red) and θs = 40′ (blue) for 
ν = 0.25, 0.64, 1. All plots are average over 1000 maps. The black dotted lines are the analytic form of the residuals obtained by integrating the first term on the right hand 
ide of Eq. (27) for a Gaussian scalar field. Lower panels show the residuals for V 2. Right: Same as left plots for U . (For interpretation of the references to color in this figure 
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otted lines at small bin sizes. Moreover, there is small but notice-
ble difference between the residuals of Q and U .

We would like to mention that we have repeated the residual 
alculations for temperature maps and we have reproduced the re-
ults of [42] very well. Hence we rule out the possibility that the 
isagreement at small bin size arises due to mistakes in our nu-
erical calculations. We think that this disagreement is due to 

he spin-two nature of Q and U . The derivatives that we have 
sed to implement the Schmalzing and Gorski method are covari-
nt derivatives for scalar fields on the sphere, and not what should 
e the appropriate covariant derivative for a U (1) bundle on the 
phere which should be relevant for spin-two variables such as 

, U . We do not pursue this question further since the mathe-
atics that is relevant for clarifying it is beyond the scope of this 

aper.
Next, let the non-Gaussian deviations of the MFs be denoted 

y

V i ≡ V NG
i − V G

i , (30)

here i = 0, 1, 2. In the following we consider local type primor-
ial non-Gaussianity parametrized by the variable fNL. Our calcu-

ations here are done for full sky since our aim is to bring out the 
on-Gaussian effects. Considering incomplete sky will decrease the 
tatistical significance of our results. We use simulations of aE,�m

hat contain input local type primordial non-Gaussianity that have 
een made publicly available by Elsner and Wandelt [43]. The val-
es of the input �CDM parameters are those obtained from the 
MAP 5 years data [44]. The resolution is set by NSIDE = 512. 

aussian and non-Gaussian Q , U maps with our chosen fNL val-
es are constructed from the corresponding aE,�m . These maps are 
hen used to calculate the MFs from which �V i are calculated. We 
ave done the calculations using both the Schmalzing and Gorski 
ethod and a geometrical method described in [45,46] and the re-

ults agree with each other.
In Fig. 3 we show the MFs for Q and their non-Gaussian de-

iations. We have not shown the results for U since they are the 
ame, as expected. The top panels show V i for Gaussian (black) 
s well as non-Gaussian maps for f = 1000, for smoothing angle 
NL

s = 5′ . The plots are indistinguishable by eye. The lower panels t

___________________________WORLD TECHN
Thow the non-Gaussian deviations rescaled by the corresponding 
G,max
i . From the plots of �V i we can make two main observa-

ions. Firstly, the amplitude of deviations for Q is much smaller 
han what is obtained for temperature fluctuations (compare Fig. 3
ith Fig. (2) of [47]) and for E mode (compare with Fig. (5) 

f [29]). We have chosen unphysically large values of fNL because 
he numerical calculation for realistic values become quite noisy. 
econdly, the shape of deviations is different from what is seen for 
emperature fluctuations and E mode. The genus deviation is simi-
ar to what is seen for cubic order local primordial non-Gaussianity 
see Fig. (4) of [48] and Fig. (1) of [49]).

. Effect of primordial tensor perturbations on Minkowski 
unctionals

The probability distribution function (PDF) for the total polar-
zation intensity, P , has the Rayleigh form 1

σ0
P e−P 2/2σ0 , where σ0

s the rms of Q or U , under the assumption that they are equal. As 
hown in Section 3, this holds only for complete sky coverage. For 
he subsequent discussions we consider only complete sky cover-
ge and will refer to σ0, σ1 without the field superscript. In [29]
he authors have shown that the PDF of P varies significantly with 
he amplitude of B mode. Since the PDF of P is completely char-
cterized by σ0, for Gaussian Q , U , we can quantify the effect of 
ncluding B mode by calculating how it affects σ0. Here we take 
his observation further and study the effect on σ0, σ1, the ampli-
ude of the MFs for Q , U , and the number density of singularities 
f P . We use the tensor-to-scalar ratio, r, to quantify the effect of 
rimordial tensor perturbations, and study how the various quan-
ities vary as r is varied.

In the left and middle panels of Fig. 4 we show how σ0 and 
1, computed using Eqn. (6) on simulated maps, vary with r be-

ween 0.05 to 0.2. We have used two smoothing scales, 10′ and 
0′ to highlight the variation in the variances with the smoothing 
cale also. We find that inclusion of B mode increases the vari-
nces. Note that the slopes of the dependence on r vary with the 
moothing scale. The dependence of σ0 and σ1 on r are not linear, 
ven though over the small range that we have considered here 

hey appear to be so on visual inspection.
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WTFig. 3. Top panels: The three Minkowski Functionals for Gaussian and non-Gaussian cases with fNL = 1000 are shown. The plots are not distinguishable by eye since the
differences are small. Lower panels: Non-Gaussian deviations for the MFs for fNL = 1000 for different smoothing angles. We have chosen unrealistically large value of fNL

because the plots become noisy for small values of fNL. All plots are average over 1000 simulations and the error bars are their sample variances.

Fig. 4. The left panel shows how σ varies as r is varied, for smoothing angles θ = 10′, 90′ . The middle and right panels show σ and r . The stars indicate values of r at
0 s 1 c

ts ar

 

 
 
 

 

 

. 

. 
which we have done the calculations. The superscript Q has been dropped. All plo

To study the effect of r on the amplitudes of the MFs of Q , U
it suffices to find out how rc varies with r. In the right panel of
Fig. 4 we have plotted r−1

c versus r between 0.05 to 0.2, for differ-
ent smoothing scales. As seen in the plot, the presence of B mode
with increasing amplitudes results in decrease of the amplitude of
MFs. Note that the genus is more sensitive to r than the contour
length.

For Gaussian P , it was shown by Naselsky and Novikov [34]

that the amplitudes of the MFs are proportional to r−i

c , where i =

____________________________WORLD TECH
e average over 1000 simulations and the error bars are the sample variances.

1, 2. The behavior of r−1
c noted above implies that the amplitudes

of MFs for P also decrease as we increase r.
The points where Q = 0 = U and hence P = 0, are referred to

as singular points. Let us denote the number density of singular-
ities by Nsing. In [34], it is shown to be given by Nsing = 1/4πr2

c
Therefore, our calculation here shows that Nsing is sensitive to r
and decreases as r is increased. This corroborates the result in [50]
where the authors found that N is sensitive to changes in r
sing
Here we have quantified the nature of the dependence.
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. Conclusion

Analyses of CMB polarization data in the form of the Stokes 
arameters Q , U can provide information that complement the 
nalyses using E , B and serve as consistency checks of the results. 

, U are what are measured in CMB polarization observations 
nd hence if we use them for cosmological analysis we bypass the 
omplications related to incomplete sky coverage that arise when 
e transform to E , B variables.

In this paper we address issues related to analyzing Q , U in 
he context of searches for primordial non-Gaussianity using MFs. 
t makes sense to use Q , U for cosmological analysis only if the 
bservable quantities that we define using them are invariant un-
er the transformations under which they transform as spin-two 
ariables. We first show analytically that under rotations along the 
ines of sight the MFs are invariant. This implies that calculations 
f MFs for Q , U can be meaningfully compared between different 
bservers (or different observing instruments) and the physical in-
ormation obtained from them should be the same. However, we 
nd that the invariance holds only when there is full sky coverage 
nd under the assumption of statistical isotropy of the fluctuations. 
hus the result is not immediately applicable to data from actual 
xperiments where parts of the sky are masked due to our uncer-
ain knowledge of Galactic emissions and point sources.

We have further calculated non-Gaussian deviations of the MFs 
hat arise from local type primordial non-Gaussianity. We find the 

agnitudes of the deviations are about an order of magnitude 
ower in comparison to what is seen for E mode or temperature 
uctuations and the shapes are distinct. For non-Gaussian analysis 
sing masked observed data MFs an important step is to estimate 
he Gaussian component. This is usually done by using the Gaus-
ian formulae given in Eq. (28), with the amplitudes calculated 
rom the variances of the field obtained from the data. This is 
pproximate and is reasonable only for very weakly non-Gaussian 
elds. The non-Gaussian deviation can then be calculated by sub-

racting the Gaussian estimate from the MFs calculated from the 
ata. Note that this can be applied to MFs of Q , U for masked 
ata. However, for the estimation of error bars, calculations using 
bserved data and simulation can be compared only if the simula-
ions use as input the x − y coordinate choices along each line of 
ight that is used by the observational setup.

Lastly, we analyze the effect of the presence of primordial ten-
or perturbations on MFs for Q , U and P . We also discuss the 
ffect on the number density of singularities in P . All these quan-
ities can be expressed in terms of rc = σ0/σ1. We show that rc

s sensitive to the presence of primordial tensor perturbations, and 
ncreases as r is increased. This result can potentially be used in 
nalyzing polarization data and the search for B mode.
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Pre-inflation: Origin of the Universe from a topological phase 
transition
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 r t i c l e i n f o a b s t r a c t

I study a model which describes the birth of the universe using a global topological phase transition with
a complex manifold where the time, τ , is considered as a complex variable. Before the big bang τ is a
purely imaginary variable so that the space can be considered as Euclidean. The phase transition from
a pre-inflation to inflation is examined by studying the dynamical rotation of the time on the complex

20
plane. Back-reaction effects are exactly calculated using Relativistic Quantum Geometry.
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. Introduction

One of the most important paradigm in modern cosmology 
s the explanation of how the universe reached the inflation-
ry epoch. Inflation [1] is the more serious candidate to describe 
he expansion of the universe since the Planckian time to about 
0−35 sec. This theory describes a quasi-exponential expansion 
hat can resolve the flatness, horizon and monopole problems 
among others). This theory has been very intensively tested [2]
nd provides a physical mechanism to explain the generation of 
rimordial energy density fluctuations on super Hubble scales [3]. 
he most conservative assumption is that the energy density ρ =
/ω is due to a cosmological parameter which is constant and the 
quation of state is given by a constant ω = −1, describing a vac-
um dominated universe with pressure P and energy density ρ .

The theory that describes the earlier evolution of the universe 
s called pre-inflation [4]. The existence of a pre-inflationary epoch 

ith fast-roll of the inflaton field would introduce an infrared de-
ression in the primordial power spectrum. This depression might 
ave left an imprint in the CMB anisotropy [5]. It is supposed 
hat during pre-inflation the universe begun to expand from some 
lanckian-size initial volume to thereafter pass to an inflationary 
poch. Some models consider the possibility of an pre-inflationary 
poch in which the universe is dominated by radiation [6] In this 
ramework Relativistic Quantum Geometry (RQG) [7], should be 
* Correspondence to: Departamento de Física, Facultad de Ciencias Exactas y Nat-
rales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata,
rgentina.

E-mail address: mbellini@mdp.edu.ar.
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Tery useful when we try to study the evolution of the geomet-
ical back-reaction effects given that we are dealing with Planckian 
nergetic scales, and back-reaction effects should be very intense 
t these scales [8].

On the other hand, scalar fluctuations of the metric on cos-
ological scales can be studied in a non-perturbative formalism, 

escribing not only small fluctuations, but the larger ones [9]. 
owever, the metric fluctuations can be studied as a more pro-

ound phenomena in which the scalar metric fluctuations appear 
s a geometric response to the scalar field fluctuations by means of 
eometrical displacement from a Riemann manifold to a Weylian 
ne, through RQG. The dynamics of the geometrical scalar field is 
efined on a Weyl-integrable manifold that preserves the gauge-

nvariance under the transformations of the Einstein’s equations, 
hat involves the cosmological constant. Our approach is different 
o quantum gravity. The natural way to construct quantum gravity 

odels is to apply quantum field theory methods to the theories of 
lassical gravitational fields interacting with matter. Our approach 
s different to quantum gravity because our subject of study is 
he dynamics of the geometrical quantum fields. This dynamics is 
btained from the Einstein–Hilbert action, and not by using the 
tandard effective action used in various models of quantum grav-
ty [10]. It is supposed that during pre-inflation the universe began 
o expand from some Planckian-size initial volume to thereafter 
ass to an inflationary epoch. In this framework RQG should be 
ery useful when we try to study the evolution of the geometrical 

ack-reaction effects given that we are dealing with Planckian en-
rgetic scales, and back-reaction effects should be very intense at 
hese scales.

In this letter we explore the idea that the universe could be 
reated through a topological global phase transition, from a Eu-
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clidean to an hyperbolic manifold, in which the time rotates in the
complex plane from the imaginary axis to the real one. When the
time reaches the real axis, the universe begins its inflationary ex-
pansion. The back-reaction effects are studied in detail.

2. The model

With the aim to describe a big-bang theory we shall consider
a complex manifold, in terms of which the universe describes a
background semi-Riemannian expansion. The line element for this
case is

dŜ2 = ĝμνdx̂μdx̂ν = e2iθ(t)dt̂2 + a2(t)η̂i jdx̂idx̂ j, (1)

with the signature: (+, −, −, −). Here θ(t) = π
2

a0
a , with a ≥ a0

t is a real parameter time and H0 = π/(2a0) = 1/tp , such that
tp = 5.4 × 10−44 sec is the Planckian time. Notice that the metric
(1) describes a complex manifold such that, at t = 0 the space-
time is Euclidean, but after many Planckian times, when θ → 0, it
becomes hyperbolic. We shall define the background action I on
this manifold, so that it describes the expansion driven by a scalar
field, which is minimally coupled to gravity

I =
∫

d4x
√

ĝ

[
R̂

16πG
+

[
1

2
φ̇2 − V (φ)

]]
, (2)

where 
√

ĝ = ia3eiθ . After some algebraic work, we obtain that the
relevant (complex) Einstein equations are

3H2(t)e−iθ̂ = 8πG

(
φ̇2

2
e−iθ̂ + eiθ̂ V (φ)

)
, (3)

(
3H2 + 2Ḣ − 2i ˙̂θ H

)
e−iθ̂ = 8πG

(
φ̇2

2
e−iθ̂ − eiθ̂ V (φ)

)
, (4)

so that we can calculate the equation of state

ω = P/ρ = −1 − 2Ḣ

3H2
+ 2i ˙̂θ

3H
. (5)

Here, the (complex) background pressure P and the energy density
ρ , are

P = φ̇2

2
e−iθ̂ − eiθ̂ V (φ), (6)

ρ = φ̇2

2
e−iθ̂ + eiθ̂ V (φ). (7)

On the other hand, from the action (1) we obtain

φ̈ +
(

3
ȧ

a
− i ˙̂θ

)
φ̇ + e2iθ̂ δV (φ)

δφ
= 0, (8)

that describes the dynamics of the background field φ(t). The met-
ric (1) is not sufficiently explicit to describe the transition to an
inflationary universe from a topological phase transition, because t
is not exactly the dynamical coordinate that describes this transi-
tion. The correct dynamical variable in (1) is: τ = ∫

eiθ̂ (t)dt , which
describes the time in the complex plane. The idea is that τ be-
comes a space-like coordinate before the big bang, so that it can
be considered as a reversal variable. However, after a phase tran-
sition we must require that it changes its signature and then can
be considered as a causal variable. This dynamical change of signa-
ture describes a topological phase transition of the universe from
an initial global Euclidean 4D space, to a final hyperbolic 4D space-

time.

____________________________WORLD TECH
T

3. An example: asymptotic de Sitter expansion

We shall consider a scale factor, related to a de Sitter ex-
pansion in the t-dynamical scale: H0 = ȧ/a(t), such that H(τ ) =

1
a(τ )

da(τ )
dτ = H0 e−iθ̂ (τ ) , is

a(τ ) = a0 eEi
[
1,i π

2 a0e−H0τ
]
. (9)

Notice that we have used the fact that θ̂ (τ ) = π
2

a0
a(τ )

. The expres-
sion (9) for the scale factor written in terms of τ makes it very
difficult to describe the cosmological dynamics of the universe. For
this reason, we shall search for another variable to describe the
dynamics of this cosmological phase transition. A good candidate
is the phase θ̂ . Since θ̂ (t) = π

2 e−H0t , we can rewrite the metric (1)
as

dŜ2 =
(πa0

2

)2 1

θ̂2

[
dθ̂

2 + η̂i jdx̂idx̂ j
]
. (10)

If we desire to describe an initially Euclidean 4D universe, that
thereafter evolves to an asymptotic value θ̂ → 0, we must require
that θ̂ to have an initial value θ̂0 = π

2 . Furthermore, the nonzero
components of the Einstein tensor, are

G00 = − 3

θ̂2
, Gij = 3

θ̂2
δi j, (11)

so that the radiation energy density and pressure, are respectively
given in this representation by

ρ(θ̂) = 1

2πG

3

(πa0)2
, P (θ̂ ) = − 1

4πG

3

(πa0)2
. (12)

The equation of state for the metric (10), is

ω(θ̂) = −1. (13)

We shall describe the case where the asymptotic evolution of
the Universe is described by a vacuum expansion. In this case the
asymptotic scale factor, Hubble parameter and the potential are re-
spectively given by

a(t) = a0 eH0t,
ȧ

a
= H0, V = 3

8πG
H2

0, (14)

so that the background field in (8), is

φ(t) = φ0. (15)

This solution describes the background solution of the field that
drives a phase transition of the global geometry from a 4D Eu-
clidean space to a 4D hyperbolic spacetime.

In order to describe the exact back-reaction effects, we shall
consider Relativistic Quantum Geometry (RQG), introduced in [7]
In this formalism the manifold is defined with a connection

�α
βγ =

{
α

β γ

}
+ σα ĝβγ , (16)

such that the covariant derivative of the metric tensor in the Rie-
mannian background manifold is null (we denote with a semicolon
the Riemannian-covariant derivative): �gαβ = gαβ;γ dxγ = 0, so
that the Weylian covariant derivative [11] on the manifold gener-
ated by (16) is nonzero: gαβ|γ = σγ gαβ . To simplify the notation
we denote σα ≡ σ,α . From the action’s point of view, the scalar
field σ(xα) is a generic geometrical transformation that leaves the
action invariant [7]

I =
∫

d4 x̂
√

−ĝ

[
R̂

2κ
+ L̂

]

∫
4

[√ −2σ
] {[

R̂
]

2σ

}

= d x̂ −ĝe

2κ
+ L̂ e , (17)

NOLOGIES____________________________
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ence, Weylian quantities will be varied over these quantities in 
 semi-Riemannian manifold so that the dynamics of the system 
reserves the action: δI = 0, and we obtain

δV

V
=

δ
[

R̂
2κ + L̂

]
[

R̂
2κ + L̂

] = 2 δσ , (18)

here δσ = σμdxμ is an exact differential and V = √−ĝ is the 
olume of the Riemannian manifold. Of course, all the variations 
re in the Weylian geometrical representation, and assure us gauge 
nvariance because δI = 0.

ˆ
δρ̂

δS
= −2

(
π

2a0

)
θ̂σ ′, (19)

uch that [12], for σ ′ = 〈
(σ ′)2

〉1/2

(σ ′)2
〉
= 1

(2π)3

∫
d3k(ξk)

′ (ξ∗
k )′, (20)

here the modes ξk must be restricted to

ξ∗
k )′ξk − (ξk)

′ξ∗
k = iθ̂2

(
2

πa0

)2

, (21)

n order to the field σ to be quantized [7]

σ(x),σμ(y)
] = i h̄�μδ(4)(x − y). (22)

ere, �μ =
[
θ̂2

(
2

πa0

)2
,0,0,0

]
are the components of the back-

round relativistic tetra-vector on the Riemann manifold. The 
quation of motion for the modes of σ : ξk(θ̂ ), is

′′
k − 2

θ̂
ξ ′

k + k2 ξk(θ̂ ) = 0, (23)

here the prime denotes the derivative with respect to θ̂ . The ex-
ct solution for the modes ξk(θ̂ ) are

k(θ̂) = C1(k)
[
kθ̂ cos (kθ̂ ) − sin (kθ̂ )

]
+ C2(k)

[
kθ̂ sin (kθ̂ ) + cos (kθ̂ )

]
. (24)

f we take C2(k) = i C1(k), we obtain that:

1(k) = i

2

(
π

2a0

)
k−3/2, C2(k) = −1

2

(
π

2a0

)
k−3/2, (25)

o that the quantized solution of (23) results to be

k(θ) = i

2

(
π

2a0

)
k−3/2 e−ikθ̂

[
kθ̂ − i

]
. (26)

herefore, the fluctuations (20), are

(σ ′)2
〉
= 1

8

θ̂2

(4a0)2
ε4k4

0, (27)

uch that ε � 1 and k0 =
√

2
θ̂

. Hence, the amplitude of energy-
ensity fluctuations on super Hubble scales, becomes
___________________________WORLD TECHN
T

1

ρ̂

δρ̂

δS

∣∣∣∣ = πε2

4
√

2a2
0

, (28)

hich is a constant.

. Final comments

We have studied a model that describe the origin of the uni-
erse using a global topological phase transition from a 4D Eu-
lidean manifold to an asymptotic 4D hyperbolic one. To develop 
his idea we have introduced a complex time, τ . The interesting of 
his idea is that τ is a space-like coordinated before the big bang, 
o that can be considered as a reversal variable. However, after the 
hase transition it changes its signature and then can be consid-
red as a causal variable. Due to the fact that the description of 
he cosmological dynamics of the universe as a function of τ be-
ome complicated, we have expressed introduced the phase θ̂ as a 
ynamical variable.

As an example, we have explored the case where the universe 
volves through an asymptotic de Sitter expansion. We have stud-
ed back-reaction effects in a pre-inflationary universe using RQG. 
his formalism makes possible the non-perturbative treatment of 
he vacuum fluctuations of the spacetime, by making a displace-

ent from a semi-Riemannian to a Weylian one. In this description 
he dynamics of the geometrical field σ describes the geometri-
al quantum fluctuations with respect to the Riemannian (classical) 
ackground. In the example here studied, we have found that back-
eaction becomes frozen in time.

Finally, the field σ has a geometrical origin, but must be in-
erpreted as a primordial gravitational quantum potential, which 
enerates a distortion of the metric. After pre-inflation, σ could 
ecay in different kinds of fields, one of which should be the in-
aton field.
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rimordial gravitational waves induced by magnetic fields in 
n ekpyrotic scenario
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 r t i c l e i n f o a b s t r a c t

ditor: H. Peiris

Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the
universe. It is often said that detecting primordial gravitational waves is the key to distinguish both
scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario.
In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic
universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible
compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds
in ekpyrotic models.
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W. Introduction

Inflation has succeeded in solving several issues in big bang 
osmology and explaining the temperature anisotropy of the cos-
ic microwave background radiation (CMB) and the large scale 

tructure of the universe. However, it is known that bouncing 
niverse models [1] such as the ekpyrotic scenario [2] based on 
uperstring theory [3] can do the same job [4].1 Therefore, it is 
mportant to clarify which scenario is actually realized in the early 
tage of the universe.

In the ekpyrotic scenario, the primordial fluctuations are pro-
uced in a slowly contracting (ekpyrotic) phase. The spectrum of 
he scalar and tensor vacuum fluctuations become blue-tilted at 
he end of the ekpyrotic phase. We therefore need an additional 
calar field to explain the temperature anisotropy of the CMB [6]. 
n the ekpyrotic scenario, the amplitudes of primordial gravita-
ional waves [7] are quite small and practically unobservable [8]. 
ence, it is often said that, if we could detect the primordial 
ravitational waves, we would be able to disprove the ekpyrotic 
cenario. However, if there could exist another mechanism for 
roducing gravitational waves in the ekpyrotic scenario, the story 
ould be completely different. Indeed, we show that there exists 
 mechanism for producing abundant gravitational waves in the 
kpyrotic phase.
* Corresponding author.
E-mail address: asuka-ito@stu.kobe-u.ac.jp (A. Ito).

1 The pre-big bang scenario is also a kind of the models [5]. Our conclusion could
pply to it too.

e
g
p
t
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TThe key is the presence of magnetic fields in the early universe. 
bservationally, there are several evidences for magnetic fields to 
xist on various cosmological scales [9]. Although the origin of 
rimordial magnetic fields is unknown, the presence of magnetic 
elds on extra galactic scales [10] implies that the seed of mag-
etic fields must be produced in the early universe. Notably, there 
re attempts to make primordial magnetic fields with the gauge 
inetic function in an inflationary universe [11] or in a bouncing 
niverse [12].

In this paper, we first show that scale invariant magnetic fields 
an be produced in the ekpyrotic phase in the presence of the 
auge kinetic function. Next, we show that the magnetic fields can 
ecome a source of abundant gravitational waves (such mechanism 
orks also in inflation [13]). It turns out that the gravitational 
ave spectrum is nearly scale invariant (slightly blue) at the end of 

he ekpyrotic phase. Hence, it is difficult to discriminate between 
nflation and the ekpyrotic scenario by merely detecting primor-
ial gravitational waves. We also study scalar fluctuations induced 
y the magnetic fields and show that the sourced tensor to scalar 
atio should be more than unity, which implies that scalar fluctu-
tions in the CMB should be dominated by quantum fluctuations 
roduced by an additional scalar field as is often assumed in the 
kpyrotic scenario.

The paper is organized as follows. In section 2, we review the 
kpyrotic scenario briefly and explain background evolution in the 

kpyrotic phase. In section 3, we derive the mode functions of the 
auge field and show that scale invariant magnetic fields can be 
roduced in the ekpyrotic scenario. In section 4, we demonstrate 
hat abundant gravitational waves with scale invariance are pro-
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duced from the scale invariant magnetic fields. In section 5, we
show that scalar fluctuations are also produced by the scale in-
variant magnetic fields. It turns out that the tensor to scalar ratio
should be larger than unity in the ekpyrotic scenario. The final sec-
tion is devoted to the conclusion.

2. Ekpyrotic phase

In the ekpyrotic scenario, two branes residing in an extra di-
mension approach, collide and bounce off to each other. From the
four-dimensional point of view, they correspond to a contracting
universe and an expanding universe, respectively. The ekpyrotic
scenario can be described by a four dimensional effective theory
with a scalar field φ moving in an effective potential V (φ) speci-
fied below. The action reads

S =
∫

d4x
√−g

[
M2

pl

2
R − 1

2
(∂μφ)(∂μφ) − V (φ)

]
, (1)

where Mpl represents the reduced Plank mass, g is the determi-
nant of the metric gμν , and R is the Ricci scalar. The scalar field
represents the separation l between two branes l ∼ eφ . The con-
tracting universe (φ̇ < 0) is connected to the expanding universe
(φ̇ > 0) through a bounce (a collision of two branes). The scalar
and tensor vacuum fluctuations are produced in the contracting
phase where the scalar field rolls down a negative steep potential

V (φ) � V 0e
λ

φ
M pl , (2)

where V 0 is a negative constant. Note that λ is also negative and
satisfies the fast roll condition |λ| � 1 to keep isotropy of the uni-
verse. Thus, we can take an isotropic metric ansatz in this phase
as

ds2 = a(τ )
[
−dτ 2 + dx2 + dy2 + dz2

]
, (3)

where we used a conformal time τ . It is straightforward to derive
scaling solutions from Eqs. (1)∼(3)

a(τ ) = aend

( −τ

−τend

) 2
λ2−2

,
φ(τ )

Mpl
= φ0 − 2λ

λ2 − 2
ln(−Mplτ ) ,

(4)

where τend (< 0) and aend represent the moment and the scale
factor at the end of the ekpyrotic phase, respectively. The ob-
tained vacuum scalar and tensor power spectrums are blue-tilted,
so that we need an additional scalar field to explain the CMB
observation [6]. Then, the ekpyrotic scenario predicts the nearly
scale invariant scalar power spectrum and the blue-tilted tensor
power spectrum. The situation is different from inflation where
both spectra are nearly scale invariant.

3. Scale invariant magnetic fields

In this section, we show that scale invariant magnetic fields
can be produced from quantum fluctuations due to interaction be-
tween a scalar field and a gauge field in the ekpyrotic phase. We
consider the action

S =
∫

d4x
√−g

[
M2

pl

2
R − 1

2
(∂μφ)(∂μφ) − V (φ)

1 2 μν

]

−

4
f (φ)Fμν F , (5)

____________________________WORLD TECH
T

where Fμν = ∂μ Aν − ∂ν Aμ is the field strength of the gauge field
coupled to the scalar field φ and f (φ) represents the gauge kinetic
function. Now, let us take the gauge kinetic function as exponential
type functional form which is ubiquitous in models obtained from
dimensional reduction

f (φ) = f0e
ρ φ

M pl , (6)

where it has been set to be unity at the end of the ekpyrotic phase,
and then there is no strong coupling problem. We treat the gauge
field as a test field and ignore the back reaction from the gauge
field in the background. Thus, using the background solution (4),
we can express the gauge kinetic function as

f (φ) ∝ (−τ )
− 2ρλ

λ2−2 . (7)

Let us expand the gauge field in Fourier space as

�A(τ , �x) =
∫

d3k

(2π)3/2
Ak(τ )eik·x . (8)

Then the part for the gauge field in the action (5) can be rewritten
as

S gauge = 1

2

∫
dτd3kf 2(φ)

[
A′

k A′
−k − k2 Ak A−k

]
, (9)

where a prime represents a derivative with respect to the con-
formal time. The Fourier mode of the gauge field can be pro-
moted into the operator and expanded by the creation and anni-

hilation operators satisfying commutation relations 
[

â(σ )

k , â(ρ)†
k′

]
=

δσρδ(k − k′) as

Âk(τ ) =
∑

σ=+,−
�e(σ )(k̂)

[
Uk(τ )â(σ )

k + U∗
k (τ )â(σ )†

−k

]
, (10)

where σ represents the two polarization degrees of freedom of
the gauge field. The circular polarization vectors �e (σ ) satisfy the
relations

�k · �e (±)(k̂) = 0 ,

�k × �e (±)(k̂) = ∓ik�e (±)(k̂) ,(
�e (σ )(k̂)

)∗ = �e (σ )(−k̂) ,
(
�e (σ )(k̂)

)∗ · �e (ρ)(k̂) = δσρ . (11)

The mode functions obey the equations derived from the ac-
tion (9)

U ′′
k + 2

f ′

f
U ′

k + k2Uk = 0 . (12)

Using new variables uk ≡ f Uk , we get

u′′
k +

(
k2 − f ′′

f

)
uk = 0 . (13)

Substituting Eq. (7) into Eq. (13) and solving it with the Bunch–
Davies initial condition, we get the mode functions

uk(τ ) = 1√
2k

√−kτπ

2
H (1)

− 1
2

λ2+4ρλ−2
λ2−2

(−kτ ) , (14)

where H (1)
γ (x) is the Hankel function of the first kind. Now, we

define the electric and magnetic fields as ( )
�E(τ , x) ≡ − f

a2
∂τ �A(τ , x) , �B(τ , x) ≡ f

a2
∇ × �A(τ , x) . (15)
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hey can be expanded in Fourier space as

(τ , x) =
∫

d3k

(2π)3/2
Êk(τ )eik·x , (16)

(τ , x) =
∫

d3k

(2π)3/2
B̂k(τ )eik·x , (17)

here

k(τ ) =
∑

σ=+,−
�e(σ )(k̂)

[
Ekâ(σ )

k + E∗
k â(σ )†

−k

]
, (18)

k(τ ) =
∑

σ=+,−
σ �e(σ )(k̂)

[
Bkâ(σ )

k + B∗
k â(σ )†

−k

]
. (19)

ere, we defined

k(τ ) = − f

a2
∂τ Uk(τ ) , Bk(τ ) = f

a2
kUk(τ ) . (20)

sing the mode functions (14), we obtain

k(τ ) = −
√

π

2
k1/2(−kτ )1/2a−2

end

( −τ

−τend

)− 4
λ2−2

× H (1)

1
2

λ2−4ρλ−2
λ2−2

(−kτ ) , (21)

k(τ ) =
√

π

2
k1/2(−kτ )1/2a−2

end

( −τ

−τend

)− 4
λ2−2

× H (1)

− 1
2

λ2+4ρλ−2
λ2−2

(−kτ ) . (22)

n the superhorizon limit |kτ | → 0, we can use an approximation

(1)
γ (x) � − i�(−γ )

π
e−iπγ

( x

2

)γ
. (23)

hen the magnetic fields are given by

k(τ ) = − (λ2 − 2)2

√
π

i2
− 1

2
5λ2−4ρλ−10

λ2−2 �

(
1

2

λ2 + 4ρλ − 2

λ2 − 2

)

× e
π i
2

λ2+4ρλ−2
λ2−2 k

1
2

λ2−4ρλ−2
λ2−2 (−τ )

− 2(ρλ+2)

λ2−2 (−τend)
2λ2

λ2−2 H2
end ,

(24)

here we used a relation

=
(

2

λ2 − 2

)
1

τ H
. (25)

n order to obtain the scale invariant magnetic fields, we require

= λ2 − 2

λ
. (26)

n this case, the electric fields are always subdominant compared 
ith the magnetic fields. So we only consider the magnetic fields 

s the source of gravitational waves. Substituting Eq. (26) into 
q. (24), we get

k(τ ) = 3
√

2

8
(λ2 − 2)2k−3/2

( −τ

−τend

)− 2λ2

λ2−2
H2

end . (27)

e find that the steeper the potential becomes, namely |λ| is big-
er, the more magnetic field is amplified.

To avoid destroying the background evolution by back reaction 
rom the magnetic fields, at least, we need the condition that the 
nergy density of the electromagnetic field does not exceed that of 

he scalar field at the end of the ekpyrotic phase c

___________________________WORLD TECHN
T

ρem〉 = 1

2

1

(2π)3

kend∫
kin

2 × Bk(τend)
2d3k

= 9

64π2
(λ2 − 2)4 H4

end ln

(
kend

kin

)
< 3M2

pl H
2
end , (28)

here kin and kend represent the scales where a mode exits the 
ubble horizon at the beginning and at the end of the ekpyrotic 
hase, respectively. Let us also check the back reaction problem in 
he equation for the scalar field. The hamiltonian constraint and 
he equation for the scalar field are given as

2 = 1

3M2
pl

(
1

2
φ̇2 + V (φ)+ < ρem >

)
, (29)

= −3Hφ̇ − V ,φ + 2ρ

Mpl
< ρem > , (30)

here an overdot denotes a derivative with respect to the cosmic 
ime. Asuuming that the gauge field is negligible in Eq. (29), the 
ast roll condition let Eq. (29) be

φ̇2 � −V (φ) . (31)

ifferentiating the both sides of Eq. (31) with respect to the time, 
e find that the first term is negligible compared with the second 

erm in the right-hand side of Eq. (30). Thus, we have the relation

ρem >� Mpl

2ρ
V ,φ , (32)

hen the gauge field is significant in Eq. (30). Then the ratio of 
he energy density of the gauge field to that of the scalar field is

ρem >

M2
pl H

2
� < ρem >

V
� Mpl

2ρ

V ,φ

V
= 1

2

λ

ρ
. (33)

he most right term is order unity in our scenario since λ and ρ
re same order from Eq. (26). Therefore, as far as the ratio of the 
nergy density of the gauge field to that of the scalar field is small, 
he gauge field can be treated as a test field in any equations.

Taking a look at Eq. (28), for example, if we set Hend =
0−5Mpl , we obtain the minimum value of λ about −17. Thus, the 
osmological magnetic fields observed at present can be produced 
n the ekpyrotic scenario [9]. Remarkably, such magnetic fields can 
lso induce abundant primordial gravitational waves. We will see 
t in the next section.

. Gravitational waves from magnetic fields

In this section, we calculate the gravitational waves induced by 
he magnetic fields studied in the previous section. The method is 
imilar to that used in inflationary universe [13,14]. One can get 
he tensor sector of the action (5) as

GW =
∫

dτd3x

[
M2

pl

8
a2

(
h′

i jh
′ i j − ∂khij∂khij

)

+ 1

2
a4 (

Ei E j + Bi B j
)

hij

]
, (34)

here hij is the transverse traceless tensor and we used the defini-
ion of the electric and magnetic fields (15). The tensor fluctuation 

an be expanded in Fourier space as

OLOGIES____________________________
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hij =
∑

σ=+,−

∫
d3k

(2π)3/2
ĥ(σ )

k eikx
(σ)
i j , (35)

ĥ(σ )

k (τ ) = Vk(τ )â(σ )

k + V ∗
k (τ )â(σ )†

−k , (36)

where (σ)
i j are polarization tensors constructed by circular polar-

ization vectors as (σ)
i j ≡ e(σ )

i e(σ )
j and we have used creation and

annihilation operators. Substituting Eqs. (16)∼(19) and (35) into
Eq. (34), we obtain

SGW =
∑

σ=+,−

∫
dτd3k

[ M2
pl

4
a2

(
ĥ′ (σ )

k ĥ′ (σ )

−k − k2ĥ(σ )

k ĥ(σ )

−k

)

− a4

2

∫
d3 p

(2π)3/2

(
Ê i,p Ê j,k−p + B̂ i,p B̂ j,k−p

)

× e∗(σ )
i (k̂)e∗(σ )

j (k̂) ĥ(σ )

−k

]
. (37)

Using the variable vk ≡ Mpl
2 aVk , we can get the equation for the

mode function of the gravitational waves as

v ′′
k (τ ) +

(
k2 − a′′

a

)
vk(τ ) = S(σ )(τ ,k) , (38)

where the source term is defined by

S(σ )(τ ,k) = − a3

Mpl

∫
d3 p

(2π)3/2

(
Ê i,p Ê j,k−p + B̂ i,p B̂ j,k−p

)
× e∗(σ )

i (k̂)e∗(σ )
j (k̂) . (39)

We define the power spectrum of tensor fluctuations as

〈
h(σ )

k h(σ )

k′
〉
= 2π2

k3
P (σ )(k)δ(3)(k + k′) . (40)

Let us divide the tensor fluctuations into the two parts. The one
comes from vacuum fluctuations and the other comes from the
gauge field. Since they are uncorrelated to each other, we can write
the tensor power spectrum as the sum

P (σ )(k) = P (σ )
v (k) + P (σ )

s (k) . (41)

From Eqs. (38)∼(41), we can deduce

P (σ )
s (k) = k3

π2M4
pla

2

∫
d3 p

(2π)3

(
1 + (k̂ · p̂)2

)(
1 + (k̂ · k̂ − p)2

)

×
∣∣∣∣
∫

dτ ′a3(τ ′)Gk(τ , τ ′)Bp(τ ′)B|k−p|(τ ′)
∣∣∣∣
2

, (42)

where we ignored the subdominant contribution of the electric

fields and used an identity 
∣∣∣�e(α)(k̂) · �e(β)(k̂′)

∣∣∣2 = 1
4

(
1 − αβ(k̂ · k̂′)

)2

Let us define the Green’s function Gk(τ , τ ′) for Eq. (38). Substi-
tuting the scale factor in Eq. (4) into the homogeneous part of
Eq. (38), we obtain

v ′′
k (τ ) +

(
k2 + 2(λ2 − 4)

(λ2 − 2)2τ 2

)
vk(τ ) = 0 . (43)

In the fast roll limit (λ → ∞), the Green’s function obtained from
Eq. (43) becomes

Gk(τ , τ ′) ≡ cos(kτ ) sin(kτ ′) − sin(kτ ) cos(kτ ′)
k

� τ ′ ( |kτ | , ∣∣kτ ′∣∣ � 1
)

, (44)

____________________________WORLD TECH
T

where we took the superhorizon limit since the Green’s func-
tion just oscillates and does not contribute the time integration of
Eq. (42) in the subhorizon regime. Substituting Eqs. (27) and (44)

into Eq. (42) and using the new variables �q ≡ �p
k , �q′ ≡ �p−�k

k and
z ≡ −kτ , we get the power spectrum at the end of the ekpyrotic
phase as

P s(k) = 2 × P (σ )
s (k)

= 81

256π5
(λ2 − 2)4

(
Hend

Mpl

)4

z
4λ2−4
λ2−2

end

×
∫

d3qq−3q′ −3
(

1 + (k̂ · q̂)2
)(

1 + (k̂ · q̂′)2
)

×
∣∣∣∣
∫

dz′z′ − 3λ2−4
λ2−2

∣∣∣∣
2

, (45)

where we used the fact that there is no polarization of gravita-
tional waves. Since the gauge field becomes relevant as the source
of the gravitational waves after the ekpyrotic phase starts, we con-
sider the region

λ2 |τin| � 1

p
,

1∣∣∣�p − �k
∣∣∣ (46)

(see Eq. (25)). Here, τin is the time when the ekpyrotic phase
starts. Note that we take the limit λ � 1 hereafter. Multiplying it
by k, we get

1

qin
>

1

q
,

1

q′ , (47)

where qin ≡ ∣∣λ2kτin
∣∣−1

represents the infrared cut off of the mo-
mentum integral. Then the momentum integral is calculated as

1∫
qin

d3qq−3q′ −3
(

1 + (k̂ · q̂)2
)(

1 + (k̂ · q̂′)2
)

= 2π

1∫
qin

dqq−1
∫

dθ sin θ

(
1 + cos2 θ

)(
1 +

(√
(1−q cos θ)2

1+q2−2q cos θ

)2
)

(
1 + q2 − 2q cos θ

)3/2

= 2π

1∫
qin

16

15

q4 − q2 − 5

q(q + 1)(q − 1)
dq , (48)

where we defined cos θ ≡ k̂ · q̂ and we approximately evaluated the
integral in the range qin < q < 1. One can see that there are two
poles at q = qin � 1 and q = 1. The later one is corresponding to
the q′ = qin � 1. From the symmetry between q and q′ , we can
evaluate the integral (48) at q = qin by multiplying it by 2

64π

3
ln q−1

in . (49)

On the other hand, the time integral in Eq. (45) can be evaluated
at z′ = zend approximately. We therefore obtain

P s(k) � 27

16π4
λ8

(
Hend

Mpl

)4

ln

[(
k

kin

)]
. (50)

There is a factor 
(

Hend
Mpl

)4
in the spectrum (50) because of the non-

linear contribution of the magnetic fields (27). One can see that
sourced gravitational waves have a nearly scale invariant spectrum.
This conclusion is different from the well-known blue-tilted spec-

trum in the ekpyrotic scenario [8]. Most importantly, there appears 
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 factor λ8 in P s(k). For example, if we set Hend = 10−5 Mpl , λ =
17, the amplitude of the power spectrum is about 10−11. This is 

omparable with the gravitational waves in the inflationary uni-

erse ∼
(

Hend
π Mpl

)2
. Therefore, we can not discriminate between 

nflation and the ekpyrotic scenario just by detecting primordial 
ravitational waves. In the next section, let us calculate scalar fluc-
uations sourced by the gauge field and discuss if the ekpyrotic 

odel with a gauge field is compatible with the CMB data.

. Scalar fluctuations from magnetic fields

Now, we calculate scalar fluctuations sourced by the gauge field 
n the present scenario. Too much production of scalar fluctua-
ions implies incompatibility with the CMB data. Fortunately, we 
ill soon see that the sourced scalar fluctuations are smaller than 

he tensor fluctuations. Let us show it by repeating the same pro-
edure we used in the previous section. As is discussed in [14], 
he equation for linear perturbation of the scalar field δφ in the 
at slicing gauge is given by

′′ −
(

∇2 + z′′

z

)
s � −a3

(
f,φ
f

+ φ′

4M2
plH

)
�B2 , (51)

here we ignored the subdominant contributions of the electric 
elds and used s = aδφ, z ≡ aφ′

H . From Eqs. (4) and (6), we obtain

′
= −Mplλ ,

f,φ
f

= ρ

Mpl
. (52)

ince we are considering the scale invariant magnetic fields as the 
ource of the scalar fluctuations, ρ satisfies Eq. (26). Hence, work-
ng in Fourier space, we can rewrite Eq. (51) as

′′
k(τ ) +

(
k2 − a′′

a

)
sk(τ ) � S(τ ,k) , (53)

here the source term is defined by

(τ ,k) = − 3a3

4M2
pl

λ2 − 8/3

λ

∫
d3 p

(2π)3/2

(
B̂ i,p B̂ i,k−p

)
. (54)

e define the power spectrum of scalar fluctuations as(
H
φ′

)
δφk

(
H
φ′

)
δφk′

〉
= 2π2

k3
P(k)δ(3)(k + k′) . (55)

ne can see that the fast roll condition suppresses the scalar

ower spectrum by the factor 
(
H
φ′

)2 = 1
M2

plλ
2 . The power spectrum 

an be divided into two parts like the tensor power spectrum as

(k) = Pv(k) +Ps(k) . (56)

rom Eqs. (53)∼(56), we can deduce

s(k) = 9k3

16π2M4
pla

2

(λ2 − 8/3)2

λ4

∫
d3 p

(2π)3

(
1 + (p̂ · k̂ − p)2

)

×
∣∣∣∣
∫

dτ ′a3(τ ′)Gk(τ , τ ′)Bp(τ ′)B|k−p|(τ ′)
∣∣∣∣
2

, (57)

here the Green’s function Gk(τ , τ ′) for Eq. (53) is the same as 
hat for Eq. (44). Substituting Eqs. (27) and (44) into Eq. (57) and 
sing the variables �q ≡ �p , �q′ ≡ �p−�k and z ≡ −kτ , we get the scalar 
k k
ower spectrum at the end of the ekpyrotic phase as d

___________________________WORLD TECHN
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s(k) = 729

8192π5

(λ2 − 2)4(λ2 − 8/3)2

λ4

(
Hend

Mpl

)4

z
4λ2−4
λ2−2

end

×
∫

d3qq−3q′ −3
(

1 + (q̂ · q̂′)2
) ∣∣∣∣

∫
dz′z′ − 3λ2−4

λ2−2

∣∣∣∣
2

. (58)

he momentum integral is carried out as

1∫
qin

d3qq−3q′ −3
(

1 + (q̂ · q̂′)2
)

2π

1∫
qin

dqq−1
∫

dθ sin θ

(
1 +

(
(q−cos θ)√

1+q2−2q cos θ

)2
)

(
1 + q2 − 2q cos θ

)3/2

−2π

1∫
qin

8

3

1

q(q + 1)(q − 1)
dq , (59)

here cos θ ≡ k̂ · q̂ and we approximately evaluated the integral in 
he range qin < q < 1. From the symmetry between q and q′ , we 
an calculate Eq. (59) at q = qin by multiplying it by 2 as is done 
or tensor fluctuations. The result reads

2π

3
ln q−1

in . (60)

he time integral is same as the case of tensor fluctuations and we 
an obtain the scalar power spectrum sourced by the scale invari-
nt magnetic fields as

s(k) � 243

1024π4
λ8

(
Hend

Mpl

)4

ln

[(
k

kin

)]
. (61)

rom Eqs. (50) and (61), the tensor to scalar ratio rsource is given 
y

source � 7 . (62)

his result is different from that in the inflationary universe, where 
he scalar fluctuations are enhanced by the inverse square of a 
low roll parameter [14]. Taking a look at terms in the parenthe-
is of the right-hand side of Eq. (51), we see that it gives rise to 
 factor λ2 in the scalar power spectrum in contrast to the case 
f tensor fluctuations. On the other hand, from Eq. (55), we see 
he scalar power spectrum is suppressed by 1

λ2 in contrast to the 
ase of tensor fluctuations. These two factors have been canceled 
ut. The numerical value (62) comes from accumulation of several 
actors such as the polarization degrees of freedom. Since the ten-
or to scalar ratio becomes larger than unity, we can say that the 
calar fluctuations sourced by the scale invariant magnetic field are
egligible in the ekpyrotic scenario due to the fast roll condition.

. Conclusion

We studied the role of the gauge kinetic function in the 
kpyrotic scenario and showed that abundant gravitational waves 
ourced by the gauge field can be produced. As a demonstration, 
e first showed that scale invariant magnetic fields can be pro-
uced in the ekpyrotic phase. It turned out that the magnetic fields 

nduce nearly scale invariant gravitational waves (slightly blue) and 
he amplitude could be comparable with that of the inflationary 
niverse. It turned out that it is difficult to disprove the ekpyrotic 
cenario by detecting primordial gravitational waves. In order to 

istinguish both scenarios, it is necessary to look at the details of 
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the spectrum such as the tilt of the spectrum. Observing the dis-
tinction of higher order scalar perturbations is also important [15]
We should mention that the idea of finding an ekpyrotic model
with observable gravitational waves on CMB scales using sourced
fluctuations was put forward for the first time in [16] by investi-
gating a different model with explicit parity violation. Our model
has no explicit parity violation. Moreover, we also showed that
the scalar fluctuations induced by the magnetic field are smaller
than the sourced gravitational waves. Generally, as far as the fast
roll condition is satisfied, the tensor to scalar ratio becomes more
than unity in any ekpyrotic models with the gauge kinetic func-
tion. Therefore, our scenario would be compatible with the CMB
data provided that nearly scale invariant scalar fluctuations are
produced in a standard way with an additional scalar field [6].

It should be noted that we must check the non-gaussianity of
the primordial scalar fluctuations in the present model [17]. More-
over, we should consider a bounce process from contracting to
expanding to connect the spectrum at the end of the ekpyrotic
phase with observables. We have not looked into this issue in this
paper since the mechanism is model dependent and the detailed
analysis is beyond the scope of this paper [1]. However, actually
although we fixed the parameters such as ρ, λ, Hend for simplicity
in this paper, we can tune these parameters in our scenario so that
our conclusion becomes valid for any ekpyrotic bouncing models
Therefore, our conclusion is robust.
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Radiation and energy release in a background field of axion-
like dark matter

Wei Liao
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We find that a fuzzy dark matter background and the mG scale magnetic field in the galactic center
can give rise to a radiation with a very large energy release. The frequency of the radiation field is the
same as the frequency of the oscillating axion-like background field. We show that there is an energy
transfer between the fuzzy dark matter sector and the electromagnetic sector because of the presence of
the generated radiation field and the galactic magnetic field. The energy release rate of radiation is found
to be very slow in comparison with the energy of fuzzy dark matter but could be significant comparing
with the energy of galactic magnetic field in the source region. Using this example, we show that the
fuzzy dark matter together with a large scale magnetic field is possible to give rise to fruitful physics.
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W1. Introduction

An interesting hypothesis of dark matter (DM) in the universe
is that the DM is composed of axion-like particles (ALPs). For
ALPs in different mass range, they may have very different be-
haviors in evolution of universe. For example, for a mass of ALP
with ma ∼ 10−5 eV, ALPs can form boson stars [1]. For ultra-light
ALP with ma ∼ 10−23 − 10−21 eV, known as Fuzzy DM (FDM) [2],
ALPs can have very large de Broglie wavelengths up to 1 ∼ 10 pc
and avoid typical problems associated with Cold DM [2–4]. In this
case, FDM is possible to form a diffuse DM background as a galac-
tic halo [5,6]. In both of these cases, a very large number of light
ALPs are concentrated in a volume of the scale of de Broglie wave-
length. Hence, physics of these ALPs can be described by a classical
scalar field and quantum fluctuations around this classical field are
small [1].

Because interaction of ALP with ordinary matter is very weak,
detection of it in laboratory or observation of its cosmological or
astrophysical signature is very difficult [7]. Detecting the signa-
tures of FDM is difficult in particular because of its ultra-light mass
scale. To date, there are very few ways known to us which can
possibly constrain FDM [8,9]. In this Letter we discuss a possible
physical prediction of FDM in the presence of a large scale mag-
netic field. Although our discussions are for FDM, the discussion
can be easily extended to ALP boson stars or condensates of other

types of ALPs if there are magnetic fields with them.

E-mail address: liaow@ecust.edu.cn.
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T2. Electromagnetism in background of axion-like field

Considering coupling of ALP field φ(�x, t) with electromagnetic
(EM) field, the Lagrangian can be written as

L = −1

4
Fμν F μν + φ

2F
gφ F̃μν F μν − Aμ Jμ (1)

where F̃μν = 1
2 εμνρσ F ρσ , Jμ being the 4-vector of an external

current. F in the denominator, known as the decay constant, is in
the range 1016 ∼ 1018 GeV for FDM [4]. gφ is a model-dependent
parameter denoting the strength of the coupling of φ with EM
field. Its magnitude may vary from 10−3 to 10−2. A modified set
of equations of motion can be found using (1). A φF F̃ term with a
constant φ does not contribute to the equations of motion. How-
ever, in the presence of a background field φ(�x, t) which depends
on space and time, the equation of motion with electric source be-
comes

∂ν F νμ = Jμ − gφ

(∂νφ)

F
εμνρσ Fρσ . (2)

Together with the equations with no magnetic source, we get a
modified set of equations:

0 2
�∇ · �E = J + gφ
F

( �∇φ) · �B (3)

�∇ × �B − ∂ �E
∂t

= �J − gφ

2

F
[(∂tφ)�B + ( �∇φ) × �E] (4)
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· �B = 0 (5)

× �E + ∂ �B
∂t

= 0. (6)

For FDM in a galaxy, e.g. in Milky Way, we can further simplify 
hese equations. Since the typical velocity in our galaxy is ∼ 10−3, 
DM in the halo of a galaxy can be considered non-relativistic and 
e described by a classical field as [9].

(�x, t) = A(�x) cos(mat + β(�x)) (7)

he de Broglie wavelength of this non-relativistic FDM is found to 
e

a = 1

ma va
= 63.6 pc

10−22 eV

ma

10−3

va
. (8)

his means that the spatial derivative of φ should be propor-
ional to 1/λa and should be small comparing with ∂tφ, i.e. |�v| =
( �∇φ)/(∂tφ)| � 1.

So for FDM, we can neglect terms with �∇φ in Eqs. (3) and (4)
s a first approximation, as long as we do not consider the case 
ith strong electric field. We get

· �E = J 0 (9)

× �B − ∂ �E
∂t

= �J − gφ

2

F
(∂tφ)�B (10)

· �B = 0 (11)

× �E + ∂ �B
∂t

= 0. (12)

ote that in the approximation that �∇φ is neglected, the right-
anded side of (10) is indeed divergence free and can be con-
idered as an effective current of a neutral source with J 0 = 0: 
ef f = �J − gφ

2
F (∂tφ)�B and �∇ · �Jef f = 0.

Neglecting the gravitational potential and the potential energy 
aused by axion interaction, the energy–momentum tensor of FDM 
an be estimated using a free field Lagrangian of φ [9]. One can 
nd that the leading term in energy density is time independent

DM(�x) = 1

2
m2

a A2(�x) (13)

nd the oscillating part in energy density is proportional to 
�∇φ)2 ∝ �v2ρDM which can be neglected. The energy density 
hould vary slowly within a de Broglie wavelength (8) and be 
aken as a constant within a distance smaller than the de Broglie 
avelength λa . In the following, we will use (13) and replace 
a A(�x) with 

√
2ρDM(�x).

Apparently, the modified set of equations (3)–(6) may have very 
ich physical consequences. For example, one would expect that 
he cosmic or galactic ALP field may affect the evolution and devel-
pment of cosmic or galactic magnetic field. In the present Letter 
e are not going to discuss this complicated problem. We assume 

hat galactic magnetic field has been generated and serves as an 
xternal B field, and then discuss the possible radiation caused by 
he effective current coming from the galactic FDM field and ex-
ernal galactic B field.

. Energy release in oscillating FDM field and external B field

Magnetic field in our galaxy, in particular in galactic center, has 
een measured by astrophysical observations [10–13]. It was found 
hat inside a ring-like Central Molecular Zone (CMZ) the magnetic 
eld in the galactic center is mainly perpendicular to the galactic 

lane [13], in particular in regions close to non-thermal filaments s

___________________________WORLD TECHN
T

NTFs). The magnetic field in the CMZ is mainly toroidal, that is 
riented parallel to the galactic plane. The strength of magnetic 
eld in the galactic center is quite uncertain. A global picture is 

hat a pervasive magnetic field with a strength of mG exists in 
 central region with a radius no less than 150 pc. Challenges to 
his picture of pervasive magnetic field exists [10,13]. An alterna-
ive picture is that magnetic field in local regions of NTFs is of 
trength around mG and it is of strength of tens μG in the diffuse 
nter-cloud region. In this Letter, we do not discuss the configura-
ion and strength of the magnetic field in the galactic center, rather 
how that this large scale magnetic field together with the oscil-
ating FDM field is very possible to give rise to radiation and large 
nergy release. In particular, we focus on effects caused by poloidal 
agnetic field inside the CMZ.

We use simplified equations (9)–(12) to present our result. We 
enote the external B field as �Bex and the electric and magnetic 
elds of radiation as �Er and �Br . We take the interaction of FDM 
ith external B field as a perturbation, and the radiation field 

lso as a perturbation to the external magnetic field. Assuming the 
xternal B field satisfying a set of Maxwell equations without in-
eraction with FDM, we can get a set of equations for the radiation 
eld to the first order as

· �Er = 0 (14)

× �Br − ∂ �Er

∂t
= −gφ

2

F
(∂tφ)�Bex (15)

· �Br = 0 (16)

× �Er + ∂ �Br

∂t
= 0. (17)

riting �Br = �∇ × �Ar and �Er = − ∂
∂t

�Ar , we can get the propaga-

ion equation of �Ar in radiation gauge which can be solved using 
 complex vector field �Ar [14]

r(�x, t) = Re( �Ar), (18)

�r(�x, t) = 1

4π
e−imat

∫
d3 y

�J (�y)

|�x − �y| eik|�x−�y| (19)

here �J (�y) = gφ
2i
F ma A(�y)�Bex(�y)e−iβ(�y) . k in (19) is the wave

umber of radiation and we have k = ma in the present case with 
n oscillating FDM field. Introducing λk = 2π/k, we can find

k = 0.4 pc
10−22 eV

ma
. (20)

k is much smaller than the spatial scale of the pervasive magnetic 
eld in galactic center. (18) and (19) suggest that there are periodic 
M fields with a period

= 2π

ma
≈ 1.3 year

10−22 eV

ma
(21)

n a fixed position in our galaxy. Effects of such a periodic EM field 
re very interesting subjects to study.

A real evaluation of (19) is very complicated and difficult, not 
nly because we do not really know the detail of the magnetic 
eld in galactic center, but also because A(�y) and β(�y) are uncer-

ain. Instead, we make a rough estimate of the radiation field and 
he radiation power. In particular, if there are special regions in 
alactic center in which the magnetic field is much stronger than 
urrounding regions, e.g. in regions close to NTFs, we can evalu-
te the integration (19) in these special regions independently. So 
e can evaluate the contribution of a particular source region to 

he radiation field. The total contribution of all these source re-
ions can be obtained by summing their contributions. This is the 

trategy of the rough estimate in the present Letter.
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To simplify calculation, we can evaluate radiation field at a dis-
tance far away from the source region and with |�x|k � 1, e.g. at
the solar distance from the center of galaxy R◦ = 8 kpc. For such
a distance far away from a particular source region in the galactic
center, we can find

�Br = Re( �Br e−imat+ikr), �Er = Re( �Er e−imat+ikr), (22)

�Br ≈ − k

2π

1

r
gφ

ma A S

F
e−iβS

∫
S

d3 y �n × �Bex(�y)e−ik�n·�y, (23)

where �n = �x/|�x| and r = |�x|. Electric field of radiation in the vac-
uum can be estimated as �Er = −�n × �Br . A S and βS in (22) and (23)
are the values of A(�y) and β(�y) taken at the source region. This
replacement can be done because e−ik�n·�y in (23) is usually a func-
tion changing much faster than A(�y) and β(�y). In our estimate
we restrict the integration to a source region with a scale no more
than λk . Writing | ∫S d3 y �Bex(�y)e−ik�n·�y | = |�Bex|�S where �S is the
effective volume, we can make an estimate of the order of mag-
nitude. Suppressing angular dependence which does not affect the
estimate of the order of magnitude, we find

|�Br | ∼ 6.7 × 10−9 mG

(
10−22 eV

ma

)2 R◦
r

gφ

10−2

1015 GeV

F

×
(

ρDM(S)

104ρ


)1/2 |�Bex|�S

mG λ3
k

. (24)

where ρ
 = 0.3 GeV cm−3 is the DM energy density at the posi-
tion of solar system. We have taken 104ρ
 as a reference energy
density in calculation because the DM energy density can increase
to 103 ∼ 104 of ρ
 in the galactic center according to the pop-
ular Navarro–Frenk–White (NFW) density profile of DM [15]. For
the estimate of |Er |, the numerical factor in (24) is replaced by
2.0 × 10−7 V m−1.

The time averaged radiation power is estimated using (24) as

dP

d�
= 1

2
Re[r2�n · (�Er × �Br)]

∼ 1.0 × 1039 erg year−1
(

10−22 eV

ma

)4( gφ

10−2

)2

×
(

1015 GeV

F

)2
ρDM(S)

104ρ


( |�Bex|�S

mG λ3
k

)2

. (25)

One can compare (25) with E DM and E B , the typical total energy
of DM and magnetic field in the source region of a volume λ3

k . We
can find

P

E DM
∼ 10−16 year−1 10−22 eV

ma

(
gφ

10−2

)2(1015 GeV

F

)2

×
( |�Bex|

mG

)2(
�S

λ3
k

)2

(26)

and

P

E B
∼ 10−8 year−1 10−22 eV

ma

(
gφ

10−2

)2(1015 GeV

F

)2

× ρDM(S)

104ρ


(
�S

λ3
k

)2

. (27)

We see that the energy release rate is slow but may not be neg-
ligible. The energy release rate is really slow in comparison with
the energy of DM in the source region. However, the energy re-

lease rate could still be significant comparing with the energy of 
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the galactic magnetic field in the source region, in particular if gφ

could be larger than 10−2.
To know in more detail about the energy transfer in energy

budget, we can use (1) to get the equation of motion of φ in the
presence of φF F̃ interaction and find

∂μT μν
φ = gφ

1

2F
(∂νφ) F̃ ρσ Fρσ = −gφ

2

F
(∂νφ)�E · �B (28)

where T μν
φ = (∂μφ)(∂νφ) − ημν 1

2 [(∂φ)2 − m2φ2] is the energy–
momentum tensor of φ with a free field Lagrangian. Similarly, we
can also use the modified Maxwell equation (2) to get the prop-
erty of the energy–momentum tensor for EM field. Setting Jμ = 0
in (2) and with a bit of algebra we find

∂μ
μν
em = −gφ

1

2F
(∂νφ) F̃ ρσ Fρσ = gφ

2

F
(∂νφ)�E · �B, (29)

where μν
em = −F μ

λ F νλ + 1
4 ημν F αβ Fαβ [14]. It is clear that there

is an energy transfer between the FDM sector and EM sector. The
rate of energy transfer would be proportional to (∂tφ)�Er · �Bex in
the present case. One can show that there are an oscillating term
with frequency 2ma and a constant term in (∂tφ)�Er · �Bex . The con-
stant term in (∂tφ)�Er · �Bex would give rise to a flow of energy
between the FDM sector and the EM sector. However, the direc-
tion of energy flow depends on the sign of the imaginary part
of 

∫
d3xd3 y �Bex(�x) · �Bex(�y)eik|�x−�y|/|�x − �y| which depends on the

detailed distribution of the magnetic field strength in the source
region. If this double integration is positive in the source region
energy is transferred from the FDM sector to the EM sector, and a
rough estimate shows that the rate of energy injection to EM sec-
tor would be of the same order of magnitude of the energy loss
rate of radiation shown in (26) or (27). Apparently, energy transfer
between FDM sector and EM sector and the energy loss in radia-
tion should all be taken into account, e.g. in the development and
evolution of galactic magnetic field. A detailed study of this topic
is beyond the scope of the present Letter.

As a comparison, we can also estimate the radiation caused by
the Earth, the Sun and a magnetic neutron star. For these stel-
lar objects with scale much smaller than λk , factor e−ik�n·k in (23)
can be taken as one and we get 

∫
d3 y �Bex(�y) = 2

3 �m where �m is
the magnetic moment of the source object. For magnetic moments
of the Earth and the Sun at order of 1022 A m2 and 1029 A m2

the radiation powers are P ∼ 10−14 erg year−1 for the Earth and
P ∼ 10−1 erg year−1 for the Sun separately. So they can be safely
neglected. For compact object like neutron star, the magnetic field
could be much more than 1010 G. However the magnetic moment
of the neutron star is hard to be much larger than that of a star
like the Sun. It is reasonable to expect that the power of radia-
tion caused by a magnetic neutron star might be as large as that
caused by the Sun but should not be much larger. We can see that
the rate of energy release caused by these stellar objects are all
very small. On the other hand, the energy release caused by the
large scale magnetic field in galactic center could be huge.

We emphasize that results given in (25), (26) and (27) are
for particular source regions in galactic center, not for the whole
galactic center. The total energy release given by the whole galactic
center could be a sum of many such kind of sources with strong
magnetic field. This is in particular true for the possible picture
that mG scale magnetic field comes only with NTFs. So the rate
of total energy release in the galactic center could be much larger
than that given in (25). One should also notice that our estimate is
very uncertain because our knowledge about the magnetic field in

the galactic center is very uncertain.
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. Conclusion

In summary, we have shown that the φF F̃ interaction term in
n oscillating background field of axion-like DM and a background 
f magnetic field gives rise to an effective oscillating current in 
he Maxwell equation, so that it can give rise to EM radiation and 
nergy transfer between FDM and EM sectors. The frequency of 
he radiation field equals to the frequency of the oscillating back-
round field of axion-like DM. In other words, the energy of the 
adiation photon equals to the energy of the non-relativistic axion-
ike DM, i.e. the mass of axion-like DM. In the case of FDM, the 
nergy of the radiation photon is 10−23 ∼ 10−21 eV and the period 
f the EM wave of radiation is 0.1 ∼ 10 year. We have estimated 
he strength of radiation and find that the FDM background and 
he large scale magnetic field in the galactic center can give rise 
o a radiation with a very large energy release. We found that the 
nergy release rate of radiation is very slow in comparison with 
he energy of FDM but it could be significant comparing with the 
nergy of galactic magnetic field in the source region. Needless to 
ay, a very interesting question is how to directly detect this EM 
ave of a very long wavelength coming from the galactic center. 
iven the very weak strength of this radiation field at the solar 
istance from the galactic center, it should be a difficult and very 
hallenging topic.

We note that the radiation can be absorbed by plasma in 
alaxy, in particular by plasma in galactic center, so that it can 
ossibly affect the physics of the development and evolution of 
lasma in galactic center. Detailed study of the energy release rate 
nd the impact on galactic plasma can be done using models of 
alactic magnetic field and models of plasma in galactic center. 
his detailed research is out of the scope of the present Letter. 
ther interesting physics include the energy transfer between FDM 
nd EM sectors in models of galactic magnetic field, the effect of 
scillating FDM field in the development and evolution of galactic, 

nter-galactic and cosmic magnetic fields, possible effects caused 
W
___________________________WORLD TECHN
y the effective charge in ( �∇φ) · �Bex term in (3), effects of the 
redicted diffuse EM radiation field on the physics of CMB polar-

zation and propagation of cosmic ray. These topics are all of great 
nterests for future study. In conclusion, we have pointed out that 
he FDM background together with a large scale magnetic field can 
ive rise to fruitful physics.
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A specific value for the cosmological constant � can account for late-time cosmic acceleration. However
motivated by the so-called cosmological constant problem(s), several alternative mechanisms have been
explored. To date, a host of well-studied dynamical dark energy and modified gravity models exists
Going beyond �CDM often comes with additional degrees of freedom (dofs). For these to pass existing
observational tests, an efficient screening mechanism must be in place. The linear and quasi-linear
regimes of structure formation are ideal probes of such dofs and can capture the onset of screening. We
propose here a semi-phenomenological “filter” to account for screening dynamics on LSS observables
with special emphasis on Vainshtein-type screening.
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W1. Introduction

The existence of a dynamical mechanism responsible for late-
time cosmic acceleration often requires additional degrees of free-
dom (dofs) besides those of general relativity. On the other hand
the latter is, to an exquisite level of accuracy, a good descrip-
tion of the physics we see at “small” scales such as within the
solar system. For the overall picture to be consistent, a screen-
ing mechanism must be in place. Screening is expected to be
efficient in highly dense regions. Conversely, low-density environ-
ments make up the ideal settings to access the additional dynamics
of beyond-�CDM models.

Large scale structure probes are an optimal case in point. The
linear regime of structure formation is the environment where the
additional dofs are most transparent and testable. These scales
are well-described by perturbation theory. Crucially, the num-
ber of available modes grows approximately like the cube of the
wavenumber, making any gain on the k-reach of the perturba-
tive theory significant. An analytical description of the mildly-
non-linear regime of structure formation [1–3] is highly desirable:
these scales are a precious repository of information on both pri-
mordial physics (e.g. non-Gaussianities [4–6]) and late-time dy-
namics (see [7] and references therein). Our focus here will be on
the latter: the mildly-non-linear regime can capture the onset of
screening dynamics, which is central to dark energy and modified

gravity models.

* Corresponding author.
E-mail address: matteorf@gmail.com (M. Fasiello).

____________________________WORLD TECH
T2. A new scale

There has been considerable recent effort towards expanding
the fluid description of dark matter to include an additional dy-
namical component (see e.g. [8,9] and [10–12] for earlier work on
the same specific model). These works are based on the notion
that the large hierarchy of scales in between the size of the observ-
able universe 1/H0 and the highly non-linear-regime of structure
formation 1/kNL allows for a clean perturbative treatment of the
k � kN L modes. Naturally, the small expansion parameter is k/kNL
By employing a full-fledged effective theory approach [2,13], the
microphysics of yet smaller scales can be encapsulated in a num-
ber of “UV” coefficients1 to be determined by comparison with
observations and/or simulations.

However, as argued above, in general screening will suppress
the effects of the additional dofs in dark-energy (DE) and modified
gravity (MG) at small scales i.e. in the highly-non-linear regime
We sketch in Fig. 1 the total power spectrum vs. the �CDM be-
haviour under one of the screening mechanisms that most clearly
exemplifies this effect: Vainshtein screening (see e.g. [14] for a de-
tailed N-body analysis).

There exists in other words a scale, we shall call it kV, at which
screening becomes active. Any attempt at an accurate and general
description of beyond-�CDM dynamics of structure formation in
screened theories needs to take kV into account (see [15] for in-

teresting work that includes kV-related effects up to linear order). 

1 These multiply at each order all possible operators allowed by the symmetries
of the theory (e.g. rotational invariance).
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ig. 1. Shown in this plot is a sketch of screening effects on the fractional difference between the power spectrum in nDGP [16] (here as a Vainshtein-screened theory and
 precursor of Galileons and massive gravity theories) and �CDM. Two test functional forms are used: Lorentzian (dashed line) and Gaussian-like (solid line), for several
ifferent values of the parameter kV and slope n. We refer the reader to the discussion around Eq. (9) for more details. It’s clear that, according to the region of parameter
pace probed (different k values), screening can happen already at linear scales, at quasi-linear ones, or only deep in the non-linear regime. We refer the reader to Fig. (1)
V

 to 

t
s
o
o
f
t

3

a
s
s

L

S
a

t
i
a
k
l
a
i
c
t
o

m

∂

∇

w
a

W
f [14] for the results, derived via N-body simulations. Note also that here, as opposed

n the specific case of Vainshtein-screened theories, some readers 
ay be more familiar with the quantity in coordinate space re-

ated to kV, the so-called Vainshtein radius, rV. Models such as DGP 
16] and non-linear massive gravity [17] exhibit an efficient imple-

entation of such screening mechanism.
The definition of rV typically depends on the specific config-

ration2 under study. Most importantly, it depends on a set of 
efining parameters for the theory. For the above examples, rV de-
ends on the cross-over scale in DGP and on the graviton mass in 
assive gravity. It is then clear how the mildly-non-linear regime 

f structure formation can be used to set powerful bounds on DE 
nd MG models.

Our ability to access screening depends crucially on the kNL vs.
V hierarchy:
In the asymptotic region where kV � kNL accounting for screen-

ng is hardly necessary: all dofs are manifest and the perturbative 
xpansion breaks down (at k � kNL) long before screening becomes 
elevant.
Complementarily, for too small a kV, kV � kNL, screening will be 

xtremely efficient and for all intents and purposes our description 
ill coincide with �CDM.

he interesting regime at hand corresponds to

V � kNL . (1)

ntriguingly, there exist several setups where this regime provides 
he most compelling cosmological solutions (see [18] for one such 
xample).

.1. Useful mismatch in the two expansions

As shown in Fig. 1, depending on the kV vs. kNL hierarchy, 
creening can become relevant already at linear scales, or only at 
-loop order in the k/kNL expansion, or in general “in between” 

oops. This happens because non-linearities can become important 
t very different scales on the dark matter and the dark energy 
ide (see also Fig. (1) of [14]). It is relying on this very fact that 
ne can hope to access an intrinsically non-linear (in k/kV on the 
G side) phenomenon such as screening already at quasi linear (in 

/kNL on the DM side) scales.
Depending on the value of kV and the strength of screening, 

on-linearities on the MG side can start suppressing the gravita-
ional coupling between MG and DM at very different scales. It is 

2
 For example, the effective dimensionality and symmetry of the source + test-
article system.

___________________________WORLD TECHN
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[14], we have normalized the profiles by their value at low k.

his allowed “mismatch” between kV and kNL that grants access to 
creening. Our screening model will be a phenomenological take 
n highly non-linear screening effects for the power spectrum (PS) 
f the total density contrast: it should be thought of as resulting 
rom the resummation of the non-linearities in k/kV all the while 
he perturbative expansion is kept for the k/kNL parameter.

. Setup

Let us show how the screening effects regulated by kV come
bout in a typical setup. Consider a Lagrangian made up by the 
tandard GR and matter content plus an additional scalar (split into 
tandard kinetic term + interactions) directly coupled to matter:

∼ LE H +Lm + (∂μφ)2 +Lint
φ + β

MPl
φ Tm . (2)

uch a scenario naturally emerges in dark energy models as well 
s e.g. in the decoupling limit of modified gravity theories [19,20].

The existence of strong derivative φ self-interactions is the key 
o screening dynamics. As soon as the non-linearities in Lint

φ are 
mportant, they too will contribute a non-negligible kinetic term 
nd affect the canonical normalization of δφ. In other words, the 
inetic term has the form Z(φ̄)(∂δφ)2, with Z → 1 only in the 

inear regime. Upon normalizing one finds δφ ∼ δφc/Z int, where 
gain Z int depends on the background value of φ and the self-
nteractions coefficients (see e.g. [21]). For Z int � 1, the field φ

oupling to matter is heavily suppressed. We identify the condi-
ion Z int � 1 with a strong screening regime where the presence 
f the additional dof will not be detectable.3

Let us schematically write the equation of motion for the dark 
atter + additional dof system in the Newtonian limit:

∂δm

∂τ
+ ∂i[(1 + δm)vi

m] = 0 ,

vi
m

∂τ
+Hvi

m + v j
m∂ j vi

m = −∇ i� ,

2� = 3

2
H2	mδm + F (φ̄)∇2δφ

∇2δφ + non linearities = β

MPl
δm , (3)

here we have split the scalar background value from its fluctu-
tions in φ = φ̄ + δφ and used the fact that the fifth force from 
3 Although see [22].
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the extra field will affect dark matter dynamics via the Poisson
equation. The function F (φ̄) tracks the screening strength and is
therefore related to Z int.

Note that we have instead been deliberately agnostic about the
equation of motion for δφ: for stability, we require it be at most
second order in time derivatives. A well-studied [23] example is
the cubic Galileon:

∇2φ + 1

�3

[
(∇2φ)2 − (∇i∇ jφ)2

]
= β

ρ

MPl
. (4)

Galileon interactions are ubiquitous: one can think of them in this
context as emerging in the decoupling limit of massive (bi)grav-
ity or as a small subset of Horndeski-type interactions. Indeed, it
has been shown [24] that the broader class of Horndeski theories
exhibits Vainshtein screening. The presence of � in Eq. (4) identi-
fies the threshold in momentum at which non-linearities become
relevant. For example, in massive gravity � = �3 ≡ (m2MPl)

1/3

proving how a small mass can in principle activate screening at
arbitrarily small momentum scales. However, if massive gravity is
enlisted to explain cosmic acceleration, the value of m cannot stray
too far from the current value of the Hubble constant H0.

Shifting the focus back on Eq. (3), we identify the two regimes
in the DE/MG side via Z int, with Z int � 1 corresponding to the
regime where the dynamics is well approximated by the linear
solution, and Z int � 1 requiring non-linearities to be taken into ac-
count.

4. Modelling screening

We want to model the observables resulting from the solution
to Eq. (3) in a regime sensitive to screening effects. To this aim
we assume that the system has been solved up to a certain per-
turbative order “l” in k/kNL

4 and, in particular, that the solution is
known for the total density contrast variable defined as the RHS of
the Poisson equation, ∇2� ≡ 3

2H2	mδT .
We model screening dynamics on crucial observables, such as

the power spectrum of the total density, in the following way:

P res
∣∣

N(k, τ ) =
N∑

n=0

P (n)
res(k, τ )

=
N∑

n=0

∫
d3k′

(2π)3
KN

n (k′,k, τ )P (n)(k′, τ ), (5)

where P (n) is the n’th perturbative solution for the power spec-
trum related to the system in Eq. (3), N stands for the perturbative
order up to which the expression is valid and n signals instead a
specific order in the expansion. We formally introduced here the
kernels KN

n (k′, k, τ ) to describe the resummed dynamics of higher
order contributions in k/kV. In other words, kernels are to account
for the part of the screening dynamics that is not captured by the
perturbative expansion. Indeed, the non-linearities in the DE/MG
sector play an increasing role at higher momenta; given the hier-
archy, the k/kV parameter becomes order one much sooner than
k/kNL and so needs to be resummed. This resummation affects
in particular also observables at k � kV. This further implies that
kernels, in addition to varying according to the perturbative order
index n, should also depend on the overall PT order N . The reason
is that depending on the working PT order N , part of the screening
is captured perturbatively, while the kernels are responsible for the

4
 The structure of the perturbative expansion is more complex in non-scaling uni-
verse but we nevertheless adopt it here for the sake of convenience.
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resummation of the “residual” screening. As we go higher in per-
turbation theory, the kernels have indeed less screening to account
for.

The structure of Eq. (5) is reminiscent of the recently proposed
resummation schemes in the context of the baryon acoustic oscil-
lations (BAO) [25–27] (see also [28]). The physics we are describing
is of course quite different but the analogy stems from the fact
that here too the kernels account for the effects from non-linear
physics (in the k/kV expansion) that we need to resum. More
specifically, in our case the non-linearities to be resummed as k
approaches kV are those in the dark energy/modified gravity sec-
tor. These are propagated to the dark matter sector gravitationally
as clear from Poisson’s equation. The coupling between the two
sectors is suppressed as DE/MG non-linearities become important
and in particular the contribution from the DE/MG sector to the to-
tal density contrast becomes much weaker. As a result, the kernels
in Eq. (5) are sensitive to the DE/MG contributions to observables
and essentially blind to the purely dark matter �CDM-like sector.

A top–bottom exact derivation of the kernels, ideally via a La-
grangian formulation, is beyond the scope of this paper and we
leave it to upcoming work. It is important to point out at this
stage that we have chosen to apply the screening filter directly
at the level of observables. As should be clear from Section 3
we could have instead opted to introduce kernels already at the
level of the fields and then propagate theirs effects trough the
equations of motion, all the way to observables. Our handling ob-
servables directly is certainly simpler but it relies on the fact that
our parametrization for screening kernels is sufficiently general to
cover for what would have instead been a convolution of kernels
if applied at the field level. The fact that this is not necessarily
always true is down to the phenomenological nature of our ap-
proach.

From here on instead, we proceed phenomenologically. Orga-
nizing the total power spectrum contribution in generalized cos-
mology, P , as a �CDM piece plus the remaining �P = P − P�CDM
we can write, for the linear calculation,

P (0)
res(k, τ ) = P (0)

�CDM(k, τ ) + K0(k, τ )�P (0)(k, τ ), (6)

where P (0)
�CDM is the usual linear �CDM power spectra (the usual

output of Boltzmann codes such as CAMB [29] or CLASS [30,31])
while P (0) is the linear solution in generalized cosmology (also lin-
ear or low-order in the k/kV expansion). Note also that we shall
refer to the total power spectrum also as P res, this to underscore
the resummation of screening effects. The phenomenological na-
ture of Eq. (6) is already evident from the fact that the kernels
now act directly on the “external” observables, as opposed to the
more general prescription in Eq. (5). The kernel K0 is in Eq. (6) to
capture screening effects much beyond the linear order in the k/kV
expansion, it is a resummation to all orders in PT. As one proceeds
beyond linear order, the expression for the total power spectrum
reads, after resumming the k/kV expansion, as

P res
∣∣

N(k, τ ) =
N∑

n=0

[
P (n)

�CDM(k, τ ) + K N
n (k, τ )�P (n)(k, τ )

]
. (7)

Here P (n)
�CDM represents the n-th loop expansion of the power spec-

trum in the �CDM cosmology and �P (n) perturbatively (both in
the k/kV and k/kNL) captures the dynamics beyond �CDM at ev-
ery loop. Let us stress again the effect of the K N

n factors, where the
index N stands for the PT order we are working at and the index n
stands for an expansion in k/kV: as one goes higher in perturbation
theory (increasing N), more of the screening dynamics is captured
already perturbatively and so the N dependence of kernels K N is
n
there to ensure one does not “double count” the perturbative and 
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he resummed screening contributions. We will illustrate this be-
ow with a specific example.

The discussion so far has been relatively general as the specific 
henomenon we want to describe is encoded in the form of the 
ernels. We now specialize the analysis to the screening mecha-
ism known as Vainshtein screening (VM).

.1. Vainshtein screening – resummation

In the mechanism first studied by Vainshtein [32], the suppres-
ion of the coupling with matter originates from kinetic interac-
ions in the DE/MG sector, such as the ones generating the second 
erm in Eq. (4). We refer the reader to [33,34] for important early 
orks in the context of structure formation and to e.g. [35–37] for 
ore recent studies. Let us see how the framework we have out-

ined takes shape in the case of VM.
It is convenient at this stage to express the generic K N

n in terms 
f the Taylor expansion of the generic reduced non-linear form K N , 

.e. we can write

N
n (k, τ ) = K (k, τ )

[
K

]−1
∣∣∣

N−n
(k, τ ), (8)

here the last term is the (N − n)-th order Taylor polynomial of 
he inverse of the reduced kernel K N , typically a function of time 
nd the k/kV parameter. Note that in employing this form for the 
ernels there is already an element of choice. We now take on the 
orm that the reduced kernels should have to account for Vain-
htein screening. The most immediate constraints come from the 
symptotic regimes:
in the k → 0, and for very low k in general (k � kV < kNL), these 
ernels (i.e. resummation) will not be necessary and must there-
ore reduce to unity.

in the complementary regime, k � kV kernels ought to screen 
ery efficiently and should therefore render any non-�CDM fea-
ure in the spectrum negligible.
he most natural candidates as reduced kernels K (k, τ ) to model 
he VM are:

G(k, τ ) = exp

(
−

∑
m

αm(τ )(k/kV)2m

)
,

L(k, τ ) = 1/

(
1 +

∑
m

αm(τ )(k/kV)2m

)
, (9)

here subscripts G and L indicate respectively Gaussian and 
orentzian forms and the coefficients αm have a time dependence 
f their own. The presence of only even powers of k is due to ro-
ational invariance. Both expressions clearly satisfy the asymptotic 
equirements but the following considerations point to utilizing 
he Gaussian kernels. From Eq. (8) one can see how, in the case of 
he Lorentzian kernel, it is necessary for the sum over m to go up 
o 
N/2� + 1 in order to ensure that K N

n gives the desired asymp-
otic behaviour in the high k limit. This in turn makes the reduced 
orentzian kernel KL sensitive to the specific PT order one is work-
ng at. As a consequence, one should in principle write it with an 

index as well. Note that this is not the case for the Gaussian 
ernels. Using the simplified form of Eq. (8), the formula in Eq. (7)
ecomes

res
∣∣

N(k, τ ) = P�CDM
∣∣

N(k, τ ) (10)

+ K (k, τ )

N∑
n=0

[
K

]−1
∣∣∣

N−n
(k, τ )�P (n)(k, τ ),

here again the form we have chosen for the kernels in Eq. (9)

uarantees the correct behaviour in the asymptotic regions, with 

t
(

___________________________WORLD TECHN
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he second line of Eq. (10) becoming negligible at sufficiently 
igh k. We should note here that, besides the coefficients αm the 
cale kV itself should in principle have a time dependence. This 
s clearly seen, for example, at the level of the Poisson equation 

ithin Eq. (3) where the background evolution is stored in the 
unction F . Indeed, the scale kV is determined by a “universal” 
uantity such as � in Eq. (4) and also by background quantities 
ensitive to time-evolution. At this level of analysis, and given the 
reedom on the αm(τ ) and the possible ensuing degeneracies be-
ween αm and kV time-dependence, we have opted not to place 
 time dependence directly on kV . The merits of this choice are 
est tested within a specific model for which the exact screening 
ernels can be extracted following a full Lagrangian perturbation 
heory treatment.5

.2. Vainshtein screening – perturbative build-up

The framework that we have setup so far will account for the 
residual” screening effects, those that escape perturbation theory 
t the given working order. However, it is often the case the per-
urbative solutions themselves are hard to obtain without resorting 
o idealized configurations such as, for example, those endowed 
ith spherical symmetry. On the other hand, an analytical handle 

n LSS dynamics is crucial in view of upcoming data from astro-
omical surveys. It is paramount that we develop analytical tools 
o complement the role of N-body simulations (see [43] for inter-
sting recent developments) in the study of structure formation.

In this context, the use and extension of Einstein–Boltzmann 
olvers to include DE/MG is an important and timely development 
38,39] (see also [40]). However, it is often the case that avail-
ble codes account only for the dynamics up to quadratic order 
n the Lagrangian and therefore do not fully account for screening. 
ur framework has already been setup to include the resummed 

creening component and we will now extend it to model also the 
erturbative screening build-up. This of course with the ultimate 
oal to make contact with simulations.

As ever, the known behaviour in the asymptotics will act as 
ur guiding principle. Let us proceed by assuming that we know 
he perturbative expression for the power spectrum up to order 
 − 1 and would like to estimate the n-th order contribution. Since 
e organize our observables around the known �CDM result, the 

uantity to be determined at order n will be �P (n)(k/kNL, k/kV, τ ). 
n the following, we propose two different ways to estimate �P (n) . 
he first will be particularly effective at very low perturbative or-
ers, as close as possible to the linear solution, the other in the 
omplementary regime. We first use the result (see e.g. [41]) valid 
or �CDM cosmology expansion at large scales:

(n)
�CDM(k, τ )/k2 P (0)

�CDM ∼ const� , k → 0 . (11)

It has been shown that this approximation is reliable up to 
cales of almost 0.1 h/Mpc for the two-loop power spectrum and 
ast 0.1 h/Mpc at higher orders (see Fig. 4 in [41]). We now ex-
end this expansion beyond �CDM and write

P (n)(k, τ )/k2 P (0) ∼ const − const�
P (0)

�CDM

P (0)
, (12)

here this is valid for k � kV. The above equation provides our 
rst estimate of the difference between the (unknown) perturba-

ive expression at n-th order of the total power spectrum and the 

5 We are grateful to the anonymous Referee for stressing this point as well as

he related observation on the convolution (vs. direct application) of kernels in Eq.
7), (9).
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Fig. 2. The fractional difference between a fully screened total power spectrum and
the �CDM result. Different colours indicate different perturbative orders. Contin-
uous, dotted, and dashed lines stand for the action of the additional kernel K̃ in
Eq (13), which in this approximation is regulated by the value of just one param-
eter, β . Note that for the N = 2 case we have dropped the last contribution from
Eq. (13) as it does not modify the physical picture in this specific example. (For in-
terpretation of the colours in this figure, the reader is referred to the web version
of this article.)

�CDM one. As such, this expression can be used in Eq. (10) in or-
der to include also the residual screening.

In particular, whenever6 one can write �P (n)(k, τ )/k2 �P (0) ∼
const and kV happens to be small, e.g. ∼ 0.1 h/Mpc, there is a
dramatic simplification of the overall results for Eq. (10), which in
this case reads:

P res
∣∣

N(k, τ ) = P�CDM
∣∣

N(k, τ ) (13)

+ K (k, τ )
[

K
]−1

∣∣∣
N
(k, τ )�P (0)(k, τ )

+ K (k, τ )
[

K
]−1

∣∣∣
N−1

(k, τ )�P (1)(k, τ )

+ k2�P (0)(k, τ )K (k, τ )

N∑
n=2

β0
n

[
K̃

]−1
∣∣∣

N−n
(k, τ ) ,

where we have used the fact that, for kV in the vicinity of
0.1 h/Mpc, one need only have the exact perturbative solution up
to one loop and can rely on the approximation for higher orders
contributions (see e.g. [41] Fig 4). Note that βn does in principle
also depend on k/kNL. We stress that in this configuration the last
term in the last line of Eq. (13) can be further simplified in favour
of the usual K kernel times another compact kernel with no need
for the sum over n. In Fig. 2 we illustrate how the fractional dif-
ference between a fully screened total power spectrum and the
�CDM PS would look like whenever the relation in Eq. (12) can
be simplified this one step further. In particular we assume the
following �P (0) ∼ P (0)

�CDM and �P (n) ∼ k2�P (0) ∼ k2 P (0)
�CDM.

Let us now consider another way to estimate the �P (n) and its
embedding in Eq. (10):

P res
∣∣

N(k, τ ) = P�CDM
∣∣

N(k, τ ) (14)

+ K (k, τ )

N−1∑
n=0

[
K

]−1
∣∣∣

N−n
(k, τ )�P (n)(k, τ )

+ K (k, τ ) K̄ (k,k/kNL, τ ) �̄P (N)(k, τ ) ,

6 Although this depends on the specific cosmology, one obvious parameter is the
deviation of the equation of state from w = −1. More in general, one needs to
establish to what extent going beyond-�CDM affects the variance of fluctuations

and velocity dispersion. Once this is done at one loop order, the results of [41]
point to a reliable extrapolation to higher orders as well.
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where in the last line we have isolated the term �P (N) to be es-
timated and written it as �P = K̄ �̄P . The role of the new kernel
K̄ is to model the perturbative screening contribution and that is
why it must depend also on k/kNL. More explicitly, in order to es-
timate the value of �P at higher perturbative orders, we propose
the following:

�P (N) = K̄ �̄P (N) ≡ K̄�P (N−1), (15)

where we are using the fact that, at higher orders, the most reli-
able way to estimate �P (N) is to employ the value of the known
closest observable, �P (N−1) , and control it with K̄ . Let us then ex-
plore some of the properties we demand of the new kernel. First
of all, at k/kNL scales where the N-th order contribution in per-
turbation theory becomes relevant, we require that K̄ � 1 so that
K̄ �P N−1 is effectively of order N .

The specific form of K̄ is hard to pin down for a generic theory
with a screening mechanism that could be either perturbatively
very strong or very weak at order N in the expansion. However,
the task becomes easier if the scales where the N-th order contri-
bution is important are also the ones at which screening becomes
rapidly strong. In such a scenario, even if K̄ is modeling a per-
turbative contribution to screening, the rapid perturbative onset of
screening will be well-approximated by the Gaussian or Lorentzian
form in Eq. (9) and suitable αn coefficients will readily account for
an effect of order N (and not N − 1) in a �P derived via Eq. (15).
Note also that in the rapid perturbative screening limit K̄ need not
depend on k/kNL: the dynamics of the two expansions decouples
in this limit and at the next perturbative order one may well use
directly the �CDM result for the total power spectrum.

5. Embedding in the “EFT of LSS”

The modeling of screening we have proposed can be readily
embedded within the effective approach to LSS dynamics. Let us
consider the asymptotic regions. For very small k the shielding ef-
fect is negligible and the EFT prescription [13] will generate the
appropriate counterterms for both the dark matter and dark en-
ergy component. We stress that at small perturbative order the
counterterms can be common to both components [9] or, in other
words, degenerate (see [42] for a derivation). At perturbative or-
ders above the one where (strong) screening occurs observables
coincide with their �CDM counterpart and so do counterterm op-
erators. This is natural as our filter is nothing other than a phe-
nomenological resummation in the k/kV expansion; as such, it
bypasses the need for counterterms. The coefficients αn in our ker-
nels will also vary depending on the different shielding strengths
associated with different screening theories/interactions. Such dif-
ference can be found already within the same model: for example,
the cubic, quartic and quintic Galileon interactions generate a dif-
ferent suppression of the coupling to matter.

6. Conclusions

The data from upcoming astronomical surveys (Euclid, LSST)
will put to the test our best ideas on the mechanism responsible
for the current acceleration of the Universe. There are intriguing
proposals that go beyond the �CDM model: from dark energy to IR
modifications of general relativity. The additional degrees of free-
dom that typically characterize beyond-�CDM models come with
an associated scale, kV, beyond which the corresponding fifth force
is suppressed to the point of being currently undetectable. As we
have seen, if the hierarchy between kV and the scale of dark mat-
ter non-linearities k is benevolent, k � k , screening dynamics
NL V NL
will be accessible in LSS setups already at quasi-linear scales. This 
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s precisely the regime where perturbative analytical tools, such as 
ffective field theory, are most efficient.

In this work we have proposed a phenomenological ansatz to 
odel screening dynamics. Our framework accounts for the “resid-

al screening” that is not captured in perturbation theory but is 
rucial to obtain reliable predictions for LSS observables. We have 
urther put forward a mechanism to estimate also the perturbative 
creening component whenever the exact result is not known. Our 
ormalism can be readily adapted to several screening mechanisms 
nd to different layers of approximation. In the second part of the 
ext however, we have adopted to focus on one specific screening 

echanism, Vainshtein screening, and provided the corresponding 
ernels K .

We applied our formalism to the total density power spectrum, 
or which we have provided a resummation scheme for higher 
rder effects in k/kV. We stress in particular the usefulness of 
q. (13): under certain assumptions it can model screening by re-

ying on exact inputs solely from the linear theory.
Our approach here is phenomenological in nature. However, by 

nforcing a number of constraints from exact asymptotic solutions 
nd from symmetries of the physical system, we have been able 
o identify very efficient kernels that account for screening dy-
amics. The most natural next step is to analyze screening via the 
agrangian PT formalism, which we address in upcoming work.
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Xe–CO2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based 
on secondary scintillation (electroluminescence) signal amplification with applications in the important
field of rare event detection such as directional dark matter, double electron capture and double beta
decay detection. The addition of CO2 to pure xenon at the level of 0.05–0.1% can reduce significantly 
the scale of electron diffusion from 10 mm/

√
m to 2.5 mm/

√
m, with high impact on the discrimination
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efficiency of the events through pattern recognition of the topology of primary ionization trails. We have
measured the electroluminescence (EL) yield of Xe–CO2 mixtures, with sub-percent CO2 concentrations
We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that
produced in pure xenon, for CO2 concentrations around 0.05% and 0.1%, respectively. The contribution
of the statistical fluctuations in EL production to the energy resolution increases with increasing CO2
concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO2.
 

 

 

 

 
 
 

 
 

 

 

 

 

 
 

 
 
 

 

 

 

 

 

 
 
 
 
 

 
 
 
 

 

 
 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 

 

 
 

WFig. 1. Schematic of the EL-based TPC developed by the NEXT Collaboration for
double-beta decay searches in 136Xe.

1. Introduction

Many experiments aiming for rare event detection such as dou-
ble beta decay (DBD) and double electron capture (DEC), with
or without neutrino emission, as well as directional dark mat-
ter (DDM) use high-pressure xenon (HPXe) as the detection/tar-
get medium [1–7]. The physics behind these experiments is of
paramount importance in contemporary particle physics and cos-
mology.

When compared to liquid xenon and double phase xenon TPCs
[8–14], detection in the gas phase offers some important advan-
tages. While the event detection in liquid TPCs allows for com-
pactness and self-shielding, some features may be essential for the
above experiments to succeed. The impact of background depends
strongly on the achieved energy resolution, which is much better
for event detection in gas than in liquid. Furthermore, event in-
teraction in the gas will allow for discrimination of the rare event
topological signature, as demonstrated for DBD and DEC detection
[15,16,5], in contrast to the interaction in liquid, where the ex-
tremely reduced dimensions of the primary ionization trail rules
out any possible trail pattern recognition.

In particular, optical TPCs based on secondary scintillation
(electroluminescence) amplification of the primary ionization sig-
nal are the most competitive alternatives to those based on charge
avalanche amplification. For the latter, the limited charge amplifi-
cation at high pressure impacts the energy resolution, yielding at
present a best value around 3% at 2.5 MeV for a 1 kg-scale proto-
type based on micromegas [17], to be compared to 0.7% obtained
for an electroluminescence (EL) amplification prototype of similar
dimensions [18]. In addition, when compared to conventional elec-
tronic readout of the charge avalanche, EL optical readout through
a photosensor has the advantage of mechanically and electrically
decoupling the amplification region, rendering more immunity to
electronic noise, radiofrequency pickup and high voltage issues.

Fig. 1 depicts a schematic of a typical optical TPC. Most of

the gas volume is occupied by the conversion/drift region where 

____________________________WORLD TECH
T
the radiation interaction takes place exciting or ionizing the gas
atoms/molecules and leading to the emission of primary scin-
tillation (the t0 signal of the event) resulting from the gas de-
excitation or electron/ion recombination. A low electric field, below
the gas excitation threshold, is applied to the drift region to mini-
mize recombination and to guide the primary electrons towards a
shallow region with electric field intensity between the gas excita-
tion and ionization thresholds, the scintillation region. Upon cross-
ing this region, each electron gains from the electric field enough
kinetic energy to excite the gas atoms/molecules by electron im-
pact, leading to a large scintillation output upon gas de-excitation
(electroluminescence). A pixelated photosensor plane enables to
determine the x- and y-positions of the primary electrons arriving
at the EL region, and the time interval between primary and EL
scintillation pulses enables to determine the z-position of where
the ionization takes place.

Absolute values of the EL light yield have been measured in
uniform electric fields [19–21] and in the modern micropatterned
electron multipliers, as GEM, THGEM, MHSP and micromegas
[22–24]. The statistical fluctuations in the EL produced in charge
avalanches are dominated by the statistical fluctuations in the to-
tal number of electrons produced in the avalanche, since all the
electrons contribute to EL production. On the other hand, the sta-
tistical fluctuations in the EL produced for uniform electric fields
below the gas ionization threshold are negligible when compared
to those associated with the primary ionization formation [25].
The latter situation is most important when event to background
discrimination is also based on the energy deposited in the gas, as
is the case of DEC and neutrinoless double beta decay, where the
best achievable detector energy resolution is important for efficient
background rejection.

The effectiveness of event discrimination based on the topolog-
ical signature of the ionization trail is related to the low electron
drift velocity of xenon and, mainly, to its large electron diffusion.
The large electron diffusion is determined by the inefficient elec-
tron energy loss in elastic collisions with the xenon atoms, in
particular in the range of reduced electric fields of few tens of
V/cm/bar used in the drift region. Diffusion hinders the finer de-
tails of the ionization trail, especially for large drift distances, and
the discrimination based on the topological signature of the events
becomes less effective [26].

The aforementioned problem can be mitigated by adding a
molecular gas, like CO2, CH4 or CF4, to pure xenon. With the addi-
tion of such molecules, new molecular degrees of freedom from
vibrational and rotational states are made available for electron
energy transfer in inelastic collisions. In this case, the energy dis-
tribution of the ionization electron cloud in the drift region tends
to build up around the energy of the first vibrational level, typi-
cally at ∼0.1 eV, even in the presence of minute concentrations of
molecular additives.

Until recently, it was believed that the presence of molecular
species in the noble gas would dramatically reduce the EL yield
that could be achieved. Experimental studies performed for Ar [27]

have shown that the presence of CO2 and CH4 in concentrations 
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ig. 2. Schematic of the experimental apparatus, including the gas proportional scintillation counter, the gas circulation and purifying system with SAES St-707 getters, the 
as entrance and exit systems including the turbo-pump, two calibration volumes (volume 1 in green, volume 2 in red), the liquid nitrogen mixing vessels and the RGA 

onnection through a heated capillary. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Ws low as ∼50 ppm and ∼200 ppm, respectively, resulted in an EL 
eduction above 70%. Detailed Monte Carlo simulation studies of 
lectron drift in xenon at atmospheric pressure and room temper-
ture [28] have shown that the average number of elastic collisions 
etween successive inelastic collisions is very large, of the order 
f 104, for the typical reduced electric fields applied to the EL re-
ion. This fact partly explained the importance of gas purity for the 
L yield of noble gases: if an electron has significant probability of 
olliding with a molecular impurity before it obtains from the elec-
ric field sufficient energy to excite a noble gas atom, it may lose 
art of its energy without leading to EL photon emission, resulting 

n a decrease in the EL production. Depending on the conditions, 
xcimer quenching, photo-absorption and dissociative attachment 
an jeopardize performance as well.

Within the NEXT Collaboration [1], which has built a HPXe 
PC for DBD studies with the 136Xe isotope, we proposed to re-
isit the addition of molecular additives to xenon, at sub-percent 
evel, to reduce electron diffusion in the TPC, hence improving 
he topological discrimination capabilities. Preliminary experimen-
al studies and simulations for different concentrations of CO2 and 
H4 gases that are common in TPCs and whose elementary cross-
ections are well known, have shown encouraging results [29], 
eading to acceptable EL losses and only small degradation in 
he detector energy resolution. Simulation results obtained with 

agboltz [38] have shown that Xe–CO2 mixtures with concen-
rations of 0.05–0.1% of CO2 would be sufficient to reduce the 
ransversal and longitudinal diffusion coefficients to acceptable val-
es (∼ 2.5 mm/

√
m). These concentrations are almost one order of 

agnitude lower than those needed for CH4, in order to obtain a 
imilar diffusion reduction [29].

Those results led us to perform a detailed study on the effect 
f the addition of CO to pure xenon both on the EL yield and on 
2
he energy resolution, for additive concentrations below 1% [29]. d

___________________________WORLD TECHN
Tn this work we present those studies. CO2 is a priori the most 
nteresting option due to its low cost and easy handling, since it is 
on-flammable.

. Experimental setup and methodology

The experimental setup especially projected for these stud-
es includes a Gas Proportional Scintillation Counter (GPSC) [25], 

hich is connected to a gas re-circulation system in order to con-
inuously purify the gas or the mixture using SAES St-707 getters; 
 Residual Gas Analyser (RGA) that provides a real-time direct 
easurement of the molecular additive concentrations; a vacuum 

umping system to maintain the RGA in continuous operation; as-
ociated electronics and suitable control and data-acquisition elec-
ronics for both systems, the RGA and the GPSC. The xenon gas 
s 4.8 grade from Messer containing less than 1 ppm of the main 

olecular gasses. The getter efficiency is very effective in remov-
ng the outgassing from the detector; the EL degradation is very 
low after closing the gas circulation through the getters while 
resenting a much faster recovery when the gas circulation is re-
tored. E.g., it takes two hours for the EL to be reduced by 20% 
fter closing the getters, while it takes only 10 minutes to restore 
he original performance after gas circulation through the getters 
s resumed. Therefore, xenon purity in normal detector operation is 
imilar or even better than that of the gas inside the original bot-
le. The main components of the experimental setup are illustrated 
n Fig. 2.

The GPSC used in this work is depicted in Fig. 3. It is of the 
riftless’ type, i.e. without drift region, and has been already used 

n [30,31]. This design was chosen for the present work because 
t allows to study the influence of molecular additives on the EL 
arameters, minimizing the effects that may arise in the electron 

rift through the drift region and gas scintillation transparency.
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Fig. 3. Schematic of the driftless GPSC used in this work, including its principal components.
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The EL region, 2.5 cm long, is delimited by a Kapton radia-

tion window (8 mm in diameter, mounted on a stainless steel
holder) aluminised on the inner side, and by the PMT quartz win-
dow, vacuum-evaporated with a chromium grid (100 μm width
and 1000 μm spacing), electrically connected to the photocathode
pin of the PMT. The EL electric field is established by applying
a negative high voltage to the detector window and its holder
(4 to 10.5 kV), which are insulated from the stainless steel detec-
tor body by a ceramic material (Macor), being the detector body,
the chromium grid of the PMT window and its photocathode kept
at 0 V. More information on this detector can be found in [30,31].
The reduced electric field inside the detector is set below the gas
ionization threshold in order for EL to be produced without any
charge multiplication in the EL region.

A 2-mm collimated, 5.9 keV x-ray beam from a 55Fe radioactive
source irradiated the detector window along the detector axis, be-
ing the 6.4-keV x-rays of the Mn Kβ line absorbed by a chromium
film. The 5.9 keV x-rays interact in the gas resulting in the release
of electrons and photons. These ionization electrons are acceler-
ated throughout the EL region exciting the noble gas atoms and
inducing EL as a result of the atoms’ de-excitation processes. The
amount of EL is more than 3 orders of magnitude higher than pri-
mary scintillation. The EL pulse is collected by the PMT, whose out-
put signal is subsequently shaped, amplified and, finally, digitized
through a Multi-Channel Analyser (MCA). A typical pulse-height
distribution obtained in the MCA for 5.9 keV x-rays is depicted
in Fig. 4a.

In a driftless chamber, the amount of EL depends on the dis-
tance travelled by the primary electron cloud in the EL region and
therefore, on the x-ray interaction depth. Consequently, the pulse-
height distribution generated by the MCA has the typical Gaussian
shape (from a monoenergetic line) convoluted with an exponen-
tial tail towards the low-energy region, due to the exponential law
of the x-ray attenuation. Since, for 5.9-keV x-rays, the absorption
length in 1 bar of xenon is about 2.7 mm, very small when com-
pared to the long EL region of 25 mm, the observed full absorption
peak in the pulse-height distribution has an almost Gaussian-like
shape.

The intrinsic response of the GPSC for 5.9 keV x-rays was ob-
tained by deconvolution of the overall full absorption peak distri-
bution into a sum of a large number, 250, of Gaussian functions
corresponding to x-ray interactions at successive depths, �z =
0.01 cm, with areas decreasing according to the exponential ab-
sorption law for the 5.9 keV x-rays and with the same relative
FWHM, which was left as a free parameter. The centroid of each

Gaussian follows the integration of the solid angle subtended by 
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the PMT photocathode along the path corresponding to each x-ray
penetration, being the centroid of the rightmost Gaussian, i.e. the
one having the highest centroid, left as a free parameter. Fig. 4b
depicts an experimental pulse-height distribution for the full en-
ergy peak and the resulting fit obtained by the deconvolution
procedure used, denoting a very good agreement. The GPSC pulse
amplitude and energy resolution were taken from the centroid and
FWHM of the Gaussian corresponding to x-ray interactions taking
place just below the window, i.e. the rightmost one. The obtained
amplitude is within 2% of the peak channel of the full energy peak,
Fig. 4b. The obtained energy resolution is somewhat below 7%, in-
stead of the ∼8% obtained for a Gaussian fit to the right side
Directly analysing the PMT pulse waveforms with a given dura-
tion (i.e. corresponding to the same x-ray penetration) we obtained
a Gaussian shape pulse-height distribution with energy resolution
not higher than 7.3%, absolute value. The “true” energy resolution
should be lower than this value, since the signal-to-noise ratio in
this case is not negligible, contributing to higher statistical fluctu-
ations.

The small volumes in Fig. 2, each one read by an accurate ca-
pacitive pressure gauge, were used to calibrate the RGA. Volume 2
is filled with pure xenon from the detector volume, while volume 1
is filled with CO2. For the RGA calibration, only these volumes
were used, being isolated from the detector volume before the ref-
erence mixtures were done avoiding, in this way, any error that
might result from CO2 adsorption to the inner surfaces of the GPSC
and, mainly, to the getters. We consider that the amount of CO2
adsorbed or released by the walls of the calibration volumes is
negligible. The calibration process has shown a good linear cor-
relation between the concentration measured in the RGA and the
initial additive concentration based on the pressure gauge read-
ings, within the studied concentration range. In order to avoid a
pressure-dependent non-linearity of the RGA, calibration and de-
tector operation have been carried out at the same total pressure
of about 1.13 bar, for both pure xenon and its mixtures.

The EL studies were performed when the RGA partial pressures
stabilized and, likewise, the additive concentration was calculated
from an average over several measurements done during the time
interval when the EL studies were performed.

Before setting each mixture, a measurement of the CO2 back-
ground was performed in the GPSC filled with pure xenon, having
the getters at 250 ◦C, in order to ensure maximum xenon purity
This background was, afterwards, subtracted from the RGA CO2
reading once the mixture was done. For CO2 only mass 44 peak
was used, as the other peaks are superimposed on other molecu-

lar species, while for Xe all the peaks are considered.
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ig. 4. a) Pulse-height distribution for 5.9-keV x-rays absorbed in the xenon driftless GPSC for a reduced electric field of 3.7 kV/cm/bar; b) detail of the full energy peak 
blue histogram), the fit function (black solid line), and some of the Gaussians resulting from the deconvolution procedure used in this work (black and grey solid lines). (For 
terpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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As the hot getters react with CO2, the getter temperature was 

educed to 80 ◦C before the mixture was done. At this getter tem-
erature CO2 is only slightly absorbed. On the other hand, the EL 
arameters in pure xenon were found to degrade only slightly and 
nly after several days of operation when cooling down the getters 
rom 250 ◦C to 80 ◦C. Furthermore, it was observed that, despite 
he CO2 being absorbed in the getters, part of it is also transformed 
nto CO that escapes to the gas phase, as observed by the corre-
ated growth of the partial pressure at mass 28 (related with CO) 
s the concentration of CO2 decreases. This effect increases with 
ncreasing getter temperature. Therefore, some CO is present in the 
e–CO2 mixtures, with concentrations that are roughly constant 

or all the studied mixtures, for a getter operation temperature of 
0 ◦C. Simulations have shown that the impact of the presence of 
O on the yield is small, within a 10% effect at most, for the low-
st CO2 concentrations. The simulations were carried out using the 
ame algorithms as in [29] and considering CO concentrations be-
ow 0.05%.

In this work only relative values were measured for the EL 
ield. Absolute values for the EL reduced yield, Y /N , N being the 
ensity of the molecules in the gas, were obtained normalizing 
he relative pulse amplitude as a function of reduced electric field, 
/N , obtained in this work for pure xenon, to the absolute values 
f the EL reduced yield obtained in [19]. The same normalization 
onstant was, then, used to normalize the remaining EL curves ob-

ained for the different mixtures.

(

1
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. Experimental results

In Fig. 5, the reduced EL yield, number of photons produced 
er electron per cm of path divided by the atomic number den-
ity, Y /N , as a function of the reduced electric field, E/N , applied 
o the EL region5 is shown for different CO2 concentrations added 
o pure xenon. The two data sets for the 0.174% of CO2 are related 
o two independent measurements. Interestingly, the reduced yield 
xhibits the typical approximate linear dependence of EL with re-
uced electric field even in the presence of CO2. The solid lines 
resent fits to the data, excluding the data points near the EL 
hreshold where the EL response of GPSCs deviates from the linear 
rend [30]. As expected, the EL yield decreases as the CO2 amount 
ncreases. Nevertheless, CO2 concentrations of ∼0.05%, which al-
ow an overall electron diffusion around 2.5 mm/

√
m [29], can be 

cceptable in terms of EL yield since, in spite of having an EL yield 
eduction up to 35% when compared to pure xenon, this reduction 

ay be tolerable in the cases where the EL is large enough. For 
omparison, it must be recalled that such a reduction is achieved 
n Ar mixtures when CO2 concentration reaches 10 ppm [27].

As anticipated, for the same reduced electric field intensity, the 
L threshold increases with increasing CO2 content since, upon 

5 At T = 293 K we have Y /N (ph/e/atom × 10−17 cm2) = 2.276 × 103Y /p
−1 −1 −1 −1
ph/e cm bar ) and E/N (Td) = 2.276E/p (kV cm bar ); (1 Townsend =

0−17 V cm2).
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Fig. 5. EL reduced yield, Y /N , as a function of the reduced electric field, E/N , for
different concentrations of CO2 added to pure xenon. The errors are less than few
percent and, hence, the error bars are within the symbols. The solid lines are linear
fits to the data.

Fig. 6. Light amplification parameter and EL threshold of the lines fitted to the re-
duced EL yield (Fig. 5). The solid lines serve only to guide the eye.

colliding with a CO2 molecule, the electron loses energy to rota-
tional and vibrational excited states, reducing the average electron
energy. Although qualitative in nature, the behaviour of the EL
threshold shows how this cooling seems to be very efficient up
to concentrations around 0.1% (as indicated by Magboltz simula-
tions), values for which the EL loss remains acceptable, hinting
that a compromise in terms of electron cooling/excimer scintil-
lation does exist. Additional losses can be expected in CO2 from
dissociative attachment and excimer quenching, this last one being
indeed the main source identified earlier in [27]. Fig. 6 summa-
rizes the EL threshold and reduced yield slope, from Fig. 5 data, as
a function of CO2 concentration.

The impact of the molecular additive on the TPC energy res-
olution is an important parameter to be considered, in particular
in double electron capture and in neutrinoless double beta decay
detection, as it is a tool to effectively discriminate the rare events
against background. In Fig. 7 we present the GPSC energy resolu-
tion (FWHM) for 5.9 keV x-rays as a function of reduced electric

field, for the different CO2 concentrations used in this work. The 
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Fig. 7. Detector energy resolution as a function of E/N for 5.9 keV x-rays and for
different concentrations of CO2. The solid lines serve only to guide the eye. Error
bars include both statistical and estimated systematic errors.

error bars include the uncertainties in the fit and the statistical er-
ror associated to multiple readings, added quadratically. The errors
are overestimated as we do not know the correlation between both
values. Nevertheless, we assumed these conservative errors.

From the experimental data, centroid and FWHM, it is possi-
ble to assess the fluctuations in the EL production assuming that
the obtained pulse-height distributions are well-described by the
mathematical model already discussed in the literature. The en-
ergy resolution (FWHM) of a GPSC, R E , is given by [25]:

R E = 2
√

2 ln 2

√√√√σ 2
e

N
2
e

+ 1

Ne

(
σ 2

EL

N
2
EL

)
+ σ 2

pe

N
2
pe

+ 1

Npe

(
σ 2

q

G
2
q

)
(1)

where the first term under the square root describes the relative
fluctuations in the number of ionization electrons induced by the
interaction, Ne , the second term describes the relative fluctuations
associated to the number of EL photons produced in the EL re-
gion per primary electron, NEL , and the last two terms describe
the relative fluctuations in the photosensor, namely the relative
fluctuations in the number of photoelectrons released from the
PMT photocathode by the EL burst, Npe , and the relative fluctu-
ations in the number of electrons collected in the PMT anode per
photoelectron, i.e. the relative fluctuations in the gain of the elec-
tron avalanche in the PMT. The electronic noise is not included
in Eq. (1) since it is negligible, as shown by the amplifier pulse
waveforms in the oscilloscope. Since the process of photoelectron
release from a photocathode by the incoming photons is described
by a Poisson distribution, its variance is σ 2

pe = Npe and the relative
fluctuations in the PMT are given by:

1 +
(

σ 2
q

G
2
q

)
cNe NEL

= k

NEL
, (2)

c represents the light collection efficiency, related to the anode
grid transparency (Fig. 3), 81%, to the PMT quantum efficiency,
20% for 172 nm, and to the average solid angle subtended by the
PMT photocathode relative to the primary electron path in the EL
region, 30%. Therefore, k is a constant, which depends on the scin-
tillation readout geometry and on the photosensor itself (for our
PMT we measured a relative gain fluctuation of 0.55).

From the data for pure xenon, we can experimentally deter-

mine the contributions to the energy resolution from the statistical 
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ig. 8. The square of the energy resolution (R E ) as a function of the inverse of 
he average number of photons produced in the EL region per primary electron for 
.9 keV x-rays and for pure xenon. The solid line presents a linear fit to the data 
oints in red. (For interpretation of the references to colour in this figure legend, 
he reader is referred to the web version of this article.)

uctuations due to the primary ionization formation and due to 
he photosensor, since the contribution from the statistical fluc-
uations to the EL is negligible when compared to the other fac-
ors [25]. In Fig. 8 we depict R2

E as a function of N−1
EL for pure 

enon. A linear function, as imposed by Eq. (1), is fitted to the 
ata points, excluding those with the highest NEL , which depart 

rom the linear trend. This behaviour is similar to the one ob-
erved in standard type GPSCs, with drift region [32,33]. The first 
erm is obtained from the line interception with the vertical axis 
hile 8 ln(2)k is the slope of the line. From Fig. 8 we obtain a 

ano factor F = σ 2
e /Ne = 0.17 ± 0.04 for xenon, using a w-value 

f 22 eV [34], i.e. the average energy needed to produce one 
lectron–ion pair in xenon (Ne = Ex/w , Ex being the x-ray energy; 
or x-rays the w-value does not depend on the applied electric 
eld, above ∼20 V/cm/bar, since recombination in this case is neg-

igible). This result is in good agreement with the values normally 
ound in the literature, between 0.13 and 0.25 [32,35–37]. In ad-
ifferent concentrations of CO2. The solid lines serve only to guide the eye.
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hat is obtained from calculations based on the geometry (0.048). 
hese agreements show the robustness of the present method.

The terms of Eq. (1) obtained from the fit in Fig. 8 (the 1st and 
he last 2), for the relative fluctuations in the primary ionization 
ormation and for the relative fluctuations in the photosensor, are 
onstant for all CO2 concentrations studied in this work, since the 
ano factor and the w-values of those mixtures are not expected 
o change significantly for these low additive concentrations, as 
hown by Degrad simulation [38], and k is constant for a given 
eometry and photosensor setup. Therefore, it is possible to deter-
ine the fluctuations associated to the EL production as a function 

f reduced electric field for the different mixtures, using the R E

ata from Fig. 7, as these fluctuations are the only unknown vari-
ble in Eq. (1).

In Fig. 9 we present the square of the relative standard devia-
ion in the number of EL photons produced in the EL region per 
rimary electron,

=
(

σ 2
EL

N
2
EL

)
, (3)

s a function of reduced electric field in the EL region, for the 
ifferent concentrations of CO2 added to pure xenon. A striking 
bservation that can be made in Fig. 9 is that Q becomes non-
egligible as the CO2 concentration increases, largely independent 
f the reduced electric field. For a CO2 concentration as low as 
.1% Q ∼ 0.08, i.e. about half the value of the Fano factor, while 
or 0.2% CO2 Q becomes comparable. For a CO2 concentration of 
.05% Q is found to be around 0.02, a value that has a negligi-
le impact on the energy resolution. For higher CO2 concentrations 
nd lower E/N , the signal-to-noise ratio decreases significantly, re-
ulting in an artificially high energy resolution and, consequently, 
n over-estimated Q value obtained from Eq. (1), as the noise is 
ot included in this equation. For that reason, those points are not 

ncluded in Fig. 9. As the uncertainty in Q is dominated by the 
ncertainty in the energy resolution, the error bars are also over-
stimated, as explained before.

The rise in the contribution from Q cannot be explained if we 
ake only into account the effect of EL reduction with increas-
ng CO2, since even a reduction of one order of magnitude in 
L still means a very high number of EL photons and, in addi-
ion, one would expect a decrease in Q with increasing electric 
eld in the EL region, instead of an almost constant trend. We be-
ition, the result we obtain for c from Eq. (2) (0.056) is similar to lieve that this effect is due to dissociative electron attachment to 

ig. 9. Relative standard deviation in the number of EL photons per primary electron once squared (Q ), as a function of the reduced electric field in the EL region (E/N) for 
OLOGIES____________________________
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CO2 molecules, for which we find a good quantitative agreement
with simulations [39]; in the absence of this effect, simulations
predict values for the Q -factor around 0.02, little dependent on
concentration. Indeed, the cross-section for electron attachment is
non-negligible and has narrow peaks for electron energies between
4–5 and 7–9 eV, e.g. see Fig. 1 in [40], and these are energies that
the electrons will eventually reach in the EL region in order to
be able to excite the xenon atoms. The simulated attachment im-
plies for the highest CO2 concentration a relatively modest 10’s of
%-level loss of ionization electrons; this effect is, therefore, not the
only responsible for the EL reduction. For example, for the highest
concentrations of CO2, the electron attachment probability is about
65%, according to Magboltz simulation [41], which would lead to
a maximum EL reduction of 65% if all attachment would happen
right at the beginning of the electron path; however, experimen-
tal results show EL reductions above 90%. Most of the remaining
EL reduction is explained by quenching. The presence of attach-
ment becomes, nonetheless, the main source of fluctuations in the
EL signal for concentrations already above 0.17% CO2.

4. Discussion

CO2 concentrations in the range of 0.05%–0.1% correspond to a
characteristic size of the electron diffusion ellipsoid of 3

√
σxσyσz ∼=

2.5 mm ×
√

10 bar
P after a 1 m drift through the TPC [29,39]. This

value can be found for reduced drift fields in the range of E/P =
[20–30] V/cm/bar, by resorting to the latest Magboltz cross-section
database. The drastic change experimentally observed in the EL
threshold (Fig. 6) suggests that electron cooling is in fact strongly
active even for these minute concentrations. Moreover, simulations
indicate that a minimum of diffusion exists in the above field
range; therefore, there is little to be gained by increasing (or de-
creasing) the drift field in the TPC. The presence of such minima
can be found experimentally and theoretically for xenon mixtures
and additives like CH4 or TMA in [17], and it becomes narrower at
low concentrations.

In pure xenon at 10 bar, electric fields in the aforementioned
range pose no problems concerning charge recombination for pri-
mary electrons, as can be readily noticed, for instance, in [24]. For
admixtures, however, the situation at high pressures is less clear.
Some qualitative arguments can be drawn: in xenon at 5 bar and in
a 0.22% TMA admixture, for example, the additional contribution to
the Fano factor stemming from fluctuations in the charge recom-
bination process is less than 0.1 [42]. Since the measured diffusion
and drift coefficients are, in that case, similar to those simulated
for the CO2 optimum (0.05%–0.1%), and being the ionization den-
sity close to the one attempted in NEXT (10 bar), measurements
performed in Xe–TMA can be used to estimate an upper bound to
the effect expected in Xe–CO2. Besides this initial charge recom-
bination, it must be noted that the drift velocity will be reduced
for optimum CO2 concentrations by a factor of around 2, which
is not expected to have a dramatic effect on the electron lifetime,
according to the measurements performed in [17], again for TMA
admixtures.

The above aspects will soon be evaluated for high pressures in
NEXT-DEMO, a large prototype with a drift length of 30 cm and a
hexagonal cross section of 8-cm apothem, operated with ∼1.5 kg
of natural xenon at a pressure of 10 bar [43]. Other relevant ef-
fects like the pressure-dependence of the EL yields and the light
fluctuations will also be evaluated. Simulations performed in [39]
indicate that, despite the anticipated deterioration at high pres-
sure, both the Q factor and the finite-statistic term from the PMTs
can be kept at the level of the Fano factor at 10 bar, as long as

the CO2 concentration remains in the range of 0.05–0.1%. Concern-
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ing the primary scintillation yields, a tolerable reduction within a
factor of 5–10 is expected in the same concentration range.

A possible drawback that can arise from the use of CO2 is
related to the gas stability in the long term and the associated for-
mation of CO. This can be handled using specific getters for CO2.
On the other hand, being these devices cold getters, one has to
evaluate the radon emanation.

5. Conclusions

We have performed experimental studies on the reduced elec-
troluminescence yield of Xe–CO2 mixtures at room temperature.
We have demonstrated that the addition of CO2 to pure xenon,
at concentration levels of few tenths of a percent, does not kill
the proportional electroluminescence (EL) yield entirely, as it has
been assumed during the last decades. CO2 concentrations of 0.05%
and 0.1% at around atmospheric pressure lead only to an EL reduc-
tion of 35% and 70%, respectively, relative to that produced in pure
xenon at the same reduced electric field. Such a modest reduction
seems tolerable, provided the number of photons produced per
ionization electron is very large and also because it may be readily
compensated by increasing the reduced electric field, since higher
field can be applied to the EL region, as the ionization threshold
increases with increasing CO2 concentration.

On the other hand, the intrinsic energy resolution of xenon-
based TPCs (i.e., photo-detection statistics neglected) degrades
with increasing CO2 concentration; for a concentration of 0.05%
the contribution of the statistical fluctuations associated to EL pro-
duction is a factor of 6 lower than the Fano factor, for 0.1% nearly
half and for 0.2% it is slightly above it. This degradation in the en-
ergy resolution cannot be, however, compensated by an increase in
the reduced electric field intensity. Based on both the approximate
linear dependence of Q on the CO2 concentration and the com-
parison with Magboltz simulations, these large fluctuations can be
attributed to dissociative attachment of ionization electrons to CO2
molecules. Seemingly, this process can only be mitigated by using
shallower EL regions. Nevertheless, a compromise has to be found
between the thickness of this region and the amount of EL pro-
duced.

The above findings are important for xenon-based TPCs relying
on EL signal amplification, which are being increasingly used for
rare-event detection such as directional dark matter, double elec-
tron capture and double beta decay detection. Particularly, the ad-
dition of CO2 to pure xenon at the level of 0.05%–0.1% will reduce
significantly the electron transverse diffusion from 10 mm/

√
m to

the level of few mm/
√

m, having a high impact on the discrim-
ination of events through pattern recognition of the topology of
primary ionization trails.

Other molecular additives, such as CH4, do not present the
drawback of having significant electron attachment but, on the
other hand, higher concentrations will be needed to obtain similar
electron transverse and longitudinal diffusions as in CO2. Never-
theless, former work in [27] has shown that the addition of CH4
to pure argon has less impact on the reduction in the mixture EL
yield when compared to the addition of CO2.
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ingularities in FLRW spacetimes
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We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that
these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a
non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that
geodesic. That indicates a breakdown of the particle’s description, which is why we should not consider
those trajectories for the definition of an initial singularity. When one only considers test particles that
do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are
the ones that have a scale parameter that vanishes at some initial time.
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. Introduction

Hubble’s law, the observed abundance of elements, the cosmic 
ackground radiation and the large scale structure formation in 
he universe are strong evidence that the universe expanded from 
n initial very high dense state to how we observe it now. How-
ver, what happened exactly during this hot density state is still 
n open problem. One of the questions that needs to be answered 
s whether there was a singularity at the beginning of spacetime. 
uch a singularity is in accordance with the very general theorems 
f Hawking and Penrose [1,2] defined as a non-spacelike geodesic 
hat is incomplete in the past. One uses this definition because test 
articles move on these trajectories and thus have only traveled for 
 finite proper time.

The flatness, horizon and magnetic monopole problem can be 
olved with a period of exponential expansion in the very early 
niverse [3,4]. To avoid a singularity before that period, it was 
uggested that one can have past-eternal inflation in which the 
niverse starts from an almost static universe and flows towards a 
eriod of exponential expansion. This way the universe would not 
ave a beginning. One of the characteristics of inflationary mod-
ls is that the Hubble parameter H is positive. In [5] it was shown 
hat when the average Hubble parameter along a geodesic Hav is 
ositive, the geodesic is past-incomplete such that we would have 

 singularity. This is also applicable to models of eternal inflation 
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Tn which the average Hubble parameter along geodesics does not 
o to zero sufficiently fast (i.e. such that we do not have that Hav

s zero). In [6], a model of eternal inflation was given with all non-
pacelike geodesics complete, but in [7] these kind of models were 
hown to be quantum mechanically unstable. Hence, this would 
mply that also models of eternal inflation start from a singular-
ty.

In [8] it was pointed out that in De Sitter space the test par-
icles that follow those past-incomplete trajectories and have a 
on-vanishing velocity, will have an energy that becomes arbitrar-

ly large when going back in the past. This can be generalized to 
eneral Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime 
nd means that the energy of such a test particle can become 
uper-Planckian at some initial time such that their description 
reaks down. This is the reason one should not consider those tra-

ectories when defining a singularity. When one only considers the 
rajectories of test particles that do not have a breakdown of the 
escription of their trajectory, one finds that the only FLRW space-
imes that start from a singularity are the ones with a scale factor 
hat vanishes at some initial time. This implies that models of eter-
al inflation or bouncing models are singularity free provided one 
equires sub-Planckian test particles at all times.

In this paper we first consider the past-(in)completeness of 

eodesics in spacetimes with an FLRW metric. We review the gen-
ral singularity theorems of [1,2] applied to these models and we 
eview the more general (in the context of cosmology) argument 
f [5]. After that we consider how the energies of test particles 
hange in time. We adopt units in which the velocity of light c = 1.
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2. Past-(in)completeness of geodesics in FLRW spacetimes

Consider a universe with an FLRW metric which describes a
spatially homogeneous, isotropic spacetime:

ds2 = −dt2 + a(t)2
[

dr2

1 − κr2
+ r2

(
dθ2 + sin2(θ)dϕ2

)]
, (1)

where κ is the curvature of spacelike three-surfaces and the scale
factor a(t) is normalized such that a(t1) = 1 for some time t1. This
metric is a good description of our universe, since from experi-
ments as WMAP and Planck, it follows that our universe is spa-
tially homogeneous and isotropic when averaged over large scales.
Geodesics γ (τ ), where τ is an affine parameter, satisfy

dγ 0

dτ
=

√
| �V (t1)|2 − εa2

a
, (2)

where | �V |2 = gij γ̇
i γ̇ j and ε is the normalization of the geodesic:

ε = 0 for null geodesics and ε = −1 for timelike geodesics. We
thus have a past-incomplete geodesic when

∫
dτ =

t∫
t0

a√
| �V (t1)|2 − εa2

dt (3)

for an initial velocity | �V (t1)| is finite. Here t0 is −∞ if a(t) > 0
for all t , otherwise t0 ∈ R is taken such that a(t0) = 0. Notice
that when a(t0) = 0 for some time t0, all non-spacelike geodesics
are past-incomplete. When t0 = −∞ and the integral (3) is con-
verging, we cannot immediately conclude that geodesics are past-
incomplete. It is possible that we only consider a part of the actual
spacetime. An example is given by κ = 0, and the Hubble param-
eter H = ȧ/a satisfying Ḣ/H2 = 0, in which case a(t) = eHt with
H constant. If the whole manifold would be covered by these
coordinates, it would result in past-incomplete geodesics. How-
ever, this model only describes one half, known as the Poincaré
patch, of the larger De Sitter space; the whole space is described
by choosing κ = 1, a(t) = cosh(Ht)/H which yields complete
geodesics. See also [9] and [10]. When the integral (3) is diverg-
ing one can conclude that geodesics in that specific coordinate
patch are past-complete. Of course, one can also assume that a
certain model with t0 = −∞ covers the whole spacetime. Then
the past-(in)completeness of a geodesic is determined by the inte-
gral (3).

From (3) we see that in spacetimes with a(t) > A ∈ R>0 all
non-spacelike geodesics are past-complete. Hence for a space-
time to have a non-spacelike geodesic that is past-incomplete, a(t)
needs to become arbitrarily small.

There are a few theorems that prove that a spacetime contains
a (past-)incomplete geodesic. Hawking and Penrose, [1,2], proved
theorems that state that when

Rμνγ̇
μγ̇ ν ≥ 0 (4)

for all geodesics γ and the spacetime obeys a few other condi-
tions such as containing a trapped surface, there is a non-spacelike
geodesic that is incomplete. Condition (4) for the metric (1) yields

( ..
a

a
+ 2

ȧ2

a2
+ 2

κ

a2

)
ε − 2

[ ..
a

a
− ȧ2

a2
− κ

a2

](
γ̇ 0

)2 ≥ 0. (5)
____________________________WORLD TECH
T
Fig. 1. Illustration of condition (8). For κ < 0 one needs (ρ, p) in the shaded area
above the dashed line to apply the Hawking–Penrose singularity theorems. For κ ≥
0, we have less restrictions, the shaded area below the dashed line is also included
but it is impossible for an FLRW spacetime with non-negative spatial curvature to
be in that area.

Using Eq. (2) one finds that condition (5) becomes

κ ≥ 0 : ..
a ≤ 0;

κ < 0 :
{ ..

a
a − ȧ2

a2 − κ
a2 ≤ 0;

..
a ≤ 0.

(6)

In particular for all κ we need that 
..
a ≤ 0 at all time, or that the

spacetime is non-accelerating. Notice that when 
..
a ≤ 0, a will al-

ways be zero at some time t0 (this might be in the future), unless
a is a positive constant (H = 0) in which case we do not have past-
incomplete geodesics. Hence, when we want to use these theorems
to say something about an initial singularity in an FLRW spacetime,
we need a metric that has a scale parameter a that becomes zero
at some time in the past. Describing the matter content of the uni-
verse by a perfect fluid

Tμν = (ρ + p)UμUν + pgμν, (7)

where p is the pressure, ρ the energy density and Uμ = (1, 0, 0, 0)

the condition (6) translates via the Friedmann equations to

κ ≥ 0 : ρ + 3p ≥ 0;

κ < 0 :
{
ρ + p ≥ 0;
ρ + 3p ≥ 0.

(8)

Although it seems that we have less restrictions when κ ≥ 0, it is
impossible that ρ + p < 0 and ρ + 3p ≥ 0 for non-negative spatial
curvature. In Fig. 1 one finds an illustration of condition (8).

Another theorem that proves that a geodesic is past-incomplete
was published in [5] and is also applicable to spacetimes that
have a(t) > 0 for all t . It says that when the average Hubble
parameter H = ȧ/a along a non-spacelike geodesic, Hav, satisfies
Hav > 0, the geodesic must be past-incomplete. For the metric (1),
the argument is as follows. Consider a non-spacelike geodesic γ (τ )
between an initial point γ (τi) and a final point γ (τf). We can in-
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egrate H along the geodesic, using Eq. (2):

τf

i

Hdτ =
tf∫

ti

ȧ√
| �V (t1)|2 − εa2

dt

=
a(tf)∫

a(ti)

da√
| �V (t1)|2 − εa2

(9)

=

⎧⎪⎪⎨
⎪⎪⎩

1
| �V (t1)| [a(tf) − a(ti)] , ε = 0

log

(
a(tf)+

√
| �V (t1)|2+a(tf)

2

a(ti)+
√

| �V (t1)|2+a(ti)
2

)
ε = −1

≤

⎧⎪⎪⎨
⎪⎪⎩

a(tf)

| �V (t1)| , ε = 0

log

(
a(tf)+

√
| �V (t1)|2+a(tf)

2

| �V (t1)|

)
ε = −1.

otice that for the second equality sign, one should break up the 
ntegration domain into parts where a = a(t) is injective, but that 
ne will end up with the same result. Hence, this integral as func-
ion of the initial affine parameter τi is restricted by some fixed 
nal τf . This means that when

av = 1

τf − τi

τf∫
τi

Hdτ > 0 (10)

i has to be some finite value such that the geodesic is past-
ncomplete. Notice that it is still possible to construct an FLRW 
pacetime that has H > 0 at all times and complete geodesics. 
or this we need that Hav must become zero when τi → −∞. 
xamples are for instance given by spacetimes with H > 0 and 
 → a0 > 0 for t → −∞ (in this case we will have that H → 0 as 
→ −∞).

. Energy of test particles

As stated before, the definition of a singularity is based on the 
rajectories of massive test particles and massless particles. For 
osmological spacetimes with an FLRW metric, we would like to 
tudy the energies of test particles over time. We will generalize 
he argument given in [8] for De Sitter space to a general FLRW 
pacetime.

Using Eq. (2) we find that for massive test particles

�V |2 = gij γ̇
i γ̇ j = ε +

(
γ̇ 0

)2 = | �V (t1)|2
a2

. (11)

e already saw that in order for a spacetime to have a past-
ncomplete non-spacelike geodesic, the scale parameter a needs 
o become arbitrarily small. With Eq. (11) this then implies that 
hen the particle has a velocity | �V (t1)| at time t1, the velocity 

nd hence the energy E2 = m2
(

1 + |�V (t1)|2
a2

)
of a test particle with 

ass m become arbitrarily large when moving back to the past.
The statement above for massive test particles carries over to 

hotons. In this case the angular frequency as observed by a co-
oving observer is

= γ̇ 0 = ω(t1)

a
. (12)

hus also the energy of photons E = h̄ω will become arbitrarily 
arge when moving back to the past.

In [8] it was noted that one cannot have particles with arbi-

rarily high energies because if such a particle has a nonvanishing 

___________________________WORLD TECHN
T

nteraction cross section with any particle with a non-zero physi-
al number density, then the particle will interact with an infinite 
umber of them, breaking the Cosmological principle. However, 
he particle’s energy cannot become arbitrarily high because it will 
each the Planck energy EP =

√
h̄
G ≈ 1.22 ·1019 GeV at some time t . 

ith this energy, the particle’s Compton wavelength is approxi-
ately equal to its Schwarzschild radius such that it will form a 

lack hole. Therefore, the description of the particle’s trajectory 
ill break down. Scattering processes involving vacuum fluctua-

ions may cause the test particle’s energy to never reach the Planck 
nergy. If these processes are significant the particle’s trajectory is 
ot a geodesic anymore. Near the Planck energy scattering pro-
esses are dominated by processes that involve the exchange of a 
raviton [11]. To estimate this effect we consider photon–photon 
cattering with the exchange of a graviton. We model the loss of 
nergy of the photon when going back in time as

d

t
E = (−H − σn) E, (13)

here n is the number density of virtual photons and σ is the 
ross section of the scattering process. The particle gains energy 
rom the expansion of the universe because −H is positive (when 
oing back in time) and it looses energy from the scattering with 
irtual photons. We estimate the density of virtual photons as one 
er Hubble volume:

= 1

V H
= −3H3

4π
. (14)

he differential cross section for photon–photon scattering with 
he exchange of a graviton for unpolarized photons is [12]

σ

�
= κ4

8π2

k2

sin2(θ)

[
1 + cos16

(
1

2
θ

)
+ sin16

(
1

2
θ

)]
(15)

here κ = √
16πG , k is the momentum of the photon and θ is the 

cattering angle. Since we are primarily interested in large momen-
um exchange, we neglect small angle scatterings when calculating 
he total cross section of this process:

=
∫

dσ

d�
d�

= κ4

π

k2

4

1−ξ∫
−1+ξ

1 + 1
256 (1 + x)8 + 1

256 (1 − x)8

1 − x2
dx

= κ4

π

k2

2

1∫
ξ

1 + 1
256 (2 − y)8 + 1

256 y8

y(2 − y)
dy

= κ4

π

k2

4

[
2 log

1

ξ
− 363

140
+ log(4) +O(ξ)

]
, (16)

here we have the relation sin(θ/2) = √
ξ/2. Taking only angles 

26π < θ < .74π into account for the scattering, we have that 
 log 1

ξ
− 363

140 + log(4) ≈ 1. With Eqs. (13), (14) and (16) we find 
hat the energy of the test photon does not increase when

∼ σn = 48G2 E2 H3, (17)

here E = k is the photon energy. Using the Hubble parameter of 
osmic inflation which typically is about −h̄H ≈ 1013 GeV, we find 
rom (17) that the scattering process becomes significant when

E
)2 E2
EP
∼ P

48h̄2 H2
≈ 1010. (18)

OLOGIES____________________________



 
 

 
 

 
 
 
, 
 
 

 

 
 
 
 
 

 

. 
 
 
 
 

 
 
 

 
 

 
 
 
 
 

 

 
 
 

 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

) 

, 

 

 
 

 

 
. 

150 General Relativity and Cosmology
W

Hence, processes involving gravitons will not cause the particle’s
energy to stay smaller than the Planck energy and a black hole
will form. This implies that the description of the particle’s tra-
jectory (as a geodesic) breaks down, either because of interaction
processes or by the formation of a black hole. The latter definitely
happens when the initial energy is near the Planck energy.

Up to now, the maximum energy of a single particle that has
been measured is of the order of 1020 eV [13] which is eight orders
of magnitude smaller than the Planck scale. These particles were
all cosmic ray particles, so their probable origin is a supernova
an active galactic nucleus, a quasar or a gamma ray-burst. Even
when using this energy as an upper bound for the energy of test
particles, we have that the description of the trajectories of non-
comoving test particles breaks down at times that are certainly
later than the Planck era, the period where we have to take quan-
tum gravitational effects into account. In [8] the arbitrarily high
energies of test particles were used to argue that these particles
should be forbidden in De Sitter space. This can be done by using
a different time arrow in the two patches of De Sitter space that
one has in the flat slicing. That way the two coordinate patches
become non-communicating and describe eternally inflating space-
times. We will not look into these kind of constructions for general
FLRW spacetimes but we want to use the arbitrarily high ener-
gies of test particles to give a consistent definition of a singularity
When the particle’s description breaks down before it reaches the
beginning of its trajectory, it is not very useful to use that particle
as an indication for an initial singularity. That is the reason why we
suggest to define a singularity in spacetimes with an FLRW metric
that has a parameter a that becomes arbitrarily small, as a time-
like geodesic with | �V (t1)| = 0 that is past-incomplete. For such
trajectories, we have that dt = dτ which means that a spacetime
has no initial singularity when a(t) > 0 for all t ∈ R. Hence, an
FLRW spacetime starts from a singularity precisely when a(t0) = 0
at some initial finite time t0.

4. Conclusion

We pointed out that spacetimes with an FLRW metric such that
a(t) > 0 for all t ∈ R have no initial singularity. This was done by
first observing that in models that have a(t) > A ∈ R>0 all non-
spacelike geodesics are past-complete. When a becomes arbitrarily
small, it is possible that the spacetime contains a past-incomplete
geodesic. With the usual definition of a singularity, this means that
the spacetime has an initial singularity. However, that definition is
based on a test particle that has that geodesic as trajectory. We
pointed out that when this particle has an initial velocity, its en-
ergy will become super-Planckian at some time in the past if it
____________________________WORLD TECH
T

kept following that geodesic. This means that the particle stops
being a test particle and it does not matter that its trajectory is
past-incomplete. For a model in which the scale factor becomes
arbitrarily small, we should define an initial singularity as a tra-
jectory of a comoving particle that is past-incomplete. This implies
that the only FLRW spacetimes with an initial singularity are the
ones such that a(t0) = 0 at some initial time t0. Hence, bouncing
spacetimes and past-eternal inflationary models do not start from
a singularity. One can use similar arguments to show that the only
FLRW spacetimes that have a singularity in the future are the ones
that have a scale factor such that a(t) vanishes at some time in the
future. It would be interesting to examine if similar results hold for
universes that are obtained by perturbating an FLRW spacetime.
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 r t i c l e i n f o a b s t r a c t

We study strong deflection gravitational lensing by a Lee–Wick black hole, which is a non-singular black
hole generated by a high derivative modification of Einstein–Hilbert action. The strong deflection lensing
is expected to produce a set of relativistic images very closed to the event horizon of the black hole.
We estimate its observables for the supermassive black hole in our Galactic center. It is found that the
Lee–Wick black hole can be distinguished from the Schwarzschild black hole via such lensing effects
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. Introduction

A singularity is the point where Einstein’s general relativity
reaks down. It exists at the center of a black hole and appears 
t the beginning of the Big Bang. A quantum theory of gravity is 
elieved to be able to remove these singularities. A non-singular 
lack hole, also called a regular black hole, which was firstly dis-
ussed by Bardeen [1], refers to a sort of black holes without the 
ingularities in their center.

In 1977, Stelle originally proposed a renormalizable and asymp-
otically free theory of higher-derivative quantum gravity [2], but 
t also suffers from existence of a massive ghost state. Weakly and 
on-locally modified theories of gravity [3–10] are self-consistent 
ut likely have infinite complex conjugate poles [11]. A new local 
igher derivative theory without real poles was recently proposed 
12–16], which is in agreement with the prescription of Lee–Wick 

odel [17–19]. The Lee–Wick black hole is currently found out and 
t is proved to be non-singular [20].

While thermodynamics of the Lee–Wick black hole was dis-
ussed [20], investigations on its astrophysical properties and its 
esulting observability are still absent, especially for effects of its 
trong gravitational field. In this work, we will study strong de-
ection gravitational lensing by such a Lee–Wick black hole. Grav-

tational lensing in the strong gravitational field can produce an 
nique feature called relativistic images [21]. Relativistic images 
re a class of infinite discrete images existing on the two sides of 
he lens, due to photons winds several loops before escaping from 

he lens. If the source have timing signals, the time delay between 

* Corresponding author.
E-mail address: yixie@nju.edu.cn (Y. Xie).
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Targe, but the requiring resolution is much higher than current capability.

ifferent relativistic images can also be detected. These lensing ef-
ects belong to the strong deflection gravitational lensing (see [22]
or a review).

Since the relativistic images are very close to the lens, direct 
bservation of such lensing effects needs a very high angular reso-

ution. The supermassive black hole in the center of the Milky Way, 
agittarius A* (Sgr A*), has the largest apparent angular diameter 
i.e., shadow) ∼ 50 microarcsecond (μas) among all the black holes 
nown in the universe [23]. A global sub-mm very long baseline 

nterferometry network, called Event Horizon Telescope (EHT), will 
rstly and soon give a direct image of Sgr A*, which can provide a 
ew fundamental laboratory for testing black hole theories as well 
s gravity in the strong field regime [24–27].

In Sect. 2, the spacetime of a Lee–Wick black hole [20] will be 
riefly reviewed. We study its strong deflection gravitational lens-

ng by using the method of strong deflection limit (SDL) [28] in 
ect. 3. Taking Sgr A* as an example, we estimate numerical val-
es of observables of the lensing in Sect. 4. In Sect. 5, conclusions 
ill be represented.

. Lee–Wick black hole

The action of the Lee–Wick theory is [12–16]

= 1

8πG N

∫
d4x

√|g|
[

R + �−4Gμν�Rμν
]
, (1)

here G N is the gravitational constant, � refers to the UV scale 

nd is expected but not necessary to be in the same order of 
lanck mass. By solving the approximated exact equations of mo-
ion, one can get a static and spherically symmetric black hole 
olution generated by a point-like mass source M . The spacetime 
s [20]
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Fig. 1. Radii of event horizon (xh) and photon sphere (xm) of a Lee–Wick black hole
and a Schwarzschild black hole. The horizontal axis is the model parameter κ start-
ing from κcr and the vertical axis is the radial coordinate x. The solid line and the
dashed line refer respectively to xh and xm of a Lee–Wick black hole, while xh = 1
and xm = 1.5 for a Schwarzschild black hole which are plotted with the dotted line
and the dot-dashed line.

ds2 = A(x)dt2 − B(x)dx2 − C(x)(dθ2 + sin2 θdφ2), (2)

where we use 2M as the unit of the length dimension and

A(x) = 1 − m(χ)

x
, (3)

B(x) =
[

1 − m(χ)

x

]−1

, (4)

C(x) = x2. (5)

The effective mass function m(χ) is

m(χ) = 1 − e−χ [(1 + χ) cosχ + χ sinχ ] , (6)

where χ = κx and κ = �/
√

2.
The model parameter κ should be larger than a critical value

to ensure the existence of the event horizon(s). The critical point
occurs when A(x) = 0 has only one real solution xcr which can be
numerically found as

κcr ≈ 2.165 and xcr ≈ 0.953. (7)

When κ > κcr, a Lee–Wick black hole have two event horizons: an
outer one and an inner one. These two horizons merge to one as κ
equals κcr. If κ < κcr, no horizon can survive. Since the spacetime
metric (2) has no central singularity, the nonexistence of the event
horizon does not break down the weak cosmic censorship conjec-
ture. However, it was found [29] that destroying the event horizon
of a regular black hole can violate the black hole’s area theorem
[30], causing the energy released in the collision of two black holes
to exceed the Hawking bound; and such a violation is not sup-
ported by the current observations of gravitational waves [31,32]
Therefore, we only consider cases with κ ≥ κcr which were called
Lee–Wick black hole solutions in [20]. The radius of the (outer)
event horizon is plotted in Fig. 1 against different values of κ by
the solid line. When κ becomes large enough, the Lee–Wick space-
time is approaching the Schwarzschild one.

3. Lensing in SDL

The strong deflection gravitational lensing under SDL can be de-
scribed by two equations: an lens equation and a SDL equation for
the deflection angle. The lens equation geometrically determines
relationships among the observer, the lens and the light source

Assuming that the source and the observer are far from the lens 
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and they are nearly aligned, we choose the asymptotically flat lens
equation as [33]

β = θ − DLS

DOS

αn, (8)

where 
αn is the extra deflection angle of a photon looping over
2nπ ; β is the angular separation between the source and the lens;
θ is the angular separation between the image and the lens; the
projected distances of the lens to the source and the observer to
the lens are DLS and DOS.

The exact deflection angle for the spacetime (2) is given by [34
35]

α(x0) = −π +
∞∫

x0

2
√

B(x)
√

C(x)
√

C(x)
C0

A0
A(x) − 1

dx, (9)

where x0 is the closest approach distance of the winding photon.
A quantity with a subscript 0 means its corresponding value tak-
ing x = x0. In order to deal with the divergence of Eq. (9) as x0
approaching the photon sphere, we can expand the integral near
the photon sphere by the method of SDL [28]. The photon sphere
is the innermost orbit for a winding photon, which is defined by
[36,37]

C ′(x)

C(x)
= A′(x)

A(x)
. (10)

The photon sphere of a Lee–Wick black hole with varying κ can
be found in Fig. 1 and it is plotted with the dashed line.

The deflection angle in the SDL can be written as [28]

α(θ) = −ā log

(
θ D O L

um
− 1

)
+ b̄ +O[(u − um) log(u − um)], (11)

where u = √
C0/A0 is the impact parameter and u ≈ θ DOL. The

subscript m means evaluating at x = xm . ā and b̄ are the SDL coef-
ficients expressed by [28]

ā = Rm

2
√

βm
, (12)

b̄ = −π + bR + ā ln
2βm

Am
, (13)

where

βm = Cm(1 − Am)2
(

AmC ′′
m − Cm A′′

m

)
2A2

mC ′ 2
m

, (14)

Rm = 2(1 − Am)
√

Am Bm

A′
m
√

Cm
, (15)

bR =
1∫

0

⎡
⎢⎣ 2(1 − Am)

√
A(z)B(z)

A′(z)C(z)
√

Am
Cm

− A(z)
C(z)

− Rm

z
√

βm

⎤
⎥⎦dz. (16)

Here, z refers to a new variable z = (A(x) − Am)/(1 − Am); ′ and ′′
are the operators of taking once and twice derivatives against x.

We can also detect the time delay between different relativis-
tic images from a time-varying light source. Supposing a photon
traveling from the source to the observer, the total time span is
[38]

T = T̃ (x0) −
∞∫

DOL

∣∣∣∣ dt

dx

∣∣∣∣ dx −
∞∫

DLS

∣∣∣∣ dt

dx

∣∣∣∣ dx, (17)

where D is the projected distance between the observer and the
OL
source. The second and third terms at the right hand side can be 
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orked out since both of the observer and the source are far from 
he lens. The first term is given by [35,38,39]

(x0) =
∞∫

x0

2
√

B(x)C(x)A0

A(x)
√

C(x)
C0

A0
A(x) − 1

dx. (18)

t can be also expanded in the SDL

(u) = −ã ln

(
u

um
− 1

)
+ b̃ +O[(u − um) log(u − um)], (19)

here ã and b̃ are SDL coefficients and ã = ā um for the spacetime 
2) [38].

Having the lens equation (8) and the deflection angle (11) as 
ell as the time delay (19) in the SDL, we can calculate the observ-

bles of relativistic images including angular separation, brightness 
ifference and time delay.

If the first image can be distinguished from others, three char-
cteristic observables can be detected and related to SDL coeffi-
ients as [28]

∞ = um

DOL
, (20)

= θ∞ exp

(
b̄

ā
− 2π

ā

)
, (21)

= 2.5 log10 [exp (2π/ā)] , (22)

here θ∞ is the apparent radius of the photon sphere; s and r are 
he angular separation and brightness difference between the first 
mage and other packed images.

If we can distinguish the time signals of the first image from 
hose of the second image, the delay of the two signals 
T2,1 can 
e also calculated by SDL coefficients as [38]

T2,1 = 
T 0
2,1 + 
T 1

2,1, (23)

here

T 0
2,1 = 2πum, (24)

T 1
2,1 = 2

√
Bm

Am

√
um

cm
exp

(
b̄

ā

)

×
[

exp
(
−π

ā

)
− exp

(
−2π

ā

)]
(25)

ith

m = βm

√
Am

C3
m

C ′
m

2

2(1 − Am)2
. (26)

. Observables for Sgr A*

Supposing a Lee–Wick black hole with the same mass and the 
ame distance of Sgr A*, we can numerically estimate all these 
bservables in the SDL. From top to bottom, Fig. 2 respectively 
hows the apparent radius of the photon sphere θ∞ , the angular 
eparation s between the first image and the other packed im-
ges and their brightness difference r against the variation of κ . 
he time delay between the first and the second images 
T2,1, 
he corrected term 
T 1

2,1 and their ratio η2,1 = 
T 1
2,1/
T2,1

an be found in Fig. 3. For comparison, these observables for a 
chwarzschild black hole are denoted by dashed lines in Figs. 2
nd 3.

As we can see in Fig. 2, the smaller is κ , the larger is the de-

iation of the observables from their corresponding values for a a

___________________________WORLD TECHN
T
ig. 2. Estimated θ∞ (top panel), s (middle panel) and r (bottom panel) of a Lee–
ick black hole with the same mass and distance as Sgr A*: DOL = 8.33 kpc 

nd M• = 4.31 × 106 M	 [40]. The solid lines show variation of these observables 
gainst κ , while the dashed lines refer to those of a Schwarzschild black hole: 
∞ = 26.54 μas, s = 33.32 nas, r = 6.822 mag.

ig. 3. Estimated time delays 
T2,1 (top panel), corrected term 
T 1
2,1 (middle 

anel) and the ratio log10 η2,1 (bottom panel) of a Lee–Wick black hole with the 
ame mass and distance as Sgr A*: DOL = 8.33 kpc and M• = 4.31 × 106 M	 [40]. 
he solid lines show variation of these observables against κ , while the dashed lines 
efer to those of a Schwarzschild black hole: 
T2,1 = 11.72 min, 
T 1

2,1 = 10.56 s 
nd log10 η2,1 = −1.8.

chwarzschild black hole. The curve of θ∞ looks like a damped os-
illation as κ increases, and it approaches its Schwarzschild value 
6.54 μas very fast when κ is getting sufficiently big. Its maximum 
alue of 29.96 μas occurs at κcr and its minimum is 26.18 μas 
t κ = 4.2. Supposing we have an angular resolution of 0.1 μas 
hich is far beyond the current technology, a Lee–Wick black hole 
ith κ � 5.2 can potentially be distinguished from a Schwarzschild 

lack hole by measuring θ∞ . For a Lee–Wick black hole with a 
arger κ , the difference between its θ∞ and the Schwarzschild 
ne can hardly be detected with such a resolution. In this situa-
ion, three other observables, s, r and 
T2,1, might be helpful for 
etermining κ if the first image can be separated from other rel-

tivistic images, which demands that the angular resolution has 
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to be improved to the level better than 10 nanoarcsecond (nas).
The range of s varies from 4.681 nas to 50.65 nas and r changes
from 6.302 mag to 8.947 mag. The main part of 
T2,1 contributes
no new information because it is proportional to θ∞ . But if the
timing precision reaches 1 s, the corrected term 
T 1

2,1 can be re-

solved. Fig. 3 also shows that a larger 
T 1
2,1 has a higher ratio to

the total time delay.
The Lee–Wick black hole we have discussed above is a non-

rotating one. The profile of its shadow due to the strong deflection
gravitational lensing is a circle with angular radius θ∞ . However
an astrophysical black hole is very likely spinning. The radius θ∞
we obtained here might not be able to constrain possible devia-
tions from Einstein’s general relativity with the on-going experi-
ments because strong deflection lensing by a highly rotating black
hole [41] will be qualitatively different from the one by a non-
rotating one [42,43]. In order to describe the spacetime of a ro-
tating Lee–Wick black hole and its strong deflection lensing in a
self-consistent way, its metric is indispensably needed but the so-
lution of such a metric is absent for now. Nevertheless, based on
strong deflection lensing by a Kerr black hole [41], we can intu-
itively expect that the angular momentum of a rotating Lee–Wick
black hole would make the shadow distorted and displaced and
the shape of such a shadow would also depend on κ . Furthermore,
it would drift the caustics away from the optical axis, make the
caustic with a finite extension and cause only one image visible
instead of two sets of relativistic images [44]. We will leave the
construction of the metric of a rotating Lee–Wick black hole and
the detailed investigation on its strong deflection lensing for future
works.

On the practical aspect, the determination of the model param-
eter κ through observation is another complicated work. For the
mm-VLBI observation of Sgr A*, κ can be determined via com-
paring the scale and shape of the shadow between the observed
image and the modeled image, which is constructed by general
relativity magnetohydrodynamics simulation [45,46]. In this work,
we just give a direct sense of what the relativistic images by a
(non-rotating) Lee–Wick black hole will look like in an analytical
approach; a fully numerical simulation of the physical process for
a rotating Lee–Wick black hole and a sophisticated determination
on the model parameter(s) by upcoming direct observation are be-
yond our scope.

5. Conclusions

We study the strong deflection gravitational lensing by a Lee–
Wick black hole through the SDL method and estimate the observ-
ables of its relativistic images. By calculating the SDL coefficients
numerically and making estimations by assuming that the black
hole has the same mass and distance as Sgr A*, we show how its
observables change with respect to the model parameter κ , which
has a critical value κcr = 2.165 for allowing existence of the event
horizon. We find that, when κ = κcr, the apparent radius of the
photon sphere θ∞ can reach ∼30 μas which is larger than the
Schwarzschild one. But, as κ increases, the value of θ∞ approaches
the one of Schwarzschild black hole very fast. If the first relativistic
image could be resolved from the others, their angular separation,
brightness differences and possible time delay signals will be help-
ful for determining κ , although it demands technology far beyond
current stage. In light of current projects such as EHT, these results
might provide useful clues for detecting the Lee–Wick black hole.

Acknowledgement

This work is funded by the National Natural Science Foundation

of China (Grant No. 11573015).

____________________________WORLD TECH
T

References

[1] J. Bardeen, Non-singular general-relativistic gravitational collapse, in: Proceed-
ings of International Conference GR5, Tbilisi University Press, Tbilisi, USSR
1968, p. 174.

[2] K.S. Stelle, Renormalization of higher-derivative quantum gravity, Phys. Rev. D
16 (1977) 953–969, http://dx.doi.org/10.1103/PhysRevD.16.953.

[3] L. Modesto, Super-renormalizable quantum gravity, Phys. Rev. D 86 (4) (2012)
044005, http://dx.doi.org/10.1103/PhysRevD.86.044005, arXiv:1107.2403.

[4] L. Modesto, L. Rachwał, Super-renormalizable and finite gravitational theories
Nucl. Phys. B 889 (2014) 228–248, http://dx.doi.org/10.1016/j.nuclphysb.2014
10.015, arXiv:1407.8036.

[5] C. Bambi, D. Malafarina, L. Modesto, Terminating black holes in asymptotically
free quantum gravity, Eur. Phys. J. C 74 (2014) 2767, http://dx.doi.org/10.1140/
epjc/s10052-014-2767-9, arXiv:1306.1668.

[6] Y. Zhang, Y. Zhu, L. Modesto, C. Bambi, Can static regular black holes form from
gravitational collapse?, Eur. Phys. J. C 75 (2015) 96, http://dx.doi.org/10.1140/
epjc/s10052-015-3311-2, arXiv:1404.4770.

[7] V.P. Frolov, Information loss problem and a ‘black hole’ model with a closed
apparent horizon, J. High Energy Phys. 05 (2014) 49, http://dx.doi.org/10.1007/
JHEP05(2014)049, arXiv:1402.5446.

[8] V.P. Frolov, A. Zelnikov, T. de Paula Netto, Spherical collapse of small masses
in the ghost-free gravity, J. High Energy Phys. 06 (2015) 107, http://dx.doi.org/
10.1007/JHEP06(2015)107, arXiv:1504.00412.

[9] E.T. Tomboulis, Renormalization and unitarity in higher derivative and nonlo-
cal gravity theories, Mod. Phys. Lett. A 30 (2015) 1540005, http://dx.doi.org/
10.1142/S0217732315400052.

[10] E.T. Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev. D 92 (12)
(2015) 125037, http://dx.doi.org/10.1103/PhysRevD.92.125037, arXiv:1507
00981.

[11] I.L. Shapiro, Counting ghosts in the “ghost-free” non-local gravity, Phys. Lett. B
744 (2015) 67–73, http://dx.doi.org/10.1016/j.physletb.2015.03.037, arXiv:1502
00106.

[12] L. Modesto, I.L. Shapiro, Superrenormalizable quantum gravity with com-
plex ghosts, Phys. Lett. B 755 (2016) 279–284, http://dx.doi.org/10.1016/
j.physletb.2016.02.021, arXiv:1512.07600.

[13] L. Modesto, Super-renormalizable or finite Lee–Wick quantum gravity, Nucl
Phys. B 909 (2016) 584–606, http://dx.doi.org/10.1016/j.nuclphysb.2016.06.004
arXiv:1602.02421.

[14] G.P. de Brito, P.I.C. Caneda, Y.M.P. Gomes, J.T. Guaitolini Junior, V. Nikoofard
Effective models of quantum gravity induced by Planck scale modifications in
the covariant quantum algebra, arXiv:1610.01480.

[15] A. Accioly, B.L. Giacchini, I.L. Shapiro, Low-energy effects in a higher-derivative
gravity model with real and complex massive poles, arXiv:1610.05260.

[16] B.L. Giacchini, On the cancellation of Newtonian singularities in higher-
derivative gravity, Phys. Lett. B 766 (2017) 306–311, http://dx.doi.org/10.1016/
j.physletb.2017.01.019, arXiv:1609.05432.

[17] T.D. Lee, G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl
Phys. B 9 (1969) 209–243, http://dx.doi.org/10.1016/0550-3213(69)90098-4.

[18] T.D. Lee, G.C. Wick, Finite theory of quantum electrodynamics, Phys. Rev. D 2
(1970) 1033–1048, http://dx.doi.org/10.1103/PhysRevD.2.1033.

[19] R.E. Cutkosky, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic
S-matrix, Nucl. Phys. B 12 (1969) 281–300, http://dx.doi.org/10.1016/
0550-3213(69)90169-2.

[20] C. Bambi, L. Modesto, Y. Wang, Lee–Wick black holes, Phys. Lett. B 764 (2017)
306–309, http://dx.doi.org/10.1016/j.physletb.2016.11.060, arXiv:1611.03650.

[21] C. Darwin, The gravity field of a particle, Proc. R. Soc. Lond. Ser. A 249 (1959)
180–194, http://dx.doi.org/10.1098/rspa.1959.0015.

[22] V. Bozza, Gravitational lensing by black holes, Gen. Relativ. Gravit. 42 (2010)
2269–2300, http://dx.doi.org/10.1007/s10714-010-0988-2, arXiv:0911.2187.

[23] H. Falcke, S.B. Markoff, Toward the event horizon – the supermassive black
hole in the Galactic Center, Class. Quantum Gravity 30 (24) (2013) 244003
http://dx.doi.org/10.1088/0264-9381/30/24/244003, arXiv:1311.1841.

[24] D. Psaltis, Probes and tests of strong-field gravity with observations in the
electromagnetic spectrum, Living Rev. Relativ. 11 (2008) 9, http://dx.doi.org/
10.12942/lrr-2008-9, arXiv:0806.1531.

[25] C. Goddi, H. Falcke, M. Kramer, L. Rezzolla, C. Brinkerink, T. Bronzwaer, R
Deane, M. De Laurentis, G. Desvignes, J.R.J. Davelaar, F. Eisenhauer, R. Eatough
R. Fraga-Encinas, C.M. Fromm, S. Gillessen, A. Grenzebach, S. Issaoun, M
Janßen, R. Konoplya, T.P. Krichbaum, R. Laing, K. Liu, R.-S. Lu, Y. Mizuno, M
Moscibrodzka, C. Müller, H. Olivares, O. Porth, O. Pfuhl, E. Ros, F. Roelofs, K
Schuster, R. Tilanus, P. Torne, I. van Bemmel, H.J. van Langevelde, N. Wex, Z
Younsi, A. Zhidenko, BlackHoleCam: fundamental physics of the Galactic cen-
ter, arXiv:1606.08879.

[26] D. Psaltis, F. Özel, C.-K. Chan, D.P. Marrone, A general relativistic null hy-
pothesis test with event horizon telescope observations of the black hole

shadow in Sgr A*, Astrophys. J. 814 (2015) 115, http://dx.doi.org/10.1088/
0004-637X/814/2/115, arXiv:1411.1454.

NOLOGIES____________________________

http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4261726465656E31393638436F6E66475235313734s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4261726465656E31393638436F6E66475235313734s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4261726465656E31393638436F6E66475235313734s1
http://dx.doi.org/10.1103/PhysRevD.16.953
http://dx.doi.org/10.1103/PhysRevD.86.044005
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.015
http://dx.doi.org/10.1140/epjc/s10052-014-2767-9
http://dx.doi.org/10.1140/epjc/s10052-015-3311-2
http://dx.doi.org/10.1007/JHEP05(2014)049
http://dx.doi.org/10.1007/JHEP06(2015)107
http://dx.doi.org/10.1142/S0217732315400052
http://dx.doi.org/10.1103/PhysRevD.92.125037
http://dx.doi.org/10.1016/j.physletb.2015.03.037
http://dx.doi.org/10.1016/j.physletb.2016.02.021
http://dx.doi.org/10.1016/j.nuclphysb.2016.06.004
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib427269746F323031366172586976313631302E3031343830s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib427269746F323031366172586976313631302E3031343830s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib427269746F323031366172586976313631302E3031343830s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib416363696F6C79323031366172586976313631302E3035323630s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib416363696F6C79323031366172586976313631302E3035323630s1
http://dx.doi.org/10.1016/j.physletb.2017.01.019
http://dx.doi.org/10.1016/0550-3213(69)90098-4
http://dx.doi.org/10.1103/PhysRevD.2.1033
http://dx.doi.org/10.1016/0550-3213(69)90169-2
http://dx.doi.org/10.1016/j.physletb.2016.11.060
http://dx.doi.org/10.1098/rspa.1959.0015
http://dx.doi.org/10.1007/s10714-010-0988-2
http://dx.doi.org/10.1088/0264-9381/30/24/244003
http://dx.doi.org/10.12942/lrr-2008-9
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib476F646469323031366172586976313630362E3038383739s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib476F646469323031366172586976313630362E3038383739s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib476F646469323031366172586976313630362E3038383739s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib476F646469323031366172586976313630362E3038383739s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib476F646469323031366172586976313630362E3038383739s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib476F646469323031366172586976313630362E3038383739s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib476F646469323031366172586976313630362E3038383739s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib476F646469323031366172586976313630362E3038383739s1
http://dx.doi.org/10.1088/0004-637X/814/2/115
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.015
http://dx.doi.org/10.1140/epjc/s10052-014-2767-9
http://dx.doi.org/10.1140/epjc/s10052-015-3311-2
http://dx.doi.org/10.1007/JHEP05(2014)049
http://dx.doi.org/10.1007/JHEP06(2015)107
http://dx.doi.org/10.1142/S0217732315400052
http://dx.doi.org/10.1016/j.physletb.2016.02.021
http://dx.doi.org/10.1016/j.physletb.2017.01.019
http://dx.doi.org/10.1016/0550-3213(69)90169-2
http://dx.doi.org/10.12942/lrr-2008-9
http://dx.doi.org/10.1088/0004-637X/814/2/115


[2

[2

[2

[3

[3

[3

[3

[3

[3

[3

[3

[3

[3

[4

[4

[4

[4

[4

[4

[4

155Strong deflection lensing by a Lee–Wick black hole

_

7] A.E. Broderick, T. Johannsen, A. Loeb, D. Psaltis, Testing the no-hair theorem
with event horizon telescope observations of Sagittarius A*, Astrophys. J. 784
(2014) 7, http://dx.doi.org/10.1088/0004-637X/784/1/7, arXiv:1311.5564.

8] V. Bozza, Gravitational lensing in the strong field limit, Phys. Rev. D
66 (10) (2002) 103001, http://dx.doi.org/10.1103/PhysRevD.66.103001, arXiv:gr-
qc/0208075.

9] Z. Li, C. Bambi, Destroying the event horizon of regular black holes, Phys.
Rev. D 87 (12) (2013) 124022, http://dx.doi.org/10.1103/PhysRevD.87.124022,
arXiv:1304.6592.

0] S.W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett.
26 (1971) 1344–1346, http://dx.doi.org/10.1103/PhysRevLett.26.1344.

1] B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C.
Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., Observation of gravitational
waves from a binary black hole merger, Phys. Rev. Lett. 116 (6) (2016) 061102,
http://dx.doi.org/10.1103/PhysRevLett.116.061102, arXiv:1602.03837.

2] B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C.
Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., GW151226: observation
of gravitational waves from a 22-solar-mass binary black hole coalescence,
Phys. Rev. Lett. 116 (24) (2016) 241103, http://dx.doi.org/10.1103/PhysRevLett.
116.241103, arXiv:1606.04855.

3] V. Bozza, S. Capozziello, G. Iovane, G. Scarpetta, Strong field limit of black
hole gravitational lensing, Gen. Relativ. Gravit. 33 (2001) 1535–1548, http://
dx.doi.org/10.1023/A:1012292927358, arXiv:gr-qc/0102068.

4] K.S. Virbhadra, D. Narasimha, S.M. Chitre, Role of the scalar field in gravita-
tional lensing, Astron. Astrophys. 337 (1998) 1–8, arXiv:astro-ph/9801174.

5] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the
General Theory of Relativity, Wiley, New York, 1972.

6] K.S. Virbhadra, G.F.R. Ellis, Schwarzschild black hole lensing, Phys. Rev. D 62 (8)
(2000) 084003, http://dx.doi.org/10.1103/PhysRevD.62.084003, arXiv:astro-ph/
9904193.
 W

___________________________WORLD TECHN
7] C.-M. Claudel, K.S. Virbhadra, G.F.R. Ellis, The geometry of photon sur-
faces, J. Math. Phys. 42 (2001) 818–838, http://dx.doi.org/10.1063/1.1308507,
arXiv:gr-qc/0005050.

8] V. Bozza, L. Mancini, Time delay in black hole gravitational lensing as a dis-
tance estimator, Gen. Relativ. Gravit. 36 (2004) 435–450, http://dx.doi.org/
10.1023/B:GERG.0000010486.58026.4f, arXiv:gr-qc/0305007.

9] S. Sahu, M. Patil, D. Narasimha, P.S. Joshi, Time delay between relativistic im-
ages as a probe of cosmic censorship, Phys. Rev. D 88 (10) (2013) 103002,
http://dx.doi.org/10.1103/PhysRevD.88.103002, arXiv:1310.5350.

0] S. Gillessen, F. Eisenhauer, T.K. Fritz, H. Bartko, K. Dodds-Eden, O. Pfuhl, T. Ott,
R. Genzel, The orbit of the star S2 around SGR A* from very large telescope and
Keck data, Astrophys. J. Lett. 707 (2009) L114–L117, http://dx.doi.org/10.1088/
0004-637X/707/2/L114, arXiv:0910.3069.

1] J.M. Bardeen, Timelike and null geodesics in the Kerr metric, in: C. Dewitt,
B.S. Dewitt (Eds.), Black Holes (Les Astres Occlus), Gordon and Breach, 1973,
pp. 215–239.

2] J.L. Synge, The escape of photons from gravitationally intense stars, Mon. Not.
R. Astron. Soc. 131 (1966) 463, http://dx.doi.org/10.1093/mnras/131.3.463.

3] J.-P. Luminet, Image of a spherical black hole with thin accretion disk, Astron.
Astrophys. 75 (1979) 228–235.

4] V. Bozza, Quasiequatorial gravitational lensing by spinning black holes in
the strong field limit, Phys. Rev. D 67 (10) (2003) 103006, http://dx.doi.org/
10.1103/PhysRevD.67.103006, arXiv:gr-qc/0210109.

5] R.-S. Lu, A.E. Broderick, F. Baron, J.D. Monnier, V.L. Fish, S.S. Doeleman, V.
Pankratius, Imaging the supermassive black hole shadow and jet base of m87
with the event horizon telescope, Astrophys. J. 788 (2) (2014) 120.

6] R.-S. Lu, F. Roelofs, V.L. Fish, H. Shiokawa, S.S. Doeleman, C.F. Gammie, H. Fal-
cke, T.P. Krichbaum, J.A. Zensus, Imaging an event horizon: mitigation of source
variability of Sagittarius A*, Astrophys J. 817 (2016) 173, http://dx.doi.org/
10.3847/0004-637X/817/2/173, arXiv:1512.08543.
T
OLOGIES____________________________

http://dx.doi.org/10.1088/0004-637X/784/1/7
http://dx.doi.org/10.1103/PhysRevD.66.103001
http://dx.doi.org/10.1103/PhysRevD.87.124022
http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.241103
http://dx.doi.org/10.1023/A:1012292927358
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib5669726268616472613139393841413333372E31s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib5669726268616472613139393841413333372E31s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib5765696E6265726731393732426F6F6Bs1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib5765696E6265726731393732426F6F6Bs1
http://dx.doi.org/10.1103/PhysRevD.62.084003
http://dx.doi.org/10.1063/1.1308507
http://dx.doi.org/10.1023/B:GERG.0000010486.58026.4f
http://dx.doi.org/10.1103/PhysRevD.88.103002
http://dx.doi.org/10.1088/0004-637X/707/2/L114
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4261726465656E3139373342482E323135s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4261726465656E3139373342482E323135s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4261726465656E3139373342482E323135s1
http://dx.doi.org/10.1093/mnras/131.3.463
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4C756D696E657431393739414137352E323238s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4C756D696E657431393739414137352E323238s1
http://dx.doi.org/10.1103/PhysRevD.67.103006
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4C753230313441704A3738382E313230s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4C753230313441704A3738382E313230s1
http://refhub.elsevier.com/S0370-2693(17)30803-1/bib4C753230313441704A3738382E313230s1
http://dx.doi.org/10.3847/0004-637X/817/2/173
http://dx.doi.org/10.1103/PhysRevLett.116.241103
http://dx.doi.org/10.1023/A:1012292927358
http://dx.doi.org/10.1023/B:GERG.0000010486.58026.4f
http://dx.doi.org/10.1088/0004-637X/707/2/L114
http://dx.doi.org/10.1103/PhysRevD.67.103006
http://dx.doi.org/10.3847/0004-637X/817/2/173


T
b

G

D

a

E

K
Q
G
T
H

1

r
a
t
b
t
1
t
o
S
t
[
p
t

o
d
[
e
e

�

(

_

he GUP effect on Hawking radiation of the 2 + 1 dimensional 
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We investigate the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation of the 2 + 1
dimensional Martinez–Zanelli black hole by using the Hamilton–Jacobi method. In this connection, we
discuss the tunneling probabilities and Hawking temperature of the spin-1/2 and spin-0 particles for the
black hole. Therefore, we use the modified Klein–Gordon and Dirac equations based on the GUP. Then,
we observe that the Hawking temperature of the scalar and Dirac particles depend on not only the black
hole properties, but also the properties of the tunneling particle, such as angular momentum, energy and
mass. And, in this situation, we see that the tunneling probability and the Hawking radiation of the Dirac
particle is different from that of the scalar particle.
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. Introduction

The discovery of the black hole radiation, known as Hawking
adiation in the literature, is one of the milestones to construct 
 consistent connection between the relativity theory, the sta-
istical mechanics and the quantum mechanics. The nature of a 
lack hole has been started to be investigated in the framework of 
he thermodynamical and the quantum mechanical concepts since 
970 [1–6]. Hawking investigated the thermodynamical proper-
ies of a black hole in the frame of quantum field theory based 
n the Heisenberg uncertainty principle on a curved spacetime. 
ince then, the Hawking radiation has been investigated as a quan-
um tunneling effect of the relativistic particles from a black hole 
7–14]. Also, the Hawking radiation as a tunneling process of the 
articles from various black holes has been studied, extensively, in 
he literature in both 3 + 1 and 2 + 1 dimensions [13–22].

On the other hand, the suitable candidate quantum gravity the-
ries, such as string theory and loop quantum gravity theory, in-
icate the presence of a minimal observable length in Planck scale 
23–26]. The existence of such a minimal length leads to the gen-
ralized Heisenberg uncertainty principle (GUP). The GUP can be 
xpressed as [27,28]

x�p ≥ h

2

[
1 + β(�p)2

]
(1)
* Corresponding author.
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There β = β0/M2
p , the M2

p is the Planck mass and β0 is the di-
ensionless parameter. Then, the modified commutation relation 

ecomes

xμ, pν

] = ih̄δμν

[
1 + βp2

]
, (2)

here xμ and pμ are the modified position and the momentum 
perators, respectively, defined by

μ = x0μ

μ = p0μ(1 + βp2
0μ), (3)

here the x0μ and p0μ are the standard position and momen-
um operators, respectively, and they satisfy the usually commu-
ation relation 

[
x0μ, p0ν

] = ih̄δμν . These modified relations play
n important role in physics. For example, in recent years, us-
ng the GUP, the thermodynamics properties of the black holes 

ere investigated via a particle tunneling from the black holes. To 
nclude the quantum gravity effect, the Klein–Gordon and Dirac 
quations are modified by the GUP framework [29]. With these 
odified relativistic wave equations, the corrected Hawking tem-

erature of various 3 + 1 and higher dimensional black holes com-
uted via a particle tunneling process [30–40]. In this motivation, 
e will investigate the Hawking radiation of the 2 + 1 dimen-

ional Martinez–Zanelli black hole by the scalar and Dirac particles 

unneling process under the effect of the GUP. The metric of the 

artinez–Zanelli black hole is given by [41]

s2 = F (r)dt2 − 1

F (r)
dr2 − r2dθ2 (4)
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where

F (r) = 1

l2

[
r2 − 3B2 − 2B3

r

]
= (r + B)2 (r − 2B)

rl2
,

and l2 = −1/� is the cosmological constant and B is the mass pa-
rameter related to the black hole mass M , as B = √

Ml2/3 [42].
Hence, the black hole has a singularity at r = 0 surrounded by
horizon located at rh = 2B under the condition B �= 0.

The organization of this work is as follows: In Section 2, we
modify the Klein–Gordon equation by using the GUP. Subsequently,
from the modified Klein–Gordon equation written in the 2 + 1
dimensional Martinez–Zanelli Black hole background, we calcu-
late the tunneling possibility of the scalar particle by using the
semi-classical method, and then, we find the Hawking tempera-
ture. In Section 3, the modified Dirac equation is written in the
2 + 1 dimensional Martinez–Zanelli black hole, and then, the tun-
neling probability of the Dirac particle from the black hole and its
Hawking temperature is also calculated. Finally, in conclusion, we
evaluate and summarize the results.

2. The modified Klein–Gordon equation and the scalar particle
tunneling

To investigate the quantum gravity effect on the tunneling pro-
cess of the scalar particles from the black hole and on its Hawking
temperature, we will discuss the modified Klein–Gordon equation
under the GUP relations. The standard Klein–Gordon equation can
be written as [43]

p0μpμ
0 φ = m2

0φ, (5)

or its explicit form is

− (ih̄)2 ∂t∂
tφ =

[
(−ih̄)2 ∂i∂

i − m2
0

]
φ, (6)

where φ is the wave function of the scalar particles. On the other
hand, in the context of the GUP, the modified energy relation is
given by

Ẽ = E
(

1 − βE2
)

= E
[

1 − β
(

p2 + m2
0

)]
(7)

where E2 = p2 + m2
0. Then, the square of the momentum operator

can be obtained by using the Eq. (3) as follows;

p2 = pμpμ � −h̄2
[
∂i∂

i − 2β
(
∂ j∂

j
)(

∂ j∂
j
)]

(8)

where the higher order terms of the β parameter are neglected.
Then, using the Eq. (7) and Eq. (8) in the standard Klein–Gordon
equation, the modified Klein–Gordon equation is written as fol-
lows;

− (ih̄)2 ∂t∂
t


=
[
(−ih̄)2 ∂i∂

i − m2
0

][
1 − 2β

(
−h̄2∂i∂

i + m2
0

)]

, (9)

where 
 is the generalized wave function of the scalar parti-
cles. Hence, the modified Klein–Gordon equation in the Martinez–
Zanelli black hole background is

h̄2

F (r)

∂2


∂t2
− h̄2 F (r)

∂2


∂r2
− h̄2

r2

∂2


∂φ2
+ 2β F (r)h̄4 ∂2

∂r2

[
F (r)

∂2


∂r2

]

+ 2βh̄4

r2

∂2

∂φ2

[
1

r2

∂2


∂φ2

]
+ m2

0

(
1 − 2βm2

0

)

 = 0. (10)

To investigate the tunneling radiation of the Martinez–Zanelli

black hole with the Eq. (10), we employ the wave function of 
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the scalar particle as


(t, r, φ) = Ae
i
h̄ S(t,r,φ) (11)

where A is a constant and S(t, r, φ) is the classical action term for
the outgoing particle trajectory. Substituting the Eq. (11) into the
Eq. (10) and neglecting the higher order terms of h̄, we get the
equation of motion of the scalar particle as

(
∂ S

∂t

)2

− F 2(r)

(
∂ S

∂r

)2

− F (r)

r2

(
∂ S

∂φ

)2

− 2β F 3(r)

(
∂ S

∂r

)4

− 2β F (r)

r4

(
∂ S

∂φ

)4

− m2
0

(
1 − 2βm2

0

)
F (r) = 0. (12)

Due to the commuting Killing vectors (∂t) and 
(
∂φ

)
we can sep-

arate the S (t, r, φ), in terms of the variables t , r and φ, such
as S (t, r, φ) = −Et + jφ + K (r), where E and j are the energy
and angular momentum of the particle, respectively, and K (r) =
K0(r) + βK1(r) [37]. And, from the Eq. (12), the radial integral,
K (r), becomes as follows;

K±(r) = ±
∫ √

E2 − F (r)
(

m2
0 + j2

r2

)
F (r)

×
⎡
⎣1 + β

⎛
⎝ F (r)

(
m2

0 − j4

r4

)
E2 − F (r)

(
m2

0 + j2

r2

)

−
E2 − F (r)

(
m2

0 + j2

r2

)
F (r)

⎞
⎠

⎤
⎦dr

and it is computed as

K±(rh) = ±iπ
l2 E

972B3

[
216B2 + β

(
324m2

0 B2 + 16E2l2 + 81 j2
)]

where K+(rh) is outgoing and K−(rh) is incoming solutions of the
radial part. The total imaginary part of the action is ImS (t, r, φ) =
ImK± (r) = ImK+ (r) − ImK− (r). Hence, the two kind probabilities
of the crossing from the outer horizon, from outside to inside and
from inside to outside, are given by [13,18,44]

Pout = exp

(
−2

h
ImK+(rh)

)
(13)

and

Pin = exp

(
−2

h
ImK−(rh)

)
, (14)

respectively. Then, the tunneling probability of the scalar particle
is written as

� = Pout

P in

= exp

{
− π l2 E

243h̄B3

[
216B2 + β

(
324m2

0 B2 + 16E2l2 + 81 j2
)]}

Hence, the modified Hawking temperature is obtained from the
lowest order in the expansion of the classical action in terms of
the particle energy,(

2
) (

E
)

� = exp −
h̄

ImS = exp −
T ′

H

(15)
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here T ′
H is the modified Hawking temperature of the outer hori-

on, and it is given by

′
H = 9h̄B

8π l2

[
1 + β

324m2
0 B2 + 16E2l2 + 81 j2

216B2

]−1

.

f, at first, we expand the T ′
H in terms of the β powers, and, sec-

nd, neglect the higher order of the β terms, then we get the 
odified Hawking temperature of the Martinez–Zanelli black hole 

s follows;

′
H = T H

[
1 − β

324m2
0 B2 + 16E2l2 + 81 j2

216B2

]
(16)

here the T H = 9h̄B
8π l2

is the standard Hawking temperature of the 
lack hole. From the T ′

H expression, we see that the modified 
awking temperature is related to not only the mass parameter of 

he black hole, but also the angular momentum, energy and mass 
f the emitted scalar particle from the black hole, and it is lower 
han the standard Hawking temperature.

. The modified Dirac equation and Fermion tunneling

The Dirac equation in a (2 + 1) dimensional spacetime is given 
y the following representation [45],

iσμ(x)
[
∂μ − �μ(x)

]}
�(x) = m0

h̄
�(x). (17)

n this representation; the Dirac spinor, �(x), has only two com-
onents corresponding positive and negative energy eigenstates, 
hich the each one has only one spin polarization. σμ(x) are the 

pacetime dependent Dirac matrices and they are written in terms 
f the constant Dirac matrices, σ i , by using triads, eμ

(i)(x), as fol-
ows;

μ(x) = eμ
(i)(x)σ i, (18)

here σ i are the Dirac matrices in flat spacetime and they are 
iven by

i = (σ 0, σ 1, σ 2) (19)

ith

0 = σ 3 , σ 1 = iσ 1, σ 2 = iσ 2, (20)

here σ 1, σ 2 and σ 3 are Pauli matrices, and �μ(x) are the spin 
ffine connection by the following definition,

μ(x) = 1

4
gλα(ei

ν,μeα
i − �α

νμ)sλν(x). (21)

ere, �α
νμ is the Christoffell symbol, and gμν(x) is the metric ten-

or that is given in terms of the triads as follows,

μν(x) = e(i)
μ (x)e( j)

ν (x)η(i)( j), (22)

here μ and ν are a curved spacetime indices running from 0
o 2. i and j are flat spacetime indices running from 0 to 2 and 
(i)( j) is the metric of the (2 + 1) dimensional Minkowski space-

ime, with signature (1, −1, −1), and sλν(x) is a spin operator 
efined as

λν(x) = 1

2
[σλ(x), σ ν(x)]. (23)

sing the Eq. (3), Eq. (7) and Eq. (8) in the Dirac equation, the 

eneralized Dirac equation becomes r
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iσ 0(x)∂0�̃ =
(

iσ i(x)∂i − iσμ(x)�μ − m0

h̄

)

×
(

1 + βh̄2∂ j∂
j − βm2

0

)
�̃, (24)

nd it is rewritten as

iσ 0(x)∂0 + iσ i(x)
(

1 − βm2
0

)
∂i + iβh̄2σ i(x)∂i

(
∂ j∂

j
)

− m0

h̄

(
1 + βh̄2∂ j∂

j − βm2
0

)
− iσμ(x)�μ

(
1 + βh̄2∂ j∂

j − βm2
0

)
]�̃ = 0, (25)

here the �̃ is the generalized Dirac spinor.
To calculate the tunneling probability of a Dirac particle from 

he black hole, we use the following ansatz for the wave function;

(x) = exp

(
i

h̄
S (t, r, φ)

) (
A (t, r, φ)

B (t, r, φ)

)
(26)

here the A (t, r, φ) and B (t, r, φ) are the functions of space–time. 
nserting the Eq. (26) in Eq. (25), we get the resulting equations to 
eading order in h̄ and β as follows;

[ 1√
F (r)

∂ S

∂t
+ m0

(
1 − βm2

0

)
+ βm0

r2

(
∂ S

∂φ

)2

+ βm0 F (r)

(
∂ S

∂r

)2

] + B[i√F (r)
(

1 − βm2
0

) ∂ S

∂r

+ 1 − βm2
0

r

∂ S

∂φ
+ iβ F (r)

√
F (r)

(
∂ S

∂r

)3

+ i
β
√

F (r)

r2

(
∂ S

∂r

)(
∂ S

∂φ

)2

+ β F (r)

r

(
∂ S

∂φ

)(
∂ S

∂r

)2

+ β

r3

(
∂ S

∂φ

)3

] = 0

[−i
√

F (r)
(

1 − βm2
0

) ∂ S

∂r
+ 1 − βm2

0

r

∂ S

∂φ

− iβ F (r)
√

F (r)

(
∂ S

∂r

)3

− i
β
√

F (r)

r2

(
∂ S

∂r

)(
∂ S

∂φ

)2

+ β F (r)

r

(
∂ S

∂φ

)(
∂ S

∂r

)2

+ β

r3

(
∂ S

∂φ

)3

]

+ B[ 1√
F (r)

∂ S

∂t
− m0

(
1 − βm2

0

)
− βm0

r2

(
∂ S

∂φ

)2

− βm0 F (r)

(
∂ S

∂r

)2

] = 0. (27)

hese two equations have nontrivial solutions for the A (t, r, φ)

nd B (t, r, φ) in case the determinant of the coefficient matrix 
s vanished. Accordingly, when neglecting the terms containing 
igher order of the β , then we get

1

(r)

(
∂ S

∂t

)2

− F (r)

(
∂ S

∂r

)2

− 2β

r4

(
∂ S

∂φ

)4

− 2β F 2(r)

(
∂ S

∂r

)4

− 1

r2

(
∂ S

∂φ

)2

− 4F (r)β

r2

(
∂ S

∂r

)2 (
∂ S

∂φ

)2

+ 2βm4
0 − m2

0 = 0.

ue to the Killing vectors (∂t) and 
(
∂φ

)
, we can separate the vari-

bles for S (t, r, φ) as S (t, r, φ) = −Et + jφ + K (r), where E and 
are the energy and angular momentum of the particle, respec-

ively, and K (r) = K (r) + βK (r) [37]. Then, the integral of the 
0 1
adial equation, K (r), becomes as follows;
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K±(r) = ±
∫ √

E2 − F (r)
(

m2
0 + j2

r2

)
F (r)

×
⎡
⎣1 + β

⎛
⎝ 2E2m2

0 F (r) − E4

E2 − F (r)
(

m2
0 + j2

r2

)
⎞
⎠

⎤
⎦dr

and it is computed as

K±(rh) = ±iπ
l2 E

972B3

[
216B2 + β

(
324m2

0 B2 + 16E2l2 − 27 j2
)]

Thus, from the Eq. (13) and Eq. (14), the tunneling probability of
the Dirac particle is given by

� = Pout

P in

= exp

{
− π l2 E

243h̄B3

[
216B2 + β

(
324m2

0 B2 + 16E2l2 − 27 j2
)]}

Furthermore, from the Eq. (15), the modified Hawking temperature
becomes as follows

T ′
H = 9h̄B

8π l2

[
1 + β

324m2
0 B2 + 16E2l2 − 27 j2

216B2

]−1

= T H

[
1 − β

324m2
0 B2 + 16E2l2 − 27 j2

216B2

]
, (28)

where the T H = 9h̄B
8π l2

is the standard Hawking temperature of the
Martinez–Zanelli black hole. As in the case of the scalar particle
tunneling, the corrected Hawking temperature of the tunneling
Dirac particle is related to not only the mass parameter of the
Martinez–Zanelli black hole, but also depends on the angular mo-
mentum, energy and mass of the emitted Dirac particle, and it is
lower than the standard Hawking temperature.

4. Conclusion

In this paper we have studied the issue of the quantum gravity
effect on the Hawking radiation of the 2 +1 dimensional Martinez–
Zanelli black hole by using the particle tunneling method. To take
into account the quantum gravity effects, we modified the Dirac
and Klein–Gordon equations by the generalized fundamental com-
mutation relations to discuss the tunneling radiation of fermions
and scalar particles, respectively. The results showed that the cor-
rected Hawking temperature is not only determined by the mass
parameter of the Martinez–Zanelli black hole, but also it is affected
by the quantum properties (i.e., the angular momentum, energy
and mass) of the emitted fermions and scalar particles. The other
important results are given as follows:

• According to Eq. (16), the corrected Hawking temperature of
the tunneling scalar particle is lower than the standard tem-
perature.

• In Eq. (28), when 324m2
0 B2 + 16E2l2 > 27 j2, the corrected

Hawking temperature of the tunneling fermions is lower
than the standard temperature. However, when 324m2

0 B2 +
16E2l2 < 27 j2, the corrected temperature is higher than the
standard temperature. If 324m2 B2 + 16E2l2 = 27 j2, then the
0
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contribution of the GUP effect is canceled, and radiation tem-
perature of the tunneling fermions reduce to the standard
temperature.

• By comparing the Eq. (28) with Eq. (16), we can say that the
radiation temperature of the tunneling fermions higher than
the scalar particles temperature, even if their masses, energies
and angular momentums are same.

Finally, thanks to the GUP effect, we can determine whether
the radiated particle from a black hole is the scalar particle or the
Dirac particle.
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 r t i c l e i n f o a b s t r a c t

ditor: M. Trodden

Despite the outstanding achievements of modern cosmology, the classical dispute on the precise value
of H0, which is the first ever parameter of modern cosmology and one of the prime parameters in the 
field, still goes on and on after over half a century of measurements. Recently the dispute came to the
spotlight with renewed strength owing to the significant tension (at > 3σ c.l.) between the latest Planck
determination obtained from the CMB anisotropies and the local (distance ladder) measurement from the
Hubble Space Telescope (HST), based on Cepheids. In this work, we investigate the impact of the running
vacuum model (RVM) and related models on such a controversy. For the RVM, the vacuum energy density
ρ� carries a mild dependence on the cosmic expansion rate, i.e. ρ�(H), which allows to ameliorate 
the fit quality to the overall SNIa+BAO+H(z)+LSS+CMB cosmological observations as compared to the 
concordance �CDM model. By letting the RVM to deviate from the vacuum option, the equation of state
w = −1 continues to be favored by the overall fit. Vacuum dynamics also predicts the following: i) the 
CMB range of values for H0 is more favored than the local ones, and ii) smaller values for σ8(0). As 
a result, a better account for the LSS structure formation data is achieved as compared to the �CDM,
which is based on a rigid (i.e. non-dynamical) � term.
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. Introduction

The most celebrated fact of modern observational cosmology is 
hat the universe is in accelerated expansion [1,2]. At the same 
ime, the most paradoxical reality check is that we do not honestly 
nderstand the primary cause for such an acceleration. The sim-
lest picture is to assume that it is caused by a strict cosmological 
erm, �, in Einstein’s equations, but its fundamental origin is un-
nown [3]. Together with the assumption of the existence of dark 
atter (DM) and the spatial flatness of the Friedmann–Lemaître–

obertson–Walker (FLRW) metric (viz. the metric that expresses 
he homogeneity and isotropy inherent to the cosmological princi-
le), we are led to the “concordance” �CDM model, i.e. the stan-
ard model of cosmology [4]. The model is consistent with a large 
ody of observations, and in particular with the high precision data 
rom the cosmic microwave background (CMB) anisotropies [5,6]. 

any alternative explanations of the cosmic acceleration beyond a 
-term are possible (including quintessence and the like, see e.g. 

he review [7]) and are called dark energy (DE) [8].
* Corresponding author.
E-mail addresses: sola@fqa.ub.edu (J. Solà), adriagova@fqa.ub.edu

A. Gómez-Valent), decruz@fqa.ub.edu (J. de Cruz Pérez).
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The current situation with cosmology is reminiscent of the 

rediction by the famous astronomer A. Sandage in the sixties, 
ho asserted that the main task of future observational cosmol-

gy would be the search for two parameters: the Hubble constant 
0 and the deceleration parameter q0 [9]. The first of them is 

he most important distance (and time) scale in cosmology prior 
o any other cosmological quantity. Sandage’s last published value 
ith Tammann (in 2010) is 62.3 km/s/Mpc [10] – slightly re-

ised in Ref. [11] as H0 = 64.1 ± 2.4 km/s/Mpc. There is currently 
 significant tension between CMB measurements of H0 [5,12] – 
ot far away from this value – and local determinations empha-
izing a higher range above 70 km/s/Mpc [13,14]. As for q0, its 
easurement is tantamount to determining � in the context of 

he concordance model. On fundamental grounds, however, under-
tanding the value of � is not just a matter of observation; in truth 
nd in fact, it embodies one of the most important and unsolved 
onundrums of theoretical physics and cosmology: the cosmologi-
al constant problem, see e.g. [3,7,15,16]. The problem is connected 
o the fact that the �-term is usually associated with the vac-

um energy density, ρ� = �/(8πG), with G Newton’s coupling. 
he prediction for ρ� in quantum field theory (QFT) overshoots 
he measured value ρ� ∼ 10−47 GeV4 (in natural units c = h̄ = 1) 
y many orders of magnitude [16].
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161The H0 tension in light of vacuum dynamics in the universe
W

Concerning the prime parameter H0, the tension among the dif-
ferent measurements is inherent to its long and tortuous history.
Let us only recall that after Baade’s revision (by a factor of one half
[17]) of the exceedingly large value ∼ 500 km/s/Mpc originally es-
timated by Hubble (which implied a universe of barely two billion
years old only), the Hubble parameter was subsequently lowered
to 75 km/s/Mpc and finally to H0 = 55 ± 5 km/s/Mpc, where it
remained for 20 years (until 1995), mainly under the influence of
Sandage’s devoted observations [18]. Shortly after that period the
first measurements of the nonvanishing, positive, value of � ap-
peared [1,2] and the typical range for H0 moved upwards to ∼ 65
km/s/Mpc. In the meantime, many different observational values
of H0 have piled up in the literature using different methods (see
e.g. the median statistical analysis of > 550 measurements con-
sidered in [19,20]). As mentioned above, two kinds of precision
(few percent level) measurements of H0 have generated consid-
erable perplexity in the recent literature, specifically between the
latest Planck values (HPlanck

0 ) obtained from the CMB anisotropies,
and the local HST measurement (based on distance ladder esti-
mates from Cepheids). The latter, obtained by Riess et al. [13], is
H0 = 73.24 ± 1.74 km/s/Mpc and will be denoted HRiess

0 . It can
be compared with the CMB value H0 = 67.51 ± 0.64 km/s/Mpc,
as extracted from Planck 2015 TT,TE,EE+lowP+lensing data [5],
or with H0 = 66.93 ± 0.62 km/s/Mpc, based on Planck 2015
TT,TE,EE+SIMlow data [12]. In both cases there is a tension above
3σ c.l. (viz. 3.1σ and 3.4σ , respectively) with respect to the local
measurement. This situation, and in general a certain level of ten-
sion with some independent observations in intermediate cosmo-
logical scales, has stimulated a number of discussions and possible
solutions in the literature, see e.g. [21–29].

We wish to reexamine here the HRiess
0 − HPlanck

0 tension, but not
as an isolated conflict between two particular sources of observa-
tions, but rather in light of the overall fit to the cosmological data
SNIa+BAO+H(z)+LSS+CMB. Recently, it has been demonstrated
that by letting the cosmological vacuum energy density to slowly
evolve with the expansion rate, ρ� = ρ�(H), the global fit can be
improved with respect to the �CDM at a confidence level of 3–4σ
[30–34]. We devote this work to show that the dynamical vacuum
models (DVMs) can still give a better fit to the overall data, even if
the local HST measurement of the Hubble parameter is taken into
account. However we find that our best-fit values of H0 are much
closer to the value extracted from CMB measurements [5,12]. Our
analysis also corroborates that the large scale structure formation
data (LSS) are crucial in distinguishing the rigid vacuum option
from the dynamical one.

2. Dynamical vacuum models and beyond

Let us consider a generic cosmological framework described by
the spatially flat FLRW metric, in which matter is exchanging en-
ergy with a dynamical DE medium with a phenomenological equa-
tion of state (EoS) p� = wρ� , where w = −1 + ε (with |ε| � 1).
Such medium is therefore of quasi-vacuum type, and for w = −1
(i.e. ε = 0) we precisely recover the genuine vacuum case. Owing,
however, to the exchange of energy with matter, ρ� = ρ�(ζ ) is
in all cases a dynamical function that depends on a cosmic vari-
able ζ = ζ(t). We will identify the nature of ζ(t) later on, but
its presence clearly indicates that ρ� is no longer associated to
a strictly rigid cosmological constant as in the �CDM. The Fried-
mann and acceleration equations read, however, formally identical
to the standard case:

3H2 = 8π G (ρm + ρr + ρ�(ζ )) (1)
3H2 + 2Ḣ = −8π G (pr + p�(ζ )) . (2)

____________________________WORLD TECH
T

Here H = ȧ/a is the Hubble function, a(t) the scale factor as a
function of the cosmic time, ρr is the energy density of the ra-
diation component (with pressure pr = ρr/3), and ρm = ρb + ρdm
involves the contributions from baryons and cold DM. The local
conservation law associated to the above equations reads:

ρ̇r + 4Hρr + ρ̇m + 3Hρm = Q , (3)

where

Q = −ρ̇� − 3H(1 + w)ρ� . (4)

For w = −1 the last equation boils down to just Q = −ρ̇� , which
is nonvanishing on account of ρ�(t) = ρ�(ζ(t)). The simplest case
is, of course, that of the concordance model, in which ρ� = ρ�0 =
const and w = −1, so that Q = 0 trivially. However, for w �= −1
we can also have Q = 0 in a nontrivial situation, which follows
from solving Eq. (4). It corresponds to the XCDM parametrization
[35], in which the DE density is dynamical and self-conserved. It is
easily found in terms of the scale factor:

ρ XC DM
� (a) = ρ�0 a−3(1+w) = ρ�0 a−3ε , (5)

where ρ�0 is the current value. From (3) it then follows that the
total matter component is also conserved. After equality it leads
to separate conservation of cold matter and radiation. In gen-
eral, Q can be a nonvanishing interaction source allowing energy
exchange between matter and the quasi-vacuum medium under
consideration; Q can either be given by hand (e.g. through an
ad hoc ansatz), or can be suggested by some specific theoreti-
cal framework. In any case the interaction source must satisfy
0 < |Q | � ρ̇m since we do not wish to depart too much from the
concordance model. Despite matter is exchanging energy with the
vacuum or quasi-vacuum medium, we shall assume that radiation
and baryons are separately self-conserved, i.e. ρ̇r + 4Hρr = 0 and
ρ̇b + 3Hρb = 0, so that their energy densities evolve in the stan-
dard way: ρr(a) = ρr0 a−4 and ρb(a) = ρb0 a−3. The dynamics of
ρ� can therefore be associated to the exchange of energy exclu-
sively with the DM (through the nonvanishing source Q ) and/or
with the possibility that the DE medium is not exactly the vac-
uum, w �= −1, but close to it |ε| � 1. Under these conditions, the
coupled system of conservation equations (3)–(4) reduces to

ρ̇dm + 3Hρdm = Q (6)

ρ̇� + 3Hερ� = −Q . (7)

In the following we shall for definiteness focus our study of
the dynamical vacuum (and quasi-vacuum) models to the three
interactive sources:

Model I (wRVM) : Q = ν H(3ρm + 4ρr) (8)

Model II (w Q dm) : Q dm = 3νdm Hρdm (9)

Model III (w Q �) : Q � = 3ν�Hρ� . (10)

Here νi = ν, νdm, ν� are small dimensionless constants, |νi | � 1,
which are determined from the overall fit to the data, see e.g. Ta-
bles 1 and 2. The ordinal number names I, II and III will be used
for short, but the three model names are preceded by w to recall
that, in the general case, the equation of state (EoS) is near the
vacuum one (that is, w = −1 + ε). These dynamical quasi-vacuum
models are also denoted as wDVMs. In the particular case w = −1
(i.e. ε = 0) we recover the dynamical vacuum models (DVMs),
which were previously studied in detail in [34], and in this case
the names of the models will not be preceded by w .

In all of the above (w)DVMs, the cosmic variable ζ can be taken
to be the scale factor, ζ = a(t), since they are all analytically solv-

able in terms of it, as we shall see in a moment. Model I with 

NOLOGIES____________________________
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able 1
est-fit values for the �CDM, XCDM, the three dynamical vacuum models (DVMs) and the three dynamical quasi-vacuum models (wDVMs), including their statistical 
ignificance (χ2-test and Akaike and Bayesian information criteria AIC and BIC). For detailed description of the data and a full list of references, see [31] and [34]. The quoted 
umber of degrees of freedom (dof ) is equal to the number of data points minus the number of independent fitting parameters (4 for the �CDM, 5 for the XCDM and the 
VMs, and 6 for the wDVMs). For the CMB data we have used the marginalized mean values and covariance matrix for the parameters of the compressed likelihood for 
lanck 2015 TT,TE,EE+lowP+lensing data from [36]. Each best-fit value and the associated uncertainties have been obtained by marginalizing over the remaining parameters.

Model H0 (km/s/Mpc) ωb ns �0
m νi w χ2

min/dof �AIC �BIC

�CDM 68.83 ± 0.34 0.02243 ± 0.00013 0.973 ± 0.004 0.298 ± 0.004 – −1 84.40/85 – –
XCDM 67.16 ± 0.67 0.02251 ± 0.00013 0.975 ± 0.004 0.311 ± 0.006 – −0.936 ± 0.023 76.80/84 5.35 3.11
RVM 67.45 ± 0.48 0.02224 ± 0.00014 0.964 ± 0.004 0.304 ± 0.005 0.00158 ± 0.00041 −1 68.67/84 13.48 11.24
Q dm 67.53 ± 0.47 0.02222 ± 0.00014 0.964 ± 0.004 0.304 ± 0.005 0.00218 ± 0.00058 −1 69.13/84 13.02 10.78
Q � 68.84 ± 0.34 0.02220 ± 0.00015 0.964 ± 0.005 0.299 ± 0.004 0.00673 ± 0.00236 −1 76.30/84 5.85 3.61
wRVM 67.08 ± 0.69 0.02228 ± 0.00016 0.966 ± 0.005 0.307 ± 0.007 0.00140 ± 0.00048 −0.979 ± 0.028 68.15/83 11.70 7.27
w Q dm 67.04 ± 0.69 0.02228 ± 0.00016 0.966 ± 0.005 0.308 ± 0.007 0.00189 ± 0.00066 −0.973 ± 0.027 68.22/83 11.63 7.20
w Q � 67.11 ± 0.68 0.02227 ± 0.00016 0.965 ± 0.005 0.313 ± 0.006 0.00708 ± 0.00241 −0.933 ± 0.022 68.24/83 11.61 7.18

able 2
he same as Table 1 but adding the HRiess

0 local measurement from Riess et al. [13].

Model H0 (km/s/Mpc) ωb ns �0
m νi w χ2

min/dof �AIC �BIC

�CDM 68.99 ± 0.33 0.02247 ± 0.00013 0.974 ± 0.003 0.296 ± 0.004 – −1 90.59/86 – –
XCDM 67.98 ± 0.64 0.02252 ± 0.00013 0.975 ± 0.004 0.304 ± 0.006 – −0.960 ± 0.023 87.38/85 0.97 −1.29
RVM 67.86 ± 0.47 0.02232 ± 0.00014 0.967 ± 0.004 0.300 ± 0.004 0.00133 ± 0.00040 −1 78.96/85 9.39 7.13
Q dm 67.92 ± 0.46 0.02230 ± 0.00014 0.966 ± 0.004 0.300 ± 0.004 0.00185 ± 0.00057 −1 79.17/85 9.18 6.92
Q � 69.00 ± 0.34 0.02224 ± 0.00016 0.965 ± 0.005 0.297 ± 0.004 0.00669 ± 0.00234 −1 82.48/85 5.87 3.61
wRVM 67.95 ± 0.66 0.02230 ± 0.00015 0.966 ± 0.005 0.300 ± 0.006 0.00138 ± 0.00048 −1.005 ± 0.028 78.93/84 7.11 2.66
w Q dm 67.90 ± 0.66 0.02230 ± 0.00016 0.966 ± 0.005 0.300 ± 0.006 0.00184 ± 0.00066 −0.999 ± 0.028 79.17/84 6.88 2.42

w Q � 67.94 ± 0.65 0.02227 ± 0.00016 0.966 ± 0.005 0.306 ± 0.006 0.00689 ± 0.00237 −0.958 ± 0.022 78.98/84 7.07 2.61
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W = −1 is the running vacuum model (RVM), see [16,33,34,37]. It 
s special in that the interaction source indicated in (8) is not ad 
oc but follows from an expression for the dynamical vacuum en-
rgy density, ρ�(ζ ), in which ζ is not just the scale factor but the 
ull Hubble rate: ζ = H(a). The explicit RVM form reads

�(H) = 3

8πG

(
c0 + νH2

)
. (11)

he additive constant c0 = H2
0

(
�0

� − ν
)

is fixed from the condition 
�(H0) = ρ�0, with �0

� = 1 − �0
m − �0

r . Combining the Fried-
ann and acceleration equations (1)–(2), we find Ḣ = −(4πG/3)

3ρm + 4ρr + 3ερ�), and upon differentiating (11) with respect to 
he cosmic time we are led to ρ̇� = −ν H (3ρm + 4ρr + 3ερ�). 
hus, for ε = 0 (vacuum case) we indeed find ρ̇� = −Q for Q
s in (8). However, for the quasi-vacuum case (0 < |ε| � 1) Eq. (7)
oes not hold if ρ�(H) adopts the form (11). This RVM form is 

n fact specific to the pure vacuum EoS (w = −1), and it can be 
otivated in QFT in curved spacetime through a renormalization 

roup equation for ρ�(H), what explains the RVM name [16]. In 
t, ν plays the role of the β-function coefficient for the running 
f ρ� with the Hubble rate. Thus, we naturally expect |ν| � 1 in 
FT, see [16,38]. Interestingly, the RVM form (11) can actually be 
xtended with higher powers of Hn (typically n = 4) to provide 
n effective description of the cosmic evolution from the inflation-
ry universe up to our days [37,39]. Models II and III are purely 
henomenological models instead, in which the interaction source 

is introduced by hand, see e.g. Refs. [26,40–42] and references 
herein.

The energy densities for the wDVMs can be computed straight-
orwardly. For simplicity, we shall quote here the leading parts 
nly. The exact formulas containing the radiation terms are more 
umbersome. In the numerical analysis we have included the full 
xpressions. Details will be shown elsewhere. For the matter den-
ities, we find:

I
dm(a) = ρdm0 a−3(1−ν) + ρb0

(
a−3(1−ν) − a−3

)

II
dm(a) = ρdm0 a−3(1−νdm) (12) δ̈

___________________________WORLD TECHN
TIII
dm(a) = ρdm0 a−3 + ν�

ν� + w
ρ�0

(
a−3 − a−3(ε+ν�)

)
,

nd for the quasi-vacuum energy densities:

I
�(a) = ρ�0a−3ε − ν ρm0

ν + w

(
a−3(1−ν) − a−3ε

)
II
�(a) = ρ�0a−3ε − νdm ρdm0

νdm + w

(
a−3(1−νdm) − a−3ε

)
(13)

III
� (a) = ρ�0 a−3(ε+ν�) .

wo specific dimensionless parameters enter each formula, νi =
ν, νdm, ν�) and w = −1 + ε . They are part of the fitting vector 
f free parameters for each model, as explained in detail in the 
aption of Table 1. For νi → 0 the models become noninteractive 
nd they all reduce to the XCDM model case (5). For w = −1 we 
ecover the DVMs results previously studied in [34]. Let us also 
ote that for νi > 0 the vacuum decays into DM (which is ther-
odynamically favorable [34]) whereas for νi < 0 is the other way 

round. Furthermore, when w enters the fit, the effective behav-
or of the wDVMs is quintessence-like for w > −1 (i.e. ε > 0) and 
hantom-like for w < −1 (ε < 0).

Given the energy densities (12) and (13), the Hubble function 
mmediately follows. For example, for Model I:

2(a) = H2
0

[
a−3ε + w

w + ν
�0

m

(
a−3(1−ν) − a−3ε

)]
. (14)

imilar formulas can be obtained for Models II and III. For w = −1
hey all reduce to the DVM forms previously found in [34]. And 
f course they all ultimately boil down to the �CDM form in the 

imit (w, νi) → (−1, 0).

. Structure formation: the role of the LSS data

The analysis of structure formation plays a crucial role in com-
aring the various models. For the �CDM and XCDM we use the 
tandard perturbations equation [4]
m + 2H δ̇m − 4πGρm δm = 0 , (15)

OLOGIES____________________________
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Fig. 1. Left: The LSS structure formation data ( f (z)σ8(z)) versus the predicted curves by Models I, II and III, see equations (8)–(10) for the case w = −1, i.e. the dynamical
vacuum models (DVMs), using the best-fit values in Table 1. The XCDM curve is also shown. The values of σ (0) that we obtain for the models are also indicated. Right:
8

ous 

 

 
 
 

 

 
 

 
 
 

 
 

 

 
 
 
 

 
 

, 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

W
Zoomed window of the plot on the left, which allows to better distinguish the vari

with, however, the Hubble function corresponding to each one of
these models. For the wDVMs, a step further is needed: the per-
turbations equation not only involves the modified Hubble function
but the equation itself becomes modified. Trading the cosmic time
for the scale factor and extending the analysis of [34,43,44] for the
case w �= −1 (ε �= 0), we find

δ′′
m + A(a)

a
δ′

m + B(a)

a2
δm = 0 , (16)

where the prime denotes differentiation with respect to the scale
factor, and the functions A(a) and B(a) are found to be as follows:

A(a) = 3 + aH ′

H
+ �

H
− 3rε (17)

B(a) = −4πGρm

H2
+ 2

�

H
+ a�′

H
− 15rε − 9ε2r2

+ 3ε(1 + r)
�

H
− 3rε

aH ′

H
. (18)

Here r ≡ ρ�/ρm and � ≡ −ρ̇�/ρm . For νi = 0 we have � = 3Hrε ,
and after a straightforward calculation one can show that (16) can
be brought to the standard form Eq. (15).

To solve the above perturbations equations we have to fix the
initial conditions on δm and δ′

m for each model at high redshift,
namely when non-relativistic matter dominates over radiation and
DE, see [34]. Functions (17) and (18) are then approximately con-
stant and Eq. (16) admits power-law solutions δm(a) = as . From
explicit calculation we find that the values of s for each model
turn out to be:

sI = 1 + 3

5
ν

(
1

w
− 4

)
+O(ν2)

sII = 1 − 3

5
νdm

(
1 + 3

�0
dm

�0
m

− 1

w

)
+O(νdm

2) (19)

sIII = 1 .

We can check that for w = −1 all of the above equations (16)–(19)
render the DVM results previously found in [34]. The generaliza-
tion that we have made to w �= −1 (ε �= 0) has introduced several
nontrivial extra terms in equations (17)–(19).

The analysis of the linear LSS regime is usually implemented
with the help of the weighted linear growth f (z)σ8(z), where
f (z) = d ln δm/d ln a is the growth rate and σ8(z) is the rms mass
fluctuation on R = 8 h−1 Mpc scales. It is computed as follows
8
(see e.g. [31,34]):

____________________________WORLD TECH
T
models.

Fig. 2. The LSS structure formation data ( f (z)σ8(z)) and the theoretical predictions
for models (8)–(10), using the best-fit values in Tables 2 and 3. The curves for the
cases Ia, IIIa correspond to special scenarios for Models I and III where the agree-
ment with the Riess et al. local value HRiess

0 [13] is better (cf. Table 3). The price
however, is that the concordance with the LSS data is now spoiled. Case IIIb is our
theoretical prediction for the scenario proposed in [26], aimed at optimally relaxing
the tension with HRiess

0 . Unfortunately, the last three scenarios lead to phantom-like
DE and are in serious disagreement with the LSS data.

σ8(z) = σ8,�

δm(z)

δ�
m (0)

√ ∫ ∞
0 kns+2T 2(p,k)W 2(kR8)dk∫ ∞

0 kns,�+2T 2(p�,k)W 2(kR8,�)dk
, (20)

where W is a top-hat smoothing function and T (p, k) the transfer
function. The fitting parameters for each model are contained in p.
Following the mentioned references, we have defined as fiducial
model the �CDM at fixed parameter values from the Planck 2015
TT,TE,EE+lowP+lensing data [5]. These fiducial values are collected
in p� . In Figs. 1–2 we display f (z)σ8(z) for the various models
using the fitted values of Tables 1–3. We remark that our BAO and
LSS data include the bispectrum data points from Ref. [45] – see
[34] for a full-fledged explanation of our data sets. In the next
section, we discuss our results for the various models and assess
their ability to improve the �CDM fit as well as their impact on
the H0 tension.

4. Discussion

Following [34] the statistical analysis of the various models is
performed in terms of a joint likelihood function, which is the
product of the likelihoods for each data source and includes the
corresponding covariance matrices. As indicated in the caption of

Table 1, the �CDM has 4 parameters, whereas the XCDM and the 
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est-fit values for the �CDM and models RVM, Q� , wRVM and wQ� by making use of the CMB+BAO data only. In contrast to Tables 1–2, we now fully dispense with the 
SS data (see [31,34]) to test its effect. The starred/non-starred cases correspond respectively to adding or not the local value HRiess

0 from [13] as data point in the fit. The AIC 
nd BIC differences of the starred models are computed with respect to the �CDM*. We can see that under these conditions models tend to have �AIC, �BIC < 0, including 
he last two starred scenarios, which are capable of significantly approaching HRiess

0 .

Model H0 (km/s/Mpc) ωb ns �0
m νi w χ2

min/dof �AIC �BIC

�CDM 68.23 ± 0.38 0.02234 ± 0.00013 0.968 ± 0.004 0.306 ± 0.005 – −1 13.85/11 – –
RVM 67.70 ± 0.69 0.02227 ± 0.00016 0.965 ± 0.005 0.306 ± 0.005 0.0010 ± 0.0010 −1 13.02/10 −3.84 −1.88
Q � 68.34 ± 0.40 0.02226 ± 0.00016 0.965 ± 0.005 0.305 ± 0.005 0.0030 ± 0.0030 −1 12.91/10 −3.73 −1.77
wRVM 66.34 ± 2.30 0.02228 ± 0.00016 0.966 ± 0.005 0.313 ± 0.012 0.0017 ± 0.0016 −0.956 ± 0.071 12.65/9 −9.30 −4.22
w Q � 66.71 ± 1.77 0.02226 ± 0.00016 0.965 ± 0.005 0.317 ± 0.014 0.0070 ± 0.0054 −0.921 ± 0.082 12.06/9 −8.71 −3.63
�CDM* 68.46 ± 0.37 0.02239 ± 0.00013 0.969 ± 0.004 0.303 ± 0.005 – −1 21.76/12 – –
RVM* 68.48 ± 0.67 0.02240 ± 0.00015 0.969 ± 0.005 0.303 ± 0.005 0.0000 ± 0.0010 −1 21.76/11 −4.36 −2.77
Q �* 68.34 ± 0.39 0.02224 ± 0.00016 0.966 ± 0.005 0.302 ± 0.005 0.0034 ± 0.0030 −1 20.45/11 −3.05 −1.46
Ia (wRVM*) 70.95 ± 1.46 0.02231 ± 0.00016 0.967 ± 0.005 0.290 ± 0.008 −0.0008 ± 0.0010 −1.094 ± 0.050 18.03/10 −5.97 −1.82

IIIa (w Q �*) 70.27 ± 1.33 0.02228 ± 0.00016 0.966 ± 0.005 0.291 ± 0.010 −0.0006 ± 0.0042 −1.086 ± 0.065 18.64/10 −6.58 −2.43
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VMs have 5, and finally any of the wDVMs has 6. Thus, for a 

airer comparison of the various nonstandard models with the con-
ordance �CDM we have to invoke efficient criteria in which the 
resence of extra parameters in a given model is conveniently pe-
alized so as to achieve a balanced comparison with the model 
aving less parameters. The Akaike information criterion (AIC) and 
he Bayesian information criterion (BIC) are known to be extremely 
aluable tools for a fair statistical analysis of this kind. They can be 
hought of as a modern quantitative formulation of Occam’s razor. 
hey read [46–48]:

IC = χ2
min + 2nN

N − n − 1
, BIC = χ2

min + n ln N , (21)

here n is the number of independent fitting parameters and N
he number of data points. The bigger are the (positive) differ-
nces �AIC and �BIC with respect to the model having smaller 
alues of AIC and BIC the higher is the evidence against the model 
ith larger AIC and BIC. Take, for instance, Tables 1 and 2, where 

n all cases the less favored model is the �CDM (thus with larger 
IC and BIC). For �AIC and �BIC in the range 6–10 one speaks 
f “strong evidence” against the �CDM, and hence in favor of the 
onstandard models being considered. This is typically the situ-
tion for the RVM and Q dm vacuum models in Table 2 and for 
he three wDVMs in Table 1. Neither the XCDM nor the Q � vac-
um model attain the “strong evidence” threshold in Tables 1 or 2. 
he XCDM parametrization, which is used as a baseline for com-
arison of the dynamical DE models, is nevertheless capable of 
etecting significant signs of dynamical DE, mainly in Table 1 (in 
hich HRiess

0 is excluded), but not so in Table 2 (where HRiess
0 is 

ncluded). In contrast, model Q � does not change much from Ta-
le 1 to Table 2.

In actual fact, the vacuum model III (Q �) tends to remain al-
ays fairly close to the �CDM. Its dynamics is weaker than that of 

he main DVMs (RVM and Q dm). Being |νi | � 1 for all the DVMs, 
he evolution of its vacuum energy density is approximately loga-
ithmic: ρ III

� ∼ ρ�0(1 −3ν� ln a), as it follows from (13) with ε = 0. 
hus, it is significantly milder in comparison to that of the main 
VMs, for which ρ I,II

� ∼ ρ�0
[
1 + (�0

m/�0
�)νi(a−3 − 1)

]
. The per-

ormance of Q � can only be slightly better than that of �CDM, a 
act that may have not been noted in previous studies – see [21,
6,40–42] and references therein.

According to the same jargon, when the differences �AIC and 
BIC are both above 10 one speaks of “very strong evidence” 

gainst the unfavored model (the �CDM, in this case), wherefore 
n favor of the dynamical vacuum and quasi-vacuum models. It is 
ertainly the case of the RVM and Q dm models in Table 1, which 
re singled out as being much better than the �CDM in their abil-
ty to describe the overall observations. From Table 1 we can see 

hat the best-fit values of νi for these models are secured at a r

___________________________WORLD TECHN
Tig. 3. Contour plots for the RVM (blue) and wRVM (orange) up to 2σ , and for the 
CDM (black) up to 5σ in the (H0, �0

m)-plane. Shown are the two relevant cases 
nder study: the plot on the left is for when the local H0 value of Riess et al. [13]
 included in the fit (cf. Table 2), and the plot on the right is for when that local 
alue is not included (cf. Table 1). Any attempt at reaching the HRiess

0 neighborhood 
nforces to pick too small values �0

m < 0.27 through extended contours that go 
eyond 5σ c.l. We also observe that the two (w)RVMs are much more compatible 
already at 1σ ) with the HPlanck

0 range than the �CDM. The latter, instead, requires 
ome of the most external contours to reach the HPlanck

0 1σ region whether HRiess
0 is 

cluded or not in the fit. Thus, remarkably, in both cases when the full data string 
NIa+BAO+H(z)+LSS+CMB enters the fit the �CDM has difficulties to overlap also 
ith the HPlanck

0 range at 1σ , in contrast to the RVM and wRVM. (For interpretation 
f the references to color in this figure legend, the reader is referred to the web 
ersion of this article.)

onfidence level of ∼ 3.8σ . These two models are indeed the most 
onspicuous ones in our entire analysis, and remain strongly fa-
ored even if HRiess

0 [13] is included (cf. Table 2). In the last case, 
he best-fit values of νi for the two models are still supported at a 
airly large c.l. (∼ 3.2σ ). This shows that the overall fit to the data 
n terms of dynamical vacuum is a real option since the fit qual-
ty is not exceedingly perturbed in the presence of the data point 

Riess
0 . However, the optimal situation is really attained in the ab-

ence of that point, not only because the fit quality is then higher 
ut also because that point remains out of the fit range whenever 
he large scale structure formation data (LSS) are included. For this 
eason we tend to treat that input as an outlier – see also [49] for 
n alternative support to this possibility, which we comment later 
n. In the following, we will argue that a truly consistent picture 
ith all the data is only possible for H0 in the vicinity of HPlanck

0
ather than in that of HRiess

0 .
The conclusion is that the HRiess

0 –HPlanck
0 tension cannot be re-

axed without unduly forcing the overall fit, which is highly sensi-
ive to the LSS data. It goes without saying that one cannot have 
 prediction that matches both H0 regions at the same time, so at 
ome point new observations (or the discovery of some systematic 
n one of the experiments) will help to consolidate one of the two 

anges of values and exclude definitely the other. At present no fa-
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Fig. 4. Contour lines for the �CDM (black) and RVM (blue) up to 4σ in the
(H0, σ8(0))-plane. As in Fig. 3, we present in the left plot the case when the lo-
cal H0 value of Riess et al. [13] is included in the fit (cf. Table 2), whereas in the
right plot the case when that local value is not included (cf. Table 1). Again, any at-
tempt at reaching the HRiess

0 neighborhood enforces to extend the contours beyond
the 5σ c.l., which would lead to a too low value of �0

m in both cases (cf. Fig. 3)
and, in addition, would result in a too large value of σ8(0) for the RVM. Notice that
H0 and σ8(0) are positively correlated in the RVM (i.e. H0 decreases when σ8(0)

decreases), whilst they are anticorrelated in the �CDM (H0 increases when σ8(0)

decreases, and vice versa). It is precisely this opposite correlation feature with re-
spect to the �CDM what allows the RVM to improve the LSS fit in the region where
both H0 and σ8(0) are smaller than the respective �CDM values (cf. Fig. 1). This
explains why the Planck range for H0 is clearly preferred by the RVM, as it allows
a much better description of the LSS data. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

vorable fit can be obtained from the �CDM that is compatible with
any of the two H0 ranges. This is transparent from Figs. 3 and 4,
in which the �CDM remains always in between the two regions.
However, our work shows that a solution (with minimum cost) is
possible in terms of vacuum dynamics. Such solution, which in-
evitably puts aside the HRiess

0 range, is however compatible with
all the remaining data and tends to favor the Planck range of H0
values. The DVMs can indeed provide an excellent fit to the overall
cosmological observations and be fully compatible with both the
HPlanck

0 value and at the same time with the needed low values of
the σ8(0) observable, these low values of σ8(0) being crucial to fit
the structure formation data. Such strategy is only possible in the
presence of vacuum dynamics, whilst it is impossible with a rigid
�-term, i.e. is not available to the �CDM.

In Fig. 1 we confront the various models with the LSS data
when the local measurement HRiess

0 is not included in our fit. The
differences can be better appraised in the plot on the right, where
we observe that the RVM and Q dm curves stay significantly lower
than the �CDM one (hence matching better the data than the
�CDM), whereas those of XCDM and Q � remain in between.

Concerning the wDVMs, namely the quasi-vacuum models in
which an extra parameter is at play (the EoS parameter w), we
observe a significant difference as compared to the DVMs (with
vacuum EoS w = −1): they all provide a similarly good fit quality,
clearly superior to that of the �CDM (cf. Tables 1 and 2) but in
all cases below that of the main DVMs (RVM and Q dm), whose
performance is outstanding.

In Table 3, in an attempt to draw our fit nearer and nearer to
HRiess

0 [13], we test the effect of ignoring the LSS structure forma-
tion data, thus granting more freedom to the fit parameter space.
We perform this test using the �CDM and models (w)RVM and
(w)Q � (i.e. models I and III and testing both the vacuum and
quasi-vacuum options), and we fit them to the CMB+BAO data
alone. We can see that the fit values for H0 increase in all starred
scenarios (i.e. those involving the HRiess

0 data point in the fit), and
specially for the cases Ia and IIIa in Table 3. Nonetheless, these
lead to νi < 0 and w < −1 (and hence imply phantom-like DE);
and, what is worse, the agreement with the LSS data is ruined (cf.

Fig. 2) since the corresponding curves are shifted too high (beyond 

____________________________WORLD TECH
T
Fig. 5. Contour lines for the models wRVM (Ia) and wQ� (IIIa) up to 3σ in the
(H0, σ8(0))-plane, depicted in orange and purple, respectively, together with the
isolated point (in black) extracted from the analysis of Ref. [26], which we call IIIb
The cases Ia, IIIa and IIIb correspond to special scenarios with w �= −1 for Models
I and III in which the value HRiess

0 is included as a data point and then a suitable
strategy is followed to optimize the fit agreement with such value. The strategy con-
sists to exploit the freedom in w and remove the LSS data from the fit analysis. The
plot clearly shows that some agreement is indeed possible, but only if w takes on
values in the phantom region (w < −1) (see text) and at the expense of an anoma-
lous (too large) value of the parameter σ8(0), what seriously spoils the concordance
with the LSS data, as can be seen in Fig. 2. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

the �CDM one). In the same figure we superimpose one more
scenario, called IIIb, corresponding to a rather acute phantom be-
havior (w = −1.184 ± 0.064). The latter was recently explored in
[26] so as to maximally relax the H0 tension – see also [21]. Un-
fortunately, we find (see Fig. 2) that the associated LSS curve is
completely strayed since it fails to minimally describe the f σ8 data
(LSS).

In Fig. 3 we demonstrate in a very visual way that, in the con-
text of the overall observations (i.e. SNIa+BAO+H(z)+LSS+CMB),
whether including or not including the data point HRiess

0 (cf. Ta-
bles 1 and 2), it becomes impossible to getting closer to the local
measurement HRiess

0 unless we go beyond the 5σ contours and end
up with a too low value �0

m < 0.27. These results are aligned with
those of [50], in which the authors are also unable to accommo-
date the HRiess

0 value when a string of SNIa+BAO+H(z)+LSS+CMB
data (similar but not equal to the one used by us) is taken into ac-
count. Moreover, we observe in Fig. 3 not only that both the RVM
and wRVM remain much closer to HPlanck

0 than to HRiess
0 , but also

that they are overlapping with the HPlanck
0 range much better than

the �CDM does. The latter is seen to have serious difficulties in
reaching the Planck range unless we use the most external regions
of the elongated contours shown in Fig. 3.

Many other works in the literature have studied the existing
H0 tension. For instance, in [28] the authors find H0 = 69.13 ±
2.34 km/s/Mpc assuming the �CDM model. Such result almost
coincides with the central values of H0 that we obtain in Tables 1
and 2 for the �CDM. This fact, added to the larger uncertainties of
the result, seems to relax the tension. Let us, however, notice that
the value of [28] has been obtained using BAO data only, what ex-
plains the larger uncertainty that they find. In our case, we have
considered a much more complete data set, which includes CMB
and LSS data as well. This is what has allowed us to better con-
strain H0 with smaller errors and conclude that when a larger data
set (SNIa+BAO+H(z)+LSS+CMB) is used, the fitted value of the
Hubble parameter for the �CDM is incompatible with the Planck
best-fit value at about 4σ c.l. Thus, the �CDM model seems to be
in conflict not only with the local HST estimation of H0, but also
with the Planck one!

Finally, in Figs. 4 and 5 we consider the contour plots (up to
4σ and 3σ , respectively) in the (H0, σ8(0))-plane for different sit-
uations. Specifically, in the case of Fig. 4 the plots on the left and

on the right are in exact correspondence with the situations pre-
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iously presented in the left and right plots of Fig. 3, respectively.1

s expected, the contours in the left plot of Fig. 4 are slightly 
hifted (“attracted”) to the right (i.e. towards the HRiess

0 region) as 
ompared to those in the right plot because in the former HRiess

0
as included as a data point in the fit, whereas HRiess

0 was not 
ncluded in the latter. Therefore, in the last case the contours for 
he RVM are more centered in the HPlanck

0 region and at the same 
ime centered at relatively low values of σ8(0) 
 0.73–0.74, which 
re precisely those needed for a perfect matching with the experi-
ental data points on structure formation (cf. Fig. 1). On the other 

and, in the case of Fig. 5 the contour lines correspond to the 
tting sets Ia, IIIa of Table 3 (in which BAO and CMB data, but 
o LSS formation data, are involved). As can be seen, the contour 

ines in Fig. 5 can attain the Riess 2016 region for H0, but they 
re centered at rather high values (∼ 0.9) of the parameter σ8(0). 
hese are clearly higher than the needed values σ8(0) 
 0.73–0.74. 
his fact demonstrates once more that such option leads to a bad 
escription of the structure formation data. The isolated point in 
ig. 5 is even worst: it corresponds to the aforementioned theoret-
cal prediction for the scenario IIIb proposed in [26], in which the 

Riess
0 region can be clearly attained but at the price of a serious 

isagreement with the LSS data. Here we can see, with pristine 
larity, that such isolated point, despite it comfortably reaches the 

Riess
0 region, it attains a value of σ8(0) near 1, thence completely 

trayed from the observations. This is, of course, the reason why 
he upper curve in Fig. 2 fails to describe essentially all points of 
he f (z)σ8(z) observable. So, as it turns, it is impossible to reach 
he HRiess

0 region without paying a high price, no matter what 
trategy is concocted to approach it in parameter space.

As indicated, we must still remain open to the possibility that 
he HPlanck

0 and/or HRiess
0 measurements are affected by some kind 

f (unknown) systematic errors, although some of these possibil-
ties may be on the way of being ruled out by recent works. For 
nstance, in [51] the authors study the systematic errors in Planck’s 
ata by comparing them with the South Pole Telescope data. Their 
onclusion is that there is no evidence of systematic errors in 
lanck’s results. If confirmed, the class of the (w)RVMs studied 
ere would offer a viable solution to both the H0 and σ8(0) exist-

ng tensions in the data, which are both unaccountable within the 
CDM. Another interesting result is the “blinded” determination 

f H0 from [27], based on a reanalysis of the SNIa and Cepheid 
ariables data from the older work by Riess et al. [14]. These au-
hors find H0 = 72.5 ± 3.2 km/s/Mpc, which should be compared 
ith H0 = 73.8 ± 2.4 km/s/Mpc [14]. Obviously, the tension with 
Planck
0 diminished since the central value decreased and in addi-

ion the uncertainty has grown by ∼ 33%. We should now wait 
or a similar reanalysis to be made on the original sample used in 
13], i.e. the one supporting the value HRiess

0 , as planned in [27]. 
n [52] they show that by combining the latest BAO results with 

MAP, Atacama Cosmology Telescope (ACT), or South Pole Tele-
cope (SPT) CMB data produces values of H0 that are 2.4–3.1σ
ower than the distance ladder, independent of Planck. These au-
hors conclude from their analysis that it is not possible to explain 
he H0 disagreement solely with a systematic error specific to the 
lanck data. Let us mention other works, see e.g. [24,29], in which 
 value closer to HRiess

0 is found and the tension is not so severely 
oosened; or the work [53], which excludes systematic bias or un-
ertainty in the Cepheid calibration step of the distance ladder 
easurement by [13]. Finally, we recall the aforementioned re-

ent study [49], where the authors run a new (dis)cordance test to 
ompare the constraints on H0 from different methods and con-

1 Planck
The H0 band indicated in Figs. 3–5 is that of [12], which has no significant 
ifferences with that of [5]. p

___________________________WORLD TECHN
T

lude that the local measurement is an outlier compared to the 
thers, what would favor a systematics-based explanation. Quite 
bviously, the search for a final solution to the H0 tension is still 
ork in progress.

. Conclusions

The present updated analysis of the cosmological data SNIa +
AO + H(z) + LSS + CMB disfavors the hypothesis � = const. as 
ompared to the dynamical vacuum models (DVMs). This is con-
istent with our most recent studies [30–34]. Our results sug-
est a dynamical DE effect near 3σ within the standard XCDM 
arametrization and near 4σ for the best DVMs. Here we have 
xtended these studies in order to encompass the class of quasi-
acuum models (wDVMs), where the equation of state parameter 

is near (but not exactly equal) to −1. The new degree of free-
om w can then be used to try to further improve the overall fit 
o the data. But it can also be used to check if values of w differ-
nt from −1 can relax the existing tension between the two sets 
f measurements of the H0 parameter, namely those based: i) on 
he CMB measurements by the Planck collaboration [5,12], and ii) 
n the local measurement (distance ladder method) using Cepheid 
ariables [13].

Our study shows that the RVM with w = −1 remains as the 
referred DVM for the optimal fit of the data. At the same time 

t favors the CMB measurements of H0 over the local measure-
ent. Remarkably, we find that not only the CMB and BAO data, 

ut also the LSS formation data (i.e. the known data on f (z)σ8(z)
t different redshifts), are essential to support the CMB measure-
ents of H0 over the local one. We have checked that if the 

SS data are not considered (while the BAO and CMB are kept), 
hen there is a unique chance to try to accommodate the lo-
al measurement of H0, but only at the expense of a phantom-
ike behavior (i.e. for w < −1). In this region of the parameter 
pace, however, we find that the agreement with the LSS for-
ation data is manifestly lost, what suggests that the w < −1

ption is ruled out. There is no other window in the parameter 
pace where to accommodate the local H0 value in our fit. In con-
rast, when the LSS formation data are restored, the fit quality 
o the overall SNIa+BAO+H(z)+LSS+CMB observations improves 
ramatically and definitely favors the Planck range for H0 as well 
s smaller values for σ8(0) as compared to the �CDM.

In short, our work suggests that signs of dynamical vacuum en-
rgy are encoded in the current cosmological observations. They 
ppear to be more in accordance with the lower values of H0 ob-
ained from the Planck (CMB) measurements than with the higher 
ange of H0 values obtained from the present local (distance lad-
er) measurements, and provide smaller values of σ8(0) that are 

n better agreement with structure formation data as compared to 
he �CDM. We hope that with new and more accurate observa-
ions, as well as with more detailed analyses, it will be possible to 
ssess the final impact of vacuum dynamics on the possible solu-
ion of the current tensions in the �CDM.
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. Note added in proof

Since the first version of this work appeared in preprint form, 
rXiv:1705.06723, new analyses of the cosmological data have ap-

eared, in particular the one-year results by the DES collaboration 

OLOGIES____________________________



 
 
 

, 
 
 
 
 
 
 

 
 

 
 

, 

, 

 
 

 

 

.

.

 

 

 

 

 

 

 

 

 

 

 
 

, 

167The H0 tension in light of vacuum dynamics in the universe
W

(DES Y1 for short) [54]. They do not find evidence for dynami-
cal DE, and the Bayes factor indicates that the DES Y1 and Planck
data sets are consistent with each other in the context of �CDM.
However, in our previous works – see in particular [31,34] – we
explained why the Planck results did not report evidence on dy-
namical DE. For instance, in [5] they did not use LSS (RSD) data
and in [6] they only used a limited set of BAO and LSS points. In
the mentioned works [31,34] we have shown that under the same
conditions we recover their results, but when we use the full data
string, which involves not only CMB but also the rich BAO+LSS
data set, we do obtain instead positive indications of dynamical DE.
A similar situation occurs with DES Y1; they do not use direct data
on LSS structure formation despite they recognize that smaller val-
ues of σ8(0) than those predicted by the �CDM are necessary to
solve the tension existing between the concordance model and the
LSS observations. In contrast, let us finally mention that our posi-
tive result on dynamical DE is consistent with the recent analysis
by Gong-Bo Zhao et al. [55], who report on a signal of dynamical
DE at 3.5σ c.l. using similar data ingredients as in our analysis.
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Ultra slow-roll inflation demystified

Konstantinos Dimopoulos
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a r t i c l e i n f o a b s t r a c t

Ultra-slow-roll (USR) inflation is a new mode of inflation which corresponds to the occasions when the
inflaton field must traverse an extremely flat part of the scalar potential, when the usual slow-roll (SR)
fails. We investigate USR and obtain an estimate for how long it lasts, given the initial kinetic density of
the inflaton. We also find that, if the initial kinetic density is small enough, USR can be avoided and the
usual SR treatment is valid. This has important implications for inflection-point inflation.
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W1. Introduction

Cosmic inflation is an organic component of the concordance
model of cosmology. It is a period of exponential expansion in
the early Universe, which determines the initial conditions for the
subsequent Hot Big Bang cosmology. In particular, it makes the
Universe spatially flat, large and uniform but also provides the
necessary deviations from perfect uniformity in the form of the
primordial curvature perturbation, which accounts for the even-
tual formation of the large scale structure. Typically, inflation is
modelled through the inflationary paradigm, which suggests that
the Universe undergoes inflation when dominated by the potential
density of a scalar field (inflaton). This potential density remains
roughly constant during inflation. As a result, the generated cur-
vature perturbation is almost scale-invariant, as suggested by ob-
servations. In order to keep the potential density roughly constant,
the variation of the field must be very small throughout inflation.
Because the inflaton’s equation of motion is the same as a body
rolling down a potential slope subject to friction, we need this roll
to be slow for the inflaton, in field space, so as to keep the poten-
tial density roughly unchanged. Thus, in the inflationary paradigm,
the inflaton undergoes slow-roll (SR) during inflation. Indeed, the
latest CMB data favours single-field slow-roll inflation [1].

The SR solution is an attractor [2] as long as the potential is
flat enough to support it. However, it was recently realised that SR
may end not only when the potential becomes steep and curved,
as is for the end of inflation, but also when it suddenly becomes
extremely flat, too flat for the regular SR assumptions to apply. In
this case, the system engages in so-called ultra slow-roll (USR) in-

flation. This new mode of inflation has been hitherto unknown. It 

E-mail address: k.dimopoulos1@lancaster.ac.uk.
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Tcan have a profound impact on inflationary observables, so it must
be taken into account. However, even though diagnosed, USR has
not been fully understood, with most of its dynamics traced nu-
merically. In this letter, we attempt to demystify USR and provide
a conceptual understanding of its dynamics. Ignoring USR can lead
to important miscalculations of inflationary observables.

USR arises when the potential becomes extremely flat, so much
so that, SR would force the kinetic density of the field to reduce
faster than it would if the field were in free-fall ρkin ≡ 1

2 φ̇2 ∝ a−6,
which of course cannot happen. Thus, the system departs from SR
and the field engages in USR, during which the kinetic density de-
creases as in free-fall, until the system can get back to SR, when
the decreasing |φ̈| catches up with the slope of the potential |V ′|,
or until inflation ends, e.g. by a phase transition. Note that, even
though the slope is very small, we still have potential domina-
tion V > ρkin so inflation continues. USR was first investigated in
Ref. [3], which was followed by Refs. [4,5] and recently by Ref. [6].
In Refs. [3] and [5] a constant potential is assumed, which cannot
exhibit SR. In Ref. [4] it was shown that USR is not an attractor
solution and the system departs from it as soon as the conditions
which enforce USR allow it. But which conditions are these?

In this letter we explore this question. To obtain an insight of
the dynamics of USR, we study USR in linear inflation and then
generalise our findings for an arbitrary inflation model. We partic-
ularly consider inflection-point inflation because it can lead to USR.
It is fair to say that the community seems little aware of USR, so
the hope is that our treatment may be revealing of USR’s nature.
This is a particularly acute problem in models of inflection-point

inflation, where a region of USR exists around the inflection point. 
In USR this region is traversed in a moderate number of e-folds. 
However, were SR assumed, this number would grow substantially. 
As inflationary observables are determined by the correct number 
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f e-folds, this can have profound implications on inflationary pre-
ictions and on the viability of inflection-point models.

We use natural units, where c = h̄ = 1 and 8πG = m−2
P , with 

P = 2.43 × 1018 GeV being the reduced Planck mass.

. Ultra-slow roll inflation

To explore USR inflation, we will look closely at the Klein–
ordon equation of motion of the canonical homogeneous inflaton 
eld φ:

+ 3Hφ̇ + V ′ = 0 , (1)

here H ≡ ȧ/a is the Hubble parameter (with a being the scale 
actor) V is the scalar potential and the dot {prime} denotes 
erivative with respect to the cosmic time {the inflaton field}. 
e name each term of the above as the acceleration, the friction 

nd the slope term respectively. We also employ the flat Friedman 
quation during inflation, when the Universe is dominated by the 
nflaton field:

H2m2
P = 1

2
φ̇2 + V . (2)

We define two slow-roll parameters

≡ −Ḣ/H2 (3)

nd

2 ≡ ε̇

εH
= −6 − 2V ′

Hφ̇
+ 2ε = 2φ̈

Hφ̇
+ 2ε , (4)

here we have employed Eqs. (1) and (2). It is easy to show that

= 3

2
(1 + w) , (5)

here w is the barotropic parameter of the homogeneous inflaton 
eld, given by

= ρkin − V

ρkin + V
, (6)

here ρkin ≡ 1
2 φ̇2. For inflation we need w < − 1

3 , which means 
> 2ρkin. From Eq. (5), we see that inflation (accelerated expan-

ion) occurs when ε < 1.
Now, in the usual SR, the acceleration term in Eq. (1) is negli-

ible, so the latter becomes

Hφ̇ � −V , (7)

hich shows that the friction term is locked to the slope term. In 
his case, Eq. (4) becomes

2 = −2η + 4ε , (8)

here the usual SR parameters are

� εSR ≡ 1

2
m2

P

(
V ′

V

)2

and η ≡ m2
P

V ′′

V
. (9)

uring SR, ε, |η| � 1, which means that |ε2| � 1.
However, if the potential suddenly becomes extremely flat, the 

lope term in Eq. (1) may reduce drastically, which means that it 
irtually disappears. The equation is then rendered

+ 3Hφ̇ � 0 , (10)

hich shows that the friction term is now locked with the accel-
ration term. In this case, Eq. (4) becomes
2 = −6 + 2ε . (11) w
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uring inflation ε < 1, which means |ε2| ≈ 6. Thus, if during in-
ation, the potential becomes suddenly very flat, |ε2|, which is 

nitially small grows to larger than unity, SR is applicable no-more 
nd a period of USR begins.

Intuitively, one can understand this as follows. If we are in SR 
ut the slope |V ′| reduces drastically, it initially drags with it the 
riction term, by virtue of Eq. (7). This decreases the value of |φ̇|, 
.e. the kinetic density ρkin = 1

2 φ̇2, but this value cannot decrease 
rbitrarily quickly. The fastest it can decrease is ρkin ∝ a−6, which 
e call free-fall because it corresponds to a field with no poten-

ial density V = 0, such that its equation of motion is Eq. (10). 
herefore, if the kinetic density of SR is forced (by the decreas-

ng slope) to reduce faster than free-fall then the system breaks 
way from SR. In SR the acceleration term is negligible, because it 
s very small, compared to the friction and slope terms, which are 
ocked together as shown in Eq. (7). However, if the slope reduces 
rastically and drags the friction term with it, they both become 
mall too and eventually comparable to the acceleration term. So 
ll three terms in Eq. (1) are comparable. When this happens, the 
riction term changes allegiances and becomes locked with the ac-
eleration term, resulting in USR.

Now, once in USR, the field becomes oblivious of the potential, 
s demonstrated by Eq. (10). This is similar to the kination period 
f quintessential inflation models [7,8] but there is a crucial dif-
erence. In kination, the Universe is dominated by ρkin, while in 
SR inflation, we still have potential domination and V > ρkin. Be-

ng oblivious to the potential, the inflaton field can even climb up 
n ultra-shallow V [4]. Indeed, when the system enters the USR 
egime, it “flies over” the flat patch of the potential, sliding on 
ts decreasing kinetic density. In that sense, the term ultra-SR is 
ctually a misnomer, because the field rolls faster than it would 
ave done if SR were still applicable over the extremely flat re-
ion.

Indeed, if |V ′| decreases to almost zero, so does εSR. In SR the 
umber of elapsing e-folds is

N = 1

mP

φ2∫
φ1

dφ√
2εSR

, (12)

hich increases substantially if εSR becomes extremely small. In 
ontrast, in USR ε does not decrease too much, so we have 
SR � ε < 1. The number of elapsing e-folds is given in general by

N = −
∫

dH

εH
(13)

nd in USR it can be much smaller compared to SR if εSR � ε . 
hus, when considering an inflation model that results in periods 
f USR, but only SR is assumed, there is a danger of overestimating 
he number of e-folds it takes for the field to roll down.

It is evident that USR depends on having substantial kinetic 
ensity, which cannot decrease faster than free-fall. However, if 
ne begins inflation at the extremely flat region with very small 
inetic density, then SR may be attained, quickly, even immedi-
tely. Now, the initial conditions for inflation are shrouded by the 
o-hair theorem, which renders them academic, because all mem-
ry is lost once the inflationary attractor is reached. Thus, provided 

nflation begins comfortably before the cosmological scales exit the 
orizon, the initial conditions of the inflaton field can be taken to 
orrespond to kinetic density small enough to avoid USR despite 
n extremely flat scalar potential. This can rescue inflation models 
uch as inflection-point inflation, which may have problems with 
SR. To quantify how small the initial kinetic density needs to be, 

e first investigate linear inflation.
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3. Ultra-slow-roll in linear inflation and beyond

We consider the inflation model:

V = V 0 + M3φ , (14)

where V 0 is a constant density scale and M is a mass scale. Then
the Klein–Gordon Eq. (1) becomes:

φ̈ + 3H0φ̇ + M3 = 0 , (15)

where H2
0 ≡ V 0/3m2

P and we assumed V 0 	 M3φ. The above has
the general solution

φ̇ = Ce−3�N − M3

3H0
, (16)

where �N = H0�t is the elapsing e-folds and C is a constant. We
also find

φ̈ = −3H0Ce−3�N . (17)

If initially (�N = 0) the velocity of the field is φ̇0 = 0, then C =
M3/3H0 and the Klein–Gordon suggests that φ̈0 = −M3. Then, as
time continues, the above suggest that the Klein–Gordon becomes

−M3e−3�N + M3(e−3�N − 1) + M3 = 0 . (18)

Notice that, even though the friction term begins as zero it soon
(in a single e-fold) dominates over the acceleration term and the
slow-roll (SR) condition is recovered, where φ̈ is negligible and V ′
is balanced by 3Hφ̇ . Thus if we start with zero velocity, we have
SR immediately afterwards.

Now suppose that, originally φ̇ 
= 0. If |C | � M3/3H0 then
φ̇ � φ̇0 � −M3/3H0 (cf. Eq. (16)), which means that the fric-
tion term is 3Hφ̇ � −M3 = V ′ and we have SR. Thus we always
obtain immediately SR if |C | ≤ M3/3H0. If |C | 	 M3/3H0 then
3H0|φ̇0| � 3H0|C | > M3, which means that the friction term ini-
tially dominates over the slope term and is balanced by the ac-
celeration term, |φ̈0| = 3H0|C | according to Eq. (17). Thus, the
Klein–Gordon is φ̈ + 3Hφ̇ � 0 (cf. Eq. (10)), which gives rise to
USR. USR continues until 3H0|C |e−3�N = M3, when all three terms
in the Klein–Gordon become comparable. Afterwards, the fric-
tion term becomes 3Hφ̇ � −M3, which counterbalances the slope
term, while the acceleration term becomes negligible. Thus, we re-
cover SR.

Therefore, USR lasts

�NUSR = 1

3
ln

(
3H0|C |

M3

)
= 1

3
ln

⎛
⎜⎝3H0

√
2ρ0

kin

M3

⎞
⎟⎠ , (19)

where ρ0
kin ≡ 1

2 φ̇2
0 is the initial kinetic density, which is ρ0

kin � 1
2 C2

for large |C |.
All in all, we find that, to obtain a sizeable period of USR, we

need

|C | 	 M3/3H0 ⇔ ρ0
kin >

M6

18H2
0

. (20)

Otherwise, we have SR only. Note that, if M = 0 and the potential
is exactly flat, SR is never recovered [3].

We may generalise the above for an arbitrary potential, as fol-
lows. At extremely flat region of the potential we set M3 ≡ V ′(φ f )

and H2
0 = V (φ f )/3m2

P and enforce the bound in Eq. (20), where
φ f corresponds to the flattest part of the potential. Thus, to avoid
USR we need

1 ˙2 (V ′)2m2
P

∣∣∣ 1

ρkin(φ f ) ≡

2
φ f ≤

6V
∣∣
φ f

=
3
εSR(φ f )V (φ f ) . (21)
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The above makes sense, because the kinetic density in SR is

ρSR
kin = 1

2

(
V ′

3H

)2

= 1

3
εSR V , (22)

where we used Eqs. (7) and (9). Thus, the bound in Eq. (21) re-
ally requests that the kinetic density in the flat patch be at most
the one corresponding to SR: ρkin(φ f ) ≤ ρSR

kin. This makes sense be-
cause if one has kinetic density in excess of ρSR

kin, the friction term
in Eq. (1) cannot be balanced by the slope term and we have USR.

In view of the above, we can also recast Eq. (19) as

�NUSR = 1

6
ln

(
3ρ0

kin

εSR V

)
, (23)

where we used the potentially dominated Friedman equation.

4. Ultra-slow-roll in inflection-point inflation

We now focus on inflection-point inflation, which may feature
USR. Inflection point inflation corresponds to the case of a flat
step on the otherwise steep potential wall. This step is formed be-
cause of opposing terms in the potential which almost cancel each
other. There are many model realisations, most notably A-term in-
flation [9], MSSM inflation [10] and many others [11]. However, in
the vast majority of these works the USR phase has not been con-
sidered, which may cast doubt on some of their findings.

To avoid the USR period, one only needs to assume that the
initial kinetic density is small enough according to the bound in
Eq. (21), where φ f now corresponds to the inflection point, which
is the flattest part of the potential plateau. This can be under-
stood as follows. The potential for inflection-point inflation can be
crudely approximated by three consecutive segments of linear po-
tential. Inflation only takes place along the flattest segment, and it
is similar to linear inflation.

While rolling from large values of φ to small, when the field
reaches the flat segment then there is an abrupt reduction in |V ′|
Because the friction term in the Klein–Gordon was at least as large
as the slope term before reaching the flat segment (i.e. we had SR
or free-fall), afterwards, the friction term cannot be balanced by
the (substantially reduced) slope term. Thus, the acceleration term
rushes to balance it and we have USR.

Now, during USR, we have ρkin ∝ a−6 so that

φ̇φ̈ = ρ̇kin = −6Hρkin ∝ a−6, (24)

where we took H � constant. Because |φ̇| = √
2ρkin ∝ a−3, the

above suggests that |φ̈| ∝ a−3. After crossing the inflection point
though, the slope of the potential begins to increase, while the ac-
celeration decreases, as we have seen. At some point, they meet
each other and then the friction term changes allegiances and be-
comes locked with the slope term, so that SR is recovered.

But what if the evolution of the field had already begun at the
flat patch? Then, provided the kinetic density is small enough, one
can immediately have SR inflation [12]. The bound in Eq. (21) is
a conservative estimate on the maximum kinetic density because
the slope at the inflection point is smaller than at the rest of the
plateau.

5. Quantum diffusion

Now, we briefly discuss quantum diffusion. If the potential is
extremely flat, quantum fluctuations of the field may dominate
its variation. The quantum variation of the field per Hubble time
δt = H−1 is typically given by the Hawking temperature in de Sit-
ter space δφ = H/2π . Thus, the kinetic density of quantum fluctu-

ations is

NOLOGIES____________________________
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diff
kin = 1

2

(
δφ

δt

)2

= H4

8π4
. (25)

his should be interpreted as the lowest value the kinetic density 
an have. If |V ′| < 3

2π H3 then quantum diffusion overwhelms SR,1

o that the number of USR e-folds is

NUSR = 1

6
ln

(
ρ0

kin

ρdiff
kin

)
= 1

3
ln

⎛
⎜⎝6π

√
2ρ0

kin m2
P

V

⎞
⎟⎠ , (26)

here we used ρkin ∝ a−6 in USR and the potential dominated 
riedman equation.

. Perturbations

We now comment briefly on the curvature perturbation during 
SR inflation. This has been studied extensively in Ref. [5]. Here 
e note that, during USR there is a spike in the curvature per-
rbation, which may potentially lead to the copious production 

f primordial black holes, that can substantially contribute to the 
ark matter in the Universe [6,13]. This can be understood as fol-
ws.

For the spectrum of the curvature perturbation we have

P = H2

2πφ̇
⇒ P = H2

8π2m2
P ε

, (27)

here we used that 2m2
P Ḣ = −φ̇2 and Eq. (3).

In SR inflation the variation of ε = εSR is very small, so P
mains roughly constant, which corresponds to an almost scale-
variant spectrum of perturbations. Indeed, the variation of ε
 traced by ε2 ≡ ε̇/εH (cf. Eq. (4)). In SR, Eq. (8) suggests that 
2| = |4ε − 2η| � 1.

Things are different during USR, though. Because ε = 3
2 φ̇2/V , 

here V � 3m2
P H2 and φ̇2 = 2ρkin ∝ a−6 during USR inflation, we 

nd ε ∝ a−6 ∝ e−6�N , where �N is the elapsing USR e-folds. Thus, 
e obtain that P ∝ e6�N and the curvature perturbation grows ex-
onentially during USR inflation.2

Note, though, that, were USR not considered, according to 
q. (27), the usual SR would lead to an even more dramatic in-
rease in P because εSR � ε when traversing an extremely flat 
atch of the potential. This, however, does not happen as the field 
vershoots” the flat patch [6] “surfing” on its decreasing kinetic 

ensity.

. Conclusions

In conclusion, we have investigated ultra-slow-roll (USR) infla-
on, which may take place when the inflationary potential be-
omes extremely flat. We have showed that this is a temporary 
hase of inflation, not an attractor, and obtained an estimate of 
ow many e-folds it lasts, depending on the initial kinetic den-
ity of the inflaton field. We have discussed how the field can 
epart from the usual slow-roll (SR) when crossing an extremely 
at patch in the scalar potential. SR would force the field to spend 
 lot of time traversing the flat patch. Instead, the field “glosses 
ver” the flat patch in a moderate number of e-folds. Because the 
umber of e-folds is of paramount importance when calculating 
flationary observables, we argued that USR has to be taken into 

ccount, when necessary. In particular, we looked into inflection-
oint inflation, which exhibits a flat patch near the inflection point 

1 Because |φ̇| = |V ′|/3H < H2/2π = δφ
δt .

2 Note that P must be evaluated at the end of USR and not at horizon exit [3,5].
___________________________WORLD TECHN
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 the potential, that may give rise to USR. Models which do not 
ke this into account are in danger of miscalculating the values 

f inflationary observables. However, this danger can be averted 
 one assumes that the field begins its evolution already on the 
at patch (e.g. near the inflection point) with small initial kinetic 
ensity. We obtained a conservative bound on the initial kinetic 
ensity of the field, which manages to avoid USR inflation and ren-
er the SR treatment valid.
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In this Letter, we study analytically the evolutions of the flat Friedmann–Lemaitre–Robertson–Walker
(FLRW) universe and its linear perturbations in the framework of the dressed metric approach in loop
quantum cosmology (LQC). Assuming that the evolution of the background is dominated by the kinetic
energy of the inflaton at the quantum bounce, we find that both evolutions of the background and its
perturbations are independent of the inflationary potentials during the pre-inflationary phase. During
this period the effective potentials of the perturbations can be well approximated by a Pöschl–Teller
(PT) potential, from which we find analytically the mode functions and then calculate the corresponding
Bogoliubov coefficients at the onset of the slow-roll inflation, valid for any inflationary model with a
single scalar field. Imposing the Bunch–Davies (BD) vacuum in the contracting phase prior to the bounce
when the modes are all inside the Hubble horizon, we show that particles are generically created due
to the pre-inflation dynamics. Matching them to those obtained in the slow-roll inflationary phase, we
investigate the effects of the pre-inflation dynamics on the scalar and tensor power spectra and find
features that can be tested by current and forthcoming observations. In particular, to be consistent with
the Planck 2015 data, we find that the universe must have expanded at least 141 e-folds since the
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bounce.

1. Introduction

The paradigm of cosmic inflation has achieved remarkable suc-
cesses in solving several problems of the standard big bang cos-
mology and predicting the primordial perturbation spectra whose
evolutions explain both the formation of the large scale struc-
ture of the universe and the small inhomogeneities in the cos-
mic microwave background (CMB) [1]. Now they are matched to
observations with unprecedented precisions [2–4]. However, such
successes are contingent on the understanding of physics in much
earlier epochs when energies were about the Planck scale. This
leads to several conceptual issues. For example, to be consistent
with observations, the universe must have expanded at least 60
e-folds during its inflationary phase. However, if the universe had
expanded a little bit more than 70 e-folds during inflation (as it
is the case in a large class of inflationary models [5]), then one
* Corresponding author.
E-mail addresses: Tao_Zhu@baylor.edu (T. Zhu), anzhong_wang@baylor.edu

(A. Wang), klaus_kirsten@baylor.edu (K. Kirsten), gerald_cleaver@baylor.edu
(G. Cleaver), qin_sheng@baylor.edu (Q. Sheng).

____________________________WORLD TECH
can show that the wavelengths of all fluctuation modes which are
currently inside the Hubble radius were smaller than the Planck
length at the beginning of the period of inflation. This was referred
to as the trans-Planckian issue in [6], and leads to the question
about the validity of the assumption: the matter fields are quantum
in nature but the spacetime is still classical, which are used at the be-
ginning of inflation in order to make predictions [1]. In addition
insisting on the use of general relativity (GR) to describe the in-
flationary process will inevitably lead to an initial singularity [7]
Moreover, the inflation paradigm usually sets the BD vacuum state
at the time when the wavelength of fluctuations were well within
the Hubble horizon during the inflationary process. However, such
treatment ignores the pre-inflationary dynamics which could lead
to non-BD states at the onset of inflation, even when these modes
were well inside the Hubble horizon during inflation. For more de-
tail about the sensibility of the inflationary paradigm to Planckian

physics, we refer the readers to [6,8].

All the issues mentioned above are closely related to the fact 
that we are working in the regime where GR is known to break 
down. One believes that new physics in this regime – a quantum 
theory of gravity, will provide a complete description of inflation as 
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ell as its pre-inflationary dynamics. LQC is one of such theories
hat offers a framework to address these issues, in which the infla-
ionary scenarios can be extended from the onset of the slow-roll 
nflation back to the Planck scale in a self-consistent way [9–11]. 
emarkably, the quantum geometry effects of LQC at the Planck 
cale provide a natural resolution of the big bang singularity (see 
12–15] and references therein). In such a picture, the singular-
ty is replaced by a quantum bounce, and the universe that starts 
t the bounce can eventually evolve to the desired slow-roll infla-
ion [16–23]. An important question now is whether the quantum 
ounce can leave any observational signatures to current/forth-
oming observations, so LQC can be placed directly under exper-
mental tests. The answer to this question is affirmative. In fact, 

ith some (reasonable) assumptions and choice of the initial con-
itions, the deformed algebra approach already leads to inconsis-
ence with current observations [21]. Note that in general there are 
wo main approaches to implement cosmological perturbations in 
he framework of LQC, the dressed metric and deformed algebra ap-
roaches [12–14]. In both, the primordial perturbations have been 

ntensively studied numerically [10,11,19–23].
One of our purposes of this Letter, in contrast to the previous 

umerical studies, is to present an analytical analysis of the effects 
f the quantum bounce and pre-inflation dynamics on the evo-

utions of both background and spectra of the scalar and tensor 
erturbations, in the framework of the dressed metric approach 
9–11]. It is expected that such an analysis will provide a more 
omplete understanding of the problem and deeper insights. In the 
ollowing, we will focus on the case that the kinetic energy of the 
nflaton dominates the evolutions at the bounce, because a poten-
ial dominated bounce is either not able to produce the desired 
low-roll inflation [22], or leads to a large amount of e-folds of ex-
ansion. This will wash out all the observational information about 
he pre-inflation dynamics and the resulting perturbations are the 
ame as those given in GR [12–14]. Assuming that the influence of 
he potential at the bounce is negligible, our studies show that:

• During the pre-inflationary phase, the evolutions of the back-
ground and the scalar and tensor perturbations are indepen-
dent of the inflationary potentials. Thus, the evolution of the 
background is the same for any chosen potential, and in this 
sense we say that it is universal.

• During this phase the potentials of the scalar and tensor per-
turbations can be well approximated by an effective PT poten-
tial, for which analytic solutions of the mode functions can be 
found. The Bogoliubov coefficients at the onset of the slow-
roll inflation can thereby be calculated [cf. (13)], which are 
valid for any slow-roll inflationary model with a single scalar 
field. Assuming that the universe is in the BD vacuum in the 
contracting phase (the moments where t � −ts as shown in 
Fig. 2) we find that particle creations occur generically during 
the pre-inflation phase.

• Oscillations always happen in the power spectra, and their 
phases for both scalar and tensor perturbations are the same, 
in contrast to other theories of quantum gravity [6,24].

• Fitting the power spectra to the Planck 2015 data [4], we find 
the lower bound for Ntot ≡ ln (a0/aB) > 141 (95% C.L.), where 
aB and a0 denote the expansion factor at the bounce and 
current time, respectively. Details of the calculations will be 
reported elsewhere [25].

. Quantum bounce

In LQC, the semi-classical dynamics of a flat FLRW universe 
ith a single scalar field φ and potential V (φ) is described by 
9–11], t

___________________________WORLD TECHN
Tig. 1. Evolutions of a(t) and wφ for the power-law V (φ) = 1
2 m4−nφn and Starobin-

ky V (φ) = 3
4 M2 M2

Pl(1 − e−√
2/3φ/MPl )2 potentials. Solution (3) is also shown. We 

hoose m = 1.3 × 10−6 for n = 2, m = 1.1 × 10−3 for n = 1/3, and M = 2.5 × 10−6

or the Starobinsky potential. In all the cases we set mPl = 1.

H2 = 8π

3m2
Pl

ρ

(
1 − ρ

ρc

)
, (1)

φ̈ + 3Hφ̇ + V ,φ = 0, (2)

here H ≡ ȧ/a is the Hubble parameter, a dot denotes the deriva-
ive with respect to the cosmic time t , and ρc is the maximum 
nergy density, with ρ ≡ φ̇2/2 + V (φ) ≤ ρc . Eq. (1) shows that the 
ig bang singularity now is replaced by a non-singular quantum 
ounce at ρ = ρc [cf. Fig. 1]. The background evolution has been 
xtensively studied, and one of the main results is that, following 
he bounce, a desired slow-roll inflation phase is almost inevitable, 
rovided that the evolution is dominated initially by the kinetic 
nergy of the scalar field at the quantum bounce [12,17,18,22]. In 
his Letter, we will focus on this case. Then, ignoring the potential 
erm V (φ), from Eqs. (1) and (2) we find

(t) = aB

(
1 + γB

t2

t2
Pl

)1/6

, (3)

here aB ≡ a(tB), γB ≡ 24πρc/m4
Pl, and tPl denotes the Planck 

ime. In writing the above expression we also set tB = 0. In Fig. 1
e display the above analytical solution and the equation of state

φ ≡ φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
, (4)

ogether with several numerical solutions of a(t) for different po-
entials. From this figure, specially the curves of w , we can see 
φ

hat the universe experiences three different phases: bouncing, 
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transition, and slow-roll inflation. During the bouncing phase, wφ re-
mains almost one until t/tPl � 104. Then, it suddenly drops from 1
to −1 at t/tPl � 105. This transition phase is very short in com-
parison to the other two, and the kinetic energy of the scalar field
drops almost 12 orders from the beginning of this phase to the end
of it. Afterwards, the potential energy V (φ) dominates the evolu-
tion, and wφ remains practically −1 during the whole slow-roll in-
flation phase. The end of this transition phase can be well defined
as the moment where ä(t = ti) = 0, as shown in Fig. 1. Afterward
the expansion of the universe will be accelerating ä(t > ti) > 0
However, unlike ti , the starting point of the transition phase is not
abrupt, even though the division is very clean in concept, as one
can see from Fig. 1. Fortunately, the results are not sensitive to
such a choice at all, as argued below and shown in detail in [25]
In particular, we find that the choices of wφ = 0.95 and wφ = 2/3
make no (observational) difference in the power spectra and the
total e-folds of the expansion of the universe.

During the bouncing phase, the evolution of a(t) is independent
of the choice of φB and the choice of the potential V (φ) of the scalar
field. This is because V (φ) remains very small and the kinetic
energy is completely dominant during this whole phase. For ex-
ample, for the potential V (φ) = V 0φ

n with n = 2, we find that
V (φ)/m4

Pl ∈ (2 × 10−11, 4.5 × 10−11); for n = 1/3, V (φ)/m4
Pl ∈

(9 ×10−12, 1.2 ×10−11); and for the Starobinsky potential, we have
V (φ)/m4

Pl ∈ (7 × 10−13, 7.3 × 10−13). This explains why the evolu-
tion of a(t) is universal during this period.

3. Primordial power spectra

The linear perturbations in the dressed metric approach [9,10]
were studied numerically in detail with the inflationary poten-
tial V (φ) = m2φ2/2 [11]. In this Letter, our goals are two-fold:
First, we study these perturbations analytically, and provide their
explicit expressions. Second, we show that they are independent
of the choices of the slow-roll inflationary potentials, so they are
universal. In fact, this follows directly from the universality of the
evolution of a(t) during this phase. To show this, let us start with
the scalar and tensor perturbations [9–11],

μ
(s,t)
k (η)′′ +

(
k2 − a′′

a
+ U (s,t)(η)

)
μ

(s,t)
k (η) = 0, (5)

where U (s)(η) ≡ a2
(
f2 V (φ) + 2fV ,φ(φ) + V ,φφ(φ)

)
, U (t)(η) = 0

with f ≡ √
24πGφ̇/

√
ρ . μ

(s,t)
k (η) denote the Mukhanov–Sasak

variables with μ(s)
k (η) = zsR and μ(t)

k (η) = ahk/2, where R de-
notes the comoving curvature perturbations, hk the tensor per-
turbations, and zs ≡ aφ̇/H . A prime denotes the derivative with
respect to the conformal time η(t) = ∫ t

tend
dt′/a(t′), where tend is

the time when the inflation ends. Near the bounce, U (s)(η) is neg-
ligible [10,11,25]. During the transition phase, ρ drops down to
about 10−12ρc, and (a′′/a − U (s)(η)) → z′′

s /zs , so thereafter the
perturbations reduce precisely to those of GR [10,13].

The evolutions of the perturbations depend on both background
and wavenumber k. As we consider only the case in which the
kinetic energy dominates the evolution of the background at the
bounce, both scalar and tensor perturbations follow the same
equation of motion during the bouncing phase (t/t Pl ≤ 104). In this
case, the term a′′/a in Eq. (5) defines a typical radius λ = √

a/a′
for a′′ > 0, which plays the same role as that of the comoving Hub-
ble radius LH = (aH)−1 often used in GR. However, for a better
understanding, we find that here it is more proper to use a/a′′, as
shown schematically in Fig. 2. For example, when the modes are
inside the radius (1/k2 < λ2), the solution of Eq. (5) is of the form

e±i
∫ √

k2−a′′/adη . When the modes are outside of the “horizon” (ra-
dius) (1/k2 > λ2), it is of the form, e± ∫ √
a′′/a−k2dη . The term a′′/a

____________________________WORLD TECH
T
Fig. 2. Schematic plot of λ2[≡ a/a′′], where a′′/a

∣∣
t=ts

= 0 with ts � 0.2tPl , and
ä(ti) = 0 with ti being the starting time of the inflationary phase. During the slow-
roll inflation, a/a′′ = LH /2. The expansion factor a(t) can be analytically extended
to a contracting phase t < tB. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

has its maximum at the bounce, a′′/a|t=0 = a2
BγBm2

Pl/3, which de-
fines a typical scale kB = √

γB/3aBmPl (the blue solid curve in
Fig. 2), so we can use it to classify different modes. Some modes
with large values of k2 
 k2

B (the region below the low (orange)
dashed line in Fig. 2) are inside the horizon all the time unti
they exit the Hubble horizon during the slow-roll inflation. Some
of the modes with smaller k2 � k2

B (the region above the upper
(green) dashed line in Fig. 2) exit and re-enter the horizon during
the bouncing process, and will finally re-exit the Hubble horizon
during the slow-roll inflation. Since the modes with k 
 kB are in-
side the horizon during the whole pre-inflationary phase, they wil
have the same power-law spectra as those given in GR [1]. We are
interested in the modes with k � kB (the shaded region in Fig. 2)
However, the perturbations for these modes have different behav-
iors when they are inside or outside the horizon, which makes
Eq. (5) extremely difficult to be solved analytically.

In this Letter, we first present an analytical solution of Eq. (5)
by using an effective Pöschl–Teller (PT) potential. To this goal, let
us first consider the quantity,

V (η) ≡ a′′

a
= a2

B
γBm2

Pl(3 − γBt2/t2
Pl)

9(1 + γBt2/t2
Pl)

5/3
. (6)

If we consider Eq. (5) as the Schrödinger equation, then V (η)

serves as an effective barrier during the bouncing phase. Such a
potential can be approximated by a PT potential for which we
know the analytical solution,

VPT(η) = V0cosh−2 α(η − ηB), (7)

where V0 = a2
BγBm2

Pl/3 and α2 ≡ 2a2
BγBm2

Pl = 6k2
B. From Fig. 3 we

can see that VPT(η) mimics V (η) very well. Introducing x and
Y(x) via x(η) = 1/(1 + e−2α(η−ηB)), Y(x) = [x(1 − x)]ik/(2α)μk(η)

we find that Eq. (5) reduces to,

x(1 − x)Y ′′ + [c3 − (c1 + c2 + 1)x]Y ′ − c1c2Y = 0, (8)

where Y ′ ≡ dY/dx and

c1 ≡ 1

2
+ 1

2α

√
α2 − 4V0 − ik

α
,

c2 ≡ 1

2
− 1

2α

√
α2 − 4V0 − ik

α
,

c3 ≡ 1 − ik

α
. (9)

NOLOGIES____________________________
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ig. 3. Comparison between the effective potential given by Eq. (6) and the PT po-
ential in Eq. (7). In this plot, we have set aB = 1, mPl = 1.

his equation is the standard hypergeometric equation, and its 
eneral solution is given by,

(PT)

k (η) = akxik/(2α)(1 − x)−ik/(2α)

× 2 F1(c1 − c3 + 1, c2 − c3 + 1,2 − c3, x)

+bk[x(1 − x)]−ik/(2α)
2 F1(c1, c2, c3, x). (10)

ere ak and bk are two integration constants to be determined by 
he initial conditions.

To impose them, let us first specify the initial time. A natu-
al choice is right at the bounce, at which the initial state can 
e constructed as the fourth-order adiabatic vacuum [9,10]. While 
uch constructions work well for large k, however, ambiguity re-
ains for modes with k < kB [10]. Another choice that has been 

requently used is a time during the contracting phase when the 
odes are well within the characteristic length λ, which is t �−ts

s shown in Fig. 2 [11,19–22,27]. In this Letter, we also shall make 
hat choice, as the main conclusions will not sensitively depend on 
hese choices, as shown in [11,25,26], and we require that at this 
nitial time the state should be the BD vacuum. Then, we find

k = 0, bk = eikηB

√
2k

. (11)

t should be noted that μ(PT)

k (η) of Eq. (10) and the above ini-
ial conditions are valid for any value of k. In particular, at the 
ounce it reduces to the one obtained in [10] with the fourth-order 
diabatic vacuum for large k > kB. This further confirms our above 
rguments. In Fig. 4 we compare our analytical approximate solu-
ion with the numerical (exact) one, which shows that they match 
xtremely well during the bouncing phase. After this period, the 
niverse soon sets to the slow-roll inflation phase, and the mode 

unctions of tensor and scalar perturbations are the well-known 
olutions given in GR [1]. When all the relevant modes are in-
ide the Hubble horizon (t < ti as shown in Fig. 2), they take the 
symptotic form [1],

(s,t)
k (η) � 1√

2k

(
αke−ikη + βkeikη

)
, (t < ti). (12)

n GR, one usually imposes the BD vacuum at the beginning of 
nflation, at which all the (physical) modes are inside the Hub-

le horizon, so that αG R

k = 1, βG R
k = 0. This in turn leads to the s

___________________________WORLD TECHN
T
ig. 4. Comparison between the analytical solution and numerical one with aB = 1, 
Pl = 1, and k = 6.

tandard power-law spectra. However, due to the quantum gravita-
ional effects, βk now does not vanish generically. To see this, we 
eed to match the GR solution to Eq. (10). Taking its limit t/tPl 
 1
nd then comparing it with the GR solution we find

αk = 
(c3)
(c3 − c1 − c2)


(c3 − c1)
(c3 − c2)
e2ikηB ,

βk = 
(c3)
(c1 + c2 − c3)


(c1)
(c2)
, (13)

here cn are the constants given by Eq. (9). This represents one 
f our main results. When k � kB we find that |βk|2 � 10. That is, 
articles of such modes were created during the bouncing phase. 
owever, such creation will not alter significantly the evolution of 

he background, nor the perturbations during the slow-roll infla-
ion period, as shown explicitly in [10]. Then, from Eq. (10) we 
btain P(s,t)

LQC (k) = |αk + βk|2P(s,t)
GR (k) ≡ (1 + δP )P(s,t)

GR (k), where

P ≡
[

1 + cos

(
π√

3

)]
csch2

(
πk√
6kB

)

+√
2 cos

(
π

2
√

3

)√
cos

(
π√

3

)
+ cosh

(
2πk√

6kB

)

×csch2
(

πk√
6kB

)
cos (2kηB + ϕk), (14)

here

k ≡ arctan

{
Im[
(c1)
(c2)


2(c3 − c1 − c2)]
Re[
(c1)
(c2)
2(c3 − c1 − c2)]

}
.

(15)

n Fig. 5, we display the ratio between the power spectrum with 
he bounce effects and the standard power-law spectrum in GR, 
.e., 1 + δP with δP being given by the above equation, as a func-
ion of wavenumber. We would like to note that Fig. 5 is consistent 
ith that given in [9,10] (cf. Fig. 1 in the first paper of [9] and 

ig. 5 in [10]). While the results obtained in [9,10] are purely 
umerical, here ours are derived directly from the analytical ex-
ression of Eq. (14).

It is remarkable to note that, although it is well-known that 
uantum gravitational effects often lead to oscillations [6], in LQC 
he oscillating phases for both scalar and tensor perturbations are the 

ame. In Eq. (14), the second term is oscillating very fast and 
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Table I
The best fitting values of the six cosmological parameters and the constraints on kB/a0 and r at 95% C.L for different cosmological models from different data combinations.

Parameter Planck TT + lowP Planck TT, TE, EE + lowP Planck TT + lowP + r Planck TT, TE, EE + lowP + r

Bh2 0.022355 0.022193 0.022322 0.022064
ch2 0.11893 0.12000 0.11908 0.12071
100θMC 1.04115 1.04065 1.04080 1.04057
τ 0.077835 0.089272 0.081955 0.085259
ln(1010 As) 3.088 3.112 3.101 3.104
ns 0.9662 0.9647 0.9658 0.9607

kB/a0 < 3.12 × 10−4 < 3.05 × 10−4 < 3.14 × 10−4 < 3.14 × 10−4
r – – < 0.113 < 0.107
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WFig. 5. The ratio P(s,t)
LQC (k)/P(s,t)

GR (k) between the power spectrum with the bounce
effects and the standard power-law one obtained in GR. The dotted blue curve de-
notes the analytical power spectrum, which obviously oscillates rapidly with k. The
solid red curve shows the average of the oscillating spectrum. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

can be ignored observationally [9–11]. On the other hand, the
first term, proportional to csch2[πk/(

√
6kB)], decreases exponen-

tially as k increases, and the power spectra get enhanced (reduced)
for small (large) k. The modes k � kB, of the Planck scale at the
bounce, are initially inside the radius defined by λ = √|a/a′′|, and
then leave and re-enter it during the bouncing phase. The modes
with k 
 kB are always inside the radius before they leave the
Hubble horizon during the slow-roll inflation, thus they finally lead
to a standard power spectrum.

It should also be noted that the solution with the PT potential
is not valid for the modes with a very small k (i.e., k � |a′′/a|
holds all the time during the bouncing phase). For these modes, if
we ignore the k2 term in Eq. (5), the solution can be approximated
by [19],

μk(η) � aka(η) + bk

a(η)
. (16)

However, we are not interested in these modes, as they currently
are still outside of the observable universe.

4. Observational constraints

The quantum corrections (14) are k-dependent and expected to
be constrained by observations. In the following, we perform the
CMB likelihood analysis by using the Planck 2015 data [4], with
the MCMC code developed in [28]. We assume the flat cold dark
matter model with the effective number of neutrinos Neff = 3.046
and choose the total neutrino mass as �m = 0.06 eV. We also
ν

write

____________________________WORLD TECH
TFig. 6. Observational constraints for (ns, kB/Mpc−1) at 68% and 95% C.L. by using
the Planck 2015 TT + lowP and TT, TE, EE + lowP data with a0 = 1. The upper pane
only considers the scalar spectrum, while the bottom includes the tensor.

P(s,t)
GR (k) = A(s,t)

(
k

k∗

)n(s,t)
inf

, (17)

where k∗(= 0.05 Mpc−1) denotes the pivot scale, n(s)
inf = ns − 1 and

n(t)
inf = nt . We vary the seven parameters, Bh2, ch2, τ , �s, ns, As,

kB/a0 [30]. For the six cosmological parameters except kB/a0
(Bh2, ch2, τ , �s, ns, As), we use the same prior ranges as those
adopted in [29], while for the parameter kB which is related to the
bouncing effects, we set the prior range to kB ∈ [10−8, 0.002].

In particular, we use the high-l CMB temperature power spec-
trum (TT) and polarization data (TT, TE, EE) respectively with the
low-l polarization data (lowP) from Planck 2015. In Table I, we
list the best fit values of the six cosmological parameters and
constraints on kB/a0 and r at 95% C.L. for different cosmological
models from different data combinations.

Marginalizing other parameters, we find that kB/a0 is con-
strained by the Planck TT + lowP (Planck TT, TE, EE + lowP) to

kB

a0
< 3.12 × 10−4 Mpc−1(3.05 × 10−4), (18)

at 95% C.L [cf. Fig. 6]. When we consider the ratio r = A(t)/A(s)
the Planck TT + lowP (Planck TT, TE, EE + lowP) data yields

kB

a0
< 3.14 × 10−4 Mpc−1(3.14 × 10−4), (19)

at 95% C.L. These upper bounds show that the observational con-
straints on the bouncing effects are robust with respect to dif-
ferent data sets (without/with the polarization data included) and
whether the tensor spectrum is included or not. In Fig. 7 we show
constraints on a couple of cosmological parameters and their re-

spective probability distributions for the CosmoMC runs described 
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015 data. Note that in the numerical simulations we set a0 = 1.

bove and for the results from the Planck 2015 data. We notice 
hat the colored curves which represent the probability distribu-
ions of kB/a0 are almost perfectly superposed, which strongly 
ndicates again that the constraints on kB derived in this paper 
re robust.

Using the relation

B

0
=

√
γB

3

aB

a0
mPl =

√
γB

3
mPle

−Ntot , (20)

here Ntot ≡ ln (a0/aB) denotes the total e-folds from the quantum 
ounce until today, then the above upper bounds on kB/a0 can be 
ranslated into the constraint on the total e-folds Ntot as

tot > 141 (95% C.L.), (21)

here we have taken ρc = 0.41m4
Pl [9,10]. This in turn leads to a 

ower bound of δN∗ ,

N∗ > Ntot − N∗ − Nafter, (22)

here δN∗ ≡ ln (a∗/aB), N∗ ≡ ln (aend/a∗), and Nafter ≡ ln (a0/aend), 
here a denotes the expansion factor at the moment that the 
∗

urrent Horizon exited the Hubble horizon during the slow-roll in- t

___________________________WORLD TECHN
ation, and aend is that of the end of inflation. Taking N∗ � 60 �
after, we find

N∗ � 21. (23)

Note that our results given by Eqs. (21) and (23) are based on 
hree assumptions: (1) the Universe is filled with a scalar field with 
ts potential V (φ); (2) the background evolution initially is dom-
nated completely by the kinetic energy of the scalar field; and 
3) the Universe is in the BD vacuum state in the contracting phase 
t � −ts , as shown in Fig. 2).

. Conclusions

In this Letter, we analytically studied the evolutions of the back-
round and the linear scalar and tensor perturbations of the FLRW 
niverse in LQC within the framework of the dressed metric ap-
roach [9–11], and showed that, if the pre-inflationary phase is 
ominated by the kinematic energy of the inflaton, the evolutions 
ill be independent of the slow-roll inflationary models during this 

hase [cf. Fig. 1 and Eqs. (3) and (14)]. Imposing the BD vacuum 
n the contracting phase (t � −ts as shown in Fig. 2), we obtained 
he Bogoliubov coefficients (13) at the onset of the slow-roll infla-

ion, which shows clearly that during the pre-inflationary phase, 
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particles are generically created ( βk|t=ti
�= 0), and the resulting

power spectra are k-dependent. This is in contrast to GR (where
the BD vacuum ( βk|t=ti

= 0) is usually imposed at the onset of
the slow-roll inflation [1]. This provides a potential window to test
LQC directly by the measurements of CMB and galaxy surveys [31]
In particular, fitting the power spectra to the Planck 2015 tempera-
ture (TT+ lowP) and polarization (TT, TE, EE+ lowP) data, we found
the lower bound for Ntot ≡ ln (a0/aB) > 141 (95% C.L.). That is, to
be consistent with current observations of CMB, the universe must
have expanded at least 141 e-folds since the bounce.
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a r t i c l e i n f o a b s t r a c t

In this paper, we will analyze the energy dependent deformation of massive gravity using the formalism
of massive gravity’s rainbow. So, we will use the Vainshtein mechanism and the dRGT mechanism for the
energy dependent massive gravity, and thus analyze a ghost free theory of massive gravity’s rainbow. We
study the energy dependence of a time-dependent geometry, by analyzing the radiating Vaidya solution
in this theory of massive gravity’s rainbow. The energy dependent deformation of this Vaidya metric will
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W1. Introduction

It is expected that the usual energy-momentum dispersion
relation will get deformed in the UV limit due to quantum
gravitational effects. In fact, such a deformation of the usual
energy-momentum dispersion relation has been observed to oc-
cur in loop quantum gravity [1,2], discrete spacetime [3], string
field theory [4], spacetime foam [5], spin-networks [6], and non-
commutative geometry [7]. As the usual energy-momentum dis-
persion relation is fixed by Lorentz symmetry, the deformation of
the usual energy-momentum dispersion relation in the UV limit
seems to indicate a breaking of Lorentz symmetry in the UV limit.
In fact, such a violation of Lorentz symmetry can be used to
explain anomalies in ultra-high energy cosmic rays and TeV pho-
tons [8,9]. It may be noted that the threshold anomalies are only
predicted by deformations where the usual energy-momentum
dispersion relation is deformed by a preferred reference frame,
and they do not occur in deformation where no such preferred
reference frame exists [10]. The deformation of the usual energy-
momentum dispersion relation can be explained using the doubly
special relativity (DSR) [11,12]. The DSR is an extension of the
special theory of relativity, in which the Planck energy and the
velocity of light are universal constants. So, just as in special rel-
* Corresponding author.
E-mail addresses: heydarzade@azaruniv.edu (Y. Heydarzade),

prudra.math@gmail.com (P. Rudra), f.darabi@azaruniv.edu (F. Darabi),
ahmed.ali@fsc.bu.edu.eg (A.F. Ali), mir.faizal@ubc.ca, mir.faizal@uleth.ca (M. Faizal).

____________________________WORLD TECH
Tativity, no object can attain a velocity greater than the velocity of
light, in DSR no object can have an energy greater than the Planck
energy. The DSR can be generalized to curved spacetime, and the
resulting theory is called gravity’s rainbow [13]. In this formalism,
the spacetime geometry is described by a rainbow of energy de-
pendent metrics, as the geometry of spacetime depends on the
energy of the probe. The gravitational dynamics in gravity’s rain-
bow can be studied using rainbow functions [14–22]. The gravity’s
rainbow has been used to study inflation [23,24], and a resolving
of the Big Bang singularity [25–27]. It may be noted that gravity’s
rainbow is related to Horava–Lifshitz gravity [28,29], and for a spe-
cific choice of rainbow functions, it produces the same results as
produced by Horava–Lifshitz gravity [30].

The main motivation for gravity’s rainbow comes from the ob-
servation that the supergravity is a low energy approximation to
the string theory [31–36]. This is because according to the renor-
malization group flow, constants depend on the scale at which a
theory [37,38]. Furthermore, the scale at which a theory is mea-
sured will depend on the energy of the probe used to measure
such a theory. Thus, as the constants in a theory depend explicitly
on the scale at which a theory is measured, they also depend im-
plicitly on the energy of the probe used to measure such constants.
Now string theory can be viewed as a two dimensional theory, and
the target space metric can be regarded as a matrix of coupling

constants of this two dimensional theory. As these coupling con-
stants would flow and depend explicitly on the scale at which the 
theory is measured, they would implicitly depend on the energy of 
the probe used to perform such a measurement. This would make 
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he metric of spacetime depend on the energy of the probe, and 
hus we would obtain gravity’s rainbow [13].

So, the gravity’s rainbow can be motivated from string theory, 
s the energy dependence of the spacetime metric can be moti-
ated from the flowing of target space geometry in string theory. 
t may be also noted that various solution obtained in string theory 
ave been generalized to massive gravity, which is a theory with 
assive gravitons. In fact, massive Type IIA supergravity has been 

tudied [39,40]. The Fermionic T-duality has also been studied for 
assive type IIA supergravity [41]. The relation between the mas-

ive IIA supergravity and M-theory has also been investigated [42]. 
 relation between massive IIA/IIB supergravities has also been an-
lyzed, and it has been demonstrated that a duality exists between 
uch massive supergravities [43,44]. Thus, it is possible to study 
assive supergravity in string theory, and so massive gravity is 

lso important in string theory. It may be noted that other solu-
ions motivated by string theory has been also studied in massive 
ravity. In fact, a brane in warped AdS spacetime has been con-
tructed in massive gravity [45]. This was done by analyzing the 
ffect of the mass term for the graviton on a infrared brane. A 
onextremal brane has also been analyzed in massive gravity [46]. 
s there is a good motivation to both study the massive gravity 
nd gravity’s rainbow from string theory, it is both interesting and 
mportant to study the rainbow deformation of massive gravity. So, 
he target space metric flows and becomes energy dependent, even 
n massive supergravities, and the bosonic part of this theory will 
e described by massive gravity’s rainbow. Thus, the rainbow de-

ormation of interesting solution massive gravity has been recently 
tudied [47–50].

It may be noted that massive gravity can also be phenomeno-
ogically motivated from accelerated cosmic expansion [51–56]. 
ven though there are problems with the massive gravity, these 
roblems can be resolved using the Vainshtein mechanism [57,
8]. However, the Vainshtein mechanism produces the Boulware–
eser ghosts [59]. It is possible to resolve this with ghosts fields 
y using the dRGT mechanism [60–67]. It is possible to have a 
ell defined initial value formulation for massive gravity. In fact, 

nitial value constraints for spherically symmetric deformations of 
at space, in such a massive theory of gravity have been studied 

68]. It has been demonstrated that even though the energy can 
e negative and even unbounded from below in certain sector of 
he theory, there is a physical sector of the theory, in which the 
nergy is positive and the ghosts are suppressed, and that the the-
ry is stable [68]. The negative energy sector remains disjointed, 
nd does not have any effect on the physical sector of this theory. 
he initial values for cosmological solutions have also been stud-

ed in massive gravity [69]. So, the theory has well defined posed 
nitial value formulation, and can be used to analyze the effects 
f graviton mass on various physical phenomena. The cosmologi-
al solutions in massive gravity have also been used to obtain an 
pper bound on the graviton mass [70]. The open FRW universes 
ave been also studied in massive gravity, and it has been possible 
o obtain universes with standard curvature and an effective cos-

ological constant, such a theory of massive gravity [71]. In fact, 
arious different solutions in massive gravity have been studied, 
nd the effect of such a mass on the physics of various systems 
as been discussed [72–77]. So, massive gravity is a very important 
heory of modified gravity, and it is important to study different 
olutions in massive gravity.

In fact, as both rainbow gravity, and massive gravity are mo-
ivated from string theory and phenomenology, we will analyze 
 solution in the rainbow deformation of the massive gravity 
47–50]. We will study Vaidya solutions in this theory of massive 
ravity’s rainbow because Vaidya spacetime has used to study in-

eresting physical system [78–81]. The Vaidya spacetime in massive 
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ravity has been constructed [82], and the AdS/CFT has been used 
o interstage field theory dual to a Vaidya-AdS solutions in massive 
ravity [83]. The Vaidya spacetime is also important in string the-
ry [85,86]. As Vaidya solution is important in string theory, and 
tring theory can also be used to motivate a rainbow deformation 
f massive gravity, we will study the Vaidya spacetime, massive 
ravity’s rainbow. It may be noted even though Vaidya solution 
as been studied in gravity’s rainbow [84] it has not been stud-

ed in massive gravity’s rainbow, and so such it is interesting to 
nalyze the Vaidya solution in massive gravity’s rainbow.

. The massive gravity’s rainbow

In this section, we study the time-dependent black hole solu-
ion using Vaidya metric. This metric will be made energy depen-
ent using the framework of massive gravity’s rainbow [47–50]. 
he four dimensional action for such a massive theory of gravity, 
an be written as

=
∫

d4x
√−g

[
R+M2

4∑
i

ciUi(g, f ) +Lm

]
, (1)

here M is the mass parameter in the massive gravity. Here f is 
he reference metric, ci are constants, and Ui are symmetric poly-
omials of the eigenvalues of the d × d matrix Kμ

ν = √
gμα fαν . 

hese symmetric polynomials can be written as

1 = [K],
2 = [K]2 − [K2],
3 = [K]3 − 3[K][K2] + 2[K3],
4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]. (2)

he square root in K can be defined using (
√

A)μν(
√

A)νλ = Aμ
λ

nd K = Kμ
μ . Now the equation of motion from this action, can 

e written as

μν +M2χμν = Tμν, (3)

here Gμν is the Einstein tensor, and χμν is given by

μν = − c1

2

(
U1 gμν −Kμν

) − c2

2

(
U2 gμν − 2U1Kμν + 2K2

μν

)
− c3

2
(U3 gμν − 3U2Kμν + 6U1K2

μν − 6K3
μν)

− c4

2
(U4 gμν − 4U3Kμν + 12U2K2

μν − 24U1K3
μν

+24K4
μν). (4)

e will analyze a spatial reference metric, in the basis (t, r, θ, φ)

88], for this theory of massive gravity. Thus, we can write

μν = diag(0,0, c2hij), (5)

here hij is two dimensional Euclidean metric and c is a positive 
onstant. We will now write the Vaidya metric for this massive 
heory, deformed by gravity’s rainbow. So, we will analyze the 
ainbow deformation of the Vaidya metric, in the case of advanced 
ime coordinate. These rainbow deformations of this metric can be 
xpressed as [47–50]

s2 = − 1

F2(E)

(
1 − m(t, r)

r

)
dt2 + 2

F(E)G(E)
dtdr

1
+
G2(E)

r2d�2
2, (6)

OLOGIES____________________________



 
 
 

 
 

, 

 

 
, 
. 

 
 

 
 
 
 
 

 

 

 

 

 

181Vaidya spacetime in massive gravity’s rainbow
W

where F(E) and G(E) are known as the gravity’s rainbow func-
tions. It may be noted that here E = Es/E P , where Es is the max-
imum energy that a probe in that system can take, and E p is the
Planck energy. So, as Es/E p → 0, F(E) = G(E) = 1, and the general
relativity is recovered in the IR limit of the theory [14–22]. These
rainbow functions are motivated from various theoretical and phe-
nomenology considerations. The results from loop quantum gravity
and κ-Minkowski noncommutative spacetime, have been used to
motivate the following rainbow functions [1,2]

F(E/E p) = 1 and G(E/E p) =
√

1 − a

(
E

E p

)q

. (7)

The modified dispersion relation with constant velocity of light
has been used to motivate the following rainbow functions [87]

F(E/E p) = G(E/E p) = 1

1 − aE/E p
. (8)

The hard spectra from gamma-ray burster’s, has been used to mo-
tivate the following rainbow functions [5]

F(E/E p) = eaE/E p − 1

aE/E p
and G(E/E p) = 1. (9)

The maximum energy of the system depends on the physical sys-
tems being analyzed, and for black holes, this energy is equal to
the energy of a quantum particle near the horizon. This is be-
cause such a particle can be viewed as a probe for the geometry
of the black hole. In fact, we can use the uncertainty principle

p ≥ 1/
x, to obtain a bound on the energy of such a particle
So, we can write Es ≥ 1/
x, where 
x is the uncertainty in posi-
tion of the particle near the horizon, and it is equal to the radius
of the event horizon. Thus, the bound on the energy for a black
hole can be written as

Es ≥ 1/
x ≈ 1/r+. (10)

It may be noted as the black hole evaporates due to the Hawk-
ing radiation, its radius reduces, and this changes the bound on
this maximum energy. So, this energy is a dynamical function, and
thus rainbow functions are also dynamical. Even though, we do
not need the explicit dynamical behavior of rainbow functions, it
is important to know that they are dynamical, and so they cannot
be gauged away by rescaling of the metric.

Now, we assume the total energy-momentum tensor of the field
equation (3), can be expressed in the following form

Tμν = T (n)
μν + T (m)

μν , (11)

where T (n)
μν and T (m)

μν are the energy-momentum tensor for the
Vaidya null radiation and the energy-momentum tensor of the per-
fect fluid, respectively. They can be defined as

T (n)
μν = σ lμlν,

T (m)
μν = (ρ + p)(lμnν + lνnμ) + pgμν, (12)

where σ , ρ and p are null radiation density, energy density and
pressure of the perfect fluid, respectively. In this regard, lμ and nμ

are linearly independent future pointing null vectors,

lμ =
(

1

F(E)
,0,0,0

)
&

nμ =
(

1

2F(E)

(
1 − m(t, r)

r

)
,− 1

G(E)
,0,0

)
, (13)
satisfying the following conditions

____________________________WORLD TECH
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lμlμ = nμnμ = 0 & lμnμ = −1. (14)

Therefore, the non-vanishing components of the total energy-
momentum tensor can be written as

T00 = σ

F2(E)
+ ρ

F2(E)

(
1 − m(t, r)

r

)
, T01 = − ρ

F(E)G(E)
,

T22 = pr2

G2(E)
, T33 = pr2sin2θ

G2(E)
. (15)

Using the metric ansatz (5), we obtain

Kμ
ν = diag

(
0,0,

cG(E)

r
,

cG(E)

r

)
. (16)

Therefore, we find that

(K2)μν = Kμ
αKα

ν = diag

(
0,0,

c2G2(E)

r2
,

c2G2(E)

r2

)
,

(K3)μν = Kμ
αKα

βKβ
ν = diag

(
0,0,

c3G3(E)

r3
,

c3G3(E)

r3

)
,

(K4)μν = Kμ
αKα

βKβ
λKλ

ν = diag

(
0,0,

c4G4(E)

r4
,

c4G4(E)

r4

)
.

(17)

We also obtain the following quantities

[K] = Kμ
μ = 2cG(E)

r
, [K2] = (K2)μμ = 2c2G2(E)

r2
,

[K3] = (K3)μμ = 2c3G3(E)

r3
, [K4] = (K4)μμ = 2c4G4(E)

r4
. (18)

Now, using the Eqs. (17), (18), and Eq. (2), we obtain

U1 = 2cG(E)

r
, U2 = 2c2G2(E)

r2
,

U3 = 0, U4 = 0. (19)

Using the Eqs. (16), (17), (18) and (19), we can obtain the non-
vanishing components of the massive gravity term χμν in the field
equation (3) as

χ00 =
[

c1c G(E)

rF2(E)
+ c2c2 G2(E)

r2F2(E)

](
1 − m

r

)
,

χ01 = χ10 = − 1

rF(E)

(
c1c + c2c2 G(E)

r

)
,

χ22 = − c1c r

2G(E)
,

χ33 = − c1 c r sin2θ

2G(E)
. (20)

Then, for the 00 component of the field equation (3), we have

G(E)

r3

[
r ṁF(E) + r G(E)m′ − G(E)m m′]

= σ + ρ
(

1 − m

r

)
−M2

[
c1cG(E)

r
+ c2c2G2(E)

r2

](
1 − m

r

)
,

(21)

where dot and prime signs denote the derivative with respect to
time and radial coordinates, respectively. For the 01 and 10 com-
ponent, we have

G(E)m′ ρ M2 (
c c2 G(E)

)

−

r2
= −

G(E)
+

r
c1c + 2

r
. (22)

NOLOGIES____________________________
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inally, for the 22 and 33 component, we obtain

1

2
rm′′ = pr2

G2(E)
+ M2c1c r

2G(E)
. (23)

hus, we have been able to analyze the Einstein equation in gravi-
y’s rainbow. In the next section, we will analyze Vaidya spacetime 
n this massive gravity’s rainbow.

. Dynamics of the collapsing system

In this section, we will first find a solution for the field equa-
ions describing this model. Then, we will analyze the dynamics of 
 collapsing system. The matter field will be assumed to follow a 
arotropic equation of state, which is given by

= kρ, (24)

here k is the barotropic parameter. Now we can use the Eqs. (18), 
19) and (20), and obtain an equation describing the behavior of 
(t, r) for this system,

2m′′ + 6km + (1 + 3k)M2c1c r

G(E)
+ 6kc2c2M2r − 6kf1(t) = 0,

(25)

here f1(t) is an arbitrary function of time. This differential equa-
ion can be solved to obtain a solution for m(t, r),

(t, r) = f2(t)r
ω1 + f3(t)r

ω2 − M2c1c (1 + 3k) r

(2 − ω1) (2 − ω2)G(E)

− c2c2M2r + f1(t), (26)

here ω1 = 1
2

(
1 + √

1 − 24k
)
, ω2 = 1

2

(
1 − √

1 − 24k
)
. Here, f2(t)

nd f3(t) are arbitrary functions of time t . So, from these equa-
ions, we obtain the admissible range of k, which is (−∞, 1/24]. 
hus, the metric given in Eq. (6), can be expressed as

s2 = 1

F2(E)

(
− 1 + f2(t)r

ω1−1 + f3(t)r
ω2−1

− M2c1c (1 + 3k)

(2 − ω1) (2 − ω2)G(E)
− c2c2M2 + f1(t)

r

)
dt2

+ 2dtdr

F(E)G(E)
+ 1

G2(E)
r2d�2

2 . (27)

his metric is the generalized Vaidya metric in Massive gravity’s 
ainbow.

In this generalized Vaidya spacetime, the singularity can be ei-
her a naked singularity or a black hole. The nature of this sin-
ularity is determined by the existence of outgoing radial null 
eodesics, which end in the past central singularity at r = 0. Such 
eodesics exist for a locally naked singularity, and do not exist 
or a black hole. So, in massive gravity’s rainbow, the singularity 
ormed from gravitational collapse can be either a naked singu-
arity or a black hole. In general relativity, the cosmic censorship 
ypothesis states that the gravitational singularity must necessarily 
e covered by an event horizon. So, according to cosmic censor-
hip hypothesis only black hole can form from a collapsing sys-
em. However, it has been demonstrated that inhomogeneous dust 
loud may form a naked singularity [89]. Interesting results have 
lso been obtained by studying fluid whose equation of state is 
ifferent from the equation of state of dust [90]. So, it is possible 
o generalize the cosmic censorship hypothesis [91]. As we have 
o investigate the nature of singularities in massive gravity’s rain-
ow, we can use such a generalization of the cosmic censorship 

ypothesis. b
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As this system is described by a time-dependent geometry, the 
adius of shell at r, will also be a function of time t . We will de-
cribe such a radius by R(t, r). This system starts from an initial 
ime t = 0, and at that time, we have R(0, r) = r. It may be noted 
hat for a inhomogeneous system, different shells may become sin-
ular at different times. Now, for this system, we can have future 
irected radial null geodesics coming out of the singularity. These 
ill have a well defined tangent at the singularity. So, for this sys-

em, dR
dr must tend to a finite limit, as the system approach the 

ast singularity. It is possible for the system to reach the points 
t0, r) = 0. At this point, the singularity R(t0, 0) = 0 occurs and 
he matter shells are crushed to a zero radius. This singularity at 
= 0, is called a central singularity.

Now a naked singularity will form in this system, if future di-
ected curves end in the past singularity. So, for such a system, 
he outgoing null geodesics will end in the past central singular-
ty, which is at r = 0 and t = t0. At such a point, R(t0, 0) = 0, and 
o for these geodesics, we have R → 0 as r → 0 [92]. The equation 
or these outgoing radial null geodesics can be obtained from the 
q. (6). Thus, by putting ds2 = 0 and d�2

2 = 0, we obtain

t

r
= 2F(E)

G(E)
(

1 − m(t,r)
r

) . (28)

ere r = 0, t = 0 corresponds to a singularity in this equation. 
ow if X = t

r , then we can analyze the limiting behavior of X , as 
he system approaches r = 0, t = 0. So, if this limiting value of X
s denoted by X0, then we can write

0 = lim
t→0

lim
r→0

X = lim
t→0

lim
r→0

t

r
= lim

t→0
lim
r→0

dt

dr

= lim
t→0

lim
r→0

2F(E)

G(E)
(

1 − m(t,r)
r

) . (29)

e also use Eqs. (25) and (28), and obtain

2

0
= lim

t→0
lim
r→0

G(E)

F(E)

[
1 − f2(t)r

ω1−1 − f3(t)r
ω2−1

+ M2c1c (1 + 3k)

(1 + ω1) (1 + ω2)G(E)
+ c2c2M2 − f1(t)

r

]
.

ow, choosing f1(t) = γ t , f2(t) = αt1−ω1 and f3(t) = βt1−ω2 , we 
btain the algebraic equation for X0, which can be written as

X1+ω2
0 + β X1+ω1

0 + γ X2
0 −

(
1 + c2c2M2

)
X0

− (1 + 3k)M2c1c

(2 − ω1) (2 − ω2)G(E)
+ 2F(E)

G(E)
= 0, (30)

here α, β and γ are constants. If we only obtain the non-positive 
olution of the equation, then a black hole will form in this sys-
em. However, a naked singularity can form for positive roots of 
his equation. Since this equation is highly complicated, it is ex-
remely difficult to find out an analytic solution of X0. So, we will 
se numerical methods to find a numerical solutions of X0. This 
ill be done by assigning particular numerical values to the as-

ociated variables. In fact, as a specific rainbow function has been 
ell motivated [5,9], we will use this rainbow functions for ana-
zing this system,

(E) = 1, G(E) =
√

1 − η

(
E1

E p

)
(31)

n the above expressions, E p is the Planck energy, given by E p =
/
√

G = 1.221 × 1019 GeV, where G is the gravitational constant 
nd E = 1.42 × 10−13 [5,9]. The value of η has been estimated to 
1
e η ≈ 1 [5], and so in our study, we will use η = 1.
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Fig. 1. This figure shows the variation of X0 with k for different values of α in
massive gravity’s rainbow. The other parameters are fixed at β = 2, γ = 3, c = 0.8
c1 = 4, c2 = 2, M = 5, η = 1, E1 = 1.42 × 10−13, E p = 1.221 × 1019. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

4. Conclusion and discussion

Now, we will comment on the numerical results obtained in
this paper. In Fig. 1, the contours k − X0 were obtained for dif-
ferent numerical values of α, where other parameters were fixed
in the massive gravity’s rainbow. The admissible plot range for the
equation of state parameter, k is (−∞, 1/24]. In the figure, the
plot range for k has been taken as −2 < k < 1/24 (from late to
early universe). We observe that the trajectories for different val-
ues of α almost coincide with each other from k = −2 till around
k = −1/3, i.e., the quintessence and phantom regime (dark energy)
But for k > −1/3, we observe that this coincidence gradually dis-
appears, and the red line (α = 0.5) diverges. However, this does
not change the physics of the system much, as all the trajecto-
ries remain in the positive level of X0. So, the singularity formed
is a naked singularity. At around k = 0, the separation of the tra-
jectories becomes more pronounced. For greater values of α (blue
line), we see that there is a decreased tendency of formation of
naked singularity compared to lower values of α. Even we see
that the blue line starts to take a dip around k = 0. The increased
significance of α directly reflects on the function f2(t). Physically
k = 0 represents the dust regime and k > 0 corresponds to early
universe. So, the α dependence of the system will be more signif-
icant in the earlier than in the later stages of the evolution of the
universe. This is because in massive gravity’s rainbow, the space-
time is energy dependent, and the energy in the earlier stages of
the evolution of the universe is more than the energy at the later
stages of the evolution of the universe. So, the rainbow functions
are more important in the physics of the early stages of the uni-
verse. This is the reasons that the significance of α decreases at
the later stages of the evolution of the universe.

In Fig. 2, similar figures are obtained for different values of β
where the other parameters are fixed. We observe that as the val-
ues of β increase, the trajectories push downwards towards the
k-axis. This indicate an increase in the tendency to form black
holes. However, for both Figs. 1 and 2, it is clear that the trajec-
tories remain in the positive X0 region, and a naked singularity
forms from the collapse of this system. In Figs. 3 and 4, the k − X
0
plots are obtained for different values of γ and M, respectively. 
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Fig. 2. This figure shows the variation of X0 with k for different values of β in
massive gravity’s rainbow. The other parameters are taken as α = 0.5, γ = 3, c =
0.8, c1 = 4, c2 = 2, M = 5, η = 1, E1 = 1.42 × 10−13, E p = 1.221 × 1019.

Fig. 3. This figure shows the variation of X0 with k for different values of γ in
massive gravity’s rainbow. The other parameters are fixed at α = 0.5, β = 2, c = 0.8
c1 = 4, c2 = 2, M = 5, η = 1, E1 = 1.42 × 10−13, E p = 1.221 × 1019.

These plots also indicate that a naked singularity is formed from
the collapse of this system. We can observe from Fig. 3, the ten-
dency to form a black hole increases with increase in the value
of γ . We can also observe from Fig. 4, the tendency to form a
black hole decreases with the increase in the value of M. So, the
system can form a naked singularity by increasing the value of M
and decreasing the value of γ .

In Figs. 5 and 6, we compare the k − X0 contours of both mas-
sive gravity and massive gravity’s rainbow. In Fig. 5, the trajectories
are for different values of α. From the plot, we can observe that for
massive gravity’s rainbow, α does not play an important role in
the collapsing system, when k < −1/3. However, for pure massive
gravity α, does not play an important role throughout the domain
Besides, in gravity’s rainbow, the tendency to form black holes is

greater than that in pure massive gravity. In Fig. 6, similar plots are 
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ig. 4. This figure shows the variation of X0 with k for different values of M in 
assive gravity’s rainbow. The other parameters are taken as α = 0.5, β = 2, γ = 3, 
= 0.8, c1 = 4, c2 = 2, η = 1, E1 = 1.42 × 10−13, E p = 1.221 × 1019.

ig. 5. This figure shows the variation of X0 with k for different values of α in a 
omparative scenario between Massive gravity and Massive gravity’s rainbow. The 
ther parameters are fixed at β = 2, γ = 3, c = 0.8, c1 = 4, c2 = 2, M = 5, η = 1, 
1 = 1.42 × 10−13, E p = 1.221 × 1019. (For interpretation of the references to color 
 this figure legend, the reader is referred to the web version of this article.)

btained for different values of β . Here, it is also confirmed that in 
ravity’s rainbow, there is a greater tendency to form a black hole. 
he above observation is again established in Figs. 7 and 8, where 
imilar plots are generated by varying γ and M, respectively. Fi-
ally we observe that in all the figures, there are small portions of 

ines which nearly vanish around the k-axis, for small values of k. 
s this system was very complicated, we could not find an ana-

ytical solution for Eq. (30). So, we obtained numerical solution for 
his equation, using particular values for the parameters. The van-
shing lines in the k − X0 plane, are produced from the noise in 
he numerical solution, and do not have physical significance.

In this paper, we have constructed a theory of massive grav-

ty’s rainbow. This was done by analyzing the energy dependent h

___________________________WORLD TECHN
T
ig. 6. This figure shows the variation of X0 with k for different values of β in 
 comparative scenario between Massive gravity and Massive gravity’s rainbow. The 
ther parameters are taken as α = 0.5, γ = 3, c = 0.8, c1 = 4, c2 = 2, M = 5, η = 1, 
1 = 1.42 × 10−13, E p = 1.221 × 1019.

ig. 7. This figure shows the variation of X0 with k for different values of γ in a 
omparative scenario between Massive gravity and Massive gravity’s rainbow. The 
ther parameters are fixed at α = 0.5, β = 2, c = 0.8, c1 = 4, c2 = 2, M = 5, η = 1, 
1 = 1.42 × 10−13, E p = 1.221 × 1019.

eformation of massive gravity. In the construction of massive 
ravity, we have used the Vainshtein mechanism and the dRGT 
echanism. Then, this theory has been deformed by rainbow func-

ions. We have analyzed radiating Vaidya black hole solution in 
his theory of massive gravity’s rainbow. The effects of both the 
raviton mass and rainbow deformation have been studied for a 
ime-dependent system. It may be noted that the AdS solution in 

assive gravity, and the AdS/CFT correspondence corresponding 
o this AdS solution have been studied [93,94]. In fact, the holo-
raphic entanglement entropy for massive gravity has also been 
tudied [95], and it has been demonstrated that for such systems 
oth first order and second order phase transitions can occur. The 

olographic complexity for massive gravity has also been studied 
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185Vaidya spacetime in massive gravity’s rainbow
W
Fig. 8. This figure shows the variation of X0 with k for different values of M in a
comparative scenario between Massive gravity and Massive gravity’s rainbow. The
other parameters are taken as α = 0.5, β = 2, γ = 3, c = 0.8, c1 = 4, c2 = 2, η = 1
E1 = 1.42 × 10−13, E p = 1.221 × 1019.

[96]. This holographic complexity of a boundary theory is dual to a
volume in the bulk, just as the holographic entanglement entropy
is dual to an area in the bulk. It would be interesting to study the
rainbow deformation of such solutions. This can be done by mak-
ing the bulk metric to depend on the energy of the probe. Then
deformation of the bulk metric can be done using suitable rainbow
functions. It would be interesting to investigate the holographic en-
tanglement entropy and holographic complexity of massive gravity
deformed by suitable rainbow functions.
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lack hole solutions surrounded by perfect fluid in Rastall 
heory

. Heydarzade, F. Darabi ∗

epartment of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran

 r t i c l e i n f o a b s t r a c t

ditor: J. Hisano

eywords:
astall theory
iselev black holes

In this work, we obtain uncharged\charged Kiselev-like black holes as a new class of black hole solutions 
surrounded by perfect fluid in the context of Rastall theory. Then, we study the specific cases of the
uncharged\charged black holes surrounded by regular matter like dust and radiation, or exotic matter 
like quintessence, cosmological constant and phantom fields. By comparing the Kiselev-like black hole
solutions in Rastall theory with the Kiselev black hole solutions in GR, we find an effective perfect
fluid behavior for the black hole’s surrounding field. It is shown that the corresponding effective perfect
fluid has interesting characteristic features depending on the different ranges of the parameters in
Rastall theory. For instance, Kiselev-like black holes surrounded by regular matter in Rastall theory may
be considered as Kiselev black holes surrounded by exotic matter in GR, or Kiselev-like black holes
surrounded by exotic matter in Rastall theory may be considered as Kiselev black holes surrounded by
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Wregular matter in GR.

. Introduction

One of the basic elements of Einstein’s general theory of rel-
tivity (GR) is the so-called covariant conservation of the energy–
omentum tensor which via the Noether symmetry theorem leads 

o the conservation of some globally defined physical quantities. 
hese conserved quantities appear as the integrals of the com-
onents of the energy–momentum tensor over appropriate space-

ike surfaces. These space-like surfaces admit at least one of the 
illing vectors of the background spacetime as their normal. By 

his way, the total rest energy/mass of a physical system is con-
erved in the context of GR. On the other hand, some GR based 
ew modified theories have been proposed that relax the condition 
f covariant energy–momentum conservation. One of these possi-
le modification of the general theory of relativity was introduced 
y P. Rastall in 1972 [1,2]. In this theory, the usual conservation 

aw expressed by the null divergence of the energy–momentum 
ensor, i.e. T μν ;μ = 0, is questioned. Then, a non-minimal cou-
ling of matter fields to geometry is considered where the diver-
ence of Tμν is proportional to the gradient of the Ricci scalar, 
.e. T μν ;μ ∝ R,ν , such that the usual conservation law is recovered 
n the flat spacetime. This can be understood as a direct accom-
lishment of the Mach principle representing that the inertia of a 
* Corresponding author.
E-mail addresses: heydarzade@azaruniv.edu (Y. Heydarzade),

darabi@azaruniv.edu (F. Darabi).
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ass distribution is dependent on the mass and energy content of 

he external spacetime [3]. The main argument in favor of such a 
roposal is that the usual conservation law on Tμν is tested only 

n the flat Minkowski space–time or specifically in a gravitational 
eak field limit. Indeed, this theory reproduces a phenomenolog-

cal way for distinguishing features of quantum effects in gravita-
ional systems, i.e. the violation of the classical conservation laws 
4–6], which is also reported in the f (R, T ) [7] and f (R, Lm) [8]
heories, where R , T and Lm are the Ricci scalar, trace of the 
nergy–momentum tensor and the Lagrangian of the matter sector, 
espectively. Also, the condition T μν ;μ �= 0 is phenomenologically 
onfirmed by the particle creation process in cosmology [9–16]. In 
his regard, the Rastall theory can be considered as a good candi-
ate for classical formulation of the particle creation through its 
on-minimal coupling [12,17]. Moreover, some astrophysical anal-
sis including the evolution of the neutron stars and cosmological 
ata do not reject this modified theory [18–20]. Specially, in [18] it 

s shown that the restrictions on the Rastall geometric parameters 
re of the order of ≤ 1% with respect to the corresponding value 
f the Einstein GR. In other words, the results in [18] confirm that 
he Rastall theory is a viable theory in the sense that the deviation 
f any extended theory of gravity from the standard GR must be 

eak, to pass the solar system tests. Some studies on the various 

spects of this theory in the context of current accelerated expan-
ion phase of the universe as well other cosmological problems 
an be found in [12,21–28]. Also, some research works are dedi-
ated to incorporate this theory with the Brans–Dicke and scalar-
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tensor theories of gravity [29–31]. A modified Brans–Dicke theory
incorporating Rastall’s assumption, namely a nonzero divergence of
the energy–momentum tensor, is introduced in [32,33] which re-
sults in a class of viable theories with consistent field equations
and gauge conditions. The implications of Rastall assumption in
Kaluza–Klein theory and in inflationary cosmologies have been in-
vestigated in [34,35]. It is also shown that this theory regenerates
some loop quantum cosmological features of the universe expan-
sion [36]. Apart from the cosmological solutions, any modified the-
ory must also provide the solutions associated to the stellar and
black hole configurations. In this line, some neutron star, black hole
and wormholes solutions in the context of Rastall theory are ob-
tained in [18,37–41]. Also, a generalized version of Rastall theory is
recently proposed which shows an agreement with the cosmic ac-
celerating expansion [42]. In this regard, a dynamical factor for the
proportionality of the energy–momentum tensor divergence and
Ricci scalar divergence is considered. It is shown that this consid-
eration leads to a transition from the matter dominated era to the
current accelerating phase of the universe representing an agree-
ment with some previous observations [43–45]. Finally, it should
be mentioned that although Smalley first tried to get a Lagrangian
for a prototype Rastall theory of gravity, with a variable gravita-
tional constant [46], but this theory has been suffered from the
lack of a consistent Lagrangian structure. This fact is known as the
major drawback of this theory. But, recently a Lagrangian formu-
lation for this theory is provided which may motivate the people
to consider this theory more serious than before [47]. Besides, this
theory possesses a rich structure that may be connected with some
fundamental aspects of a complete theory of gravity and there are
some points in favor of this theory. First of all, as mentioned be-
fore, the usual energy–momentum conservation law of Einstein’s
special relativity (SR) can be generalized to the curved spacetime
in some different ways, including the appropriate geometric terms.
Indeed, GR theory is one of the possible extension of SR to the
curved spacetime by simply replacing the standard derivative with
a covariant derivative, as the minimal generalization. Moreover, the
classical form of the energy–momentum tensor must be modified
by introducing quantities related to the curvature of the space-
time when the quantum effects are taking into account [4]. Also,
due to the chirality of the quantum modes, the propagation of
quantum fields in the spacetimes possessing horizons may lead to
the violation of the classical conservation law which result in the
so-called gravitational anomaly effect [48]. In this regard, Rastall
theory can be a good phenomenological candidate in order to take
into account the effects of quantum fields in curved spacetime in
a covariant approach. Although, there is no action leading to the
Rastall equations by implementing the variational principle, but it
is possible to obtain such an action by introducing an external field
in the Einstein–Hilbert action through a Lagrange multiplier. There
are other geometrical models such as the well known Weyl geom-
etry which may result in the field equations similar to the Rastall’s
field equations [46,49].

On the other hand, the direct local impacts of cosmic back-
grounds upon the known black hole solutions have been paid
attention recently. It is shown by Babichev et al. [50] that for
a universe filled by phantom field, the black hole mass dimin-
ishes due to the accreting particles of the phantom scalar field
into the central black hole. But this is a global impact indeed.
The local changes in the spacetime geometry next to the central
black hole can be obtained by a modified metric including the
surrounding space time of the black hole. In this regard, an analyti-
cal static spherically symmetric solution to Einstein filed equations
has been obtained by Kiselev [51]. This solution is characterized
by the equation of state parameters of the black hole surround-

ing fields which generally can be dust, radiation or a dark energy 

____________________________WORLD TECH
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component [51,52]. In [52], a Reissner–Nordström black hole sur-
rounded by radiation and dust and a Schwarzschild black hole
surrounded by quintessence, as the special cases of the Kiselev
general solution, their phase transitions as well as their thermo-
dynamical properties are investigated. The dynamics of a neutral
and a charged particle around the Schwarzschild black surrounded
by a quintessence matter have been discussed in [53]. The rotat-
ing Kiselev solution and Kerr–Newman Kiselev solution have been
also obtained in [54–57]. Phase transition, quasinormal modes and
Hawking radiation of Schwarzschild black hole in the quintessence
field are studied in [58–60]. Also, one may refer to [61–66] for
more detail in thermodynamical analysis of the Schwarzschild,
Reissner–Nordström and Reissner–Nordström-AdS black holes in a
quintessence background.

The essence of the Rastall theory is associated to the high cur-
vature environments and consequently the black holes physics can
provide an appropriate ground in order to investigate this theory
in more details. Therefore, in this paper, our aim is to obtain the
surrounded Kiselev-like black hole solutions as a new class of non-
vacuum black hole solutions of this theory. The organization of the
paper is as follows. In section 2, the general analytical static spher-
ical symmetric surrounded black hole solutions in Rastall theory
is obtained. Then, in the next five subsections 2.1–2.5, the spe-
cial cases of the surrounded uncharged\charged black holes by the
dust, radiation, quintessence, cosmological constant and phantom
fields are addressed. Finally, in section 3, some concluding remarks
are represented.

2. Surrounded black hole solutions in Rastall theory

In this section, we are looking for the general non-vacuum
spherically symmetric static uncharged\charged black hole solu-
tions in the context of the Rastall theory of gravity. Based on the
Rastall’s hypothesis [1,2], for a spacetime with Ricci scalar R filled
by an energy–momentum source of Tμν , we have

T μν ;μ = λR,ν , (1)

where λ is the Rastall parameter, a measure for deviation from the
standard GR conservation law. Then, the Rastall field equations can
be written as

Gμν + κλgμν R = κTμν, (2)

where κ is the Rastall gravitational coupling constant. This field
equations reduce to GR field equations in the limit of λ → 0 and
κ = 8πG N where G N is the Newton gravitational coupling con-
stant.

In order to obtain black hole solutions, we consider the
general spherical symmetric spacetime metric in the standard
Schwarzschild coordinates as

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2, (3)

where f (r) is a generic metric function depending on the radial
coordinate r and d�2 = dθ2 + sin2θdφ2 is the two dimensional unit
sphere. Using this metric, we obtain nonvanishing components of
the Rastall tensor defined as Hμν = Gμν + κλgμν R as

H0
0 = G0

0 + κλR = − 1

f
G00 + κλR = 1

r2

(
f ′r − 1 + f

) + κλR,

H1
1 = G1

1 + κλR = f G11 + κλR = 1

r2

(
f ′r − 1 + f

) + κλR,

1 1
(

1
)

H2
2 = G2

2 + κλR =
r2

G22 + κλR =
r2

r f ′ +
2

r2 f ′′ + κλR,
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3
3 = G3

3 + κλR = 1

r2sin2θ
G33 + κλR

= 1

r2

(
r f ′ + 1

2
r2 f ′′

)
+ κλR, (4)

here the Ricci scalar reads as

= − 1

r2

(
r2 f ′′ + 4r f ′ − 2 + 2 f

)
, (5)

n which the prime sign represents the derivative with respect to 
he radial coordinate r. Then, regarding the nonvanishing com-
onents of the Rastall tensor Hμ

ν , the total energy–momentum 
ensor supporting this spacetime should have the following diago-
al form

μ
ν =

⎛
⎜⎜⎝

T 0
0 0 0 0

0 T 1
1 0 0

0 0 T 2
2 0

0 0 0 T 3
3

⎞
⎟⎟⎠ , (6)

hich must also obey the symmetry properties of the Rastall ten-
or Hμ

ν . Regarding the equations in (4), the equalities H0
0 = H1

1
nd H2

2 = H3
3 require T 0

0 = T 1
1 and T 2

2 = T 3
3, respectively. 

hen, one can construct a general total energy–momentum tensor 
μ

ν possessing these symmetry properties in the following form

μ
ν = Eμ

ν + T μ
ν, (7)

here Eμ
ν is the trace-free Maxwell tensor given by

μν = 2

κ

(
Fμα Fν

α − 1

4
gμν F αβ Fαβ

)
, (8)

o that Fμν is the antisymmetric Faraday tensor satisfying the fol-
owing vacuum Maxwell equations

μν ;μ = 0,

[σ Fμν] = 0. (9)

onsidering the spherical symmetry existing in the spacetime met-
ic (3) imposes the only non-vanishing components of the Faraday 
ensor F μν to be F 01 = −F 10. Then, from the equations in (9), one 
btains

01 = Q

r2
, (10)

here Q is an integration constant playing the role of a electro-
tatic charge. Thus, the equations (3), (8) and (10) give the only 
on-vanishing components of the Maxwell tensor Eμ

ν as

μ
ν = Q 2

κr4
diag(−1,−1,1,1), (11)

epresenting an electrostatic field and clearly possesses the sym-
etries in Hμ

ν tensor. On the other hand, T μ
ν describes the 

nergy–momentum tensor of the surrounding field defined as [51]

0
0 = −ρs(r),

i
j = −ρs(r)α

[
−(1 + 3β)

rir j

rnrn
+ βδi

j

]
. (12)

his form of T μ
ν indicates that the spatial sector is proportional 

o the time sector, denoting the energy density ρs , with the arbi-
rary parameters α and β related to the internal structure of the 
lack hole surrounding field. Here, we used the subscript “s” for 
enoting the surrounding field which generally can be a dust, ra-
iation, quintessence, cosmological constant, phantom field or even 
ny combination of them. By taking the isotropic average over the 

ngles we have [51]

f
o

___________________________WORLD TECHN
T

T i
j >= α

3
ρsδ

i
j = psδ

i
j, (13)

ince it is supposed that < rir j >= 1
3 δi

jrnrn . Thus, one has the 
arotropic equation of state for the surrounding field

s = ωsρs, ωs = 1

3
α, (14)

here ps and ωs are the pressure and equation of state parameter, 
espectively. Thus, the field equations (4) with respect to the total 
nergy–momentum tensor in (7), (11) and (12) exactly provide the 
rinciple of additivity and linearity condition supposed in the ref-
rence [51] which was proposed to determine the free parameter 

of the energy momentum-tensor of the surrounding field as

= −1 + 3ωs

6ωs
. (15)

hen, the non-vanishing components of the T μ
ν tensor can be 

btained in the following form

0
0 = T 1

1 = −ρs,

2
2 = T 3

3 = 1

2
(1 + 3ωs)ρs, (16)

hich also possess the same symmetries in the Rastall tensor Hμ
ν . 

onsequently, our total constructed energy–momentum tensor in 
7) admits all of the symmetry properties of Hμ

ν . One may just 
onsider the T μ

ν as the only supporting energy–momentum ten-
or of the Rastall field equations. In this way, the obtained solu-
ions will describe the surrounded uncharged black hole solutions 
n the context of the Rastall theory which differ from the ones in 
R, as we see later. Including the Maxwell tensor Eμ

ν in T μ
ν pro-

ides the possibility of obtaining most general class of the static 
urrounded charged black hole solutions in the framework of this 
heory. In the following, we solve the field equations and obtain its 
eneral solution. Then, we address both of the uncharged\charged 
olutions.

The H0
0 = T 0

0 and H1
1 = T 1

1 components of the Rastall field 
quations give the following differential equation

1
2

(
r f ′ − 1 + f

) − κλ

r2

(
r2 f ′′ + 4r f ′ − 2 + 2 f

)
= −κρs − Q 2

r4
,

(17)

nd H2
2 = T 2

2 and H3
3 = T 3

3 components read as

1
2

(
r f ′ + 1

2
r2 f ′′

)
− κλ

r2

(
r2 f ′′ + 4r f ′ − 2 + 2 f

)

= 1

2
(1 + 3ωs)κρs + Q 2

r4
. (18)

hus, we have two unknown functions f (r) and ρs(r) which can 
e determined analytically by the above two differential equations. 
ow, by solving the set of differential equations (17) and (18),1

ne obtains the following general solution for the metric function

(r) = 1 − 2M

r
+ Q 2

r2
− Ns

r
1+3ωs−6κλ(1+ωs)

1−3κλ(1+ωs)

, (19)

ith the energy density in the form of

s(r) = − 3Ws Ns

κr
3(1+ωs)−12κλ(1+ωs)

1−3κλ(1+ωs)

, (20)

1 Substituting κρs(r) from differential equation (17) into (18) gives a differential 
quation for f (r) leading to the solution (19). Then, by substituting the obtained 

(r) into the differential equations (17) or (18), one obtains the appropriate form 
f ρs(r) as given by (20) and (21).
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where M and Ns are two integration constants representing the
black hole mass and surrounding field structure parameter, respec-
tively in which

Ws = − (1 − 4κλ) (κλ (1 + ωs) − ωs)

(1 − 3κλ(1 + ω))2
, (21)

is a geometric constant depending on the Rastall geometric pa-
rameters κ and λ as well as the equation of state parameter ωs of
the black hole surrounding field. Note that the integration constant
Ns represents the characteristic features of the surrounding field.
For λ = 0, i.e. in the GR limit, we have ρs(r) = − 3

κ Ws Nsr−3(1+ωs)

where Ws = ωs as in [51]. Note that in [51], the author used the
units of 4πG N = 1 with a metric possessing a negative signature.

Regarding the weak energy condition representing the positivity
of any kind of energy density of the surrounding field, i.e. ρs ≥ 0,
imposes the following condition on the geometric parameters of
the theory

Ws Ns ≤ 0. (22)

This condition implies that for the surrounding field with geomet-
ric parameter Ws > 0, we need Ns < 0 and conversely for Ws < 0,
we need Ns > 0. Then, considering that Ws is given by (21), the
sign of the metric parameter Ns depends on the Rastall geometric
parameters κ , λ and the equation of state parameter ωs of the sur-
rounding field. In this regard, any set of κ , λ and ωs parameters
may admit a different positive or negative Ns values.

Finally, regarding (19), our metric (3) takes the following form

ds2 = −
(

1 − 2M

r
+ Q 2

r2
− Ns

r
1+3ωs−6κλ(1+ωs)

1−3κλ(1+ωs)

)
dt2

+ dr2

1 − 2M
r + Q 2

r2 − Ns

r
1+3ωs−6κλ(1+ωs)

1−3κλ(1+ωs)

+ r2d�2. (23)

In the limit of λ → 0 and κ = 8πG N , we recover the Reissner–
Nordström black hole surrounded by a surrounding field in GR
which was firstly found by Kiselev [51] as

ds2 = −
(

1 − 2M

r
+ Q 2

r2
− Ns

r3ωs+1

)
dt2

+ dr2

1 − 2M
r + Q 2

r2 − Ns
r3ωs+1

+ r2d�2. (24)

Our obtained static solution (23) is new and possesses some in-
teresting features. By comparing the metric (23) with the Kiselev
metric (24) in GR, we may obtain an effective equation of state
parameter ωef f for the modification term resulting from the ge-
ometry of the Rastall theory.

The notion of “effective equation of state” in Rastall theory has
already been studied in the cosmological context, where a solution
for the entropy and age problems of the Standard Cosmological
Model were provided [68] by considering Brans–Dicke and Rastall
theories of gravity and performing a perturbative analysis. It was
shown that by introducing an “effective equation of state”, the
Rastall theory exhibits satisfactory properties at perturbative level
in comparison to the Brans–Dicke theory.

In the next subsections, the surrounded black hole by the dust,
radiation, quintessence, cosmological constant and phantom fields,
as the subclasses of the general solution (23), as well as their in-
teresting features are studied in detail. At last, we recall that the
cases κλ = 1

4 and κλ = 1
6 are generally excluded due to the diver-

gence of the Rastall gravitational coupling constant, as discussed

in [1,39].

____________________________WORLD TECH
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2.1. The black hole surrounded by the dust field

For the dust surrounding field, we set ωd = 0 [51,67]. Then, the
metric (23) takes the following form

ds2 = −
(

1 − 2M

r
+ Q 2

r2
− Nd

r
1−6κλ
1−3κλ

)
dt2

+ dr2

1 − 2M
r + Q 2

r2 − Nd

r
1−6κλ
1−3κλ

+ r2d�2. (25)

This metric differs from the metric of the surrounded charged
black hole by a dust field in GR [51]. One can realize that in
GR, i.e. in the limit of λ → 0 and κ = 8πG N , the black hole in
the dust background appears as a charged black hole with an ef-
fective mass Mef f = 2M + Nd . Thus, we see that for κλ �= 0, the
geometric parameters κ and λ of the Rastall theory can play an
important role leading to distinct solutions relative to GR. Setting
Q = 0 or Eμ

ν in the total energy–momentum tensor in (7), one
arrives at uncharged Kiselev-like black hole solutions in the dust
background. One can realize that for κλ �= 0 the Rastall correction
term never behaves as the mass or charge terms, and introduces a
new character to the black hole, not comparable to the mass and
charge terms. The presence of such nontrivial character can dras-
tically change the thermodynamics, causal structure and Penrose
diagrams, due to the Rastall geometric parameters, with respect to
those of GR.

In this case, the geometric parameter Wd given by the relation
(21) reads as

Wd = −κλ (1 − 4κλ)

(1 − 3κλ)2
. (26)

Then, regarding the weak energy condition represented by the re-
lation (22), for 0 ≤ κλ < 1

4 it is required that Nd > 0, while for
κλ < 0 ∪ κλ > 1

4 , we need Nd < 0 for the field structure constant.
In this case, Wd and consequently ρd are effectively different from

their GR counterparts such that ρd = 3λ(1−4κλ)Nd
(1−3κλ)2 r− 3−12κλ

1−3κλ .

By comparing this metric with the Kiselev metric (24) in GR,
we may obtain an effective equation of state parameter ωef f for
the modification term resulting from the geometry of the Rastall
theory as

ωef f = 1

3

(
−1 + 1 − 6κλ

1 − 3κλ

)
. (27)

One may realize that ωef f can never be zero (representing a back-
ground dust matter) except for the κλ = 0 corresponding to GR
limit. Then, the solutions of this theory are effectively different
from those of GR. Regarding (27), two interesting classes are dis-
tinguishable as

• 1
6 < κλ < 1

3 which leads to ωef f ≤ − 1
3 . In this case, we have

an effective surrounding fluid with an effective equation of
state parameter ωef f , playing the role of dark energy, which
leads to an effective repulsive gravitational effect. Then, re-
garding this range for κλ, such black holes may contribute
to the accelerating expansion of the universe in the Rastall
theory of gravity. In the language of Raychaudhuri equation,
such an effective surrounding fluid violating the strong energy
condition can account for the accelerating expansion of the
universe. Some κλ values in the range 1

6 < κλ < 1
3 and their

corresponding effective equation of state ωef f parameters ac-
companied by the geometric parameters W and N are listed
d d
in Table 1.
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able 1
ome κλ values in the range 1

6 < κλ < 1
3 and their corresponding effective equation 

f state ωef f parameters accompanied by the geometric parameters Wd and Nd .

κλ value ωef f value SEC Wd value Nd value

2
10 − 1

2 violated − 5
4 positive

2
9 − 2

3 violated −1 positive
3

10 −3 violated 20 negative

able 2
ome κλ values in the range κλ < 1

6 ∪ κλ > 1
3 and their corresponding effective 

quation of state ωef f parameters accompanied by the geometric parameters Wd

nd Nd .

κλ value ωef f value SEC Wd value Nd value

1
8 − 1

5 respected − 32
25 positive

1
9 − 1

6 respected − 5
4 positive

1
10 − 1

7 respected − 60
49 positive

4
10 2 respected 15 negative
1
2 1 respected 4 negative

1 1
2 respected 3

4 negative

Interestingly, for κλ = 2
10 and 2

9 , the effective equation of state 
ωef f lies in the quintessence range while for κλ = 3

10 , it lies 
in the strong phantom range. This represents the fact that for 
a given κ , the more large values of λ, namely the more strong 
coupling gμν R in Rastall theory, the more strong acceleration 
phase.

• κλ < 1
6 ∪ κλ > 1

3 which leads to ωef f ≥ − 1
3 . In this case, 

we have an effective surrounding fluid with an equation of 
state parameter respecting to the strong energy condition pos-
sessing the usual attractive gravitational effect. This may con-
tribute to the decelerating expansion or even the contraction 
of universe depending on the value of the effective equation of 
state parameter ωef f . In the language of Raychaudhuri equa-
tion, such a regular effective matter which respects to the 
strong energy condition, can justify the deceleration phase. 
Some κλ values in the range κλ < 1

6 ∪ κλ > 1
3 and their 

corresponding effective equation of state ωef f parameters ac-
companied by the geometric parameters Wd and Nd are listed 
in Table 2.
Interestingly, for κλ = 1

2 , the effective equation of state 
ωef f = 1 belongs to the stiff matter possessing very strong 
attractive gravitational effect.

.2. The black hole surrounded by the radiation field

For the radiation surrounding field, we set ωr = 1
3 [51,67]. Then, 

he metric (23) takes the following form

s2 = −
(

1 − 2M

r
+ Q 2 − Nr

r2

)
dt2 + dr2

1 − 2M
r + Q 2−Nr

r2

+ r2d�2.

(28)

t is interesting that this case is the same as in GR and the geo-
etric effects of the Rastall parameters do not appear for a black 

ole surrounded by the radiation field [51]. Also, the geometric pa-
ameter Wr given by the relation (21) reads as

r = 1

3
, (29)

nd consequently with regard to the weak energy condition for 

his case, represented by the relation (22), it is required that W
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r < 0 for the radiation field structure parameter. Then, by defin-
ng the positive structure parameter Nr = −Nr , we have

s2 = −
(

1 − 2M

r
+ Q 2 +Nr

r2

)
dt2 + dr2

1 − 2M
r + Q 2+Nr

r2

+r2d�2,

(30)

hich is the metric of the well known Reissner–Nordström black 
ole with an effective charge Q ef f =

√
Q 2 +Nr . This result is in-

erpreted as the positive contribution of the characteristic feature 
f the surrounding radiation field to the effective charge of the 
lack hole. The appearance of effective charge in the black hole so-

ution cannot change the causal structure and Penrose diagrams of 
his black hole solution, in comparison to the Reissner–Nordström 
lack hole.

Setting Q = 0 or switching off the electrostatic energy–momen-
um tensor Eμ

ν in the total energy–momentum tensor in (7), one 
rrives at the Kiselev black hole solutions in the radiation back-
round. In that case, the resulting metric will be the Reissner–
ordström black hole with the charge term Nr . Also, note that for 
 radiation background, not only the metric and the geometric pa-
ameter Wr are the same as in GR but also the energy density ρr
f the background radiation has the same form in comparison to 
he GR’s as ρr = Nr

κr4 . It is seen that the value of radiation energy 
ensity ρr of the background depends not only on the charac-
eristic feature of the surrounding radiation field Nr , but also it 
epends on the gravitational constant of the Rastall theory κ . In 
eneral, Rastall’s gravitational constant may differs from the New-
on gravitational constant. However, if one sets κ = 8πG N as in 
R, the corresponding energy densities in both of these theories 
ill be the same. Such a situation occurs also in the cosmologi-

al context of the Rastall theory [68]. In the cosmological setup, 
he metric solution, i.e. the scale factor, of the universe filled by 
he radiation fluid is exactly the same as in GR. Then, the evolu-
ions of the universe during the radiation dominated era are the 
ame for both of the GR and Rastall theories. This fact can be un-
erstood by inspecting the original field equations of the Rastall 
heory such that for a radiation fluid, we have T = 0 and R = 0
ndicating that everything should be the same as in GR theory.

.3. The black hole surrounded by the quintessence field

For the quintessence surrounding field, we set ωq = − 2
3 [51,67]. 

hen, the metric (23) takes the following form

s2 = −
(

1 − 2M

r
+ Q 2

r2
− Nq

r
−1−2κλ

1−κλ

)
dt2

+ dr2

1 − 2M
r + Q 2

r2 − Nq

r
−1−2κλ

1−κλ

+ r2d�2. (31)

his metric differs from the metric of the surrounded charged 
lack hole by a quintessence field in GR [51]. Here, it is seen that 

or κλ �= 0, the geometric parameters κ and λ of the Rastall theory 
an play an important role leading to distinct solutions, in com-
arison to GR. In this case, setting Q = 0 or Eμ

ν = 0 in the total 
nergy–momentum tensor in (7), one arrives at uncharged Kiselev-
ike black hole solutions in the quintessence background. Due to 
he appearance of nontrivial Nq term, the causal structure and Pen-
ose diagram will be different from those of Reissner–Nordström 
lack hole in GR.

In this case, the geometric parameter Wq given by the relation 
21) reads as

(1 − 4κλ) (2 + κλ)

q = −

3(1 − κλ)2
. (32)
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Table 3
Some κλ values in the range − 1

2 � κλ < 1 and their corresponding effective equa-
tion of state ωef f parameters with their behaviors, accompanied by the geometric
parameters Wq and Nq .

κλ value ωef f value SEC Wq value Nq value

− 1
2 − 1

3 violated − 12
25 positive

4
10 − 4

3 violated 15 negative
1
2 − 5

3 violated 4 negative

Then, considering the weak energy condition given by the relation
(22), we require Nq > 0 for 0 ≤ κλ < 1

4 and Nq < 0 for κλ > 1
4 . The

equation (32) shows that Wq and consequently the correspond-
ing energy density ρq effectively differ from their GR counterparts

such that ρq = (1−4κλ)(2+κλ)Nq
κ r− 1−4κλ

1−κλ .
In this case, by comparing the metric (31) with the original

Kiselev metric (24) in GR, one can obtain an effective equation of
state parameter ωef f for the modification term resulting by the
geometry of the Rastall theory as

ωef f = 1

3

(
−1 − 1 + 2κλ

1 − κλ

)
. (33)

One may realize that ωef f can never be − 2
3 (the background

quintessence filed), except for the κλ = 0 which corresponds to the
GR limit. Then, the solutions of this theory are effectively different
from GR’s. Regarding (33), two interesting classes are distinguish-
able as

• − 1
2 � κλ < 1 which leads to ωef f ≤ − 1

3 . In this case, we have
an effective surrounding fluid with an equation of state param-
eter violating the strong energy condition which leads to a re-
pulsive gravitational effect like as the background quintessence
field but with a different repulsive strength. This may con-
tribute to the accelerating expansion of the universe. Regard-
ing the appropriate range for κλ, such black holes may con-
tribute to the accelerating expansion of the universe in the
Rastall theory. Using the Raychaudhuri equation, such an effec-
tive surrounding quintessence field violating the strong energy
condition can justify the acceleration expansion of the uni-
verse. Some κλ values in the range − 1

2 � κλ < 1 and their
corresponding effective equations of state ωef f parameter with
its behavior, accompanied by the geometric parameters Wq

and Nq are given in Table 3.
Interestingly, the case of κλ = − 1

2 leads to ωef f = − 1
3 rep-

resenting an effective surrounding quintessence field weaker
than the one with ωq = − 2

3 . In the cosmological setup and
through the second Friedmann equation, the acceleration
equation, ωef f = − 1

3 corresponds to a universe with a uni-
form expanding velocity, i.e. ä = 0 where a is the scale factor
of the ambient FRW universe filled by an effective field with
ωef f = − 1

3 . For, κλ = 4
10 and κλ = 1

2 , it is seen that the effec-
tive surrounding field possesses a repulsive character stronger
than the quintessence with ωef f = − 4

3 and ωef f = − 5
3 which

eventually lie in the phantom regime.
• κλ �− 1

2 ∪ κλ > 1 which leads to ωef f ≥ − 1
3 . In this case, we

have an effective surrounding fluid with an equation of state
parameter respecting to the strong energy condition possess-
ing an attractive gravitational effect. This may contribute to
the decelerating expansion or even in contraction of the uni-
verse. In this case, although the black hole is surrounded by
the quintessence field with ωq = − 2

3 , however the effective
equation of state ωef f regarding the appropriate range for κλ

does not belong to the quintessence range. For such a regular

effective matter which respects to the strong energy condition, 
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Table 4
Some κλ values in the range κλ � − 1

2 ∪ κλ > 1 and their corresponding effec-
tive equation of state ωef f parameters with their behaviors, accompanied by the
geometric parameters Wq and Nq .

κλ value ωef f value SEC Wq value Nq value

−1 − 1
6 respected − 5

16 positive

− 3
2 − 1

15 respected − 28
121 positive

−2 0 respected − 9
49 positive

3
2

7
3 respected 20

49 negative

2 4
3 respected 7

25 negative
5
2 1 respected 36

169 negative

the Raychaudhuri equation can justify the deceleration phase
or even the contraction of the universe. Some κλ values in the
range κλ � − 1

2 ∪ κλ > 1 and their corresponding effective
equations of state ωef f parameters with their behaviors, ac-
companied by the geometric parameters Wq and Nq are given
in Table 4.
In this case, the Rastall’s correction term in metric (31) can
never behave as the charge term, i.e. as 1

r2 , to increases or de-
crease the charge’s effect. But interestingly for κλ = −2, which
leads to the effective equation of state ωef f = 0 representing
an effective dust matter, it exactly behaves like the mass term,
i.e. 1

r . The sign of metric parameter Nq for κλ = −2 is positive
and consequently, the correction term contributes to increase
the effect of Schwarzschild mass term. A similar but reverse
effect is reported in [50] in which for a universe filled by a
phantom field, the black hole mass smoothly decreases due
to the accreting particles of the phantom scalar field into the
central black hole. This fact can be investigated for the case of
a universe filled by a quintessence filed, which is out of the
scope of the present paper. Also, κλ = 5

2 leads to the equa-
tion of state parameter ωef f = 1 denoting a stiff matter. In
conclusion, it is seen that although the surrounding field is
an essentially quintessence but the effective field is not the
quintessence like filed, possessing a negative equation of state
parameter, rather it can behave effectively as dust or even stiff
matter possessing a zero or positive equation of state parame-
ters, respectively.

2.4. The black hole surrounded by the cosmological constant field

For the cosmological constant surrounding field, we set ωc =
−1 [51,67]. Then, the metric (23) takes the following form

ds2 = −
(

1 − 2M

r
+ Q 2

r2
− Ncr2

)
du2

+ dr2

1 − 2M
r + Q 2

r2 − Ncr2
+ r2d�2. (34)

It is interesting that this case is the same as what was already ob-
tained in GR by Kiselev [51]. Then, the Rastall and Einstein theories
behave the same in the cosmological constant background. Here,
setting Q = 0 or switching off Eμ

ν in the total energy–momentum
tensor in (7), one arrives at uncharged Kiselev-like black hole so-
lutions in the de Sitter or anti-de Sitter background.

In this case, the geometric parameter Wc given by the relation
(21) reads as

Wc = −(1 − 4κλ). (35)

Then, considering the weak energy condition given by the relation

(32), we require Nc > 0 for 0 ≤ κλ < 1

4 , and Nc < 0 for κλ > 1/4, 
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orresponding to de Sitter or anti-de Sitter backgrounds, respec-
ively. This shows that the sign of cosmological constant in the 
astall theory depends on its geometric parameters κ and λ. Al-

hough the form of metric (34) in this theory is the same as in 
R for cosmological constant background, but the energy density 
f the cosmological constant differs from the GR due to the ge-
metric features of the Rastall theory through the equations (20)
nd (35). In this case, the energy density of the cosmological con-
tant is given by ρc = 3(1−4κλ)Nc

κ . A similar situation occurs in the 
osmological context of the Rastall theory where the metric so-
ution of the field equations, i.e. the scale factor, for the universe 
ominated by the cosmological constant has a similar form as in 
R, i.e. it has an exponential form. In this case, by comparing the 
btained result in [68] as H ∝

√
1 − 2

3 ( 3−2λ
2λ−1 )ρ with the GR’s as 

∝ √
�, we see that although the solutions have the same form 

ut the geometric properties of the Rastall theory may affect the 
nergy density of the background cosmological constant.2

.5. The black hole surrounded by the phantom field

For the phantom surrounding field, we set ωp = − 4
3 [67]. Then, 

he metric (23) takes the following form

s2 = −
(

1 − 2M

r
+ Q 2

r2
− Np

r
−3+2κλ

1+κλ

)
dt2

+ dr2

1 − 2M
r − N p

r
−3+2κλ

1+κλ

+ r2d�2. (36)

his metric differs from the metric of the surrounded charged 
lack hole by a phantom field in GR [51]. For κλ �= 0, the geomet-
ic parameters κ and λ of the Rastall theory plays an important 
ole leading to distinct solutions in comparison to GR. Also, setting 

= 0 or switching of Eμ
ν in the total energy–momentum tensor 

n (7), one arrives at uncharged Kiselev-like black hole solutions in 
he phantom background. Due to the appearance of nontrivial Np

erm, the causal structure and Penrose diagram will be different 
rom those of Reissner–Nordström black hole in GR.

In this case, the geometric parameter Wp given by the relation 
21) reads as

p = −1

3

(1 − 4κλ) (4 − κλ)

(1 + κλ)2
. (37)

hen, considering the weak energy condition given by the relation 
22), we require Np > 0 for 0 ≤ κλ < 1

4 ∪ κλ > 4 and Np < 0 for 
< κλ < 4. The equation (37) shows that Wp and consequently 

he corresponding phantom energy density ρp effectively differs 
rom their GR counterparts such that ρp = (1−4κλ)(4−κλ)

κ(1+κλ)2 Np r
1−4κλ
1+κλ .

By comparing this metric with the Kiselev metric (24), we may 
btain an effective equation of state parameter ωef f for the modi-
cation term resulting from the geometry of the Rastall theory as

ef f = 1

3

(
−1 − 3 − 2κλ

1 + κλ

)
. (38)

ne may realize that ωef f never can be − 4
3 (the background phan-

om field), except for the κλ = 0 corresponding to GR limit. Then, 
wo interesting classes are distinguishable as

2 One should note to a little different notation for the field equations in our 
ork and [68], where the field equations are defined as R − λ Rg = κT and 
μν 2 μν μν
μν ;μ = 1−λ

2κ T ;ν .
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able 5
ome κλ values in the range −1 < κλ < 3

2 and their associated effective equation 
f state parameters ωef f parameters with their behaviors, accompanied by the geo-
etric parameters Wq and Nq .

κλ value ωef f value SEC Wp value N p value

− 1
2 −3 violated − 12

25 positive
1
2 − 7

9 violated 4 negative

1 − 1
2 violated 3

4 negative

able 6
ome κλ values in the range κλ < −1 ∪ κλ ≥ 3

2 and their corresponding effec-
ive equation of state ωef f parameters with their behaviors, accompanied by the 
eometric parameters Wp and Np .

κλ value ωef f value SEC Wp value N p value

− 3
2

11
3 respected − 28

121 positive

−2 2 respected − 9
49 positive

− 5
2

13
9 respected − 44

289 positive

2 − 2
9 respected 7

25 negative
5
2 − 1

7 respected 36
169 negative

3 − 1
12 respected 11

64 negative

4 0 respected 15
121 negative

• −1 < κλ < 3
2 leading to ωef f ≤ − 1

3 . Then, we have a sur-
rounding fluid with an effective equation of state parameter 
ωef f which violates the strong energy condition resulting in a 
repulsive gravitational force. Then, in this range of κλ, these 
black holes may contribute to the accelerating expansion of 
the universe in the Rastall theory. For such an effective sur-
rounding quintessence field violating the strong energy condi-
tion, the Raychaudhuri equation can account for the acceler-
ation expansion of the universe. In Table 5, some κλ values 
in the range −1 < κλ < 3

2 and their associated effective equa-
tions of state parameters ωef f parameter with their behaviors, 
accompanied by the geometric parameters Wq and Nq are 
given. Interestingly, for κλ = − 1

2 , we have ωef f = −3 which 
has a repulsive character stronger than the background phan-
tom field with ωp = − 4

3 while for κλ = 1
2 and κλ = 1, we 

have an effective field with a repulsive character weaker than 
the background phantom field with ωp = − 4

3 but still lying in 
the quintessence range.

• κλ < −1 ∪ κλ ≥ 3
2 which leads to ωef f ≥ − 1

3 . In this case, we 
have an effective surrounding fluid with an equation of state 
parameter respecting to the strong energy condition which 
leads to a attractive gravitational effect. This may contribute 
to the decelerating expansion or even in contraction of the 
universe. In this case, although the black hole is surrounded 
by the phantom field with ωp = − 4

3 , but the effective equa-
tion of state ωef f regarding the appropriate range of κλ does 
not belong to the phantom range. This effect may cause the 
contraction of universe filled by such a black holes in the 
Rastall theory of gravity. For such a regular effective mat-
ter which respects to the strong energy condition, the Ray-
chaudhuri equation can justify the deceleration phase or even 
the contraction of the universe. Some κλ values in the range 
κλ < −1 ∪ κλ ≥ 3

2 and their corresponding effective equa-
tions of state ωef f parameter with their behaviors, accompa-
nied by the geometric parameters Wp and Np are given in 
Table 6. In this case, the Rastall’s correction term in metric 
(36) can never behave like the charge term, i.e. as 1

r2 , but in-
terestingly for κλ = 4, which leads to the effective equation of 
state ωef f = 0 representing an effective dust matter, it exactly 

behaves like the mass term, i.e. 1

r . For this case, the sign of 
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Nq for κλ = 4 is negative and the correction term contributes
to decreases the effect of Schwarzschild mass term. Such an
effect is reported in [50] in which for a universe filled by a
phantom field approaching to the Big Rip, the black hole mass
gradually decreases due to the accreting particles of the phan-
tom scalar field into the central black hole. In conclusion, it
is seen that although the surrounding field is an essentially
phantom field but the effective surrounding field is not the
phantom field, rather it can be effectively a quintessence, dust
or even stiff matter.

3. Conclusion

We have obtained general uncharged\charged Kiselev-like black
hole solutions surrounded by perfect fluid in the context of Rastall
theory. Then, we have investigated in more detail the specific cases
of the black holes surrounded by dust, radiation, quintessence, cos-
mological constant and phantom fields. In each case, the weak
energy condition, representing a positive energy density, is ap-
plied to put constraint on the physical parameters of this mod-
ified theory. By comparing the new term in the metric, resulted
from the Rastall theory, with the Kiselev solution in GR, an ef-
fective behavior for the black hole surrounding field is realized.
It is shown that the effective fluid has different characteristics
through its effective equation of state parameter ωef f depend-
ing on the κλ values. In the case of black hole in a dust back-
ground with ωd = 0, for 1

6 < κλ < 1
3 , we have ωef f ≤ − 1

3 violating

the strong energy (SEC) condition, while for κλ < 1
6 ∪ κλ > 1

3
we have ωef f ≥ − 1

3 respecting to strong energy condition. For a
black hole in a quintessence background with ωq = −2/3, we have
ωef f ≤ − 1

3 for − 1
2 � κλ < 1 violating the strong energy condition,

while ωef f ≥ − 1
3 for κλ � − 1

2 ∪ κλ > 1 respecting to strong en-
ergy condition. In the case of a black hole in phantom background
with ωp = −4/3, for −1 < κλ < 3

2 , we have ωef f ≤ − 1
3 , while for

κλ < −1 ∪ κλ ≥ 3
2 , we have ωef f ≥ − 1

3 . For such an effective
surrounding fluid violating/respecting the strong energy condition,
the Raychaudhuri equation can account for the accelerating/decel-
erating expansion of the universe, respectively. For each of these
special classes, some interesting κλ values and their corresponding
ωef f as well as the defined Rastall geometric parameters Wp and
Np are given in the Tables 1 to 6. For example, for the black hole
in dust background, for κλ = 2

10 and 2
9 , the effective equation of

state ωef f lies in the quintessence range while for κλ = 3
10 , it lies

in the strong phantom regime possessing repulsive gravitational
effect. For κλ = 1

2 , we have ωef f = 1 which belongs to the stiff
matter with stronger gravitational attraction than the background
dust. In the case of a black hole in a quintessence background with
ωq = − 2

3 , the case of κλ = − 1
2 leads to ωef f = − 1

3 represent-
ing an effective surrounding quintessence field weaker than the
background. For, κλ = 4

10 and κλ = 1
2 , it is seen that the effective

surrounding field possesses a repulsive character stronger than the
quintessence with ωef f = − 4

3 and ωef f = − 5
3 , respectively, which

lie in the phantom regime. Also, for κλ = −2, we have ωef f = 0
representing an effective dust field while κλ = 5

2 leads to the equa-
tion of state parameter ωef f = 1 denoting a stiff matter. In latter
cases, it is seen that although the surrounding field is an essen-
tially quintessence but the effective field is not the quintessence
like filed, possessing a negative equation of state parameter, rather
it can behave effectively as dust or even stiff matter possessing
a zero or positive equation of state parameters, respectively. Fi-
nally, for a black hole in a phantom background with ωp = −4/3,
for κλ = − 1 , we have ωef f = −3 which has a repulsive character
2
stronger than the background phantom field, while for κλ = 1

2 and 
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κλ = 1, we have effective fields with repulsive character weaker
than the background phantom field, still lying in the quintessence
range. For κλ = 4, we have ωef f = 0 representing an effective dust
field. Then, it is seen that for the latter cases, although the sur-
rounding field is an essentially phantom field but the effective
surrounding field is not the phantom field, rather it can be ef-
fectively a quintessence, dust or even stiff matter. It is predicted
that the new terms appearing in the Kiselev-like black holes may
cause for some drastic changes in their horizons, causal structures
and thermodynamical aspects, in comparison to the Kiselev black
holes in GR. Such study is under work by the authors and will be
reported, elsewhere.
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Baryogenesis in Lorentz-violating gravity theories
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Lorentz-violating theories of gravity typically contain constrained vector fields. We show that the lowest-
order coupling of such vectors to U(1)-symmetric scalars can naturally give rise to baryogenesis in
a manner akin to the Affleck–Dine mechanism. We calculate the cosmology of this new mechanism
demonstrating that a net B − L can be generated in the early Universe, and that the resulting baryon-to-
photon ratio matches that which is presently observed. We discuss constraints on the model using solar
system and astrophysical tests of Lorentz violation in the gravity sector. Generic Lorentz-violating theories
can give rise to the observed matter–antimatter asymmetry without violating any current bounds.
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W1. Introduction

Why is there so much more matter than antimatter? One
most likely cannot appeal to initial conditions, as these would be
washed away by inflation. The standard model can provide such
an asymmetry during the electroweak phase transition, but cannot
produce enough to accommodate observations [1]. It seems proba-
ble, then, that a dynamical generation mechanism, or baryogenesis
arises from new physics beyond the standard model.1

In this paper we point out that Lorentz violation might play a
key role in this new physics. While Lorentz invariance is extraor-
dinarily well tested in the matter sector, the possibility of gravita-
tional Lorentz violation remains relatively unconstrained. If boosts
are broken but rotational invariance is maintained—i.e., if grav-
ity picks out a preferred rest frame—then the low-energy physics
is described by Einstein-æther theory, a vector–tensor theory in
which the vector field is constrained to have a fixed, timelike
norm. This is the general effective field theory when boosts are
broken [8]; for example, a special case of Einstein-æther arises in
the low-energy limit of Hořava–Lifschitz gravity [9,10], a putative
UV completion of general relativity which relies on the existence
of a preferred foliation.

We demonstrate that if a U(1)B−L scalar couples to the vector
of Einstein-æther theory, then the lowest-order interactions be-
tween the two can lead to baryogenesis. This operates in a manner
* Corresponding author.
E-mail addresses: sakstein@physics.upenn.edu (J. Sakstein),

adamsol@physics.upenn.edu (A.R. Solomon).
1 For reviews of baryogenesis, see, e.g., Refs. [1–7].
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Tqualitatively similar to Affleck–Dine baryogenesis [11] or the re-
cent model of Ref. [12], in which the U(1)B−L symmetry is broken
at early times due to a tachyonic mass proportional the Hubble
parameter H appearing in the effective scalar potential.2 In purely
metric theories this is difficult to achieve, as H is not a spacetime
scalar. Breaking boosts cures this difficulty, and indeed in Einstein-
æther H is simply proportional to the divergence of the timelike
vector field. As Einstein-æther is the most general low-energy ef-
fective theory for broken boosts, our conclusion can be stated
as follows: if the Universe contains a U(1)B−L scalar with softly
broken symmetry and spontaneous Lorentz violation, a working
baryogenesis mechanism comes for free.3

This paper is organized as follows. In section 2 we introduce the
model of scalar-æther baryogenesis and discuss known constraints
on the theory. In section 3 we derive the cosmology and verify
that this model can yield the observed baryon-to-photon ratio with
sensible parameters, and we conclude in section 4.

2. Model

The model we will consider is the constrained vector (or
“æther”) uμ of Einstein-æther theory coupled to a new U(1)B−L

scalar φ. At leading order, the most general action we can write
down is

2 In the former model, this arises due to a coupling of the scalar to the inflaton

while in the latter, it arises from a Weyl coupling to dark matter.

3 Baryogenesis in Lorentz-violating theories has also been studied in various other
contexts in Refs. [13–15]. Our method is distinct from these. In particular, we do not
consider a coupling of the vector to the baryon current of the form uμ jμB , which 
would give rise to spontaneous baryogenesis.
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W

=
∫

d4x
√−g

[
M2

Pl

2
R −Kμν

αβ∇μuα∇νuβ + κ
(

uμuμ + m2
)

− ∂μφ∂μφ† − m2
φ |φ|2 − λ

2
|φ|4 − ε

4
φ4 − ε†

4
φ†4

+ α

3
|φ|2∇μuμ

]
, (1)

here
μν
αβ = c1 gμν gαβ + c2δ

μ
α δν

β + c3δ
μ
β δν

α + c4uμuν gαβ (2)

s the most general kinetic term for the Lorentz-violating vec-
or uμ , and κ is a Lagrange multiplier that ensures that the vector 
s timelike and of fixed norm, uμuμ = −m2. We have included 
ome U(1)B−L -violating terms proportional to ε in order to gen-
rate a net B − L. The last line is the leading-order interaction one 
an write down between φ and uμ given the symmetries.4 This is 
he general low-energy effective theory with φ, broken boosts, and 
oftly-broken U(1)B−L .

The coupling between uμ and φ can give rise to baryogenesis 
sing a mechanism akin to (but distinct from) that of Affleck and 
ine [11] or similar generalizations [12]. In particular, the effective 
otential for φ is

eff(φ,φ†) =
(

m2
φ − 1

3
α∇μuμ

)
|φ|2

+ λ

2
|φ|4 + ε

4
φ4 + ε†

4
φ†4

(3)

o that ∇μuμ acts as a tachyonic mass term for φ. We can see 
his explicitly by considering a homogeneous and isotropic cosmo-
ogical setting, so that the Universe is described by a Freidmann–
emaître–Robertson–Walker metric (in cosmic time)

s2 = −dt2 + a2(t)d�x2. (4)

he on-shell condition uμuμ = −m2 and symmetry imply that the 
ector must be of the form [22–24]

μ = (m, 0, 0, 0) . (5)

n this case, the divergence of uμ is ∇μuμ = m∂t ln
√−g = 3mH , 

o that the effective potential becomes

eff(φ,φ†) =
(

m2
φ − αmH

)
|φ|2 + λ

2
|φ|4 + ε

4
φ4 + ε†

4
φ†4

. (6)

This potential leads to baryogenesis similarly to the well-known 
ffleck–Dine mechanism. In the early Universe, the U(1)B−L sym-
etry is broken as the tachyonic mass term is more important 

han the bare mass, while at late times the symmetry is re-
tored. During the broken-symmetry phase, the motion of the an-
ular component of the scalar generates a net B − L due to the 
ymmetry-breaking terms εφ4 + ε†φ†4

. When the symmetry is re-
tored, the B − L is stored in the field, and can be transferred to the 
tandard model through sphaleron processes [25], although one 
ust first transfer the asymmetry to left-handed standard model 

articles. The details of the transfer were discussed for models 
uch as ours in Ref. [12], where the neutrino portal [26,27] was 
dentified as one promising mechanism. We note that our model 
iffers quantitatively from Affleck–Dine: the tachyonic mass scales 

4 Couplings between a scalar and ∇μuμ were first introduced in Ref. [16], and 
ave also been considered in, e.g., Refs. [17–21]. One could also consider a term 

2 μ
| u uμ , but this can always be absorbed into the mass and Lagrange multiplier 
hen the vector is on-shell.

p
m
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T

ike mH rather than H2, which can lead to novel and interest-
ng new features. In what follows, we will calculate the cosmology 
f this model, paying special attention to the generation of a net 
 − L.

.1. Constraints

In this subsection, we briefly summarize observational and the-
retical constraints on the parameters in our model. Most of these 
ill apply to Einstein-æther theory or to its coupling to a real 

calar. We will use the notation c12 = c1 + c2, c123 = c1 + c2 + c3, 
tc.

Experimental constraints on Einstein-æther theory tend to place 
pper bounds on the æther vacuum expectation value (VEV) m, 
ith the result cim2 � M2

Pl for generic values of the ci parameters. 
e note that any of these constraints can be weakened or removed 

ntirely by tuning the ci parameters, although these tunings can-
ot all be done simultaneously. We refer the reader to Sec. V.D of 
ef. [19] for a more comprehensive summary of constraints on the 
ther.

The strongest constraints come from gravitational C̆erenkov ra-
iation: high-energy cosmic rays could lose energy to sublumi-
al æther-graviton modes, leading to a degradation in cosmic ray 
ropagation which has not been observed, constraining m/MPl <

 × 10−8 [28]. These constraints can be avoided by tuning the ci

r allowing for superluminal propagation in æther-graviton modes; 
ince this is an explicitly Lorentz-breaking theory, superluminality 
ay not be as deadly as one normally expects. The preferred-frame 

arameters α1,2 in the parametrized post-Newtonian formalism 
re modified by the æther, constraining m/MPl < 6 × 10−4 in the 
bsence of tuning ci [29,30]. Note that the tuning which eliminates 
ravitational C̆erenkov radiation (c3 = −c1, c2 = c1/(1 − 2c1)) also 
ets α1 = 0, so that the dominant constraint comes from α2, in 
hich case the strongest constraint on m is rather mild, m/MPl �

0−2.
Under the assumption that cim2 � M2

Pl, we are justified in ig-
oring the mixing with gravity [23], in which case there are a few 
onstraints on the ci from flat space perturbation theory. In the 
ector sector, the absence of ghosts requires c1 > 0 [23]; coupling 
 scalar to ∇μuμ , as in this paper, does not modify the vector per-
urbations around flat space [19]. The no-ghost condition for the 
pin-0 piece of uμ is the same, while gradient stability requires 
123 > 0. Some authors require the spin-0 æther mode to prop-
gate subluminally, which would imply c123 < c1 [23], although 
he scalar coupling relaxes this bound to c123 < c1 + x for some 
 > 0 [19]. If we require the sound speed of tensors to be sublu-
inal then we would require c13 > 0 [23].

The æther-scalar coupling can lead to a gradient instability, 
lacing an upper bound on α [19]. Writing φ(x) = 1√

2
ρ(x)eiθ(x) , 

he real scalar ρ interacts with the æther through a potential 
(θ, ρ) = 1

2 m2
φρ2 + 1

4 λρ4 − 1
6 αρ2, where  ≡ ∇μuμ . Gradient 

tability around flat space requires5

2
ρ ≤ 2c123

(
Vρρ + k2

)
, (7)

here Vρ = ∂∂ρ V and Vρρ = ∂2
ρ V are evaluated at the back-

round values of  and ρ . Applying this to our potential, we find 
hat the constraint is trivially satisfied in the unbroken symmetry 

5 While the analysis of Ref. [19], in contrast to our model, assumed a single real 
calar, the field θ decouples from ρ and uμ around the background ∂μθ̄ = 0. In 

¯
rinciple a non-zero ∂μθ = cμ could modify the constraint by shifting the effective 
ass for ρ fluctuations, m2

φ → m2
φ + c2.
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Fig. 1. The motion of the complex scalar in field space. The left panel corresponds to a model with mφ/αm = 10−4, αm/MPl = 10−2, and T R = 1012 GeV. The right panel has
mφ/αm = 7 × 10−3, αm/MPl = 2 × 10−6, and T R = 1013 GeV.

Fig. 2. n /s as a function of z = ln(αmt). The left panel corresponds to a model with m /αm = 10−4, αm/M = 10−2, and T = 1012 GeV. The right panel has m /αm =
B−L φ Pl R φ
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W7 × 10−3, αm/MPl = 2 × 10−6, and T R = 1013 GeV.

phase (ρ = 0), while in the broken symmetry phase (ρ = ρ̄) we
have, in the k → 0 limit,6

α2 ≤ 54c123λ, (8)

where we have assumed mφ � ρ̄ , as we will throughout this pa-
per. This constraint places a mild upper bound on the coupling,
α �

√
λ. We expect λ � O(1), otherwise the theory is strongly

coupled. Only the combination αm is relevant for baryogenesis
and this constraint then implies that we cannot simultaneously
take m < MPl to satisfy the constraints above whilst having αm
parametrically larger.

3. Cosmology

In this section we will assume a homogeneous and isotopic cos-
mological background and derive a simple estimate (19) for the
baryon-to-photon ratio generated by our model. In order to ver-
ify that the approximations we make are valid, we also solve the
equations of motion numerically, with the results plotted in Figs. 1
and 2.

6 Strictly speaking the k → 0 limit is not physical, as we will be dealing with
cosmological spacetimes, which only resemble flat space for k 
 H . A more exact
condition is obtained by setting k = H̄ , where H̄ is the value of the Hubble param-
eter below which the symmetry is restored, as discussed in the next section. This

only significantly relaxes the constraint (8) if mφ 
 αm, in which case the con-
straint becomes α2 ≤ √

18c123λmφ/m.
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We can see from the potential (6) that the U(1) symmetry is

broken at early times and restored at late times, when

H < H̄ ≡ m2
φ

αm
. (9)

When H > H̄ there is a time-dependent symmetry-breaking mini-
mum at

|φmin|2 = αmH − m2
φ

λ
≈ αmH

λ
, (10)

where we have assumed that the small symmetry-violating terms

(εφ4 + ε†φ†4
) are negligible, or, equivalently, have chosen the co-

efficients ε so that this is the case at early times.
The field tracks this minimum nearly adiabatically until H ≈ H̄

at which point the symmetry is restored and the field begins to
oscillate around the symmetry-restored minimum at φ = 0. When
this occurs, the U(1)B−L -violating terms play an important role
We would like these to become important around the time that
the symmetry is restored. Expanding ε = ε̄eiψ , the correction to
the potential is

�V eff = 1

2
ε̄|φ|4 cos (4θ + ψ) , (11)

where φ = |φ|eiθ . The B − L charge density is
↔

nB−L = J 0 = i(B − L)(φ†∂0φ) = 2(B − L)|φ|2θ̇ , (12)

NOLOGIES____________________________
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o we see that the motion of the angular field is responsible for 
enerating a net B − L. This means that θ should not sit at its mini-
um in the early Universe, and, indeed, one expects it to be frozen 

t some initial value due to Hubble damping. We would like it to 
egin rolling around the time of symmetry restoration in order to 
enerate a net B − L before the field settles into the new minimum 
t φ = 0, which will be the case if the canonically-normalized 
eld’s mass7 m2

θ = �V eff θθ /|φ|2 is of order H̄2. If mθ < H̄ the an-
ular field will not roll after symmetry restoration and no B − L
ill be generated. Similarly, if mθ > H̄ the field starts rolling long 

efore symmetry restoration, and the value of B − L is set by tun-
ng the initial conditions. Setting mθ ∼ H̄ implies that

∼ λ
( mφ

αm

)2
, (13)

here we have used |φ| = |φmin| at the time of symmetry restora-
ion.

Using the angular field’s equation of motion,

φ|2 (
θ̈ + 3H θ̇

) + 2|φ||φ̇|θ̇ = ε̄|φ|4 sin(4θ + ψ), (14)

ne has

B−L + 3HnB−L = 2(B − L)ε̄|φ|4 sin(4θ + ψ). (15)

aking the approximation ṅB−L ≈ HnB−L [31,32], which we will 
erify numerically later, one finds

B−L ∼ ε̄
|φmin|4

H̄
, (16)

here we have omitted factors of order unity. Using equations (9), 
10), and (13) we can estimate the B − L conserved charge density 
s

B−L ∼ m4
φ

λαm
. (17)

We do not directly observe nB−L , but rather the baryon-to-
hoton ratio nb = nB−L/s, where s is the entropy density. This 

ntroduces some model dependence; for concreteness, and to min-
mize the number of free parameters, we will focus on a minimal 

odel in which the Universe reheats instantaneously after infla-
ion, and the U(1)B−L symmetry is restored shortly thereafter. The 
ssumption of instantaneous reheating yields

= 4ρI

3T R
∼ H̄2M2

PlT R , (18)

here T R is the reheat temperature. Combining this with equa-
ion (17) we find

b = nB−L

s
∼ 10−10

λ

(
T R

108 GeV

)(
αm

MPl

)
. (19)

e see that this new mechanism can produce the observed 
aryon-to-photon ratio, nb ∼ 10−10, with sensible choices for the 
eheat temperature and model parameters. Note that the parame-
ers α and m only appear in the combination αm, while it is m2

in combination with the ci ) which is constrained by experimental 
ests of Lorentz violation, as discussed in section 2.1. We expect 
 � O(1), otherwise the theory is strongly coupled, and as dis-
ussed above, we should have α2 � O(10)λ to ensure gradient 
tability around flat space.

7 √ 2 2 −2
Recall that Lθ / −g ⊃ |φ| (∂θ) , necessitating the factor of |φ| in the canon-
al normalization. [
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In order to verify the approximations we have made above, 
e have numerically integrated the scalar field equations assum-

ng a radiation-dominated Universe. In Fig. 1 we plot the motion 
f the complex scalar for two different models. One can see the 
ehavior we predicted qualitatively above: the field tracks its time-
ependent minimum at early times before the angular field begins 
o roll when the symmetry is restored, giving rise to a spiral tra-
ectory. In Fig. 2 we plot the baryon-to-photon ratio nB−L/s for the 
ame models. One can see that our numerical results agree well 
ith our prediction (19).

. Conclusions

In this paper we have studied baryogenesis in Lorentz-violating 
heories of gravity, which, at low energies, are naturally described 
y a constrained vector so that there is a preferred frame. Baryoge-
esis requires a field charged under U(1)B−L , the simplest choice 
eing a complex scalar. We have demonstrated here that the 

owest-order interaction between the scalar and vector can give 
ise to a tachyonic mass term for the scalar proportional to the 
ubble parameter so that the U(1)B−L symmetry is broken at early 

imes. Inverse phase transitions such as these can generate a net 
 − L through the coherent motion of the scalar when the sym-
etry is restored at late times, and we have shown here that 

orentz-violating theories can successfully generate the observed 
aryon-to-photon ratio using this phenomenon. Furthermore, this 
an be achieved for parameter choices that are not ruled out 
y current constraints. Our theory differs from the quintessen-
ial paradigm—the Affleck–Dine mechanism—in that the tachyonic 

ass is proportional to H rather than H2, which gives rise to new 
eatures and a qualitatively different cosmology, which we have 
alculated in detail. Lorentz-violating gravity theories continue to 
e important in the study of dark energy and quantum gravity. 
ere, we have shown that they may also shed light on the origin 
f the matter–antimatter asymmetry.
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The cosmic-ray (CR) e± excess observed by AMS-02 can be explained by dark matter (DM) annihilation
However, the DM explanation requires a large annihilation cross section which is strongly disfavored
by other observations, such as the Fermi-LAT gamma-ray observation of dwarf galaxies and the Planck
observation of the cosmic microwave background (CMB). Moreover, the DM annihilation cross section
required by the CR e± excess is also too large to generate the correct DM relic density with thermal
production. In this work we use the Breit–Wigner mechanism with a velocity dependent DM annihilation
cross section to reconcile these tensions. If DM particles accounting for the CR e± excess with v ∼
O(10−3) are very close to a resonance in the physical pole case, their annihilation cross section in the
Galaxy reaches a maximal value. On the other hand, the annihilation cross section would be suppressed
for DM particles with smaller relative velocities in dwarf galaxies and at recombination, which may
affect the gamma-ray and CMB observations, respectively. We find a proper parameter region that can
simultaneously explain the AMS-02 results and the thermal relic density, while satisfying the Fermi-LAT
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and Planck constraints.

1. Introduction

Astrophysics and cosmology observations reveal that the dom-
inant matter component in the universe is dark matter (DM), but
the particle nature of DM remains unknown [1,2]. The existence
of DM cannot be explained within the framework of the standard
model (SM), and thus provides a hint of the physics beyond the
SM. Great efforts have been devoted to DM researches, including
collider detection, direct detection, and indirect detection experi-
ments.

DM particles can be traced by cosmic ray (CR) experiments
through their annihilation products from the Galaxy halo. The Al-
pha Magnetic Spectrometer (AMS-02), launched in 2011, is able
to measure CR spectra with an unprecedented precision [3]. The
precise results released by AMS-02 have confirmed the CR e± ex-
cess above ∼ 10 GeV, which indicates the existence of exotic e±
sources. Many astrophysical explanations have been proposed for

this excess, such as primary sources like pulsars [4–6], or the CR 
interactions occurring around CR acceleration sources [7–10]. Inter-

E-mail address: yinpf@ihep.ac.cn (P.-F. Yin).

____________________________WORLD TECH
estingly, this excess can also be explained by DM annihilations/de-
cays to charged leptons [11–17].

On the other hand, DM particles would also generate high en-
ergy photons associated with charged leptons. The related gamma-
ray signatures can be significant in systems with high DM densities
and low baryon densities, such as dwarf galaxies. However, the
Fermi-LAT observations do not find such signatures, and set strong
constraints on the DM annihilation cross section [18–20]. Since the
large annihilation cross section required by the CR e± excess seems
not to be allowed by the Fermi-LAT constraints [17], the DM anni-
hilation explanation is strongly disfavored.

Moreover, the electromagnetically interacting particles gener-
ated by DM annihilations at recombination could affect cosmic
microwave background (CMB) [21–27]. Precise measurements per-
formed by WMAP [1] and recently by Planck [2] have been used
to set constraints on the DM energy injections and the DM anni-

hilation cross sections for specified final states. Compared to the 
results from CR and gamma-ray observations, these constraints are 
more stringent, and are free of some astrophysical uncertainties, 
which arise from the large-scale structure formation, DM density 
files and so on [26].
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Apparently, the results from the Fermi-LAT and Planck obser-
ations strongly disfavor the large DM annihilation cross sections 
equired by the CR e± excess [17]. However, note that DM particles 
ave very different relative velocities in different circumstances. 
or the DM particles potentially impacting on the CR e± , dwarf 
alaxy gamma-ray, and CMB observations, the typical relative ve-
ocities are v ∼ 10−3, 10−4, and � 10−6, respectively. Therefore, 
he inconsistence between the DM explanations for different ex-
erimental results can be relaxed or even avoided by a velocity 
ependent annihilation cross section. In fact, the velocity depen-
ent DM annihilation models, such as the Sommerfeld [28–35] and 
reit–Wigner mechanisms [36–42], have been widely used to si-
ultaneously explain the thermal DM relic density and the CR e±

xcess. In these models, DM particles have a much larger annihi-
ation cross section in the Galaxy with v ∼ 10−3 than that in the 
arly Universe for explaining the relic density with v ∼ 10−1.

In this paper, we explain the AMS-02 e± excess in an anni-
ilating DM scenario with the Breit–Wigner mechanism. The DM 
elic density and the constraints from the Fermi-LAT and Planck 
bservations are also taken into account. In this scenario, two 
M particles resonantly annihilate via the s-channel exchange of 
 heavy mediator. The typical form of the DM annihilation cross 
ection is characterized by two parameters, namely γ ≡ �Z ′/mZ ′
nd δ ≡ 1 − m2

Z ′/4m2
χ , where �Z ′ , mZ ′ , and mχ are the mediator 

ecay width, the mediator mass, and the DM mass, respectively. 
he assumptions of δ > 0 and δ < 0 correspond to the cases with 
n unphysical pole and a physical pole, respectively. As shown in 
ef. [36–38], both these two cases can simultaneously explain the 
igh energy positron excess observed by PAMELA and the DM relic 
ensity. In our analysis, we perform a fitting to the AMS-02 e±
ata with the DM contribution, and derive the corresponding DM 
nnihilation cross sections for μ+μ− and τ+τ− final states. Then 
e adjust the parameters γ and δ to obtain suitable DM anni-
ilation cross sections with different relative velocities. We find 
hat there exists a parameter region with δ < 0, simultaneously 
ccounting for the AMS-02 e± excess and DM relic density, which 
s also allowed by the Fermi-LAT dwarf galaxy gamma-ray and the 
lanck CMB observations (for other studies of the similar topic, see 
lso Ref. [43,44,42]).

This paper is organized as follows. In Sec. 2 we perform a fitting 
o the AMS-02 data, and derive the corresponding DM annihilation 
ross sections for μ+μ− and τ+τ− final states. In Sec. 3 we briefly 
ntroduce the Breit–Wigner scenario. In Sec. 4 we show how to 
elax the tension between DM explanations for the AMS-02, Fermi, 
nd Planck observations, and obtain the correct DM relic density. 
ec. 5 is our conclusions and discussions.

. Fit to the AMS-02 data

The complicated CR propagation process can be described by 
 propagation equation involving some free parameters. In order 
o predict the CR e± background, some additional parameters de-
cribing the primary and secondary CR injections are needed. In 
rinciple, these parameters are determined by available CR ob-
ervations. In this work, we use the package GALPROP [45,46] to 
esolve the propagation equation, and perform a Markov chain 

onte Carlo fitting to the AMS-02 data in the high dimensional 
arameter space.

The propagation parameters are dominantly determined by a 
tting to the measured secondary-to-primary ratios [17], including 

he B/C data from ACE [47] and AMS-02 [48], and the 10Be/9Be
ata from several experiments. Two kinds of propagation models, 
amely the diffusion–convection (DC) model and the diffusion–
eacceleration (DR) model, are taken into account in [17]. The in-

ection spectrum of the primary electron background is assumed to �

___________________________WORLD TECHN
T

e a three-piece broken power law with two breaks. Comparing to 
he spectrum with only one break at the low energy, we find that 
he spectrum with an additional break around 60 GeV can provide 
 better fit to the AMS-02 data. The nucleon injection parameters 
re constrained by fitting the proton flux of AMS-02 [48]. After 
eriving the propagated proton spectrum, the injection of the sec-
ndary e± backgrounds is calculated by using the parameterized 
ross section presented in Ref. [49].

For the DM signature, we assume that DM particles purely an-
ihilate to μ+μ− or τ+τ− . The initial e± spectra from DM anni-
ilation are calculated by PPPC 4 DM ID [50], which includes the 
lectroweak corrections [51]. The DM density profile is taken to 
e the NFW profile [52] defined by ρ(r) = ρsrs/r(1 + r/rs)

2, with 
 characteristic halo radius ρs = 20 kpc and a characteristic halo 
ensity ρs = 0.26 GeV cm−3. Since the dominant contributions to 
he observed high-energy CR e± are provided by DM particles lo-
ated in a range of ∼ 1 kpc around the Solar system due to the CR 
ropagation effect, the different choices of the DM density profile 
ould not significantly modify the prediction for CR e± .

Combining the contributions of primary CR e− , secondary CR 
± , and e± from DM annihilation, we perform a fit to the latest 
MS-02 e± data, including the positron fraction e+

e++e− and the 
uxes of e+ , e− , and e+ + e− [53–55]. We provide the fitting re-
ults to the observed e+ flux with the DR propagation model in 
ig. 1; the bands representing 2σ uncertainties are also shown. 
he best-fit values of mχ and related 2σ regions of 〈σann v〉 (in 
m3s−1) are listed in Table 1. The corresponding exclusion lim-
ts derived from the Fermi-LAT dwarf galaxy gamma-ray [19] and 
lanck CMB [26] observations are also given. It is obvious that the 
arameter regions of 〈σann v〉 for explaining the AMS-02 e± excess 
re excluded by other two kinds of observations. Compared to the 
+μ− channel, the tension in the τ+τ− channel is severer due to 

remendous photons from the hadronic decays of τ .

. Breit–Wigner enhancement

In the Breit–Wigner scenario, the DM annihilation cross section 
as a typical form of

v ∝ 1

16πm2
χ

1

(δ + v2/4)2 + γ 2
. (1)

his form is valid in the non-relativistic limit with v2 << 1 and 
<< 1 at the center-of-mass energy 

√
s ∼

√
4m2

χ + m2
χ v2.

As an example, we consider a simple leptophilic fermionic DM 
odel, where DM particles interact with charged leptons through 

 vector mediator Z ′ [39]. The corresponding lagrangian is

int ⊃ −g(aχ̄γ μχ + l̄iγ
μli)Z ′

μ, (2)

here li represents the species of leptons, g and ag are the cou-
lings of Z ′ to the leptons and DM particles, respectively. This 
odel can easily avoid the constraints from DM direct detection 

nd collider experiments due to its leptophilic property.
The DM annihilation cross section in this model is given by

v = 1

6π

a2 g4s

(s − m2
Z ′)2 + m2

Z ′�2
Z ′

(1 + 2m2
χ

s
), (3)

here mχ , mZ ′ and �Z ′ are the DM mass, the Z ′ mass, and the 
ecay width of Z ′ , respectively, v is the relative velocity between 
wo incident DM particles. Note that the lepton mass has been 
eglected in Eq. (3) due to the large 

√
s considered in our analysis. 

he decay width of Z ′ can be expressed as
Z ′ = mZ ′

12π
a2 g2ξ3

χ�(mZ ′ − 2mχ ) + mZ ′

12π
g2ξ3

li
, (4)
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203A dark matter model that reconciles tensions between the cosmic-ray e± excess and the gamma-ray... 
Fig. 1. Fittings to the positron flux measured by AMS-02 for DM annihilations to μ+μ− (left panel) and τ+τ− (right panel), respectively. The pink bands indicate the
contributions from DM annihilation within 2σ uncertainty. The blue lines represent the secondary CR positron flux. Total positron fluxes are shown as green bands. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
The best-fit values of DM masses mχ and corresponding thermally averaged annihilation cross sections 〈σann v〉 (in units of cm3s−1) given by the fitting to the AMS-02 data
with the DR propagation model. The corresponding limits from the Fermi-LAT and Planck observations are also shown.

Channels mχ (TeV) AMS-02 (2σ ) Fermi limits Planck limits

μ+μ− 0.89 3.79 × 10−24 < 〈σann v〉 < 6.48 × 10−24 2.95 × 10−24 2.58 × 10−24
τ+τ− 3.89 5.29 × 10−23 < 〈σann v〉 < 1.06 × 10−22 1.25 × 10−23 1.06 × 10−23

 
 

 

 
 
 

 

 

 

 

 

 
 
 
 
 

 

 
 

 

 

 
 
 

 
 
 

 

 
 
 
 
 
 
 

Wwhere ξχ ≡
√

1 − 4m2
χ/m2

Z ′ , ξli ≡
√

1 − 4m2
li
/m2

Z ′ , and �(x) is the

unit step function. For mZ ′ ∼ 2mχ , Z ′ dominantly decays to leptons
with the decay width given by ∼ g2mZ ′/12π2.

Then we calculate the thermally averaged DM annihilation cross
section through the formula of [56]

〈σann v〉 = 1

n2
E Q

mχ

64π4x

∞∫
4m2

χ

σ̂ (s)
√

sK1(
x
√

s

mχ
)ds, (5)

with

nE Q = gi

2π2

m3
χ

x
K2(x),

σ̂ (s) = 2g2
i mχ

√
s − 4m2

χσ v,

(6)

where Ki(x) is the modified Bessel function of order i, gi is the
internal degree of freedom of the DM particle, which equals 4
in this model. In this work, we assume that DM particles have
the same temperature as the thermal radiation with a Maxwell–
Boltzmann distribution above a low kinetic decoupling tempera-
ture, e.g. xkd � 106. The discussion of the kinetic decoupling effect
is given in the next section.

The evolution of the DM density is determined by numerically
solving the Boltzmann equation

dY

dx
= − s(x)

Hx
〈σann v〉(Y 2 − Y 2

eq), (7)

where Y ≡ n/s, n is the DM number density, s = 2π2

45 g∗s
m3

x3 is the

Universe entropy density, H =
√

4π3 g∗
45m2

pl

m2

x2 is the Hubble parameter,

and g and g are the effective degrees of freedom defined by the
∗s ∗
entropy density and the radiation density, respectively.

____________________________WORLD TECH
T4. Results

In principle, we can accommodate the DM explanations for ob-
servations with different DM relative velocities. Only the DM par-
ticles located in the Galaxy within a range of ∼ 1 kpc around
the Solar system could provide significant contributions to the
observed high energy CR e± , because of the propagation effects.
The typical relative velocities of these particles are ∼ 10−3, while
the typical relative velocities of DM particles in dwarf galaxies
are ∼ 10−4. Their annihilation cross sections may be very dif-
ferent in the velocity dependent annihilation models. In order to
obtain the constraints on 〈σann v〉G, the constraints on 〈σann v〉D
from the Fermi-LAT observation should be rescaled by a factor
of 1/S ≡ 〈σann v〉G/〈σann v〉D, where 〈σann v〉D and 〈σann v〉G are the
thermally averaged DM annihilation cross sections in dwarf galax-
ies and near the solar system in the Galaxy, respectively. In order
to relax the tension between the DM explanations for the Fermi-
LAT and AMS-02 observations, the S factor should be smaller
than 1.

We show the S factor in Fig. 2, and find that a parameter region
with 10−8 < γ < 10−6 and −4 × 10−6 < δ < −10−7 can satisfy
our requirement with S � 1. For the cases of δ > 0 corresponding
to an unphysical pole, there is no parameter region with S < 1
as shown in Fig. 2(b). This can be understood by Eq. (1): the DM
annihilation cross section always increases with decreasing relative
velocity for δ > 0. Therefore, only the cases of δ < 0 can be used
to relax the tension between different observations.

In Fig. 3, we compare the parameter regions accounting for
the AMS-02 e± excess with the dwarf galaxy gamma-ray con-
straints, which are obtained by rescaling the limits given by the
Fermi-LAT collaboration [19]. It is shown that the cases with a
negative tiny −δ ≤ 10−6 can evade the dwarf galaxy constraints.
Since σ v is proportional to 1/m2

χ as can be seen from Eq. (1),
the ratio of 1/S = 〈σann v〉G/〈σann v〉D is almost independent of
the DM mass. Note that the limit on 〈σann v〉G is obtained by
〈σ v〉 = 〈σ v〉 /S . Therefore, the modified dwarf galaxy
ann lim,G ann lim,D
gamma-ray constraints for different sets of δ and γ are almost par-
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ig. 2. The scaling factor S ≡ 〈σann v〉D/〈σann v〉G in the δ − γ plane, where σD and σG denote the annihilation cross sections in dwarf galaxies with v = 10−4 and near the 
olar system in the Galaxy with v = 10−3, respectively. The left and right panels represent the physical pole case with δ < 0 and unphysical pole case with δ > 0, respectively.

ig. 3. Contour regions represent the parameter regions accounting for the AMS-02 results in the DC and DR propagation models. Solid lines are the constraints on 〈σannv〉G

rom the Fermi-LAT dwarf galaxy gamma-ray observation for different parameter sets of δ and γ . The original the Fermi-LAT limits on 〈σ v〉 are also shown. The left and 
ann D

r
e
〈
b
l
t
a

D
d
�

p
a
t
a
f
d

e
o

o

ight panels represent the cases of DM annihilation to μ+μ− and τ+τ− , respectively.

llel to the limits given by the Fermi-LAT collaboration in Fig. 3. In 
he above analysis, we fix the DM relative velocity in dwarf galax-
es to be v = 10−4. Strictly speaking, since DM particles in dwarf 
alaxies have different typical relative velocities with an order of 
(10−4), the total constraint should be obtained by combining the 

ndividual constraints specified for each dwarf galaxy with a large 
 factor. A detailed discussion can be found in Ref. [57].

The above analysis can be directly applied to reconcile the ten-
ion between the DM explanations for the AMS-02 e± and Planck 
MB observations (see Fig. 4). In order to derive the constraints 
n 〈σann v〉G from CMB observations, we define a rescaling factor 
f 1/S ′ ≡ 〈σann v〉G/〈σann v〉zr , where 〈σann v〉zr is the thermally av-
raged annihilation cross section of DM particles affecting CMB 
t recombination with v � 10−6. In fact, the Breit–Wigner effect 
ould saturate for DM particles with such a small v . In Fig. 3, 
e compare the parameter regions accounting for the AMS-02 e±

xcess with the CMB constraints, which are obtained by rescaling 
he limits given by Ref. [27]. We find that the cases with a negative 
iny δ ∼ −10−6 can also evade the CMB constraints.

For each point in the δ −γ plane with δ < 0, we determine ag2

nd a through the correct relic density �h2 = 0.1188 [2] by resolv-
ng the Boltzmann equation, and derive corresponding 〈σ v〉 , 
ann G
σann v〉D, and 〈σann v〉Zr . In Fig. 5, the red bands represent the pa- g

___________________________WORLD TECHN
ameter regions simultaneously accounting for the AMS-02 CR e±
xcess and the correct relic density. Here we only consider mχ and 
σann v〉G derived with the DR propagation model as given in Ta-
le 1. The parameter regions excluded by the Fermi-LAT and Planck 

imits are also shown in Fig. 5. We find that there exists a parame-
er region with γ � 10−7 and δ ∼ −10−6, which can accommodate 
ll the observations.

We also show the isolines of ag2 and a satisfying the correct 
M relic density in Fig. 5. The behavior of these lines can be un-
erstood as follows. Roughly speaking, the thermal relic density 
h2 in the usual DM models is determined by the freeze-out tem-
erature x f ∼ O(10) (corresponding to v2 ∼ 10−1) and 〈σann v〉f

s �h2 ∝ x f /〈σann v〉f . For the resonant case, since the annihila-
ion cross section would increase with dropping temperature, the 
nnihilation process may be significant until the Breit–Wigner ef-
ect almost saturates at a temperature of xb . xb can be roughly 
etermined by |δ|−1 for δ < 0. This is because that there are not 
nough DM particles with velocities of v ∼ |δ| 1

2 for sufficient res-
nant annihilation when x � 1/|δ|. Using the approximated form 

f 〈σann v〉b ∝ a2 g4|δ| 1
2 x

3
2 /γ by integrating out the pole [42], we 
b

et �h2 ∝ xb/〈σann v〉b ∝ γ /a2 g4. Therefore, the correct relic den-

OLOGIES____________________________
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Fig. 4. The same as Fig. 3 but the constraints are derived from the Planck CMB observation.

Fig. 5. Parameter regions accounting for various observations in the δ − γ plane with δ < 0 for DM annihilation to μ+μ− (left panel) and τ+τ− (right panel), respectively
The DM mass is taken to be the value given in Table 1. In each parameter point, a and ag2 are derived by requiring the correct relic density �h2 = 0.1188; then 〈σann v〉G

〈σann v〉D, and 〈σann v〉Zr can also be obtained. Red shaded region are the parameter regions corresponding to 〈σann v〉G given in Table 1 which can explain the AMS-02 results
The gray and cyan regions denote parameter regions excluded by the Planck and Fermi-LAT observations, respectively. The green and blue solid lines are the isolines of a and
, the
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ag2, respectively. (For interpretation of the references to color in this figure legend

sity can be easily obtained by adjusting ag2 with γ
1
2 as shown in

Fig. 5.
An important issue that should be addressed is the kinetic de-

coupling effect. In the parameter regions discussed above, since
the scatterings between DM particles and SM radiations are not
sufficient due to the t-channel exchange of a heavy mediator, the
kinetic decoupling would occur at a high temperature of T >O(1)

GeV. The velocities of DM particles drop as ∼ R−1 after the ki-

netic decoupling rather than ∼ R− 1
2 before the kinetic decoupling

where R is the scale factor of the Universe. Then the Breit–Wigner
mechanism would significantly enhance the DM annihilation cross
section at the freeze-out epoch and drastically reduce the DM
relic density. As discussed in Ref. [40], it is difficult to simulta-
neously explain the CR e± excess and the relic density with such
a significant kinetic decoupling effect. Moreover, after the kinetic
decoupling, the velocity distribution of DM particles would depart
from the thermal distribution and is difficult to deal with in the

calculation of the relic density. A solution is introducing some ad-

____________________________WORLD TECH
 reader is referred to the web version of this article.)

ditional mediators, which can enhance the scattering rate between
DM particles and SM radiations and/or the DM self scattering rate
The detailed discussions can be found in Ref. [34,42].

5. Conclusions and discussions

In this work we show that the DM annihilation through the
Breit–Wigner mechanism can reconcile the tension between the
DM explanation for the AMS-02 CR e± excess and the constraints
from Fermi-LAT dwarf galaxy gamma-ray and Planck CMB observa-
tions. Since DM particles affecting these observations have differ-
ent relative velocities, their annihilation cross sections are differ-
ent for interpretating the experimental results. In order to check
whether the DM explanation for the AMS02 results is excluded by
other observations, we should translate all the limits into those on
〈σann v〉G for DM particles with a typical relative velocity v ∼ 10−3

We take a leptophilic Z ′ model as a benchmark model. This

kind of leptophilic model is not constrained by the results of cur-

NOLOGIES____________________________
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ent direct detection and collider experiments. For the tiny values 
f the mediator decay width and the mass deviation from the pole, 
σann v〉 would be sensitive to the relative velocity. For the unphysi-
al pole case with δ > 0, 〈σann v〉 increases with deceasing velocity. 
hus the enhanced constraints on 〈σann v〉G from the dwarf galaxy 
amma-ray and CMB observations exclude the explanation for the 
R e± excess in this case.

For the physical pole case with δ ∼ −10−6, DM particles ac-
ounting for the CR e± excess with v ∼ O(10−3) have the largest 
nnihilation cross section close to the pole. On the other hand, 
he DM annihilation cross section is suppressed for DM particles 
ith smaller relative velocities in dwarf galaxies and at recom-

ination, which may impact on the gamma-ray and CMB obser-
ations, respectively. Therefore, the constraints on 〈σann v〉G from 
hese observations are weaken. We find that a parameter region 
ith δ ∼ −10−6 and γ � 10−7 can simultaneously account for the 
MS-02, Fermi-LAT dwarf galaxy gamma-ray, and Planck CMB ob-
ervations, and the relic density.

From the perspective of model building, a question is how to 
aturally realize the tiny values of δ and γ derived in above anal-
sis. Here we consider the benchmark point with γ = 7.1 × 10−8

nd δ = −1.5 × 10−6 marked in the right panel of Fig. 5. For the 
mall decay width of the mediator, we get g ∼ 1.8 × 10−3 and 
g ∼ 1.8 × 10−2. These values are easy to realize in a realistic 
odel. The problem is how to achieve a tiny δ ∼ −10−6, which 

eems to require a significant fine-tuning. A solution is given by 
ef. [42] through the nontrivial flavor symmetry-breaking in the 
ark sector. By assigning a particular symmetry-breaking mode, 
resonance with a mass of almost 2mχ can be realized. The tiny 
ass deviation of δ is naturally induced by loop effects.

Finally, it is worth noting that the reionization and BBN his-
ories can also set constraints on the DM interpretations for the 
R e± excess. The constraints from the reionization history would 
ot exclude the DM interpretations due to the large astrophysi-
al uncertainties. In the BBN epoch, the energetic injections from 
elocity-dependent DM annihilation with a large cross section 
ould significantly modify the light element abundances [25]. We 
nd that the available BBN constraints on the velocity-independent 
M annihilation cross section from the purely electromagnetic 
r hadronic channels [58,59] are not stricter than the CMB con-
traints. Therefore, these analyses would not set more stringent 
onstraints on the parameter region of interest with |δ| ∼ 10−6

n our paper, where the Breit–Wigner effect saturates at the BBN 
poch with x � 106. Note that the injections of pions from the 
+τ− channel would induce an overproduction of 4He via the pn
onversion. The study of this effect can set the constraint on the 
elocity-dependent DM annihilation cross section.
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