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Preface

Every book is a source of knowledge and this one is no exception. The idea that led to the conceptualization 
of this book was the fact that the world is advancing rapidly; which makes it crucial to document the progress 
in every field. I am aware that a lot of data is already available, yet, there is a lot more to learn. Hence, I 
accepted the responsibility of editing this book and contributing my knowledge to the community. 

The discipline that focuses on the study of the topics like space, quantity, change and structure is referred 
to as mathematics. It plays an essential role in various important fields including finance, social science, 
engineering, medicine and natural science. The main branches of mathematics are applied mathematics 
and pure mathematics. Applied mathematics is a combination of specialized knowledge and mathematical 
science. It focuses on the application of mathematical methods through different fields like computer science, 
engineering, science, and business. Pure mathematics focuses on the study of the mathematical concepts. 
Algebra, number theory, arithmetic, mathematical analysis and geometry are a few of the most important areas 
of mathematics. This book is a valuable compilation of topics, ranging from the basic to the most complex 
advancements in the field of mathematics. Some of the diverse topics covered in this book address the varied 
branches that fall under this category. It is appropriate for students seeking detailed information in this area 
as well as for experts.

While editing this book, I had multiple visions for it. Then I finally narrowed down to make every chapter a 
sole standing text explaining a particular topic, so that they can be used independently. However, the umbrella 
subject sinews them into a common theme. This makes the book a unique platform of knowledge. 

I would like to give the major credit of this book to the experts from every corner of the world, who took the 
time to share their expertise with us. Also, I owe the completion of this book to the never-ending support of 
my family, who supported me throughout the project.

Editor

__________________________ WORLD TECHNOLOGIES __________________________



WT
__________________________ WORLD TECHNOLOGIES __________________________



WT
A Mathematical Model for Coinfection of 
Listeriosis and Anthrax Diseases

Shaibu Osman 1 and Oluwole Daniel Makinde 2

1Department of Mathematics, Pan African University, Institute for Basic Sciences, Technology and Innovations,
Box 62000-00200, Nairobi, Kenya
2Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa

Correspondence should be addressed to Shaibu Osman; shaibuo@yahoo.com

Academic Editor: Ram N. Mohapatra

Listeriosis and Anthrax are fatal zoonotic diseases caused by Listeria monocytogene and Bacillus Anthracis, respectively. In this
paper, we proposed and analysed a compartmental Listeriosis-Anthrax coinfection model describing the transmission dynamics
of Listeriosis and Anthrax epidemic in human population using the stability theory of differential equations. Our model revealed
that the disease-free equilibrium of the Anthrax model only is locally stable when the basic reproduction number is less than
one. Sensitivity analysis was carried out on the model parameters in order to determine their impact on the disease dynamics.
Numerical simulation of the coinfectionmodel was carried out and the results are displayed graphically and discussed.We simulate
the Listeriosis-Anthrax coinfection model by varying the human contact rate to see its effects on infected Anthrax population,
infected Listeriosis population, and Listeriosis-Anthrax coinfected population.

1. Introduction

Listeriosis and Anthrax are fatal zoonotic diseases caused by
Listeria monocytogene and Bacillus Anthracis, respectively.
Listeriosis in infants can be acquired in two forms. Mothers
usually acquire it after eating foods that are contaminated
with Listeriamonocytogenes and can develop sepsis resulting
in chorioamnionitis and delivering a septic infant or fetus.
Moreover, mothers carrying the pathogens in the gastroin-
testinal tract can infect the skin and respiratory tract of
their babies during childbirth. Listeria monocytogenes are
among the commonest pathogens responsible for bacterial
meningitis among neonates. Responsible factors for the
disease include induced immune suppression linked with
HIV infection, hemochromatosis hematologic malignancies,
cirrhosis, diabetes, and renal failure with hemodialysis [1].

Authors in [2] developed a model for Anthrax transmis-
sion but never considered the transmissions in both animal
and human populations. Our model is an improvement of
the work done by authors in [2, 3]. Both formulated Anthrax
models but only concentrated on the disease transmissions

in animals cases only. Anthrax disease is caused by bacteria
infections and it affects both humans and animals. Ourmodel
is an improvement of the two models as we considered
Anthrax as a zoonotic disease and also looked at sensitivity
analysis and the effects of the contact rate on the disease
transmissions.

Authors in [4] published a paper on the effectiveness
of constant and pulse vaccination policies using SIR model.
The analysis of their results under constant vaccination
showed that the dynamics of the disease model is similar
to the dynamics without vaccination [5, 6]. There are some
findings on the spread of zoonotic diseases but a number
of these researches focused on the effect of vaccination on
the spread and transmission of the diseases as in the case
of the authors in [7]. Moreover, authors in [8] investigated
a disease transmission model by considering the impact of
a protective vaccine and came up with the optimal vaccine
coverage threshold required for disease eradication.However,
authors in [9] employed optimal control to study a nonlinear
SIR epidemic model with a vaccination strategy. Several
mathematical modeling techniques have been employed to

1
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Figure 1: Flowchart for the coinfection model.

study the role of optimal control using SIR epidemic model
[10–12]. Authors in [13] formulated an SIR epidemic model
by considering vaccination as a control measure in their
model analysis. Authors in [14] developed a mathematical
model for the transmission dynamics of Listeriosis in animal
and human populations but did not use optimal control as
a control measure in fighting the disease. They divided the
animal population into four compartments by introducing
the vaccination compartment.

Authors in [15] formulated a model and employed opti-
mal control to investigate the impact of chemotherapy on
malaria disease with infection immigrants and [16] applied
optimal control methods associated with preventing exoge-
nous reinfection based on a exogenous reinfection tubercu-
losis model. Authors in [17] conducted a research on the
identification and reservoirs of pathogens for effective control
of sporadic disease and epidemics. Listeria monocytogenes
is among the major zoonotic food borne pathogen that is
responsible for approximately twenty-eight percent of most
food-related deaths in the United States annually and amajor
cause of serious product recalls worldwide. The dairy farm
has been observed as a potential point and reservoir for
Listeria monocytogenes.

Models are widely used in the study of transmission
dynamics of infectious diseases. In recent times, the appli-
cation of mathematical models in the study of infectious
diseases has increased tremendously. Hence the emergence
of a branch called mathematical epidemiology. Frequent
diagnostic tests, the availability of clinical data, and electronic
surveillance have facilitated the applications of mathematical
models to critical examining of scientific hypotheses and the
design of real-life strategies of controlling diseases [18, 19].

Authors in [20] constructed a coinfection model of
malaria and cholera diseases with optimal control but never
considered sensitivity analysis and analysis of the force of
infection. Sensitivity analysis determines the most sensitive
parameters to the model and the analysis of the force of

infections determines the effects of the contact rate on the
disease transmissions.

2. Model Formulation

In this section, we divide the model into subcompartments
(groups) as shown in Figure 1. The total human popula-
tion (𝑁ℎ) is divided into subcompartments consisting of
susceptible humans (𝑆ℎ), individuals that are infected with
Anthrax(𝐼𝑎), individuals that are infected with Listeriosis(𝐼𝑙), individuals that are infected with both Anthrax and
Listeriosis (𝐼𝑎𝑙), and those that have recovered from Anthrax,
Listeriosis, and both Anthrax and Listeriosis, respectively,(𝑅𝑎), (𝑅𝑙), and (𝑅𝑎𝑙). The total vector population is repre-
sented by 𝑁V; this is divided into subcompartments that
consist of susceptible animals (𝑆V) and animals infected with
Anthrax (𝐼V), where (𝐶𝑝) is population of carcasses of animals
in the soil that may have diet of Anthrax. Carcasses of
animals which may have not been properly disposed of have
the tendency of generating pathogens. The total vector and
human populations are represented as

𝑁ℎ = 𝑆ℎ + 𝐼𝑎 + 𝐼𝑙 + 𝐼𝑎𝑙 + 𝑅𝑎 + 𝑅𝑙 + 𝑅𝑎𝑙.
𝑁ℎ = 𝑆V + 𝐼V, (1)

where 𝜋 = 𝐶𝑝V/(𝑘 + 𝐶𝑝).
The concentration of carcasses and ingestion rate are

denoted as𝐾 and V, respectively. Listeriosis related death rates
are𝑚 and 𝜂, respectively, and Anthrax related death rates are𝜙 and 𝑛, respectively. Waning immunity rates are given by𝜔, 𝑘, and𝜓.𝛼, 𝛿, and 𝜎 are the recovery rates, respectively, and𝜏(1−𝜎) are the bi-infected persons who have recovered from
Anthrax only. The natural death rates of human and vector
populations are 𝜇ℎ and 𝜇V, respectively, and the modification
parameter is given by 𝜃. The coinfected persons who have

2 Mathematics: A Conceptual Approach
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recovered from Listeriosis are denoted by (1 − 𝜏)(1 − 𝜎). This
implies that

𝜎 + 𝜏 (1 − 𝜎) + (1 − 𝜏) (1 − 𝜎) = 1. (2)

The following differential equations were obtained from the
flowchart diagram of the coinfection model in Figure 1:

𝑑𝑆ℎ𝑑𝑡 = Ωℎ + 𝑘𝑅𝑎 + 𝜔𝑅𝑙 + 𝜓𝑅𝑎𝑙 − 𝛽ℎ𝐼V𝑆ℎ − 𝜋𝑆ℎ − 𝜇ℎ𝑆ℎ
𝑑𝐼𝑎𝑑𝑡 = 𝛽ℎ𝐼V𝑆ℎ − 𝜋𝐼𝑎 − (𝛼 + 𝜇ℎ + 𝜙) 𝐼𝑎
𝑑𝐼𝑙𝑑𝑡 = 𝜋𝑆ℎ − 𝛽𝑙𝐼V𝐼𝑙 − (𝛿 + 𝜇ℎ + 𝑚 + 𝜌) 𝐼𝑙
𝑑𝐼𝑎𝑙𝑑𝑡 = 𝛽ℎ𝐼V𝐼𝑙 + 𝜋𝐼𝑎 + (𝜎 + 𝜇ℎ + 𝜂 + 𝜃) 𝐼𝑎𝑙
𝑑𝑅𝑎𝑑𝑡 = 𝛼𝐼𝑎 − (𝑘 + 𝜇ℎ) 𝑅𝑎 + (1 − 𝜏) 𝛾𝜎𝐼𝑎𝑙
𝑑𝑅𝑙𝑑𝑡 = 𝛿𝐼𝑙 − (𝜔 + 𝜇ℎ) 𝑅𝑙 + (1 − 𝜏) (1 − 𝛾) 𝜎𝐼𝑎𝑙
𝑑𝑅𝑎𝑙𝑑𝑡 = 𝜏𝜎𝐼𝑎𝑙 − (𝜓 + 𝜇ℎ) 𝑅𝑎𝑙
𝑑𝐶𝑝𝑑𝑡 = 𝜌𝐼𝑙 + 𝜃𝐼𝑎𝑙 − 𝜇𝑏𝐶𝑝
𝑑𝑆V𝑑𝑡 = ΩV − 𝛽V (𝐼𝑎 + 𝐼𝑎𝑙) 𝑆V − 𝜇V𝑆V
𝑑𝐼V𝑑𝑡 = 𝛽V (𝐼𝑎 + 𝑐𝐼) 𝑆V − 𝜇V𝐼V

(3)

3. Analysis of Listeriosis Only Model

In this section, only the Listeriosis model is considered in the
analysis of the transmission dynamics.

𝑑𝑆ℎ𝑑𝑡 = Ωℎ + 𝜔𝑅𝑙 − 𝜋𝑆ℎ − 𝜇ℎ𝑆ℎ
𝑑𝐼𝑙𝑑𝑡 = 𝜋𝑆ℎ − (𝛿 + 𝜇ℎ + 𝑚) 𝐼𝑙
𝑑𝑅𝑙𝑑𝑡 = 𝛿𝐼𝑙 − (𝜔 + 𝜇ℎ) 𝑅𝑙
𝑑𝐶𝑝𝑑𝑡 = 𝜌𝐼𝑙 − 𝜇𝑏𝐶𝑝

(4)

3.1. Disease-Free Equilibrium. We obtain the disease-free
equilibrium of the Listeriosis only model by setting the sys-
tem of equations in (4) to zero. At disease-free equilibrium,
there are no infections and recovery.

Ωℎ + 𝜔𝑅𝑙 − 𝜋𝑆ℎ − 𝜇ℎ𝑆ℎ = 0
𝑆ℎ = Ωℎ𝜇ℎ
𝜉0𝑙 = (𝑆∗ℎ , 𝐼∗𝑙 , 𝑅∗𝑙 , 𝐶∗𝑝) = (Ωℎ𝜇ℎ , 0, 0, 0) .

(5)

3.2. Basic Reproduction Number. In this section, the concept
of the Next-Generation Matrix would be employed in com-
puting the basic reproduction number. Using the theorem
in Van den Driessche and Watmough [21] on the Listeriosis
model in (4), the basic reproduction number of the Listeriosis
only model, (R0𝑙), is given by

R0𝑙 = V𝜌Ωℎ𝜇𝑏𝜇ℎ𝐾(𝛿 + 𝜇ℎ + 𝑚) (6)

3.3. Existence of the Disease-Free Equilibrium

3.4. Endemic Equilibrium. The endemic equilibrium points
are computed by setting the system of differential equations
in the Listeriosis only model (4) to zero. The endemic
equilibrium points are as follows:

𝑆∗ℎ = Ωℎ + 𝜔𝑅∗𝑙𝜇ℎ + 𝜋∗ ,
𝐼∗𝑙 = 𝜋∗𝑆∗ℎ(𝛿 + 𝜇ℎ + 𝑚) ,
𝑅∗𝑙 = 𝛿𝐼∗𝑙𝜔 + 𝜇ℎ ,
𝐶∗𝑝 = 𝜌𝐼∗𝑙𝜇𝑏 .
𝜉0𝑙 = (𝑆∗ℎ , 𝐼∗𝑙 , 𝑅∗𝑙 , 𝐶∗𝑝)

= (Ωℎ + 𝜔𝑅∗𝑙𝜇ℎ + 𝜋∗ , 𝜋∗𝑆∗ℎ(𝛿 + 𝜇ℎ + 𝑚) ,
𝛿𝐼∗𝑙𝜔 + 𝜇ℎ ,

𝜌𝐼∗𝑙𝜇𝑏 ) .

(7)

𝑆∗ℎ = Ωℎ + 𝜔𝑅∗𝑙𝜇ℎ + 𝜋∗
𝐼∗𝑙 = 𝜋∗𝑆∗ℎ(𝛿 + 𝜇ℎ + 𝑚)
𝑅∗𝑙 = 𝛿𝐼∗𝑙𝜔 + 𝜇ℎ
𝐶∗𝑝 = 𝜌𝐼∗𝑙𝜇𝑏

(8)

3.5. Existence of the Endemic Equilibrium

Lemma 1. The Listeriosis only model has a unique endemic
equilibrium if and only if the basic reproduction numberR0𝑙 >1.
Proof. The Listeriosis force of infection, (𝜋 = 𝐶𝑝V/(𝐾 +𝐶𝑝)),
satisfies the polynomial;

𝑃 (𝜋∗) = 𝐴 (𝜋∗)2 + 𝐵 (𝜋∗) = 0 (9)

where 𝐴 = Ωℎ𝜌(𝜔 + 𝜇ℎ) + 𝜇𝑏𝐾(𝑚(𝜔 + 𝜇ℎ) + 𝜇ℎ(𝛿 + 𝜇ℎ + 𝜔)),
and

𝐵 = (𝜔 + 𝜇ℎ) (1 − 𝑅0𝑙) . (10)

3A Mathematical Model for Coinfection of Listeriosis and Anthrax Diseases
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By mathematical induction, 𝐴 > 0 and 𝐵 > 0 whenever
the basic reproduction number is less than one (R0𝑙 < 1).
This implies that 𝜋∗ = −𝐵/𝐴 ≤ 0. In conclusion, the
Listeriosis model has no endemic equilibrium and the basic
reproductive number is less than one (R0𝑙 < 1).

The analysis illustrates the impossibility of backward
bifurcation in the Listeriosis model, because there is no
existence of endemic equilibrium whenever the basic repro-
duction number is less than one (R0𝑙 < 1).
4. Analysis of Anthrax Only Model

In this section, only the Anthrax model is considered in the
analysis of the transmission dynamics.

𝑑𝑆ℎ𝑑𝑡 = Ωℎ + 𝑘𝑅𝑎 − 𝛽ℎ𝐼V𝑆ℎ − 𝜇ℎ𝑆ℎ
𝑑𝐼𝑎𝑑𝑡 = 𝛽𝐼V𝑆ℎ − (𝛼 + 𝜇ℎ + 𝜙) 𝐼𝑎
𝑑𝑅𝑎𝑑𝑡 = 𝛼𝐼𝑎 − (𝑘 + 𝜇ℎ) 𝑅𝑎
𝑑𝑆V𝑑𝑡 = ΩV − 𝛽V𝐼𝑎𝑆V − 𝜇V𝑆V
𝑑𝐼V𝑑𝑡 = 𝛽V𝐼𝑎𝑆V − 𝜇V𝐼V

(11)

4.1. Disease-Free Equilibrium. The disease-free equilibrium
of theAnthrax onlymodel is obtained by setting the system of
equations in model (11) to zero. At disease-free equilibrium,
there are no infections and recovery.

Ωℎ + 𝑘𝑅𝑎 − 𝛽ℎ𝐼V𝑆ℎ − 𝜇ℎ𝑆ℎ = 0
𝑆ℎ = Ωℎ𝜇ℎ .
ΩV − 𝛽V𝐼𝑎𝑆V − 𝜇V𝑆V = 0
𝑆V = ΩV𝜇V .

(12)

𝜉0𝑎 = (𝑆∗ℎ , 𝐼∗𝑎 , 𝑅∗𝑎 , 𝑆∗V , 𝐼∗V ) = (Ωℎ𝜇ℎ , 0, 0,
ΩV𝜇V , 0) . (13)

4.2. Basic Reproduction Number. In this section, the concept
of the Next-Generation Matrix would be employed in com-
puting the basic reproduction number. Using the theorem in
Van denDriessche andWatmough [21] on theAnthraxmodel
in (11), the basic reproduction number of the Anthrax only
model, (R0𝑎), is given by

R0𝑎 = √ ΩℎΩV𝛽ℎ𝛽V𝜇ℎ𝜇2V (𝛼 + 𝜇ℎ + 𝜙) (14)

4.3. Stability of the Disease-Free Equilibrium. Using the next-
generation operator concept in Van den Driessche and

Watmough [21] on the systems of equations in model (11),
the linear stability of the disease-free equilibrium, (𝜉0𝑎), can
be ascertained.The disease-free equilibrium is locally asymp-
totically stable whenever the basic reproduction number is
less than one (R0𝑎 < 1). And it is unstable whenever the
basic reproduction number is greater than one (R0𝑎 > 1).
The disease-free equilibrium is the state at which there are no
infections in the system.At disease-free equilibrium, there are
no infections in the system.

4.4. Endemic Equilibrium. The endemic equilibrium points
are computed by setting the systemof differential equations in
theAnthrax onlymodel (11) to zero.The endemic equilibrium
points are as follows:

𝑆ℎ = Ωℎ + 𝑘𝑅∗𝑎𝜇ℎ + 𝛽ℎ𝐼∗V ,
𝐼∗𝑎 = 𝛽V𝑆∗ℎ𝐼∗V(𝛼 + 𝜇ℎ + 𝜙) ,
𝑅∗𝑎 = 𝛼𝐼∗𝑎𝑘 + 𝜇ℎ ,
𝑆∗V = ΩV𝜇V + 𝛽V𝐼∗𝑎 ,
𝐼∗V = 𝛽V𝑆∗V 𝐼∗𝑎𝜇V .

(15)

The endemic equilibrium of the Anthrax only model is given
by

𝜉0𝑎 = (𝑆∗ℎ , 𝐼∗𝑎 , 𝑅∗𝑎 , 𝑆∗V , 𝐼∗V ) = (Ωℎ + 𝑘𝑅∗𝑎𝜇ℎ + 𝛽ℎ𝐼∗V , 𝛽V𝑆∗ℎ𝐼∗V(𝛼 + 𝜇ℎ + 𝜙) ,
𝛼𝐼∗𝑎𝑘 + 𝜇ℎ ,

ΩV𝜇V + 𝛽V𝐼∗𝑎 ,
𝛽V𝑆∗V 𝐼∗𝑎𝜇V .)

(16)

𝜉0𝑎 = (Ωℎ + 𝑘𝑅∗𝑎𝜇ℎ + 𝛽ℎ𝐼∗V , 𝛽V𝑆∗ℎ𝐼∗V(𝛼 + 𝜇ℎ + 𝜙) ,
𝛼𝐼∗𝑎𝑘 + 𝜇ℎ ,

ΩV𝜇V + 𝛽V𝐼∗𝑎 ,
𝛽V𝑆∗V 𝐼∗𝑎𝜇V .)

(17)

4.5. Existence of the Endemic Equilibrium

Lemma 2. The Anthrax only model has a unique endemic
equilibrium whenever the basic reproduction number (R0𝑎) is
greater than one (R0𝑎 > 1).
Proof. Considering the endemic equilibrium points of the
Anthrax only model,

𝜉0𝑎 = (Ωℎ + 𝑘𝑅∗𝑎𝜇ℎ + 𝛽ℎ𝐼∗V , 𝛽V𝑆∗ℎ𝐼∗V(𝛼 + 𝜇ℎ + 𝜙) ,
𝛼𝐼∗𝑎𝑘 + 𝜇ℎ ,

ΩV𝜇V + 𝛽V𝐼∗𝑎 ,
𝛽V𝑆∗V 𝐼∗𝑎𝜇V ) .

(18)
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The endemic equilibrium point satisfies the given polynomial

𝑃 (𝐼∗𝑎 ) = 𝐴1 (𝐼∗𝑎 )2 + 𝐵1 (𝐼∗𝑎 ) = 0 (19)

where

𝐴1 = 𝛽V (ΩV𝛽ℎ (𝑘𝜙 + 𝜇ℎ (𝛼 + 𝑘 + 𝜙 + 𝜇ℎ))
+ 𝜇ℎ (𝑘 + 𝜇ℎ) (𝛼 + 𝜙 + 𝜇ℎ) 𝜇V) (20)

and

𝐵1 = (𝑘 + 𝜇ℎ) (1 − 𝑅20𝑎) . (21)

By mathematical induction,𝐴1 > 0 and 𝐵1 > 0whenever the
basic reproduction number is less than one (R0𝑎 < 1). This
implies that 𝐼∗𝑎 = −𝐵1/𝐴1 ≤ 0. In conclusion, the Anthrax
only model has no endemic any time the basic reproductive
number is less than one (R0𝑎 < 1).

The analysis illustrates the impossibility of backward
bifurcation in the Anthrax only model. Because there is
no existence of endemic equilibrium whenever the basic
reproduction number is less than one (R0𝑎 < 1).
5. Anthrax-Listeriosis Coinfection Model

In this section, the dynamics of the Anthrax-Listeriosis
coinfection model in (3) is considered in the analysis of the
transmission dynamics.

5.1. Disease-Free Equilibrium. The disease-free equilibrium
of the Anthrax-Listeriosis model is obtained by setting the
system of equations of model (3) to zero. At disease-free
equilibrium, there are no infections and recovery.

Ωℎ + 𝑘𝑅𝑎 + 𝜔𝑅𝑙 + 𝜓𝑅𝑎𝑙 − 𝛽ℎ𝐼V𝑆ℎ − 𝜋𝑆ℎ − 𝜇ℎ𝑆ℎ = 0
𝑆∗ℎ = Ωℎ𝜇ℎ

ΩV − 𝛽V (𝐼𝑎 + 𝑐𝐼𝑎𝑙) 𝑆V − 𝜇V𝑆V = 0
𝑆∗V = ΩV𝜇V

(22)

The disease-free equilibrium is given by

𝜉0𝑎𝑙 = (𝑆∗ℎ , 𝐼∗𝑙 , 𝐼∗𝑎 , 𝐼∗𝑎𝑙, 𝑅∗𝑙 , 𝑅∗𝑎 , 𝑅∗𝑎𝑙, 𝐶∗𝑝, 𝑆∗V , 𝐼∗V ) (23)

𝜉0𝑎𝑙 = (Ωℎ𝜇ℎ , 0, 0, 0, 0, 0, 0, 0,
ΩV𝜇V , 0) (24)

5.2. Basic Reproduction Number. The concept of the next-
generation operator method in Van den Driessche and
Watmough [21] was employed on the system of differential
equations in model (3) to compute the basic reproduction
number of the Anthrax-Listeriosis coinfection model. The
Anthrax-Listeriosis coinfection model has a reproduction
number (R𝑎𝑙) given by

R𝑎𝑙 = max {R𝑎,R𝑙} (25)
where R𝑎 and R𝑙 are the basic reproduction numbers of
Anthrax and Listeriosis, respectively.

R𝑎 = √ ΩℎΩV𝛽ℎ𝛽V𝜇ℎ𝜇2V (𝛼 + 𝜇ℎ + 𝜙) (26)

and

R𝑙 = V𝜌Ωℎ𝜇𝑏𝜇ℎ𝐾 ((𝜎 + 𝜇ℎ + 𝜂 + 𝜃) + 𝜃 (𝛿 + 𝜇ℎ + 𝑚)
(𝛿 + 𝜇ℎ + 𝑚) (𝜎 + 𝜇ℎ + 𝜂 + 𝜃) ) (27)

Theorem 3. The disease-free equilibrium (𝜉0𝑎𝑙) is locally
asymptotically stable whenever the basic reproduction number
is less than one (R𝑎𝑙 < 1) and unstable otherwise.
5.3. Impact of Listeriosis on Anthrax. In this section, the
impact of Listeriosis on Anthrax and vice versa is analysed.
This is done by expressing the reproduction number of one
in terms of the other by expressing the basic reproduction
number of Listeriosis on Anthrax, that is, expressing R𝑙 in
terms ofR𝑎

fromR𝑎 = √ΩℎΩV𝛽ℎ𝛽V/𝜇ℎ𝜇2V(𝛼 + 𝜇ℎ + 𝜙).
Solving for 𝜇ℎ in the above,

𝜇ℎ = −𝐺1R𝑎 + √𝐺21R2𝑎 + 4𝐺22𝜇VR𝑎 , (28)

where

𝐺1 = 𝜇V (𝛼 + 𝜙)
and 𝐺2 = ΩℎΩV𝛽ℎ𝛽V

(29)

Also, letting

√𝐺21R2𝑎 + 4𝐺2 = 𝐺3R𝑎 + 𝐺4, (30)

this implies

𝜇ℎ = R𝑎 (𝐺3 − 𝐺1) + 𝐺42𝜇VR𝑎 (31)

By substituting 𝜇ℎ into the basic reproduction number of
Listeriosis (R𝑙),

R𝑙 = R0𝑙 (𝐺4 + (𝐺3 − 𝐺1)R𝑎 + 2 (𝜎 + 𝜂 + 𝜃) 𝜇VR𝑎 + 𝜃 (𝐺4 + (𝐺3 − 𝐺1)R𝑎 + 2 (𝑚 + 𝛿) 𝜇VR𝑎))𝐺4 + (𝐺3 − 𝐺1)R𝑎 + 2 (𝜎 + 𝜂 + 𝜃) 𝜇VR𝑎 (32)
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where the basic reproduction number of Listeriosis only
model (𝑅0𝑙) is given in the relation

R0𝑙 = V𝜌Ωℎ𝜇𝑏𝜇ℎ𝐾(𝛿 + 𝜇ℎ + 𝑚) . (33)

Now, taking the partial derivative ofR𝑙 with respect toR𝑎 in
(32) gives

𝜕R𝑙𝜕R𝑎 =
2𝐺4𝜃 (𝑚 + 𝛿 − (𝜎 + 𝜂 + 𝜃)) 𝜇VR0𝑙[𝐺4 + (𝐺3 − 𝐺1 + 2 (𝜎 + 𝜂 + 𝜃) 𝜇VR𝑎)]2 . (34)

If (𝑚 + 𝛿) ≥ (𝜎 + 𝜂 + 𝜃), the derivative (𝜕R𝑙/𝜕R𝑎), is strictly
positive. Two scenarios can be deduced from the derivative(𝜕R𝑙/𝜕R𝑎), depending on the values of the parameters:

𝜕R𝑙𝜕R𝑎 = 0,
and

𝜕R𝑙𝜕R𝑎 ≥ 0. (35)

(1) If 𝜕R𝑙/𝜕R𝑎 = 0, it implies that (𝑚+𝛿) = (𝜎+𝜂+𝜃) and
the epidemiological implication is that Anthrax has
no significance effect on the transmission dynamics
of Listeriosis.

(2) If 𝜕R𝑙/𝜕R𝑎 > 0, it implies that (𝑚+𝛿) ≥ (𝜎+𝜂+𝜃), and
the epidemiological implication is that an increase in
Anthrax cases would result in an increase Listeriosis

cases in the environment. That is Anthrax enhances
Listeriosis infections in the environment.

However, by expressing the basic reproduction number of
Anthrax on Listeriosis, that is expressingR𝑎 in terms ofR𝑙,

𝜇ℎ = 𝐻1 − 𝐻2R𝑙 + √𝐻3R2𝑙 + 𝐻4R𝑙 + 𝐻5
2R𝑙 , (36)

where

𝐻1 = (1 + 𝜃)R0𝑙,𝐻2 = (𝑚 + 𝛿 + 𝜎 + 𝜂 + 𝜃)
𝐻3 = (𝜎 + 𝜂 + 𝜃 − 𝑚 − 𝛿) ,
𝐻4 = 2 (𝜃 − 1) (𝑚 + 𝛿 − 𝜎 − 𝜂 − 𝜃)R0𝑙
𝐻1 = (1 + 𝜃)2R20𝑙.

(37)

By letting

√𝐻3R2𝑙 + 𝐻4R𝑙 + 𝐻5 = 𝐻6R𝑙 + 𝐻7, (38)

it implies that

𝜇ℎ = (𝐻6 − 𝐻2)R𝑙 + 𝐻7 + 𝐻12R𝑙 . (39)

Therefore,

R
2
𝑎 = 4ΩℎΩV𝛽ℎ𝛽VR

2
𝑙[(𝐻6 − 𝐻2)R𝑙 + 𝐻7 + 𝐻1] [𝐻7 + 𝐻1 + 2 (𝛼 + 𝜙)R𝑙 + (𝐻6 − 𝐻2)R𝑙] 𝜇V (40)

Now, taking the partial derivative of R𝑎 with respect to R𝑙
in equation (40) gives

𝜕R𝑎𝜕R𝑙 =
4 (𝐻7 + 𝐻1) [𝐻7 + 𝐻1 + (𝛼 + 𝜙 + 𝐻6 − 𝐻2)R𝑙]ΩℎΩV𝛽ℎ𝛽VR𝑙[(𝐻6 − 𝐻2)R𝑙 + 𝐻7 + 𝐻1]2 [𝐻7 + 𝐻1 + (2 (𝛼 + 𝜙) + 𝐻6 − 𝐻2)R𝑙]2 𝜇V (41)

If the partial derivative of R𝑎 with respect to R𝑙 is greater
than zero, (𝜕R𝑎/𝜕R𝑙 > 0), the biological implication is that
an increase in the number of cases of Listeriosis would result
in an increase in the number of cases of Anthrax in the
environment. Moreover, the impact of Anthrax treatment on
Listeriosis can also be analysed by taking the partial derivative
ofR𝑎 with respect to 𝛼, (𝜕R𝑎/𝜕𝛼).

𝜕R𝑎𝜕𝛼 = − 𝛼𝛼 + 𝜙 + 𝜇ℎ . (42)

Clearly,R𝑎 is a decreasing function of 𝛼; the epidemiological
implication is that the treatment of Listeriosis would have an
impact on the transmission dynamics of Anthrax.

5.4. Analysis of Backward Bifurcation. In this section, the
phenomenon of backward bifurcation is carried out by
employing the centermanifold theory on the system of differ-
ential equations inmodel (3). Bifurcation analysis was carried
out by employing the center manifold theory in Castillo-
Chavez and Song [22]. Considering the human transmission
rate (𝛽ℎ) and V as the bifurcation parameters, it implies that
R𝑎 = 1 andR𝑙 = 1 if and only if

𝛽ℎ = 𝛽∗ℎ = 𝜇ℎ𝜇2V (𝛼 + 𝜙 + 𝜇ℎ)ΩℎΩV𝛽V
, (43)
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and

V = V∗ = 𝜇𝑏𝜇ℎ𝐾(𝛿 + 𝜇ℎ + 𝑚) (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)
𝜌Ωℎ (𝜎 + 𝜇ℎ + 𝜂 + 𝜃 + 𝜃 (𝑚 + 𝛿 + 𝜇ℎ)) . (44)

By considering the following change of variables,

𝑆ℎ = 𝑥1,
𝐼𝑎 = 𝑥2,
𝐼𝑙 = 𝑥3,
𝐼𝑎𝑙 = 𝑥4,
𝑅𝑎 = 𝑥5,
𝑅𝑙 = 𝑥6,
𝑅𝑎𝑙 = 𝑥7,
𝐶𝑝 = 𝑥8,
𝑆V = 𝑥9,
𝐼V = 𝑥10.

(45)

This would give the total population as

𝑁 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9
+ 𝑥10. (46)

By applying vector notation

𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10)𝑇 . (47)

The Anthrax-Listeriosis coinfection model can be expressed
as

𝑑𝑋𝑑𝑡 = 𝐹 (𝑋) ,
where 𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8, 𝑓9, 𝑓10)𝑇 .

(48)

The following system of differential equations is obtained:

𝑑𝑥1𝑑𝑡 = Ωℎ + 𝑘𝑥5 + 𝜔𝑥6 + 𝜓𝑥7 − 𝛽ℎ𝑥10𝑥1 − 𝜋𝑥1
− 𝜇ℎ𝑥1

𝑑𝑥2𝑑𝑡 = 𝛽ℎ𝑥10𝑥1 − 𝜋𝑥2 − (𝛼 + 𝜇ℎ + 𝜙) 𝑥2
𝑑𝑥3𝑑𝑡 = 𝜋𝑥1 − 𝛽𝑙𝑥10𝑥3 − (𝛿 + 𝜇ℎ + 𝑚 + 𝜌) 𝑥3
𝑑𝑥4𝑑𝑡 = 𝛽𝑙𝑥10𝑥3 + 𝜋𝑥2 + (𝜎 + 𝜇ℎ + 𝜂 + 𝜃) 𝑥4

𝑑𝑥5𝑑𝑡 = 𝛼𝑥2 − (𝑘 + 𝜇ℎ) 𝑥5 + (1 − 𝜏) 𝛾𝜎𝑥4
𝑑𝑥6𝑑𝑡 = 𝛿𝑥3 − (𝜔 + 𝜇ℎ) 𝑥6 + (1 − 𝜏) (1 − 𝛾) 𝜎𝑥4
𝑑𝑥7𝑑𝑡 = 𝜏𝜎𝑥4 − (𝜓 + 𝜇ℎ) 𝑥7
𝑑𝑥8𝑑𝑡 = 𝜌𝑥3 + 𝜃𝑥4 − 𝜇𝑏𝑥8
𝑑𝑥9𝑑𝑡 = ΩV − 𝛽V (𝑥2 + 𝑥4) 𝑥9 − 𝜇V𝑥9
𝑑𝑥10𝑑𝑡 = 𝛽V (𝑥2 + 𝑥4) 𝑥9 − 𝜇V𝑥10

(49)

Backward bifurcation is carried out by employing the center
manifold theory on the system of differential equations in
model (3). This concept involves the computation of the
Jacobian of the system of differential equations in (49) at the
disease-free equilibrium (𝜉0). The Jacobian matrix at disease-
free equilibrium is given by

𝐽 (𝜉0)

=

[[[[[[[[[[[[[[[[[[[[[[
[

−𝜇ℎ 0 0 𝐽1 𝑘 𝜔 𝜓 𝐽2 0 𝐽30 −𝐽4 0 0 0 0 0 0 0 𝐽30 0 −𝐽5 𝐽1 0 0 0 𝐽2 0 0
0 0 0 −𝐽6 0 0 0 0 0 0
0 𝛼 0 𝐽7 −𝐽8 0 0 0 0 0
0 0 𝛿 𝐽9 0 −𝐽10 0 0 0 0
0 0 0 𝜎 0 0 −𝐽11 0 0 0
0 0 𝜌 𝜃 0 0 0 −𝜇𝑏 0 0
0 −𝐽12 0 −𝐽12 0 0 0 0 −𝜇V 0
0 𝐽12 0 𝐽12 0 0 0 0 0 −𝜇V

]]]]]]]]]]]]]]]]]]]]]]
]

(50)

where

𝐽1 = 𝜌Ωℎ𝜇ℎ ,
𝐽2 = 𝜇𝑏 (𝛿 + 𝜇ℎ + 𝑚) (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)

𝜌 (𝜎 + 𝜇ℎ + 𝜂 + 𝜃 + 𝜃 (𝛿 + 𝜇ℎ + 𝑚)) ,
𝐽3 = 𝜇3V (𝛼 + 𝜙 + 𝜇ℎ)ΩV𝛽V

,
𝐽4 = (𝛼 + 𝜙 + 𝜇ℎ) ,
𝐽5 = (𝛿 + 𝜇ℎ + 𝑚) ,
𝐽6 = (𝜎 + 𝜇ℎ + 𝜂 + 𝜃) ,
𝐽7 = (1 − 𝜏) 𝛾𝜎,
𝐽8 = (𝑘 + 𝜇ℎ) ,
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𝐽9 = (1 − 𝜏) (1 − 𝛾) 𝜎,
𝐽10 = (𝜔 + 𝜇ℎ) ,
𝐽11 = (𝜓 + 𝜇ℎ)

and 𝐽12 = ΩV𝛽V𝜇V .
(51)

Clearly, the Jacobian matrix at disease-free equilibrium has
a case of simple zero eigenvalue as well as other eigenvalues
with negative real parts. This is an indication that the center
manifold theorem is applicable. By applying the center man-
ifold theorem in Castillo-Chavez and Song [22], the left and
right eigenvectors of the Jacobian matrix 𝐽(𝜉0) are computed
first. Letting the left and right eigenvector represented by

𝑦 = [𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9, 𝑦10]
and 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7, 𝑤8, 𝑤9, 𝑤10]𝑇 , (52)

respectively, the following were obtained:

𝑤1 = 𝐾𝑤5𝜇ℎ + 𝑤2𝜇2V (𝛼 + 𝜙 + 𝜇ℎ)𝜇ℎ ,
𝑤2 = 𝜇2VΩV𝛽V

,
𝑤3 = 𝑤4 = 𝑤6 = 𝑤7 = 𝑤8 = 0,
𝑤5 = 𝛼𝜇2VΩV𝛽V (𝑘 + 𝜇ℎ) ,
𝑤9 = −𝑤10,
𝑤10 = 1.

(53)

And 𝑦1 = 𝑦3 = 𝑦5 = 𝑦6 = 𝑦7 = 𝑦8 = 𝑦9 = 0,
𝑦2 = V10ΩV𝛽V𝜇V (𝛼 + 𝜙 + 𝜇ℎ) ,
𝑦2 = 𝑦4,
𝑦10 = −𝜇V (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)ΩV𝛽V

.

(54)

Moreover, by further simplifications, it can be shown that

𝑎 = 𝜏𝑤10𝜇3V (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)ΩV𝛽V

− 2𝑤10𝛽V [𝜇2V (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)𝜇ℎΩV𝛽V

+ 𝛼𝐾𝜇2V (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)
𝜇ℎΩV𝛽V (𝑘 + 𝜇ℎ) (𝛼 + 𝜙 + 𝜇ℎ)] ,

𝑏 = 𝑦2𝑤10Ωℎ𝜇ℎ > 0.

(55)
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Figure 2: Simulation of the coinfectionmodel showing the existence
of backward bifurcation.

It can be deduced that the coefficient 𝑏 would always be
positive. Backward bifurcation will take place in the system
of differential equations in (3) if the coefficient 𝑎 is positive.
In conclusion, it implies that the disease-free equilibrium is
not globally stable.

Figure 2 shows the simulation of the coinfection model
indicating the phenomenon of backward bifurcation as evi-
dence to the model analysis. This phenomenon usually exists
in cases where the disease-free equilibrium and the endemic
equilibrium coexist. Epidemically, the implication is that
the concept of whenever the basic reproduction number
is less than unity, the ability to control the disease is no
longer sufficient. Figure 2 confirms the analytical results
which shows that endemic equilibrium exists when the basic
reproduction number is greater than unity.

6. Sensitivity Analysis of
the Coinfection Model

In this section, we performed the sensitivity analysis of the
basic reproduction number of the coinfection model to each
of the parameter values. This is to determine the significance
or contribution of each parameter on the basic reproduction
number. The sensitivity index of the basic reproduction
number (R0) to a parameter 𝑃 is given by the relation

ΠR0

𝑃 = (𝜕R0𝜕𝑃 )( 𝑃
R0

) . (56)

Sensitivity analysis of the basic reproduction number of
Anthrax R0𝑎 and Listeriosis R0𝑎 to each of the parameter
values was computed separately, since the basic reproduction
number of the coinfection model is usually

R0 = max {R0𝑎,R0𝑙} . (57)
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Table 1: Sensitivity indices ofR0𝑎 to each of the parameter values.

Parameter Description Sensitivity IndexΩℎ Human recruitment rate 1.2164ΩV Vector recruitment rate 0.2433𝛽ℎ Human transmission rate 0.1216𝛽V Vector transmission rate 0.0243𝛼 Anthrax recovery rate −0.0037𝜇ℎ Human natural death rate −0.0122𝜇V Vector natural death rate −0.0061𝜙 Anthrax related death rate −0.0065𝜃 Modification parameter 3.42913 ∗ 10−6

6.1. Sensitivity Indices of R0𝑎. In this section, we derive the
sensitivity of R0𝑎, to each of the parameters. Table 1 shows
the detailed sensitivity indices of the basic reproduction
number of Anthrax (R0𝑎) to each of the parameter values.
From the values in Table 1, it can be observed that the
most sensitive parameters are human transmission rate,
vector transmission rate, human recruitment rate, and vector
recruitment rate. Since the basic reproduction number is less
than one, increasing the human recruitment rate by 10%
would increase the basic reproduction number of Anthrax by12.164%. However, decreasing the human recruitment rate
by 10% would decrease the basic reproduction number of
Anthrax by 12.164%.Moreover, decreasing human and vector
transmission rates by 10%would decrease the basic reproduc-
tion number of Anthrax by 1.216% and 0.243%, respectively.
However, increasing human and vector transmission rates
by 10% would increase the basic reproduction number of
Anthrax by 1.216% and 0.243%, respectively. The sensitivity
analysis determines the contribution of each parameter to the
basic reproduction number. This is an improvement of the
work done by authors in [2, 3].

6.2. Sensitivity Indices of R0𝑙. In this section, we derive the
sensitivity of R0𝑙 to each of the parameters. The detailed
sensitivity indices of the basic reproduction number of
Listeriosis (R0𝑙) to each of the parameter values are shown
in Table 2. We observe from the values in Table 2 that
the most sensitive parameters are bacteria ingestion rate,
Listeriosis related death, human recruitment rate, and Lis-
teriosis contribution to environment. Decreasing the human
recruitment rate by 10% would cause a decrease in the basic
reproduction number of Listeriosis by 0.201487%. However,
increasing the human recruitment rate by 10% would cause
an increase in the basic reproduction number of Listeriosis by0.201487%. Moreover, decreasing Listeriosis contribution to
environment and bacteria ingestion rate by 10%would cause
a decrease in the basic reproduction number of Listeriosis.
Increasing Listeriosis contribution to environment and bacte-
ria ingestion rate by 10%would cause an increase in the basic
reproduction number of Listeriosis.

7. Numerical Methods and Results

In this section, we carried out the numerical simulations of
the coinfectionmodel to illustrate the results of the qualitative

analysis of the model which has already been performed.The
variable and parameter values in Table 3 were used in the
simulation of the coinfection model in (3). For the purposes
of illustrations, we assumed some of the parameter values.
Table 3 shows the detailed description of parameters and
values that were used in the simulations of model (3). We
used a Range-Kutta fourth-order scheme in the numerical
solutions of the system of differential equations in model (3)
by using matlab program.

7.1. Simulation of Model Showing the Effects of Increasing Force
of Infection on Infectious Anthrax and Listeriosis Populations
Only. In this section, we simulate the system of differential
equations in model (3) by varying the human contact rate
to see its effects on infected Anthrax population, infected
Listeriosis population, and Anthrax-Listeriosis coinfected
population. This was done by setting the values of human
contact rate as 𝛽ℎ = 0.01,𝛽ℎ = 0.02,𝛽ℎ = 0.03, and 𝛽ℎ =0.04. Figure 3 shows an increase in the infected Anthrax
population as the value of contact rate increases.Moreover, as
the value of the human contact rate decreases, the number of
Anthrax infected population decreases with time. However,
an increase or decrease in the human contact rate increases
or decreases the Listeriosis infected population with time as
confirmed in Figure 4. The number of Anthrax-Listeriosis
coinfected population shows a sharp reduction in the number
of individuals infected with both diseases but the there is an
increase in the number of infectious population as shown in
Figure 5. An increase or decrease in the human contact rate
shows an increase or decrease in the number of Anthrax-
Listeriosis coinfected population as indicated in Figure 5.
Analysis of force of infection gives a better understanding of
the effects of the contact rate which was not considered by the
work of authors in [2, 3, 20].

7.2. Simulation of Model Showing Infected Anthrax, Listeriosis,
and Coinfected Populations. In this section, we simulate
the model (3) to see the behaviour of Anthrax infected
population, Listeriosis infected population, and Anthrax-
Listeriosis coinfected population. Figure 6 shows an increase
in the number of Anthrax infected individuals and a sharp
increase in the number of Listeriosis infected individuals.
Figure 7 shows a sharp reduction in the number of Anthrax-
Listeriosis coinfected population from the beginning and
it increases steadily at a point in time. Since the number
of susceptible human populations increases in the system
with time, there are higher chances of individuals being
infected with Anthrax, Listeriosis, and Anthrax-Listeriosis
coinfection. This is because the concept of mass action was
one of the assumptions that was incorporated in our model.

7.3. Simulation of Model Showing Susceptible Human Bacte-
ria Populations. In this section, we simulate model (3), to
observe the behaviour of the susceptible human population
and how the bacteria (carcasses) growth behaves with time
in the epidemics. Figure 8 shows an increase in both the
susceptible and bacteria growth. An increase in the number
of susceptible from the beginning confirms the increase in
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Table 2: Sensitivity indices ofR0𝑙 to each of the parameter values.

Parameter Description Sensitivity IndexΩℎ Human recruitment rate 0.0201487𝜎 Co-infected human recovery rate −5.41441 ∗ 10−6𝜇ℎ Human natural death rate −0.00014638𝜂 Listeriosis death rate among co-infected −5.41441 ∗ 10−6𝜃 Modification parameter 3.42913 ∗ 10−6
V Bacteria ingestion rate 0.0000402975𝜌 Listeriosis contribution to environment 0.0000309981𝐾 Concentration of carcasses −2.01487 ∗ 10−10𝛿 Listeriosis recovery rate −0.0000402218𝜇𝑏 Carcasses mortality rate −0.0080595𝑚 Listeriosis related death −0.0000402218

Table 3: Variable and parameter values of the coinfection model.

Parameter Description Value Reference
𝜙 Anthrax related death rate 0.2 (Health line, Dec., 2015)
𝑚 Listeriosis related death rate 0.2 Adak et al., 2002.
𝑞 Anthrax death rate among co-infected 0.04 assumed
𝜂 Listeriosis death rate among co-infected 0.08 assumed
𝛽ℎ Human transmission rate 0.01 [23]
𝛽V Vector transmission rate 0.05 assumed
𝑘 Anthrax waning immunity 0.02 assumed
𝜇V Vector natural death rate 0.0004 [23]
Ωℎ Human recruitment rate 0.001 assumed
ΩV Vector recruitment rate 0.005 [23]
𝛼 Anthrax recovery rate 0.33 [24]
𝛿 Listeriosis recovery rate 0.002 assumed
𝜓 Anthrax-Listeriosis waning immunity 0.07 assumed
𝜌 Listeriosis contribution to environment 0.65 assumed
𝜎 Co-infected recovery rate 0.005 assumed
𝜇𝑏 Bacteria death rate 0.0025 assumed
𝜇ℎ Human natural death rate 0.2 [23]
𝜔 Listeriosis waning immunity 0.001 assumed
𝜃 Modification parameter 0.45 assumed
𝜀 Co-infected who recover from Anthrax only 0.025 assumed
𝐾 Concentration of carcasses 10000 [20]
V Bacteria ingestion rate 0.5 [20]

the number of Anthrax infection and Listeriosis infection in
Figure 6. The increase in the number of susceptible human
populations could be attributed to our model being an open
system.

8. Conclusion

In this paper, we analysed the transmission dynamics of
Anthrax-Listeriosis coinfection model. The compartmen-
tal model was analysed qualitatively and quantitatively to

fully understand the transmission mechanism of Anthrax-
Listeriosis coinfection. Our model revealed that the disease-
free equilibrium of the Anthrax model only is locally
stable when the basic reproduction number is less than
one and a unique endemic equilibrium whenever the basic
reproduction number is greater than one. The disease-free
equilibrium of the Listeriosis model only is locally stable
when the basic reproduction number is less than one and
a unique endemic equilibrium whenever the basic repro-
duction number is greater than one. Our model analysis
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Figure 3: Simulation showing the effects of increasing the force of
infection on Anthrax infected population only.
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Figure 4: Simulation showing the effects of increasing the force of
infection on Anthrax infected population only.

also reveals that the disease-free equilibrium of the Anthrax-
Listeriosis coinfection model is locally stable whenever the
basic reproduction number is less than one.Thephenomenon
of backward bifurcation was exhibited by our model. The
biological implication is that the idea of the model been
locally stable whenever the reproduction number is less than
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Figure 5: Simulation showing the effects of increasing the force of
infection on Anthrax infected population only.

unity and unstable otherwise does not apply. This means that
the Anthrax-Listeriosis coinfection model shows a case of
coexistence of the disease-free equilibrium and the endemic
equilibrium whenever the basic reproduction number is less
than one.

We performed the sensitivity analysis of the basic repro-
ductive number to each of the parameters to determine
which parameter is more sensitive. The sensitivity indices of
the basic reproduction number of Anthrax to each of the
parameter values revealed that the most sensitive parame-
ters are human transmission rate, vector transmission rate,
human recruitment rate, and vector recruitment rate. Since
the basic reproduction number is less than one, increas-
ing the human recruitment rate would increase the basic
reproduction number. This analysis is an improvement of
the work done by [2, 3]. They considered the dynamics of
Anthrax in animal population but never considered sensitiv-
ity analysis to determine the most sensitive parameter to the
model.

The sensitivity indices of the basic reproduction number
of Listeriosis to each of the parameter values shows that the
most sensitive parameters are bacteria ingestion rate, Liste-
riosis related death, human recruitment rate, and Listeriosis
contribution to environment.

We simulate the Anthrax-Listeriosis coinfection model
by varying the human contact rate to see its effects on
infected Anthrax population, infected Listeriosis population,
and Anthrax-Listeriosis coinfected population. This analysis
is an improvement of the work done by authors in [2, 3, 20].
Our simulation shows an increase in the infected Anthrax
population, an increase the number Listeriosis infected pop-
ulation, and an increase in the number of Anthrax-Listeriosis

11A Mathematical Model for Coinfection of Listeriosis and Anthrax Diseases
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Figure 6: Simulation showing infected Anthrax and infected Listeriosis population.
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Figure 7: Simulation of model showing Anthrax-Listeriosis coinfection population.

coinfected population as the value of the human contact rate
increases.
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The locating chromatic number of a graph 𝐺 is defined as the cardinality of a minimum resolving partition of the vertex set 𝑉(𝐺)
such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in 𝐺 are not contained
in the same partition class. In this case, the coordinate of a vertex V in 𝐺 is expressed in terms of the distances of V to all partition
classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic
number for two families of barbell graphs.

1. Introduction

The partition dimension was introduced by Chartrand et al.
[1] as the development of the concept of metric dimension.
The application of metric dimension plays a role in robotic
navigation [2], the optimization of threat detecting sensors
[3], and chemical data classification [4]. The concept of
locating chromatic number is a marriage between the parti-
tion dimension and coloring of a graph, first introduced by
Chartrand et al in 2002 [5]. The locating chromatic number
of a graph is a newly interesting topic to study because there
is no general theorem for determining the locating chromatic
number of any graph.

Let 𝐺 = (𝑉, 𝐸) be a connected graph. We define the
distance as theminimum length of path connecting vertices 𝑢
and V in𝐺, denoted by 𝑑(𝑢, V). A 𝑘-coloring of𝐺 is a function
𝑐 : 𝑉(𝐺) → {1, 2, . . . , 𝑘}, where 𝑐(𝑢) ̸= 𝑐(V) for any two
adjacent vertices 𝑢 and V in 𝐺. Thus, the coloring 𝑐 induces
a partition Π of 𝑉(𝐺) into 𝑘 color classes (independent sets)
𝐶1, 𝐶2, . . . , 𝐶𝑘, where 𝐶𝑖 is the set of all vertices colored by
the color 𝑖 for 1 ≤ 𝑖 ≤ 𝑘. The color code 𝑐Π(V) of a vertex V in
𝐺 is defined as the 𝑘-vector (𝑑(V, 𝐶1), 𝑑(V, 𝐶2), . . . , 𝑑(V, 𝐶𝑘)),
where 𝑑(V, 𝐶𝑖) = min{𝑑(V, 𝑥) : 𝑥 ∈ 𝐶𝑖} for 1 ≤ 𝑖 ≤ 𝑘. The
𝑘-coloring 𝑐 of 𝐺 such that all vertices have different color
codes is called a locating coloring of 𝐺. The locating chromatic

number of 𝐺, denoted by 𝜒𝐿(𝐺), is the minimum 𝑘 such that
𝐺 has a locating coloring.

The following theorem is a basic theorem proved by
Chartrand et al. [5]. The neighborhood of vertex 𝑢 in a
connected graph 𝐺, denoted by 𝑁(𝑢), is the set of vertices
adjacent to 𝑢.

Theorem 1 (see [5]). Let 𝑐 be a locating coloring in a connected
graph 𝐺. If 𝑢 and V are distinct vertices of 𝐺 such that 𝑑(𝑢, 𝑡) =
𝑑(V, 𝑡) for all 𝑡 ∈ 𝑉(𝐺)−{𝑢, V}, then 𝑐(𝑢) ̸= 𝑐(V). In particular, if
𝑢 and V are non-adjacent vertices of 𝐺 such that𝑁(𝑢) = 𝑁(V),
then 𝑐(𝑢) ̸= 𝑐(V).

The following corollary gives the lower bound of the
locating chromatic number for every connected graph 𝐺.

Corollary 2 (see [5]). If 𝐺 is a connected graph and there is a
vertex adjacent to 𝑘 leaves, then 𝜒𝐿(𝐺) ≥ 𝑘 + 1.

There are some interesting results related to the determi-
nation of the locating chromatic number of some graphs.The
results are obtained by focusing on certain families of graphs.
Chartrand et al. in [5] have determined all graphs of order
𝑛 with locating chromatic number 𝑛, namely, a complete
multipartite graph of 𝑛 vertices. Moreover, Chartrand et
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al. [6] have succeeded in constructing tree on 𝑛 vertices,
𝑛 ≥ 5, with locating chromatic numbers varying from 3
to 𝑛, except for (𝑛 − 1). Then Behtoei and Omoomi [7]
have obtained the locating chromatic number of the Kneser
graphs. Recently, Asmiati et al. [8] obtained the locating
chromatic number of the generalized Petersen graph 𝑃(𝑛, 1)
for 𝑛 ≥ 3. Baskoro and Asmiati [9] have characterized all
trees with locating chromatic number 3. In [10] all trees
of order 𝑛 with locating chromatic number 𝑛 − 1 were
characterized, for any integers 𝑛 and 𝑡, where 𝑛 > 𝑡 + 3
and 2 ≤ 𝑡 < 𝑛/2. Asmiati et al. in [11] have succeeded in
determining the locating chromatic number of homogeneous
amalgamation of stars and their monotonicity properties and
in [12] for firecracker graphs. Next, Wellyyanti et al. [13]
determined the locating chromatic number for complete 𝑛-
ary trees.

The generalized Petersen graph 𝑃(𝑛,𝑚), 𝑛 ≥ 3 and 1 ≤
𝑚 ≤ ⌊(𝑛 − 1)/2⌋, consists of an outer 𝑛-cycle 𝑦1, 𝑦2, . . . , 𝑦𝑛,
a set of 𝑛 spokes 𝑦𝑖𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, and 𝑛 edges 𝑥𝑖𝑥𝑖+𝑚,
1 ≤ 𝑖 ≤ 𝑛, with indices taken modulo 𝑛. The generalized
Petersen graphwas introduced byWatkins in [14]. Let us note
that the generalized Petersen graph 𝑃(𝑛, 1) is a prism defined
as Cartesian product of a cycle 𝐶𝑛 and a path 𝑃2.

Next theorems give the locating chromatic numbers for
complete graph 𝐾𝑛 and generalized Petersen graph 𝑃(𝑛, 1).

Theorem3 (see [6]). For 𝑛 ≥ 2, the locating chromatic number
of complete graph 𝐾𝑛 is 𝑛.

Theorem 4 (see [8]). The locating chromatic number of
generalized Petersen graph 𝑃(𝑛, 1) is 4 for odd 𝑛 ≥ 3 or 5 for
even 𝑛 ≥ 4.

The barbell graph is constructed by connecting two
arbitrary connected graphs𝐺 and𝐻 by a bridge. In this paper,
firstly we discuss the locating chromatic number for barbell
graph 𝐵𝑚,𝑛 for 𝑚, 𝑛 ≥ 3, where 𝐺 and 𝐻 are complete graphs
on𝑚 and 𝑛 vertices, respectively. Secondly, we determine the
locating chromatic number of barbell graph 𝐵𝑃(𝑛,1) for 𝑛 ≥ 3,
where 𝐺 and𝐻 are two isomorphic copies of the generalized
Petersen graph 𝑃(𝑛, 1).

2. Results and Discussion

Next theoremproves the exact value of the locating chromatic
number for barbell graph 𝐵𝑛,𝑛.

Theorem 5. Let 𝐵𝑛,𝑛 be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑛,𝑛 is 𝜒𝐿(𝐵𝑛,𝑛) = 𝑛 + 1.

Proof. Let 𝐵𝑛,𝑛, 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑛,𝑛) = {𝑢𝑖, V𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set 𝐸(𝐵𝑛,𝑛)
= ⋃𝑛−1𝑖=1 {𝑢𝑖𝑢𝑖+𝑗 : 1 ≤ 𝑗 ≤ 𝑛 − 𝑖} ∪ ⋃𝑛−1𝑖=1 {V𝑖V𝑖+𝑗 : 1 ≤ 𝑗 ≤
𝑛 − 𝑖} ∪ {𝑢𝑛V𝑛}.

First, we determine the lower bound of the locating
chromatic number for barbell graph 𝐵𝑛,𝑛 for 𝑛 ≥ 3. Since
the barbell graph 𝐵𝑛,𝑛 contains two isomorphic copies of a
complete graph 𝐾𝑛, then with respect to Theorem 3 we have
𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛. Next, suppose that 𝑐 is a locating coloring

using 𝑛 colors. It is easy to see that the barbell graph 𝐵𝑛,𝑛
contains two vertices with the same color codes, which is a
contradiction. Thus, we have that 𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛 + 1.

To show that 𝑛 + 1 is an upper bound for the locating
chromatic number of barbell graph 𝐵𝑛,𝑛 it suffices to prove
the existence of an optimal locating coloring 𝑐 : 𝑉(𝐵𝑛,𝑛) →
{1, 2, . . . , 𝑛 + 1}. For 𝑛 ≥ 3 we construct the function 𝑐 in the
following way:

𝑐 (𝑢𝑖) = 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑐 (V𝑖) =
{{{{
{{{{
{

𝑛, for 𝑖 = 1

𝑖, for 2 ≤ 𝑖 ≤ 𝑛 − 1

𝑛 + 1, otherwise.

(1)

By using the coloring 𝑐, we obtain the color codes of 𝑉(𝐵𝑛,𝑛)
as follows:

𝑐Π (𝑢𝑖)

=
{{{{
{{{{
{

0, for 𝑖𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛

2, for (𝑛 + 1)𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛 − 1

1, otherwise,

𝑐Π (V𝑖) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

0, for 𝑖𝑡ℎ component, 2 ≤ 𝑖 ≤ 𝑛 − 1

for 𝑛𝑡ℎ component, 𝑖 = 1, and

for (𝑛 + 1)𝑡ℎ component, 𝑖 = 𝑛,

3, for 1𝑠𝑡 component, 1 ≤ 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 component, 𝑖 = 𝑛

1, otherwise.

(2)

Since all vertices in 𝑉(𝐵𝑛,𝑛) have distinct color codes, then
the coloring 𝑐 is desired locating coloring. Thus, 𝜒𝐿(𝐵𝑛,𝑛) =
𝑛 + 1.

Corollary 6. For 𝑛,𝑚 ≥ 3, and 𝑚 ̸= 𝑛, the locating chromatic
number of barbell graph 𝐵𝑚,𝑛 is

𝜒𝐿 (𝐵𝑚,𝑛) = max {𝑚, 𝑛} . (3)

Next theorem provides the exact value of the locating
chromatic number for barbell graph 𝐵𝑃(𝑛,1).

Theorem 7. Let 𝐵𝑃(𝑛,1) be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑃(𝑛,1) is
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𝜒𝐿 (𝐵𝑃(𝑛,1)) =
{
{
{

4, for odd 𝑛

5, for even 𝑛.
(4)

Proof. Let 𝐵𝑃(𝑛,1), 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑃(𝑛,1)) = {𝑢𝑖, 𝑢𝑛+𝑖, 𝑤𝑖, 𝑤𝑛+𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set
𝐸(𝐵𝑃(𝑛,1)) = {𝑢𝑖𝑢𝑖+1, 𝑢𝑛+𝑖𝑢𝑛+𝑖+1, 𝑤𝑖𝑤𝑖+1, 𝑤𝑛+𝑖𝑤𝑛+𝑖+1 : 1 ≤ 𝑖 ≤
𝑛− 1} ∪ {𝑢𝑛𝑢1, 𝑢2𝑛𝑢𝑛+1, 𝑤𝑛𝑤1, 𝑤2𝑛𝑤𝑛+1} ∪ {𝑢𝑖𝑢𝑛+𝑖, 𝑤𝑖𝑤𝑛+𝑖 : 1 ≤
𝑖 ≤ 𝑛} ∪ {𝑢𝑛𝑤𝑛}.

Let us distinguish two cases.

Case 1 (𝑛 odd). According to Theorem 4 for 𝑛 odd we have
𝜒𝐿(𝐵𝑃(𝑛,1)) ≥ 4. To show that 4 is an upper bound for the
locating chromatic number of the barbell graph 𝐵𝑃(𝑛,1) we
describe an locating coloring 𝑐 using 4 colors as follows:

𝑐 (𝑢𝑖) =
{{{{
{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 𝑖 ≥ 2

4, for odd 𝑖, 𝑖 ≥ 3.

𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =
{{{{
{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

2, for even 𝑖, 𝑖 ≤ 𝑛 − 1

3, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 1

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

4, for 𝑖 = 𝑛.

(5)

For 𝑛 odd the color codes of 𝑉(𝐵𝑃(𝑛,1)) are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

0, for 3𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 4𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

0, for 4𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 3𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.
(6)

Since all vertices in 𝐵𝑃(𝑛,1) have distinct color codes, then the
coloring 𝑐 with 4 colors is an optimal locating coloring and it
proves that 𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 4.

Case 2 (𝑛 even). In view of the lower bound fromTheorem 7
it suffices to prove the existence of a locating coloring 𝑐 :
𝑉(𝐵𝑃(𝑛,1)) → {1, 2, . . . , 5} such that all vertices in 𝐵𝑃(𝑛,1)
have distinct color codes. For 𝑛 even, 𝑛 ≥ 4, we describe the
locating coloring in the following way:

𝑐 (𝑢𝑖) =

{{{{{{{
{{{{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 2

4, for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.
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𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =

{{{{{{{
{{{{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 3

2, for even 𝑖, 𝑖 ≤ 𝑛 − 2

3, for 𝑖 = 𝑛 − 1

4, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 2

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.
(7)

In fact, our locating coloring of 𝐵𝑃(𝑛,1), 𝑛 even, has been
chosen in such a way that the color codes are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 2

for 4𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

2, for 4𝑡ℎ component, 𝑖 = 1

for 3𝑡ℎ component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛
2

𝑛 + 𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 1𝑡ℎ component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

for 4𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛

2, for 3𝑡ℎ component, 𝑖 = 1

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 − 1, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

0, for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 3

for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

2, for 1𝑠𝑡 component, 𝑖 = 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 2 for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 > 𝑛
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 and 3𝑡ℎ components, 𝑖 = 𝑛

1, otherwise.
(8)

Since for 𝑛 even all vertices of 𝐵𝑃(𝑛,1) have distinct color codes
then our locating coloring has the required properties and
𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 5. This concludes the proof.
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The Cartan structure equations are used to study space-like and time-like isothermic surfaces in three-dimensional Minkowski
space in a unified framework. When the lines of curvature of a surface constitute an isothermal system, the surface is called
isothermic.This condition serves to define a system of one-forms such that, bymeans of the structure equations, the Gauss-Codazzi
equations for the surface are determined explicitly. A Lax pair can also be obtained from these one-forms for both cases, and,
moreover, a nonhomogeneous Schrödinger equation can be associated with the set of space-like surfaces.

1. Introduction

The study of isothermic surfaces can be traced back to the
work of Bianchi and Bour [1, 2], as well as to Darboux [3].
These surfaces seem to have their origin in work by Lamé
motivated by problems in heat conduction. An important
subclass of isothermic surfaces was subsequently investigated
by Bonnet. The study of these surfaces has seen renewed
interest recently with the work of Rogers and Schief [4–
6]. Rogers established that a Bäcklund transformation for
isothermic surfaces is associated with a nonhomogeneous
linear Schrödinger equation.This is largely due to the fact that
the classical Gauss-Mainardi-Codazzi equations which are
associated with surfaces in general are integrable in the sense
they possess soliton solutions.Thus, these surfaces can be put
in correspondence with solitonic solutions of certain non-
linear partial differential equations. Thus they have a strong
appeal to thosewith interests that range from integrable equa-
tions to their associated Bäcklund transformations [7–9].
Thus, integrable systems theory can be applied to isothermic
surfaces and used to study transformations of these surfaces
as well. Consequently, isothermic surfaces constitute an
important subclass of surfaces with a connection to solitons.

It is the purpose of this work to study the cases of both
space-like and time-like surfaces as well as their immersion in
three-dimensional Minkowski space E31 in a unified manner

by basing the approach on the structure equations of Cartan
and the associated moving frame [10]. Suppose that Σ ⊂ E31
is such a surface or manifold to which a first fundamental
form is associated. With respect to the larger space E31, there
exist both space-like and time-like surfaces residing in this
larger space. Thus, a particular Σ could be either one of these
two types of object. This is expressed by the fact that there
are two ways in which the metric or first fundamental form
can be specified intrinsically on the surface. In terms of two
local coordinates, themetricmay bewrittenwith two positive
signs, hence a positive signature, or it may be written with a
negative signature or alternating signs. In the former case, the
surface Σ is referred to as space-like and in the latter case it is
called time-like.

To start, let us outline the approach used here. Cartan’s
equations of structure are formulated in such a way that
they are adapted to the signature of the flat metric of the
ambient background spaceE31.These equations are defined in
terms of a set of one-forms. By selecting these one-forms in
a particular way along with the appropriate choice of signs,
the system of structure equations can be restricted to study
one of the classes of surface already described. In fact, a set
of partial differential equations can be obtained which can
be used to describe each of these types of surface. Therefore,
the solutions of these equations can be used to describe a
corresponding type of surface immersed in 𝐸31.
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In fact, it can be mentioned quite generally that new
integrable equations have been obtained in the case of
purely Euclidean space from the Cartan system by exploiting
the one-to-one correspondence between the Ablowitz-Kaup-
Newell-Segur (AKNS) program [11, 12] and the classical
theory of surfaces in three dimensions. Its relationship to
the problem of embedding surfaces in three-dimensional
Euclidean space arises from the fact that the Gauss-Codazzi
equations are in this case equivalent to Cartan’s equations of
structure for 𝑆𝑂(3). This correspondence suggests that the
soliton connection can be given a deeper structure at the
Riemannian level. In fact, in Euclidean space, much effort
has been expended to exploit the equivalence between the
AKNS systems and surface theory at the metric level in order
to construct new nonlinear equations.

Once the structure equations have been formulated in this
context, the one-forms can then be chosen for the case of
isothermic surfaces. Classically, when the lines of curvature
of a surface form an isothermal system, the surface is referred
to as isothermic. The case studied here will be the one in
which the third fundamental form is conformally flat in the
manifold coordinates:𝐼𝐼𝐼 = 𝑒2𝜗 (𝑑𝑢2 + 𝑑V2) . (1)

When the surface has a third fundamental form diagonal
as in (1), it is often called L-isothermic. The prefix will be
omitted here. This will lead to an equation whose solutions
can be used to express the three fundamental forms which
characterize surface. For each type of surface, the function
in (1) turns out to be specified by a nonlinear second-
order equation. It will be shown finally that Lax pairs can
subsequently be formulated for each of the two second-order
systems. Out of these results, further equations of physical
interest can be developed which are relevant to both types
of surface. One way in which these auxiliary equations arise
is through compatibility conditions. Moreover, an interesting
result is presented by showing that there is an important
link between a nonhomogeneous Schrödinger equation and
a combination of surface variables which are relevant to
the more physical case of space-like isothermic surfaces.
Investigations into this area have appeared [13–15]. Here
the idea is to show how these geometries can be studied
consistently by using the moving frame approach by simply
altering some of the parameters in the metric.

2. Cartan Formulation of Structure
Equations in Three-Space

A Darboux frame (x; 𝑒1, 𝑒2, 𝑒3) is established on Σ such that
the vectors (𝑒1, 𝑒2) are tangent to surface Σ and 𝑒3 is a normal
vector to Σ; hence (𝑒1, 𝑒2) determines an orientation for Σ. At
a point 𝑥 ∈ 𝑀, it is the case that𝑑x = 𝜔𝑖𝑒𝑖, (2)

where x denotes a position vector in (2), 𝜔𝑖 constitute a basis
of one-forms, and index 𝑖 goes from 1 to 3. A surface Σ can
be established by taking 𝜔3 = 0, (3)

with 𝑒3 a normal vector to Σ. The metric on the ambient
background space is taken to have the following form [13]:

𝑔 = (1 0 00 𝜖 00 0 𝜂) (4)

so there is no loss of generality in defining the surface by
means of (3). Moreover, the quantities 𝜖 and 𝜂 in (4) can
assume one of the two values 𝜖 = ±1 and 𝜂 = ±1. In the case
in which 𝜖 = 𝜂 = 1, metric 𝑔 specifies a three-dimensional
Euclidean space E3 as usual. However, it is the intention here
to study the cases in which only one of the quantities 𝜖 or 𝜂
is taken to be negative. On the one hand, if 𝜖 = −1 and 𝜂 = 1
the surface metric is space-like, and if 𝜖 = 1 and 𝜂 = −1, the
surface metric is time-like.

The surfaces immersed in E31 which are studied here have
first fundamental form or metric on the surface defined by𝐼 = 𝜔21 + 𝜖𝜔22 . (5)

The two choices of sign for 𝜖 account for two classes of surface
just introduced. For the basis vectors of the Darboux frame,
Cartan’s structure equations must hold and they are given as
follows: 𝑑𝑒1 = 𝜔12𝑒2 + 𝜔13𝑒3,𝑑𝑒2 = 𝜔21𝑒1 + 𝜔23𝑒3,𝑑𝑒3 = 𝜔31𝑒1 + 𝜔32𝑒2, (6)

𝜔𝑖𝑗 + 𝜔𝑗𝑖 = 0. (7)

As in Chern [12], we suppose the relative components of the
frame field are 𝜔𝑖 and 𝜔𝑖𝑗. These are differential one-forms
which depend on the two independent surface coordinates(𝑢, V). To be able to discuss the embedding problem, the
second fundamental form for Σ has to be defined as well. It
is given by 𝐼𝐼 = 𝜔1 ⊗ 𝜔13 + 𝜖𝜔2 ⊗ 𝜔23. (8)

To formulate and study the case of isothermic surfaces, the
complete system of Cartan structure equations is required.
Under the convention adopted for 𝑔 given in (4), these
equations can be presented in the notation of Chern [12] as𝑑𝜔1 = 𝜔2 ∧ 𝜔21,𝑑𝜔2 = 𝜔1 ∧ 𝜔12, (9)

𝜔1 ∧ 𝜔13 + 𝜖𝜔2 ∧ 𝜔23 = 0, (10)𝑑𝜔12 = 𝜖𝜂𝜔13 ∧ 𝜔32,𝑑𝜔13 = 𝜔12 ∧ 𝜔23,𝑑𝜔23 = 𝜖𝜔21 ∧ 𝜔13. (11)

In the case of a space-like Σ, we take 𝜖 = 1 and 𝜂 = −1, so
a space-like metric (5) results. For the time-like case 𝜖 = −1
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and 𝜂 = 1, and a time-likemetric (5) results. Each of these two
cases will be studied by defining the one-forms which appear
in (9)-(11) appropriately.

�eorem 1. The Gauss-Codazzi equations (11) for embeddingΣ can be expressed in the form of Cartan’s structure equations
for the group 𝑆𝐿(2,R) as

𝑑𝜎𝑖 + 12 𝑐𝑖𝑗𝑘𝜎𝑗 ∧ 𝜎𝑘 = 0. (12)

The one-forms 𝜎𝑖, where 𝑖 = 0, 1, 2, are defined to be
𝜎0 = − 𝜖1/22𝑖 𝜔12,
𝜎1 = 12𝜖1/2𝜂1/2 (𝑖𝜖1/2𝜔13 + 𝜔23) ,
𝜎2 = − 12𝜖1/2𝜂1/2 (𝑖𝜖1/2𝜔13 − 𝜔23) .

(13)

The structure constants of 𝑆𝐿(2,R) which appear in (13) are𝑐012 = 1, 𝑐101 = −𝑐202 = −2.
The proof is straightforward, simply substitute the forms

(13) into (12), and solve for𝑑𝜔12,𝑑𝜔13 and𝑑𝜔23. Upon carrying
this out, system (11) appears directly.

3. Surfaces with Space-Like Metric

To obtain a metric which has a positive signature on surfaceΣ, the parameters which appear in𝑔 in (4) are set to the values𝜖 = 1 and 𝜂 = −1. Metric 𝑔 assumes the following form:

𝑔 = (1 0 00 1 00 0 −1) . (14)

The structure equations (9)-(11) then take the following form:𝑑𝜔1 = 𝜔2 ∧ 𝜔21,𝑑𝜔2 = 𝜔1 ∧ 𝜔12, (15)

𝜔1 ∧ 𝜔13 + 𝜔2 ∧ 𝜔23 = 0, (16)𝑑𝜔12 = −𝜔13 ∧ 𝜔32,𝑑𝜔13 = 𝜔12 ∧ 𝜔23,𝑑𝜔23 = 𝜔21 ∧ 𝜔13, (17)

𝜔𝑖𝑗 + 𝜔𝑗𝑖 = 0. (18)

These equations constitute the Gauss-Codazzi system for the
space-like surface.

In order to study isothermic surfaces, the one-forms
which are to be used in (15)-(17) are defined in such a way that
the third fundamental form is proportional to a flat metric onΣ (1). Given a coordinate chart (𝑢, V) for Σ, the one-forms 𝜔1

and 𝜔2 are taken to depend on functions of the coordinate
parameters as 𝜔1 = 𝐴𝑑𝑢,𝜔2 = 𝐵𝑑V. (19)

The functions 𝐴 = 𝐴(𝑢, V) and 𝐵 = 𝐵(𝑢, V) depend on both(𝑢, V) in general. Further, define the one-forms as follows:𝜔13 = 𝜅1𝐴𝑑𝑢,𝜔23 = 𝜅2𝐵𝑑V. (20)

Equations (19) and (20) imply that the first three fundamental
forms of the surface can be constructed in the following way:𝐼 = 𝐴2𝑑𝑢2 + 𝐵2𝑑V2,𝐼𝐼 = 𝜅1𝐴2𝑑𝑢2 + 𝜅2𝐵2𝑑V2,𝐼𝐼𝐼 = 𝜅21𝐴2𝑑𝑢2 + 𝜅22𝐵2𝑑V2. (21)

From the fact that the mean and Gaussian curvatures are
given by 𝐻 = −tr (𝐼𝐼 ⋅ 𝐼−1) ,𝐾 = det (𝐼𝐼 ⋅ 𝐼−1) , (22)

𝜅1 and 𝜅2 in (20) can be interpreted as the principal curvatures
of the surface. To obtain an expression for 𝜔12 in terms of𝐴 and 𝐵 from (19), let us suppose 𝜔12 = 𝛼𝑑𝑢 + 𝛽𝑑V, where
functions 𝛼 and 𝛽 depend on both coordinates as do 𝐴 and𝐵. Substituting this 𝜔12 into (15), we can solve for 𝛼 and 𝛽 and
(15) reduces to a pair of identities provided that 𝜔12 has the
following form” 𝜔12 = − 𝐴V𝐵 𝑑𝑢 + 𝐵𝑢𝐴 𝑑V. (23)

Clearly, forms (19), (20) clearly satisfy (16) automatically.
Finally, putting the set of forms into the remaining equations
in (17) produces a system which can be used to determine the
two functions 𝐴 and 𝐵. In fact, doing so produces a coupled
systemof partial differential equationswhichmust holdwhen
expressed in terms of all the relevant functions 𝜅1, 𝜅2, 𝐴 and𝐵.

Differentiating 𝜔12 in (23) gives𝑑𝜔12 = (( 𝐴V𝐵 )
V

+ ( 𝐵𝑢𝐴 )
𝑢
) 𝑑𝑢 ∧ 𝑑V, (24)

Thus the first equation in (17) implies that 𝐴 and 𝐵 satisfy a
second-order equation:( 𝐴V𝐵 )

V
+ ( 𝐵𝑢𝐴 )

𝑢
− 𝜅1𝜅2𝐴𝐵 = 0. (25)

The next two equations of (17) yield the following pair:𝜅1,V + (log𝐴)V (𝜅1 − 𝜅2) = 0,𝜅2,𝑢 + (log𝐵)𝑢 (𝜅2 − 𝜅1) = 0. (26)
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Therefore, (25) and (26) constitute the relevant system to be
studied.

The condition that the space-like surface Σ be isothermic
is that the third fundamental form be conformally flat in
terms of the (𝑢, V)-coordinate system like (1). In order to
ensure this, it suffices to take𝐴𝜅1 = 𝐵𝜅2 = 𝑒𝜗. (27)

This parameterization can now be used to transform the
system of (25)-(26) into a set which depends on only variable𝜗 = 𝜗(𝑢, V).

To this end, differentiate 𝐵𝜅2 in (27) with respect to 𝑢:(𝐵𝜅2)𝑢 = 𝐵𝑢𝜅2 + 𝐵𝜅2,𝑢 = 𝜗𝑢𝑒𝜗. (28)

Substituting (28) into the second equation of (26) simplifies
to the following form:𝜗𝑢𝑒𝜗 − 𝜅1𝐵𝑢 = 0. (29)

By using (27) to eliminate 𝑒𝜗, (29) becomes𝐵𝑢 = 𝐴𝜗𝑢. (30)

Similarly, differentiate 𝐴𝜅1 = 𝑒𝜗 with respect to V to obtain(𝐴𝜅1)V = 𝐴V𝜅1 + 𝐴𝜅1,V = 𝜗V𝑒𝜗. (31)

Substituting (31) into the first equation in (26) simplifies to𝐴V = 𝐵𝜗V. (32)

Using (30) and (32) in the second-order equation (25) as well
as the fact that 𝜅1𝜅2𝐴𝐵 = 𝑒2𝜗 becomes an equation in terms
of only the 𝜗 variable:𝜗𝑢𝑢 + 𝜗VV − 𝑒2𝜗 = 0. (33)

To summarize then, the Gauss-Mainardi-Codazzi equations
reduce to the following form under (27):𝐴V = 𝐵𝜗V,𝐵𝑢 = 𝐴𝜗𝑢,𝜗𝑢𝑢 + 𝜗VV − 𝑒2𝜗 = 0. (34)

Based on the results in (34), it is possible to make further
links to other types of equations which are of importance
in mathematics and physics. These arise by working out
the compatibility conditions between them. Suppose two
independent functions 𝐹 and 𝐺 and related to 𝐴 and 𝐵 in the
following way: 2𝐴 = 𝐹 + 𝐺,2𝐵 = 𝐺 − 𝐹. (35)

Putting these in the first equation of (34) and collecting like
functions on opposite sides and multiplying by 𝑒−𝜗 give𝑒−𝜗 (𝐺𝑢 − 𝐺𝜗𝑢) = (𝐹𝑢 + 𝐹𝜗𝑢) 𝑒−𝜗. (36)

Doing the same thing to the second equation gives−𝜗V𝐺𝑒−𝜗 + 𝐺V𝑒−𝜗 = −𝑒−2𝜗 (𝐹V𝑒𝜗 + 𝐹𝜗V𝑒𝜗) . (37)

Using the product rule on (36) and (37), the following pair of
equations has been obtained:(𝑒−𝜗𝐺)

𝑢
= 𝑒−2𝜗 (𝐹𝑒𝜗)

𝑢
,(𝑒−𝜗𝐺)

V
= −𝑒−2𝜗 (𝐹𝑒𝜗)

V
. (38)

Finally, the desired compatibility condition for 𝐹 can be
obtained by differentiating (𝑒−𝜗𝐺)𝑢 with respect to V, then(𝑒−𝜗𝐺)V with respect to 𝑢, and finally equating the results.
After multiplying the result by 𝑒−𝜗, this simplifies to the
following: 𝑒−𝜗𝐹𝑢V = (𝑒−𝜗)

𝑢V
𝐹. (39)

To obtain an analogous equation for𝐺, (𝑒𝜗𝐹)𝑢 is differentiated
with respect to V and (𝑒𝜗𝐹)V with respect to 𝑢. Upon equating
them, one obtains 𝑒𝜗𝐺𝑢V = (𝑒𝜗)

𝑢V
𝐺. (40)

These steps have proved the following theorem.

�eorem 2. The compatibility conditions for functions 𝐹 and𝐺 defined in terms of 𝐴 and 𝐵 by (35) are specified in terms of
the following Moutard equations:𝑒−𝜗𝐹𝑢V = (𝑒−𝜗)

𝑢V
𝐹,𝑒𝜗𝐺𝑢V = (𝑒𝜗)

𝑢V
𝐺. (41)

Normally, there exists a close connection between the
Moutard equation and a transformation called the funda-
mental transformation between surfaces. We show that a Lax
pair exists for the second-order system in (34). Let X, Y be
unit space-like tangent vectors to Σ in E31.

�eorem 3. Let X, Y be unit tangent vectors and N a unit
normal to the space-like surface Σ. Define the following matrix
system which depends on function 𝜗:

(X
Y
N

)
𝑢

= ( 0 −𝜗V 𝜆𝑒𝜗𝜗V 0 01𝜆 𝑒𝜗 0 0 ) (X
Y
N

) ,
(X

Y
N

)
V

= ( 0 𝜗𝑢 0−𝜗𝑢 0 𝜆𝑒𝜗0 1𝜆 𝑒𝜗 0 ) (X
Y
N

) .
(42)
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In (42), 𝜆 is a spectral parameter.The zero curvature condi-
tion for system (42) is satisfied if and only if function 𝜗 satisfies
the second-order equation of (34), namely,𝜗𝑢𝑢 + 𝜗VV − 𝑒2𝜗 = 0. (43)

Proof. It suffices to differentiate the first matrix equation in
(42) with respect to V, and the second with respect to 𝑢 and
require that the results agree identically. In other words, (42)
is equivalent to the first-order system:

X𝑢 = −𝜗VY + 𝜆𝑒𝜗N,
Y𝑢 = 𝜗VX,
N𝑢 = 1𝜆 𝑒𝜗X,
XV = 𝜗𝑢Y,
YV = −𝜗𝑢X + 𝜆𝑒𝜗N,
NV = 1𝜆 𝑒𝜗Y.

(44)

Condition X𝑢V = XV𝑢 under (44) reduces to− 𝜗VVY − 𝜗V (−𝜗𝑢X + 𝜆𝑒𝜗N) + 𝜆𝜗V𝑒𝜗N + 𝑒2𝜗Y= 𝜗𝑢𝑢Y + 𝜗𝑢𝜗VX. (45)

Simplifying this, the spectral parameter disappears and
equality holds exactly when the function 𝜗 satisfies the
second-order equation, 𝜗𝑢𝑢 + 𝜗VV − 𝑒2𝜗 = 0. Similarly, the
condition Y𝑢V = YV𝑢 is𝜗VVX + 𝜗V𝜗𝑢Y = −𝜗𝑢𝑢X − 𝜗𝑢 (−𝜗VY + 𝜆𝑒𝜗N)+ 𝜆𝜗𝑢𝑒𝜗N + 𝑒2𝜗X. (46)

This holds whenever 𝜗 satisfies this partial differential equa-
tion. Finally, N𝑢V = NV𝑢 simply reduces to1𝜆 (𝜗V𝑒𝜗X + 𝜗𝑢𝑒𝜗Y) = 1𝜆 (𝜗𝑢𝑒𝜗Y + 𝜗V𝑒𝜗X) (47)

which is an identity.

To write the position vector of the surface, it is useful to
define the new variable S in terms of X, Y as follows:

S = X + 𝑖Y. (48)

Taking 𝑧 = 𝑢 + 𝑖V to be complex, the following complex
derivatives are defined:𝜕 = 12 (𝜕𝑢 − 𝑖𝜕V) ,

𝜕 = 12 (𝜕𝑢 + 𝑖𝜕V) . (49)

In terms of S and these derivatives, (44) can be abbreviated to
the following form: 𝜕S = − (𝜕𝜗) S + 𝑒𝜗N,𝜕S = (𝜕𝜗) S,

𝜕N = 12 𝑒𝜗S,
𝜕N = 12 𝑒𝜗S.

(50)

Theposition vector r of the space-like surfacewill be obtained
by integration of the following equation:

r𝑧 = 14 (𝑃S + 𝑅S) . (51)

To this end, introduce the scalar quantity:𝜏 = r ⋅ N, (52)

which can be regarded as the distance from the origin to
the tangent plane on the space-like surface at the point r.
Differentiating 𝜏 with respect to 𝑧 and 𝑧, we find that

𝜕𝜏 = 12 𝑒𝜗r ⋅ S,
𝜕𝜏 = 12 𝑒𝜗r ⋅ S. (53)

The position vector r of the space-like surface therefore
admits a decomposition of the following form:

r = 𝑒−𝜗 (𝜕𝜏) S + 𝑒−𝜗 (𝜕𝜏) S − 𝜏N. (54)

To obtain 𝜕r in terms of 𝜏 and 𝜗, differentiate r with respect
to 𝑧 and substitute (50):

r𝑧 = −𝜗𝑧𝑒−𝜗𝜏𝑧S + 𝑒−𝜗𝜏𝑧𝑧S + 𝑒−𝜗𝜏𝑧S𝑧 − 𝜗𝑧𝑒−𝜗𝜏𝑧S+ 𝑒−𝜗𝜏𝑧𝑧S + 𝑒−𝜗𝜏𝑧S𝑧 − 𝜏𝑧N − 𝜏N𝑧. (55)

Replacing the first derivatives from (44), this derivative
simplifies to

r𝑧 = 𝑒−𝜗 (−𝜗𝑧𝜏𝑧 + 𝜏𝑧𝑧 − 𝜗𝑧𝜏𝑧) S+ 𝑒−𝜗 (−𝜗𝑧𝜏𝑧 + 𝜏𝑧𝑧 + 𝜗𝑧𝜏𝑧 − 12 𝜏𝑒2𝜗) S+ (𝜏𝑧 − 𝜏𝑧)N= 𝑒𝜗 (𝑒−2𝜗𝜏𝑧)𝑧 S + 12 𝑒−𝜗 (2𝜏𝑧𝑧 − 𝜏𝑒2𝜗) S.
(56)

Comparing this result with (51), this procedure allows us to
write 𝑃 and 𝑅 in terms of 𝜗 and 𝜏:𝑃 = 4𝑒𝜗 (𝑒−2𝜗𝜏𝑧)𝑧 ,𝑅 = 𝑒−𝜗 (4𝜏𝑧𝑧 − 2𝜏𝑒2𝜗) . (57)
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It has been found that the position vector of the space-like
surface is given by r where the real function 𝜏 is a solution of
the following equation:

𝜏𝑧𝑧 − 2𝜗𝑧𝜏𝑧 = 14 𝑒𝜗𝑃. (58)

Finally, it can be shown that (58) is equivalent to an inho-
mogeneous Schrödinger equation. To do so, a new variableΨ(𝑧, 𝑧) is introduced and defined asΨ = 𝑒−𝜗𝜏. (59)

Differentiating both sides of Ψ with respect to 𝑧 gives𝑒−2𝜗𝜏𝑧 = 𝑒−𝜗 (𝜗𝑧Ψ + Ψ𝑧) , (60)

and, after a second time, we have(𝑒−2𝜗𝜏𝑧)𝑧 = −𝜗𝑧𝑒−𝜗 (𝜗𝑧Ψ + Ψ𝑧)+ 𝑒−𝜗 (𝜗𝑧𝑧Ψ + 𝜗𝑧Ψ𝑧 + Ψ𝑧𝑧) . (61)

Substituting this second derivative on the left of (58), the
following second-order equation for Ψ results after dividing
out 𝑒−𝜗 is Ψ𝑧𝑧 + (𝜗𝑧𝑧 − 𝜗2𝑧) Ψ = 14 𝑃. (62)

Introducing the potential function which is defined in terms
of 𝜗 as 𝑉 = 𝜗𝑧𝑧 − 𝜗2𝑧, (62) assumes the following form:

Ψ𝑧𝑧 + 𝑉Ψ = 14 𝑃. (63)

4. Surfaces with Time-like Metric

To obtain a metric for this case with a time-like structure onΣ it must be that 𝜖 = 1 and 𝜂 = −1 in (4). The metric 𝑔 then
assumes the following form:

𝑔 = (1 0 00 1 00 0 −1) (64)

Structure equations (9)-(11) then differ by signs and are given
by 𝑑𝜔1 = 𝜔2 ∧ 𝜔21,𝑑𝜔2 = 𝜔1 ∧ 𝜔12, (65)

𝜔1 ∧ 𝜔13 − 𝜔2 ∧ 𝜔23 = 0, (66)𝑑𝜔12 = −𝜔13 ∧ 𝜔32,𝑑𝜔13 = 𝜔12 ∧ 𝜔23,𝑑𝜔23 = −𝜔21 ∧ 𝜔13, (67)

𝜔𝑖𝑗 + 𝜔𝑗𝑖 = 0. (68)

The one-forms 𝜔1 and 𝜔2 required to define the first funda-
mental form (5) are taken to be𝜔1 = −𝐴𝑑𝑢,𝜔2 = 𝐵𝑑V, (69)

where 𝐴, 𝐵 are functions of the coordinates (𝑢, V). Further-
more, the one-forms 𝜔13 and 𝜔23 take the following form:𝜔13 = −𝜅1𝐴𝑑𝑢,𝜔23 = 𝜅2𝐵𝑑V. (70)

Based on the one-forms (69)-(70), the three fundamental
forms for Σ can be written as𝐼 = 𝐴2𝑑𝑢2 − 𝐵2𝑑V2,𝐼𝐼 = 𝜅1𝐴2𝑑𝑢2 − 𝜅2𝐵2𝑑V2,𝐼𝐼𝐼 = 𝜅21𝐴2𝑑𝑢2 − 𝜅2𝐵2𝑑V2. (71)

Since both 𝜔1 and 𝜔13 differ from the previous case, 𝜔12 has
to be determined again, and it is given by𝜔12 = 𝐴V𝐵 𝑑𝑢 + 𝐵𝑢𝐴 𝑑V. (72)

Equation (66) is satisfied automatically by this system of
forms as well.The remaining three equations (67) can now be
computed exactly as before. The conclusion is that a second-
order equation results, namely,( 𝐵𝑢𝐴 )

𝑢
− ( 𝐴V𝐵 )

V
+ 𝜅1𝜅2𝐴𝐵 = 0, (73)

as in the previous case, and the pair𝜅1,V + (log𝐴)V (𝜅1 − 𝜅2) = 0,𝜅2,𝑢 + (log𝐵)𝑢 (𝜅2 − 𝜅1) = 0. (74)

Both equations in (74) are seen to be identical to their
corresponding counterparts in (74). In this case as well, the
equations in (73) and (74) can be written in such a way that
the fundamental form 𝐼𝐼𝐼 is conformally flat assuming the
form (1), 𝐴𝜅1 = 𝐵𝜅2 = 𝑒𝜗. Since the steps are identical to
the previous case, the results are summarized as follows:𝐴V = 𝐵𝜗V,𝐵𝑢 = 𝐴𝜗𝑢,𝜗𝑢𝑢 − 𝜗VV + 𝑒2𝜗 = 0. (75)

These are exactly analogous to (34), the first two being
identical to those of the space-like case. The second-order
equation differs by signs from the case (34). Since the first
two equations are exactly the same, similar functions 𝐹 and𝐺 can be introduced which are related to 𝐴 and 𝐵 as in (35).
All the steps which lead to Theorem 2 are unchanged as they
involve only the first two equations and are independent of
the second-order equation. Thus, a version ofTheorem 2 can
be formulated here as well. The Lax pair however has to be
different since the second-order equation is different.
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�eorem 4. Let X, Y be unit tangent vectors to time-like
surface Σ andN a unit normal vector to Σ. Define the following
matrix system in terms of function 𝜗 as

(X
Y
N

)
𝑢

= ( 0 −𝜗V 𝑒𝜗𝜗V 0 0𝑒𝜗 0 0 ) (X
Y
N

) ,
(X

Y
N

)
V

= ( 0 𝜗𝑢 0−𝜗𝑢 0 𝑒𝜗0 𝑒𝜗 0 ) (X
Y
N

)
(76)

The compatibility condition in (𝑢, V) for this system holds if and
only if function 𝜗 satisfies the second-order equation in (75),
namely, 𝜗𝑢𝑢 − 𝜗VV + 𝑒2𝜗 = 0. (77)

The proof of Theorem 4 goes exactly as the proof of (42).
To illustrate, the details for the X equations will be given.
Differentiating the first matrix equation by V and the second
by 𝑢 and substituting (76) for the first derivatives, it is found
that

X𝑢V = −𝜗VVY − 𝜗V (−𝜗𝑢X + 𝑒𝜗N) + 𝜗V𝑒𝜗N + 𝑒2𝜗Y= −𝜗𝑢𝑢Y + 𝜗𝑢𝜗vX = XV𝑢. (78)

This will be satisfied provided that 𝜗 satisfies the second-order
equation in (75). A similar result is found to hold for the Y
equation and N𝑢V = NV𝑢 holds as an identity.

Again, if S is defined exactly as in the previous case, then,
in terms of complex derivatives, and using the equations of
(76), the system corresponding to (50) is𝜕S = − (𝜕𝜗) S + 𝑒𝜗N,𝜕S = (𝜕𝜗) S,𝜕N = − 12 𝑒𝜗S,

𝜕N = − 12 𝑒𝜗S.
(79)

Taking r𝑧 to have the same form (51) and r given by (54), then
differentiating (54) with respect to 𝑧 and comparing to (51),
it is found that𝑏𝑧𝑧 − 𝜗𝑧𝑏𝑧 + 𝜗𝑧𝑏𝑧 + 12 𝑒2𝜗𝑏 = 14 𝑃𝑒𝜗,

𝑏𝑧𝑧 − 𝜗𝑧𝑏𝑧 − 𝜗𝑧𝑏𝑧 = 14 𝑅𝑒𝜗. (80)

Supposing 𝜏 has the form (35), then the first equation in (80)
becomes a second-order partial differential equation for the
function Ψ(𝑧, 𝑧), namely,Ψ𝑧𝑧 + 𝜗𝑧Ψ𝑧 + 𝜗𝑧Ψ𝑧 + (𝜗𝑧𝑧 + 𝜗2𝑧 + 12 𝑒2𝜗) Ψ = 14 𝑃. (81)

5. Conclusions and Summary

In the Cartan framework, we can discuss isothermic sur-
faces in Minkowski three-space for both space-like and
time-like cases. As Theorems 2 and 4 show, the classical
Gauss-Mainardi-Codazzi system associated with isother-
mic surfaces is integrable in the modern solitonic sense.
Bäcklund transformations will exist for both types of surface.
The appearance of the Moutard equations (41) in both
cases is remarkable, and, subsequently, Sturm-Liouville or
Schrödinger equation (62).This leads to the final proposition.

Proposition 5. Let 𝑉 and 𝑃 satisfy the compatibility condition𝑃𝛼𝛽 = 2𝑃 Im𝑉 and let Ψ be a real solution of the inhomo-
geneous Schrödinger equation (63). Then with 𝜏 = 𝑒𝜗Ψ, (54)
provides a position vector for a space-like isothermic surface.
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mations, Geometry and Modern Applications in Soliton Theory,
Cambridge Texts in Applied Mathematics, Cambridge Univer-
sity Press, Cambridge, UK, 2002.

[5] C. Rogers and A. Szereszewski, “A Bäcklund transformation for
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The asymptotic behavior of the effective mass 𝑚eff(Λ) of the so-called Nelson model in quantum field theory is considered, whereΛ is an ultraviolet cutoff parameter of the model. Let 𝑚 be the bare mass of the model. It is shown that for sufficiently small
coupling constant |𝛼| of the model, 𝑚eff(Λ)/𝑚 can be expanded as 𝑚eff(Λ)/𝑚 = 1 + ∑∞�푛=1 𝑎�푛(Λ)𝛼2�푛. A physical folklore is that𝑎�푛(Λ) = 𝑂([logΛ](�푛−1)) as Λ → ∞. It is rigorously shown that 0 < limΛ→∞𝑎1(Λ) < 𝐶, 𝐶1 ≤ limΛ→∞𝑎2(Λ)/ logΛ ≤ 𝐶2 with some
constants 𝐶, 𝐶1, and 𝐶2.

1. Introduction and Main Results

The model considered in this paper is the so-called Nelson
model [1], which describes a nonrelativistic nucleonwith bare
mass𝑚 > 0 interactingwith a quantized scalar fieldwithmass
] > 0. The nucleon is governed by a Schrödinger operator.
Let us first define the Nelson Hamiltonian.We use relativistic
unit and employ the total momentum representation. Then
theHilbert space of states is the boson Fock space over𝐿2(R3)
which is given by

F = ∞⨁
�푛=0

[ �푛⨂
�푠

𝐿2 (R3)] , (1)

where⨂�푛�푠 denotes the 𝑛-fold symmetric tensor product and⨂0�푠𝐿2(R3) = C. Then Φ ∈ F can be written as Φ = {Φ(0),Φ(1), Φ(2), . . .}, where Φ(�푛) ∈ ⨂�푛�푠𝐿2(R3). The Fock vacuumΩ ∈ F is defined by Ω = {1, 0, 0, . . .}. Let 𝑎(𝑓), 𝑓 ∈ 𝐿2(R3),
be the annihilation operator and 𝑎(𝑓)∗, 𝑓 ∈ 𝐿2(R3), the
creation operator onF, which are defined by

𝐷(𝑎 (𝑓)∗)
= {Ψ ∈ F | ∞∑

�푛=0

(𝑛 + 1) 𝑆�푛+1 (𝑓 ⊗ Ψ(�푛))2⊗𝑛�퐿2(R3) < ∞} ,

(𝑎 (𝑓)∗Ψ)(0) = 0,
(𝑎 (𝑓)∗Ψ)(�푛+1) = √𝑛 + 1𝑆�푛+1 (𝑓 ⊗ Ψ(�푛)) ,

(2)

and 𝑎(𝑓) = (𝑎(𝑓)∗)∗, where 𝑆�푛 is the symmetrizer, 𝐷(𝑋) the
domain of operator𝑋, and ‖ ⋅‖K the norm onK.They satisfy
canonical commutation relations as follows:

[𝑎 (𝑓) , 𝑎 (𝑔)∗] = (𝑓, 𝑔) ,
[𝑎 (𝑓) , 𝑎 (𝑔)] = 0,

[𝑎 (𝑓)∗ , 𝑎 (𝑔)∗] = 0
(3)

on a suitable dense domain, where [𝑋, 𝑌] = 𝑋𝑌 − 𝑌𝑋 and(⋅, ⋅) is the inner product onK (linear in the second variable).
Let 𝑇 be a self-adjoint operator on 𝐿2(R3). Then we define
the self-adjoint operator 𝑑Γ(𝑇) on F by 𝑑Γ(𝑇) = ⨁∞�푛=0𝑇(�푛),
where

𝑇(�푛) = ( �푛∑
�푗=1

𝐼 ⊗ ⋅ ⋅ ⋅ ⊗ 𝐼 ⊗ �푗th�̆� ⊗ 𝐼 ⊗ ⋅ ⋅ ⋅ ⊗ 𝐼)[[[
�푛⨂̂𝐷 (𝑇)

(𝑛 ≥ 1)
(4)
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with 𝑇(0) = 0. Here, for a closable operator 𝑇, 𝑇 denotes the
closure of 𝑇.The operator 𝑑Γ(𝑇) is called the second quanti-
zation of 𝑇. The free energy of the scalar field is given by𝐻�푓 = 𝑑Γ(𝜔), where 𝜔(𝑘) = √|𝑘|2 + ]2 (𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈
R3, ] > 0) is considered as a multiplication operator on𝐿2(R3). Similarly the momentum of the scalar field is given
by 𝑃�푓�휇 = dΓ(𝑘�휇) (𝜇 = 1, 2, 3). The coupling of the nucleon
and a scalar field is mediated through the Segal field operatorΦ�푠(𝑔) defined by

Φ�푠 (𝑔) = 1√2 (𝑎 (𝑔) + 𝑎 (𝑔)∗) , (5)

where 𝑔 is a cutoff function given by 𝑔(𝑘) = �̂�(𝑘)/√𝜔(𝑘).
Here �̂� is the form factor with infrared cutoff 𝜅 > 0 and
ultraviolet cutoff Λ > 0, which are defined by

�̂� (𝑘) =
{{{{{{{{{

0 |𝑘| < 𝜅,
(2𝜋)−3/2 𝜅 ≤ |𝑘| ≤ Λ,
0 |𝑘| > Λ.

(6)

The Nelson Hamiltonian with total momentum 𝑝 ∈ R3 is
given by a self-adjoint operator onF as follows:

𝐻(𝑝) = 12𝑚 (𝑝 − 𝑃�푓)2 + 𝐻�푓 + 𝛼Φ�푠 (𝑔) , (7)

where𝛼 ∈ R is a coupling constant. Let𝐸(𝑝, 𝛼) be the energy-
momentum relation (the infimum of the spectrum 𝜎(𝐻(𝑝)))
defined by

𝐸 (𝑝, 𝛼) = inf 𝜎 (𝐻 (𝑝)) . (8)

Then the effective mass𝑚eff = 𝑚eff(Λ) is defined by

1𝑚eff
= 13Δ�푝𝐸 (𝑝, 𝛼) ↾�푝=0. (9)

Here Δ�푝 denotes the three-dimensional Laplacian in the
variable 𝑝. We are concerned with the asymptotic behavior
of𝑚eff as the ultraviolet cutoff goes to infinity. It is however a
subtle problem. Removal of the ultraviolet cutoff Λ through
mass renormalization means finding sequences {𝑚} and {Λ}
such that 𝑚 → 0, Λ → ∞, and 𝑚eff converges. Since we can
see that𝑚eff/𝑚 is a function of Λ/𝑚, to achieve this, we want
to find constants 0 < 𝛾 < 1 and 0 < 𝑏0 < ∞ such that

lim
Λ→∞

𝑚eff/𝑚(Λ/𝑚)�훾 = 𝑏0. (10)

If we succeed in finding constants 𝛾 and 𝑏0 such as in (10),
scaling the bare mass𝑚 as

𝑚 = 1Λ�훾/(1−�훾)𝑀, (11)

where𝑀 = (𝑚∗/𝑏0)1/(1−�훾) with an arbitrary positive constant𝑚∗, we have
lim
Λ→∞

𝑚eff (Λ) = 𝑚∗. (12)

The mass renormalization is, however, a subtle problem, and
unfortunately, we cannot yet find constants 𝛾 and 𝑏0 such as in
(10). For that reason we turn to perturbative renormalization,
by which we try to guess the proper value of 𝛾. Main results
obtained in this paper are summarized as follows.

Theorem 1. Let 𝜅 > 0. Then 𝑚eff is an analytic function of𝛼2 and can be expanded in the following power series for suffi-
ciently small |𝛼|:

𝑚eff𝑚 = 1 + ∞∑
�푛=1

𝑎�푛 (Λ) 𝛼2�푛. (13)

Theorem2. There exists a strictly positive constant𝐶 such that

lim
Λ→∞

𝑎1 (Λ) = 𝐶. (14)

Theorem 3. There exist some constants 𝐶1 and 𝐶2 such that
𝐶1 ≤ lim
Λ→∞

𝑎2 (Λ)
logΛ ≤ 𝐶2. (15)

FromTheorems 2 and 3, if𝐷 = limΛ→∞𝑎2(Λ)/ logΛ > 0,
it is suggested that 𝛾 = 𝐷𝛼2/𝐶. So, the mass of the Nelson
model is renormalizable for sufficiently small |𝛼|.

The effective mass and energy-momentum relation have
been studied mainly in nonrelativistic electrodynamics.
Spohn [2] investigates the upper and lower bound of the
effectivemass of the polaronmodel from a functional integral
point of view. Hiroshima and Spohn [3] study a perturbative
mass renormalization including fourth order in the coupling
constant in the case of a spinless electron. Hiroshima and Ito
[4, 5] study it in the case of an electron with spin 1/2. Bach et
al. [6] show that the energy-momentum relation is equal to
the infimum of the essential spectrum of the Hamiltonian for𝜅 ≥ 0. Fröhlich and Pizzo [7] investigate energy-momentum
relation when infrared cutoff goes to 0.

2. Analytic Properties

In order to investigate the effective mass in a perturbation
theory we have to check the analytic properties of 𝐸(𝑝, 𝛼).
2.1. Analytic Family in the Sense of Kato

Lemma 4. 𝐻(𝑝) is an analytic family in the sense of Kato.

Proof. We prove 𝐻(𝑝) is an analytic family of type (A). We
see that

𝐻(𝑝) = 𝐻0 + 3∑
�휇=1

𝑝�휇 12𝑚 (𝑝�휇 − 2𝑃�푓�휇) + 𝛼𝐻�퐼, (16)

where 𝐻0 = (1/2𝑚)𝑃2�푓 + 𝐻�푓 and 𝐻�퐼 = Φ�푠(𝑔). Hence all we
have to do is to prove the following facts.

(a) 𝐷(𝐻0) ⊂ ⋂3�휇=1𝐷(𝑃�푓�휇) ∩ 𝐷(𝐻�퐼).
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(b) There exist real constants 𝑎�휇, 𝑏�휇 (𝜇 = 1, 2, 3), 𝑐, and 𝑑
such that for any Ψ ∈ 𝐷(𝐻0)

 12𝑚 (𝑝�휇 − 2𝑃�푓�휇)ΨF ≤ 𝑎�휇 𝐻0ΨF + 𝑏�휇 ‖Ψ‖F
(𝜇 = 1, 2, 3) ,𝐻�퐼ΨF ≤ 𝑐 𝐻0ΨF + 𝑑 ‖Ψ‖F .

(17)

We prove (a) at first. Since ⋂3�휇=1𝐷(𝑃2�푓�휇) ⊂ 𝐷(𝑃�푓�휇), we have𝐷(𝐻0) = ⋂3�휇=1𝐷(𝑃2�푓�휇) ∩ 𝐷(𝐻�푓) ⊂ ⋂3�휇=1𝐷(𝑃�푓�휇). Additionally,
since ‖𝜔−1/2𝑔‖�퐿2(R3) < ∞, we have 𝑔 ∈ 𝐷(𝜔−1/2). Further-
more, since 𝜔 is a nonnegative and injective self-adjoint
operator on 𝐿2(R3), it follows that 𝐷(𝑑Γ(𝜔)1/2) ⊂ 𝐷(𝑎(𝑔)) ∩𝐷(𝑎(𝑔)∗) = 𝐷(𝐻�퐼). Hence we have 𝐷(𝐻0) ⊂ 𝐷(𝑑Γ(𝜔)) ⊂𝐷(𝑑Γ(𝜔)1/2). Together with them, (a) is proven. Next we
prove (b). Let Ψ be an arbitrary vector in 𝐷(𝐻0). Then we
have

 12𝑚 (𝑝�휇 − 2𝑃�푓�휇)ΨF ≤ 𝑝�휇2𝑚 ‖Ψ‖F + 1𝑚 𝑃�푓�휇ΨF . (18)

Since ‖𝑃�푓�휇Ψ‖2F ≤ 2𝑚‖𝐻1/20 Ψ‖2F, we have ‖𝐻1/20 Ψ‖2F ≤ ‖(𝐻0 +1)Ψ‖2F. Hence
 12𝑚 (𝑝�휇 − 2𝑃�푓�휇)ΨF

≤ √ 2𝑚 𝐻0ΨF + (𝑝�휇2𝑚 + √ 2𝑚)‖Ψ‖F . (19)

Since𝐷(𝐻0) ⊂ 𝐷(𝑑Γ(𝜔)1/2),
𝑎 (𝑔)ΨF ≤ 𝜔−1/2𝑔�퐿2(R3) 𝐻1/2�푓 ΨF ,

𝑎 (𝑔)∗ΨF ≤ 𝜔−1/2𝑔�퐿2(R3) 𝐻1/2�푓 ΨF
+ 𝑔�퐿2(R3) ‖Ψ‖F

(20)

hold. Hence

𝐻�퐼ΨF ≤ √2 𝜔−1/2𝑔�퐿2(R3) 𝐻1/2�푓 ΨF
+ 1√2 𝑔�퐿2(R3) ‖Ψ‖F . (21)

From triangle inequality, we have ‖𝐻1/2
�푓

Ψ‖F ≤ ‖𝐻�푓Ψ‖F +‖Ψ‖F. In addition,

𝐻0Ψ2F − 𝐻�푓Ψ2F =  12𝑚𝑃2�푓Ψ
2

F

+ 1𝑚R (𝑃2�푓Ψ,𝐻�푓Ψ) .
(22)

Since 𝑃2�푓 and 𝐻�푓 are strongly commutative and nonnegative
self-adjoint operators on F, (𝑃2�푓Ψ,𝐻�푓Ψ) ≥ 0 holds. Hence‖𝐻�푓Ψ‖F ≤ ‖𝐻0Ψ‖F. Then we have

𝐻�퐼ΨF
≤ √2 𝜔−1/2𝑔�퐿2(R3) 𝐻0ΨF

+ (√2 𝜔−1/2𝑔�퐿2(R3) + 1√2 𝑔�퐿2(R3)) ‖Ψ‖F .
(23)

From (19) and (23), (b) is proven. Hence 𝐻(𝑝) is an analytic
family of type (A). Since every analytic family of type (A) is an
analytic family of in the sense of Kato, it is an analytic family
in the sense of Kato.

We denote the ground state of𝐻(𝑝) by 𝜓�푔(𝑝).
Lemma 5. (1) 𝐸(𝑝, 𝛼) is analytic in 𝑝 and 𝛼 if |𝑝| and |𝛼| are
sufficiently small. (2) 𝜓�푔(𝑝) is strongly analytic in 𝑝 and 𝛼 if|𝑝| and |𝛼| are sufficiently small.

Proof. From [8, Theorem XII.9], (1) follows, and from [8,
Theorem XII.8], (2) follows.

2.2. Formula. In this section we expand 𝑚/𝑚eff with respect
to 𝛼.
Lemma 6. The ratio𝑚/𝑚eff can be expressed as

𝑚𝑚eff
= 1 − 23

3∑
�휇=1

(𝑃�푓�휇𝜓�푔 (0) , 𝜓�耠�푔𝜇 (0))(𝜓�푔 (0) , 𝜓�푔 (0)) , (24)

where 𝜓�耠�푔𝜇(0) = 𝑠 − 𝜕𝑝�휇𝜓�푔(𝑝)↾�푝=0.
Proof. Since𝐸(𝑝, 𝛼) is symmetry,𝐸(𝑝, 𝛼) = 𝐸(−𝑝, 𝛼), we have

𝜕𝑝�휇𝐸 (𝑝, 𝛼) ↾�푝=0 = 0, 𝜇 = 1, 2, 3. (25)

Since𝐻(𝑝)𝜓�푔(𝑝) = 𝐸(𝑝, 𝛼)𝜓�푔(𝑝), for any Ψ ∈ 𝐷(𝐻(𝑝)),
(𝐻 (𝑝)Ψ, 𝜓�푔 (𝑝)) = 𝐸 (𝑝, 𝛼) (Ψ, 𝜓�푔 (𝑝)) (26)

holds. Taking a derivative with respect to 𝑝�휇 on both sides
above, we have

(𝐻�耠�휇 (𝑝)Ψ, 𝜓�푔 (𝑝))
+ (𝐻 (𝑝)Ψ, 𝜓�耠�푔𝜇 (𝑝)) = 𝐸�耠�휇 (𝑝, 𝛼) (Ψ, 𝜓�푔 (𝑝))
+ 𝐸 (𝑝, 𝛼) (Ψ, 𝜓�耠�푔𝜇 (𝑝)) ,

(𝐻�耠�耠�휇 (𝑝)Ψ, 𝜓�푔 (𝑝)) + 2 (𝐻�耠�휇 (𝑝)Ψ, 𝜓�耠�푔𝜇 (𝑝))
+ (𝐻 (𝑝)Ψ, 𝜓�耠�耠�푔𝜇 (𝑝)) = 𝐸�耠�耠�휇 (𝑝, 𝛼) (Ψ, 𝜓�푔 (𝑝))
+ 2𝐸�耠�휇 (𝑝, 𝛼) (Ψ, 𝜓�耠�푔𝜇 (𝑝)) + 𝐸 (𝑝, 𝛼) (Ψ, 𝜓�耠�耠�푔𝜇 (𝑝)) .

(27)
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Here �耠 denotes the derivative or strong derivativewith respect
to 𝑝�휇, and 𝐻�耠�휇(𝑝) = (1/𝑚)(𝑝�휇 − 𝑃�푓�휇), 𝐻�耠�耠�휇 (𝑝) = 1/𝑚. SettingΨ = 𝜓�푔(0) and 𝑝 = 0, we have

𝐸�耠�耠�휇 (0, 𝛼)
= 1𝑚

(𝜓�푔 (0) , 𝜓�푔 (0)) − 2 (𝑃�푓�휇𝜓�푔 (0) , 𝜓�耠�푔�휇 (0))(𝜓�푔 (0) , 𝜓�푔 (0)) . (28)

This expression and the definition of the effective mass prove
the lemma.

2.3. Perturbative Expansions. Wedefine operators𝐴+ and𝐴−
by 𝐴+ = (1/√2)𝑎(𝑔)∗ and 𝐴− = (1/√2)𝑎(𝑔). Then 𝐻�퐼 =𝐴+ + 𝐴−. Moreover, letF(�푛) = ⨂�푛�푠𝐿2(R3) and

𝜓�푔 (0) = ∞∑
�푛=0

𝛼�푛𝑛! 𝜑�푛. (29)

Since 𝐸(𝑝, 𝛼) is symmetry 𝐸(𝑝, −𝛼) = 𝐸(𝑝, 𝛼), we have
𝐸 (0, 𝛼) = ∞∑

�푛=0

𝛼2�푛(2𝑛)!𝐸2�푛. (30)

Since ker𝐻0 ̸= {0}, 𝐻0 is not injective. However, we define
the operator 1/𝐻0 (for notational simplicity we write 1/𝐻0
for𝐻−10 in what follows) onF as follows.

𝐷( 1𝐻0)
= {Ψ = ∞⨁

�푛=0

Ψ(�푛) ∈ F | ∞∑
�푛=1

𝛽�푛Ψ(�푛)2 < ∞} ,
( 1𝐻0Ψ)(0) = 0,
( 1𝐻0Ψ)(�푛) (𝑘1, . . . , 𝑘�푛)

= 𝛽�푛 (𝑘1, . . . , 𝑘�푛) Ψ(�푛) (𝑘1, . . . , 𝑘�푛) (𝑛 ≥ 1) .

(31)

Here

𝛽�푛 = 𝛽�푛 (𝑘1, . . . , 𝑘�푛)
= 1

(1/2𝑚) 𝑘1 + ⋅ ⋅ ⋅ + 𝑘�푛2 + ∑�푛�푖=1 𝜔 (𝑘�푖) .
(32)

We define the subspaceFfin ofF asFfin = {{Ψ(�푛)}∞�푛=0 ∈ F |Ψ(�푙) = 0 for 𝑙 ≥ 𝑞 with some 𝑞}.
Lemma 7. It holds thatFfin ⊂ 𝐷(1/𝐻0).
Proof. Let Ψ ∈Ffin. Then ‖(1/𝐻0)Ψ‖2 = ∑∞�푛=1 ‖((1/𝐻0)Ψ)(�푛)‖2 <∞. Hence the lemma follows.

Lemma 8. Let 𝜓�푔(0) = ∑∞�푛=0(𝛼�푛/𝑛!)𝜑�푛. Then 𝜑0 = Ω, 𝜑1 =−(1/𝐻0)𝐻�퐼Ω, and the recurrence formulas

𝜑2�푙 = 1𝐻0
{{{−2𝑙𝐻�퐼𝜑2�푙−1 + �푙∑

�푗=1

(2𝑙
2𝑗)𝐸2�푗𝜑2�푙−2�푗}}}

(𝑙 ≥ 1) ,
(33)

𝜑2�푙+1
= 1𝐻0

{{{− (2𝑙 + 1)𝐻�퐼𝜑2�푙 + �푙∑
�푗=1

(2𝑙 + 1
2𝑗 )𝐸2�푗𝜑2�푙+1−2�푗}}}

(𝑙 ≥ 0)
(34)

follow, with

𝜑2�푙 ∈ F
(2) ⊕F

(4) ⊕ ⋅ ⋅ ⋅ ⊕F
(2�푙) (𝑙 ≥ 1) ,

𝜑2�푙+1 ∈ F
(1) ⊕F

(3) ⊕ ⋅ ⋅ ⋅ ⊕F
(2�푙+1) (𝑙 ≥ 0) , (35)

and 𝐸2�푙 is given by

𝐸2�푙 = 2𝑙 (Ω,𝐻�퐼𝜑2�푙−1) (𝑙 ≥ 1) . (36)

Proof. We have 𝐸(0, 0) = 𝐸0 by substituting 𝛼 = 0 in (30).
Since 𝐸(0, 0) is the ground state energy of 𝐻0, 𝐸(0, 0) = 0.
Hence 𝐸0 = 0. Since 𝜑0 is the ground state of 𝐻0, 𝜑0 can
be Ω. We can find that (𝜑�푛, Ω) = 𝛿0�푛 for 𝑛 = 0, 1, . . .
holds in the same way as [3]. From now we set 𝐻 = 𝐻(𝑝),𝜓�푔 = 𝜓�푔(0), 𝐸 = 𝐸(𝑝, 𝛼), and �耠 means (strong)derivative
with respect to 𝛼.

(𝐻Ψ,𝜓�푔) = 𝐸 (Ψ, 𝜓�푔) (37)

holds for Ψ ∈ 𝐷(𝐻). Differentiating (37) with respect to 𝛼,
we have

(𝐻�퐼Ψ,𝜓�푔) + (𝐻Ψ,𝜓�耠�푔) = 𝐸�耠 (Ψ, 𝜓�푔) + 𝐸 (Ψ, 𝜓�耠�푔) . (38)

Hence 𝜓�耠�푔 ∈ 𝐷(𝐻) and we have

𝐻�퐼𝜓�푔 + 𝐻𝜓�耠�푔 = 𝐸�耠𝜓�푔 + 𝐸𝜓�耠�푔. (39)

Substituting 𝑝 = 0 and 𝛼 = 0 into (39) and taking into
account (𝜑�푛, Ω) = 𝛿0�푛, we have𝜑1 = −(1/𝐻0)𝐻�퐼Ω. Differenti-
ating (37) 𝑛 times with respect to 𝛼, we also have

(𝐻Ψ, 𝜓(�푛)�푔 ) + 𝑛 (Ψ,𝐻�퐼𝜓(�푛−1)�푔 )
= �푛∑
�푗=1

(𝑛𝑗)𝐸(�푗) (Ψ, 𝜓(�푛−�푗)�푔 ) . (40)

By the induction on 𝑛, we have 𝜓(�푛)�푔 ∈ 𝐷(𝐻) and
𝐻𝜓(�푛)�푔 + 𝑛𝐻�퐼𝜓(�푛−1)�푔 = �푛∑

�푗=1

(𝑛𝑗)𝐸(�푗)𝜓(�푛−�푗)�푔 . (41)
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Substituting 𝑝 = 0 and 𝛼 = 0 into both sides above, we have

𝐻0𝜑2�푙 + 2𝑙𝐻�퐼𝜑2�푙−1 = �푙∑
�푗=1

(2𝑙
2𝑗)𝐸2�푗𝜑2�푙−2�푗

(𝑙 ≥ 1) ,
𝐻0𝜑2�푙+1 + (2𝑙 + 1)𝐻�퐼𝜑2�푙 = �푙∑

�푗=1

(2𝑙 + 1
2𝑗 )𝐸2�푗𝜑2�푙+1−2�푗

(𝑙 ≥ 0) .

(42)

From now on, we shall prove

𝜑(�푖)�푛 = 0, (𝑖 > 𝑛, 𝑖 = 0) ,
𝜑(2�푖+1)2�푙 = 0, (𝑙 ≥ 1, 0 ≤ 𝑖 ≤ 𝑙 − 1) ,

supp
�푘∈R3⋅2𝑖

𝜑(2�푖)2�푙 (𝑘) = 𝑆2�푖 or 0, (𝑙 ≥ 1, 1 ≤ 𝑖 ≤ 𝑙) ,
𝜑(2�푖)2�푙+1 = 0, (𝑙 ≥ 0, 0 ≤ 𝑖 ≤ 𝑙) ,

supp
�푘∈R3(2𝑖+1)

𝜑(2�푖+1)2�푙+1 (𝑘) = 𝑆2�푖+1 or 0, (𝑙 ≥ 0, 0 ≤ 𝑖 ≤ 𝑙) ,

(43)

where we set 𝜑�푛 = {𝜑(�푖)�푛 }∞�푖=0 by induction for 𝑛 ≥ 1, and
𝑆�푖 = {(𝑘1, . . . , 𝑘�푖) ∈ R

3�푖 | 𝜅 ≤ 𝑘1 ≤ Λ, . . . , 𝜅 ≤ 𝑘�푖 ≤ Λ} . (44)

Since 𝜑1 = −(1/𝐻0)𝐻�퐼Ω ∈ F(1), 𝜑(�푖)1 = 0, 𝑖 > 1, 𝑖 = 0.
Moreover, since

𝜑(1)1 (𝑘1) = − 1
√2 (2𝜋)3/2√𝜔 (𝑘1)𝐸 (𝑘1)𝜒[�휅,Λ] (

𝑘1) , (45)

we have supp�푘1∈R3𝜑(1)1 (𝑘1) = 𝑆1, where𝐸(𝑘) = |𝑘|2/2𝑚+𝜔(𝑘).
Assume that the assumption of the induction holds when 𝑛 ≤2𝑙 + 1, (𝑙 ≥ 0). Then

𝐻0𝜑2�푙+2 + (2𝑙 + 2)𝐻�퐼𝜑2�푙+1
= �푙+1∑
�푗=1

(2𝑙 + 2
2𝑗 )𝐸2�푗𝜑2�푙+2−2�푗. (46)

It is derived that 𝜑(�푖)
2�푙+2

= 0, 𝑖 > 2𝑙 + 2, 𝑖 = 0, by(𝜑�푛, Ω) = 𝛿0�푛 and (46). By the assumption of the induction,(𝐻�퐼𝜑2�푙+1)(2�푖+1) = 0, 0 ≤ 𝑖 ≤ 𝑙, holds. When 1 ≤ 𝑞 ≤ 𝑙, it holds
that

(𝐻0𝜑2�푙+2)(2�푞) = −2 (𝑙 + 1) (𝐻�퐼𝜑2�푙+1)(2�푞)

+ �푙+1∑
�푗=1

(2𝑙 + 2
2𝑗 )𝐸2�푗𝜑(2�푞)2�푙+2−2�푗 = −√2 (𝑙 + 1){{{{{

1√2𝑞
⋅ 2�푞∑
�푖=1

1(2𝜋)3/2
𝜒[�휅,Λ] (𝑘�푖)√2√𝜔 (𝑘�푖)𝜑

(2�푞−1)

2�푙+1
(𝑘1, . . . , 𝑘�푖, . . . , 𝑘2�푞)

+ √2𝑞 + 1∫ 1(2𝜋)3/2
𝜒[�휅,Λ] (|𝑘|)√2√𝜔 (𝑘)𝜑(2�푞+1)2�푙+1

(𝑘, 𝑘1, . . . ,

𝑘2�푞) 𝑑𝑘}}}}}
+ �푙+1∑
�푗=1

(2𝑙 + 2
2𝑗 )𝐸2�푗𝜑(2�푞)2�푙+1−2�푗,

(47)

where 𝑘�푖 means that 𝑘�푖 is omitted. By the assumption of the
induction, the supports of the functions

1(2𝜋)3/2
𝜒[�휅,Λ] (𝑘�푖)√2√𝜔 (𝑘�푖)𝜑

(2�푞−1)

2�푙+1
(𝑘1, . . . , �̂��푖, . . . , 𝑘2�푞) ,

∫ 1(2𝜋)3/2
𝜒[�휅,Λ] (|𝑘|)√2√𝜔 (𝑘)𝜑(2�푞+1)2�푙+1

(𝑘, 𝑘1, . . . , 𝑘2�푞) 𝑑𝑘
(48)

and 𝜑(2�푞)
2�푙+1−2�푗

are 𝑆2�푞 or 0. Furthermore,

(𝐻0𝜑2�푙+2)(2�푙+2) (𝑘1, . . . , 𝑘2�푙+2) = −2 (𝑙 + 1)
⋅ (𝐴+𝜑2�푙+1)(2�푙+2) (𝑘1, . . . , 𝑘2�푙+2)
= −√2 (𝑙 + 1)2�푙+2∑

�푖=1

1(2𝜋)3/2
𝜒[�휅,Λ] (𝑘�푖)√2√𝜔 (𝑘�푖)

⋅ 𝜑(2�푙+1)2�푙+1 (𝑘1, . . . , 𝑘�푖, . . . , 𝑘2�푙+2)

(49)

holds. By the assumption of the induction, the support
of the right hand side is 𝑆2�푙+2 or 0. Hence we have
supp�푘∈R3⋅2𝑖𝜑(2�푖)2�푙+2(𝑘) = 𝑆2�푖 or 0, 1 ≤ 𝑖 ≤ 𝑙 + 1. We can prove𝜑(�푖)
2�푙+3

= 0, 𝑖 > 2𝑙 + 3, 𝑖 = 0, 𝜑(2�푖)
2�푙+3

= 0, 1 ≤ 𝑖 ≤ 𝑙 + 1, and
supp�푘∈R3(2𝑖+1)𝜑(2�푖+1)2�푙+3 (𝑘) = 𝑆2�푖+1 or 0, 0 ≤ 𝑖 ≤ 𝑙 + 1, in a similar
way. From the discussion so far, we have

−2𝑙𝐻�퐼𝜑2�푙−1 + �푙∑
�푗=1

(2𝑙
2𝑗)𝐸2�푗𝜑2�푙−2�푗 ∈ Ffin

(𝑙 ≥ 1) ,
− (2𝑙 + 1)𝐻�퐼𝜑2�푙 + �푙∑

�푗=1

(2𝑙 + 1
2𝑗 )𝐸2�푗𝜑2�푙+1−2�푗 ∈ Ffin

(𝑙 ≥ 0) .

(50)

Hence we have

𝜑2�푙 = 1𝐻0
{{{−2𝑙𝐻�퐼𝜑2�푙−1 + �푙∑

�푗=1

(2𝑙
2𝑗)𝐸2�푗𝜑2�푙−2�푗}}} + 𝑏2�푙Ω

(𝑙 ≥ 1) ,
𝜑2�푙+1
= 1𝐻0

{{{− (2𝑙 + 1)𝐻�퐼𝜑�푙 + �푙∑
�푗=1

(2𝑙 + 1
2𝑗 )𝐸2�푗𝜑2�푙+1−2�푗}}}

+ 𝑏2�푙+1Ω (𝑙 ≥ 0) ,

(51)
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where 𝑏2�푙 and 𝑏2�푙+1 are some constants. Since (𝜑2�푙, Ω) = 0, 𝑙 ≥1, and (𝜑2�푙+1, Ω) = 0, 𝑙 ≥ 0, 𝑏2�푙 = 𝑏2�푙+1 = 0. Hence (33) and
(34) are proven. By the discussion so far, (35) are also proven.
We can derive (36) by (33) and (𝜑�푛, Ω) = 𝛿0�푛.
3. Main Theorems

For notational simplicity we set �̂��푗 = �̂�(𝑘�푗) and 𝜔�푗 = 𝜔(𝑘�푗)
for 𝑘�푗 ∈ R3, 𝑗 = 1, 2. Let

𝐸�푗 =
𝑘�푗22𝑚 + 𝜔�푗, 𝑗 = 1, 2,

𝐸12 = 𝑘1 + 𝑘222𝑚 + 𝜔1 + 𝜔2,
𝜔 (𝑟) = √𝑟2 + ]2,
𝐹 (𝑟) = 𝑟22𝑚 + 𝜔 (𝑟) .

(52)

Theorem 9. Let 𝜅 > 0. Then𝑚eff is an analytic function of 𝛼2
and can be expanded in the following power series for suffi-
ciently small |𝛼|:

𝑚eff𝑚 = 1 + ∞∑
�푛=1

𝑎�푛 (Λ) 𝛼2�푛. (53)

Proof. By the power series (29), we have

(𝜓�푔, 𝜓�푔) = (∞∑
�푛=0

𝛼�푛𝑛! 𝜑�푛,
∞∑
�푚=0

𝛼�푚𝑚! 𝜑�푚)
= ∞∑
�푛=0

∞∑
�푚=0

𝛼�푛+�푚𝑛!𝑚! (𝜑�푛, 𝜑�푚) .
(54)

By Lemma 8, (𝜑�푛, 𝜑�푚) ̸= 0 if and only if both 𝑛 and𝑚 are even
or odd. Then we have

(𝜓�푔, 𝜓�푔) = 1 + ∞∑
�푛=1

𝑏�푛 (Λ) 𝛼2�푛. (55)

From the fact that both𝑚−1eff and (𝜓�푔, 𝜓�푔) are analytic functions
of 𝛼2 and Lemma 6, we have the following power series:

−23
3∑
�휇=1

(𝑃�푓�휇𝜓�푔, 𝜓�耠�푔𝜇 (0)) = ∞∑
�푛=0

𝑐�푛 (Λ) 𝛼2�푛. (56)

Since 𝜓�耠�푔𝜇(0) is an analytic function of 𝛼, we can write

𝜓�耠�푔𝜇 (0) =
∞∑
�푛=0

𝛼�푛𝑛! Φ�휇�푛 . (57)

We note that

𝑐0 (Λ) = −23
3∑
�휇=1

(𝑃�푓�휇𝜑0, Φ�휇0)

= −23
3∑
�휇=1

(𝑑Γ (𝑘�휇) 𝜑0, Φ�휇0) = 0.
(58)

Hence if |𝛼| is sufficiently small, then we have the following
power series:

𝑚eff𝑚 = (𝜓�푔, 𝜓�푔)
(𝜓�푔, 𝜓�푔) − (2/3)∑3�휇=1 (𝑃�푓�휇𝜓�푔 (0) , 𝜓�耠�푔𝜇 (0))

= 1 + ∑∞�푛=1 𝑏�푛 (Λ) 𝛼2�푛1 + ∑∞�푛=1 (𝑏�푛 (Λ) + 𝑐�푛 (Λ)) 𝛼2�푛
= (1 + ∞∑

�푛=1

𝑏�푛 (Λ) 𝛼2�푛)
⋅ ∞∑
�푛=0

(−∞∑
�푙=1

(𝑏�푙 (Λ) + 𝑐�푙 (Λ)) 𝛼2�푙)
�푛 .

(59)

This proves the theorem.

Theorem 10. There exists strictly positive constant 𝐶 such that
limΛ→∞𝑎1(Λ) = 𝐶.
Proof. From (59), we have

𝑚eff𝑚 = {1 + 𝑏1 (Λ) 𝛼2 + 𝑂 (𝛼4)}
⋅ [1 − {𝑏1 (Λ) + 𝑐1 (Λ)} 𝛼2 + 𝑂 (𝛼4)] = 1 − 𝑐1 (Λ)
⋅ 𝛼2 + 𝑂 (𝛼4) .

(60)

Therefore 𝑎1(Λ) = −𝑐1(Λ). Since
∞∑
�푛=1

𝑐�푛 (Λ) 𝛼2�푛 = −23
3∑
�휇=1

(𝑃�푓�휇𝜓�푔, 𝜓�耠�푔𝜇 (0))

= −23
3∑
�휇=1

(𝑃�푓�휇 ∞∑
�푛=0

𝛼�푛𝑛! 𝜑�푛,
∞∑
�푛=0

𝛼�푛𝑛! Φ�휇�푛) ,
(61)

we have

𝑐1 (Λ) = −23
3∑
�휇=1

{ 10!2! (𝑃�푓�휇𝜑0, Φ�휇2) + 11!1! (𝑃�푓�휇𝜑1, Φ�휇1)

+ 12!0! (𝑃�푓�휇𝜑2, Φ�휇0)} = −23
3∑
�휇=1

{(𝑃�푓�휇𝜑1, Φ�휇1)
+ 12 (𝑃�푓�휇𝜑2, Φ�휇0)} .

(62)

Substituting 𝑝 = 0 into (27) and using (25), we have

− 1𝑚 (𝑃�푓�휇Ψ,𝜓�푔) + ((𝐻0 + 𝛼𝐻�퐼)Ψ, 𝜓�耠�푔𝜇 (0))
= 𝐸 (0, 𝛼) (Ψ, 𝜓�耠�푔𝜇 (0)) .

(63)

In addition, by setting𝛼 = 0, we have−(𝑃�푓�휇/𝑚)𝜑0+𝐻0Φ�휇0 = 0.
Since𝑃�푓�휇𝜑0 = 𝑑Γ(𝑘�휇)Ω = 0, 𝐻0Φ�휇0 = 0 holds. Hence we have

Φ�휇0 = 𝑐0Ω, (𝑐0 is some constant) . (64)
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Differentiating both sides of (63) with respect to 𝛼, we have
− 1𝑚 (𝑃�푓�휇Ψ, 𝑠 − 𝑑𝑑𝛼𝜓�푔) + (𝐻 (0)Ψ, 𝑠 − 𝑑𝑑𝛼𝜓�耠�푔𝜇 (0))

+ (𝐻�퐼Ψ,𝜓�耠�푔𝜇 (0))
= 𝐸 (0, 𝛼) (Ψ, 𝑠 − 𝑑𝑑𝛼𝜓�耠�푔𝜇 (0))

+ 𝑑𝑑𝛼𝐸 (0, 𝛼) (Ψ, 𝜓�耠�푔𝜇 (0)) .

(65)

Substituting 𝛼 = 0 into both sides, we have

(𝐻0Ψ,Φ�휇1) = 1𝑚 (Ψ, 𝑃�푓�휇𝜑1) − (Ψ,𝐻�퐼Φ�휇0) . (66)

Therefore Φ�휇1 ∈ 𝐷(𝐻0) and
𝐻0Φ�휇1 = 1𝑚𝑃�푓�휇𝜑1 − 𝐻�퐼Φ�휇0

= − 1𝑚𝑃�푓�휇 1𝐻0𝐻�퐼Ω − 𝑐0𝐻�퐼Ω. (67)

Since −(1/𝑚)𝑃�푓�휇(1/𝐻0)𝐻�퐼Ω − 𝑐0𝐻�퐼Ω ∈ Ffin, we have

Φ�휇1 = − 1𝑚 1𝐻0𝑃�푓�휇
1𝐻0𝐻�퐼Ω − 𝑐0 1𝐻0𝐻�퐼Ω + 𝑐1Ω, (68)

where 𝑐1 is some constant. By 𝑎1(Λ) = −𝑐1(Λ), (62), (64), and
(68), we have

𝑎1 (Λ) = 23
3∑
�휇=1

(𝑃�푓�휇𝜑1, Φ�휇1)

= 23𝑚
3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝑃�푓�휇
1𝐻0𝐻�퐼Ω)

− 2𝑐03
3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝐻�퐼Ω)

− 2𝑐13
3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω,Ω) .

(69)

It is also seen that
3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝐻�퐼Ω) = 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω,Ω)
= 0.

(70)

Thus we have

𝑎1 (Λ) = 23𝑚
3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝑃�푓�휇
1𝐻0𝐻�퐼Ω)

= 23𝑚
3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐴+Ω, 1𝐻0𝑃�푓𝜇
1𝐻0𝐴+Ω)

= 23𝑚 ∫ �̂� (𝑘)2𝜔 (𝑘) |𝑘|2𝐸 (𝑘)3 𝑑𝑘.

(71)

Changing variables into polar coordinate, we have

23𝑚 ∫ �̂� (𝑘)2𝜔 (𝑘) |𝑘|2𝐸 (𝑘)3 𝑑𝑘
= 8𝜋3𝑚 (2𝜋)3 ∫

Λ

�휅

𝑟4𝜔 (𝑟) 𝐹 (𝑟)3 𝑑𝑟.
(72)

Since 𝑟4/𝜔(𝑟)𝐹(𝑟)3 = 𝑂(𝑟−3) (𝑟 → ∞), the improper
integral ∫∞

�휅
(𝑟4/𝜔(𝑟)𝐹(𝑟)3)𝑑𝑟 converges. It is trivial to see that

limΛ→∞𝑎1(Λ) > 0. Thus the theorem follows.

Lemma 11. It follows that Φ�휇�푛 ∈ Ffin for 𝑛 ∈ N ∪ {0}.
Proof. By (64), we have Φ�휇0 ∈ Ffin. Assume that Φ�휇�푛 ∈ Ffin
holds when 𝑛 ≤ 𝑘 − 1. Differentiating both sides of (63) 𝑘
times with respect to 𝛼 and substituting 𝛼 = 0, we have

− 1𝑚 (𝑃�푓�휇Ψ, 𝜑�푘) + (𝐻0Ψ,Φ�휇�푘) + 𝑘 (𝐻�퐼Ψ,Φ�휇�푘−1)
= �푘∑
�푗=1

(𝑘𝑗)𝐸�푗 (Ψ,Φ�휇�푘−�푗) ;
(73)

however, 𝐸�푗 = 0 when 𝑗 is odd. Since Φ�휇
�푘−1

∈ Ffin, Φ�휇�푘−1 ∈𝐷(𝐻�퐼) and
(𝐻0Ψ,Φ�휇�푘) = 1𝑚 (Ψ, 𝑃�푓�휇𝜑�푘) − 𝑘 (Ψ,𝐻�퐼Φ�휇�푘−1)

+ (Ψ, �푘∑
�푗=1

(𝑘𝑗)𝐸�푗Φ�휇�푘−�푗) . (74)

Thus Φ�휇
�푘
∈ 𝐷(𝐻0) and

𝐻0Φ�휇�푘 = 1𝑚𝑃�푓�휇𝜑�푘 − 𝑘𝐻�퐼Φ�휇�푘−1 + �푘∑
�푗=1

(𝑘𝑗)𝐸�푗Φ�휇�푘−�푗. (75)

Since 𝜑�푘 ∈ Ffin, 𝐻�퐼Φ�휇�푘−1 ∈ Ffin, and Φ�휇
�푘−�푗

∈ Ffin (𝑗 = 1, . . . ,𝑘), by the assumption of induction,𝐻0Φ�휇�푘 ∈ Ffin.HenceΦ�휇�푛 ∈
Ffin holds when 𝑛 = 𝑘.
Lemma 12. It holds thatΦ�휇0 = 𝑐0Ω,Φ�휇1 = −(1/𝑚)(1/𝐻0)𝑃�푓�휇(1/𝐻0)𝐻�퐼Ω − 𝑐0(1/𝐻0)𝐻�퐼Ω + 𝑐1Ω, and the recurrence formulas

Φ�휇
2�푙
= 1𝐻0

{{{
1𝑚𝑃�푓�휇𝜑2�푙 − 2𝑙𝐻�퐼Φ�휇2�푙−1

+ �푙∑
�푗=1

(2𝑙
2𝑗)𝐸2�푗Φ�휇2�푙−2�푗}}} + 𝑐2�푙Ω

(𝑙 ≥ 1, 𝑐2�푙 is some constant) .

34 Mathematics: A Conceptual Approach

__________________________ WORLD TECHNOLOGIES __________________________



WT

Φ�휇
2�푙+1

= 1𝐻0
{{{

1𝑚𝑃�푓�휇𝜑2�푙+1 − (2𝑙 + 1)𝐻�퐼Φ�휇2�푙

+ �푙∑
�푗=1

(2𝑙 + 1
2𝑗 )𝐸2�푗Φ�휇2�푙+1−2�푗}}} + 𝑐2�푙+1Ω,

(𝑙 ≥ 0, 𝑐2�푙+1 is some constant.)
(76)

Proof. The first and second expressions are proven in Theo-
rem 10. From (75), it follows that

𝐻0Φ�휇2�푙 = 1𝑚𝑃�푓�휇𝜑2�푙 − 2𝑙𝐻�퐼Φ�휇2�푙−1
+ �푙∑
�푗=1

(2𝑙
2𝑗)𝐸2�푗Φ�휇2�푙−2�푗 (𝑙 ≥ 1)

𝐻0Φ�휇2�푙+1 = 1𝑚𝑃�푓�휇𝜑2�푙+1 − (2𝑙 + 1)𝐻�퐼Φ�휇2�푙
+ �푙∑
�푗=1

(2𝑙 + 1
2𝑗 )𝐸2�푗Φ�휇2�푙+1−2�푗 (𝑙 ≥ 0) .

(77)

These prove the lemma.

Lemma 13. It is proven that 𝑎2(Λ) can be expanded as

𝑎2 (Λ) = 23𝑚
8∑
�푗=1

𝐼�푗 (Λ) + 𝐸2 (Λ)𝑚 𝐼9 (Λ) − 𝑎1 (Λ) 𝐼10 (Λ)
+ 𝑎1 (Λ)2 ,

(78)

where 𝐼�푗 are given by

𝐼1 (Λ) = 14 ∬ �̂�12 �̂�22𝜔1𝜔2 (𝑘12𝐸31 + 𝑘22𝐸32 )
⋅ ( 1𝐸1 +

1𝐸2)
1𝐸12 𝑑𝑘1𝑑𝑘2,

𝐼2 (Λ) = 18 ∬ �̂�12 �̂�22𝜔1𝜔2 (𝑘12𝐸41 + 𝑘22𝐸42 ) 1𝐸12 𝑑𝑘1𝑑𝑘2,

𝐼3 (Λ) = 18 ∬ �̂�12 �̂�22𝜔1𝜔2 ( 1𝐸21 +
1𝐸22)( 1𝐸1 +

1𝐸2)
⋅ (𝑘1, 𝑘2)𝐸212 𝑑𝑘1𝑑𝑘2,

𝐼4 (Λ) = 14 ∬ �̂�12 �̂�22𝜔1𝜔2 (𝑘12𝐸21 + 𝑘22𝐸22 )
⋅ ( 1𝐸1 +

1𝐸2)
1𝐸212 𝑑𝑘1𝑑𝑘2,

𝐼5 (Λ) = 14 ∬ �̂�12 �̂�22𝜔1𝜔2𝐸21𝐸22
(𝑘1, 𝑘2)𝐸12 𝑑𝑘1𝑑𝑘2,

𝐼6 (Λ) = 18 ∬ �̂�12 �̂�22𝜔1𝜔2 ( 1𝐸1 +
1𝐸2)
2

⋅ 𝑘12 + 𝑘22𝐸312 𝑑𝑘1𝑑𝑘2,

𝐼7 (Λ) = 14 ∬ �̂�12 �̂�22𝜔1𝜔2 ( 1𝐸1 +
1𝐸2)
2

⋅ (𝑘1, 𝑘2)𝐸312 𝑑𝑘1𝑑𝑘2,

𝐼8 (Λ) = 14 ∬ �̂�12 �̂�22𝜔1𝜔2 ( 1𝐸1 +
1𝐸2)

(𝑘1, 𝑘2)𝐸412 𝑑𝑘1𝑑𝑘2,

𝐼9 (Λ) = 12 ∫ �̂� (𝑘)2 |𝑘|2𝜔 (𝑘) 𝐸 (𝑘)4 𝑑𝑘,

𝐼10 (Λ) = 12 ∫ �̂� (𝑘)2𝜔 (𝑘) 𝐸 (𝑘)2 𝑑𝑘.
(79)

The proof of Lemma 13 is given in the next section. The
asymptotic behaviors of terms 𝐼�푗(Λ) asΛ → ∞ is given in the
lemmabelow.Only two terms 𝐼1(Λ) and 𝐼2(Λ) logarithmically
diverge, and other terms converge as Λ → ∞.

Lemma 14. (1)–(3) follow the following:

(1) There exist some constants 𝐶3 and 𝐶4 such that 𝐶3 ≤
limΛ→∞(𝐼1(Λ)/ logΛ) ≤ 𝐶4.

(2) There exist some constants 𝐶5 and 𝐶6 such that 𝐶5 ≤
limΛ→∞(𝐼2(Λ)/ logΛ) ≤ 𝐶6.

(3) For 𝑗 = 3, 4, 5, 6, 7, 8 limΛ→∞|𝐼�푗(Λ)| < ∞.

The proof of Lemma 14 is technical and also given in the
next section.

Lemma 15. It holds that

lim
Λ→∞

𝐸2 (Λ)
logΛ = − 𝑚𝜋2 . (80)

Proof. From (36), we have𝐸2(Λ) = −(1/2𝜋2) ∫Λ
�휅
(𝑟2/𝜔(𝑟)𝐹(𝑟))𝑑𝑟

and lim�푟→∞((𝑟2/𝜔(𝑟)𝐹(𝑟))/(1/𝑟)) = 2𝑚. It implies (80).

Now we are in the position to state the main theorem in
this paper.

Theorem 16. There exist some constants 𝐶1 and 𝐶2 such that
𝐶1 ≤ lim
Λ→∞

𝑎2 (Λ)
logΛ ≤ 𝐶2. (81)
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Proof. We have 𝐼9(Λ) = (1/4𝜋2) ∫Λ
�휅
(𝑟4/𝜔(𝑟)𝐹(𝑟)4)𝑑𝑟. Since𝑟4/𝜔(𝑟)𝐹(𝑟)4 = 𝑂(𝑟−5) (𝑟 → ∞), we have

lim
Λ→∞

𝐼9 (Λ) < ∞. (82)

We also have 𝐼10(Λ) = (1/4𝜋2) ∫Λ
�휅
(𝑟2/𝜔(𝑟)𝐹(𝑟)2)𝑑𝑟. Then𝑟2/𝜔(𝑟)𝐹(𝑟)2 = 𝑂(𝑟−3) (𝑟 → ∞) and we also have

lim
Λ→∞

𝐼10 (Λ) < ∞. (83)

By (82) and (83), Theorem 10, and Lemmas 13, 14, and 15 we
can conclude the theorem.

4. Proof of Lemmas 13 and 14

In this section we prove Lemmas 13 and 14.

4.1. Proof of Lemma 13. From (59) and 𝑎1(Λ) = −𝑐1(Λ), we
have 𝑎2(Λ) = −𝑐2(Λ) − 𝑏1(Λ)𝑎1(Λ) + 𝑎1(Λ)2. Here

𝑏1 (Λ) = (𝜑1, 𝜑1) = 12 ∫ �̂� (𝑘)2𝜔 (𝑘) 𝐸 (𝑘)2 𝑑𝑘, (84)

𝑐2 (Λ) = −23 { 10!4!
3∑
�휇=1

(𝑃�푓�휇𝜑0, Φ�휇4)

+ 11!3!
3∑
�휇=1

(𝑃�푓�휇𝜑1, Φ�휇3) + 12!2!
3∑
�휇=1

(𝑃�푓�휇𝜑2, Φ�휇2)

+ 13!1!
3∑
�휇=1

(𝑃�푓�휇𝜑3, Φ�휇1) + 14!0!
3∑
�휇=1

(𝑃�푓𝜇𝜑4, Φ�휇0)}

= −19
3∑
�휇=1

(𝑃�푓�휇𝜑1, Φ�휇3) − 16
3∑
�휇=1

(𝑃�푓�휇𝜑2, Φ�휇2) − 19
⋅ 3∑
�휇=1

(𝑃�푓𝜇𝜑3, Φ�휇1) .

(85)

Using recurrence formulas (33), (34), and (76), we have

𝜑2 = 2( 1𝐻0𝐻�퐼)
2Ω,

𝜑3 = −6( 1𝐻0𝐻�퐼)
3Ω − 3𝐸2 ( 1𝐻0)

2𝐻�퐼Ω,
Φ�휇2 = 2𝑚 1𝐻0𝑃�푓�휇 (

1𝐻0𝐻�퐼)
2Ω

+ 2𝑚 1𝐻0𝐻�퐼
1𝐻0𝑃�푓�휇

1𝐻0𝐻�퐼Ω
+ 2𝑐0 ( 1𝐻0𝐻�퐼)

2Ω − 2𝑐1 1𝐻0𝐻�퐼Ω + 𝑐2Ω,

Φ�휇3 = − 6𝑚 1𝐻0𝑃�푓�휇 (
1𝐻0𝐻�퐼)

3Ω
− 6𝑚 1𝐻0𝐻�퐼

1𝐻0𝑃�푓�휇 (
1𝐻0𝐻�퐼)

2Ω
− 6𝑚 ( 1𝐻0𝐻�퐼)

2 1𝐻0𝑃�푓�휇
1𝐻0𝐻�퐼Ω

− 3𝑚𝐸2 1𝐻0𝑃�푓�휇 (
1𝐻0)
2𝐻�퐼Ω

− 3𝑚𝐸2 ( 1𝐻0)
2 𝑃�푓𝜇 1𝐻0𝐻�퐼Ω

− 6𝑐0 ( 1𝐻0𝐻�퐼)
3Ω + 6𝑐1 ( 1𝐻0𝐻�퐼)

2Ω
− 3𝑐2 1𝐻0𝐻�퐼Ω − 3𝑐0𝐸2 ( 1𝐻0)

2𝐻�퐼Ω + 𝑐3Ω.
(86)

Substituting them into (85), we have

𝑐2 (Λ)
= − 23𝑚 { 3∑

�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝑃�푓𝜇 (
1𝐻0𝐻�퐼)

3Ω)

+ 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝐻�퐼
1𝐻0𝑃�푓�휇 (

1𝐻0𝐻�퐼)
2Ω)

+ 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0𝐻�퐼)
2 1𝐻0𝑃�푓𝜇

1𝐻0𝐻�퐼Ω)

+ 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
2Ω, 1𝐻0𝑃�푓𝜇 (

1𝐻0𝐻�퐼)
2Ω)

+ 3∑
�휇=1

(𝑃�푓𝜇 ( 1𝐻0𝐻�퐼)
2Ω, 1𝐻0𝐻�퐼

1𝐻0𝑃�푓𝜇
1𝐻0𝐻�퐼Ω)

+ 3∑
�휇=1

(𝑃�푓𝜇 ( 1𝐻0𝐻�퐼)
3Ω, 1𝐻0𝑃�푓�휇

1𝐻0𝐻�퐼Ω)}

− 𝐸23𝑚 { 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝑃�푓�휇 (
1𝐻0)
2𝐻�퐼Ω)

+ 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0)
2 𝑃�푓�휇 1𝐻0𝐻�퐼Ω)

+ 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0)
2𝐻�퐼Ω, 1𝐻0𝑃�푓�휇

1𝐻0𝐻�퐼Ω)} − 2𝑐03
⋅ 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0𝐻�퐼)
3Ω) + 2𝑐13
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⋅ 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0𝐻�퐼)
2Ω) − 𝑐23

⋅ 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝐻�퐼Ω) − 𝑐0𝐸23
⋅ 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0)
2𝐻�퐼Ω) + 𝑐39

⋅ 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω,Ω) − 2𝑐03
⋅ 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
2Ω, ( 1𝐻0𝐻�퐼)

2Ω) + 2𝑐13
⋅ 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
2Ω, 1𝐻0𝐻�퐼Ω) − 𝑐23

⋅ 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
2Ω,Ω) − 2𝑐03

⋅ 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
3Ω, 1𝐻0𝐻�퐼Ω) + 2𝑐13

⋅ 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
3Ω,Ω) − 𝑐0𝐸23

⋅ 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0)
2𝐻�퐼Ω, 1𝐻0𝐻�퐼Ω) + 𝑐1𝐸23

⋅ 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0)
2𝐻�퐼Ω,Ω) = 21∑

�푗=1

(𝑗) .
(87)

We estimate 21 terms (1)–(21) above.We canhowever directly
see that 0 = (10) = ⋅ ⋅ ⋅ = (21) as follows:

3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0𝐻�퐼)
3Ω)

= 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0𝐻�퐼)
2Ω)

= 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝐻�퐼Ω)

= 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0)
2𝐻�퐼Ω)

= 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω,Ω)

= 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
2Ω, ( 1𝐻0𝐻�퐼)

2Ω)

= 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
2Ω, 1𝐻0𝐻�퐼Ω)

= 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
2Ω,Ω)

= 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
3Ω, 1𝐻0𝐻�퐼Ω)

= 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
3Ω,Ω)

= 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0)
2𝐻�퐼Ω, 1𝐻0𝐻�퐼Ω)

= 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0)
2𝐻�퐼Ω,Ω) = 0.

(88)

We can compute remaining terms (1)–(9) as
(1) 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝑃�푓�휇 (
1𝐻0𝐻�퐼)

3Ω)

= 3∑
�휇=1

(𝐴+ 1𝐻0𝑃�푓�휇
1𝐻0𝑃�푓�휇

1𝐻0𝐴+Ω, ( 1𝐻0𝐴+)
2Ω)

= 18 ∬ �̂�12 �̂�22𝜔1𝜔2 (𝑘12𝐸31 + 𝑘22𝐸32 )( 1𝐸1 +
1𝐸2)

⋅ 1𝐸12 𝑑𝑘1𝑑𝑘2,
(2) 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝐻�퐼
1𝐻0𝑃�푓�휇 (

1𝐻0𝐻�퐼)
2Ω)

= 3∑
�휇=1

(𝐴+ 1𝐻0𝑃�푓�휇
1𝐻0𝐴+Ω, 1𝐻0𝑃�푓�휇 (

1𝐻0𝐴+)
2Ω)

= 18 ∬ �̂�12 �̂�22𝜔1𝜔2 (𝑘12𝐸21 + 𝑘22𝐸22 )( 1𝐸1 +
1𝐸2)

⋅ 1𝐸212 𝑑𝑘1𝑑𝑘2 +
18 ∬ �̂�12 �̂�22𝜔1𝜔2 ( 1𝐸21 +

1𝐸22)
⋅ ( 1𝐸1 +

1𝐸2)
(𝑘1, 𝑘2)𝐸212 𝑑𝑘1𝑑𝑘2,
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(3) 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0𝐻�퐼)
2 1𝐻0𝑃�푓�휇

1𝐻0𝐻�퐼Ω)

= 3∑
�휇=1

(𝐴+ 1𝐻0𝑃�푓�휇
1𝐻0𝐴+Ω, 1𝐻0𝐴+

1𝐻0𝑃�푓�휇
1𝐻0𝐴+Ω)

= 18 ∬ �̂�12 �̂�22𝜔1𝜔2 (𝑘12𝐸41 + 𝑘22𝐸42 ) 1𝐸12 𝑑𝑘1𝑑𝑘2
+ 14 ∬ �̂�12 �̂�22𝜔1𝜔2𝐸21𝐸22

(𝑘1, 𝑘2)𝐸12 𝑑𝑘1𝑑𝑘2,
(4) 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
2Ω, 1𝐻0𝑃�푓�휇 (

1𝐻0𝐻�퐼)
2Ω)

= 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐴+)
2Ω, 1𝐻0𝑃�푓�휇 (

1𝐻0𝐴+)
2Ω)

= 18 ∬ �̂�12 �̂�22𝜔1𝜔2 ( 1𝐸1 +
1𝐸2)
2

⋅ 𝑘12 + 𝑘22𝐸312 𝑑𝑘1𝑑𝑘2 + 14
⋅ ∬ �̂�12 �̂�22𝜔1𝜔2 ( 1𝐸1 +

1𝐸2)
2 (𝑘1, 𝑘2)𝐸312 𝑑𝑘1𝑑𝑘2,

(5) 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
2Ω, 1𝐻0𝐻�퐼

1𝐻0𝑃�푓�휇
1𝐻0𝐻�퐼Ω)

= 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐴+)
2Ω, 1𝐻0𝐴+

1𝐻0𝑃�푓�휇
1𝐻0𝐴+Ω)

= 18 ∬ �̂�12 �̂�22𝜔1𝜔2 (𝑘12𝐸21 + 𝑘22𝐸22 )( 1𝐸1 +
1𝐸2)

⋅ 1𝐸212 𝑑𝑘1𝑑𝑘2 +
14 ∬ �̂�12 �̂�22𝜔1𝜔2 ( 1𝐸1 +

1𝐸2)
⋅ (𝑘1, 𝑘2)𝐸412 𝑑𝑘1𝑑𝑘2,

(6) 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0𝐻�퐼)
3Ω, 1𝐻0𝑃�푓�휇

1𝐻0𝐻�퐼Ω)

= 3∑
�휇=1

(( 1𝐻0𝐴+)
2Ω,𝐴+ 1𝐻0𝑃�푓�휇

1𝐻0𝑃�푓�휇
1𝐻0𝐴+Ω)

= 18 ∬ �̂�12 �̂�22𝜔1𝜔2 (𝑘12𝐸31 + 𝑘22𝐸32 )( 1𝐸1 +
1𝐸2)

⋅ 1𝐸12 𝑑𝑘1𝑑𝑘2,

(7) 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, 1𝐻0𝑃�푓�휇 (
1𝐻0)
2𝐻�퐼Ω)

= 12 ∫ �̂� (𝑘)2 |𝑘|2𝜔 (𝑘) 𝐸 (𝑘)4 𝑑𝑘,
(8) 3∑
�휇=1

(𝑃�푓�휇 1𝐻0𝐻�퐼Ω, ( 1𝐻0)
2 𝑃�푓�휇 1𝐻0𝐻�퐼Ω)

= 12 ∫ �̂� (𝑘)2 |𝑘|2𝜔 (𝑘) 𝐸 (𝑘)4 𝑑𝑘,
(9) 3∑
�휇=1

(𝑃�푓�휇 ( 1𝐻0)
2𝐻�퐼Ω, 1𝐻0𝑃�푓�휇

1𝐻0𝐻�퐼Ω)

= 12 ∫ �̂� (𝑘)2 |𝑘|2𝜔 (𝑘) 𝐸 (𝑘)4 𝑑𝑘.
(89)

Thus the lemma follows.

4.2. Proof of Lemma 14

Proof of𝐶3 ≤ limΛ→∞(𝐼1(Λ)/ logΛ) and𝐶5 ≤ limΛ→∞(𝐼2(Λ)/
logΛ). Changing variables to polar coordinates, we have

𝐼1 (Λ) = 2𝜋2(2𝜋)6
⋅ ∫1
−1

∫Λ
�휅
∫Λ
�휅

𝑟21𝑟22𝜔 (𝑟1) 𝜔 (𝑟2) (
𝑟21𝐹 (𝑟1)3 +

𝑟22𝐹 (𝑟2)3)
⋅ ( 1𝐹 (𝑟1) + 1𝐹 (𝑟2))

1𝐿 (𝑟1, 𝑟2, 𝑧)𝑑𝑧 𝑑𝑟1𝑑𝑟2,
(90)

where

𝐿 (𝑟1, 𝑟2, 𝑧) = 𝑟21 + 𝑟22 + 2𝑟1𝑟2𝑧2𝑚 + 𝜔 (𝑟1) + 𝜔 (𝑟2) . (91)

We define ℎ(𝑟1, 𝑟2), ℎ1(𝑟1, 𝑟2), ℎ2(𝑟1, 𝑟2), 𝑆(Λ), 𝑆1(Λ) and𝑆2(Λ) as
ℎ (𝑟1, 𝑟2) = 𝑟21𝑟22𝜔 (𝑟1) 𝜔 (𝑟2) (

𝑟21𝐹 (𝑟1)3 +
𝑟22𝐹 (𝑟2)3)

⋅ ( 1𝐹 (𝑟1) + 1𝐹 (𝑟2))
1𝐿 (𝑟1, 𝑟2, 1) ,

ℎ1 (𝑟1, 𝑟2) = 𝑟21𝑟42𝜔 (𝑟1) 𝜔 (𝑟2) 𝐹 (𝑟2)4 𝐿 (𝑟1, 𝑟2, 1) ,
ℎ2 (𝑟1, 𝑟2) = ℎ (𝑟1, 𝑟2) − ℎ1 (𝑟1, 𝑟2) ,
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𝑆 (Λ) = ∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2,

𝑆1 (Λ) = ∫�휅+1
�휅

∫Λ
�휅+1+]+�푚

ℎ1 (𝑟1, 𝑟2) 𝑑𝑟2𝑑𝑟1,
𝑆2 (Λ) = ∫�휅+1

�휅
∫�휅+1+]+�푚
�휅

ℎ1 (𝑟1, 𝑟2) 𝑑𝑟2𝑑𝑟1
+ ∫Λ
�휅+1

∫Λ
�휅
ℎ1 (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2

+ ∫Λ
�휅
∫Λ
�휅
ℎ2 (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2.

(92)

Then
4𝜋2(2𝜋)6 𝑆 (Λ) ≤ 𝐼1 (Λ) . (93)

In addition, 𝑆(Λ) = 𝑆1(Λ)+𝑆2(Λ) follows. Since ℎ1(𝑟1, 𝑟2) > 0
and ℎ2(𝑟1, 𝑟2) > 0, 𝑆2(Λ) > 0. Hence

𝑆 (Λ) > 𝑆1 (Λ) . (94)

Let 𝑟2 satisfy 𝜅 ≤ 𝑟2 ≤ 𝜅 + 1. Suppose that 𝜅 + 1 + ] + 𝑚 ≤𝑟1 ≤ Λ. Since ] < 𝑟1, 𝑟21 + ]2 < 2𝑟21 holds. Therefore we have𝜔(𝑟1) < √2𝑟1. Since 𝑟2 < 𝑟1, we have 𝑟1𝑟2 < 𝑟21 and 𝑟22 < 𝑟21 .
Thus 𝐿(𝑟1, 𝑟2, 1) < 2(1/𝑚 + √2)𝑟21 . So,

∫Λ
�휅+1+]+�푚

𝑟21𝜔 (𝑟1) 𝐿 (𝑟1, 𝑟2, 1)𝑑𝑟1
> 12√2 (1/𝑚 + √2) ∫Λ

�휅+1+]+�푚
𝑟−11 𝑑𝑟1

= 12√2 (1/𝑚 + 2) (logΛ − log (𝜅 + 1 + ] + 𝑚))
(95)

follows. When 𝜅 ≤ 𝑟2 ≤ 𝜅 + 1, we have
𝜔 (𝑟2) ≤ √(𝜅 + 1)2 + ]2,
𝐹 (𝑟2) ≤ (𝜅 + 1)22𝑚 + √(𝜅 + 1)2 + ]2. (96)

Then

𝑆1 (Λ) = ∫�휅+1
�휅

𝑟42𝜔 (𝑟2) 𝐹 (𝑟2)4 𝑑𝑟2
⋅ ∫Λ
�휅+1+]+�푚

𝑟21𝜔 (𝑟1) 𝐿 (𝑟1, 𝑟2, 1)𝑑𝑟1
> 𝐾2√2 (1/𝑚 + √2) (logΛ − log (𝜅 + 1 + ] + 𝑚))

⋅ ∫�휅+1
�휅

𝑟42𝑑𝑟2 = 𝐾 {(𝜅 + 1)5 − 𝜅5}
10√2 (1/𝑚 + √2) (logΛ

− log (𝜅 + 1 + ] + 𝑚)) ,

(97)

where

𝐾
= 1

√(𝜅 + 1)2 + ]2 ((𝜅 + 1)2 /2𝑚 + √(𝜅 + 1)2 + ]2)4 .
(98)

From (93), (94), and (97), 𝐶3 ≤ limΛ→∞(𝐼1(Λ)/ logΛ)
follows.

The proof of𝐶5 ≤ limΛ→∞(𝐼2(Λ)/ logΛ) is similar to that
of 𝐶3 ≤ limΛ→∞(𝐼1(Λ)/ logΛ). Then we omit it.

Proof of limΛ→∞(𝐼1(Λ)/logΛ) ≤ 𝐶4. We redefine ℎ(𝑟1, 𝑟2),ℎ1(𝑟1, 𝑟2), ℎ2(𝑟1, 𝑟2), 𝑆1(Λ), 𝑆2(Λ), and 𝑆(Λ) as
ℎ (𝑟1, 𝑟2) = 𝑟21𝑟22𝜔 (𝑟1) 𝜔 (𝑟2) (

𝑟21𝐹 (𝑟1)3 +
𝑟22𝐹 (𝑟2)3)

⋅ ( 1𝐹 (𝑟1) + 1𝐹 (𝑟2))
1𝐿 (𝑟1, 𝑟2, −1) ,

ℎ1 (𝑟1, 𝑟2) = 𝑟21𝑟42𝜔 (𝑟1) 𝜔 (𝑟2) 𝐹 (𝑟2)4 𝐿 (𝑟1, 𝑟2, −1) ,
ℎ2 (𝑟1, 𝑟2) = 𝑟21𝑟42𝜔 (𝑟1) 𝜔 (𝑟2) 𝐹 (𝑟1) 𝐹 (𝑟2)3 𝐿 (𝑟1, 𝑟2, −1) ,
𝑆1 (Λ) = ∫Λ

�휅
∫Λ
�휅
ℎ1 (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2,

𝑆2 (Λ) = ∫Λ
�휅
∫Λ
�휅
ℎ2 (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2,

𝑆 (Λ) = ∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2.

(99)

Then we have

𝐼1 (Λ) ≤ 4𝜋2(2𝜋)6 𝑆 (Λ) . (100)

Since ℎ(𝑟1, 𝑟2) = ℎ1(𝑟1, 𝑟2) + ℎ1(𝑟2, 𝑟1) + ℎ2(𝑟1, 𝑟2) + ℎ2(𝑟2, 𝑟1),
we have

𝑆 (Λ) = 2 (𝑆1 (Λ) + 𝑆2 (Λ)) . (101)

Let 𝐵 be 𝐵 = ((𝜅 + 1)3 − 𝜅3)/6]2. Since ] < 𝜔(𝑟1) and 2] <𝐿(𝑟1, 𝑟2, −1),
∫�휅+1
�휅

𝑟21𝜔 (𝑟1) 𝐿 (𝑟1, 𝑟2, −1)𝑑𝑟1 < 𝐵 (102)

follows. Let 𝑌 be 𝑌 = 2𝑟2 + 𝜅 + 1. Since 𝑟1 < 𝜔(𝑟1) and 𝑟1 <𝐿(𝑟1, 𝑟2, −1),
∫�푌
�휅+1

𝑟21𝜔 (𝑟1) 𝐿 (𝑟1, 𝑟2, −1)𝑑𝑟1 < 2𝑟2 (103)
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holds. When 𝑌 ≤ 𝑟1, since 2𝑟2 < 𝑟1, we have 𝑟1 − 𝑟2 > 𝑟1/2.
Then 𝐿(𝑟1, 𝑟2, −1) > (𝑟1 − 𝑟2)2/2𝑚 > 𝑟21/8𝑚. So,

∫Λ
�푌

𝑟21𝜔 (𝑟1) 𝐿 (𝑟1, 𝑟2, −1)𝑑𝑟1 < 8𝑚∫Λ
�푌

𝑑𝑟1𝑟1 < 8𝑚 logΛ (104)

follows. From (102), (103), and (104), we have

∫Λ
�휅

𝑟21𝜔 (𝑟1) 𝐿 (𝑟1, 𝑟2, −1)𝑑𝑟1 < 𝐵 + 2𝑟2 + 8𝑚 logΛ. (105)

Using this, we see that 𝑆1(Λ) < ∫Λ
�휅
(𝐵 + 2𝑟2 + 8𝑚 logΛ)(𝑟42/𝜔(𝑟2)𝐹(𝑟2)4)𝑑𝑟2. Since 𝑟2 < 𝜔(𝑟2) and 𝑟22/2𝑚 < 𝐹(𝑟2), we have

𝑆1 (Λ) < ∫Λ
�휅
(2𝑟2 + 𝐵 + 8𝑚 logΛ) 16𝑚4𝑟52 𝑑𝑟2

= 32𝑚43 ( 1𝜅3 − 1Λ3 )
+ 4𝑚4 (𝐵 + 8𝑚 logΛ) ( 1𝜅4 − 1Λ4 )

< 32𝑚5𝜅4 logΛ + 32𝑚43𝜅3 + 4𝑚4𝐵𝜅4 .

(106)

Since 𝑟1 < 𝐿(𝑟1, 𝑟2, −1),
∫Λ
�휅

𝑟21𝜔 (𝑟1) 𝐹 (𝑟1) 𝐿 (𝑟1, 𝑟2, −1)𝑑𝑟1 < 2𝑚∫Λ
�휅

𝑑𝑟1𝑟21
< 2𝑚𝜅 .

(107)

Then we have

𝑆2 (Λ) = ∫Λ
�휅

𝑟42𝜔 (𝑟2) 𝐹 (𝑟2)3 𝑑𝑟2
⋅ ∫Λ
�휅

𝑟21𝜔 (𝑟1) 𝐹 (𝑟1) 𝐿 (𝑟1, 𝑟2, −1)𝑑𝑟1 <
2𝑚𝜅

⋅ ∫Λ
�휅

𝑟42𝜔 (𝑟2) 𝐹 (𝑟2)3 𝑑𝑟2 <
16𝑚4𝜅 ∫Λ

�휅

𝑑𝑟2𝑟32 < 8𝑚4𝜅3 .
(108)

From (101), (106), and (108), it follows that

𝑆 (Λ) < 64𝑚5𝜅4 logΛ + 112𝑚43𝜅3 + 8𝑚2𝐵𝜅4 . (109)

From (100) and (109), the lemma follows.

Proof of limΛ→∞(𝐼2(Λ)/ logΛ) ≤ 𝐶6. We redefine ℎ(𝑟1, 𝑟2),ℎ1(𝑟1, 𝑟2), 𝑆(Λ), and 𝑆1(Λ) as
ℎ (𝑟1, 𝑟2)
= 𝑟21𝑟22𝜔 (𝑟1) 𝜔 (𝑟2) (

𝑟21𝐹 (𝑟1)4 +
𝑟22𝐹 (𝑟2)4)

1𝐿 (𝑟1, 𝑟2, −1) ,
ℎ1 (𝑟1, 𝑟2) = 𝑟21𝑟42𝜔 (𝑟1) 𝜔 (𝑟2) 𝐹 (𝑟2)4 𝐿 (𝑟1, 𝑟2, −1) ,
𝑆 (Λ) = ∫Λ

�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2,

𝑆1 (Λ) = ∫Λ
�휅
∫Λ
�휅
ℎ1 (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2.

(110)

We have

𝐼2 (Λ) = 𝜋2(2𝜋)6
⋅ ∫1
−1

∫Λ
�휅
∫Λ
�휅

𝑟21𝑟22𝜔 (𝑟1) 𝜔 (𝑟2) (
𝑟21𝐹 (𝑟1)4 +

𝑟22𝐹 (𝑟2)4)
⋅ 1𝐿 (𝑟1, 𝑟2, 𝑧)𝑑𝑧 𝑑𝑟1𝑑𝑟2.

(111)

Then

𝐼2 (Λ) ≤ 2𝜋2(2𝜋)6 𝑆 (Λ) (112)

holds. Since ℎ(𝑟1, 𝑟2) = ℎ1(𝑟1, 𝑟2) + ℎ1(𝑟2, 𝑟1), we have
𝑆 (Λ) = 2𝑆1 (Λ) . (113)

We have

∫Λ
�휅

𝑟21𝜔 (𝑟1) 𝐿 (𝑟1, 𝑟2, −1)𝑑𝑟1 < 𝐵 + 2𝑟2 + 8𝑚 logΛ (114)

in the same way as the proof of limΛ→∞(𝐼1(Λ)/ logΛ) ≤ 𝐶4.
Since 𝑟2 < 𝜔(𝑟2) and 𝑟22/2𝑚 < 𝐹(𝑟2), we have

𝑆1 (Λ) < ∫Λ
�휅
(𝐵 + 2𝑟2 + 8𝑚 logΛ) 𝑟42𝜔 (𝑟2) 𝐹 (𝑟2)4 𝑑𝑟2

< 32𝑚4 ∫Λ
�휅

𝑑𝑟2𝑟42
+ 16𝑚4 (𝐵 + 8𝑚 logΛ)∫Λ

�휅

𝑑𝑟2𝑟52
< 32𝑚5𝜅4 logΛ + 32𝑚43𝜅3 + 4𝑚4𝐵𝜅4 .

(115)

From (112), (113), and (115), the lemma follows.
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Proof of limΛ→∞(𝐼3(Λ)/ logΛ) = 0. We define ℎ(𝑟1, 𝑟2, 𝑧) as

ℎ (𝑟1, 𝑟2, 𝑧) = 𝑧𝑟31𝑟32𝜔 (𝑟1) 𝜔 (𝑟2) (
1

𝐹 (𝑟1)2 +
1

𝐹 (𝑟2)2)

⋅ ( 1𝐹 (𝑟1) + 1𝐹 (𝑟2))
1

𝐿 (𝑟1, 𝑟2, 𝑧)2
(116)

and redefine 𝑆(Λ) as

𝑆 (Λ) = ∫1
−1

∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1. (117)

Then we have 𝐼3(Λ) = (𝜋2/(2𝜋)6)𝑆(Λ). We divide 𝑆(Λ) in the
following way.

𝑆 (Λ)
= ∫0
−1

∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1

+ ∫1
0
∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1

= −∫0
1
∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, −𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1

+ ∫1
0
∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1

= ∫1
0
∫Λ
�휅
∫Λ
�휅
(ℎ (𝑟1, 𝑟2, 𝑧) + ℎ (𝑟1, 𝑟2, −𝑧)) 𝑑𝑧 𝑑𝑟2𝑑𝑟1

= ∫1
0
∫Λ
�휅
∫Λ
�휅
𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1,

(118)

where

𝑔 (𝑟1, 𝑟2, 𝑧) = ℎ (𝑟1, 𝑟2, 𝑧) + ℎ (𝑟1, 𝑟2, −𝑧)
= − 2𝑧2𝑟41𝑟42𝑚𝜔 (𝑟1) 𝜔 (𝑟2) (

1
𝐹 (𝑟1)2 +

1
𝐹 (𝑟2)2)

⋅ ( 1𝐹 (𝑟1) + 1𝐹 (𝑟2))

⋅ ((𝑟21 + 𝑟22) /𝑚 + 2𝜔 (𝑟1) + 2𝜔 (𝑟2))
𝐿 (𝑟1, 𝑟2, 𝑧)2 𝐿 (𝑟1, 𝑟2, −𝑧)2 .

(119)

Since 𝑔(𝑟1, 𝑟2, 𝑧) ≤ 0, 𝑆(Λ) is decreasing in Λ.
𝑆 (Λ) = ∫1

0
∫Λ
�휅
∫Λ
�푟2

𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1
+ ∫1
0
∫Λ
�휅
∫Λ
�푟1

𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2
= 2∫1
0
∫Λ
�휅
∫Λ
�푟2

𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1
= 2∫1
0
∫Λ
�휅
∫2�푟2
�푟2

𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1
+ 2∫1
0
∫Λ
�휅
∫Λ
2�푟2

𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1.

(120)

Since 𝜅 ≤ 𝑟1, we have 1 ≤ 𝑟1/𝜅. Hence 𝑟21 + ]2 ≤ ((𝜅2 +
]2)/𝜅2)𝑟21 . Therefore we have 𝜔(𝑟1) ≤ (√𝜅2 + ]2/𝜅)𝑟1, and
similarly 𝜔(𝑟2) ≤ (√𝜅2 + ]2/𝜅)𝑟2. When 0 ≤ 𝑧 ≤ 1, we have

𝐿 (𝑟1, 𝑟2, 𝑧) > 𝑟212𝑚. (121)

Then

𝐿 (𝑟1, 𝑟2, −𝑧) = (𝑟1 − 𝑟2)2 + 2𝑟1𝑟2 (1 − 𝑧)2𝑚 + 𝜔 (𝑟1)
+ 𝜔 (𝑟2) > 𝜔 (𝑟1) > 𝑟1.

(122)

When 𝑟2 ≤ 𝑟1, we have 𝑟22/𝑚 ≤ 𝑟21/𝑚. Then it holds that

2𝜔 (𝑟1) ≤ 2𝑟21𝜅2 √𝜅2 + ]2,
2𝜔 (𝑟2) ≤ 2𝑟2𝜅 √𝜅2 + ]2 ≤ 2𝑟21𝜅2 √𝜅2 + ]2.

(123)

Thus we have

𝑟21𝑚 + 𝑟22𝑚 + 2𝜔 (𝑟1) + 2𝜔 (𝑟2)
≤ 2( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) 𝑟21 .

(124)

When 𝑟2 ≤ 𝑟1 ≤ 2𝑟2, we have
1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 10𝑚𝑟21 ,

1
𝐹 (𝑟1)2 +

1
𝐹 (𝑟2)2 <

68𝑚2𝑟41 . (125)
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From (119), (121), (122), (124), and (125), it follows that

− 𝑔 (𝑟1, 𝑟2, 𝑧) ≤ 2𝑚 𝑧2𝑟41𝑟42𝑟1𝑟2
68𝑚2𝑟41

10𝑚𝑟21
⋅ 2 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) 𝑟21 (2𝑚𝑟21 )

2 1𝑟21
= 68 ⋅ 10 ⋅ 16𝑚4 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) 𝑧2𝑟32𝑟71 .

(126)

Hence

− 2∫1
0
∫Λ
�휅
∫2�푟2
�푟2

𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1
≤ 1190𝑚4𝜅2 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) .

(127)

When 2𝑟2 ≤ 𝑟1, we have1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 5𝑚2𝑟22 ,
1

𝐹 (𝑟1)2 +
1

𝐹 (𝑟2)2 <
17𝑚24𝑟42 . (128)

Since 𝑟2 ≤ 𝑟1/2, we have 𝑟1/2 ≤ 𝑟1 − 𝑟2. Then we have

𝐿 (𝑟1, 𝑟2, ±𝑧) = (𝑟1 − 𝑟2)2 + 2𝑟1𝑟2 (1 ± 𝑧)2𝑚 + 𝜔 (𝑟1)
+ 𝜔 (𝑟2) > (𝑟1 − 𝑟2)22𝑚 ≥ 𝑟218𝑚.

(129)

From (119), (124), (128), and (129), it follows that

− 𝑔 (𝑟1, 𝑟2, 𝑧) ≤ 2𝑚 𝑧2𝑟41𝑟42𝑟1𝑟2
17𝑚24𝑟42

5𝑚2𝑟22
⋅ 2 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) 𝑟21 (8𝑚𝑟21 )

4 = 211 ⋅ 5
⋅ 17𝑚6 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) 𝑧2𝑟31𝑟32 .

(130)

Hence

− 2∫1
0
∫Λ
�휅
∫Λ
2�푟2

𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1
≤ 27 ⋅ 5 ⋅ 17𝑚6𝜅4 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) .

(131)

Then by (120), (127), and (131), we have

−𝑆 (Λ) ≤ 1190𝑚4𝜅2 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )
+ 27 ⋅ 5 ⋅ 17𝑚6𝜅4 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) .

(132)

Since 𝑆(Λ) is decreasing and bounded below, it converges asΛ → ∞. This fact proves the lemma.

Proof of limΛ→∞(𝐼4(Λ)/ logΛ) = 0. We redefine ℎ(𝑟1, 𝑟2, 𝑧)
as

ℎ (𝑟1, 𝑟2, 𝑧) = 𝑟21𝑟22𝜔 (𝑟1) 𝜔 (𝑟2) (
𝑟21𝐹 (𝑟1)2 +

𝑟22𝐹 (𝑟2)2)
⋅ ( 1𝐹 (𝑟1) + 1𝐹 (𝑟2))

1
𝐿 (𝑟1, 𝑟2, 𝑧)2 .

(133)

Then we have 𝐼4(Λ) = (2𝜋2/(2𝜋)6) ∫1
−1
∫Λ
�휅
∫Λ
�휅
ℎ(𝑟1, 𝑟2,𝑧)𝑑𝑧𝑑𝑟1𝑑𝑟2.

We define 𝐽(Λ) as
𝐽 (Λ) = ∫1

−1
∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2. (134)

Step 1. We define 𝑆(Λ, 𝑧) as
𝑆 (Λ, 𝑧) = ∫Λ

�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟1𝑑𝑟2. (135)

Our first task is to prove that limΛ→∞𝑆(Λ, 𝑧) exists for all 𝑧 ∈𝐼 = [−1, 1]. Since ℎ(𝑟1, 𝑟2, 𝑧) > 0, 𝑆(Λ, 𝑧) is increasing in Λ.
Let

𝑆1 (Λ, 𝑧) = 2∫Λ
�휅
∫2�푟2
�푟2

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1,
𝑆2 (Λ, 𝑧) = 2∫Λ

�휅
∫Λ
2�푟2

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1.
(136)

Then

𝑆 (Λ, 𝑧) = ∫Λ
�휅
∫Λ
�푟2

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1
+ ∫Λ
�휅
∫Λ
�푟1

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟1𝑑𝑟2
= 2∫Λ
�휅
∫Λ
�푟2

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1
= 2∫Λ
�휅
∫2�푟2
�푟2

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1
+ 2∫Λ
�휅
∫Λ
2�푟2

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1
= 𝑆1 (Λ, 𝑧) + 𝑆2 (Λ, 𝑧)

(137)

holds. We have

1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 2𝑚( 1𝑟21 +
1𝑟22 ) ,

𝑟21𝐹 (𝑟1)2 +
𝑟22𝐹 (𝑟2)2 < 4𝑚2 ( 1𝑟21 +

1𝑟22 ) ,
(138)

𝑟1 < 𝐿 (𝑟1, 𝑟2, 𝑧) . (139)
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Let 𝑟2 ≤ 𝑟1 ≤ 2𝑟2. Since 1/𝑟22 ≤ 4/𝑟21 , it holds that
1𝑟21 +

1𝑟22 ≤
5𝑟21 . (140)

Then from (138) and (140), it follows that

1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 10𝑚𝑟21 ,
𝑟21𝐹 (𝑟1)2 +

𝑟22𝐹 (𝑟2)2 <
20𝑚2𝑟21 . (141)

Hence from (139) and (141), it follows that ℎ(𝑟1, 𝑟2, 𝑧) <200𝑚3𝑟2/𝑟51 . Therefore we have

𝑆1 (Λ, 𝑧) < 400𝑚3 ∫Λ
�휅
𝑟2𝑑𝑟2 ∫2�푟2

�푟2

𝑑𝑟1𝑟51
= 375𝑚38 ( 1𝜅2 − 1Λ2 ) < 375𝑚38𝜅2 .

(142)

Let 2𝑟2 ≤ 𝑟1. Since 𝑟1/2 ≤ 𝑟1 − 𝑟2, we have
𝑟218𝑚 ≤ (𝑟1 − 𝑟2)22𝑚 < 𝐿 (𝑟1, 𝑟2, 𝑧) . (143)

Since 𝑟22 ≤ 𝑟21 , we have
1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 4𝑚𝑟22 ,

𝑟21𝐹 (𝑟1)2 +
𝑟22𝐹 (𝑟2)2 <

8𝑚2𝑟22 . (144)

Hence from (143) and (144), it follows that ℎ(𝑟1, 𝑟2, 𝑧) <2048𝑚5/𝑟31𝑟32 . Therefore we have

𝑆2 (Λ, 𝑧) < 4096𝑚5 ∫Λ
�휅

𝑑𝑟2𝑟32 ∫Λ
2�푟2

𝑑𝑟1𝑟31
< 512𝑚5 ∫Λ

�휅

𝑑𝑟2𝑟52 < 128𝑚5𝜅4 .
(145)

From (137), (142), and (145), it follows that

𝑆 (Λ, 𝑧) < 375𝑚38𝜅2 + 128𝑚5𝜅4 . (146)

Since 𝑆(Λ, 𝑧) is increasing inΛ and bounded above for all 𝑧 ∈𝐼, it converges as Λ goes to infinity.

Step 2. Our second task is to prove that 𝐽(Λ) converges whenΛ goes to infinity. Let𝑀(𝑟1, 𝑟2) be
𝑀(𝑟1, 𝑟2) = 𝑟21𝑟22𝜔 (𝑟1) 𝜔 (𝑟2) (

𝑟21𝐹 (𝑟1)2 +
𝑟22𝐹 (𝑟2)2)

⋅ ( 1𝐹 (𝑟1) + 1𝐹 (𝑟2))
1

𝐿 (𝑟1, 𝑟2, −1)2 .
(147)

|ℎ(𝑟1, 𝑟2, 𝑧)| ≤ 𝑀(𝑟1, 𝑟2) holds for all (𝑟1, 𝑟2, 𝑧) ∈ [𝜅, Λ]2 × 𝐼,
and by Step 1 there exists

lim
Λ→∞

∫Λ
�휅
∫Λ
�휅
𝑀(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2. (148)

Since

𝑀Λ = ∫Λ
�휅
∫Λ
�휅
𝑀(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2 →

𝑀∞ = lim
Λ→∞

∫Λ
�휅
∫Λ
�휅
𝑀(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2,

(149)

from Cauchy convergence condition, for any 𝜖 > 0, there
existsΛ 0 ∈ [𝜅,∞) such that ifΛ 0 < Λ 1 ≤ Λ 2, |𝑀Λ 2−𝑀Λ 1 | <𝜖. Then for Λ 0 < Λ 1 ≤ Λ 2 and all 𝑧 ∈ 𝐼,

𝑆 (Λ 2, 𝑧) − 𝑆 (Λ 1, 𝑧)
= ∫
Λ 1

�휅
∫Λ 2
Λ 1

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟1𝑑𝑟2
+ ∫Λ 1
�휅

∫Λ 2
Λ 1

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1
+ ∫Λ 2
Λ 1

∫Λ 2
Λ 1

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟1𝑑𝑟2
≤ ∫Λ 1
�휅

∫Λ 2
Λ 1

𝑀(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2
+ ∫Λ 1
�휅

∫Λ 2
Λ 1

𝑀(𝑟1, 𝑟2) 𝑑𝑟2𝑑𝑟1
+ ∫Λ 2
Λ 1

∫Λ 2
Λ 1

𝑀(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2 = 𝑀Λ 2 −𝑀Λ 1  < 𝜖.

(150)

Therefore sup�푧∈�퐼|𝑆(Λ 2, 𝑧) − 𝑆(Λ 1, 𝑧)| ≤ |𝑀Λ 2 − 𝑀Λ 1 | < 𝜖
holds. Since family of functions (𝑆(Λ, ⋅))Λ∈[�휅,∞) on 𝐼 satisfies
uniform Cauchy conditions, it converges uniformly on 𝐼.
Since [𝜅, Λ]2 is a Jordan measurable bounded closed set of
R2, the function 𝑆(Λ, 𝑧) is continuous on 𝐼. Hence

𝑆 (∞, 𝑧) = lim
Λ→∞

∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟1𝑑𝑟2 (151)

is continuous on 𝐼. Since both 𝑆(Λ, 𝑧) and 𝑆(∞, 𝑧) are inte-
grable on Jordan measurable set 𝐼, by uniform convergence
theorem, we have

lim
Λ→∞

∫1
−1

𝑆 (Λ, 𝑧) 𝑑𝑧 = ∫1
−1

𝑆 (∞, 𝑧) 𝑑𝑧. (152)

It implies that 𝐽(Λ) converges as Λ → ∞.
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Proof of limΛ→∞(𝐼5(Λ)/ logΛ) = 0. We redefine ℎ(𝑟1, 𝑟2, 𝑧),𝑔(𝑟1, 𝑟2, 𝑧), and 𝑆(Λ) as
ℎ (𝑟1, 𝑟2, 𝑧)

= 𝑧𝑟31𝑟32𝜔 (𝑟1) 𝜔 (𝑟2) 𝐹 (𝑟1)2 𝐹 (𝑟2)2 𝐿 (𝑟1, 𝑟2, 𝑧) ,
𝑔 (𝑟1, 𝑟2, 𝑧) = ℎ (𝑟1, 𝑟2, 𝑧) + ℎ (𝑟1, 𝑟2, −𝑧) ,
𝑆 (Λ) = ∫1

−1
∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2.

(153)

Then 𝐼5(Λ) = (2𝜋2/(2𝜋)6)𝑆(Λ). We have

𝑆 (Λ) = ∫1
0
∫Λ
�휅
∫Λ
�휅
𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1 (154)

in the same way as (118). Since

𝑔 (𝑟1, 𝑟2, 𝑧)
= − 2𝑧2𝑟41𝑟42𝑚2𝜔 (𝑟1) 𝜔 (𝑟2) 𝐹 (𝑟1)2 𝐹 (𝑟2)2 𝐿 (𝑟1, 𝑟2, 𝑧) 𝐿 (𝑟1, 𝑟2, −𝑧)
≤ 0,

(155)

𝑆(Λ) is decreasing in Λ. Since 𝑟1 < 𝐿(𝑟1, 𝑟2, 𝑧), we have
𝑟41𝜔 (𝑟1) 𝐹 (𝑟1)2 𝐿 (𝑟1, 𝑟2, 𝑧) < 4𝑚2𝑟21 . (156)

Similarly, we have

𝑟42𝜔 (𝑟2) 𝐹 (𝑟2)2 𝐿 (𝑟1, 𝑟2, −𝑧) < 4𝑚2𝑟22 . (157)

Hence

− 𝑆 (Λ) = 2𝑚2 ∫
1

0
𝑧2𝑑𝑧

⋅ ∫Λ
�휅

𝑟42𝜔 (𝑟2) 𝐹 (𝑟2)2 𝐿 (𝑟1, 𝑟2, −𝑧)𝑑𝑟2
⋅ ∫Λ
�휅

𝑟41𝜔 (𝑟1) 𝐹 (𝑟1)2 𝐿 (𝑟1, 𝑟2, 𝑧)𝑑𝑟1 <
23𝑚2

⋅ ∫Λ
�휅

4𝑚2𝑟22 𝑑𝑟2 ∫Λ
�휅

4𝑚2𝑟21 𝑑𝑟1 < 32𝑚23𝜅2 .

(158)

Since 𝑆(Λ) is decreasing and bounded below, it converges asΛ → ∞.

Proof of limΛ→∞(𝐼6(Λ)/ logΛ) = 0. We redefine ℎ(𝑟1, 𝑟2, 𝑧),𝐽(Λ), 𝑆(Λ, 𝑧), 𝑆1(Λ, 𝑧), and 𝑆2(Λ, 𝑧) as
ℎ (𝑟1, 𝑟2, 𝑧)

= 𝑟21𝑟22𝜔 (𝑟1) 𝜔 (𝑟2) (
1𝐹 (𝑟1) + 1𝐹 (𝑟2))

2 𝑟21 + 𝑟22𝐿 (𝑟1, 𝑟2, 𝑧)3 ,
𝐽 (Λ) = ∫1

−1
∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1,

𝑆 (Λ, 𝑧) = ∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟1𝑑𝑟2,

𝑆1 (Λ, 𝑧) = 2∫Λ
�휅
∫2�푟2
�푟2

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1,
𝑆2 (Λ, 𝑧) = 2∫Λ

�휅
∫Λ
2�푟2

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1.

(159)

We have 𝐼6(Λ) = (𝜋2/(2𝜋)6)𝐽(Λ).
Step 1. Our first task is to prove that limΛ→∞𝑆(Λ, 𝑧) exists for
all 𝑧 ∈ 𝐼. Since ℎ(𝑟1, 𝑟2, 𝑧) > 0, 𝑆(Λ, 𝑧) is increasing in Λ. We
have

𝑆 (Λ, 𝑧) = 𝑆1 (Λ, 𝑧) + 𝑆2 (Λ, 𝑧) (160)

in the same way as (137). When 𝑟2 ≤ 𝑟1, it holds that
𝑟21 + 𝑟22 ≤ 2𝑟21 ,

1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 4𝑚𝑟22 .
(161)

When 𝑟2 ≤ 𝑟1 ≤ 2𝑟2, it also holds that
1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 10𝑚𝑟21 . (162)

Then we have

∫2�푟2
�푟2

ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑟1 < ∫2�푟2
�푟2

𝑟21𝑟22𝑟1𝑟2 (
10𝑚𝑟21 )2 2𝑟21𝑟31 𝑑𝑟1

= 175𝑚23𝑟22 .
(163)

Hence

𝑆1 (Λ, 𝑧) < 350𝑚23 ∫Λ
�휅

𝑑𝑟2𝑟22 < 350𝑚23𝜅 . (164)

Let 2𝑟2 ≤ 𝑟1. Since 𝑟1/2 ≤ 𝑟1 − 𝑟2, we have
𝑟218𝑚 ≤ (𝑟1 − 𝑟2)22𝑚 < 𝐿 (𝑟1, 𝑟2, 𝑧) . (165)
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Then

∫Λ
2�푟2

ℎ (𝑟1, 𝑟2, ) 𝑑𝑟1
< ∫Λ
2�푟2

𝑟21𝑟22𝑟1𝑟2 (
4𝑚𝑟22 )
2 (8𝑚𝑟21 )

3 2𝑟21𝑑𝑟1
= 16384𝑚5𝑟32 ∫Λ

2�푟2

𝑑𝑟1𝑟31 < 2048𝑚5𝑟52 .
(166)

Therefore

𝑆2 (Λ, 𝑧) < 4096𝑚5 ∫Λ
�휅

𝑑𝑟2𝑟52 < 1024𝑚5𝜅4 . (167)

From (160), (164), and (167), it follows that 𝑆(Λ, 𝑧) <350𝑚2/3𝜅 + 1024𝑚5/𝜅4. Since 𝑆(Λ, 𝑧) is increasing in Λ and
bounded above, it converges as Λ goes to infinity.

Step 2. Our second task is to prove 𝐽(Λ) converges asΛ goes to infinity. This step is the same as that of
limΛ→∞(𝐼4(Λ)/ logΛ) = 0.
Proof of limΛ→∞(𝐼7(Λ)/ logΛ) = 0. We redefine ℎ(𝑟1, 𝑟2, 𝑧),𝑔(𝑟1, 𝑟2, 𝑧), and 𝑆(Λ) as
ℎ (𝑟1, 𝑟2, 𝑧)

= 𝑧𝑟31𝑟32𝜔 (𝑟1) 𝜔 (𝑟2) (
1𝐹 (𝑟1) + 1𝐹 (𝑟2))

2 1
𝐿 (𝑟1, 𝑟2, 𝑧)3 ,

𝑔 (𝑟1, 𝑟2, 𝑧) = ℎ (𝑟1, 𝑟2, 𝑧) + ℎ (𝑟1, 𝑟2, −𝑧) ,
𝑆 (Λ) = ∫1

−1
∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2.

(168)

Then we have 𝐼7(Λ) = (2𝜋2/(2𝜋)6)𝑆(Λ), and
𝑆 (Λ) = ∫1

0
∫Λ
�휅
∫Λ
�휅
𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2 (169)

in the same way as limΛ→∞(𝐼3(Λ)/ logΛ) = 0. We define𝑔1(𝑟1, 𝑟2, 𝑧) and 𝑔2(𝑟1, 𝑟2, 𝑧) as
𝑔1 (𝑟1, 𝑟2, 𝑧) = − 6𝑧2𝑟41𝑟42𝑚𝜔 (𝑟1) 𝜔 (𝑟2) (

1𝐹 (𝑟1) + 1𝐹 (𝑟2))
2

⋅ ((𝑟21 + 𝑟22) /2𝑚 + 𝜔 (𝑟1) + 𝜔 (𝑟2))2
𝐿 (𝑟1, 𝑟2, 𝑧)3 𝐿 (𝑟1, 𝑟2, −𝑧)3 ,

𝑔2 (𝑟1, 𝑟2, 𝑧)
= − 2𝑧4𝑟61𝑟62𝑚3𝜔 (𝑟1) 𝜔 (𝑟2) (

1𝐹 (𝑟1) + 1𝐹 (𝑟2))
2

⋅ 1
𝐿 (𝑟1, 𝑟2, 𝑧)3 𝐿 (𝑟1, 𝑟2, −𝑧)3 .

(170)

Then we have 𝑔(𝑟1, 𝑟2, 𝑧) = 𝑔1(𝑟1, 𝑟2, 𝑧) + 𝑔2(𝑟1, 𝑟2, 𝑧). We
redefine 𝑆1(Λ) and 𝑆2(Λ) by

𝑆1 (Λ) = ∫1
0
∫Λ
�휅
∫Λ
�휅
𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2,

𝑆2 (Λ) = ∫1
0
∫Λ
�휅
∫Λ
�휅
𝑔2 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2.

(171)

Then

𝑆 (Λ) = 𝑆1 (Λ) + 𝑆2 (Λ) . (172)

Since 𝑔1(𝑟1, 𝑟2, 𝑧) ≤ 0, 𝑆1(Λ) is decreasing in Λ. We divide𝑆1(Λ) in the following way:

𝑆1 (Λ) = ∫1
0
∫Λ
�휅
∫Λ
�푟1

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2
+ ∫1
0
∫Λ
�휅
∫Λ
�푟2

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1
= ∫1
0
∫Λ
�휅
∫Λ
�푟1

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2
+ ∫1
0
∫Λ
�휅
∫Λ
�푟1

𝑔1 (𝑟2, 𝑟1, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2
= 2∫1
0
∫Λ
�휅
∫Λ
�푟1

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2.

(173)

Let 𝜅 ≤ 𝑟1 ≤ 𝑟2. Then we have

𝑟21 + 𝑟222𝑚 + 𝜔 (𝑟1) + 𝜔 (𝑟2) ≤ ( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) 𝑟22 (174)

in the same way as (124). Let 𝑟1 ≤ 𝑟2 ≤ 2𝑟1. Then we also have

1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 10𝑚𝑟22 . (175)

Therefore

− 𝑔1 (𝑟1, 𝑟2, 𝑧) ≤ 6𝑚 𝑧2𝑟41𝑟42𝑟1𝑟2 (10𝑚𝑟22 )2

⋅ {( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) 𝑟22}
2 (2𝑚𝑟22 )

3 1𝑟32
= 4800𝑚4 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 𝑧2𝑟31𝑟62 ,

− ∫2�푟1
�푟1

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2
≤ 4800𝑚4 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 𝑧2𝑟31 ∫2�푟1

�푟1

𝑑𝑟2𝑟62
= 930𝑚4 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 𝑧2𝑟21 .

(176)
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Hence

− 2∫1
0
∫Λ
�휅
∫2�푟1
�푟1

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2
≤ 1860𝑚4 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 ∫1

0
𝑧2𝑑𝑧∫Λ

�휅

𝑑𝑟2𝑟22
< 620𝑚4𝜅 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 .

(177)

Let 2𝑟1 ≤ 𝑟2. Then we have
1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 5𝑚2𝑟21 . (178)

In addition, since 𝑟2/2 ≤ 𝑟2 − 𝑟1, we can see that

𝑟228𝑚 ≤ (𝑟2 − 𝑟1)22𝑚 < 𝐿 (𝑟1, 𝑟2, −𝑧) . (179)

Therefore

− 𝑔1 (𝑟1, 𝑟2, 𝑧) ≤ 6𝑚 𝑧2𝑟41𝑟42𝑟1𝑟2 (5𝑚22𝑟21 )
2

⋅ {( 1𝑚 + 2√𝜅2 + ]2𝜅2 ) 𝑟22}
2 (2𝑚𝑟22 )

3 (8𝑚𝑟22 )
3

= 153600𝑚9 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 𝑧2𝑟1𝑟52 .
(180)

Then we have

− ∫Λ
2�푟1

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2
≤ 153600𝑚9𝑧2𝑟1 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 ∫Λ

2�푟1

𝑑𝑟2𝑟52
≤ 2400𝑚9 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 𝑧2𝑟51 .

(181)

Hence

− 2∫1
0
∫Λ
�휅
∫Λ
2�푟1

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟1𝑑𝑟2
≤ 4800𝑚9 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 ∫1

0
𝑧2𝑑𝑧∫Λ

�휅

𝑑𝑟1𝑟51
< 400𝑚9𝜅4 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 .

(182)

Then we have

−𝑆1 (Λ) < 620𝑚4𝜅 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2

+ 400𝑚9𝜅4 ( 1𝑚 + 2√𝜅2 + ]2𝜅2 )2 .
(183)

Since 𝑆1(Λ) is decreasing and bounded below, it converges asΛ → ∞. Since 𝑔2(𝑟1, 𝑟2, 𝑧) ≤ 0, 𝑆2(Λ) is also decreasing in Λ.
Let 𝑟1 ≤ 𝑟2. Then

1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 4𝑚𝑟21 . (184)

Therefore

−𝑔2 (𝑟1, 𝑟2, 𝑧) ≤ 2𝑚3 𝑧
4𝑟61𝑟62𝑟1𝑟2 (4𝑚𝑟21 )

2 8𝑚3𝑟62
1𝑟32

= 256𝑚2𝑧4𝑟1𝑟42 .
(185)

Then

− ∫Λ
�푟1

𝑔2 (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2 ≤ 256𝑚2𝑧4𝑟1 ∫Λ
�푟1

𝑑𝑟2𝑟42
≤ 256𝑚2𝑧43𝑟21 .

(186)

Hence

−𝑆2 (Λ) ≤ 512𝑚23 ∫1
0
𝑧4𝑑𝑧∫Λ

�휅

𝑑𝑟1𝑟21 < 512𝑚215𝜅 . (187)

Since 𝑆2(Λ) is decreasing in Λ and bounded below, it
converges. Since both 𝑆1(Λ) and 𝑆2(Λ) converge, 𝑆(Λ) con-
verges.

Proof of limΛ→∞(𝐼8(Λ)/ logΛ) = 0. We redefine ℎ(𝑟1, 𝑟2, 𝑧),𝑔(𝑟1, 𝑟2, 𝑧), 𝑔1(𝑟1, 𝑟2, 𝑧), 𝑔2(𝑟1, 𝑟2, 𝑧), 𝑆(Λ), 𝑆1(Λ), and 𝑆2(Λ) as
ℎ (𝑟1, 𝑟2, 𝑧) = 𝑧𝑟31𝑟32𝜔 (𝑟1) 𝜔 (𝑟2) (

1𝐹 (𝑟1) + 1𝐹 (𝑟2))
⋅ 1
𝐿 (𝑟1, 𝑟2, 𝑧)4 ,

𝑔 (𝑟1, 𝑟2, 𝑧) = ℎ (𝑟1, 𝑟2, 𝑧) + ℎ (𝑟1, 𝑟2, −𝑧) ,
(188)

𝑔1 (𝑟1, 𝑟2, 𝑧) = − 2𝑧2𝑟41𝑟42𝑚𝜔 (𝑟1) 𝜔 (𝑟2) (
1𝐹 (𝑟1) + 1𝐹 (𝑟2))

⋅ 1
𝐿 (𝑟1, 𝑟2, 𝑧) 𝐿 (𝑟1, 𝑟2, −𝑧)4 ,

(189)

𝑔2 (𝑟1, 𝑟2, 𝑧) = − 2𝑧2𝑟41𝑟42𝑚𝜔 (𝑟1) 𝜔 (𝑟2) (
1𝐹 (𝑟1) + 1𝐹 (𝑟2))

⋅ 𝐺 (𝑟1, 𝑟2, 𝑧) ,
(190)

𝑆 (Λ) = ∫1
−1

∫Λ
�휅
∫Λ
�휅
ℎ (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1,

𝑆1 (Λ) = ∫Λ
�휅
∫Λ
�푟2

∫1−1/�푟1/41 �푟1/22
0

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1𝑑𝑧,
𝑆2 (Λ) = ∫Λ

�휅
∫Λ
�푟2

∫1
1−1/�푟1/41 �푟

1/2
2

𝑔1 (𝑟1, 𝑟2, 𝑧) 𝑑𝑟2𝑑𝑟1𝑑𝑧,
(191)
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where

𝐺 (𝑟1, 𝑟2, 𝑧) = 1
𝐿 (𝑟1, 𝑟2, 𝑧)2 𝐿 (𝑟1, 𝑟2, −𝑧)3
+ 1
𝐿 (𝑟1, 𝑟2, 𝑧)3 𝐿 (𝑟1, 𝑟2, −𝑧)2

+ 1
𝐿 (𝑟1, 𝑟2, 𝑧)4 𝐿 (𝑟1, 𝑟2, −𝑧) .

(192)

Furthermore, we define 𝑆3(Λ) as
𝑆3 (Λ) = ∫1

0
∫Λ
�휅
∫Λ
�푟2

𝑔2 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1. (193)

Then we have 𝐼8(Λ) = (2𝜋2/(2𝜋)6)𝑆(Λ), and
𝑆 (Λ) = 2∫1

0
∫Λ
�휅
∫Λ
�푟2

𝑔 (𝑟1, 𝑟2, 𝑧) 𝑑𝑧 𝑑𝑟2𝑑𝑟1 (194)

in the same way as the proof of limΛ→∞(𝐼3(Λ)/ logΛ) = 0.
Since 𝑔(𝑟1, 𝑟2, 𝑧) = 𝑔1(𝑟1, 𝑟2, 𝑧) + 𝑔2(𝑟1, 𝑟2, 𝑧), it holds that

𝑆 (Λ) = 2𝑆1 (Λ) + 2𝑆2 (Λ) + 2𝑆3 (Λ) . (195)

Since 𝑔1(𝑟1, 𝑟2, 𝑧) ≤ 0 and 𝑔2(𝑟1, 𝑟2, 𝑧) ≤ 0, 𝑆�푖(Λ) (𝑖 = 1, 2, 3)
are decreasing in Λ. Let 𝑟2 ≤ 𝑟1. Then

1𝐹 (𝑟1) + 1𝐹 (𝑟2) < 4𝑚𝑟22 . (196)

Let 0 ≤ 𝑧 ≤ 1 − 1/𝑟1/41 𝑟1/22 . Then we have

1(1 − 𝑧)4 ≤ 𝑟1𝑟22 . (197)

We have

𝐿 (𝑟1, 𝑟2, −𝑧) = (𝑟1 − 𝑟2)2 + 2𝑟1𝑟2 (1 − 𝑧)2𝑚 + 𝜔 (𝑟1)
+ 𝜔 (𝑟2) > 𝑟1𝑟2 (1 − 𝑧)𝑚 .

(198)

Using (197) and (198), we have

1
𝐿 (𝑟1, 𝑟2, −𝑧)4 <

𝑚4𝑟41𝑟42 (1 − 𝑧)4 ≤ 𝑚4𝑟31𝑟22 . (199)

From (189), (196), and (199), it follows that

−𝑔1 (𝑟1, 𝑟2, 𝑧) ≤ 2𝑚 𝑧2𝑟41𝑟42𝑟1𝑟2
4𝑚𝑟22

2𝑚𝑟21
𝑚4𝑟31𝑟22 =

16𝑚5𝑟21𝑟2 . (200)

Hence we have

−𝑆1 (Λ) ≤ 16𝑚5 ∫Λ
�휅

𝑑𝑟2𝑟2 ∫Λ
�푟2

1𝑟21 (1 − 1𝑟1/41 𝑟1/22 )𝑑𝑟1
< 16𝑚5 ∫Λ

�휅

𝑑𝑟2𝑟2 ∫Λ
�푟2

𝑑𝑟1𝑟21 < 16𝑚5𝜅 .
(201)

Since 𝑆1(Λ) is decreasing in Λ and bounded below, it
converges. When 𝑟2 ≤ 𝑟1 and 1 − 1/𝑟1/41 𝑟1/22 ≤ 𝑧 ≤ 1, from
(189) and (196), it holds that

−𝑔1 (𝑟1, 𝑟2, 𝑧) < 2𝑚 𝑟41𝑟42𝑟1𝑟2
4𝑚𝑟22

2𝑚𝑟21
1𝑟41 =

16𝑚𝑟2𝑟31 . (202)

Hence we have

−𝑆2 (Λ) < 16𝑚∫Λ
�휅
∫Λ
�푟2

∫1
1−1/�푟1/41 �푟

1/2
2

𝑟2𝑟31 𝑑𝑟2𝑑𝑟1𝑑𝑧
= 16𝑚∫Λ

�휅
∫Λ
�푟2

𝑟2𝑟31 𝑟−1/41 𝑟−1/22 𝑑𝑟2𝑑𝑟1
= 16𝑚∫Λ

�휅
𝑟1/22 𝑑𝑟2 ∫Λ

�푟2

𝑟−13/41 𝑑𝑟1
= 64𝑚9 ∫Λ

�휅
𝑟1/22 (𝑟−9/42 − Λ−9/4) 𝑑𝑟2

< 64𝑚9 ∫Λ
�휅
𝑟−7/42 𝑑𝑟2

= 256𝑚27 (𝜅−3/4 − Λ−3/4) < 256𝑚27𝜅3/4 .

(203)

Since 𝑆2(Λ) is decreasing in Λ and bounded below, it
converges. We have

𝐺 (𝑟1, 𝑟2, 𝑧) < 4𝑚2𝑟71 + 8𝑚3𝑟81 + 16𝑚4𝑟91 . (204)

From (190), (196), and (204), we have

− 𝑔2 (𝑟1, 𝑟2, 𝑧)
≤ 2𝑚 𝑧2𝑟41𝑟42𝑟1𝑟2

4𝑚𝑟22 (4𝑚2𝑟71 + 8𝑚3𝑟81 + 16𝑚4𝑟91 )
< 8𝑟31𝑟2 (4𝑚2𝑟71 + 8𝑚3𝑟81 + 16𝑚4𝑟91 )
= 32𝑚2𝑟2𝑟41 + 64𝑚3𝑟2𝑟51 + 128𝑚4𝑟2𝑟61 .

(205)

Hence

−𝑆3 (Λ) < 32𝑚2 ∫Λ
�휅
𝑟2𝑑𝑟2 ∫Λ

�푟2

𝑑𝑟1𝑟41
+ 64𝑚3 ∫Λ

�휅
𝑟2𝑑𝑟2 ∫Λ

�푟2

𝑑𝑟1𝑟51
+ 128𝑚4 ∫Λ

�휅
𝑟2𝑑𝑟2 ∫Λ

�푟2

𝑑𝑟1𝑟61
< 32𝑚23 ∫Λ

�휅

1𝑟22 𝑑𝑟2 + 16𝑚3 ∫Λ
�휅

1𝑟32 𝑑𝑟2
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+ 128𝑚45 ∫Λ
�휅

1𝑟42 𝑑𝑟2
< 32𝑚23𝜅 + 8𝑚3𝜅2 + 128𝑚415𝜅3 .

(206)
Since 𝑆3(Λ) is decreasing in Λ and bounded below, it
converges. Since 𝑆�푖(Λ) (𝑖 = 1, 2, 3) converge, 𝐼8(Λ) converges
by (195).

5. Concluding Remarks

(1) The Nelson model is defined as the self-adjoint operator

𝐻�푉 = (−12Δ + 𝑉) ⊗ 1 + 1 ⊗ 𝐻�푓 + 𝛼∫⊕
R3

𝜙 (𝑥) 𝑑𝑥, (207)

acting in the Hilbert space 𝐿2(R) ⊗ F ≅ ∫⊕
R3

F 𝑑𝑥. Here 𝑉 :
R3 → R is an external potential and
𝜙 (𝑥)
= 1√2 ∫{𝑎† (𝑘) 𝑒−�푖�푘�푥�̂� (𝑘)√𝜔 (𝑘) + 𝑎 (𝑘) 𝑒�푖�푘�푥�̂� (−𝑘)√𝜔 (𝑘) } 𝑑𝑘. (208)

In the case of 𝑉 = 0, 𝐻�푉=0 is translation invariant and the
relationship between𝐻�푉 and𝐻(𝑝) is given by

𝐻�푉=0 = ∫⊕
R3

𝐻(𝑝) 𝑑𝑝. (209)

Furthermore the ground state energy of 𝐻(𝑝 = 0) coincides
with that of𝐻�푉=0.

(2) We show that 𝑚eff(Λ)/𝑚 = 1 + ∑∞�푛=1 𝑎�푛(Λ)𝛼2�푛 and
limΛ→∞𝑎2(Λ) = ±∞. It is also expected that limΛ→∞𝑎�푛(Λ)
diverges and the signatures are alternatively changed. Hence
limΛ→∞𝑚eff(Λ)/𝑚 may converge but it is not trivial to see it
directly.

(3) The relativistic Nelson model is defined by replacing−(1/2)Δ + 𝑉 with the semirelativistic Schrödinger operator√−Δ + 1 + 𝑉 in (207); that is,

𝐻rel
�푉 = (√−Δ + 1 + 𝑉) ⊗ 1 + 1 ⊗ 𝐻�푓 + ∫⊕

R3
𝜙 (𝑥) 𝑑𝑥. (210)

Then it follows that

𝐻rel
�푉=0 = ∫⊕

R3
𝐻rel (𝑝) 𝑑𝑝, (211)

where 𝐻rel(𝑝) = √(𝑝 − 𝑃�푓)2 + 1 + 𝐻�푓 + 𝜙(0). Then the
effective mass𝑚eff(Λ) of𝐻rel(𝑝) is defined in the same way as
that of𝐻(𝑝). We are also interested in seeing the asymptotic
behavior of 𝑚eff(Λ) as Λ → ∞. However √(𝑝 − 𝑃�푓)2 + 1 is a
nonlocal operator and then estimates are rather complicated.

Another interesting nonlocal model is the so-called
semirelativistic Pauli-Fierz model defined by

𝐻PF
�푉 = √(−𝑖∇ ⊗ −𝛼∫⊕

R3
𝐴 (𝑥) 𝑑𝑥)2 + 1 + 𝑉 ⊗ 1 + 1

⊗ 𝐻�푓,
(212)

where𝐴(𝑥) is a quantized radiation field. See [9] for the detail.
Then it follows that

𝐻PF
�푉=0 = ∫⊕

R3
𝐻PF (𝑝) 𝑑𝑝, (213)

where 𝐻PF(𝑝) = √(𝑝 − 𝑃�푓 − 𝛼𝐴(0))2 + 1 + 𝐻�푓. It is also
interesting to investigate the asymptotic behavior of the
effective mass of the semirelativistic Pauli-Fierz model.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Susumu Osawa is grateful to Asao Arai for helpful comments
and financial support. This work is financially supported by
Grant-in-Aid for Science Research(B) 16H03942 and Grant-
in-Aid for challenging Exploratory Research 15K13445 from
JSPS.

References

[1] E. Nelson, “Interaction of nonrelativistic particles with a quan-
tized scalar field,” Journal of Mathematical Physics, vol. 5, no. 9,
pp. 1190–1197, 1964.

[2] H. Spohn, “Effective mass of the polaron: a functional integral
approach,” Annals of Physics, vol. 175, no. 2, pp. 278–318, 1987.

[3] F. Hiroshima and H. Spohn, “Mass renormalization in non-
relativistic quantum electrodynamics,” Journal of Mathematical
Physics, vol. 46, no. 4,Article ID042302, pp. 42302–42328, 2005.

[4] F. Hiroshima and K. R. Ito, “Effective mass of nonrelativistic
quantum electrodynamics,” RIMS Kokyuroku, vol. 1492, pp. 22–
48, 2006.

[5] F. Hiroshima and K. R. Ito, “Mass renormalization in non-
relativistic quantum electrodynamics with spin 1/2,” Reviews in
Mathematical Physics, vol. 19, no. 4, pp. 405–454, 2007.
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In this note we present a new special function that behaves like the error function and we provide an approximated accurate closed
form for its CDF in terms of both Chèbyshev polynomials of the first kind and the error function. Also we provide its series
representation using Padé approximant.We show a convincing numerical evidence about an accuracy of 10−6 for the approximants
in the sense of the quadratic mean norm. A similar approach may be applied to other probability distributions, for example,
Maxwell–Boltzmann distribution and normal distribution, such that we show its application using both of those distributions.

1. Introduction

Integrals of the error function, see (1), occur in a great
variety of applications usually in problems involving multiple
integration where the integrand contains exponentials of the
squares of the argument; an example of applications can be
cited fromatomic physics astrophysics and statistical analysis.
It comes into our mind to seek for the integration of such
functions 𝑓(𝑥) power its antiderivative 𝑔(𝑥). We have got
example (1) where it is the power of two distributions related
to normal distribution [1] as shown below such that 𝑓(𝑥) =𝑒−𝑥2 and 𝑔(𝑥) = erf(𝑥)

𝐼 (𝑎) = ∫𝑎

0
(𝑒−𝑥2)erf (𝑥) 𝑑𝑥 (1)

with erf(𝑥) is called error function and it is defined in (24).2√𝜋 ∫𝑥

0
𝑒−𝑡2𝑑𝑡 = erf (𝑥) (2)

1.1. Numerical Approximation of ∫𝑎
0
(𝑒−𝑥2)erf(𝑥)𝑑𝑥 in Some

Ranges Values. Now, if we really need a simple expression for𝐼(𝑎) in some range of values, there are ways to get various
approximations.

The function is very nice. It goes to its limit at∞ very fast.
Figure 1 shows the plot of 𝐼(𝑎) for 𝑎 ∈ [0, 10].

Therefore (depending on the accuracy we need) we can
easily take 𝐼(𝑎) = 𝐼(∞) for 𝑎 > 𝑎0 with 𝑎0 around 3 or 4.

Mathematica gives the following for the first 100 digits.
𝐼 (∞)= 0.9721069927691785931510778754423911755542721833855699009722910408441888759958220033410678218401258734 (3)

Now, what can we do for small 𝑎?
The function is so nice; we can just use the Taylor

expansion around 𝑎 = 0. The first term is as follows.𝐼 (𝑎) ≈ 𝑎 (4)

The plot for 𝑎 ∈ [0, 1] is shown in Figure 2. The proof is
simple. The Taylor series look like the following.

𝐼 (𝑎) = 𝐼 (0) + 𝐼 (0) 𝑎 + 𝐼 (0)2! 𝑎2 + 𝐼 (0)3! 𝑎3 + ⋅ ⋅ ⋅ (5)
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Figure 1: The plot of 𝐼(𝑎) for 𝑎 ∈ [0, 10].
We may see the following.

𝐼 (0) = 0
𝐼 (0) = 𝑒−𝑎2 erf (𝑎)𝑎=0 = 1 (6)

Now let us find a better approximation by computing the
higher derivatives.

𝐼 (𝑎) = (𝑒−𝑎2 erf (𝑎))
= − 2√𝜋𝑎𝑒−𝑎2(erf(𝑎)+1) (√𝜋𝑒𝑎2 erf (𝑎) + 𝑎)

𝐼 (0) = 0
(7)

We use Mathematica as a shortcut, but it is easy to do it
by hand, if we remember that

erf  (𝑥) = 2√𝜋𝑒−𝑥2
𝐼 (0) = 0
𝐼𝐼𝑉 (0) = − 12√𝜋

(8)

so our next approximation is as follows.

𝐼 (𝑎) ≈ 𝑎 − 12√𝜋𝑎4 (9)

The plot with both approximations (orange, green) and
the function itself (blue) is given in Figure 3 and we can con-
tinue in the same way for higher derivatives. Now we admit
that it is possible that we need the values of 𝐼(𝑎) for all the
possible 𝑎 and with high precision, so the approximations will
not do that.Thenwe need to turn to numerical integration (as
Mathematica did forme to plot the function). Another way to
approximate the function [2] is using its derivative:

𝑑𝐼𝑑𝑎 = 𝑒−𝑎2 erf (𝑎) (10)

1.0

0.8

0.6

0.4

0.2

1.00.80.60.40.2

Figure 2: Approximation of 𝐼(𝑎) for 𝑎 ∈ [0, 1] using Taylor
expansion.
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Figure 3: Plot of I(a) with both approximations.

but this is an ordinary differential equation, which can be
solved numerically.

As an illustration, here is a simple explicit Euler scheme
for the step size ℎ.

𝐼 (𝑎 + ℎ) − 𝐼 (𝑎)ℎ = 𝑒−𝑎2 erf(𝑎)
𝐼 (𝑎 + ℎ) = 𝐼 (𝑎) + ℎ𝑒−𝑎2 erf (𝑎) (11)

We can use an initial value 𝐼(0) = 0.
For ℎ = 1/10, we have the following result (red dots)

compared to the exact function (blue line) as shown in
Figure 4.

For ℎ = 1/50 see Figure 5.
This way can serve as a good alternative to numerical

integration [3] (depending on the context and the application
of course). Let us now show the relationship between this
function and other standard special functions (integral of
error function) [4] as error function and cumulative distri-
bution function for normal distribution in the context of its
use. Function (1) could be used to find values of complicated
integral which are not available in any references of standard
special functions and also it is not available to get their values
in Wolfram Alpha, for example,

∫+∞

0
𝑒𝑥2(1−2Φ(𝑥√2))𝑑𝑥, (12)
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Figure 4: A simple explicit Euler scheme for the step size ℎ = 1/10.
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Figure 5: A simple explicit Euler scheme for the step size ℎ = 1/50.
with Φ(𝑥) = (1/√2𝜋) ∫𝑥

−∞
𝑒−𝑧2/2d𝑧. It is CDF (cumulative

distribution function for normal distribution); if someone
was asked to find the value of this integral, he would be
confused because it is very complicated; probably he cannot
show whether it is convergent or not; evenWolfram Alpha as
a best means of computation cannot recognize at a least that𝜙 is a cumulative normal distribution, so no result would be
obtained about the value of this integral. Let us compute (25)
using (1) and we will conclude that they have the same value
and both are identical function and identical integral.

Thewell-known formulawhich expresses the relationship
between error function and cumulative density function, see
(2), is defined as

Erf (𝑥) = 2 (Φ (𝑥√2) − Φ (0)) = 2 (Φ(𝑥√2) − 12)
= 2Φ (𝑥√2) − 1. (13)

And it is easy to check that it always holds for every real
number by the following short proof.

Proof. By definition, the error function

Erf (𝑥) = 2√𝜋 ∫𝑥

0
𝑒−𝑡2d𝑡. (14)

Writing 𝑡2 = 𝑧2/2 implies 𝑡 = 𝑧/√2 (because 𝑡 is not
negative), whence d𝑡 = d𝑧/√2. The endpoints 𝑡 = 0 and𝑡 = 𝑥 become 𝑧 = 0 and 𝑧 = 𝑥√2. To convert the
resulting integral into something that looks like a cumulative
distribution function (CDF), it must be expressed in terms of
integrals that have lower limits of −∞; thus

Erf (𝑥) = 2√2𝜋 ∫𝑥√2

0
𝑒−𝑧2/2d𝑧

= 2( 1√2𝜋 ∫𝑥√2

−∞
𝑒−𝑧2/2d𝑧 − 1√2𝜋 ∫0

−∞
𝑒−𝑧2/2d𝑧) . (15)

Those integrals on the right hand size are both values of
the CDF of the standard normal distribution:

Φ (𝑥) = 1√2𝜋 ∫𝑥

−∞
𝑒−𝑧2/2d𝑧. (16)

Specifically,

Erf (𝑥) = 2 (Φ (𝑥√2) − Φ (0)) = 2 (Φ(𝑥√2) − 12)
= 2Φ (𝑥√2) − 1. (17)

Now since the LHS of (18) has a known value which
is 0.97210699 ⋅ ⋅ ⋅ , then the right hand side also equals0.97210699 ⋅ ⋅ ⋅ ; hencewe cameupwith the following identity:

∫𝑎

0
(𝑒−𝑥2)Erf(𝑥) 𝑑𝑥 = ∫𝑎

0
𝑒𝑥2(1−2Φ(𝑥√2))𝑑𝑥. (18)

Now we shall call the function defined in (1) 𝑇(𝑥) =∫𝑋
0

(𝑒−𝑡2)erf(𝑡)𝑑𝑡 since it does not refer to anyone and it has
unknown analytic representation as elementary function
using standard special functions and the RHS of (18) presents
another representation of 𝑇(𝑥) function using CDF of the
normal distribution.

Lemma 1. 𝑇(𝑥) = ∫𝑋
0

(𝑒−𝑡2)erf(𝑡)𝑑𝑡 cannot be expressed in
terms of elementary function.

Proof. It is a theorem of Liouville [5], reproven later with
purely algebraic methods, that for rational functions 𝑓 and𝑔, 𝑔 is nonconstant, the antiderivative

∫ [𝑓 (𝑥) exp (𝑔 (𝑥))]d𝑥 (19)

can be expressed in terms of elementary functions if and
only if there exists some rational function ℎ such that it is a
solution to the differential equation:

𝑓 = ℎ + ℎ𝑔. (20)
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Figure 6: Error approximation for T(+∞).

Now if we apply Liouville theorem we can come up with the
following ODE: 1 = ℎ(𝑥) + ℎ(𝑥)(−𝑥2 erf(𝑥)) with 𝑔(𝑥) =−𝑥2 erf(𝑥)) and 𝑓(𝑥) = 1. It is first ordinary differential
equation. The computation we made with Wolfram Alpha
gives the following solution:

exp(𝑒−𝑥2 (𝑒𝑥2 (√𝜋𝑥3 erf (𝑥) − 1) + 𝑥2 + 1)3√𝜋 )
⋅ (𝑒1/3√𝜋 (∫𝑥

1
exp(13 (𝑡3 (− erf (𝑡)) − 𝑒−𝑡2 (𝑡2 + 1)√𝜋 ))𝑑𝑡

− ∫0

1
exp(13 (𝑡3 (− erf (𝑡)) − 𝑒−𝑡2 (𝑡2 + 1)√𝜋 ))𝑑𝑡) + 1)

(21)

with ℎ(0) = 1. Really the function ℎ can be written follows.

ℎ (𝑥) = 𝑙 (𝑥) [𝑐1 + ∫𝑥

1
𝑙 (−𝜉) 𝑑𝜉] (22)

Now it is clear that 𝑙(𝑥) is a transcendental function and the
defined integral in the right hand side of the ℎ(𝑥) expression
is also transcendental function because we have derivatives
of rational functions being rational functions. Therefore,
if the antiderivative is rational, then the original function
was rational. The function ℎ is rational only at 𝑥 = 0, and
since ℎ(𝑥) ̸= 0, then the sum of two transcendental functions
is always transcendental function. According to definition
of the rational function, ℎ(𝑥) cannot be called a rational
function; then we are done.

2. A Possible Approach Formula for 𝑇(+∞)
We may give here a possible approach formula for T(+∞)
which is defined as follows.

𝑇 (+∞) = ∫+∞

0
exp (−𝑥2 erf (𝑥)) 𝑑𝑥

= 0.97210699 ⋅ ⋅ ⋅ (23)

The inverse symbolic calculator is unable to give us the
representation of 0.97210699 ⋅ ⋅ ⋅ using standard special func-
tions, but we have tried to give its representation using error
function representation as hypergeometric function [6]; we
have

erf (𝑥) = 2√𝜋𝑥1𝐹1 (12 ; 32 ; −𝑥2) (24)

with 1𝐹1 being the Kummer confluent hypergeometric func-
tion [6]. Now we have from (24) the following.

∫+∞

0
exp (−𝑥2 erf (𝑥)) 𝑑𝑥

= ∫+∞

0
exp(− 2√𝜋𝑥3)1𝐹1(1/2;3/2;−𝑥2) 𝑑𝑥 (25)

The RHS of (25) using (24) gives((𝜋)1/6Γ(4/3)/21/3)1𝐹1(0.5;1.5;−𝑥2). Hence we may choose𝑥 = 𝑒√𝜋 and we can get finally the following.

𝑇 (+∞) ∼ (𝜋)1/6 Γ (4/3)21/3 1𝐹1(0.5;1.5;−𝜋𝑒2) )

= 0.97216864 ⋅ ⋅ ⋅ (26)

Mathematica gives the nice approximation of (25) as shown
in Figure 6.

3. Series Representation of 𝑇(𝑥) Function
Wemay try to find a series expansion in powers of 𝑡 of

𝐼 (𝑡) = ∫𝑡

0
exp (−𝑥2 erf (𝑥)) 𝑑𝑥 = ∞∑

𝑝=1

𝑐𝑝𝑡𝑝. (27)
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Figure 7: Convergence of 𝐼𝑁 = ∑𝑁
𝑝=0 𝑐𝑝 as a function of 𝑁 up to𝑁 = 25.

The coefficients 𝑐𝑝 = 𝑝−1𝑑𝑝−1 follow from the series
expansion 𝑒−𝑥2 erf 𝑥 = ∑∞

𝑝=0 𝑑𝑝𝑥𝑝, resulting in
𝐼 (𝑡) = ∞∑

𝑝=1

𝑐𝑝𝑡𝑝
= 𝑡 − 𝑡42√𝜋 + 𝑡69√𝜋 + 2𝑡77𝜋 − 𝑡840√𝜋 − 4𝑡927𝜋

+ (𝜋 − 28) 𝑡10210𝜋3/2
+ 𝑂 (𝑡11) .

(28)

The series 𝐼(1) = ∑∞
𝑝=1 𝑐𝑝 seems to converge. See Figure 7:

The value of 𝐼25 = 0.8162 agrees with 𝐼(1) = 0.816377 to
three decimal places. For 𝑁 = 50 the agreement is up to six
decimal places, but this did not give us the power series closed
form for 𝑛th term.We should use some approximations using
approximation of error function and Padé approximant as
shown in the following sections.

4. Series Expansion of the 𝑛-th
Derivative of 𝑇(𝑥)= ∫𝑥

0
𝑒−𝜉2𝑒𝑟𝑓(𝜉)𝑑𝜉

Lemma 2. Series expansion of 𝑇(𝑥) = ∫𝑥
0

𝑒−𝜉2 erf(𝜉)𝑑𝜉 is
defined by this identity:

∫𝑥

0
𝑒−𝜉2 erf (𝜉)𝑑𝜉
= ∞∑

𝑛=0

lim
𝜀−>0

( ∑
𝑘1+2𝑘2+⋅⋅⋅+𝑛𝑘𝑛=𝑛
𝑘1≥0,𝑘2≥0,...,𝑘𝑛≥0

𝑛∏
𝑗=1

𝐴𝑘𝑗
𝑗,𝜀𝑘𝑗! ) 𝑥𝑛+1𝑛 + 1

(29)

where

𝐴𝑗,𝜖 = 2 (−1)(𝑗−1)/2(𝑗 − 2) ((1/2) (𝑗 − 3))!√𝜋
if 𝑗 ≥ 3 and 𝑗 an odd integer;𝐴𝑗,𝜖 = 𝜀 otherwise (0 < 𝜀 < 1)

(30)

which is the key idea to get.

Proof. Suppose that we have the Taylor expansions:

𝑓 (𝑥) = ∞∑
𝑛=1

𝑎𝑛𝑛! 𝑥𝑛 (31)

and

𝑔 (𝑥) = ∞∑
𝑛=1

𝑏𝑛𝑛!𝑥𝑛. (32)

Then we have the standard result:

𝑔 (𝑓 (𝑥)) = ∞∑
𝑛=1

( 𝑛∑
𝑘=1

𝑏𝑘𝐵𝑛,𝑘 (𝑎1, . . . , 𝑎𝑛−𝑘+1)) 𝑥𝑛𝑛! (33)

where 𝐵𝑛,𝑘(⋅) are the partial Bell polynomials, which are
defined by the following formula.

𝐵𝑚,𝑗 (𝑥1, 𝑥2, . . . , 𝑥𝑚−𝑗+1)
= ∑

𝑘0+𝑘1+⋅⋅⋅+𝑘𝑁=𝑗
𝑘1+2𝑘2+⋅⋅⋅+𝑁𝑘𝑁=𝑚

( 𝑗𝑘0, 𝑘1, . . . , 𝑘𝑁) 𝑁∏
𝑖=1

𝑥𝑘𝑖𝑖 (34)

The key idea to get series expansion of the n-th derivative of𝑇(𝑥) which is defined in (29) is to use Taylor expansion of𝑔(𝑥) = exp(−𝑥) and 𝑓(𝑥) = −𝑥2 erf(𝑥) coming up for using
one of the important formulas in mathematics called Bruno-
Fadi formula such as that defined above in (33) using (34). It
is well known that the Taylor expansion of exp(−𝑥) is given
by the following.

𝑔 (𝑥) = exp (−𝑥) = ∞∑
𝑛=0

(−1)𝑛 𝑥𝑛𝑛! (35)

Probably the interesting here for readers to know is Taylor
expansion of erf(𝑥); we give a simple proof about its expan-
sion series using Hermite polynomial.

Lemma 3. Taylor expansion of erf(𝑥) at each point a is given
by this identity:

erf𝑎 (𝑥) = 𝑒−𝑎2 ∞∑
𝑛=0

(−1)𝑛 𝐻𝑛 (𝑎)𝑛! (𝑥 − 𝑎)𝑛 (36)

with 𝐻𝑛(𝑎) is Hermite polynomial of degree 𝑛.
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Proof. 𝑓(𝑛)(𝑎) can bewritten in terms ofHermite polynomials𝐻𝑛. 𝐻0 (𝑥) = 1,𝐻1 (𝑥) = 2𝑥,𝐻2 (𝑥) = 4𝑥2 − 2,𝐻3 (𝑥) = 8𝑥3 − 12𝑥,𝐻4 (𝑥) = 16𝑥4 − 48𝑥2 + 12,𝐻5 (𝑥) = ⋅ ⋅ ⋅
(37)

We may recognize that 𝐻2𝑛−1(0) = 0, which gives the power
series for 𝑒−𝑥2 at 𝑎 = 0.𝑒−𝑥2 = 1 − 22!𝑥2 + 124! 𝑥4 − 1206! 𝑥6 + ⋅ ⋅ ⋅ (38)

After multiplying by 2/√𝜋, this integrates to
erf (𝑧) = 2√𝜋 (𝑧 − 𝑧33 + 𝑧510 − 𝑧742 + 𝑧9216 − ⋅ ⋅ ⋅) . (39)

Since (𝑑𝑛/𝑑𝑥𝑛)𝑒−𝑥2 = (−1)𝑛𝑒−𝑥2𝐻𝑛(𝑥), one can do a
Taylor Series for every 𝑎.

erf𝑎 (𝑥) = 𝑒−𝑎2 ∞∑
𝑛=0

(−1)𝑛 𝐻𝑛 (𝑎)𝑛! (𝑥 − 𝑎)𝑛 (40)

Then we are done.
Now by composition of (40) with (35) after multiplying

(40) by the term −𝑥2, we come up to Bruno-Fadi formula
which is defined as

𝑒−𝑥2 erf (𝑥) ∞∑
𝑛=0

lim
𝜀−>0

( ∑
𝑘1+2𝑘2+⋅⋅⋅+𝑛𝑘𝑛=𝑛
𝑘1≥0,𝑘2≥0,...,𝑘𝑛≥0

𝑛∏
𝑗=1

𝐴𝑘𝑗
𝑗,𝜀𝑘𝑗! )𝑥𝑛, (41)

where

𝐴𝑗,𝜖 = 2 (−1)(𝑗−1)/2(𝑗 − 2) ((1/2) (𝑗 − 3))!√𝜋
if 𝑗 ≥ 3 and 𝑗 an odd integer; (42)

𝐴𝑗,𝜖 = 𝜀 otherwise (0 < 𝜀 < 1) . (43)

Integrating this equation term by term gives

∫𝑥

0
𝑒−𝜉2 erf(𝜉)𝑑𝜉
= ∞∑

𝑛=0

lim
𝜀−>0

( ∑
𝑘1+2𝑘2+⋅⋅⋅+𝑛𝑘𝑛=𝑛
𝑘1≥0,𝑘2≥0,...,𝑘𝑛≥0

𝑛∏
𝑗=1

𝐴𝑘𝑗
𝑗,𝜀𝑘𝑗! ) 𝑥𝑛+1𝑛 + 1 (44)

which gives the series expansion for the new special function.
UsingMathematica as a shortcut, it shows that (44) holds and
also it shows the incrementation of𝜋 as shown in Figure 8.We
may add also the series expansion of 𝑇(𝑥), the new special
function, using Mathematica code as shown in Figure 9.

Figure 8: n-th derivative of new special function 𝑇(𝑥).

Figure 9: Series expansion of new special function𝑇(𝑥) around 𝑥 =0.
5. Series Representation of ∫1

−1
𝑒𝑟𝑓(𝑥)𝑛𝑑𝑥 Using

Error Function Approximation

We have the power series of

𝑒−𝑥2 erf(𝑥) = ∞∑
𝑘=0

(−1)𝑘 𝑥2𝑘erf𝑘 (𝑥)𝑘! (45)

and then from (45) we have the following.

∫1

−1
𝑒−𝑥2 erf (𝑥)𝑑𝑥 = ∞∑

𝑘=0

(−1)𝑘𝑘! ∫1

−1
𝑥2𝑘erf𝑘 (𝑥) 𝑑𝑥 (46)

Now it is hard so much to evaluate the integral in RHS of
(46) using error function expression; then we should use the
following nice approximation.

(erf (𝑥))2 ≈ 1 − 𝑒−𝑎𝑥2 with 𝑎 = (1 + 𝜋)2/3 log2 (2) (47)

Here we can give a short proof to show that the error function
squared was approximated as well with the value of 𝑎 = (1 +𝜋)2/3log2(2).
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Proof. We fully agree that

𝐹 (𝑎) = ∫∞

0
(erf (𝑥)2 − (1 − 𝑒−𝑎𝑥2) 𝑑𝑥)2 (48)

isminimum for 𝑎 ≈ 1.23907. According to𝑅𝐼𝐸𝑆, this number
seems to be much closer to𝑎 = (1 + 𝜋)2/3 log2 (2) ≈ 1.23907 (49)

than to 𝜋2/8 ≈ 1.23370 even if this does make very large
difference (themaximumerror is reduced from 0.006 to 0.004
and the value of the integral 𝐹(𝑎) changes from 0.00002769
to 0.00002572). If we look for a still better approximation, we
could consider log(1 − erf(𝑥)2) (which, for sure, introduces
a bias in the problem), establish a Padé approximant, and
finally arrive to

erf (𝑥)2 ≈ 1 − exp(− 4𝜋 1 + 𝛼𝑥21 + 𝛽𝑥2 𝑥2) (50)

where

𝛼 = 10 − 𝜋25 (𝜋 − 3) 𝜋
𝛽 = 120 − 60𝜋 + 7𝜋215 (𝜋 − 3) 𝜋 . (51)

Thevalue of the corresponding error function is 1.1568×10−7,
that is to say, almost 250 times smaller than that with the
initial formulation; the maximum error is 0.00035.

Now we are ready to approximate

𝐼𝑛 = ∫1

−1
(erf (𝑥))2𝑛 𝑑𝑥 (52)

𝐽𝑛 = ∫1

−1
(1 − 𝑒−𝑎𝑥2)𝑛 𝑑𝑥 (53)

for which the binomial expansion would be required (easy).
This would give you things like the following.

𝐽1 = 2 − √𝜋 erf (√𝑎)√𝑎 (54)

𝐽2 = 2 − 2√𝜋 erf (√𝑎)√𝑎 + √𝜋/2 erf (√2𝑎)√𝑎 (55)

𝐽3 = 2 − 3√𝜋 erf (√𝑎)√𝑎 + 3√𝜋/2 erf (√2𝑎)√𝑎
− √𝜋/3 erf (√3𝑎)√𝑎

(56)

Now it is easy to get recurrence relation for 𝐽𝑛 in (53); we take𝑡 = √𝑎𝑘𝑥 ⇒ 𝑑𝑥 = 𝑑𝑡/(√𝑎𝑘) and we come up to erf(√𝑎𝑘)
which gives the following general formula.

𝐽𝑛 = 2 + √𝜋𝑎 𝑛∑
𝑘=1

(−1)𝑘 ( 𝑛𝑘 )√𝑘 erf (√𝑎𝑘) (57)

Table 1: Short table for approximation comparison.

n approximation exact
1 0.591506 0.596751
2 0.279674 0.283168
3 0.151067 0.153256
4 0.0870954 0.0884650
5 0.0522216 0.0530855
6 0.0321485 0.0326982
7 0.0201718 0.0205243
8 0.0128409 0.0130686
9 0.00826756 0.00841548
10 0.00537202 0.00546863

We produce in Table 1 a short table for comparison; we
reused for this problem our approach with the same Padé
approximants and obtained the following as approximations.

𝐼𝑛 = 22𝑛 + 1 ( 4𝜋)𝑛 2𝐹1 (2𝑛, 2𝑛 + 12 ; 2𝑛 + 32 ; −13) (58)

𝐼𝑛 = 22𝑛 + 1 ( 4𝜋)𝑛
⋅ 𝐹1 (2𝑛 + 12 ; −2𝑛, 2𝑛; 2𝑛 + 32 ; 130 , − 310) (59)

Really we are ready to give the series representation of 𝑇(𝑥)
over [−1; 1] using error function approximation and Padé
approximant.

6. Series Representation of 𝑇(𝑥) Function over[−1; 1] Using Error Function Approximation
and Padé Approximant

Recall

𝐼𝑘 = ∫1

−1
𝑥2𝑘 [erf (𝑥)]𝑘 𝑑𝑥 (60)

is 0 if 𝑘 is odd. Thus, we need to focus on

𝐼2𝑘 = ∫1

−1
𝑥4𝑘 [erf (𝑥)]2𝑘 𝑑𝑥 (61)

which could be approximated, as we showed above in Sec-
tion 3 to get (57) using

[erf (𝑥)]2 ≈ 1 − 𝑒−𝑎𝑥2 with 𝑎 = (1 + 𝜋)2/3 log2 (2) (62)

making

𝐼2𝑘 = ∫1

−1
𝑥4𝑘 (1 − 𝑒−𝑎𝑥2)𝑘 𝑑𝑥 (63)

to be developed using the binomial expansion. Therefore, in
practice, we face the problem of

𝐽𝑛,𝑘 = ∫1

−1
𝑥4𝑘𝑒−𝑛𝑎𝑥2𝑑𝑥 (64)
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Table 2: Reasonable approximation using bounds.

k approximation exact
1 0.22870436048 0.22959937502
2 0.08960938943 0.08997882179
3 0.04400808083 0.04418398568
4 0.02389675159 0.02398719298
5 0.01374034121 0.01378897319
6 0.00819869354 0.00822557475
7 0.00502074798 0.00503586007
8 0.00313428854 0.00314286515
9 0.00198581489 0.00199069974
10 0.00127304507 0.00127582211

and the antiderivative

∫𝑥4𝑘𝑒−𝑛𝑎𝑥2𝑑𝑥 = −12𝑥4𝑘+1𝐸1/2−2𝑘 (𝑎𝑛𝑥2) (65)

where the exponential integral function appears. Using the
bounds, this reduces to𝐽𝑛,𝑘 = −𝐸1/2−2𝑘 (𝑎𝑛) (66)

and leads to “reasonable” approximation as shown in Table 2.
Another approximation could be obtained using the simplest
Padé approximant [7] of the error function

erf (𝑥) = 2𝑥√𝜋 (1 + 𝑥2/3) (67)

which would lead to

𝐼2𝑘 = ∫1

−1
𝑥4𝑘 [erf (𝑥)]2𝑘 𝑑𝑥

= 26𝑘 + 1 ( 4𝜋)𝑘 2𝐹1 (2𝑘, 6𝑘 + 12 ; 6𝑘 + 32 ; −13) (68)

slightly less accurate than the previous one. Continuing with
Padé approximant

erf (𝑥) = 2𝑥/√𝜋 − 𝑥3/15√𝜋1 + 3𝑥2/10 (69)

we should get

𝐼2𝑘 = ∫1

−1
𝑥4𝑘 [erf (𝑥)]2𝑘 𝑑𝑥 = 26𝑘 + 1 ( 4𝜋)𝑘

⋅ 𝐹1 (6𝑘 + 12 ; −2𝑘, 2𝑘; 6𝑘 + 32 ; 130 , − 310) (70)

where the Appell hypergeometric function of two variables
appears. Finally we conclude the series representation as
follows.

𝐼 (𝑡) = ∫1

−1
exp (−𝑥2 erf (𝑥)) 𝑑𝑥. ∼ +∞∑

𝑘=0

(−1)𝑘𝑘! 𝐼2𝑘 (71)

7. Approximation of 𝑇(𝑥) Function by Means
of a Polynomial

Lemma 4. The function 𝑓 which is defined as

𝑓 (𝑥) = 𝑇(𝑏 + 𝑎2 + 𝑏 − 𝑎2 𝑥) , − 1 ≤ 𝑥 ≤ 1 (72)

could be approximated by means of Chebytchev polynomial.

Proof. We may approximate the function 𝑓 on the interval[−1, 1] by using Chèbyshev polynomials [8] of the first kind.
To this end, we choose some positive integer 𝑛 and we define
the coefficients 𝑐𝑛 by the formula

𝑐𝑗 = 2𝜋 ∫1

−1

𝑇𝑗 (𝑥)√1 − 𝑥2𝑓 (𝑥) 𝑑𝑥 for 𝑗 = 0, 1, . . . , 𝑛. (73)

Then the polynomial

𝑃𝑛 (𝑥) = 12𝑐0 + 𝑛∑
𝑗=1

𝑐𝑗𝑇𝑗 (𝑥) (74)

approximates 𝑓(𝑥) in the best possible way. Since

𝑇 (𝑥) = 𝑓(𝑎 + 𝑏 − 2𝑥𝑎 − 𝑏 ) for 𝑎 ≤ 𝑥 ≤ 𝑏 (75)

we see that the polynomial 𝑄𝑛(𝑎, 𝑏, 𝑥) = 𝑃𝑛((𝑎 + 𝑏 − 2𝑥)/(𝑎 −𝑏)) is an approximant to 𝑇(𝑥) function on [𝑎, 𝑏]. Calculations
give

𝑄11 (0, 32 , 𝑥) = 0.0137936039435𝑥11
− 0.135129528505𝑥10+ 0.548169602543𝑥9− 1.16161653976𝑥8+ 1.31691631085𝑥7− 0.746480407376𝑥6+ 0.338453415662𝑥5− 0.370071852413𝑥4+ 0.0133517048763𝑥3− 0.00104123958376𝑥2+ 1.00003172454𝑥

(76)
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and 𝑄11 (32 , 3, 𝑥) = −0.0000675632422240𝑥11
+ 0.00188305739843𝑥10− 0.0239397852528𝑥9+ 0.183255163671𝑥8− 0.937675010268𝑥7+ 3.35913844398𝑥6− 8.55140470408𝑥5+ 15.3046428836𝑥4− 18.4622672665𝑥3+ 13.5920479951𝑥2− 4.69093970289𝑥+ 1.04191571066.

(77)

For both approximations the error is less than 10−6. Indeed,
numerical integration gives𝑇 (𝑥) − 𝑄11 (0, 32 , 𝑥)

= √∫3/2

0
(𝑇 (𝑥) − 𝑄11 (0, 32 , 𝑥))2 𝑑𝑥

≈ 2.26 × 10−7
(78)

and 𝑇 (𝑥) − 𝑄11 (32 , 3, 𝑥)
= √∫3

3/2
(𝑇 (𝑥) − 𝑄11 (32 , 3, 𝑥))2 𝑑𝑥

≈ 3.66 × 10−10.
(79)

Thus, we may evaluate the 𝑇(𝑥) function with high accuracy
on the interval [0, 3]. For 𝑥 > 3 we may use the following
approximation formula in terms of the error function:𝑇 (𝑥) ≈ 𝜑 (𝑥)

𝑑𝑒𝑓 ∫3

0
exp (−𝑡2 erf (𝑡)) 𝑑𝑡 + √𝜋2 (erf (𝑥) − erf (3)) ,

𝑥 ≥ 3.
(80)

The quadratic mean error on [3, 100] is
𝑇 (𝑥) − 𝜑 (𝑥) ) = √∫100

3
(𝑇 (𝑥) − 𝜑 (𝑥))2 𝑑𝑥

≈ 2.02 × 10−8. (81)

Nowwe are ready to present application of𝑇(𝑥) in probability
and thermodynamics using one of the most important distri-
butionswhich is calledMaxwell–Boltzmann distribution

8. Application of 𝑇(𝑥) in Probability

Let

𝐹𝜆,𝜇 (𝑥) = ∫𝑥

0
𝑒−𝜉2(𝜆+𝜇 erf(𝜉))𝑑𝜉 (𝜆 > 0) . (82)

Define

𝑐 = ∫∞

0
𝑒−𝜉2(𝜆+𝜇 erf(𝜉))𝑑𝜉 (83)

and let 𝑇𝜆,𝜇 (𝑥) fl 𝑐−1𝐹𝜆,𝜇 (𝑥) (𝑥 ≥ 0) . (84)

The function𝑇(𝑥) is the new special function we have studied
in this paper. This function defines a cumulative probability
distribution function (CDF) with probability distribution
function (PDF).

𝑓𝜆,𝜇 (𝑥) = 𝑒−𝑥2(𝜆+𝜇 erf(𝑥)) (𝑥 ≥ 0) (85)

Indeed, we have

𝑇
𝜆,𝜇 (𝑥) = 𝑒−𝑥2(𝜆+𝜇 erf(𝑥)) > 0,𝑇𝜆,𝜇 (+∞) = 1. (86)

TheODE for this functionnot involving the error function erf
may be obtained by differentiating (84) twice and eliminating
the expression containing that error function. This gives us
the following ODE.

√𝜋𝑥𝑦 (𝑥) = 2𝑒−𝑥2𝑦 (𝑥) (√𝜋𝑒𝑥2 log (𝑦 (𝑥)) − 𝜇𝑥3) (87)

Letting 𝜇 = 0 gives the ODE
𝑥𝑦 (𝑥) = 2𝑦 (𝑥) log (𝑦 (𝑥)) (88)

whose general solution is as follows.

𝑦 (𝑥) = 12𝑒−𝑐1/2√𝜋erfi (𝑒𝑐1/2𝑥) + 𝑐2 (89)

If we compare (89) with

𝑐 𝐹𝜆,0 (𝑥) = 𝑐 ∫𝑥

0
𝑒−𝜆𝜉2𝑑𝜉

= (∫∞

0
𝑒−𝜆𝜉2𝑑𝜉)−1 ∫𝑥

0
𝑒−𝜆𝜉2𝑑𝜉 = erf (√𝜆𝑥) (90)

we must have12𝑒−𝑐1/2√𝜋erfi (𝑒𝑐1/2𝑥) + 𝑐2 = erf (√𝜆𝑥) (91)
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so that

𝑐1 = 𝑖𝜋 + log (𝜋4 ) ,
𝑐2 = 0. (92)

We showed that in the case when 𝜇 = 0 our function 𝑇𝜆,0(𝑥)
coincides with the error function erf(√𝜆𝑥) with the value𝜆 = 𝜋/4. When 𝜇 ̸= 0 we cannot obtain the solution to the
ODE (87) in closed form. We may try a numerical procedure
or another method to solve it. Our aim is to show how we
may apply the new special function 𝑇𝜆,𝜇(𝑥) in probability and
physics.

8.1. Example. We look for 𝜆 and 𝜇 in order to adjust the error
function by means of the function 𝑦(𝑥) = 𝑇𝜆,𝜇(𝑥). To this
end, we impose the following conditions.

erf (1) = 𝑇𝜆,𝜇 (𝑥) ,
erf  (1) = 𝑇

𝜆,𝜇 (1) (93)

Solving this system gives𝜆 = 0.1671645,𝜇 = 0.8449657. (94)

The function 𝑇𝜆,𝜇(𝑥) converts into𝑇𝜆,𝜇 (𝑥)
= 1.05021∫𝑥

0
exp (−𝜉2 (0.167164 + 0.844966 erf (𝜉))) 𝑑𝜉. (95)

Plotting the two functions gives following picture as shown
in Figure 10

9. Application of 𝑇(𝑥) in Thermodynamics

In physics (in particular in statistical mechanics), the
Maxwell–Boltzmann distribution is a particular probability
distribution named after James Clerk Maxwell and Ludwig
Boltzmann. It was first defined and used for describing
particle speeds in idealized gases, where the particles move
freely inside a stationary container without interacting with
one another, except for very brief collisions in which they
exchange energy and momentum with each other or with
their thermal environment. The term “particle” in this
context refers to gaseous particles (atoms or molecules),
and the system of particles is assumed to have reached
thermodynamic equilibrium. The energies of such particles
follow what is known as Maxwell–Boltzmann statistics, and
the statistical distribution of speeds is derived by equating
particle energies with kinetic energy. Mathematically, the
Maxwell–Boltzmann distribution is the chi distribution with
three degrees of freedom (the components of the velocity
vector in Euclidean space), with a scale parameter measuring
speeds in units proportional to the square root of 𝑇/𝑚 (the
ratio of temperature and particle mass); see Figure 10. The
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Figure 10: Adjusting the error function by means of the new special
function.

Figure 11: Maxwell–Boltzmann distribution.

CDF for the Boltzmann distribution may be approximated by
means of the new special function 𝑇𝜅,𝜇(𝑥) as follows:

erf ( 𝑥√2𝑎) − √ 2𝜋 𝑥𝑎 exp(− 𝑥22𝑎2)
≈ 𝑇𝜆,𝜇 (𝑥) − √ 2𝜋 𝑥𝑎 exp(− 𝑥22𝑎2) , (96)

where 𝑇𝜆,𝜇(𝑥) is an approximation to erf(𝑥/√2𝑎) for some
parameters 𝜆 and 𝜇 depending on 𝑎.This approximation may
be obtained in a similar way towhat we illustrated in Example
1, Figure 11. On the other hand, in the case when 0 < 𝑎 ≤ 1
we may approximate the CDF for the Maxwell–Boltzmann
distribution as shown in Figure 12 for the value 𝑎 = 0.75.

Finally this approximation by new special function
showed that it may also be applied in thermodynamics to
evaluate the average energy per particle in the circumstance
where there is no energy-dependent density of states to skew
the distribution, and the representation of probability for a
given energy must be normalized to a probability of 1 which
holds using our new special function with two parameters as
shown in (86).

10. Conclusion

We have studied A new probability distribution defined on[0, +∞) and we gave series representations for 𝑇(𝑥) function
using Padé approximant. Really we approximated the CDF
for that distribution bymeans of Chèbyshev polynomials and
the error function. The methods we applied are suitable for
approximating other CDF for probability distributions, since
their CDF are bounded and they take values from 0 to 1. And
it is well known that Chèbyshev polynomials are the optimal
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Figure 12: Approximation of the CDF for the Maxwell–Boltzmann distribution for 𝑎 = 0.75.
ones for approximating continuous functions. On the other
hand, it is also possible to approximate such functions by
means of rational Chèbyshev approximants. This technique
may be used in future works.
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Endnotes

1. Inmathematics, the error function (also called the Gauss
error function) is a special function (nonelementary) of
sigmoid shape that occurs in probability, statistics, and
partial differential equations describing diffusion. It is
defined as Erf(𝑥) = (2/√𝜋) ∫𝑥

0
𝑒−𝑡2𝑑𝑡. Of course, it is

closely related to the normal CDF Φ(𝑥) = 𝑃(𝑁 < 𝑥) =(1/√2𝜋) ∫𝑥
−∞

𝑒−𝑡2/2𝑑𝑡 (where 𝑁 ∼ 𝑁(0, 1) is a standard
normal) by the expression Erf = 2Φ(𝑥√2) − 1.

2. Cumulative distribution function for the normal distri-
bution. In probability theory and statistics, the cumula-
tive distribution function (CDF, also cumulative density
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function) of a real-valued random variable 𝑋, or just
distribution function of 𝑋, evaluated at 𝑥, is the proba-
bility that 𝑋will take a value less than or equal to 𝑥.If we
have a quantity 𝐴 that takes some value at random, the
cumulative density function 𝐹(𝑥) gives the probability
that 𝑋 is less than or equal to 𝑥; that is,𝐹 (𝑥) = 𝑃 (𝐴 ≤ 𝑥) (∗)
In the case of a continuous distribution, it gives the
area under the probability density function from minus
infinity to 𝑥. Cumulative distribution functions are also
used to specify the distribution of multivariate random
variables.
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We establish an asymptotic approach for checking the appropriateness of an assumed multivariate spatial regression model by
considering the set-indexed partial sums process of the least squares residuals of the vector of observations. In this work, we
assume that the components of the observation, whose mean is generated by a certain basis, are correlated. By this reason we
need more effort in deriving the results. To get the limit process we apply the multivariate analog of the well-known Prohorov’s
theorem. To test the hypothesis we define tests which are given by Kolmogorov-Smirnov (KS) and Cramér-von Mises (CvM)
functionals of the partial sums processes. The calibration of the probability distribution of the tests is conducted by proposing
bootstrap resampling technique based on the residuals. We studied the finite sample size performance of the KS and CvM tests by
simulation. The application of the proposed test procedure to real data is also discussed.

1. Introduction

As mentioned in the literatures of model checks for multi-
variate regression, the appropriateness of an assumed model
ismostly verified by analyzing the least squares residual of the
observations; see, for example, Zellner [1], Christensen [2],
pp. 1–22, Anderson [3], pp. 187–191, and Johnson andWichern
[4], pp. 395–398. A common feature of these works is the
comparison between the length of the matrix of the residuals
under the null hypothesis and that of the residuals under a
proposed alternative.

Instead of considering the residuals directly MacNeill [5]
andMacNeill [6] proposed a method in model check for uni-
variate polynomial regression based on the partial sums pro-
cess of the residuals. These popular approaches are general-
ized to the spatial case byMacNeill and Jandhyala [7] for ordi-
nary partial sums and Xie and MacNeill [8] for set-indexed
partial sums process of the residuals. Bischoff and Somayasa
[9] and Somayasa et al. [10] derived the limit process in the
spatial case by a geometric method generalizing a univariate
approach due to Bischoff [11] and Bischoff [12]. These results

can be used to establish asymptotic test of Cramér-vonMises
andKolmogorov-Smirnov type formodel checks and change-
point problems. Model checks for univariate regression with
randomdesign using the empirical process of the explanatory
variable marked by the residuals was established in Stute [13]
and Stute et al. [14]. In the papers mentioned above the limit
processes were explicitly expressed as complicated functions
of the univariate Brownian motion (sheet).

The purpose of the present article is to study the applica-
tion of set-indexed partial sums technique to simultaneously
check the goodness-of-fit of a multivariate spatial linear
regression defined on high-dimensional compact rectangle.
In contrast to the normal multivariate model studied in the
standard literatures such as in Christensen [2], Anderson
[3], and Johnson and Wichern [4] or in the references of
model selection such as in Bedrick andTsai [15] and Fujikoshi
and Satoh [16], in this paper we will consider a multivariate
regressionmodel in which the components of themean of the
response vector are assumed to lie in different spaces and the
underlying distributionmodel of the vector of random errors
is unknown.
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To see the problem in more detail let 𝑛1 ≥ 1, . . . , 𝑛𝑑 ≥ 1
be fixed. Let a 𝑝-dimensional random vector Z fl (𝑍𝑖)

𝑝
𝑖=1 be

observed independently over an experimental design given
by a regular lattice:

Ξ𝑛1⋅⋅⋅𝑛𝑑

fl {( 𝑗𝑘
𝑛𝑘

)
𝑑

𝑘=1

∈ I𝑑 : 1 ≤ 𝑗𝑘 ≤ 𝑛𝑘, 𝑘 = 1, . . . , 𝑑} ,
(1)

where I𝑑 fl ∏𝑑
𝑘=1[0, 1] is the 𝑑-dimensional unit cube. Let

g fl (𝑔𝑖)
𝑝
𝑖=1 be the true but unknown R𝑝-valued regression

function on I𝑑 which represents the mean function of the
observations. Let Z𝑗1 ⋅⋅⋅𝑗𝑑

fl (𝑍𝑖,𝑗1 ⋅⋅⋅𝑗𝑑
)𝑝𝑖=1 and g fl (𝑔𝑖,𝑗1 ⋅⋅⋅𝑗𝑑

)𝑝𝑖=1
be the observation and the corresponding mean in the
experimental condition (𝑗𝑘/𝑛𝑘)𝑑𝑘=1. Under the null hypothesis
𝐻0 we assume that Z𝑗1 ⋅⋅⋅𝑗𝑑

follows a multivariate linear model.
That is, we assume a model

𝐻0 : Z𝑗1 ⋅⋅⋅𝑗𝑑
= (

𝑑𝑖

∑
𝑤=1

𝛽𝑖𝑤𝑓𝑖𝑤 ( 𝑗𝑘
𝑛𝑘

)
𝑑

𝑘=1

)
𝑝

𝑖=1

+E𝑗1⋅⋅⋅𝑗𝑑
,

1 ≤ 𝑗1 ≤ 𝑛1, . . . , 1 ≤ 𝑗𝑑 ≤ 𝑛𝑑,

(2)

where, for 𝑖 = 1, . . . , 𝑝, 𝛽𝑖 fl (𝛽𝑖𝑤)
𝑑𝑖
𝑤=1 ∈ R𝑑𝑖 is a 𝑑𝑖-

dimensional vector of unknown parameters; f𝑖 fl (𝑓𝑖𝑤)
𝑑𝑖
𝑤=1

is a 𝑑𝑖-dimensional vector of known regression functions
whose components are assumed to be square integrable with
respect to the Lebesgue measure 𝜆𝑑

I on I𝑑, that is, 𝑓𝑖𝑤 ∈
𝐿2(𝜆𝑑

I ), for all 𝑖 and 𝑤. E𝑗1 ⋅⋅⋅𝑗𝑑
fl (𝜀𝑖,𝑗1⋅⋅⋅𝑗𝑑)

𝑝
𝑖=1 is the mutually

independent 𝑝-dimensional vector of random errors defined
on a common probability space (Ω,F,P). We assume that,
for all 1 ≤ 𝑗1 ≤ 𝑛1, . . . , 1 ≤ 𝑗𝑑 ≤ 𝑛𝑑, 𝐸(E𝑗1 ⋅⋅⋅𝑗𝑑

) =
0 ∈ R𝑝, and Cov(E𝑗1⋅⋅⋅𝑗𝑑

) = Σ = (𝜎𝑢V)
𝑝,𝑝
𝑢,V=1. Let Z𝑛1 ⋅⋅⋅𝑛𝑑

fl
(Z𝑗1 ⋅⋅⋅𝑗𝑑

)𝑛1 ,...,𝑛𝑑𝑗1=1,...,𝑗𝑑=1 be the 𝑝-dimensional pyramidal array of
random observations and let E𝑛1 ⋅⋅⋅𝑛𝑑

fl (E𝑗1 ⋅⋅⋅𝑗𝑑
)𝑛1 ,...,𝑛𝑑𝑗1=1,...,𝑗𝑑=1 be

the 𝑝-dimensional pyramidal array of random errors taking
values in the Euclidean space ∏𝑝

𝑖=1R
𝑛1×⋅⋅⋅×𝑛𝑑 . Then under 𝐻0

the observations can be represented by

Z𝑛1 ⋅⋅⋅𝑛𝑑
= (

𝑑𝑖

∑
𝑤=1

𝛽𝑖𝑤𝑓𝑖𝑤 (Ξ𝑛1⋅⋅⋅𝑛𝑑
))

𝑝

𝑖=1

+E𝑛1 ⋅⋅⋅𝑛𝑑
, (3)

where 𝑓𝑖𝑤(Ξ𝑛1⋅⋅⋅𝑛𝑑
) fl (𝑓𝑖𝑤((𝑗𝑘/𝑛𝑘)𝑑𝑘=1))

𝑛1 ,...,𝑛𝑑
𝑗1=1,...,𝑗𝑑=1. Under

the alternative 𝐻1 a multivariate nonparametric regression
model

Z𝑛1 ⋅⋅⋅𝑛𝑑
= g (Ξ𝑛1 ⋅⋅⋅𝑛𝑑

) +E𝑛1 ⋅⋅⋅𝑛𝑑
(4)

is assumed, where g(Ξ𝑛1⋅⋅⋅𝑛𝑑
) fl (g((𝑗𝑘/𝑛𝑘)𝑑𝑘=1))

𝑛1 ,...,𝑛𝑑
𝑗1=1,...,𝑗𝑑=1 ∈

∏𝑝
𝑖=1R

𝑛1×⋅⋅⋅×𝑛𝑑 . By applying the similar argument as in Chris-
tensen [2] and Johnson and Wichern [4], the 𝑝-dimensional
array of the least squares residuals of the observations is given
by the following component-wise projection:

R𝑛1 ⋅⋅⋅𝑛𝑑
fl (r𝑗1 ⋅⋅⋅𝑗𝑑)

𝑛1 ,...,𝑛𝑑

𝑗1 ,...,𝑗𝑑=1

fl Z𝑛1 ⋅⋅⋅𝑛𝑑
− pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑Z𝑛1 ⋅⋅⋅𝑛𝑑

,
(5)

with r𝑗1⋅⋅⋅𝑗𝑑 fl (𝑟𝑖,𝑗1 ⋅⋅⋅𝑗𝑑)
𝑝
𝑖=1, for 1 ≤ 𝑗𝑘 ≤ 𝑛𝑘, and 𝑘 =

1, . . . , 𝑑. Thereby, for 𝑖 = 1, . . . , 𝑝, we define W𝑖,𝑛1⋅⋅⋅𝑛𝑑
fl

[𝑓𝑖1(Ξ𝑛1 ⋅⋅⋅𝑛𝑑
), . . . , 𝑓𝑖𝑑𝑖

(Ξ𝑛1 ⋅⋅⋅𝑛𝑑
)] as the subspace of R𝑛1×⋅⋅⋅×𝑛𝑑

spanned by the arrays {𝑓𝑖1(Ξ𝑛1 ⋅⋅⋅𝑛𝑑
), . . . , 𝑓𝑖𝑑𝑖

(Ξ𝑛1 ⋅⋅⋅𝑛𝑑
)}. It is

worth mentioning that the Euclidean space R𝑛1×⋅⋅⋅×𝑛𝑑 is
furnished with the inner product denoted by ⟨⋅, ⋅⟩R𝑛1×⋅⋅⋅×𝑛𝑑 and
defined by

⟨A𝑛1⋅⋅⋅𝑛𝑑
,B𝑛1 ⋅⋅⋅𝑛𝑑

⟩
R𝑛1×⋅⋅⋅×𝑛𝑑

fl
𝑛1

∑
𝑗1=1

⋅ ⋅ ⋅
𝑛𝑑

∑
𝑗𝑑=1

𝑎𝑗1 ⋅⋅⋅𝑗𝑑
𝑏𝑗1 ⋅⋅⋅𝑗𝑑 , (6)

for every A𝑛1⋅⋅⋅𝑛𝑑
fl (𝑎𝑗1 ⋅⋅⋅𝑗𝑑

)𝑛1,...,𝑛𝑑𝑗1=1,...,𝑗𝑑=1, and B𝑛1 ⋅⋅⋅𝑛𝑑
fl

(𝑏𝑗1 ⋅⋅⋅𝑗𝑑)
𝑛1 ,...,𝑛𝑑
𝑗1=1,...,𝑗𝑑=1 ∈ R𝑛1×⋅⋅⋅×𝑛𝑑 .

Next we define the set-indexed partial sums operator.
Let A be the family of convex subset of I𝑑, and let 𝜂𝜆𝑑I

be
the Lebesgue pseudometric on A defined by 𝜂𝜆𝑑I

(𝐴1, 𝐴2) fl
𝜆𝑑
I (𝐴1Δ𝐴2), for 𝐴1, 𝐴2 ∈ A. Let C(A) be the set of

continuous functions onA under 𝜂𝜆𝑑I
. We embed the array of

the residual R𝑛1 ⋅⋅⋅𝑛𝑑
into a 𝑝-dimensional stochastic process

indexed by A by using the component-wise set-indexed
partial sums operator

V𝑛1⋅⋅⋅𝑛𝑑
:

𝑝

∏
𝑖=1

R𝑛1×⋅⋅⋅×𝑛𝑑 → C𝑝 (A) fl
𝑝

∏
𝑖=1

C (A) , (7)

such that, for any 𝐵 ∈ A,

V𝑛1 ⋅⋅⋅𝑛𝑑
(R𝑛1 ⋅⋅⋅𝑛𝑑

) (𝐵)

fl
𝑛1

∑
𝑗1=1

⋅ ⋅ ⋅
𝑛𝑑

∑
𝑗𝑑=1

√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑𝜆𝑑
I (𝐵 ∩ 𝐶𝑗1 ⋅⋅⋅𝑗𝑑

) r𝑗1 ⋅⋅⋅𝑗𝑑 ,
(8)

where, for 1 ≤ 𝑗1 ≤ 𝑛1, . . . , 1 ≤ 𝑗𝑑 ≤ 𝑛𝑑, 𝐶𝑗1 ⋅⋅⋅𝑗𝑑
fl ∏𝑑

𝑘=1((𝑗𝑘 −
1)/𝑛𝑘, 𝑗𝑘/𝑛𝑘]. Let us call this process the 𝑝-dimensional set-
indexed least squares residual partial sums process.The space
C𝑝(A) is furnishedwith the uniform topology induced by the
metric 𝜑 defined by

𝜑 (u,w) fl
𝑝

∑
𝑖=1

𝑢𝑖 − 𝑤𝑖
A =

𝑝

∑
𝑖=1

sup
𝐴∈A

𝑢𝑖 (𝐴) − 𝑤𝑖 (𝐴) , (9)

for u fl (𝑢𝑖)
𝑝
𝑖=1 and w fl (𝑤𝑖)

𝑝
𝑖=1 ∈ C𝑝(A).

We notice that, in the works of Bischoff and Somayasa
[9], Bischoff and Gegg [17], and Somayasa and Adhi Wibawa
[18], the limit process of the partial sums process of the
least squares residuals has been investigated by applying the
existing geometric method of Bischoff [11, 12]. However, the
method becomes not applicable anymore in deriving the limit
process ofV𝑛1 ⋅⋅⋅𝑛𝑑

(R𝑛1 ⋅⋅⋅𝑛𝑑
) as the dimension ofW𝑖,𝑛1⋅⋅⋅𝑛𝑑

varies.
Therefore, in this work, we attempt to adopt the vectorial
analog of Prohorov’s theorem; see, for example, Theorem 6.1
in Billingsley [19] for obtaining the limit process. For our
result we need to extend the ordinary partial sums formula
to 𝑝-dimensional case defined on I𝑑 as follows. Let 𝐾 fl
{1, 2, . . . , 𝑑} and 𝐶𝐾

𝑘 be the set of all 𝑘-combinations of the
set 𝐾, with 𝑘 = 1, . . . , 𝑑. For a chosen value of 𝑘, we denote
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the 𝑖th element of 𝐶𝐾
𝑘 by a 𝑘-tuple (𝑖(𝑘1), 𝑖(𝑘2), . . . , 𝑖(𝑘𝑘)), for

1 ≤ 𝑖 ≤ |𝐶𝐾
𝑘 |, where |𝐶𝐾

𝑘 | is the number of elements of 𝐶𝐾
𝑘

which is clearly given by

𝐶
𝐾
𝑘

 =
𝑑 (𝑑 − 1) (𝑑 − 2) ⋅ ⋅ ⋅ (𝑑 − 𝑘 + 1)

𝑘 (𝑘 − 1) (𝑘 − 2) ⋅ ⋅ ⋅ 1 . (10)

For example, let 𝐾 = {1, 2, 3}. Then, for 𝑘 = 1, we denote the
elements of 𝐶𝐾

1 as 1(𝑘1) fl 1, 2(𝑘1) fl 2, and 3(𝑘1) fl 3. In
a similar way, we denote the elements of 𝐶𝐾

2 which consists
of {(1, 2), (1, 3), (2, 3)}, respectively, by (1(𝑘1), 1(𝑘2)) fl (1, 2),
(2(𝑘1), 2(𝑘2)) fl (1, 3), and (3(𝑘1), 3(𝑘2)) fl (2, 3). Finally
the element of 𝐶𝐾

3 = {(1, 2, 3)} is sufficiently written
by (1(𝑘1), 1(𝑘2), 1(𝑘3)). Hence the 𝑝-dimensional ordinary
partial sums operator transforms any 𝑝-dimensional array
A𝑛1⋅⋅⋅𝑛𝑑

= (a𝑗1 ⋅⋅⋅𝑗𝑑
)𝑛1 ,...,𝑛𝑑𝑗1=1,...,𝑗𝑑=1 ∈ ∏𝑝

𝑖=1R
𝑛1×⋅⋅⋅×𝑛𝑑 to a continuous

function on I𝑑 defined by

T𝑛1⋅⋅⋅𝑛𝑑
(A𝑛1⋅⋅⋅𝑛𝑑

) (t) fl 1
√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

[𝑛1𝑡1]⋅⋅⋅[𝑛𝑑𝑡𝑑]

∑
𝑗1=1⋅⋅⋅𝑗𝑑=1

a𝑗1 ⋅⋅⋅𝑗𝑑

+
𝑑

∑
𝑘=1

|𝐶𝐾2 |

∑
𝑖=1

(
𝑘

∏
𝑢=1

(𝑡𝑖(𝑘𝑢) −
[𝑛𝑖(𝑘𝑢)

𝑡𝑖(𝑘𝑢)]
𝑛𝑖(𝑘𝑢)

))

⋅ √𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

(𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑) / (𝑛𝑖(𝑘1)
⋅ ⋅ ⋅ 𝑛𝑖(𝑘𝑑)

)

⋅
[𝑛1𝑡1],...,[𝑛𝑑𝑡𝑑]

∑
{𝑗1=1,...,𝑗𝑑=1}/{𝑗𝑖(𝑘1) ,...,𝑗𝑖(𝑘𝑑)

}

a𝑗1⋅⋅⋅𝑗𝑑|𝑗𝑖(𝑘1)=[𝑛𝑖(𝑘1)𝑡𝑖(𝑘1)]+1,...,𝑗𝑖(𝑘𝑑)
=[𝑛𝑖(𝑘𝑑)

𝑡𝑖(𝑘𝑑)
]+1,

(11)

for every t fl (𝑡1, . . . , 𝑡𝑑)⊤ ∈ I𝑑, where for positive integers
𝑏𝑢, 𝑏𝑢+1, . . . , 𝑏𝑢+𝑚 ∈ Z+ we define a notation

a𝑗1 ⋅⋅⋅𝑗𝑑
| 𝑗𝑢 = 𝑏𝑢, . . . , 𝑗𝑢+𝑚 = 𝑏𝑢+𝑚

fl a𝑗1 ,...,𝑗𝑢−1,𝑏𝑢 ,...,𝑏𝑢+𝑚 ,𝑗𝑢+𝑚+1,...,𝑗𝑑
.

(12)

It is clear that the partial sums process of the residuals
obtained using (11) is a special case of (8) since for every
t fl (𝑡1, . . . , 𝑡𝑑)⊤ ∈ I𝑑 it holds

T𝑛1⋅⋅⋅𝑛𝑑
(A𝑛1⋅⋅⋅𝑛𝑑

) (t) = V𝑛1 ⋅⋅⋅𝑛𝑑
(A𝑛1⋅⋅⋅𝑛𝑑

)(
𝑑

∏
𝑘=1

[0, 𝑡𝑘]) . (13)

It is worth noting that the extension of the study from
univariate to multivariate model and also the expansion of
the dimension of the lattice points are strongly motivated by
the prediction problem in mining industry and geosciences.
As for an example recently Tahir [20] presented data provided
by PT Antam Tbk (a mining industry in Southeast Sulawesi).
The data consist of a joint measurement of the percentage
of several chemical elements and substances such as Ni, Co,
Fe, MgO, SiO2, and CaO which are recorded in every point
of a three-dimensional lattice defined over the exploration
region of the company. Hence, by the inherent existence of
the correlation among the variables, the statistical analysis for
the involved variables must be conducted simultaneously.

There have been many methods proposed in the liter-
atures for testing 𝐻0. Most of them have been derived for
the case of W1 = ⋅ ⋅ ⋅ = W𝑝 under normally distributed
random error. Generalized likelihood ratio test which has
been leading to Wilk’s lambda statistic or variant of it can
be found in Zellner [1], Christensen [2], pp. 1–22, Anderson
[3], pp. 187–191, and Johnson and Wichern [4], pp. 395–398.
Mardia and Goodall [21] derived the maximum likelihood
estimation procedure for the parameters of the general
normal spatial multivariate model with stationary observa-
tions. This approach can be straightforwardly extended for
obtaining the associated likelihood ratio test in model check
for the model. Unfortunately, in the practice especially when
dealing with mining data, normal distribution is sometimes
found to be not suitable for describing the distributionmodel
of the observations, so that the test procedures mentioned
above are consequently no longer applicable. Asymptotic
method established inArnold [22] formultivariate regression
withW1 = ⋅ ⋅ ⋅ = W𝑝 can be generalized in such a way that it
is valid for the general model. As a topic in statistics it must
be well known. However, we cannot find literatures where the
topic has been studied.

The rest of the paper is organized as follows. In Section 2
we show that when𝐻0 is true Σ

−1/2V𝑛1⋅⋅⋅𝑛𝑑
(R𝑛1 ⋅⋅⋅𝑛𝑑

) converges
weakly to a projection of the 𝑝-dimensional set-indexed
Brownian sheet. The limit process is shown to be useful for
testing𝐻0 asymptotically based on the Kolmogorov-Smirnov
(KS-test) and Cramér-von Mises (CvM-test) functionals of
the set-indexed 𝑝-dimensional least squares residual partial
sum processes, defined, respectively, by

KS𝑛1 ⋅⋅⋅𝑛𝑑 ,A
fl sup

𝐴∈A

Σ
−1/2V𝑛1⋅⋅⋅𝑛𝑑

(R𝑛1 ⋅⋅⋅𝑛𝑑
) (𝐴)R𝑝

CvM𝑛1 ⋅⋅⋅𝑛𝑑 ,A

fl
1

𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

∑
𝐴∈A

Σ
−1/2V𝑛1⋅⋅⋅𝑛𝑑

(R𝑛1 ⋅⋅⋅𝑛𝑑
) (𝐴)

2

R𝑝
.

(14)

For both tests the rejection of 𝐻0 is for large value of the KS
and CvM statistics, respectively. Under localized alternative
the above sequence of random processes converges weakly
to the above limit process with an additional deterministic
trend (see Section 3). In Section 4, we define a consistent
estimator for Σ. In Section 5 we investigate a residual based
bootstrap method for the calibration of the tests. Monte
Carlo simulation for the purpose of studying the finite
sample behavior of the KS and CvM tests is reported in
Section 6. Application of the test procedure in real data is
presented in Section 7. The paper is closed in Section 8 with
conclusion and some remarks for future research. Auxiliary
results needed for deriving the limit process are presented in
the appendix. We note that all convergence results derived
throughout this paper which hold for 𝑛1, . . . , 𝑛𝑑 simultane-
ously go to infinity, that is, for 𝑛𝑘 → ∞, for all 𝑘 = 1, . . . , 𝑑;
otherwise they will be stated in some way. The notion of
convergence in distribution and convergence in probability
will be conventionally denoted by D→ and P→, respectively.
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2. The Limit of V𝑛1⋅⋅⋅𝑛𝑑
(R𝑛1⋅⋅⋅𝑛𝑑

) under 𝐻0

Let 𝐵 fl {𝐵(𝐴) : 𝐴 ∈ A} be the one-dimensional set-indexed
Brownian sheet having sample path in C(A). We refer the
reader to Pyke [23], Bass and Pyke [24], and Alexander and
Pyke [25] for the definition and the existence of 𝐵. Let us
consider a subspace of C(A) which is closely related to 𝐵,
defined by

H𝐵 fl {ℎV : A → R, ∃V ∈ 𝐿2 (𝜆𝑑
I) , s.t. ℎV (𝐴)

fl ∫
𝐴
V (t) 𝜆𝑑 (t)} .

(15)

Under the inner product and the norm defined by

⟨ℎV, ℎ𝑤⟩H𝐵 fl ∫
I𝑑
V (t) 𝑤 (t) 𝜆𝑑

I (t) ,

ℎV

2 fl ∫

I𝑑
V2 (t) 𝜆𝑑

I (t) ,
(16)

it is clear thatH𝐵 and 𝐿2(𝜆𝑑
I ) are isometric. For our result we

need to define subspaces W𝑖 and W𝑖H𝐵
associated with the

regression functions𝑓𝑖1, . . . , 𝑓𝑖𝑑𝑖
, whereW𝑖 fl [𝑓𝑖1, . . . , 𝑓𝑖𝑑𝑖

] ⊂
𝐿2(𝜆𝑑

I ) andW𝑖H𝐵
fl [ℎ𝑓𝑖1

, . . . , ℎ𝑓𝑖𝑑𝑖
] ⊂ H𝐵, for 𝑖 = 1, . . . , 𝑝.

Nowwe are ready to state the limit process of the sequence
of 𝑝-dimensional set-indexed residual partial sums processes
for the model specified under𝐻0.

Theorem 1. For 𝑖 = 1, . . . , 𝑝, let {𝑓𝑖1, . . . , 𝑓𝑖𝑑𝑖
} be an orthonor-

mal basis (ONB) of W𝑖. We assume that W𝑖 ⊆ W𝑖+1, for
𝑖 = 1, . . . , 𝑝 − 1. Let B𝑝 fl {(𝐵𝑖(𝐴))𝑝𝑖=1 : 𝐴 ∈ A}
be the 𝑝-dimensional set-indexed Brownian sheet with the
covariance function Cov(B𝑝(𝐴),B𝑝(𝐴)) fl 𝜆𝑑

I (𝐴 ∩ 𝐴)I𝑝, for
𝐴,𝐴 ∈ A, where I𝑝 is the 𝑝 × 𝑝 identity matrix. Suppose
{𝑓𝑖1, . . . , 𝑓𝑖𝑑𝑖

} are in C(I𝑑) ∩ BV𝐻(I𝑑), where C(I𝑑) is the
space of continuous functions on I𝑑 (see Definition A.4 for the
definition of BV𝐻(I𝑑)). Then under𝐻0 it holds that

Σ
−1/2V𝑛1⋅⋅⋅𝑛𝑑

(R𝑛1 ⋅⋅⋅𝑛𝑑
) D→ B𝐻0

𝑝,f fl B𝑝 − 𝑝𝑟∗
∏
𝑝
𝑖=1W𝑖H𝐵

B𝑝, (17)

where

𝑝𝑟∗
∏
𝑝
𝑖=1W𝑖H𝐵

B𝑝 fl (𝑝𝑟∗W𝑖H𝐵𝐵𝑖)
𝑝

𝑖=1
. (18)

Thereby 𝑝𝑟∗W𝑖H𝐵 is a projector such that, for every 𝑢 ∈ C(A)
and 𝐴 ∈ A,

(𝑝𝑟∗W𝑖H𝐵𝑢) (𝐴) fl
𝑑𝑖

∑
𝑗=1

⟨ℎ𝑓𝑖𝑗
, 𝑢⟩ ℎ𝑓𝑖𝑗

(𝐴) ,

𝑤ℎ𝑒𝑟𝑒 ⟨ℎ𝑓𝑖𝑗
, 𝑢⟩ fl ∫

(𝑅)

I𝑑
𝑓𝑖𝑗 (t) 𝑑𝑢 (t) .

(19)

For t fl (𝑡𝑘)𝑑𝑘=1 ∈ I𝑑, we set 𝑢(t) for 𝑢(∏𝑑
𝑘=1[0, 𝑡𝑘]), and

∫(𝑅) stands for the integral in the sense of Riemann-Stieltjes.

Moreover, the limit process B𝐻0
𝑝,f is a centered Gaussian process

with the covariance function given by

𝐾 (𝐴, 𝐶) fl diag(𝜆 (𝐴 ∩ 𝐶)

−
𝑑1

∑
𝑗=1

ℎ𝑓1𝑗
(𝐴) ℎ𝑓1𝑗

(𝐶) , . . . , 𝜆 (𝐴 ∩ 𝐶)

−
𝑑𝑝

∑
𝑗=1

ℎ𝑓𝑝𝑗
(𝐴) ℎ𝑓𝑝𝑗

(𝐶)) .

(20)

Proof. By applying the linear property of V𝑛1⋅⋅⋅𝑛𝑑
and

Lemma C.2, we have under𝐻0,

V𝑛1 ⋅⋅⋅𝑛𝑑
(R𝑛1 ⋅⋅⋅𝑛𝑑

) = V𝑛1 ⋅⋅⋅𝑛𝑑
(E𝑛1 ⋅⋅⋅𝑛𝑑

)

− pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵V𝑛1 ⋅⋅⋅𝑛𝑑
(E𝑛1 ⋅⋅⋅𝑛𝑑

) .
(21)

It can be shown by extending the uniform central limit
theorem studied in Pyke [23], Bass and Pyke [24], and
Alexander and Pyke [25] to its vectorial analog that the term
Σ

−1/2V𝑛1⋅⋅⋅𝑛𝑑
(E𝑛1 ⋅⋅⋅𝑛𝑑

) on the right-hand side of (21) converges
weakly toB𝑝.Therefore we only need to show that the second
term satisfies the weak convergence:

Z𝑛1⋅⋅⋅𝑛𝑑
fl Σ−1/2pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑HB

V𝑛1⋅⋅⋅𝑛𝑑
(E𝑛1 ⋅⋅⋅𝑛𝑑

) D→

𝑈 fl pr∗
∏
𝑝
𝑖=1W𝑖H𝐵

B𝑝,
(22)

where 𝑈 is a 𝑝-dimensional centered Gaussian process with
the covariance matrix given by

𝐾𝑈 (𝐴1, 𝐴2) = diag(
𝑑1

∑
𝑗=1

ℎ𝑓1𝑗
(𝐴1) ℎ𝑓1𝑗

(𝐴2) , . . . ,

𝑑𝑝

∑
𝑗=1

ℎ𝑓𝑝𝑗
(𝐴1) ℎ𝑓𝑝𝑗

(𝐴2)) , for 𝐴1, 𝐴2 ∈ A.

(23)

By Prohorov’s theorem it is sufficient to show that, for any
finite collection of convex sets 𝐴1, . . . , 𝐴𝑟 in A and real
numbers 𝑐1, . . . , 𝑐𝑟, with 𝑟 ≥ 1, it holds that

𝑟

∑
𝑘=1

𝑐𝑘Z𝑛1⋅⋅⋅𝑛𝑑
(𝐴𝑘)

D→
𝑟

∑
𝑘=1

𝑐𝑘𝑈(𝐴𝑘) , (24)

where the left-hand side has the covariance which can be
expressed as

Cov(
𝑟

∑
𝑘=1

𝑐𝑘Z𝑛1 ⋅⋅⋅𝑛𝑑
(𝐴𝑘))

=
𝑟

∑
𝑘=1

𝑟

∑
ℓ=1

𝑐𝑘𝑐ℓΣ−1/2 (𝐸 (𝐵𝑖 (𝐴𝑘) 𝐵𝑗 (𝐴ℓ)))
𝑝

𝑖,𝑗=1
Σ

−1/2,
(25)
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where 𝐵𝑖(𝐴𝑘) fl prW𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵V𝑛1 ⋅⋅⋅𝑛𝑑
(𝜀𝑖,𝑛1⋅⋅⋅𝑛𝑑)(𝐴𝑘), for 𝑖 =

1, . . . , 𝑝 and 𝑘 = 1, . . . , 𝑟. Let 𝑘 and ℓ be fixed. Then by
a simultaneous application of the definition of prW𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
(see Lemma C.3), (11), the definition of the Riemann-Stieljes
integral (cf. Stroock [26], pp. 7–17), and the independence of
the array {𝜀𝑖,𝑗1 ⋅⋅⋅𝑗𝑑 : 1 ≤ 𝑗𝑘 ≤ 𝑛𝑘}, we further get

𝐸 (𝐵𝑖 (𝐴𝑘) 𝐵𝑗 (𝐴ℓ)) =
𝑑𝑖

∑
𝑤=1

𝑑𝑗

∑
𝑤=1

∫
𝐴𝑘

�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑤 (t) 𝜆𝑑
I (𝑑t)

⋅ ∫
𝐴ℓ

�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑗𝑤

(t) 𝜆𝑑
I (𝑑t) 𝐸(∫

(𝑅)

I𝑑
�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑤 (t) 𝑑V𝑛1 ⋅⋅⋅𝑛𝑑

⋅ (𝜀𝑖,𝑛1 ⋅⋅⋅𝑛𝑑) (t) ∫
(𝑅)

I𝑑
�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑗𝑤

(t) 𝑑V𝑛1 ⋅⋅⋅𝑛𝑑
(𝜀𝑗,𝑛1⋅⋅⋅𝑛𝑑) (t))

=
𝑑𝑖

∑
𝑤=1

𝑑𝑗

∑
𝑤=1

∫
𝐴𝑘

�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑤 (t) 𝜆𝑑
I (𝑑t) ∫

𝐴ℓ

�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑗𝑤

(t)

⋅ 𝜆𝑑
I (𝑑t)

𝜎𝑖𝑗

𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

𝑛1 ,...,𝑛𝑑

∑
𝑗1=1,...,𝑗𝑑=1

�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑤 ( 𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

)

⋅ �̃�(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑗𝑤

( 𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

) .

(26)

By recalling Lemma C.3 the last expression clearly converges
to

𝜎𝑖𝑗

𝑑𝑖

∑
𝑤=1

𝑑𝑗

∑
𝑤=1

⟨𝑓𝑖𝑤, 𝑓𝑗𝑤⟩𝐿2(𝜆
𝑑
I )
ℎ𝑓𝑖𝑤

(𝐴𝑘) ℎ𝑓
𝑗𝑤

(𝐴ℓ)

= 𝜎𝑖𝑗

𝑑𝑖

∑
𝑤=1

ℎ𝑓𝑖𝑤
(𝐴𝑘) ℎ𝑓𝑗𝑤

(𝐴ℓ) .

(27)

Hence the matrix (𝐸(𝐵𝑖(𝐴𝑘)𝐵𝑗(𝐴ℓ)))
𝑝
𝑖,𝑗=1 converges element

wise to the symmetricmatrix which can be represented asΣ⊙
D, for a matrixD defined by
D

fl (

(

𝜅11 (𝐴𝑘, 𝐴ℓ) 𝜅12 (𝐴𝑘, 𝐴ℓ) ⋅ ⋅ ⋅ 𝜅1𝑝 (𝐴𝑘, 𝐴ℓ)
𝜅21 (𝐴𝑘, 𝐴ℓ) 𝜅22 (𝐴𝑘, 𝐴ℓ) ⋅ ⋅ ⋅ 𝜅2𝑝 (𝐴𝑘, 𝐴ℓ)

...
...

...
...

𝜅𝑝1 (𝐴𝑘, 𝐴ℓ) 𝜅𝑝2 (𝐴𝑘, 𝐴ℓ) ⋅ ⋅ ⋅ 𝜅𝑝𝑝 (𝐴𝑘, 𝐴ℓ)

)

)

(28)

with 𝜅𝑖𝑗(𝐴𝑘, 𝐴ℓ) fl ∑𝑑min{𝑖,𝑗}
𝑤=1 ℎ𝑓𝑖𝑤

(𝐴𝑘)ℎ𝑓𝑗𝑤
(𝐴ℓ), for 𝑖, 𝑗 =

1, . . . , 𝑝. Thereby ⊙ denotes the Hadarmard product defined,
for example, in Magnus and Neudecker [27], pp. 53-54. Since
Σ

−1/2(Σ ⊙D)Σ−1/2 = D ⊙ I𝑝, we successfully have shown that
Cov(∑𝑟

𝑘=1 𝑐𝑘Z𝑛1 ⋅⋅⋅𝑛𝑑
(𝐴𝑘)) converges to the following general

linear combination:
𝑟

∑
𝑘=1

𝑟

∑
ℓ=1

𝑐𝑘𝑐ℓ

⋅ diag(
𝑑1

∑
𝑤=1

ℎ𝑓1𝑤
(𝐴𝑘) ℎ𝑓1𝑤

(𝐴ℓ) , . . . ,
𝑑𝑝

∑
𝑤=1

ℎ𝑓𝑝𝑤
(𝐴𝑘) ℎ𝑓𝑝𝑤

(𝐴ℓ)) ,
(29)

which is actually the covariance of ∑𝑟
𝑘=1 𝑐𝑘𝑈(𝐴𝑘). Next we

observe that, by applying the definition of V𝑛1 ⋅⋅⋅𝑛𝑑
and the

definition of the Riemann-Stieltjes integral, we can also write
∑𝑟

𝑘=1 𝑐𝑘Z𝑛1⋅⋅⋅𝑛𝑑
(𝐴𝑘) as follows:

𝑟

∑
𝑘=1

𝑐𝑘Z𝑛1⋅⋅⋅𝑛𝑑
(𝐴𝑘)

=
𝑛1

∑
𝑗1=1

⋅ ⋅ ⋅
𝑛𝑑

∑
𝑗𝑑=1

Σ
−1/2 (

𝑟

∑
𝑘=1

Λ 𝑖 (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

; 𝐴𝑘))
𝑝

𝑖=1

,
(30)

where

Λ 𝑖 (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

; 𝐴𝑘) fl
𝑑𝑖

∑
𝑤=1

𝑐𝑘
√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

⋅ �̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑤 ( 𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

) 𝜀𝑖,𝑗1⋅⋅⋅𝑗𝑑ℎ�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑤

(𝐴𝑘) .

(31)

Let Γ𝑓 fl max1≤𝑤≤𝑑𝑖 ;1≤𝑖≤𝑝‖𝑓𝑖𝑤‖∞, 𝑀 fl max1≤𝑘≤𝑟|𝑐𝑘|, and
‖Σ−1/2‖ be the Euclidean norm of Σ−1/2. Then by considering
the stochastic independence of the array of the 𝑝-vector of
the random errors, it holds that

0 ≤ LZ𝑛1⋅⋅⋅𝑛𝑑
(𝜖) fl

𝑛1

∑
𝑗1=1

⋅ ⋅ ⋅
𝑛𝑑

∑
𝑗𝑑=1

𝐸

⋅ (

(

𝑟

∑
𝑘=1

Λ 𝑖 (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

; 𝐴𝑘))
𝑝

𝑖=1



2

R𝑝

⋅ 1
{
{
{


(

𝑟

∑
𝑘=1

Λ 𝑖 (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

; 𝐴𝑘))
𝑝

𝑖=1



2

R𝑝

≥ 𝜖
}
}
}
)

≤ (𝑟𝑀)2 (𝑑𝑝Γ2
𝑓)

2


Σ

−
1
2


2

𝐸(E𝑗1 ⋅⋅⋅𝑗𝑑


2

R𝑝

⋅ 1
{
{
{

E𝑗1 ⋅⋅⋅𝑗𝑑

R𝑝 ≥
𝜖√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

(𝑟𝑀) (𝑑𝑝Γ2
𝑓
)
}
}
}
) ∀𝜖 > 0,

(32)

in which by the well-known bounded convergence theorem
(cf. Athreya and Lahiri [28], pp. 57-58) the last term converges
to zero. Thus the Lindeberg condition is satisfied. Therefore
by the Lindeberg-Levy multivariate central limit theorem
studied, for example, in van der Vaart [29], pp. 16, it can be
concluded that ∑𝑟

𝑘=1 𝑐𝑘Z𝑛1 ⋅⋅⋅𝑛𝑑
(𝐴𝑘) converges in distribution

to ∑𝑟
𝑘=1 𝑐𝑘𝑈(𝐴𝑘), where ∑𝑟

𝑘=1 𝑐𝑘𝑈(𝐴𝑘) has the 𝑝-variate nor-
mal distribution with mean zero and the covariance given by
(29).

The tightness of Z𝑛1 ⋅⋅⋅𝑛𝑑
can be shown as follows. By the

definitionZ𝑛1 ⋅⋅⋅𝑛𝑑
can also be expressed as

Z𝑛1⋅⋅⋅𝑛𝑑

= Σ−1/2pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
Σ

1/2
Σ

−1/2V𝑛1⋅⋅⋅𝑛𝑑
(E𝑛1 ⋅⋅⋅𝑛𝑑

) .
(33)
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Since Σ−1/2V𝑛1⋅⋅⋅𝑛𝑑
(E𝑛1⋅⋅⋅𝑛𝑑

) is tight, hence by recalling Lemma
1 in Billingsley [19], pp. 38–40, it is sufficient to show that the
mappingΣ−1/2pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵

Σ
1/2 is continuous onC𝑝(A) for

every 𝑛1 ≥ 1, . . . , 𝑛𝑑 ≥ 1. Proposition C.4 finishes the proof.

Corollary 2. By Theorem 1 and the well-known continuous
mapping theorem (cf. Theorem 5.1 in Billingsley [19]) the
distribution of the statistics 𝐾𝑆𝑛1 ⋅⋅⋅𝑛𝑑 ,A

and 𝐶V𝑀𝑛1 ⋅⋅⋅𝑛𝑑 ,A
can be

approximated, respectively, by those of

𝐾𝑆 fl sup
𝐴∈A

(B𝑝 − 𝑝𝑟∗
∏
𝑝
𝑖=1W𝑖H𝐵

B𝑝) (𝐴)
R𝑝

𝐶V𝑀 fl ∫
I𝑑

(B𝑝 − 𝑝𝑟∗
∏
𝑝
𝑖=1W𝑖H𝐵

B𝑝) (𝐴)

2

R𝑝
𝑑𝐴.

(34)

Let �̃�1−𝛼 and �̃�1−𝛼 be the (1 − 𝛼)th quantile of the distributions
of𝐾𝑆 and 𝐶V𝑀, respectively. When𝐾𝑆𝑛1 ⋅⋅⋅𝑛𝑑,A

is used,𝐻0 will
be rejected at level 𝛼 if and only if 𝐾𝑆𝑛1⋅⋅⋅𝑛𝑑 ,A

≥ �̃�1−𝛼. Likewise
if 𝐶V𝑀𝑛1 ⋅⋅⋅𝑛𝑑 ,A

is used, then𝐻0 will be rejected at level 𝛼 if and
only if 𝐶V𝑀𝑛1 ⋅⋅⋅𝑛𝑑 ,A

≥ �̃�1−𝛼.

3. The Limit of V𝑛1⋅⋅⋅𝑛𝑑
(R𝑛1⋅⋅⋅𝑛𝑑

) under 𝐻1

The test procedures derived above are consistent in the sense
of Definition 11.1.3 in Lehmann and Romano [30]. That
is, the probability of rejection of 𝐻0 under the competing
alternative converges to 1. As an immediate consequence we
cannot observe the performance of the tests when the model
moves away from 𝐻0. Therefore, to be able to investigate the
behavior of the tests, we consider the localizedmodel defined
as follows:

Z𝑛1 ⋅⋅⋅𝑛𝑑
= 1

√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

g (Ξ𝑛1 ⋅⋅⋅𝑛𝑑) +E𝑛1 ⋅⋅⋅𝑛𝑑
. (35)

When 𝐻0 is true we get the similar least squares residuals as
given in Section 1. Therefore, observing Model (35), the test
problem will not be altered.

In the following theorem, we present the limit process
of the 𝑝-dimensional set-indexed partial sums process of the
residuals under𝐻1 associated with Model (35).

Theorem 3. For 𝑖 = 1, . . . , 𝑝, let {𝑓𝑖1, . . . , 𝑓𝑖𝑑𝑖
} be an ONB of

W𝑖 with W𝑖 ⊆ W𝑖+1, for 𝑖 = 1, . . . , 𝑝 − 1. If g = (𝑔𝑖)
𝑝
𝑖=1 ∈

∏𝑝
𝑖=1BVV(I𝑑) and {𝑓𝑖1, . . . , 𝑓𝑖𝑑𝑖

} ∈ C(I𝑑) ∩ BV𝐻(I𝑑) (see
Definition A.3 for the notion of BVV(I𝑑)), then, observing (35),
we have under𝐻1 that

Σ
−1/2V𝑛1 ⋅⋅⋅𝑛𝑑

(R𝑛1 ⋅⋅⋅𝑛𝑑
) D→ Σ−1/2 (I𝑝 − 𝑝𝑟∗

∏
𝑝
𝑖=1W𝑖H𝐵

) hg

+ B𝐻0
𝑝,f ,

(36)

where hg fl (ℎ𝑔𝑖
)𝑝𝑖=1 : A → C𝑝(A), with ℎ𝑔𝑖

(𝐴) fl
∫
𝐴
𝑔𝑖(t)𝜆𝑑

I (𝑑t).

Proof. Considering the linearity of V𝑛1⋅⋅⋅𝑛𝑑
and Lemma C.2,

when𝐻1 is true we have

Σ
−1/2V𝑛1⋅⋅⋅𝑛𝑑

(R𝑛1 ⋅⋅⋅𝑛𝑑
) = Σ−1/2 1

√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

⋅ V𝑛1 ⋅⋅⋅𝑛𝑑
(g (Ξ𝑛1⋅⋅⋅𝑛𝑑)) − Σ−1/2pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵

⋅ 1
√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

V𝑛1 ⋅⋅⋅𝑛𝑑
(g (Ξ𝑛1 ⋅⋅⋅𝑛𝑑))

+ Σ−1/2V𝑛1 ⋅⋅⋅𝑛𝑑
(E𝑛1 ⋅⋅⋅𝑛𝑑

)

− Σ−1/2pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵V𝑛1 ⋅⋅⋅𝑛𝑑
(E𝑛1 ⋅⋅⋅𝑛𝑑

) .

(37)

Since, for 𝑖 = 1, . . . , 𝑝, 𝑔𝑖 is in BVV(I𝑑), it can be shown
that (1/√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑)V𝑛1 ⋅⋅⋅𝑛𝑑

(g(Ξ𝑛1 ⋅⋅⋅𝑛𝑑))(𝐵) converges uniformly
tohg(𝐵), for every𝐵 ∈ A. Also the last two terms on the right-
hand side of the preceding equation converge in distribution
to B𝐻0

𝑝,f by Theorem 1. Thus to the rest we only need to show
that pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵 (1/√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑)V𝑛1 ⋅⋅⋅𝑛𝑑

(g𝑛1⋅⋅⋅𝑛𝑑
) converges to

pr∗
∏
𝑝
𝑖=1W𝑖HB

BV(I𝑑)

hg. By the definition of component-wise pro-

jection we have

pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
1

√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

V𝑛1 ⋅⋅⋅𝑛𝑑
(g (Ξ𝑛1 ⋅⋅⋅𝑛𝑑)) = (prW𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵

1
√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

V(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(g𝑖 (Ξ𝑛1 ⋅⋅⋅𝑛𝑑)))
𝑝

𝑖=1

= (
𝑑𝑖

∑
𝑗=1

(∫
(𝑅)

I𝑑
�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑗 (t) 𝑑 1

√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

V(𝑖)
𝑛1⋅⋅⋅𝑛𝑑

(g𝑖 (Ξ𝑛1⋅⋅⋅𝑛𝑑)) (t)) ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

)
𝑝

𝑖=1

= (
𝑑𝑖

∑
𝑗=1

( 1
𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

𝑛1

∑
𝑗1=1

⋅ ⋅ ⋅
𝑛𝑑

∑
𝑗𝑑=1

�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑗 ( 𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

)𝑔𝑖 (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

))ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

)
𝑝

𝑖=1

.

(38)

The right-hand side of the last expression is obtained directly
from the definition of the ordinary partial sums (11) and

the definition of the Riemann-Stieltjes integral on I𝑑. Since
�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑗 converges uniformly to𝑓𝑖𝑗 and𝑔𝑖 has bounded variation
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on I𝑑 for all 𝑖 and 𝑗, then the last expression clearly converges
component-wise to (∑𝑑𝑖

𝑗=1(∫
(𝑅)

I𝑑 𝑓𝑖𝑗(t)𝑑ℎ𝑔𝑖
(t))ℎ𝑓𝑖𝑗

)𝑝𝑖=1, which
can be written as pr∗

∏
𝑝
𝑖=1W𝑖HB

hg. We are done.

Corollary 4. By Theorem 3 the power function of the KS and
CvM tests at a level 𝛼 can now be approximated by computing
the probabilities of the form

P{sup
𝐴∈A


Σ

−1/2 (hg − 𝑝𝑟∗
∏
𝑝
𝑖=1W𝑖HB

BV(I𝑑)

hg) + B𝐻0
𝑝,f

R𝑝

≥ �̃�1−𝛼}

P{∫
I


Σ

−1/2 (hg − 𝑝𝑟∗
∏
𝑝
𝑖=1W𝑖HB

BV(I𝑑)

hg) + B𝐻0
𝑝,f



2

R𝑝

𝑑𝐴

≥ �̃�1−𝛼} ,

(39)

for a fixed g ∈ ∏𝑝
𝑖=1BVV(I𝑑), respectively. In Section 5 we

investigate the empirical power functions of the KS and CvM
tests by simulation.

4. Estimating the Population
Covariance Matrix

If the covariance matrix Σ is unknown, as it usually is, it is
impossible to useKS𝑛1 ⋅⋅⋅𝑛𝑑;A

andCvM𝑛1 ⋅⋅⋅𝑛𝑑;A
in practice.What

we propose to do is to employ a consistent estimate of Σ. We
need some further notations for expressing the residuals of
the model. For 𝑖 = 1, . . . , 𝑝, let 𝑍(𝑛1 ⋅⋅⋅𝑛𝑑)

𝑖 , 𝑔(𝑛1⋅⋅⋅𝑛𝑑)
𝑖 , and 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖

be (𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑)-dimensional column vectors defined by

𝑍(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑖 fl (𝑍𝑖 (

𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

))
𝑛1 ,...,𝑛𝑑

𝑗1=1,...,𝑗𝑑=1

∈ R
𝑛1⋅⋅⋅𝑛𝑑

𝑔(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑖 fl (𝑔𝑖 (

𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

))
𝑛1 ,...,𝑛𝑑

𝑗1=1,...,𝑗𝑑=1

∈ R
𝑛1 ⋅⋅⋅𝑛𝑑

𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖 fl (𝜀𝑖 (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

))
𝑛1 ,...,𝑛𝑑

𝑗1=1,...,𝑗𝑑=1

∈ R
𝑛1 ⋅⋅⋅𝑛𝑑 .

(40)

Furthermore, letZ(𝑛1⋅⋅⋅𝑛𝑑), g(𝑛1 ⋅⋅⋅𝑛𝑑), andE(𝑛1 ⋅⋅⋅𝑛𝑑) be (𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑) ×
𝑝-dimensional matrices whose 𝑖th column is given, respec-
tively, by the column vectors 𝑍(𝑛1 ⋅⋅⋅𝑛𝑑)

𝑖 , 𝑔(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑖 , and 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖 ,

𝑖 = 1, . . . , 𝑝. Then Model (35) can also be represented as
follows:

Z(𝑛1 ⋅⋅⋅𝑛𝑑) = 1
√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

g(𝑛1⋅⋅⋅𝑛𝑑) +E
(𝑛1 ⋅⋅⋅𝑛𝑑), (41)

where, for 𝑢, V = 1, . . . , 𝑝, Cov(𝜀(𝑛1⋅⋅⋅𝑛𝑑)𝑢 , 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)V ) = 𝜎𝑢VI𝑛1 ⋅⋅⋅𝑛𝑑 ,
with I𝑛1 ⋅⋅⋅𝑛𝑑 being the identity matrix in R(𝑛1 ⋅⋅⋅𝑛𝑑)×(𝑛1 ⋅⋅⋅𝑛𝑑).

Associated with the subspace W𝑖,𝑛1⋅⋅⋅𝑛𝑑
we define the

design matrix X(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑖 as an element of R(𝑛1 ⋅⋅⋅𝑛𝑑)×𝑑𝑖 whose

𝑢th column is given by the (𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑)-dimensional column
vector:

(𝑓𝑖𝑢 (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

))
𝑛1 ,...,𝑛𝑑

𝑗1=1,...,𝑗𝑑=1

∈ R
𝑛1 ⋅⋅⋅𝑛𝑑 ,

𝑢 = 1, . . . , 𝑑𝑖, 𝑖 = 1, . . . , 𝑝.
(42)

We denote the column space of X(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑖 by C(X(𝑛1 ⋅⋅⋅𝑛𝑑)

𝑖 ) ⊂
R(𝑛1 ⋅⋅⋅𝑛𝑑)×𝑑𝑖 for the sake of brevity. We also define the column-
wise projection of any matrix U(𝑛1 ⋅⋅⋅𝑛𝑑) fl (𝑈(𝑛1 ⋅⋅⋅𝑛𝑑)

1 , . . . ,
𝑈(𝑛1 ⋅⋅⋅𝑛𝑑)

𝑝 ) in R𝑛1 ⋅⋅⋅𝑛𝑑×𝑝 into the product space∏𝑝
𝑖=1C(X(𝑛1 ⋅⋅⋅𝑛𝑑)

𝑖 )
by

pr
∏
𝑝
𝑖=1C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑖 )

U(𝑛1 ⋅⋅⋅𝑛𝑑)

fl (pr
C(X(𝑛1⋅⋅⋅𝑛𝑑)1 )

𝑈(𝑛1 ⋅⋅⋅𝑛𝑑)
1 , . . . , pr

C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑝 )
𝑈(𝑛1 ⋅⋅⋅𝑛𝑑)

𝑝 ) .
(43)

A reasonable estimator of the covariance matrix Σ is denoted
by Σ̂𝑛1⋅⋅⋅𝑛𝑑 , defined by

Σ̂𝑛1⋅⋅⋅𝑛𝑑
fl

1
𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

(pr
∏
𝑝
𝑖=1C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑖 )⊥

Z(𝑛1 ⋅⋅⋅𝑛𝑑))
⊤

⋅ (pr
∏
𝑝
𝑖=1C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑖 )⊥

Z(𝑛1 ⋅⋅⋅𝑛𝑑)) ,
(44)

where

pr
∏
𝑝
𝑖=1C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑖 )⊥

fl I𝑛1 ⋅⋅⋅𝑛𝑑 − pr
∏
𝑝
𝑖=1C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑖 ) (45)

constitutes the component-wise orthogonal projector
into the orthogonal complement of the product space
∏𝑝

𝑖=1C(X(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑖 ).

Zellner [1] and Arnold [22] investigated the consistency
of Σ̂𝑛1 ⋅⋅⋅𝑛𝑑 toward Σ in the case of the multivariate regression
model with W1 = ⋅ ⋅ ⋅ = W𝑝. Some difficulties appear when
the situation is extended to the case ofW1 ̸= ⋅ ⋅ ⋅ ̸= W𝑝, since
it involves the problem of finding the limit of matrices with
the components given by inner products of two vectors.

Theorem 5. Suppose the localized model (41) is observed. If
𝐻0 is true, then, under the conditions of Theorem 1, we have
Σ̂𝑛1⋅⋅⋅𝑛𝑑

P→ Σ.

Proof. If𝐻0 is true, it can be easily shown that

(𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑) Σ̂𝑛1 ⋅⋅⋅𝑛𝑑 = (pr
∏
𝑝
𝑖=1C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑖 )⊥

E
(𝑛1 ⋅⋅⋅𝑛𝑑))

⊤

⋅ (pr
∏
𝑝
𝑖=1C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑖 )⊥

E
(𝑛1 ⋅⋅⋅𝑛𝑑)) .

(46)
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For technical reasonwe assumewithout lost of generality that
X(𝑛1 ⋅⋅⋅𝑛𝑑)

𝑖 is an orthogonal matrix, for 𝑖 = 1, . . . , 𝑝. Hence we
further get the representation

(𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑) Σ̂𝑛1⋅⋅⋅𝑛𝑑

= (𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)
⊤

𝑢 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)V )
𝑝,𝑝

𝑢,V=1

− ((X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤
V 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑢 )⊤ (X(𝑛1⋅⋅⋅𝑛𝑑)⊤

V 𝜀(𝑛1⋅⋅⋅𝑛𝑑)V ))
𝑝,𝑝

𝑢,V=1

− ((X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤
𝑢 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑢 )⊤ (X𝑛1⋅⋅⋅𝑛𝑑⊤

𝑢 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)V ))
𝑝,𝑝

𝑢,V=1

+ ((X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤
𝑢 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑢 )⊤ (X(𝑛1⋅⋅⋅𝑛𝑑)⊤

V 𝜀(𝑛1⋅⋅⋅𝑛𝑑)V ))
𝑝,𝑝

𝑢,V=1
.

(47)

Since (𝜀𝑢(𝑗1/𝑛1, . . . , 𝑗𝑑/𝑛𝑑)𝜀V(𝑗1/𝑛1, . . . , 𝑗𝑑/𝑛𝑑))
𝑝,𝑝
𝑢,V=1 are inde-

pendent and identically distributed random matrices with
mean Σ, by the well-known weak law of large numbers, we
get

1
𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

𝑛1

∑
𝑗1=1

⋅ ⋅ ⋅
𝑛𝑑

∑
𝑗𝑑=1

(𝜀𝑢 (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

)

⋅ 𝜀V (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

))
𝑝,𝑝

𝑢,V=1

P→ Σ.

(48)

Note that in the practice we consider the polynomial regres-
sion model. Hence, for every V = 1, . . . , 𝑝, the design matrix
X(𝑛1 ⋅⋅⋅𝑛𝑑)
V satisfies the so-called Huber condition (cf. Pruscha

[31], pp. 115–117). By this reason, for the rest of the terms,
we can immediately apply the technique proposed in Arnold
[22] to show X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤

V 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑢

D→ 𝑁𝑑V
(0, 𝜎𝑢𝑢I𝑑V

), for all 𝑢, V =
1, . . . , 𝑝. Therefore, we finally get the following component-
wise convergence:

1
𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

((X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤
V 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑢 )⊤

⋅ (X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤
V 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)V ))

𝑝,𝑝

𝑢,V=1

P→ O𝑝×𝑝

1
𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

((X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤
𝑢 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑢 )⊤

⋅ (X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤
𝑢 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)V ))

𝑝,𝑝

𝑢,V=1

P→ O𝑝×𝑝

1
𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

((X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤
𝑢 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)𝑢 )⊤

⋅ (X(𝑛1 ⋅⋅⋅𝑛𝑑)⊤
V 𝜀(𝑛1 ⋅⋅⋅𝑛𝑑)V ))

𝑝,𝑝

𝑢,V=1

P→ O𝑝×𝑝,

(49)

whereO𝑝×𝑝 is the 𝑝 × 𝑝-zero matrix.

Remark 6. Since Σ̂
−1/2

𝑛1 ⋅⋅⋅𝑛𝑑
V𝑛1 ⋅⋅⋅𝑛𝑑

(R𝑛1 ⋅⋅⋅𝑛𝑑
) =

Σ̂
−1/2

𝑛1 ⋅⋅⋅𝑛𝑑
Σ

1/2
Σ

−1/2V𝑛1⋅⋅⋅𝑛𝑑
(R𝑛1 ⋅⋅⋅𝑛𝑑

), without altering the
convergence result presented in Theorem 1, the population

variance-covariance matrix Σ can be directly replaced by the
consistence estimator Σ̂𝑛1 ⋅⋅⋅𝑛𝑑 .

5. Calibration of the Tests

The limits of the test statistics are not distribution-free andwe
need therefore calibration for the distribution of the statistical
tests. For the calibrationwe adapted the idea of residual based
bootstrap for multivariate regression studied in Shao and
Tu [32] for approximating the distributions of KS𝑛1 ⋅⋅⋅𝑛𝑑,A

and
CvM𝑛1⋅⋅⋅𝑛𝑑 ,A

.
For fixed 𝑛1, . . . , 𝑛𝑑, let 𝐹𝑛1⋅⋅⋅𝑛𝑑

be the empirical distribu-
tion function of the vectors of least squares residuals {r𝑗1 ⋅⋅⋅𝑗𝑑 −
R𝑛1 ⋅⋅⋅𝑛𝑑

: 1 ≤ 𝑗𝑘 ≤ 𝑛𝑘, 𝑘 = 1, . . . , 𝑑} centered at zero
vector, where R𝑛1 ⋅⋅⋅𝑛𝑑

fl (1/(𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑)) ∑
𝑛1
𝑗1=1 ⋅ ⋅ ⋅ ∑

𝑛𝑑
𝑗𝑑=1 r𝑗1 ⋅⋅⋅𝑗𝑑 .

Let E∗
𝑛1 ⋅⋅⋅𝑛𝑑

fl (E∗
𝑗1 ⋅⋅⋅𝑗𝑑

)𝑛1,...,𝑛𝑑𝑗1=1,...,𝑗𝑑=1 be an array of independent
and identically distributed random vectors sampled from
𝐹𝑛1 ⋅⋅⋅𝑛𝑑

and let ĝ(Ξ𝑛1⋅⋅⋅𝑛𝑑
) be the ordinary LSE of g(Ξ𝑛1⋅⋅⋅𝑛𝑑

),
where ĝ(Ξ𝑛1⋅⋅⋅𝑛𝑑

) = pr∏𝑝𝑖=1W𝑖Z𝑛1 ⋅⋅⋅𝑛𝑑
.Thenwe generate the array

of 𝑝-dimensional bootstrap observations which is denoted in
this paper by Z∗

𝑛1 ⋅⋅⋅𝑛𝑑
fl (Z∗

𝑗1 ⋅⋅⋅𝑗𝑑
)𝑛1,...,𝑛𝑑𝑗1=1,...,𝑗𝑑=1 through the model:

Z∗
𝑛1 ⋅⋅⋅𝑛𝑑

= pr∏𝑝𝑖=1W𝑖Z𝑛1 ⋅⋅⋅𝑛𝑑
+E

∗
𝑛1 ⋅⋅⋅𝑛𝑑

. (50)

Based on this model we get the array of 𝑝-dimensional
bootstrap least squares residuals which is given by the
component-wise projection of the bootstrap observations:

R∗
𝑛1 ⋅⋅⋅𝑛𝑑

fl (r∗𝑗1 ⋅⋅⋅𝑗𝑑)
𝑛1 ,...,𝑛𝑑

𝑗1=1,...,𝑗𝑑=1

= Z∗
𝑛1 ⋅⋅⋅𝑛𝑑

− pr∏𝑝𝑖=1W𝑖Z
∗
𝑛1 ⋅⋅⋅𝑛𝑑

.
(51)

Hence, the bootstrap analog of KS𝑛1⋅⋅⋅𝑛𝑑 ,A
and CvM𝑛1 ⋅⋅⋅𝑛𝑑 ,A

is

KS∗
𝑛1 ⋅⋅⋅𝑛𝑑 ,A

fl sup
𝐴∈A

Σ̂
∗−1/2

𝑛1 ⋅⋅⋅𝑛𝑑
V𝑛1⋅⋅⋅𝑛𝑑

(R∗
𝑛1 ⋅⋅⋅𝑛𝑑

) (𝐴)
R𝑝

CvM∗
𝑛1 ⋅⋅⋅𝑛𝑑,A

fl
1

𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

∑
𝐴∈A

Σ̂
∗−1/2

𝑛1 ⋅⋅⋅𝑛𝑑
V𝑛1⋅⋅⋅𝑛𝑑

(R∗
𝑛1 ⋅⋅⋅𝑛𝑑

) (𝐴)

2

R𝑝
,

(52)

where

Σ̂
∗

𝑛1⋅⋅⋅𝑛𝑑
fl

1
𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

(pr
∏
𝑝
𝑖=1C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑖 )⊥

Z∗(𝑛1 ⋅⋅⋅𝑛𝑑))
⊤

⋅ (pr
∏
𝑝
𝑖=1C(X(𝑛1⋅⋅⋅𝑛𝑑)𝑖 )⊥

Z∗(𝑛1 ⋅⋅⋅𝑛𝑑)) .
(53)

The question regarding the consistency of the
bootstrap approximation of the 𝑝-dimensional processes
Σ̂

∗−1/2

𝑛1⋅⋅⋅𝑛𝑑
V𝑛1 ⋅⋅⋅𝑛𝑑

(R∗
𝑛1 ⋅⋅⋅𝑛𝑑

)(𝐴) for Σ̂−1/2

𝑛1 ⋅⋅⋅𝑛𝑑
V𝑛1⋅⋅⋅𝑛𝑑

(R𝑛1 ⋅⋅⋅𝑛𝑑
)(𝐴) is

summarized in the following theorem.
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Theorem 7. Let {𝑓𝑖1, . . . , 𝑓𝑖𝑑𝑖
} be an ONB of W𝑖, for 𝑖 =

1, . . . , 𝑝. Suppose the conditions ofTheorem 1 are fulfilled.Then
under𝐻0 it holds that

Σ
∗−1/2V𝑛1 ⋅⋅⋅𝑛𝑑

(R∗
𝑛1 ⋅⋅⋅𝑛𝑑

) D→ B𝑝 − 𝑝𝑟∗
∏
𝑝
𝑖=1W𝑖H𝐵

B𝑝, (54)

where 𝑝𝑟∗
∏
𝑝
𝑖=1W𝑖H𝐵

B𝑝 is defined in Theorem 1.

Proof. We notice that {E∗
𝑗1 ⋅⋅⋅𝑗𝑑

: 1 ≤ 𝑗𝑘 ≤ 𝑛𝑘, 𝑘 =
1, . . . , 𝑑} are independent and identically distributed with
𝐸∗(E∗

1⋅⋅⋅1) = 0 and Cov∗(E∗
1⋅⋅⋅1) = Σ̂𝑛1 ⋅⋅⋅𝑛𝑑 − R𝑛1 ⋅⋅⋅𝑛𝑑

R⊤

𝑛1⋅⋅⋅𝑛𝑑
.

Hence, the invariance principle implies that (Σ̂𝑛1⋅⋅⋅𝑛𝑑 −
R𝑛1⋅⋅⋅𝑛𝑑

R⊤

𝑛1 ⋅⋅⋅𝑛𝑑
)−1/2V𝑛1⋅⋅⋅𝑛𝑑

(E∗
𝑛1 ⋅⋅⋅𝑛𝑑

) converges in distribution to
B𝑝. Hence under𝐻0 wehaveR∗

𝑛1 ⋅⋅⋅𝑛𝑑
= E∗

𝑛1 ⋅⋅⋅𝑛𝑑
−pr∏𝑝𝑖=1W𝑖E

∗
𝑛1 ⋅⋅⋅𝑛𝑑

and Σ∗−1/2
𝑛1 ⋅⋅⋅𝑛𝑑

can be written as

Σ
∗−1/2
𝑛1 ⋅⋅⋅𝑛𝑑

= Σ∗−1/2
𝑛1 ⋅⋅⋅𝑛𝑑

(Σ̂𝑛1 ⋅⋅⋅𝑛𝑑 − R𝑛1 ⋅⋅⋅𝑛𝑑
R⊤

𝑛1 ⋅⋅⋅𝑛𝑑
)
1/2

⋅ (Σ̂𝑛1⋅⋅⋅𝑛𝑑 − R𝑛1 ⋅⋅⋅𝑛𝑑
R⊤

𝑛1 ⋅⋅⋅𝑛𝑑
)
−1/2

,
(55)

where it can be shown easily that

R𝑛1⋅⋅⋅𝑛𝑑
R⊤

𝑛1⋅⋅⋅𝑛𝑑
= 𝑜P (1) ,

𝐸∗ (Σ̂∗𝑛1 ⋅⋅⋅𝑛𝑑) = Σ̂𝑛1 ⋅⋅⋅𝑛𝑑 + 𝑜P (1) ,
(56)

with 𝑜P(1) being the collection of the terms converging in
probability to O𝑝×𝑝. Then by recalling Theorem 5 and the
linearity of V𝑛1 ⋅⋅⋅𝑛𝑑

we only need to show that

(Σ̂𝑛1⋅⋅⋅𝑛𝑑 − R𝑛1⋅⋅⋅𝑛𝑑
R⊤

𝑛1 ⋅⋅⋅𝑛𝑑
)
−1/2

V𝑛1 ⋅⋅⋅𝑛𝑑
(pr∏𝑝𝑖=1W𝑖E

∗
𝑛1 ⋅⋅⋅𝑛𝑑

) D→

pr∗
∏
𝑝
𝑖=1W𝑖H𝐵

B𝑝.
(57)

The proof is established by imitating the steps of proving
convergence result of Theorem 1. We are done.

6. Simulation Study

In this section, we report on a simulation study designed to
investigate the finite sample size behavior of the KS and CvM
tests.We simulate amultivariatemodelwith four components
defined on the unit rectangle I2. The hypothesis under study
is 𝐻0 : g ∈ ∏4

𝑖=1W𝑖 against 𝐻1 : g ∉ ∏4
𝑖=1W𝑖, where W1 fl

[𝑓1], W2 fl [𝑓1, 𝑓2, 𝑓3], W3 fl [𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6], and
W4 fl [𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7]. Thereby we define 𝑓1(𝑡, 𝑠) fl
1, 𝑓2(𝑡, 𝑠) = 𝑡, 𝑓3(𝑡, 𝑠) = 𝑠, 𝑓4(𝑡, 𝑠) = 𝑡2, 𝑓5(𝑡, 𝑠) =
𝑠2, 𝑓6(𝑡, 𝑠) = 𝑡𝑠, and 𝑓7(𝑡, 𝑠) = 𝑡3, for (𝑡, 𝑠) ∈ I2. The
samples are generated from a localizedmodelY(ℓ/𝑛1, 𝑘/𝑛2) =
(1/√𝑛1𝑛2)g(ℓ/𝑛1, 𝑘/𝑛2)+E(ℓ/𝑛1, 𝑘/𝑛2)under the experimen-
tal design given by Ξ𝑛1×𝑛2

= {(ℓ/𝑛1, 𝑘/𝑛2) ∈ I2 : 1 ≤ ℓ ≤
𝑛1, 1 ≤ 𝑘 ≤ 𝑛2}, where g(ℓ/𝑛1, 𝑘/𝑛2) is defined as

g( ℓ
𝑛1

, 𝑘
𝑛2

) fl

((((((

(

5 + 𝜌 exp{ ℓ
𝑛1

𝑘
𝑛2

}

10 − 5 ℓ
𝑛1

+ 10 𝑘
𝑛2

+ 𝛾 exp{ ℓ
𝑛1

𝑘
𝑛2

}

10 + 20 ℓ
𝑛1

− 25 𝑘
𝑛2

+ 10ℓ
2

𝑛2
1

− 5𝑘
2

𝑛2
2

+ 20 ℓ
𝑛1

𝑘
𝑛2

+ 𝛿 exp{ ℓ
𝑛1

𝑘
𝑛2

}

30 − 30 ℓ
𝑛1

− 5 𝑘
𝑛2

+ 20ℓ
2

𝑛2
1

− 15𝑘
2

𝑛2
2

+ 10 ℓ
𝑛1

𝑘
𝑛2

+ 10ℓ
3

𝑛3
1

+ 𝜅 exp{ ℓ
𝑛1

𝑘
𝑛2

}

))))))

)

, (58)

for constants 𝜌, 𝛾, 𝛿, and 𝜅 determined prior to the generation
of the samples. For fixed 𝑛1 and 𝑛2 and 1 ≤ ℓ ≤ 𝑛1 and 1 ≤
𝑘 ≤ 𝑛2 the vector of random errorsE(ℓ/𝑛1, 𝑘/𝑛2) is generated
independently from the 4-variate normal distribution with
mean zero and variance-covariance matrix given by

Σ4×4 fl (

9 3 −6 12
3 26 −7 −11
−6 −7 9 7
12 −11 7 65

); (59)

however, we assume in the computation that Σ4×4 is
unknown. It is therefore estimated using Σ̂𝑛1𝑛2 defined in
Section 4. It is important to note that for computational rea-
son we restricted the index set to the Vapnick Chervonenkis

Classes (VCC) of subsets of I2 which is given by the family
of closed rectangle with the point (0, 0) as the essential point.
That is, the family {[0, 𝑡] × [0, 𝑠] : 0 ≤ 𝑡, 𝑠 ≤ 1}.

When 𝜌, 𝛾, 𝛿, and 𝜅 are set simultaneously to zero thenwe
get the samples which coincide to the model specified under
𝐻0. Conversely, when at least one of them takes a nonzero
value then we obtain the samples which can be regarded
as from the alternative whose corresponding samples are
generated by assigning nonzero values to either one of the
constants, 𝜌, 𝛾, 𝛿, and 𝜅, or the combinations of them.

Table 1 presents the empirical probabilities of rejection of
𝐻0 for 𝛼 = 0.05 and some selected values of 𝜌, 𝛾, 𝛿, and 𝜅.
The empirical powers of the KS and CvM tests are denoted
by �̂�KS and �̂�CvM, respectively. The notations �̂�KS and �̂�CvM
stand, respectively, for the standard deviation of the samples.
The critical values of the statistics KS𝑛1 ,𝑛2;A

andCvM𝑛1 ,𝑛2;A
are
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Table 1: The empirical probabilities of rejection of the KS and CvM tests for several selected values of 𝜌, 𝛾, 𝛿, and 𝜅. The sample sizes are
selected to 35 × 40 and 50 × 60. The simulation results are based on 10000 runs.

Sample size 𝜌 𝛾 𝛿 𝜅 �̂�KS �̂�KS �̂�CvM �̂�CvM

35 × 40

0 0 0 0 4.90% 1.31299 4.60% 2.52127
10 0 0 0 10.60% 1.52902 11.28% 4.11538
20 0 0 0 32.80% 1.71455 33.40% 6.26419
40 0 0 0 88.64% 1.86015 87.22% 10.37546
0 50 0 0 5.03% 1.28540 5.33% 2.63926
0 200 0 0 4.43% 1.22630 5.90% 2.57881
0 300 0 0 4.60% 1.18783 7.03% 2.52180
0 500 0 0 4.63% 0.90516 11.00% 2.32439
0 0 50 0 4.83% 1.27888 5.03% 2.59347
0 0 100 0 5.17% 1.29476 5.20% 2.68005
0 0 200 0 6.03% 1.28627 5.23% 2.53931
0 0 500 0 8.23% 1.27694 7.73% 2.71275
0 0 0 50 5.00% 1.27241 5.03% 2.69462
0 0 0 100 4.77% 1.23645 4.63% 2.56912
0 0 0 300 4.77% 1.27318 5.07% 2.53470
0 0 0 500 4.97% 1.26322 4.97% 2.55223
10 50 0 0 11.34% 1.55144 12.22% 3.82300
10 100 0 0 11.12% 1.49017 12.70% 3.81009
10 200 0 0 11.20% 1.52118 12.06% 3.71303
10 500 0 0 12.46% 1.10222 22.44% 2.87591
20 50 50 50 32.78% 1.76263 33.62% 5.75683
20 50 100 50 31.80% 1.71323 32.52% 5.98971
20 50 200 50 28.16% 1.68594 29.16% 5.79669
20 50 500 50 27.08% 1.52512 28.86% 4.92925
50 50 50 20 98.60% 1.86506 97.60% 13.43552
50 50 50 40 98.60% 1.83424 97.95% 13.10968
50 50 50 60 98.55% 1.91241 98.25% 13.49794

50 × 60

0 0 0 0 4.75% 1.26388 4.55% 2.52770
10 0 0 0 11.35% 1.48925 11.40% 3.70839
20 0 0 0 33.65% 1.75109 33.40% 5.82381
30 0 0 0 65.70% 1.82802 64.90% 8.31756
0 50 0 0 4.70% 1.26907 4.95% 2.60854
0 200 0 0 4.75% 1.23471 5.90% 2.53725
0 300 0 0 5.35% 1.19808 7.35% 2.62291
0 0 50 0 0.0485 1.27867 5.15% 2.57206
0 0 100 0 4.35% 1.23893 4.45% 2.40576
0 0 200 0 5.80% 1.27524 5.50% 2.62313
0 0 500 0 8.45% 1.28708 6.50% 2.64556
0 0 0 50 5.00% 1.28525 4.85% 2.71581
0 0 0 100 4.50% 1.25700 4.70% 2.57227
0 0 0 500 4.70% 1.25102 5.10% 2.51076
20 50 0 0 32.10% 1.70264 32.30% 5.72887
20 100 0 0 33.55% 1.74878 32.50% 5.76105
20 200 0 0 33.30% 1.72065 34.35% 5.71531
20 500 0 0 33.90% 1.61848 46.30% 5.77714
30 50 100 0 62.55% 1.78912 61.80% 8.08037
30 50 200 0 60.50% 1.79929 58.60% 7.76765
30 50 500 0 56.35% 1.78203 54.00% 7.76498
20 20 20 20 32.55% 1.70930 33.05% 5.60510
30 50 50 50 63.10% 1.86549 61.65% 8.63149
50 50 50 50 97.75% 1.88146 97.10% 13.27029
50 100 50 50 97.60% 1.89668 96.90% 13.30456
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Figure 1: The empirical power functions of the KS test (smooth line) and CvM test (dotted line) for the 4-variate model using 50 × 60-point
regular lattice. The simulation is under 10000 runs.

6.0742 and 7.9910 which are approximated by simulation. For
𝜌 = 𝛾 = 𝛿 = 𝜅 = 0 the values of �̂�KS and �̂�CvM fluctuate
around 0.05 as it should be. This means that, independent of
the selected number of the lattice points, both tests attain the
specified level of significance.

Furthermore, Figure 1 exhibits the graphs of the empirical
power function of the KS and CvM tests for 𝛼 = 0.05
associated with hypothesis 𝐻0 specified above against 𝐻1 :
𝑔𝑖 ∉ W𝑖, for 𝑖 = 1, 2, 3, 4. For the four cases we generate the
error vectors independently from the same 4-variate normal
distribution mentioned above. In the clockwise direction the
left-top panel presents the graphs of the power function for
testing 𝐻0 against 𝐻1 : 𝑔1 ∉ W1, the right-top panel is for
𝐻0 against 𝐻1 : 𝑔2 ∉ W2, the right-bottom is for 𝐻0 against

𝐻1 : 𝑔3 ∉ W3, and left-bottom is for𝐻0 against𝐻1 : 𝑔4 ∉ W4.
The common characteristic of the tests is that the power gets
larger as the the model moves away from 𝐻0. The KS tests
represented by smooth line tend to have slightly larger power.
However, somewhat unexpectedly, in the second case, the
CvM test has much larger power.

7. Example of Application

In this example, the proposed method is applied to a mining
data studied in Tahir [20]. As introduced in Section 1, the data
consist of a simultaneous measurement of the percentages of
Nickel (Ni), Cobalt (Co), Ferum (Fe), and other substances
like Calcium-Monoxide (CaO), Silicon-Dioxide (SiO2), and
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Table 2: Pearson’s correlation matrix of the percentages of CaO, log SiO2, logMgO, Ni, log Fe, and Co observed over a regular lattice of size
7 × 14. Source of data: Tahir [20].

CaO log SiO2 logMgO Ni log Fe Co
CaO 1.0000 0.3949 0.4045 −0.1285 −0.1167 −0.0665
log SiO2 0.3949 1.0000 0.8459 −0.0003 −0.5414 −0.4556
logMgO 0.4045 0.8459 1.0000 −0.1331 −0.4968 −0.3134
Ni −0.1285 −0.0003 −0.1331 1.0000 0.1652 0.1068
log Fe −0.1166 −0.5414 −0.4968 0.1652 1.0000 0.5937
Co −0.0665 −0.4556 −0.3134 0.1068 0.5937 1.0000

Magnesium-Monoxide (MgO). The sample was obtained by
drilling bores set according to a three-dimensional lattice of
size 7 × 14 × 10 with 7 equidistance rows running west to
east, 14 equidistance columns running south to north, and
10 equidistance depths from the surface of the earth to the
bottom. To simplify the computation of the test statistics
we consider the experimental design as a two-dimensional
lattice of size 7 × 14 by taking the average value of the
samples measured in the same position. We further assume
that the exploration region is given by a closed rectangle
so that by suitable rescaling it can be transformed into
a closed unit rectangle I2. Table 2 exhibits, respectively,
the pairs scatter plot and Pearson’s correlation coefficient
among the percentages of Ni, CaO, Co, the logarithm of
the percentages of SiO2 (log SiO2), MgO (logMgO), and
Fe (log Fe). By this reason a multivariate analysis must be
conducted in the statistical modelling taking into account the
unknown covariance matrix of the vector of the variables.
Furthermore, based on the individual scatter plot of the
samples which are not presented in this work, it can be
inferred that polynomials of lower order seem to be adequate
to approximate the population model. More precisely, let
Y fl (𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5, 𝑌6)⊤ be the vector of observations
representing the observed percentages of CaO, log SiO2,
logMgO, Co, Ni, and log Fe, respectively. We aim to test the
hypothesis

𝐻0 : E (𝑌)

=
(((((

(

𝛽11

𝛽21 + 𝛽22𝑡 + 𝛽23𝑠
𝛽31 + 𝛽32𝑡 + 𝛽33𝑠
𝛽41 + 𝛽42𝑡 + 𝛽43𝑠

𝛽51 + 𝛽52𝑡 + 𝛽53𝑠 + 𝛽54𝑡2 + 𝛽55𝑡𝑠 + 𝛽56𝑠2

𝛽61 + 𝛽62𝑡 + 𝛽63𝑠 + 𝛽64𝑡2 + 𝛽65𝑡𝑠 + 𝛽66𝑠2

)))))

)

,

0 ≤ 𝑡, 𝑠 ≤ 1,

(60)

for some unknown constants 𝛽𝑖𝑗, 𝑖 = 1, 2, 3, 4, 5, 6 and 𝑗 =
1, . . . , 𝑑𝑖, with 𝑑1 = 1, 𝑑2 = 𝑑3 = 𝑑4 = 3 and 𝑑5 = 𝑑6 = 6. For
this case we haveW1 fl [𝑓1],W2 = W3 = W4 fl [𝑓1, 𝑓2, 𝑓3],
and W5 = W6 fl [𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6], with 𝑓1(𝑡, 𝑠) fl 1,
𝑓2(𝑡, 𝑠) = 𝑡, 𝑓3(𝑡, 𝑠) = 𝑠, 𝑓4(𝑡, 𝑠) = 𝑡2, 𝑓5(𝑡, 𝑠) = 𝑡𝑠, and
𝑓6(𝑡, 𝑠) = 𝑠2.

We obtained the values KS7×14;A = 1.44109 and
CvM7×14;A = 0.936687 with the associated simulated 𝑝
values of 0.98350 and 0.93670, respectively. We notice that
in the computation we consider the VCC {[0, 𝑡] × [0, 𝑠] :
0 ≤ 𝑡, 𝑠 ≤ 1} as the index sets instead of A. Hence when
using the KS test as well as CvM test the hypothesis will
be not rejected for almost all commonly used values of 𝛼.
There exists a significant evidence that the assumed model
is appropriate for describing the functional relationship
between the experimental conditional and the percentages of
those elements.

In the practice some computational difficulties appear for
testing using our proposed method. First, to the knowledge
of the authors, the analytical formula for computing the
critical and 𝑝 values of the tests have been not yet available
in the literatures; therefore we need to approximate them
by simulation using computer. Second, although the test
procedures are established for a much larger family of setsA,
in the application the computation is always restricted to the
VCC of subsets of I𝑑 like that of {∏𝑑

𝑖=1[0, 𝑡𝑖] ⊂ I𝑑 : 0 < 𝑡𝑖 ≤
1, 𝑖 = 1, . . . , 𝑑} or {∏𝑑

𝑖=1[𝑠𝑖, 𝑡𝑖] ⊂ I𝑑 : 0 ≤ 𝑠𝑖 < 𝑡𝑖 ≤ 1, 𝑖 =
1, . . . , 𝑑}.

8. Concluding Remark

In this article we have developed an asymptotic method
for checking the validity of a general multivariate spatial
regression model by considering the multidimensional set-
indexed partial sums of the residuals. For the calibration of
the distribution of the test statistics we propose the residual
based bootstrap for multivariate regression. It is shown by
applying imitation technique that the residual bootstrap
resampling technique is consistent. In a simulation study the
finite sample size behavior of the KS and CvM statistics is
investigated in greater detail. For the first-order model CvM
test has much larger power, whereas for constant, second-
order, and third-order models the powers of the two tests are
almost the same.

Other possibilities of tests for multidimensional case can
be obtained by incorporating a sampling technique according
to an arbitrary experimental design. Sometimes because of
technical, economic, or ecological reason, practitioners will
not or cannot sample the observations equidistantly. One
possible approach is to sample according to a continuous
probability measure; see, for example, the sampling method
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proposed in Bischoff [11]. Under this concern we get the so-
called weighted KS and CvM tests which can be viewed as
generalization of the KS and CvM tests studied in this paper.

Instead of considering the least squares residuals of the
observations we can also define a test by directly investigating
the partial sums of the observations.The limit process will be
given by a type of signal plus a noise which is given by the
multidimensional set-indexed Brownian sheet. Observing
the limit process we can formulate likelihood ratio test based
on the Cameron-Matrin-Girsanov density formula of the
limit process. Establishing such type of test will be of our
concern in our future research project.

Appendix

A. Function of Bounded Variation on I𝑑

DefinitionA.1. Let𝑓 : R𝑑 → R be a real-valued functionwith
𝑑 variables. For 𝛼𝑘, 𝛽𝑘 ∈ R, let Δ𝛽𝑘

𝛼𝑘
𝑓 be a real-value function

defined on R𝑑, given by

Δ𝛽𝑘
𝛼𝑘
𝑓 fl 𝑓 (𝑥1, . . . , 𝑥𝑘−1, 𝛽𝑘, 𝑥𝑘+1, . . . , 𝑥𝑑)

− 𝑓 (𝑥1, . . . , 𝑥𝑘−1, 𝛼𝑘, 𝑥𝑘+1, . . . , 𝑥𝑑) ,
(A.1)

for 𝑘 = 1, . . . , 𝑑. Furthermore, for 𝛼 fl (𝛼𝑘)𝑑𝑘=1 and 𝛽 fl
(𝛽𝑘)𝑑𝑘=1 ∈ R𝑑, Δ𝛽

𝛼𝑓 is defined onR𝑑 recursively starting from
the last components of 𝛼 and 𝛽. More precisely,

Δ𝛽
𝛼𝑓 fl Δ𝛽1

𝛼1
(⋅ ⋅ ⋅ (Δ𝛽𝑑−1

𝛼𝑑−1
(Δ𝛽𝑑

𝛼𝑑
𝑓)) ⋅ ⋅ ⋅) . (A.2)

Let {𝑗1, . . . , 𝑗𝑑} be permutation of {1, 2, . . . , 𝑑}; then it holds
that

Δ𝛽
𝛼𝑓 = Δ𝛽𝑗1

𝛼𝑗1
(⋅ ⋅ ⋅ (Δ𝛽𝑗𝑑−1

𝛼𝑗𝑑−1
(Δ𝛽𝑗𝑑

𝛼𝑗𝑑
𝑓)) ⋅ ⋅ ⋅)

= Δ𝛽1
𝛼1

(⋅ ⋅ ⋅ (Δ𝛽𝑑−1
𝛼𝑑−1

(Δ𝛽𝑑
𝛼𝑑
𝑓)) ⋅ ⋅ ⋅) .

(A.3)

This means that the operation of Δ𝛽
𝛼𝑓 does not depend on

the order. By this reason we write Δ𝛽
𝛼𝑓 by Δ𝛽1

𝛼1
⋅ ⋅ ⋅ Δ𝛽𝑑−1

𝛼𝑑−1
Δ𝛽𝑑

𝛼𝑑
𝑓

ignoring the brackets. The reader is referred to Yeh [33] and
Elstrodt [34], pp. 44-45.

Definition A.2 (see Yeh [33]). Let Γ𝑘 fl {[𝑥𝑘0
, 𝑥𝑘1

],
[𝑥𝑘1

, 𝑥𝑘2
], . . . , [𝑥𝑘𝑀𝑘−1

, 𝑥𝑘𝑀𝑘
]} be a collection of 𝑀𝑘 rectangles

on the unit interval [0, 1] with 0 = 𝑥𝑘0
≤ 𝑥𝑘1

≤ ⋅ ⋅ ⋅ ≤ 𝑥𝑘𝑀𝑘
=

1, for 𝑘 = 1, . . . , 𝑑. The Cartesian product K fl ∏𝑑
𝑘=1Γ𝑘

which consists of 𝑀1 × 𝑀2 × ⋅ ⋅ ⋅ × 𝑀𝑑 rectangles is called
a nonoverlapping finite exact cover of I𝑑. The family of all
nonoverlapping finite exact cover of I𝑑 is denoted byJ(K).

Definition A.3 (see Yeh [33]). For 1 ≤ 𝑤𝑘 ≤ 𝑀𝑘, with 𝑘 =
1, . . . , 𝑑, let J𝑤1 ⋅⋅⋅𝑤𝑑 be the element of K defined by J𝑤1 ⋅⋅⋅𝑤𝑑 fl
∏𝑑

𝑘=1[𝑥𝑘𝑤𝑘−1
, 𝑥𝑘𝑤𝑘

]. Let 𝜓 : I𝑑 → R be a real-valued function
on I𝑑. Operator Δ J𝑤1⋅⋅⋅𝑤𝑑

acting on a function 𝜓 is defined by

Δ J𝑤1⋅⋅⋅𝑤𝑑
𝜓 fl Δ

𝑥1𝑤1
𝑥1𝑤1−1

Δ
𝑥2𝑤2
𝑥2𝑤2−1

⋅ ⋅ ⋅ Δ
𝑥𝑑𝑤𝑑
𝑥𝑑𝑤𝑑−1

𝜓. (A.4)

The variation of 𝜓 over the finite exact coverK is defined by

V (𝜓;K) fl
𝑀1

∑
𝑤1=1

⋅ ⋅ ⋅
𝑀𝑑

∑
𝑤𝑑=1

Δ J𝑤1⋅⋅⋅𝑤𝑑
𝜓
 . (A.5)

Accordingly, the total variation of 𝜓 over I𝑑 is defined by

𝑉(𝜓; I𝑑) fl sup
K∈J(K)

V (𝜓;K) . (A.6)

Furthermore, function 𝜓 is said to have bounded variation in
the sense of Vitaly on I𝑑 if there exists a real number 𝑀 > 0
such that 𝑉(𝜓; I𝑑) ≤ 𝑀 for some real number 𝑀 > 0. The
class of such functions is denoted by BVV(I𝑑).

Definition A.4 (see Yeh [33]). Let (𝑥𝑘)𝑑𝑘=1 be a variable in I𝑑.
For fixed 𝑘, let I𝑘 fl [0, 1]𝑘 be a 𝑘-dimensional unit closed
rectangle constructed in the following way. We choose 𝑑 −
𝑘 components of the variable (𝑥𝑘)𝑑𝑘=1. For each choice from
all possible elements of the set 𝐶𝑑

𝑑−𝑘, we set each 𝑥𝑖 with 0
or 1 and let the remaining 𝑘 variables satisfy 0 ≤ 𝑥𝑖 ≤ 1.
Then for each 𝑘 we get 2𝑑−𝑘|𝐶𝑑

𝑑−𝑘| unit closed rectangles I𝑘.
For convention we denote the collection of all 2𝑑−𝑘|𝐶𝑑

𝑑−𝑘| of
closed rectangles I𝑘 byB𝑘 and the 𝑗th element ofB𝑘 will be
denoted by I𝑘𝑗 . Function 𝜓 is said to have bounded variation
in the sense of Hardy on I𝑑, if and only if for each 𝑘 = 1, . . . , 𝑑
and 𝑗 = 1, . . . , 2𝑑−𝑘|𝐶𝑑

𝑑−𝑘| there exists a real number 𝑀𝑗𝑘 > 0
such that 𝑉(𝜓I𝑘𝑗 (⋅); I

𝑘
𝑗 ) ≤ 𝑀𝑗𝑘, where, for 𝑘 = 1, . . . , 𝑑 and 𝑗 =

1, . . . , 2𝑑−𝑘|𝐶𝑑
𝑑−𝑘|,𝜓I𝑘𝑗 (⋅) is a functionwith 𝑘 variables obtained

from the function𝜓(𝑥1, 𝑥2 . . . , 𝑥𝑑) by setting the𝑑−𝑘 selected
variables with 0 or 1, whereas the remaining 𝑘 variables lie in
the interval [0, 1]. The class of such functions will be denoted
by BV𝐻(I𝑑).

B. Integration by Parts on I𝑑

For family B𝑘 defined in Definition A.4, let I fl ⋃𝑑
𝑘=0 B

𝑘,
where, for 𝑘 = 0, the familyB0 is a collection of 2𝑑 different
points in I𝑑. As an example, for 𝑑 = 2, we have B0 = {I01 =
(0, 0), I02 = (0, 1), I03 = (1, 0), I04 = (1, 1)}. For each 𝑘 = 1, . . . , 𝑑
and 𝑗 = 1, . . . , 2𝑑−𝑘|𝐶𝑑

𝑘−𝑑|, let ♯(I𝑘𝑗 ) be the number of 1’s
appearing in I𝑘𝑗 . Next, let 𝜑 and 𝜓 be defined on I𝑑. If 𝜑 is
Riemann-Stieltjes integrable with respect to𝜓 on I𝑘𝑗 ∈ B𝑘, we

denote the integral by ∫(𝑅)

I𝑘𝑗
𝜑𝑑𝑘𝜓. For 𝑘 = 0, it is understood

that ∫(𝑅)

I0𝑗
𝜑𝑑0𝜓 is defined as the product of 𝜑 and 𝜓 at that

point of I0𝑗 (see Yeh [33]).

Theorem B.1 (integration by parts (see Yeh [33])). Let 𝜑 be
Riemann-Stieltjes integrable with respect to 𝜓 on each member
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of I. Then 𝜓 is Riemann-Stieltjes integrable with respect to 𝜑
on I𝑑, and we have the formula

∫
(𝑅)

I𝑑
𝜓 (𝑥1, . . . , 𝑥𝑑) 𝑑𝜑 (𝑥1, . . . , 𝑥𝑑)

=
𝑑

∑
𝑘=0

2𝑑−𝑘|𝐶𝑑𝑑−𝑘|

∑
𝑗=1

(−1)(𝑑−♯(I𝑘𝑗 )) ∫
(𝑅)

I𝑘𝑗
𝜑𝑑𝑘𝜓.

(B.1)

Moreover, if𝜓 have bounded variation in the sense of Hardy on
I𝑑 and 𝜑 is continuous on I𝑑, then we have the inequality


∫

(𝑅)

I𝑑
𝜓 (𝑥1, . . . , 𝑥𝑑) 𝑑𝜑 (𝑥1, . . . , 𝑥𝑑)



≤ 𝜑
∞ (2𝑑 𝜓

∞ +
𝑑

∑
𝑘=1

2𝑑−𝑘|𝐶𝑑𝑑−𝑘|

∑
𝑗=1

𝑉(𝜓I𝑘𝑗 (⋅) ; I
𝑘
𝑗)) .

(B.2)

C. Some Property of the Partial
Sums Operator

Lemma C.1 (see Bischoff and Somayasa [9]). For every one-
dimensional pyramidal array 𝐴𝑛1 ⋅⋅⋅𝑛𝑑

fl (𝑎𝑗1 ⋅⋅⋅𝑗𝑑
)𝑛1 ,...,𝑛𝑑𝑗1=1,...,𝑗𝑑=1,

it holds that V(𝑖)
𝑛1⋅⋅⋅𝑛𝑑

(𝐴𝑛1 ⋅⋅⋅𝑛𝑑
) ∈ H𝐵, where H𝐵 is the

subspace defined in (15). Furthermore, for any arrays𝐴𝑛1⋅⋅⋅𝑛𝑑
fl

(𝑎𝑗1 ⋅⋅⋅𝑗𝑑
)𝑛1 ,...,𝑛𝑑𝑗1=1,...,𝑗𝑑=1 and 𝐵𝑛1 ⋅⋅⋅𝑛𝑑

fl (𝑏𝑗1⋅⋅⋅𝑗𝑑)
𝑛1 ,...,𝑛𝑑
𝑗1=1,...,𝑗𝑑=1, we have

⟨𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝐴𝑛1 ⋅⋅⋅𝑛𝑑
) , 𝑉(𝑖)

𝑛1 ⋅⋅⋅𝑛𝑑
(𝐵𝑛1 ⋅⋅⋅𝑛𝑑

)⟩
H𝐵

= ⟨𝐴𝑛1 ⋅⋅⋅𝑛𝑑
, 𝐵𝑛1 ⋅⋅⋅𝑛𝑑

⟩
R𝑛1×⋅⋅⋅×𝑛𝑑

,
(C.1)

where 𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

is the one-dimensional component of the partial
sums operator V𝑛1⋅⋅⋅𝑛𝑑

.

Proof. Associated with 𝐴𝑛1 ⋅⋅⋅𝑛𝑑
we can construct a step func-

tion 𝑠𝐴𝑛1⋅⋅⋅𝑛𝑑 : I
𝑑 → R defined by

𝑠𝐴𝑛1⋅⋅⋅𝑛𝑑 (t) fl
𝑛1

∑
𝑗1=1

⋅ ⋅ ⋅
𝑛𝑑

∑
𝑗𝑑=1

𝑎𝑗1 ⋅⋅⋅𝑗𝑑
1𝐶𝑗1⋅⋅⋅𝑗𝑑

(t) , t ∈ I𝑑, (C.2)

where 𝐶𝑗1 ⋅⋅⋅𝑗𝑑
= ∏𝑑

𝑘=1((𝑗𝑘 − 1)/𝑛𝑘, 𝑗𝑘/𝑛𝑘], for 1 ≤ 𝑗𝑘 ≤ 𝑛𝑘. For
any 𝐵 ∈ A, it holds that

ℎ𝑠𝐴𝑛1⋅⋅⋅𝑛𝑑
(𝐵) fl ∫

𝐵
𝑠𝐴𝑛1⋅⋅⋅𝑛𝑑 (t) 𝜆

𝑑
I (𝑑t)

= 1
√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑

𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝐴𝑛1 ⋅⋅⋅𝑛𝑑
) (𝐵) .

(C.3)

Hence, 𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝐴𝑛1 ⋅⋅⋅𝑛𝑑
) ∈ H𝐵 having √𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑𝑠𝐴𝑛1⋅⋅⋅𝑛𝑑 as the

𝐿2(𝜆𝑑
I ) density. By the definition of the inner product ⟨⋅, ⋅⟩H𝐵 ,

we further get

⟨𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝐴𝑛1 ⋅⋅⋅𝑛𝑑
) , 𝑉(𝑖)

𝑛1⋅⋅⋅𝑛𝑑
(𝐵𝑛1 ⋅⋅⋅𝑛𝑑

)⟩
H𝐵

= ∫
I𝑑
√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑𝑠𝐴𝑛1⋅⋅⋅𝑛𝑑 (t) √𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑𝑠𝐵𝑛1⋅⋅⋅𝑛𝑑 (t)

⋅ 𝜆𝑑
I (𝑑t) =

𝑛1

∑
𝑗1=1

⋅ ⋅ ⋅
𝑛𝑑

∑
𝑗𝑑=1

𝑎𝑗1 ⋅⋅⋅𝑗𝑑
𝑏𝑗1⋅⋅⋅𝑗𝑑

= ⟨𝐴𝑛1 ⋅⋅⋅𝑛𝑑
, 𝐵𝑛1 ⋅⋅⋅𝑛𝑑

⟩
R𝑛1×⋅⋅⋅×𝑛𝑑

.

(C.4)

Lemma C.2 (see Bischoff and Somayasa [9]). For any
𝐴𝑛1 ⋅⋅⋅𝑛𝑑

fl (𝑎𝑗1 ⋅⋅⋅𝑗𝑑
)𝑛1 ,...,𝑛𝑑𝑗1=1,...,𝑗𝑑=1 in R𝑛1×⋅⋅⋅×𝑛𝑑 it holds that, for 𝑖 =

1, . . . , 𝑝,

𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝑝𝑟W𝑖,𝑛1⋅⋅⋅𝑛𝑑𝐴𝑛1 ⋅⋅⋅𝑛𝑑
)

= 𝑝𝑟W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵𝑉
(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝐴𝑛1 ⋅⋅⋅𝑛𝑑
) ,

(C.5)

where

W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
fl {𝑉(𝑖)

𝑛1 ⋅⋅⋅𝑛𝑑
(𝐵𝑛1 ⋅⋅⋅𝑛𝑑

) | 𝐵𝑛1 ⋅⋅⋅𝑛𝑑
∈ W𝑖,𝑛1⋅⋅⋅𝑛𝑑

}

⊂ H𝐵.
(C.6)

Furthermore, by the definition of the component-wise projec-
tion, we finally get

V𝑛1⋅⋅⋅𝑛𝑑
(𝑝𝑟∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑A𝑛1⋅⋅⋅𝑛𝑑

)

= (𝑝𝑟W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
𝑉(𝑖)

𝑛1 ⋅⋅⋅𝑛𝑑
(𝐴𝑛1 ⋅⋅⋅𝑛𝑑

))
𝑝

𝑖=1

,
(C.7)

for every 𝑝-dimensional array A𝑛1⋅⋅⋅𝑛𝑑
∈ ∏𝑝

𝑖=1R
𝑛1×⋅⋅⋅×𝑛𝑑 .

Proof. For fixed 𝑖, let {𝑓𝑖1(Ξ𝑛1 ⋅⋅⋅𝑛𝑑
), . . . , 𝑓𝑖𝑑𝑖

(Ξ𝑛1 ⋅⋅⋅𝑛𝑑
)}be anONB

of W𝑖,𝑛1⋅⋅⋅𝑛𝑑
. Then by Lemma C.1 the corresponding ONB of

W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
is given by the set

{V(𝑖)
𝑛1⋅⋅⋅𝑛𝑑

(𝑓𝑖1 (Ξ𝑛1⋅⋅⋅𝑛𝑑
)) , . . . ,V(𝑖)

𝑛1 ⋅⋅⋅𝑛𝑑
(𝑓𝑖𝑑𝑖

(Ξ𝑛1⋅⋅⋅𝑛𝑑
))} . (C.8)

Hence, by the linearity of V(𝑖)
𝑛1⋅⋅⋅𝑛𝑑

and by Lemma C.1, we get

𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(prW𝑖,𝑛1⋅⋅⋅𝑛𝑑𝐴𝑛1 ⋅⋅⋅𝑛𝑑
)

= 𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(
𝑑𝑖

∑
𝑗=1

⟨𝑓𝑖𝑗 (Ξ𝑛1⋅⋅⋅𝑛𝑑
) , 𝐴𝑛1 ⋅⋅⋅𝑛𝑑

⟩
R𝑛1×⋅⋅⋅×𝑛𝑑

⋅ 𝑓𝑖𝑗 (Ξ𝑛1⋅⋅⋅𝑛𝑑
))
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=
𝑑𝑖

∑
𝑗=1

⟨𝑓𝑖𝑗 (Ξ𝑛1⋅⋅⋅𝑛𝑑
) , 𝐴𝑛1 ⋅⋅⋅𝑛𝑑

⟩
R𝑛1×⋅⋅⋅×𝑛𝑑

⋅ 𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝑓𝑖𝑗 (Ξ𝑛1⋅⋅⋅𝑛𝑑
))

=
𝑑𝑖

∑
𝑗=1

⟨𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝑓𝑖𝑗 (Ξ𝑛1 ⋅⋅⋅𝑛𝑑
)) , 𝑉(𝑖)

𝑛1 ⋅⋅⋅𝑛𝑑
(𝐴𝑛1 ⋅⋅⋅𝑛𝑑

)⟩
H𝐵

⋅ 𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝑓𝑖𝑗 (Ξ𝑛1⋅⋅⋅𝑛𝑑
))

= prW𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
𝑉(𝑖)

𝑛1 ⋅⋅⋅𝑛𝑑
(𝐴𝑛1 ⋅⋅⋅𝑛𝑑

) .

(C.9)

LemmaC.3 (see Bischoff and Somayasa [9]). Let {�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖1 , . . . ,
�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)
𝑖𝑑𝑖

} be an orthonormal set in 𝐿2(𝜆𝑑
I ) obtained by the

Gram-Schmidt procedure from the step functions:

𝑠(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑗 (t)

fl
𝑛1

∑
𝑗1=1

⋅ ⋅ ⋅
𝑛𝑑

∑
𝑗𝑑=1

𝑓𝑖𝑗 (
𝑗1
𝑛1

, . . . , 𝑗𝑑𝑛𝑑

) 1𝐶𝑗1⋅⋅⋅𝑗𝑑
(t) ,

t ∈ I𝑑,

(C.10)

for 𝑖 = 1, . . . , 𝑝, and 𝑗 = 1, . . . , 𝑑𝑖.Then {ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖1

, . . . , ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑑𝑖

} is
an ONB ofW𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵

. The projection of any function 𝑢𝑛 ∈ H𝐵

intoW𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
with respect to this basis is given by

𝑝𝑟W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
𝑢𝑛 =

𝑑𝑖

∑
𝑗=1

⟨ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

, 𝑢𝑛⟩
H𝐵

ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

=
𝑑𝑖

∑
𝑗=1

∫
(𝑅)

I𝑑
�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑗 (t) 𝑑𝑢 (t) ℎ

�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

.

(C.11)

Moreover, if, for 𝑖 = 1, . . . , 𝑝 and 𝑗 = 1, . . . , 𝑑𝑖,𝑓𝑖𝑗 is continuous
on I𝑑 and {𝑓𝑖1, . . . , 𝑓𝑖𝑑𝑖

} is an ONB of W𝑖, then ‖�̃�(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑗 −
𝑓𝑖𝑗‖∞ → 0 as 𝑛1, . . . , 𝑛𝑑 → ∞. Consequently, it also holds
that ‖ℎ

�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

− ℎ𝑓𝑖𝑗
‖A → 0, for 𝑛1, . . . , 𝑛𝑑 → ∞.

Proof. Since ℎ
𝑠
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

= (1/√𝑛1 ⋅ ⋅ ⋅ 𝑛𝑑)𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

(𝑓𝑖𝑗(Ξ𝑛1⋅⋅⋅𝑛𝑑
)), by

the linearity of 𝑉(𝑖)
𝑛1 ⋅⋅⋅𝑛𝑑

it follows that {ℎ
𝑠
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖1

, . . . , ℎ
𝑠
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑑𝑖

}
builds a basis forW𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵

whenever the set {𝑓𝑖1(Ξ𝑛1⋅⋅⋅𝑛𝑑
), . . . ,

𝑓𝑖𝑑𝑖
(Ξ𝑛1 ⋅⋅⋅𝑛𝑑

)} is a basis of W𝑖,𝑛1⋅⋅⋅𝑛𝑑
. Furthermore, if 𝑓𝑖𝑗 is

continuous on I𝑑, it can be shown that ‖𝑠(𝑛1 ⋅⋅⋅𝑛𝑑)𝑖𝑗 − 𝑓𝑖𝑗‖∞ → 0
as 𝑛1, . . . , 𝑛𝑑 → ∞. Hence, by the definition of the Gram-
Schmidt process and also by the continuity of ‖⋅‖𝐿2(𝜆𝑑I ), we can
further show that ‖ℎ

�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

− ℎ𝑓𝑖𝑗
‖A → 0 as 𝑛1, . . . , 𝑛𝑑 → ∞.

The last assertion is immediately obtained from the definition
of ℎ

�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

and ℎ𝑓𝑖𝑗
.

Proposition C.4. The 𝑝-dimensional projection
𝑝𝑟∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵

is continuous uniformly on the space of

continuous functionC𝑝(A) for all 𝑛1 ≥ 1, . . . , 𝑛𝑑 ≥ 1.

Proof. Let w1 fl (𝑤1𝑖)
𝑝
𝑖=1 and w2 fl (𝑤2𝑖)

𝑝
𝑖=1 be any func-

tions in C𝑝(A). Then, by the definition and the inequality
presented inTheorem B.1, for any 𝐴 ∈ A we have

(pr∏
𝑝
𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵

w1) (𝐴) − (pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
w2)

⋅ (𝐴)
 ≤

𝑝

∑
𝑖=1

𝑑𝑖

∑
𝑗=1

⟨ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

, 𝑤1𝑖⟩ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

(𝐴)

− ⟨ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

, 𝑤2𝑖⟩ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

(𝐴)


=
𝑝

∑
𝑖=1

𝑑𝑖

∑
𝑗=1

⟨ℎ
�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

, 𝑤1𝑖 − 𝑤2𝑖⟩

ℎ�̃�
(𝑛1⋅⋅⋅𝑛𝑑)

𝑖𝑗

(𝐴)


≤
𝑝

∑
𝑖=1

𝑑𝑖

∑
𝑗=1

𝑤1𝑖 − 𝑤2𝑖
A

𝑓𝑖𝑗

∞ (2𝑑 𝑓𝑖𝑗

∞

+
𝑑

∑
𝑘=1

2𝑑−𝑘|𝐶𝑑𝑑−𝑘|

∑
ℓ=1

𝑉(𝑓𝑖𝑗I𝑘
ℓ

(⋅) ; I𝑘ℓ)) ≤ w1 − w2
A 𝐾,

(C.12)

for some constant𝐾 defined by

𝐾 fl
𝑝

∑
𝑖=1

𝑑𝑖

∑
𝑗=1

𝑓𝑖𝑗

∞

⋅ (2𝑑 𝑓𝑖𝑗

∞ +
𝑑

∑
𝑘=1

2𝑑−𝑘|𝐶𝑑𝑑−𝑘|

∑
ℓ=1

𝑉(𝑓𝑖𝑗I𝑘
ℓ

(⋅) ; I𝑘ℓ)) .

(C.13)

Hence we get
pr∏

𝑝
𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵

w1 − pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
w2

A
≤ w1 − w2

A 𝐾.
(C.14)

Given any positive small number 𝜖, there exists a small
number 𝛿 fl 𝜀/𝐾, such that, for any w1,w2 ∈ C𝑝(A), if
‖w1 − w2‖A ≤ 𝛿, then

pr∏
𝑝
𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵

w1 − pr∏𝑝𝑖=1W𝑖,𝑛1⋅⋅⋅𝑛𝑑H𝐵
w2

A
≤ 𝜀. (C.15)

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors wish to thank theMinistry of Research, Technol-
ogy andHigher Education (RISTEK-DIKTI) for the financial

75Asymptotic Theory in Model Diagnostic for General Multivariate Spatial Regression

__________________________ WORLD TECHNOLOGIES __________________________



WT

support. They also thank Karlsruher Institut für Technologie
(KIT) Institut für Stochastik for hospitality. Special thanks are
addressed to Professor Andrei I. Volodin for his constructive
comments for the improvement of the paper.

References

[1] A. Zellner, “An efficient method of estimating seemingly unre-
lated regressions and tests for aggregation bias,” Journal of the
American Statistical Association, vol. 57, no. 298, pp. 348–368,
1962.

[2] R. Christensen, Advanced Linear Modeling: Multivariate, Time
Series, and SpatialData;Nonparametric Regression andResponse
Surface Maximization, Springer, New York, NY, USA, 2001.

[3] D. W. Anderson, An Introduction to Multivariate Statistical
Analysis, John Wiley & Sons, New York, NY, USA, 3rd edition,
2003.

[4] R. A. Johnson and D. W. Wichern, Applied Multivariate Statis-
tical Analysis, Prentice Hall, New York, NY, USA, 3rd edition,
2007.

[5] I. B. MacNeill, “Properties of partial sums of polynomial
regression residuals with applications to test for change of
regression at unknown times,” The Annals of Statistics, vol. 6,
no. 2, pp. 422–433, 1978.

[6] I. B. MacNeill, “Limit processes for sequences of partial sums of
regression residuals,”The Annals of Probability, vol. 6, no. 4, pp.
695–698, 1978.

[7] I. B. MacNeill and V. K. Jandhyala, “Change-point methods
for spatial data,” in Multivariate Environmental Statistics, G. P.
Patil and C. R. Rao, Eds., pp. 298–306, Elevier Science, Berlin,
Germany, 1993.

[8] L. Xie and I. B. MacNeill, “Spatial residual processes and
boundary detection,” South African Statistical Journal, vol. 40,
no. 1, pp. 33–53, 2006.

[9] W. Bischoff and W. Somayasa, “The limit of the partial sums
process of spatial least squares residuals,” Journal ofMultivariate
Analysis, vol. 100, no. 10, pp. 2167–2177, 2009.

[10] W. Somayasa, Ruslan, E. Cahyono, and L. O. Ngkoimani,
“Checking adequateness of spatial regressions using set-
indexed partial sums technique,” Far East Journal of Mathemat-
ical Sciences, vol. 96, no. 8, pp. 933–966, 2015.

[11] W. Bischoff, “A functional central limit theorem for regression
models,” The Annals of Statistics, vol. 26, no. 4, pp. 1398–1410,
1998.

[12] W. Bischoff, “The structure of residual partial sums limit
processes of linear regression models,” Theory of Stochastic
Processes, vol. 2, pp. 23–28, 2002.

[13] W. Stute, “Nonparametric model checks for regression,” The
Annals of Statistics, vol. 25, no. 2, pp. 613–641, 1997.
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Let 𝐺 be a graph and 𝜙 : 𝑉(𝐺) ∪ 𝐸(𝐺) → {1, 2, 3, . . . , 𝑘} be a 𝑘-total coloring. Let 𝑤(V) denote the sum of color on a vertex V
and colors assigned to edges incident to V. If 𝑤(𝑢) ̸= 𝑤(V) whenever 𝑢V ∈ 𝐸(𝐺), then 𝜙 is called a neighbor sum distinguishing
total coloring. The smallest integer 𝑘 such that 𝐺 has a neighbor sum distinguishing 𝑘-total coloring is denoted by tndi∑(𝐺). In
2014, Dong and Wang obtained the results about tndi∑(𝐺) depending on the value of maximum average degree. A 𝑘-assignment
𝐿 of 𝐺 is a list assignment 𝐿 of integers to vertices and edges with |𝐿(V)| = 𝑘 for each vertex V and |𝐿(𝑒)| = 𝑘 for each edge 𝑒. A
total-𝐿-coloring is a total coloring 𝜙 of 𝐺 such that 𝜙(V) ∈ 𝐿(V) whenever V ∈ 𝑉(𝐺) and 𝜙(𝑒) ∈ 𝐿(𝑒) whenever 𝑒 ∈ 𝐸(𝐺). We state
that 𝐺 has a neighbor sum distinguishing total-𝐿-coloring if 𝐺 has a total-𝐿-coloring such that 𝑤(𝑢) ̸= 𝑤(V) for all 𝑢V ∈ 𝐸(𝐺). The
smallest integer 𝑘 such that 𝐺 has a neighbor sum distinguishing total-𝐿-coloring for every 𝑘-assignment 𝐿 is denoted by Ch∑(𝐺).
In this paper, we strengthen results by Dong and Wang by giving analogous results for Ch∑(𝐺).

1. Introduction

Let 𝐺 be a simple, finite, and undirected graph. We use
𝑉(𝐺), 𝐸(𝐺), and Δ(𝐺) to denote the vertex set, edge set,
and maximum degree of a graph 𝐺, respectively. A vertex
V is called a 𝑘-vertex if 𝑑(V) = 𝑘. The length of a shortest
cycle in 𝐺 is called the girth of a graph 𝐺, denoted by 𝑔(𝐺).
The maximum average degree of 𝐺 is defined by mad(𝐺) =
max𝐻⊆𝐺(2|𝐸(𝐻)|/|𝑉(𝐻)|). The well-known observation for a
planar graph𝐺 is mad(𝐺) < 2𝑔(𝐺)/(𝑔(𝐺)−2). Let 𝜙 : 𝑉(𝐺)∪
𝐸(𝐺) → {1, 2, 3, . . . , 𝑘} be a 𝑘-total coloring. We denote the
sum (set, resp.) of colors assigned to edges incident to V and
the color on the vertex V by 𝑤(V) (𝐶(V), resp.); that is, 𝑤(V) =
∑𝑢V∈𝐸(𝐺) 𝜙(𝑢V)+𝜙(V) and𝐶(V) = {𝜙(V)}∪{𝜙(𝑢V) | 𝑢V ∈ 𝐸(𝐺)}.
The total coloring 𝜙 of 𝐺 is a neighbor sum distinguishing
(neighbor distinguishing, resp.) total coloring if 𝑤(𝑢) ̸= 𝑤(V)
(𝐶(𝑢) ̸= 𝐶(V), resp.) for each edge 𝑢V ∈ 𝐸(𝐺). The smallest
integer 𝑘 such that 𝐺 has a neighbor sum distinguishing
(neighbor distinguishing, resp.) total coloring is called the
neighbor sum distinguishing total chromatic number (neighbor
distinguishing total chromatic number, resp.), denoted by
tndi∑ (𝐺) (tndi(𝐺), resp.). In 2005, a neighbor distinguishing

total coloring of graphs was introduced by Zhang et al. [1].
They obtained tndi(𝐺) for many basic graphs and brought
forward the following conjecture.

Conjecture 1 (see [1]). If 𝐺 is a graph with order at least two,
then tndi(𝐺) ≤ Δ(𝐺) + 3.

Conjecture 1 has been confirmed for subcubic graphs,𝐾4-
minor free graphs, and planar graphs with large maximum
degree [2–4].

In 2015, Pilśniak and Woźniak [5] obtained tndi∑ (𝐺) for
cycles, cubic graphs, bipartite graphs, and complete graphs.
Moreover, they posed the following conjecture.

Conjecture 2 (see [5]). If 𝐺 is a graph with at least two
vertices, then tndi∑ (𝐺) ≤ Δ(𝐺) + 3.

Li et al. verified this conjecture for 𝐾4-minor free graphs
[6] and planar graphs with the large maximum degree [7].
Wang et al. [8] confirmed this conjecture by using the famous
Combinatorial Nullstellensatz that holds for any triangle free
planar graph with maximum degree of at least 7. Several

7
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results about tndi∑ (𝐺) for planar graphs can be found in [9–
11].

In 2014, Dong andWang [12] proved the following results.

Theorem3. If𝐺 is a graphwithmad(𝐺) < 3, then tndi∑ (𝐺) ≤
max{Δ(𝐺) + 2, 7}.

Corollary 4. If 𝐺 is a graph withmad(𝐺) < 3 and Δ(𝐺) ≥ 5,
then tndi∑ (𝐺) ≤ maxΔ(𝐺) + 2.

Corollary 5. Let𝐺 be a planar graph. If 𝑔(𝐺) ≥ 6 and Δ(𝐺) ≥
5, then tndi∑ (𝐺) ≤ Δ(𝐺) + 2; and tndi∑ (𝐺) = Δ(𝐺) + 2 if and
only if 𝐺 has two adjacent vertices of maximum degree.

The concept of list coloring was introduced by Vizing
[13] and by Erdös et al. [14]. A 𝑘-assignment 𝐿 of 𝐺 is a list
assignment 𝐿 of integers to vertices and edges with |𝐿(V)| = 𝑘
for each vertex V and |𝐿(𝑒)| = 𝑘 for each edge 𝑒. A total-
𝐿-coloring is a total coloring 𝜙 of 𝐺 such that 𝜙(V) ∈ 𝐿(V)
whenever V ∈ 𝑉(𝐺) and 𝜙(𝑒) ∈ 𝐿(𝑒) whenever 𝑒 ∈ 𝐸(𝐺).
We state that 𝐺 has a neighbor sum distinguishing total-𝐿-
coloring if 𝐺 has a total-𝐿-coloring such that 𝑤(𝑢) ̸= 𝑤(V)
for all 𝑢V ∈ 𝐸(𝐺). The smallest integer 𝑘 such that 𝐺 has
a neighbor sum distinguishing total-𝐿-coloring for every 𝑘-
assignment 𝐿, denoted by Ch∑ (𝐺), is called the neighbor sum
distinguishing total-choice number.

Qu et al. [15] proved that Ch∑ (𝐺) ≤ Δ(𝐺) + 3 for any
planar graph𝐺withΔ(𝐺) ≥ 13. Yao et al. [16] studiedCh∑ (𝐺)

of 𝑑-degenerate graphs. Later, Wang et al. [17] confirmed
Conjecture 2 true for planar graphs without 4-cycles. For
𝐻 ⊆ 𝐺, we let 𝐿𝐻 denote a list 𝐿 restricted to any proper
subgraph 𝐻 of 𝐺. In this paper, we strengthen Theorem 3 by
giving analogous results for Ch∑ (𝐺).

2. Main Results

The following lemma is obvious, so we omit the proof.

Lemma 6. Let |𝑆1| = |𝑆2| = ⋅ ⋅ ⋅ = |𝑆𝑘| = 𝑘 + 1 and 𝑆∗ =
{𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑘 | 𝑎𝑖 ∈ 𝑆𝑖, 𝑎𝑖 ̸= 𝑎𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘}. Then
|𝑆∗| ≥ 𝑘 + 1.

Proof. We proceed by induction on 𝑘.
If 𝑘 = 1, then |𝑆1| = 2; then Lemma 6 holds. Assume

that 𝑘 > 1. Suppose that Lemma 6 holds for 𝑘 − 1. Let 𝑎 =
min(𝑆1 ∪ 𝑆2 ∪ ⋅ ⋅ ⋅ ∪ 𝑆𝑘). Without loss of generality, let 𝑎 ∈ 𝑆1.
Let 𝑇𝑖 ⊆ 𝑆𝑖 be such that |𝑇𝑖| = 𝑘 and 𝑎 ∉ 𝑇𝑖 for 𝑖 = 1, 2, . . . , 𝑘.
By induction hypothesis, we have |𝑇∗| ≥ 𝑘. Thus {𝑎 + 𝑡2 +
𝑡3 + ⋅ ⋅ ⋅ + 𝑡𝑘} ⊆ 𝑆∗, where 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 for 2 ≤ 𝑖, 𝑗 ≤ 𝑘

and 𝑡𝑖 ̸= 𝑡𝑗 for 𝑖 ̸= 𝑗. So |𝑆∗| ≥ 𝑘. Let 𝑡2 + ⋅ ⋅ ⋅ + 𝑡𝑘 = max𝑇∗

with 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 for 2 ≤ 𝑖, 𝑗 ≤ 𝑘 and 𝑡𝑖 ̸= 𝑡𝑗 for 𝑖 ̸= 𝑗

and 𝑏 ∈ 𝑆1 \ {𝑎, 𝑡2, 𝑡

3, . . . , 𝑡


𝑘}. Thus 𝑏 + 𝑡2 + 𝑡3 + . . . + 𝑡𝑘 >

max{𝑎 + 𝑡2 + 𝑡3 + ⋅ ⋅ ⋅ + 𝑡𝑘} and 𝑏 + 𝑡2 + 𝑡3 + ⋅ ⋅ ⋅ + 𝑡𝑘 ∈ 𝑆∗.
Therefore, we obtain |𝑆∗| ≥ 𝑘 + 1.

Lemma 7 (see [12]). Let 𝑆1, 𝑆2 be two sets and let 𝑆3 = {𝑎+𝑏 |
𝑎 ∈ 𝑆1, 𝑏 ∈ 𝑆2, 𝑎 ̸= 𝑏}. If |𝑆1| ≥ 2 and 𝑆2 ≥ 3, then |𝑆3| ≥ 3.

Theorem 8. If 𝐺 is a graph withmad(𝐺) < 3, then Ch∑ (𝐺) ≤

𝑘, where 𝑘 = max{Δ(𝐺) + 2, 7}.

Proof. The proof is proceeded by contradiction. Assume that
𝐺 is a minimum counterexample. Let |𝐿(V)| ≥ 𝑘 for each
vertex V and |𝐿(𝑒)| ≥ 𝑘 for each edge 𝑒 in 𝐺. For any proper
subgraph 𝐺 of 𝐺, we always assume that there is a neighbor
sum distinguishing total-𝐿𝐺-coloring 𝜙 of 𝐺 by minimality
of 𝐺. For convenience, we use a total-𝐿𝐺-coloring 𝜙 of 𝐺 to
denote a neighbor sum distinguishing total-𝐿𝐺-coloring 𝜙 of
𝐺 and we use 𝐹(V) = {𝜙(𝑢), 𝜙(𝑢V) | 𝑢V ∈ 𝐸(𝐺)} for V ∈ 𝑉(𝐺)
and 𝐹(𝑢V) = {𝜙(𝑢), 𝜙(V), 𝜙(𝑢𝑟), 𝜙(V𝑠) | 𝑢𝑟 ∈ 𝐸(𝐺), V𝑠 ∈
𝐸(𝐺)} for 𝑢V ∈ 𝐸(𝐺).

Let 𝐻 be the graph obtained by removing all leaves of 𝐺.
Then 𝐻 is a connected graph with mad(𝐻) ≤ mad(𝐺) < 3.
The properties of the graph 𝐻 are collected in the following
claims.

Claim 1. Each vertex in 𝐻 has degree of at least 2.

Proof. Suppose to the contrary that𝐻 contains a vertex Vwith
𝑑𝐻(V) ≤ 1. If 𝑑𝐻(V) = 0, then 𝐺 is the star 𝐾1,Δ(𝐺)−1 and
Ch∑ (𝐺) = Δ(𝐺); then we obtain a total-𝐿𝐺-coloring 𝜙 of𝐺, a
contradiction to the choice of 𝐺. Assume that 𝑑𝐻(V) = 1. Let
𝑢 and V𝑖 be the neighbors of V where 𝑖 = 1, 2, . . . , 𝑙 = Δ(𝐺) − 1
and 𝑑𝐺(V𝑖) = 1. Let 𝐺 = 𝐺 − VV1. First, we uncolor V𝑖 where
𝑖 = 1, 2, . . . , Δ(𝐺) − 1. Then we color VV1 with a color in
𝐿(VV1)\(𝐹(VV1)∪{𝑤(𝑢)−𝑤(V)}). Next, we color V𝑖 with a color
in 𝐿(V𝑖) \ (𝐹(V𝑖) ∪ {(𝑤(V) − 𝑤(V𝑖)}) for 𝑖 = 1, 2, . . . , Δ(𝐺) − 1;
then we obtain a total-𝐿𝐺-coloring 𝜙 of 𝐺, a contradiction to
the choice of 𝐺.

Claim 2. If 𝑑𝐻(𝑢) = 2, then 𝑑𝐺(𝑢) = 2.

Proof. Suppose to the contrary that 𝑑𝐺(𝑢) = 𝑘 ≥ 3. Let 𝑢1, 𝑢2
be the neighbors of 𝑢 and V𝑖 be all neighbors of 𝑢 which are
leaves in 𝐺 for 𝑖 = 1, 2, . . . , 𝑙 = 𝑑𝐺(𝑢) − 2.

Case 1 (𝑑𝐺(𝑢) = 3). Let 𝐺 = 𝐺 − V1 and 𝐿(𝑢V1) = 𝐿(𝑢V1) \
(𝐹(𝑢V1) ∪ {𝑤(𝑢1) − 𝑤(𝑢), 𝑤(𝑢2) − 𝑤(𝑢)}). We color 𝑢V1 with a
color in 𝐿(𝑢V1) and color V1 with a color in 𝐿(V1) \ (𝐹(V1) ∪
{𝑤(𝑢) − 𝑤(V1)}). Thus we obtain a total-𝐿𝐺-coloring 𝜙 of 𝐺,
which is a contradiction to the choice of 𝐺.

Case 2 (𝑑𝐺(𝑢) ≥ 4). Let 𝐺 = 𝐺 − {V1, . . . , V𝑙}, where 𝑙 =
𝑑𝐺(𝑢) − 2. Let 𝐴 𝑖 = 𝐿(𝑢V𝑖) − {𝜙(𝑢), 𝜙(𝑢𝑢1), 𝜙(𝑢𝑢2)}, where
𝑖 = 1, 2, . . . , 𝑙. Then |𝐴 𝑖| ≥ Δ(𝐺) − 1 ≥ 𝑙 + 1 ≥ 3, where
𝑖 = 1, 2, . . . , 𝑙. By Lemma 6, we have at least 𝑙+1 ≥ 3 color sets
available for the edge set {𝑢V𝑖 | 𝑖 = 1, 2, . . . , 𝑙} to guarantee
𝑤(𝑢) = 𝑤(𝑢𝑖) for 𝑖 = 1, 2. Since at most two color sets may
cause 𝑤(𝑢) = 𝑤(𝑢1) or 𝑤(𝑢) = 𝑤(𝑢2), we have at least one
color set available for the edge set {𝑢V𝑖 | 𝑖 = 1, 2, . . . , 𝑙}. Finally,
we color V𝑖 with the color in 𝐿(V𝑖) \ (𝐹(V𝑖)∪{𝑤(𝑢)−𝑤(V𝑖)}) for
𝑖 = 1, 2, . . . , 𝑙 = 𝑑𝐺(𝑢) − 2; then we obtain a total-𝐿𝐺-coloring
𝜙 of 𝐺, which is a contradiction to the choice of 𝐺.

Claim 3. A 2-vertex 𝑢 is not adjacent to a 3-vertex.

Proof. Suppose to the contrary that 𝑢 is adjacent to a 3-vertex
V in 𝐻. Let V1, V2 be the neighbors of V and 𝑠 be the other
neighbor of 𝑢.
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Case 1 (𝑑𝐺(V) = 3). Let 𝐺 = 𝐺 − 𝑢V. First, we uncolor 𝑢.
Next, we color 𝑢V with a color in 𝐿(𝑢V) \ (𝐹(𝑢V) ∪ {𝑤(V1) −
𝑤(V), 𝑤(V2) − 𝑤(V)}). Later, we color 𝑢 with a color in 𝐿(𝑢) \
(𝐹(𝑢)∪{𝑤(V)−𝑤(𝑢), 𝑤(𝑠)−𝑤(𝑢)}); then we obtain a total-𝐿𝐺-
coloring 𝜙 of 𝐺, which is a contradiction to the choice of 𝐺.

Case 2 (𝑑𝐺(V) ≥ 4). Let 𝑥1, 𝑥2, . . . , 𝑥𝑡 be the other neighbors
of V such that 𝑑𝐺(𝑥𝑖) = 1 for all 𝑖 = 1, 2, . . . , 𝑡 = 𝑑𝐺(𝑢) − 3. Let
𝐺 = 𝐺 − {𝑢V, V𝑥1}. First, we uncolor all vertices 𝑢 and 𝑥𝑖, 𝑖 =
1, 2, . . . , 𝑡. Consider 𝐿(V𝑥1) = 𝐿(V𝑥1) \ 𝐹(V𝑥1) and 𝐿(𝑢V) =
𝐿(𝑢V) \ 𝐹(𝑢V). We can see that |𝐿(V𝑥1)| ≥ 3 and |𝐿(𝑢V)| ≥ 2.
By Lemma 7, we can choose 𝜙(V𝑥1) ∈ 𝐿(V𝑥1) and 𝜙(𝑢V) ∈
𝐿(𝑢V) such that 𝑤(V) ̸= 𝑤(V1) and 𝑤(V) ̸= 𝑤(V2). Next, we
color 𝑢with a color in 𝐿(𝑢)\(𝐹(𝑢)∪{𝑤(V)−𝑤(𝑢), 𝑤(𝑠)−𝑤(𝑢)})
and color 𝑥𝑖 with a color in 𝐿(𝑥𝑖) \ (𝐹(𝑥𝑖) ∪ {𝑤(V) − 𝑤(𝑥𝑖)})
for 𝑖 = 1, 2, . . . , 𝑡; then we obtain a total-𝐿𝐺-coloring 𝜙 of 𝐺,
which is a contradiction to the choice of 𝐺.

Claim 4. A 4-vertex 𝑢 is adjacent to at most two 2-vertices.

Proof. Suppose to the contrary that 𝑢 is adjacent to three 2-
vertices V1, V2, V3 and the other vertex V. Let V


𝑖 be the neighbor

of V𝑖 for 𝑖 = 1, 2, 3.

Case 1 (𝑑𝐺(𝑢) = 4). Let 𝐺 = 𝐺 − 𝑢V1 and 𝐿(𝑢V1) =
𝐿(𝑢V1)\(𝐹(𝑢V1) ∪ {𝑤(V)−𝑤(𝑢)}). First, we uncolor all vertices
V1, V2, V3. Next, we color 𝑢V1 with a color in 𝐿(𝑢V1) and color
V𝑖with a color in𝐿(V𝑖)\(𝐹(V𝑖)∪{𝑤(𝑢)−𝑤(V𝑖), 𝑤(V𝑖 )−𝑤(V𝑖)}) for
𝑖 = 1, 2, 3. Thus we obtain a total-𝐿𝐺-coloring 𝜙 of 𝐺, which
is a contradiction to the choice of 𝐺.

Case 2 (𝑑𝐺(𝑢) ≥ 5). Let 𝑥1, 𝑥2, . . . , 𝑥𝑡 be the neighbors of 𝑢
such that 𝑑𝐺(𝑥𝑖) = 1 for all 𝑖 = 1, 2, . . . , 𝑡 = 𝑑𝐺(𝑢)−4. Let𝐺 =
𝐺 − 𝑢𝑥1. First, we uncolor vertices V𝑖 and 𝑥𝑗 where 1 ≤ 𝑖 ≤ 3,
1 ≤ 𝑗 ≤ 𝑡. Next, we choose𝜙(𝑢𝑥1) ∈ 𝐿(𝑢𝑥1)\(𝐹(𝑢𝑥1)∪{𝑤(V)−
𝑤(𝑢)}). After that, we color V𝑖 with a color in 𝐿(V𝑖) \ (𝐹(V𝑖) ∪
{𝑤(𝑢)−𝑤(V𝑖), 𝑤(V𝑖 )−𝑤(V𝑖)}) for 𝑖 = 1, 2, 3 and color 𝑥𝑗 with a
color in 𝐿(𝑥𝑗)\(𝐹(𝑥𝑗)∪{𝑤(𝑢)−𝑤(𝑥𝑗)}) for 𝑗 = 1, 2, . . . , 𝑡.Thus
we obtain a total-𝐿𝐺-coloring 𝜙 of𝐺, which is a contradiction
to the choice of 𝐺.

Claim 5. A 5-vertex 𝑢 is adjacent to at most four 2-vertices.

Proof. Suppose to the contrary that 𝑢 is adjacent to five 2-
vertices V1, V2, V3, V4, V5. Let 𝑥1, 𝑥2, . . . , 𝑥𝑡 be the other neigh-
bors of 𝑢 (if they exist) such that 𝑑𝐺(𝑥𝑖) = 1 for all 𝑖 =
1, 2, . . . , 𝑡 = 𝑑𝐺(𝑢) − 5 and V𝑖 be the neighbor of V𝑖 for 𝑖 =
1, 2, 3, 4, 5. Let 𝑖 = 1, 2, 3, 4, 5 and 𝑗 = 1, 2, . . . , 𝑡 = 𝑑𝐺(𝑢) − 5
and 𝐺 = 𝐺 − 𝑢V1. First, we uncolor vertices V𝑖 and 𝑥𝑗.
Next, we color 𝑢V1 with a color in 𝐿(𝑢V1) \ 𝐹(𝑢V1). After
that, we color V𝑖 with a color in 𝐿(V𝑖) \ (𝐹(V𝑖) ∪ {𝑤(𝑢) −
𝑤(V𝑖), 𝑤(V𝑖 ) − 𝑤(V𝑖)}). Finally, we color 𝑥𝑗 with a color in
𝐿(𝑥𝑗) \ (𝐹(𝑥𝑗) ∪ {𝑤(𝑢) − 𝑤(𝑥𝑗)}). Thus we obtain a total-
𝐿𝐺-coloring 𝜙 of 𝐺, which is a contradiction to the choice of
𝐺.

By Claim 1, we have Δ(𝐻) ≥ 2.
Suppose that Δ(𝐻) = 2. By Claims 1 and 2, 𝐺 is a cycle.

One can obtain that Ch∑ (𝐺) ≤ 7, a contradiction to the
choice of 𝐺.

Suppose that Δ(𝐻) = 3. By Claim 3, 𝐻 is a 3-regular
graph. Thus we have mad(𝐻) = 3, which is a contradiction.

Suppose that Δ(𝐻) ≥ 4. We complete the proof by using
the discharging method. Define an initial charge function
ch(V) = 𝑑𝐻(V) for every V ∈ 𝑉(𝐻). Next, rearrange the
weights according to the designed rule.When the discharging
is finished, we have a new charge ch(V). However, the sum
of all charges is kept fixed. Finally, we want to show that
ch(V) ≥ 3 for all V ∈ 𝑉(𝐻). This leads to the following
contradiction:

3 =
3 |𝑉 (𝐻)|

|𝑉 (𝐻)|
≤

∑V∈𝑉(𝐻) 𝑤
 (V)

|𝑉 (𝐻)|
=

∑V∈𝑉(𝐻) 𝑤 (V)
|𝑉 (𝐻)|

=
2 |𝐸 (𝐻)|

|𝑉 (𝐻)|
≤ mad (𝐻) < 3.

(1)

Let V ∈ 𝑉(𝐻). Assume that 𝑑𝐻(V) = 2 and 𝑢V ∈ 𝐸(𝐻).
Then vertex 𝑢 gives charge 1/2 to V.

Consider a vertex V ∈ 𝑉(𝐻). By Claim 1, we have 𝑑𝐻(V) ≥
2.

If 𝑑𝐻(V) = 2, then V is adjacent to at least two 4-vertices
by Claim 3. Hence ch(V) ≥ ch(V) + (2 × (1/2)) = 3.

If 𝑑𝐻(V) = 3, then ch(V) = ch(V) = 3.
If 𝑑𝐻(V) = 4, then V is adjacent to at most two 2-vertices

by Claim 4. Hence ch(V) ≥ ch(V) − (2 × (1/2)) = 3.
If 𝑑𝐻(V) = 5, then V is adjacent to at most four 2-vertices

by Claim 5. Hence ch(V) ≥ ch(V) − (4 × (1/2)) = 3.
If 𝑑𝐻(V) ≥ 6, then ch(V) ≥ ch(V) − ((1/2)𝑑𝐻(V)) =

(1/2)𝑑𝐻(V) ≥ 3.
From the above discussion, we have ∑V∈𝑉(𝐻) ch

(V) ≥
3, which is a contradiction. This completes the proof of
Theorem 8.
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Tungiasis is a permanent penetration of female sand flea “Tunga penetrans” into the epidermis of its host. It affects human beings and
domestic and sylvatic animals. In this paper, we apply optimal control techniques to a Tungiasis controlled mathematical model
to determine the optimal control strategy in order to minimize the number of infested humans, infested animals, and sand flea
populations. In an attempt to reduce Tungiasis infestation in human population, the control strategies based on personal protection,
personal treatment, educational campaign, environmental sanitation, and insecticidal treatments on the affected parts as well as on
animal fur are considered. We prove the existence of optimal control problem, determine the necessary conditions for optimality,
and then perform numerical simulations.The numerical results showed that the control strategy comprises all five control measures
and that which involves the three control measures of insecticide control, insecticidal dusting on animal furs, and environmental
hygiene has the significant impact on Tungiasis transmission. Therefore, fighting against Tungiasis infestation in endemic settings,
multidimensional control process should be employed in order to achieve the maximum benefits.

1. Introduction

Tungiasis is a skin disease caused by the sand flea “Tunga pen-
etrans”; the disease is endemic in some poor resource com-
munities where various domestic and sylvatic animals act
as reservoirs for this zoonosis [1]. The flea infestation is
associated with poverty and occurs in many resource-poor
communities in the Caribbean, South America, and sub-
Saharan Africa [2]. Transmission of Tungiasis is strictly by
infestation of humans and animal reservoirs by “Tunga
penetrans” when they are in contact with sandy soil in which
female fleas are present or when in contact with infested
animal reservoirs as it is known that the animal reservoirs
harbor the fleas [3]. Tungiasis results in significant morbidity,
manifesting itself in a number of symptoms such as severe
local inflammation, autoamputation of digits, deformation
and loss of nails, formation of fissures and ulcers, gangrene,
and walking difficulties [4]. Moreover it may result into
secondary infection caused by transmission of blood-borne
pathogens such as hepatitis B and C virus and possibly also

HIV/AIDS when a single nonsterile instrument is used to
remove the jiggers from different affected individuals [5].

Mathematical models have played amajor role in increas-
ing understanding of the underlying mechanisms which
influence the spread of the diseases and provide guidelines
as to how the spread can be controlled [6, 7]. Optimal control
theory is a powerfulmathematical tool whichmakes the deci-
sion involving complex dynamical systems. It is a standard
method for solving dynamic optimization problems, when
those problems are expressed in continuous time [8].Optimal
control theory was developed by the Russian mathematician
Lev S. Pontryagin (1908–1988) and his coworkers with the
formulation and proof of the PontryaginMaximumPrinciple
(Pontryagin et al., 1962). Optimal control is the process of
determining control and state trajectories for a dynamic
system over a period of time to minimize a performance
index [9]. Optimal control problem is represented by a set
of differential equations describing the paths of the control
variables that minimize the cost functional and has been
used successfully to make decisions involving biological or
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medical models [10]. The formulation of an optimal control
problem requires a mathematical model of the system to be
controlled, a specification of the performance index (cost
function), and a specification of all boundary conditions on
states and constraints to be satisfied by states and controls [11].
Pontryagin’s maximum (or minimum) principle of optimal
control gives the fundamental necessary conditions for a
controlled trajectory to be optimal [12]. The principle tech-
nique is to transform the constrained dynamic optimization
problem into an unconstrained problem, by allowing each
of the adjoint variables to correspond to each of the state
variables accordingly and combining the results with the
objective functional [13]. The resulting function is known as
the Hamiltonian, which is used to solve a set of necessary
conditions that an optimal control and corresponding state
variables must satisfy. The necessary conditions are the
optimality solutions and adjoint equations which form the
optimality system. The optimality system consists of the
state system and adjoint system with initial and transversal
conditions together with characterization of optimal control.

To the best of our knowledge Tungiasis dynamical model
with application of optimal control technique has not been
done. Therefore we are going to refer to other infectious dis-
eases with similar characteristics where the optimal control
theory has been applied. Bonyah et al. [20] applied optimal
control theory to a Buruli ulcer model that takes into account
human, water bug, and fish populations as well asMicrobac-
terium ulcerans in the environment. The control measures
were applied on mass treatment, insecticide, and mass edu-
cation to minimize the number of infected hosts, vectors,
and infected fishes. The optimality system was determined
and computed numerically for several scenarios. The results
showed that the combination of all the control measures,
mass treatment, insecticide, andmass education, is capable of
helping reduce the number of infected humans, water bugs,
small fishes, andMycobacterium ulcerans in the environment.
Isere et al. [21] developed the optimal control model that
includes two time dependent control functions with one
minimizing the contact between the susceptible and the
bacteria and the others, the population of bacteria in water.
The results from the numerical solutions showed that increas-
ing the susceptible pool and the infected populations above
some threshold values were responsible for reducing cholera
epidemic and the difference between the growth rate and the
loss rate of the bacteria played a huge role in the outbreak of
the disease. Devipriya andKalaivani [22] conducted the study
on “Optimal Control of Multiple Transmission of Water-
Borne Disease.” A controlled SIWR model was considered.
The control measures represented an immune boosting and
pathogen suppressing drugs. Their objective function was
based on a combination of minimizing the number of
infected individuals and the cost of the drugs dose. The
numerical results have shown that both the vaccines resulted
in minimizing the number of infected individuals and at the
same time in a reduction of the budget related to the disease.

In this paper, the Tungiasis dynamical model with control
measures is presented and a detailed qualitative optimal
control model that minimizes the number of infested indi-
viduals (humans and animals) and sand fleas with minimal

cost of implementing the control measures is developed. We
establish the proof for existence of the optimal control and
analyze the optimal control problem in order to determine
the necessary conditions for optimality using the Pontryagin’s
maximum principle (Pontryagins et al., 1962). We then
determine numerically the optimality system for several
scenarios. Our paper is arranged as follows. In Section 2, we
formulate an optimal control model. In Section 3, we analyze
the optimal control model by determining the conditions for
existence of optimal control and the necessary conditions for
optimality. In Section 4, we carry out numerical simulations
and discussion of the results and Section 5 is the conclu-
sion.

2. Formulation of Optimal Control Problem

We formulate an optimal control model for Tungiasis disease
in order to derive five optimal controlmeasures withminimal
implementation cost to eradicate the disease after a defined
period of time.We employ the control efforts𝑤𝑖(𝑡) in human,
animal reservoirs, and adult flea populations and (1 − 𝑤𝑖(𝑡))
is the failure rate for the control efforts 𝑤𝑖(𝑡) for 𝑖 =1, . . . , 5. We let 𝑤1(𝑡) be the effort of controlling the flea
infested soil environment with insecticides spraying, 𝑤2(𝑡)
be the efforts of controlling the flea infested animal reservoir
through dusting them with ant-flea compounds, 𝑤3(𝑡) be
the efforts of controlling the transmission from flea infested
environment to susceptible animals (this can be achieved by
environmental hygiene and cementing the floors), 𝑤4(𝑡) be
the efforts of controlling the transmission from flea infested
animals to susceptible humans (this can be achieved by
educating people not to live with animals in the same quarters
or sharing common resting places), and𝑤5(𝑡) be the efforts of
controlling transmission from flea infested environment to
susceptible humans (this can be achieved by environmental
hygiene, cementing the floors, covering of feet with solid
shoes, and application of plant based repellent (Zanzarin)
within the time interval of [0, 𝑇]). Therefore we assume that
the mortality rate of jigger fleas in the soil environment is
increased by the factor (𝜇𝐹 + 𝑤1(𝑡)), on-host spraying of
infested animals will reduce the shedding rate 𝜀𝐴 of adult
jigger fleas into the environment by a fraction (1−𝑤2(𝑡)), and
the animal to animal effective contact rate 𝜌𝐴 is reduced at
the same fraction (1 − 𝑤2(𝑡)) because spraying insecticides
on animal fur will reduce the transmission of infestation
within animal population. The transmission rate from the
soil environment to animal hosts is reduced by the factor(1−𝑤3(𝑡)), the factor (1−𝑤4(𝑡)) reduces the transmission from
severely infested animal reservoirs to susceptible humans,
and the factor (1 − 𝑤5(𝑡)) reduces the transmission from flea
infested soil environment to susceptible humans. Here, we
consider the model developed by Kahuru et al. [19] whereby
we add a distinct epidemiological compartment 𝑇𝐻 which
represents human beings under treatment and incorporate
the five control measures 𝑤1, 𝑤2, 𝑤3, 𝑤4, and 𝑤5 as defined
above. In the submodel of human population, the total
human population 𝑁𝐻 is subdivided into susceptible popu-
lation 𝑆𝐻mildly infested population 𝐼𝐻𝑙, the severely infested
population 𝐼𝐻ℎ, and the human treatment class denoted by
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𝑇𝐻; therefore we have𝑁𝐻 = 𝑆𝐻 + 𝐼𝐻𝑙 + 𝐼𝐻ℎ + 𝑇𝐻. We assume
that the humans are recruited into 𝑆𝐻 through birth by the
adults at a rate 𝑏𝐻. Individuals in class 𝑆𝐻 acquire infestation
from the severely infested animal reservoirs 𝐼𝐴ℎ and move
to class 𝐼𝐻𝑙 at a rate (1 − 𝑤4(𝑡))𝜌𝐴𝐻𝐼𝐴ℎ/𝑁𝐻 and may also
acquire infestation from the flea infested soil environment
andmove to class 𝐼𝐻ℎ at a rate (1−𝑤5(𝑡))𝛼𝐸𝐻𝛽𝐸𝐻𝑟𝐹𝐹𝐸/(𝑘+𝐹𝐸).𝐼𝐻𝑙 may as well acquire infestation from the flea infested
soil environment and progresses to class 𝐼𝐻ℎ at a rate (1 −𝑤5(𝑡))𝛼𝐸𝐻𝛽𝐸𝐻𝑟𝐹𝐹𝐸/(𝑘 + 𝐹𝐸). Classes 𝐼𝐻ℎ and 𝐼𝐻𝑙 seek treat-
ment at the respective rates 𝑝1 and 𝑝2 and join 𝑇𝐻 class, and
eventually the treated individuals revert back to join 𝑆𝐻 at a
progression rate 𝜔. Individuals in compartments 𝑆𝐻, 𝐼𝐻𝑙, and𝑇𝐻 suffer a naturalmortality rate𝜇𝐻 and for the compartment𝐼𝐻ℎ they suffer a natural mortality at a rate 𝜇𝐻 and the
disease induced mortality at a rate 𝜎𝐻. In the submodel
of animal reservoir population, the total animal reservoir
population 𝑁𝐴 is subdivided into susceptible population𝑆𝐴 mildly infested population 𝐼𝐴𝑙 and the severely infested
population 𝐼𝐴ℎ; therefore we have 𝑁𝐴 = 𝑆𝐴 + 𝐼𝐴𝑙 + 𝐼𝐴ℎ.
We assume that the animals are recruited into 𝑆𝐴 through
birth by the adults at a rate 𝑏𝐴. Individuals in class 𝑆𝐴 acquire
infestation from the severely infested animal reservoirs 𝐼𝐴ℎ
and move to 𝐼𝐴𝑙 at a rate (1 − 𝑤2(𝑡))𝜌𝐴𝐼𝐴ℎ/𝑁𝐴 and also may
acquire infestation from the flea infested environment and
move to class 𝐼𝐴ℎ at a rate (1 − 𝑤3(𝑡))𝛼𝐸𝐴𝛽𝐸𝐴𝑟𝐹𝐹𝐸/(𝑘 + 𝐹𝐸).𝐼𝐴𝑙 may as well acquire infestation from the flea infested
soil environment and progresses to class 𝐼𝐴ℎ at a rate (1 −𝑤3(𝑡))𝛼𝐸𝐴𝛽𝐸𝐴𝑟𝐹𝐹𝐸/(𝑘 + 𝐹𝐸). Individuals in compartments𝑆𝐴 and 𝐼𝐴𝑙 suffer a natural mortality rate 𝜇𝐴 and for the
compartment 𝐼𝐴ℎ they suffer a natural mortality at a rate 𝜇𝐴
and a disease induced mortality at a rate 𝜎𝐴. The submodel
of environmental component consists of two compartments,
a compartment of larvae denoted by 𝐿𝐸 and a compartment
of adult sand fleas denoted by 𝐹𝐸. The larvae population
are recruited into 𝐿𝐸 through shedding of jigger eggs by𝐼𝐻ℎ and 𝐼𝐴ℎ at a constant rate 𝛿𝑒; therefore we have the
total contribution of 𝛿𝑒𝐼𝐻ℎ and 𝛿𝑒𝐼𝐴ℎ from infested humans
and animal reservoir populations, respectively. The larvae in
compartment𝐿𝐸mature into adult jigger fleas at amaturation
rate 𝛾𝐿 and undergo a natural death at a rate 𝜇𝐿. The
adult jigger flea population are recruited into 𝐹𝐸 through
maturation by larvae at a rate 𝛾𝐿 and from infested animal
reservoirs who contributes the fleas into the soil environment
at a rate (1 − 𝑤2(𝑡))𝜀𝐴. The adult fleas leave the compartment𝐹𝐸 when they attack the hosts at a rate 𝑟𝐹𝐹𝐸/(𝑘+𝐹𝐸) andwhen
they undergo a natural death at a rate 𝜇𝐹 and the additional
death due to insecticides control at a rate 𝑤1(𝑡), therefore we
have the flea total death rate of (𝜇𝐹 + 𝑤1(𝑡))𝐹𝐸.

The variables and parameters that describe the flow rates
between compartments are given, respectively, in Notations.
Thepossible interactions between humans, animal reservoirs,
and flea infested environment with control measures are
presented by the model flow diagram in Figure 1 and the
differential equations describing the model are given in
system (1).

2.1. Model Flow Chart with Control Measures. The dynamical
model with submodels of humans, animal reservoirs, and

flea infested environment that incorporates time dependent
control measures is presented hereunder.

2.2. Equations of the Model with Control Measures. From
compartmental flow chart in Figure 1 the nonlinear differen-
tial equations representing the controlled system of Tungiasis
dynamical model are given by

Dynamics in human population

𝑑𝑆𝐻 (𝑡)𝑑𝑡
= 𝑏𝐻𝑁𝐻 + 𝜔𝑇𝐻 − (1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻𝑆𝐻
− (1 − 𝑤4 (𝑡)) 𝜓𝐴𝐻𝑆𝐻 − 𝜇𝐻𝑆𝐻

𝑑𝐼𝐻𝑙 (𝑡)𝑑𝑡
= (1 − 𝑤4 (𝑡)) 𝜓𝐴𝐻𝑆𝐻 − (1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻𝐼𝐻𝑙
− (𝑝1 + 𝜇𝐻) 𝐼𝐻𝑙

𝑑𝐼𝐻ℎ (𝑡)𝑑𝑡
= (1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻𝑆𝐻 + (1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻𝐼𝐻𝑙
− (𝑝2 + 𝜇𝐻 + 𝜎𝐻) 𝐼𝐻ℎ

𝑑𝑇𝐻 (𝑡)𝑑𝑡 = 𝑝1𝐼𝐻𝑙 + 𝑝2𝐼𝐻ℎ − (𝜔 + 𝜇𝐻) 𝑇𝐻
Dynamics in animal reservoir population

𝑑𝑆𝐴 (𝑡)𝑑𝑡
= 𝑏𝐴𝑁𝐴 − (1 − 𝑤2 (𝑡)) 𝜓𝐴𝐴𝑆𝐴 − (1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴𝑆𝐴
− 𝜇𝐴𝑆𝐴

𝑑𝐼𝐴𝑙 (𝑡)𝑑𝑡
= (1 − 𝑤2 (𝑡)) 𝜓𝐴𝐴𝑆𝐴 − (1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴𝐼𝐴𝑙 − 𝜇𝐴𝐼𝐴𝑙
𝑑𝐼𝐴ℎ (𝑡)𝑑𝑡
= (1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴𝑆𝐴 + (1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴𝐼𝐴𝑙
− (𝜇𝐴 + 𝜎𝐴) 𝐼𝐴ℎ

Dynamics in jigger flea population

𝑑𝐿𝐸 (𝑡)𝑑𝑡 = 𝛿𝑒 (1 − 𝐿𝐸𝐾 ) (𝐼𝐻ℎ + 𝐼𝐴ℎ) − (𝛾𝐿 + 𝜇𝐿) 𝐿𝐸
𝑑𝐹𝐸 (𝑡)𝑑𝑡
= 𝛾𝐿𝐿𝐸 + (1 − 𝑤2 (𝑡)) 𝜀𝐴𝐼𝐴ℎ − (𝜇𝐹 + 𝑤1 (𝑡)) 𝐹𝐸
− 𝑟𝐹 𝐹𝐸𝑘 + 𝐹𝐸

(1)
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Figure 1: The flow chart showing the dynamics of Tungiasis with control measures incorporated.

with initial condition

𝑆𝐻 (0) > 0,
𝐼𝐻𝑙 (0) ≥ 0,
𝐼𝐻ℎ (0) ≥ 0,
𝑇𝐻 (0) ≥ 0,
𝑆𝐴 (0) > 0,
𝐼𝐴𝑙 (0) ≥ 0,
𝐼𝐴ℎ (0) ≥ 0,
𝐿𝐸 (0) ≥ 0,
𝐹𝐸 (0) > 0,
𝑤1 (𝑡) ≥ 0,
𝑤2 (𝑡) ≥ 0,
𝑤3 (𝑡) ≥ 0,
𝑤4 (𝑡) ≥ 0,
𝑤5 (𝑡) ≥ 0,

(2)

where

𝜓𝐴𝐴 = 𝜌𝐴 𝐼𝐴ℎ𝑁𝐴 ,
𝜓𝐸𝐴 = 𝛼𝐸𝐴𝛽𝐸𝐴𝑟𝐹 𝐹𝐸𝑘 + 𝐹𝐸 ,
𝜓𝐸𝐻 = 𝛼𝐸𝐻𝛽𝐸𝐻𝑟𝐹 𝐹𝐸𝑘 + 𝐹𝐸 ,
𝜓𝐴𝐻 = 𝜌𝐴𝐻 𝐼𝐴ℎ𝑁𝐻

0 ≤ 𝑤1 (𝑡) , 𝑤2 (𝑡) , 𝑤3 (𝑡) , 𝑤4 (𝑡) , 𝑤5 (𝑡) ≤ 1.

(3)

2.3. Optimal Control Problem for Tungiasis Epidemic. In this
section, we present the optimal control problem considering
the performance index and the controlled model equations
with initial state conditions whereby the goal is to find the
optimal levels of the controlmeasures needed tominimize the
number of infested humans, animal reservoirs, and fleas as
well as the cost of implementing the control strategies (𝑤𝑖 for𝑖 = 1, . . . , 5). The objective functional 𝐽(𝑤) to be minimized
is given by
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𝐽 (𝑤) = min ∫T

0
{𝑅1𝐼𝐻ℎ + 𝑅2𝐼𝐻𝑙 + 𝑅3𝐼𝐴ℎ + 𝑅4𝐼𝐴𝑙 + 𝑅5𝐹𝐸 + 12

5∑
𝑖=1

𝑍𝑖𝑤2𝑖 }𝑑𝑡. (4)

The terms 𝐼𝐻ℎ, 𝐼𝐻𝑙, 𝐼𝐴ℎ, 𝐼𝐴𝑙, 𝐹𝐸 in the objective functional𝐽(𝑤) are the number of infested populations that need to
be minimized. The terms 𝑍1𝑤21 represents the cost of off-
host insecticides spraying, 𝑍2𝑤22 represents the cost of on-
host spraying of infested domestic animals, 𝑍3𝑤23 represent
the cost of implementing environmental hygiene, 𝑍4𝑤24 rep-
resents the cost of education campaign, and 𝑍5𝑤25 represents
the cost of personal protection. 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑍1, 𝑍2, 𝑍3,𝑍4, and𝑍5 are positive balancing coefficients (weights) which
regularize the optimal control. Quadratic expressions of the
controls are included to indicate nonlinear costs potentially
arising at high intervention levels [23].

The optimal control problem is formulated to obtain the
minimum number of infested populations 𝐼𝐻ℎ, 𝐼𝐻𝑙, 𝐼𝐴ℎ, 𝐼𝐴𝑙,𝐹𝐸 under minimum cost. Therefore the objective function in
(4) is minimized subject to the model equations in (1). We
seek the optimal controls 𝑤∗1 , 𝑤∗2 , 𝑤∗3 , 𝑤∗4 , 𝑤∗5 such that

𝐽 (𝑤∗1 , 𝑤∗2 , 𝑤∗3 , 𝑤∗4 , 𝑤∗5 )
= min 𝐽 {(𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5) | 𝑤𝑖 ∈ Π for 𝑖
= 1, . . . , 5}

subject to the dynamical system in (1)
and the control set given by

Π = {(𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5) such that; 0 ≤ 𝑤𝑖 ≤ 1, for 𝑖
= 1, . . . , 5; ∀𝑡 ∈ [0, 𝑇]} .

(5)

3. Model Analysis

The basic framework of an optimal control is to prove the
existence of the optimal control and then characterize the
optimal control through optimality system [24]. Given the
optimal control problem in (5) we prove the existence of
optimal control problem using the approach by Fleming and
Rishel [25] and by Lukes [26] and then characterizing it for
optimality.

3.1. The Existence of Optimal Control Problem. To prove the
existence of optimal control the following conditions should
be satisfied:

(i) The set of controls and corresponding state variables
are nonempty.

(ii) The control set is convex and closed.
(iii) The right-hand side of the state system is bounded by

a linear function in the state and control variables.
(iv) The integrand of the objective functional is convex.
(v) The integrand of the objective functional is bounded

below by 𝜏1(∑5𝑖=1 |𝑤𝑖|2)𝜛/2 − 𝜏2, where 𝜏1, 𝜏2 > 0 and𝜛 > 1.
Given that, 𝑆𝐻, 𝐼𝐻𝑙, 𝐼𝐻ℎ, 𝑇𝐻, 𝑆𝐴, 𝐼𝐴𝑙, 𝐼𝐴ℎ, 𝐿𝐸, and 𝐹𝐸 are the
state variables of the controlled model system (1) and 𝑤1,𝑤2, 𝑤3, 𝑤4, 𝑤5 are the control variables. We state and prove
Theorem 1 as follows.

Theorem 1. There exists an optimal control variables set 𝑤∗ =(𝑤∗1 , 𝑤∗2 , 𝑤∗3 , 𝑤∗4 , 𝑤∗5 ) ∈ Π such that

𝐽 (𝑤∗1 , 𝑤∗2 , 𝑤∗3 , 𝑤∗4 , 𝑤∗5 ) = min 𝐽 {(𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5) | 𝑤𝑖 ∈ Π 𝑓𝑜𝑟 𝑖 = 1, . . . , 5} . (6)

Proof. Using the results in Fleming and Rishel [25] and by
Lukes [26], the control and the state variables are nonnegative
values. In thisminimization problem, the necessary convexity
of the objective functional in 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 is satisfied.
The set of admissible Lebesgue measurable control variables(𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5) ∈ Π is also convex and closed by the
definition.The optimal system is bounded which determines
the compactness needed for the existence of optimal control.
In order to verify this argument we use the approach adopted
by Sadiq et al. [27] and Namawejje et al. [28], whereby system
(1) is put in the following form:

𝑌 = 𝐵𝑌 + 𝐺 (𝑌) , (7)
where

𝑌 = (𝑆𝐻, 𝐼𝐻𝑙, 𝐼𝐻ℎ, 𝑇𝐻, 𝑆𝐴, 𝐼𝐴𝑙, 𝐼𝐴ℎ, 𝐿𝐸, 𝐹𝐸)𝑇 . (7a)

𝐵 is the 9 × 9matrix

𝐺 (𝑌) =

[[[[[[[[[[[[[[[[[[[[[[[
[

𝑏𝐻𝑁𝐻 − (1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻𝑆𝐻 − (1 − 𝑤4 (𝑡)) 𝜓𝐴𝐻𝑆𝐻
(1 − 𝑤4 (𝑡)) 𝜓𝐴𝐻𝑆𝐻 − (1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻𝐼𝐻𝑙
(1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻𝑆𝐻 + (1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻𝐼𝐻𝑙

0
𝑏𝐴𝑁𝐴 − (1 − 𝑤2 (𝑡)) 𝜓𝐴𝐴𝑆𝐴 − (1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴𝑆𝐴

(1 − 𝑤2 (𝑡)) 𝜓𝐴𝐴𝑆𝐴 − (1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴𝐼𝐴𝑙
(1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴𝑆𝐴 + (1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴𝐼𝐴𝑙

0
0

]]]]]]]]]]]]]]]]]]]]]]]
]

(7b)
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𝐵

=

[[[[[[[[[[[[[[[[[[[
[

−𝜇𝐻 0 0 𝜔 0 0 0 0 0
0 −Ψ1 0 0 0 0 0 0 0
0 0 −Ψ2 0 0 0 0 0 0
0 𝑝1 𝑝2 −Ψ3 0 0 0 0 0
0 0 0 0 −𝜇𝐴 0 0 0 0
0 0 0 0 0 −𝜇𝐴 0 0 0
0 0 0 0 0 0 − (𝜇𝐴 + 𝜎𝐴) 0 0
0 0 𝛿𝑒 0 0 0 𝛿𝑒 −Ψ5 0
0 0 0 0 0 0 Ψ4 𝛾𝐿 −Ψ6

]]]]]]]]]]]]]]]]]]]
]

, (7c)

where

Ψ1 = (𝑝1 + 𝜇𝐻) ,
Ψ2 = (𝑝2 + 𝜇𝐻 + 𝜎𝐻) ,
Ψ3 = (𝜔 + 𝜇𝐻) ,
Ψ4 = (1 − 𝑤2) 𝜀𝐴,
Ψ5 = {𝛿𝑒𝐾 (𝐼𝐻ℎ + 𝐼𝐴ℎ) + (𝛾𝐿 + 𝜇𝐿)} ,
Ψ6 = (𝜇𝐹 + 𝑤1 + 𝑟𝐹𝑘 + 𝐹𝐸)

(8)

and 𝑌 denotes the derivative of 𝑌 with respect to time 𝑡.
System (4) is a nonlinear system with a bounded coefficient.
We set

𝑅 (𝑌) = 𝐵𝑌 + 𝐺 (𝑌) . (7d)
Thesecond termon the right-hand side of (7d),𝐺(𝑌), satisfies
𝐺 (𝑌1) − 𝐺 (𝑌2) ≤ 𝐻1 (𝑆1𝐻 (𝑡) − 𝑆2𝐻 (𝑡))
+ 𝐻2 (𝐼1𝐻𝑙 (𝑡) − 𝐼2𝐻𝑙 (𝑡))
+ 𝐻3 (𝐼1𝐻ℎ (𝑡) − 𝐼2𝐻ℎ (𝑡))
+ 𝐻4 (𝑇1𝐻 (𝑡) − 𝑇2𝐻 (𝑡)) + 𝐻5 (𝑆1𝐴 (𝑡) − 𝑆2𝐴 (𝑡))
+ 𝐻6 (𝐼1𝐴𝑙 (𝑡) − 𝐼2𝐴𝑙 (𝑡)) + 𝐻7 (𝐼1𝐴ℎ (𝑡) − 𝐼2𝐴ℎ (𝑡))
+ 𝐻8 (𝐿1𝐸 (𝑡) − 𝐿2𝐸 (𝑡)) + 𝐻9 (𝐹1𝐸 (𝑡) − 𝐹2𝐸 (𝑡))
≤ 𝐻 ((𝑆1𝐻 (𝑡) − 𝑆2𝐻 (𝑡)) + (𝐼1𝐻𝑙 (𝑡) − 𝐼2𝐻𝑙 (𝑡))
+ (𝐼1𝐻ℎ (𝑡) − 𝐼2𝐻ℎ (𝑡)) + (𝑇1𝐻 (𝑡) − 𝑇2𝐻 (𝑡))
+ (𝑆1𝐴 (𝑡) − 𝑆2𝐴 (𝑡)) + (𝐼1𝐴𝑙 (𝑡) − 𝐼2𝐴𝑙 (𝑡))
+ (𝐼1𝐴ℎ (𝑡) − 𝐼2𝐴ℎ (𝑡)) + (𝐿1𝐸 (𝑡) − 𝐿2𝐸 (𝑡))
− (𝐹1𝐸 (𝑡) + 𝐹2𝐸 (𝑡))) ,

(9)

where the positive constant 𝐻 = max(𝐻𝑖 for 𝑖 = 1, . . . , 9)
is independent of the state variables. Also we have |𝑅(𝑌1) −𝑅(𝑌2)| ≤ 𝐻|𝑌1 − 𝑌2|, where 𝐻 = ∑9𝑖=1𝐻𝑖 + ‖𝑀‖ < ∞. So, it
follows that the function 𝑅 is uniformly Lipchitz continuous.

From the definition of control variables and nonnegative
initial conditions we can see that a solution of the system (1)
exists [29].

The integrand in the objective functional (4) which is
given by the following equation 𝐿(𝑡, 𝑦, 𝑤) = 𝑅1𝐼𝐻ℎ + 𝑅2𝐼𝐻𝑙 +𝑅3𝐼𝐴ℎ+𝑅4𝐼𝐴𝑙+𝑅5𝐹𝐸+(1/2)∑5𝑖=1 𝑍𝑖𝑤2𝑖 is convex in the control
set Π.

We must verify the condition that there exist a constant𝜛 > 1 and positive numbers 𝜏1 and 𝜏2 such that

𝐿 (𝑡, 𝑦, 𝑤) ≥ 𝜏1( 5∑
𝑖=1

𝑤𝑖2)
𝜛/2 − 𝜏2,

𝑅1𝐼𝐻ℎ + 𝑅2𝐼𝐻𝑙 + 𝑅3𝐼𝐴ℎ + 𝑅4𝐼𝐴𝑙 + 𝑅5𝐹𝐸 + 12
5∑
𝑖=1

𝑍𝑖𝑤2𝑖
≥ 12
5∑
𝑖=1

𝑍𝑖𝑤2𝑖
12
5∑
𝑖=1

𝑍𝑖𝑤2𝑖 ≥ 𝜏1( 5∑
𝑖=1

𝑤𝑖2)
𝜛/2 − 𝜏2.

(10)

The last condition is satisfied when 𝜛 = 2, 𝜏2 > 0, and 𝜏1 =
min{𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5}. This ends the proof.

3.2. Determination of the Necessary Conditions for Optimality.
The necessary conditions include the optimality solutions
and the adjoint equations that an optimal control must
satisfy which come from Pontryagin’s maximum principle
(Pontryagin’s et al., 1962). This principle converts systems (1)
and (4) into a problem of minimizing pointwise Hamiltonian
function𝐻, which is formed by allowing each of the adjoint
variables to correspond to each of the state variables accord-
ingly and combining the results with the objective functional
[21]. The resulting equation is as given by

𝐻(𝑡, 𝑦, 𝑤, 𝜆) = 𝑅1𝐼𝐻ℎ + 𝑅2𝐼𝐻𝑙 + 𝑅3𝐼𝐴ℎ + 𝑅4𝐼𝐴𝑙
+ 𝑅5𝐹𝐸 + 12

5∑
𝑖=1

𝑍𝑖𝑤2𝑖 + 9∑
𝑖=1

𝜆𝑖𝑄𝑖, (11)

where

𝜆𝑖 for 𝑖 = 1, . . . , 9 are the adjoint functions associated
with the state equations in (1),

𝑄𝑖 for 𝑖 = 1, . . . , 9 is the right-hand side of the
differential equations of 𝑖th state variable in system
(1).

The expanded form of Hamiltonian function in (11) is given
by

𝐻(𝑡, 𝑦, 𝑤, 𝜆) = 𝑅1𝐼𝐻ℎ + 𝑅2𝐼𝐻𝑙 + 𝑅3𝐼𝐴ℎ + 𝑅4𝐼𝐴𝑙
+ 𝑅5𝐹𝐸 + 12

5∑
𝑖=1

𝑍𝑖𝑤2𝑖 + 𝜆1 {𝑏𝐻𝑁𝐻 + 𝜔𝑇𝐻
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− (1 − 𝑤5) 𝜓𝐸𝐻𝑆𝐻 − (1 − 𝑤4) 𝜓𝐴𝐻𝑆𝐻 − 𝜇𝐻𝑆𝐻}
+ 𝜆2 {(1 − 𝑤4) 𝜓𝐴𝐻𝑆𝐻 − (1 − 𝑤5) 𝜓𝐸𝐻𝐼𝐻𝑙 − 𝑝1𝐼𝐻𝑙
− 𝜇𝐻𝐼𝐻𝑙} + 𝜆3 {(1 − 𝑤5) 𝜓𝐸𝐻𝑆𝐻 + (1 − 𝑤5) 𝜓𝐸𝐻𝐼𝐻𝑙
− 𝑝2𝐼𝐻ℎ − (𝜇𝐻 + 𝜎𝐻) 𝐼𝐻ℎ} + 𝜆4 {𝑝1𝐼𝐻𝑙 + 𝑝2𝐼𝐻ℎ
− 𝜔𝑇𝐻 − 𝜇𝐻𝑇𝐻} + 𝜆5 {𝑏𝐴𝑁𝐴 − (1 − 𝑤2) 𝜓𝐴𝐴𝑆𝐴
− (1 − 𝑤3) 𝜓𝐸𝐴𝑆𝐴 − 𝜇𝐴𝑆𝐴} + 𝜆6 {(1 − 𝑤2) 𝜓𝐴𝐴𝑆𝐴
− (1 − 𝑤3) 𝜓𝐸𝐴𝐼𝐴𝑙 − 𝜇𝐴𝐼𝐴𝑙} + 𝜆7 {(1 − 𝑤3) 𝜓𝐸𝐴𝑆𝐴
+ (1 − 𝑤3) 𝜓𝐸𝐴𝐼𝐴𝑙 − (𝜇𝐴 + 𝜎𝐴) 𝐼𝐴ℎ}
+ 𝜆8 {𝛿𝑒 (1 − 𝐿𝐸𝐾 ) (𝐼𝐻ℎ + 𝐼𝐴ℎ) − (𝛾𝐿 + 𝜇𝐿) 𝐿𝐸}
+ 𝜆9 {𝛾𝐿𝐿𝐸 + (1 − 𝑤2) 𝜀𝐴𝐼𝐴ℎ − (𝜇𝐹 + 𝑤1) 𝐹𝐸
− 𝑟𝐹𝐹𝐸(𝑘 + 𝐹𝐸)} .

(12)

Theoptimality equations are obtainedwhen taking the partial
derivative of the Hamiltonian function 𝐻 with respect to
the control variables (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5), respectively, and the
time derivative of adjoint equation 𝜆 which is obtained by
taking the negative partial derivative of𝐻 with respect to the
model state variables 𝑦(𝑡) such that 𝜆 = −𝐻𝑦.
Theorem 2. There exist an optimal control set (𝑤∗1 , 𝑤∗2 , 𝑤∗3 ,𝑤∗4 , 𝑤∗5 ) and their corresponding state solutions 𝑆∗𝐻, 𝐼∗𝐻𝑙, 𝐼∗𝐻ℎ,𝑇∗𝐻, 𝑆∗𝐴, 𝐼∗𝐴𝑙, 𝐼∗𝐴ℎ, 𝐿∗𝐸, and 𝐹∗𝐸 that minimize 𝐽(𝑤1, 𝑤2, 𝑤3,𝑤4, 𝑤5), and therefore there exist adjoint functions𝜆1, 𝜆2, . . . , 𝜆9 such that

𝑑𝜆1𝑑𝑡
= 𝜆1𝜇𝐻 − (1 − 𝑤4 (𝑡)) (𝜆2 − 𝜆1) 𝜓𝐴𝐻
− (1 − 𝑤5 (𝑡)) (𝜆3 − 𝜆1) 𝜓𝐸𝐻

𝑑𝜆2𝑑𝑡
= (1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻 (𝜆2 − 𝜆3) + 𝜆2 (𝑝1 + 𝜇𝐻)
− 𝜆4𝑝1 − 𝑅2

𝑑𝜆3𝑑𝑡
= 𝜆3 (𝑝2 + 𝜇𝐻 + 𝜎𝐻) − 𝜆8𝛿𝑒 (1 − 𝐿𝐸𝐾 ) − 𝜆4𝑝2
− 𝑅1

𝑑𝜆4𝑑𝑡 = 𝜆4 (𝜔 + 𝜇𝐻) − 𝜆1𝜔
𝑑𝜆5𝑑𝑡
= 𝜆5𝜇𝐴 − (1 − 𝑤2 (𝑡)) (𝜆6 − 𝜆5) 𝜓𝐴𝐴
− (1 − 𝑤3 (𝑡)) (𝜆7 − 𝜆5) 𝜓𝐸𝐴

𝑑𝜆6𝑑𝑡 = (𝜆6 − 𝜆7) (1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴 + 𝜆6𝜇𝐴 − 𝑅4
𝑑𝜆7𝑑𝑡
= 𝜆7 (𝜇𝐴 + 𝜎𝐴) − (1 − 𝑤4 (𝑡)) (𝜆2 − 𝜆1) 𝜌𝐴𝐻𝑆𝐻𝑁𝐻
− 𝜆8𝛿𝑒 (1 − 𝐿𝐸𝐾 )
− {𝜆9𝜀𝐴 + (𝜆6 − 𝜆5) 𝜌𝐴𝑆𝐴𝑁𝐴 } (1 − 𝑤2 (𝑡)) − 𝑅3

𝑑𝜆8𝑑𝑡 = 𝜆8 (𝐼𝐻ℎ + 𝐼𝐴ℎ) 𝛿𝑒𝐾 + 𝜆8 (𝛾𝐿 + 𝜇𝐿) − 𝜆9𝛾𝐿
𝑑𝜆9𝑑𝑡
= 𝜆9 {(𝜇𝐹 + 𝑤1 (𝑡)) + 𝑟𝐹𝑘(𝑘 + 𝐹𝐸)2} − 𝑅5
− 𝜒H (1 − 𝑤5 (𝑡)) {𝑆𝐻 (𝜆3 − 𝜆1) + 𝐼𝐻𝑙 (𝜆3 − 𝜆2)}
− 𝜒A (1 − 𝑤3 (𝑡)) {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)} ,

(13)

where 𝜒𝐻 = 𝛼𝐸𝐻𝛽𝐸𝐻𝑟𝐹𝑘/(𝑘 + 𝐹𝐸)2 and 𝜒𝐴 = 𝛼𝐸𝐴𝛽𝐸𝐴𝑟𝐹𝑘/(𝑘 + 𝐹𝐸)2 with transversality conditions, {𝜆𝑖(𝑇) for 𝑖 =1, 2, . . . , 9} = 0, and the control variables (𝑤∗1 , 𝑤∗2 , 𝑤∗3 , 𝑤∗4 , 𝑤∗5 )
satisfy the following optimality conditions:

𝑤∗1 = min {max{0, 𝜆9𝐹𝐸𝑍1 } , 1} ,
𝑤∗2 = min {max{0, {𝜓𝐴𝐴𝑆𝐴 (𝜆6 − 𝜆5) + 𝜆9𝜀𝐴𝐼𝐴ℎ}𝑍2 } , 1} ,
𝑤∗3 = min {max{0, 𝜓𝐸𝐴 {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)}𝑍3 } , 1} ,
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𝑤∗4 = min {max{0, 𝜓𝐴𝐻𝑆𝐻 (𝜆2 − 𝜆1)𝑍4 } , 1} ,
𝑤∗5 = min {max{0, 𝜓𝐸𝐻 {𝑆𝐻 (𝜆3 − 𝜆1) + 𝐼𝐻𝑙 (𝜆3 − 𝜆2)}𝑍5 } , 1} .

(14)

Proof. Thedifferential equations for the adjoints are standard
results from Pontryagin’s maximum principle (1962). Given
the Hamiltonian function in (12) the adjoint equations can be
easily computed by

𝑑𝜆1𝑑𝑡 = − 𝑑𝐻𝑑𝑆𝐻 ,
𝑑𝜆2𝑑𝑡 = − 𝑑𝐻𝑑𝐼𝐻𝑙 ,
𝑑𝜆3𝑑𝑡 = − 𝑑𝐻𝑑𝐼𝐻ℎ ,
𝑑𝜆4𝑑𝑡 = − 𝑑𝐻𝑑𝑇𝐻 ,
𝑑𝜆5𝑑𝑡 = − 𝑑𝐻𝑑𝑆𝐴 ,
𝑑𝜆6𝑑𝑡 = − 𝑑𝐻𝑑𝐼𝐴𝑙 ,
𝑑𝜆7𝑑𝑡 = − 𝑑𝐻𝑑𝐼𝐴ℎ ,
𝑑𝜆8𝑑𝑡 = − 𝑑𝐻𝑑𝐿𝐸 ,
𝑑𝜆9𝑑𝑡 = − 𝑑𝐻𝑑𝐹𝐸 .

(15)

Therefore, the adjoint system evaluated at optimal controls𝑤1, 𝑤2, 𝑤3, 𝑤4, and 𝑤5 and the corresponding model state
variables 𝑆𝐻, 𝐼𝐻𝑙, 𝐼𝐻ℎ, 𝑇𝐻, 𝑆𝐴, 𝐼𝐴𝑙, 𝐼𝐴ℎ, 𝐿𝐸, 𝐹𝐸 is as given by

𝑑𝜆1𝑑𝑡
= 𝜆1𝜇𝐻 − (1 − 𝑤4 (𝑡)) (𝜆2 − 𝜆1) 𝜓𝐴𝐻
− (1 − 𝑤5 (𝑡)) (𝜆3 − 𝜆1) 𝜓𝐸𝐻

𝑑𝜆2𝑑𝑡
= (1 − 𝑤5 (𝑡)) 𝜓𝐸𝐻 (𝜆2 − 𝜆3) + 𝜆2 (𝑝1 + 𝜇𝐻)
− 𝜆4𝑝1 − 𝑅2

𝑑𝜆3𝑑𝑡
= 𝜆3 (𝑝2 + 𝜇𝐻 + 𝜎𝐻) − 𝜆8𝛿𝑒 (1 − 𝐿𝐸𝐾 ) − 𝜆4𝑝2

− 𝑅1
𝑑𝜆4𝑑𝑡 = 𝜆4 (𝜔 + 𝜇𝐻) − 𝜆1𝜔
𝑑𝜆5𝑑𝑡
= 𝜆5𝜇𝐴 − (1 − 𝑤2 (𝑡)) (𝜆6 − 𝜆5) 𝜓𝐴𝐴
− (1 − 𝑤3 (𝑡)) (𝜆7 − 𝜆5) 𝜓𝐸𝐴

𝑑𝜆6𝑑𝑡 = (𝜆6 − 𝜆7) (1 − 𝑤3 (𝑡)) 𝜓𝐸𝐴 + 𝜆6𝜇𝐴 − 𝑅4
𝑑𝜆7𝑑𝑡
= 𝜆7 (𝜇𝐴 + 𝜎𝐴) − (1 − 𝑤4 (𝑡)) (𝜆2 − 𝜆1) 𝜌𝐴𝐻𝑆𝐻𝑁𝐻
− 𝜆8𝛿𝑒 (1 − 𝐿𝐸𝐾 )
− {𝜆9𝜀𝐴 + (𝜆6 − 𝜆5) 𝜌𝐴𝑆𝐴𝑁𝐴 } (1 − 𝑤2 (𝑡)) − 𝑅3

𝑑𝜆8𝑑𝑡 = 𝜆8 (𝐼𝐻ℎ + 𝐼𝐴ℎ) 𝛿𝑒𝐾 + 𝜆8 (𝛾𝐿 + 𝜇𝐿) − 𝜆9𝛾𝐿
𝑑𝜆9𝑑𝑡
= 𝜆9 {(𝜇𝐹 + 𝑤1 (𝑡)) + 𝑟𝐹𝑘(𝑘 + 𝐹𝐸)2} − 𝑅5
− 𝜒𝐻 (1 − 𝑤5 (𝑡)) {𝑆𝐻 (𝜆3 − 𝜆1) + 𝐼𝐻𝑙 (𝜆3 − 𝜆2)}
− 𝜒𝐴 (1 − 𝑤3 (𝑡)) {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)} ,

(16)

where 𝜒𝐻 = 𝛼𝐸𝐻𝛽𝐸𝐻𝑟𝐹𝑘/(𝑘 + 𝐹𝐸)2 and 𝜒𝐴 = 𝛼𝐸𝐴𝛽𝐸𝐴𝑟𝐹𝑘/(𝑘 + 𝐹𝐸)2 with transversality conditions, {𝜆𝑖(𝑇) for 𝑖 =1, 2, . . . , 9} = 0, and the characterization of optimal controls𝑤∗1 ,𝑤∗2 ,𝑤∗3 ,𝑤∗4 ,𝑤∗5 ; that is, the optimality equations are based
on the conditions:

𝜕𝐻𝜕𝑤1 =
𝜕𝐻𝜕𝑤2 =

𝜕𝐻𝜕𝑤3 =
𝜕𝐻𝜕𝑤4 =

𝜕𝐻𝜕𝑤5 = 0. (17)

Subject to (17) the optimality condition given the Lebes-
gue measurable control set Π = {0 ≤ 𝑤𝑖(𝑡) ≤ 1, for
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𝑖 = 1, 2, . . . , 5 and 𝑡 ∈ [0, 𝑇]}, where the control variables𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 are measurable functions, is given by

𝜕𝐻𝜕𝑤1 = 𝑍1𝑤1 − 𝜆9𝐹𝐸
𝜕𝐻𝜕𝑤2 = 𝑍2𝑤2 + 𝜆5𝜓𝐴𝐴𝑆𝐴 − 𝜆6𝜓𝐴𝐴𝑆𝐴 − 𝜆9𝜀𝐴𝐼𝐴ℎ
𝜕𝐻𝜕𝑤3 = 𝑍3𝑤3 + 𝜆5𝜓𝐸𝐴𝑆𝐴 + 𝜆6𝜓𝐸𝐴𝐼𝐴𝑙 − 𝜆7𝜓𝐸𝐴𝑆𝐴

− 𝜆7𝜓𝐸𝐴𝐼𝐴𝑙
𝜕𝐻𝜕𝑤4 = 𝑍4𝑤4 + 𝜆1𝜓𝐴𝐻𝑆𝐻 − 𝜆2𝜓𝐴𝐻𝑆𝐻
𝜕𝐻𝜕𝑤5 = 𝑍5𝑤5 + 𝜆1𝜓𝐸𝐻𝑆𝐻 + 𝜆2𝜓𝐸𝐻𝐼𝐻𝑙 − 𝜆3𝜓𝐸𝐻𝑆𝐻

− 𝜆3𝜓𝐸𝐻𝐼𝐻𝑙.

(18)

If we set 𝜕𝐻/𝜕𝑤𝑖 = 0 at 𝑤∗𝑖 the results are the same as in
characterization in (14).

In order to satisfy the given bounds for the control
functions (i.e., 0 ≤ 𝑤𝑖 ≤ 1 and 𝑡 ∈ [0, 𝑇]) the optimal
control is restricted to 𝑤∗𝑖 = min{max(0, 𝑤𝑖), 1}. Therefore
using the bounds for the controls 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 we have
the following.

The bounds and the impact notation for the control 𝑤1
are, respectively, given as

𝑤∗1 =
{{{{{{{{{{{{{{{

𝜆9𝐹∗𝐸𝑍1 if 0 ≤ 𝜆9𝐹∗𝐸𝑍1 ≤ 1,
0 if

𝜆9𝐹∗𝐸𝑍1 ≤ 0,
1 if

𝜆9𝐹∗𝐸𝑍1 ≥ 1,
𝑤∗1 = min{max{0, 𝜆9𝐹∗𝐸𝑍1 } , 1} .

(19)

Similar four-step arguments hold for optimal control sched-
ules 𝑤∗2 , 𝑤∗3 , 𝑤∗4 , and 𝑤∗5 in the same way as in (19) based on
the characterization in (14).

3.3.The Optimality System. The optimality system consists of
the state system and adjoint system with initial and transver-
sal conditions together with characterization of optimal
control. Any optimal control pair must satisfy this optimality
system as indicated in (20) and (22), respectively.

𝑑𝑆𝐻 (𝑡)𝑑𝑡 = 𝑏𝐻𝑁𝐻 − (1
−min{max{0, 𝜓∗𝐸𝐻 {𝑆𝐻 (𝜆3 − 𝜆1) + 𝐼𝐻𝑙 (𝜆3 − 𝜆2)}𝑍5 } ,

1})𝜓∗𝐸𝐻𝑆𝐻 + 𝜔𝑇𝐻 − (1
−min{max{0, 𝜓∗𝐴𝐻𝑆𝐻 (𝜆2 − 𝜆1)𝑍4 } , 1})𝜓∗𝐴𝐻𝑆𝐻
− 𝜇𝐻𝑆𝐻

𝑑𝐼𝐻𝑙 (𝑡)𝑑𝑡 = (1 −min{max{0, 𝜓∗𝐴𝐻𝑆𝐻 (𝜆2 − 𝜆1)𝑍4 } , 1})
⋅ 𝜓∗𝐴𝐻𝑆𝐻 − (1
−min{max{0, 𝜓∗𝐸𝐻 {𝑆𝐻 (𝜆3 − 𝜆1) + 𝐼𝐻𝑙 (𝜆3 − 𝜆2)}𝑍5 } ,
1})𝜓∗𝐸𝐻𝐼𝐻𝑙 − 𝑝1𝐼𝐻𝑙 − 𝜇𝐻𝐼𝐻𝑙

𝑑𝐼𝐻ℎ (𝑡)𝑑𝑡 = (1
−min{max{0, 𝜓∗𝐸𝐻 {𝑆𝐻 (𝜆3 − 𝜆1) + 𝐼𝐻𝑙 (𝜆3 − 𝜆2)}𝑍5 } ,
1})𝜓∗𝐸𝐻 (𝑆𝐻 + 𝐼𝐻𝑙) − 𝑝2𝐼𝐻ℎ − (𝜇𝐻 + 𝜎𝐻) 𝐼𝐻ℎ

𝑑𝑇𝐻 (𝑡)𝑑𝑡 = 𝑝1𝐼𝐻𝑙 + 𝑝2𝐼𝐻ℎ − 𝜔𝑇𝐻 − 𝜇𝐻𝑇𝐻
𝑑𝑆𝐴 (𝑡)𝑑𝑡 = 𝑏𝐴𝑁𝐴 − (1
−min{max{0, 𝜓∗𝐴𝐴𝑆𝐴 (𝜆6 − 𝜆5) + 𝜆9𝜀𝐴𝐼𝐴ℎ𝑍2 } , 1})
⋅ 𝜓∗𝐴𝐴𝑆𝐴 − (1
−min{max{0, 𝜓∗𝐸𝐴 {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)}𝑍3 } ,
1})𝜓∗𝐸𝐴𝑆𝐴 − 𝜇𝐴𝑆𝐴

𝑑𝐼𝐴𝑙 (𝑡)𝑑𝑡 = (1
−min{max{0, {𝜓∗𝐴𝐴𝑆𝐴 (𝜆6 − 𝜆5) + 𝜆9𝜀𝐴𝐼𝐴ℎ}𝑍2 } , 1})
⋅ 𝜓∗𝐴𝐴𝑆𝐴 − (1
−min{max{0, 𝜓∗𝐸𝐴 {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)}𝑍3 } ,
1})𝜓∗𝐸𝐴𝐼𝐴𝑙 − 𝜇𝐴𝐼𝐴𝑙

𝑑𝐼𝐴ℎ (𝑡)𝑑𝑡 = (1
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−min{max{0, 𝜓∗𝐸𝐴 {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)}𝑍3 } ,
1})𝜓∗𝐸𝐴 (𝑆𝐴 + 𝐼𝐴𝑙) − (𝜇𝐴 + 𝜎𝐴) 𝐼𝐴ℎ

𝑑𝐿𝐸 (𝑡)𝑑𝑡 = 𝛿𝑒 (1 − 𝐿𝐸𝐾 ) (𝐼𝐻ℎ + 𝐼𝐴ℎ) − (𝛾𝐿 + 𝜇𝐿) 𝐿𝐸
𝑑𝐹𝐸 (𝑡)𝑑𝑡 = 𝛾𝐿𝐿𝐸 + (1
−min{max{0, {𝜓∗𝐴𝐴𝑆𝐴 (𝜆6 − 𝜆5) + 𝜆9𝜀𝐴𝐼𝐴ℎ}𝑍2 } , 1})
⋅ 𝜀𝐴𝐼𝐴ℎ − (𝜇𝐹 +min{max{0, 𝜆9𝐹𝐸𝑍1 } , 1})𝐹𝐸
− 𝑟𝐹𝐹𝐸(𝑘 + 𝐹𝐸)

(20)

with initial conditions

𝑆𝐻 (0) > 0,
𝐼𝐻𝑙 (0) ≥ 0,
𝐼𝐻ℎ (0) ≥ 0,
𝑇𝐻 (0) ≥ 0,
𝑆𝐴 (0) > 0,
𝐼𝐴𝑙 (0) ≥ 0,
𝐼𝐴ℎ (0) ≥ 0,
𝐿𝐸 (0) ≥ 0,
𝐹𝐸 (0) > 0,

(21)

𝑑𝜆1𝑑𝑡 = 𝜆1𝜇𝐻 − (1
−min{max{0, 𝜓∗𝐸𝐴 {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)}𝑍3 } ,
1})𝜓∗𝐴𝐻 (𝜆2 − 𝜆1) − (1
−min{max{0, 𝜓∗𝐸𝐻 {𝑆𝐻 (𝜆3 − 𝜆1) + 𝐼𝐻𝑙 (𝜆3 − 𝜆2)}𝑍5 } ,
1})𝜓∗𝐸𝐻 (𝜆3 − 𝜆1)

𝑑𝜆2𝑑𝑡 = (1
−min{max{0, 𝜓∗𝐸𝐻 {𝑆𝐻 (𝜆3 − 𝜆1) + 𝐼𝐻𝑙 (𝜆3 − 𝜆2)}𝑍5 } ,
1})𝜓∗𝐸𝐻 (𝜆2 − 𝜆3) + 𝜆2 (𝑝1 + 𝜇𝐻) − 𝜆4𝑝1 − 𝑅2

𝑑𝜆3𝑑𝑡 = 𝜆3 (𝑝2 + 𝜇𝐻 + 𝜎𝐻) − 𝑅1 − 𝜆4𝑝2 − 𝜆8𝛿𝑒 (1 − 𝐿𝐸𝐾 )

𝑑𝜆4𝑑𝑡 = 𝜆4 (𝜔 + 𝜇𝐻) − 𝜆1𝜔
𝑑𝜆5𝑑𝑡 = 𝜆5𝜇𝐴 − (1
−min{max{0, {𝜓∗𝐴𝐴𝑆𝐴 (𝜆6 − 𝜆5) + 𝜆9𝜀𝐴𝐼𝐴ℎ}𝑍2 } , 1})
⋅ 𝜓∗𝐴𝐴 (𝜆6 − 𝜆5) − (1 −min{max{0,
𝜓∗𝐸𝐴 {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)}𝑍3 } , 1})𝜓∗𝐸𝐴 (𝜆7 − 𝜆5)

𝑑𝜆6𝑑𝑡 = (𝜆6 − 𝜆7) (1
−min{max{0, 𝜓∗𝐸𝐴 {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)}𝑍3 } ,
1})𝜓𝐸𝐴 + 𝜆6𝜇𝐴 − 𝑅4

𝑑𝜆7𝑑𝑡 = 𝜆7 (𝜇𝐴 + 𝜎𝐴) − (1
−min{max{0, 𝜓∗𝐴𝐻𝑆𝐻 (𝜆2 − 𝜆1)𝑍4 } , 1})
⋅ (𝜆2 − 𝜆1) 𝜌𝐴𝐻𝑆𝐻𝑁𝐻 − {𝜆9𝜀𝐴 + (𝜆6 − 𝜆5) 𝜌𝐴𝑆𝐴𝑁𝐴 }(1
−min{max{0, {𝜓∗𝐴𝐴𝑆𝐴 (𝜆6 − 𝜆5) + 𝜆9𝜀𝐴𝐼𝐴ℎ}𝑍2 } , 1})
− 𝜆8𝛿𝑒 (1 − 𝐿𝐸𝐾 ) − 𝑅3

𝑑𝜆8𝑑𝑡 = 𝜆8 (𝐼𝐻ℎ + 𝐼𝐴ℎ) 𝛿𝑒𝐾 + 𝜆8 (𝛾𝐿 + 𝜇𝐿) − 𝜆9𝛾𝐿
𝑑𝜆9𝑑𝑡 = 𝜆9 {(𝜇𝐹 + 𝜇𝐹 +min{max(0, 𝜆9𝐹𝐸𝑍1 ) , 1})

+ 𝑟𝐹𝑘(𝑘 + 𝐹𝐸)2} − 𝑅5 − 𝜒𝐻(1

−min{max{0, 𝜓∗𝐸𝐻 {𝑆∗𝐻 (𝜆3 − 𝜆1) + 𝐼∗𝐻𝑙 (𝜆3 − 𝜆2)}𝑍5 } ,
1}) {𝑆𝐻 (𝜆3 − 𝜆1) + 𝐼𝐻𝑙 (𝜆3 − 𝜆2)} − 𝜒𝐴(1
−min{max{0, 𝜓∗𝐸𝐴 {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)}𝑍3 } ,
1}) {𝑆𝐴 (𝜆7 − 𝜆5) + 𝐼𝐴𝑙 (𝜆7 − 𝜆6)} ,

(22)

where 𝜒𝐻 = 𝛼𝐸𝐻𝛽𝐸𝐻𝑟𝐹𝑘/(𝑘 + 𝐹𝐸)2 and 𝜒𝐴 = 𝛼𝐸𝐴𝛽𝐸𝐴𝑟𝐹𝑘/(𝑘 + 𝐹𝐸)2 with transversality conditions {𝜆𝑖(𝑇) for 𝑖 =1, 2, . . . , 9} = 0.
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Table 1: Parameter values for numerical simulation of optimal control model.

Parameter Value/range Source/references
𝑘 1 × 104 cell/m3 Estimated
𝐾 1 × 105 cell/m3 Estimated
𝛾𝐿 0.0105 per day¡sup/¿ Estimated
𝜎𝐻 0.011 per day Estimated
𝜎𝐴 0.037 per day Estimated
𝜇𝐻 0.000045 per day UNICEF. [14]
𝜇𝐴 0.0028 (360–3600)−1 per day Gaff et al. [15]; Radostits. (2001)
𝜇𝐹 0.04 per day Eisele et al. [16],
𝑟𝐹 0.58 per day Estimated
𝜇𝐿 0.08 per day Estimated
𝛽𝐸𝐻 0.19 per day Estimated
𝛽𝐸𝐴 0.48 per day Estimated
𝜌𝐴𝐻 0.052 per day Gaff et al. [15]
𝜌𝐴 0.26 (0.091–0.9) per day Allerson et al. [17]
𝑏𝐻 0.00011 per day TP, [18].
𝑏𝐴 0.022 per day Gaff et al. [15]
𝜀𝐴 0.40 per day Estimated
𝛿𝑒 0.12 per day Estimated
𝛼𝐸𝐻 0.4 Estimated
𝛼𝐸𝐴 0.6 Estimated
𝑝1 0.15 Estimated
𝑝2 0.15 Estimated
𝜔 0.09 Estimated
Source: Kahuru et al. [19].

4. Numerical Simulation of the Optimal
Control Model, Results, and Discussion

Sometimes it may not be possible to solve the optimality
system analytically; instead numerical methods are used
to approximate the solutions and display the results. The
optimality system is a two-point boundary problem, because
of the initial condition of the state system and the terminal
condition of the adjoint system [30]. To solve the optimality
system with initial conditions for the states and final time
conditions for the adjoints, we use the Runge-Kutta fourth-
order procedure which is more accurate and elaborative
technique. A Runge-Kuttamethod is amultiple-stepmethod,
where the solution at time 𝑡𝑘+1 is obtained from a defined set
of previous values 𝑡𝑛−𝑘, . . . , 𝑡𝑘 and 𝑛 is the number of steps.
Thismethod is described in a book by Lenhart andWorkman
[8] and it is known as forward-backward sweep method. The
process begins with an initial guess on the control vari-
able and given initial conditions for states, we approximate
solutions for state equations using Runge-Kutta forward
sweep method. Given the state solutions from previous step
and the final time conditions for adjoints, we approximate
solutions for adjoint equations using Runge-Kutta backward
sweep method. The value of control variables is updated by
averaging the previous value and the new value arising from
the control characterization. The process is repeated for
forward numerical scheme and updating of the controls

until successive values of all states, adjoints, and controls are
sufficiently close or converge.

4.1. Numerical Simulation of Optimal Control Model. We
conduct numerical simulation in order to investigate the
effects of the control strategies on the transmission dynamics
of Tungiasis. The simulations are performed using MALAB,
and we set time in days.The estimated initial values of model
state variables are 𝑆𝐻 = 1000, 𝐼𝐻𝑙 = 200, 𝐼𝐻ℎ = 300,𝑇𝐻 = 0, 𝑆𝐴 = 900, 𝐼𝐴𝑙 = 200, 𝐼𝐴ℎ = 300, 𝐿𝐸 = 10000, and𝐹𝐸 = 4000 and for the adjoint system we have terminal
conditions {𝜆𝑖(𝑇) for 𝑖 = 1, . . . , 9} = 0, where we set 𝑇 = 200
days.The cost coefficients corresponding to state variables are
estimated to be 𝑅1 = 20, 𝑅2 = 10, 𝑅3 = 15, 𝑅4 = 20, and 𝑅5 =25. The quadratic cost coefficient corresponding to control
measures is as well estimated to be𝑍1 = 50,𝑍2 = 60,𝑍3 = 80,𝑍4 = 10, and𝑍5 = 15.We use a set of parameter values whose
sources are from literature and others are estimated as shown
in Table 1.

We then plot the graphs to show the effects of the
control measures when implemented under different com-
bination options. We first illustrate the situation when no
optimal control strategy is implemented as shown in Figures
2(a)–2(d) and then we suggest seven control strategies with
different combinations of control measures and compare
their performance in order to determine the best option to
control the disease for maximum benefit.
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Figure 2: Simulations of model variables 𝐼𝐻ℎ, 𝐼𝐴ℎ, 𝐹𝐸 without intervention.

4.2. Discussion of the Results. In this section, we present the
results of the numerical simulation of our optimal control
problem by discussing the implications of implementing the
seven optimal control strategies on the Tungiasis dynamical
model. To observe the effects of the optimal control strategies,
we plot the results from simulation of the uncontrolled
system and that from the controlled system together in
Figures 3–9. To compare the effects of these options, we plot
the results together in Figures 10(a)–10(c). Thus we consider
the following seven combination options.

4.2.1. When All the Control Strategies Are Not Implemented
(i.e.,𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 = 0). Figures 2(a)–2(c) show the situ-
ationwhere no control strategy is implemented to the dynam-
ical system whereby the model trajectories represented by a
dotted lines for severely infested humans, severely infested
animal reservoir, and flea populations remain unchanged
and the control profiles in Figure 2(d) show that all control
measures are at the lower bound (i.e.,𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 = 0).
4.2.2. Strategy 1: All Control Measures Are Implemented (i.e.,𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 ̸= 0). Under strategy 1, all the control
measures (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5) are used to optimize the objec-
tive functional 𝐽(𝑤). In Figure 3(d), the control measure 𝑤5
is at upper bound at the beginning and after 40 days it
gradually drops to the lower bound at the final time. The
control measure 𝑤3 is at the upper bound at the beginning

and after 45 days it gradually drops to the lower bound at the
final time. The control measure 𝑤1 is at the upper bound at
the beginning and after 60 days it drops to the lower bound at
the final time.The controlmeasure𝑤4 is at the upper bound at
the beginning and after 140 days it rapidly drops to the lower
bound at the final time and the control measure 𝑤2 starts at
the upper bound at the beginning and remains there until it
drops to the lower bound.

4.2.3. Strategy 2: The Control Measures (i.e., 𝑤2, 𝑤3, 𝑤4, 𝑤5 ̸=0 and 𝑤1 = 0). Under strategy 2, the control measures(𝑤2, 𝑤3, 𝑤4, 𝑤5) are used to optimize the objective functional𝐽(𝑤). In Figure 4(d), the control measure 𝑤4 is at upper
bound at the beginning and after 140 days it rapidly drops
to the lower bound at the final time. The control measure 𝑤5
is at the upper bound at the beginning and after 175 days it
rapidly drops to the lower bound at the final time.The control
measure 𝑤3 is at the upper bound at the beginning and after
195 days it drops to the lower bound at the final time. The
controlmeasure𝑤2 starts at the upper bound at the beginning
and remains there until it drops to the lower bound at the
final time. The control measure 𝑤1 is at the lower bound at
the beginning and remains there till the final time.

4.2.4. Strategy 3: The Control Measures (i.e., 𝑤3, 𝑤4, 𝑤5 ̸= 0
and 𝑤1, 𝑤2 = 0). Under strategy 3, the control measures(𝑤3, 𝑤4, 𝑤5) are used to optimize the objective functional
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Figure 3: Optimal solutions for model variables 𝐼𝐻ℎ, 𝐼𝐴ℎ, 𝐹𝐸 and the control profiles for 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 with (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 ̸= 0).
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Figure 4: Optimal solutions for model variables 𝐼𝐻ℎ, 𝐼𝐴ℎ, 𝐹𝐸 and the control profiles for 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 with (𝑤2, 𝑤3, 𝑤4, 𝑤5 ̸= 0).
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Figure 5: Optimal solutions for model variables 𝐼𝐻ℎ, 𝐼𝐴ℎ, 𝐹𝐸 and the control profiles for 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 with (𝑤3, 𝑤4, 𝑤5 ̸= 0).
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Figure 6: Optimal solutions for model variables 𝐼𝐻ℎ, 𝐼𝐴ℎ, 𝐹𝐸 and the control profiles for 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 with (𝑤1, 𝑤2 ̸= 0).
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Figure 7: Optimal solutions for model variables 𝐼𝐻ℎ, 𝐼𝐴ℎ, 𝐹𝐸 and the control profiles for 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 with (𝑤1, 𝑤2, 𝑤3 ̸= 0).
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Figure 8: Optimal solutions for model variables 𝐼𝐻ℎ, 𝐼𝐴ℎ, 𝐹𝐸 and the control profiles for 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 with (𝑤2, 𝑤3, 𝑤4 ̸= 0).
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Figure 9: Optimal solutions for model variables 𝐼𝐻ℎ, 𝐼𝐴ℎ, 𝐹𝐸 and the control profiles for 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 with (𝑤1, 𝑤2, 𝑤4, 𝑤5 ̸= 0).

𝐽(𝑤). In Figure 5(d), the controlmeasure𝑤4 is at upper bound
at the beginning and after 140 days it rapidly drops to the
lower bound at the final time. The control measure 𝑤5 is
at the upper bound at the beginning and after 190 days it
rapidly drops to the lower bound at the final time.The control
measure 𝑤3 starts at the upper bound at the beginning and
remains there until it drops to the lower bound. The control
measures𝑤1 and𝑤2 start at the lower bound at the beginning
and remains there till the final time.

4.2.5. Strategy 4: The Control Measures (i.e., 𝑤1, 𝑤2 ̸= 0 and𝑤3, 𝑤4, 𝑤5 = 0). Under strategy 4, the control measures(𝑤1, 𝑤2) are used to optimize the objective functional 𝐽(𝑤).
In Figure 6(d), the control measure 𝑤1 is at upper bound at
the beginning and after 80 days it gradually drops to the lower
bound at the final time. The control measure 𝑤2 starts at the
upper bound at the beginning and remains there until it drops
to the lower bound. The control measures, 𝑤3, 𝑤4, and 𝑤5,
start at the lower bound at the beginning and remain there
till the final time.

4.2.6. Strategy 5: The Control Strategies (i.e., 𝑤1, 𝑤2, 𝑤3 ̸= 0
and 𝑤4, 𝑤5 = 0). Under strategy 5, the control measures(𝑤1, 𝑤2, 𝑤3) are used to optimize the objective functional𝐽(𝑤). In Figure 7(d), the controlmeasure𝑤3 is at upper bound
at the beginning and after 50 days it gradually drops to the
lower bound at the final time. The control measure 𝑤1 is
at the upper bound at the beginning and after 60 days it
gradually drops to the lower bound at the final time. The
controlmeasure𝑤2 starts at the upper bound at the beginning

and remains there until it drops to the lower bound at the final
time.The controlmeasures𝑤4 and𝑤5 start at the lower bound
at the beginning and remains there till the final time.

4.2.7. Strategy 6: The Control Measures (i.e., 𝑤2, 𝑤3, 𝑤4 ̸= 0
and 𝑤1, 𝑤5 = 0). Under strategy 6, the control measures(𝑤2, 𝑤3, 𝑤4) are used to optimize the objective functional𝐽(𝑤). In Figure 8(d), the control measure 𝑤4 is at upper
bound at the beginning and after 140 days it rapidly drops
to the lower bound at the final time. The control measures𝑤2 and 𝑤3 start at the upper bound at the beginning and
remain there until they drop to the lower bound.The control
measures𝑤1 and𝑤5 start at the lower bound at the beginning
and remain there till the final time.

4.2.8. Strategy 7: The Control Measures (i.e., 𝑤1, 𝑤2, 𝑤4, 𝑤5 ̸=0 and 𝑤3 = 0). Under strategy 7, the control measures(𝑤1, 𝑤2, 𝑤4, 𝑤5) are used to optimize the objective functional𝐽(𝑤). In Figure 9(d), the control measure 𝑤5 is at the upper
bound at the beginning and after 40 days it gradually drops
to the lower bound at the final time. The control measure𝑤1 is at the upper bound at the beginning and after 75 days
it gradually drops to the lower bound at the final time. The
control measure 𝑤4 is at the upper bound at the beginning
and after 170 days it rapidly drops to the lower bound at the
final time. The control measure 𝑤2 starts at the upper bound
at the beginning and remains there until it drops to the lower
bound at the final time and the control measure 𝑤3 starts at
the lower bound at the beginning and remains there till the
final time.
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Figure 10

Generally, it is observed in Figures 3(a)–3(c), 4(a)–4(c),
5(a)–5(c), 6(a)–6(c), 7(a)–7(c), 8(a)–8(c), and 9(a)–9(c) that
the controlled trajectories represented by the solid lines
decrease compared to uncontrolled trajectories represented
by the dotted lines. This implies that the control strategies
have the positive impacts which lead to a reduction in the
number of infested humans and animals and also reduces the
sand flea population in the soil environment.

4.2.9. The Comparison of the Control Strategies. To compare
the performance of the control strategies under considera-
tion, we plot the results on same graphs indicating the effects
of the control strategies as indicated in Figures 10(a)–10(c).

From Figures 10(a)–10(c), it is observed that the control
strategy involving the combination of all the five control
measures 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 has the significant impact on
the reduction of disease transmission because it lowers the
severely infested humans and animals and the sand flea
populations to minimal levels compared to other control
strategies. The red solid line as depicted in Figures 10(a),
10(b), and 10(c) represents the effect caused by the control
strategy 1: with the combination of all five control measures.
This is the best control strategy because it dominates both
graphs as it decreases rapidly compared to other trajectories.
Moreover we have observed that those control strategies,

whose combinations involve the control measure based on
insecticides applications to the premises (𝑤1), yield better
results. These are control strategies 5, 6, and 7. But control
strategy 5 denoted by the control measures (𝑤1, 𝑤2, 𝑤3)
performs better in the same way as the control strategy 1
denoted by the control measures (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5).
5. Conclusion

In this paper, the optimal control techniques have been
applied on Tungiasis dynamical model with control strate-
gies. We defined the control set including controlling the
transmission of infestation from flea infested soil envi-
ronment to human population, from the flea infested soil
environment to animal population, and from flea infested
animal to human population, controlling flea infested soil
environment, and controlling the flea infested animal popu-
lation. We proved the existence of optimal control problem
and determined the necessary conditions for optimality
using Pontryagin’s maximum principle which converts con-
strained optimization problem into unconstrained Hamil-
tonian function whereby optimality and adjoint equations
are obtained. We, lastly, performed numerical simulations
of the resulting control problem to investigate the effects of
the control strategies under consideration and compare their
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performances. The numerical results showed that the control
strategy that comprises all five controlmeasures and that with
control measures (𝑤1, 𝑤2, 𝑤3) have the significant impact on
reduced Tungiasis transmission and those control strategies
involving insecticides control to the premises (𝑤1) yielded
better results, which implies that the insecticides application
control is more effective than other individual control mea-
sures. In poor rural communities where resources are always
scarce, we suggest that the combination option involving the
controls of focal insecticides spraying, insecticidal dusting on
animal furs, and environmental hygiene should be adopted,
having observed from the comparison of all seven control
strategies in Figures 10(a), 10(b), and 10(c) that there is no
significant difference between this strategy (𝑤1, 𝑤2, 𝑤3 ̸= 0)
and the strategy that involves the combination of the five
control measures (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 ̸= 0). Among others,
poor housing conditions and the presence of domestic and
sylvatic animals on the home compound are risk factors.
Therefore, controlling of infested soils and animal reservoirs
with insecticides control, ant-flea compounds or animal furs,
environmental hygiene, and cementing the floors of houses
may serve as a possible approach to control the epidemic and,
thus, to fight against Tungiasis infestation in endemic settings
multidimensional control process should be employed in
order to achieve the maximum benefits.

Notations

The State Variables of the Model with Control Measures
(Source: Kahuru et al. [19])

𝑆𝐻(𝑡): Number of humans in a susceptible class
at time 𝑡𝑆𝐴(𝑡): Number of animals in a susceptible class at
time 𝑡𝐼𝐻𝑙(𝑡): Number of humans in mildly infested
class at time 𝑡𝐼𝐴𝑙(𝑡): Number of animals in mildly infested class
at time 𝑡𝐼𝐻ℎ(𝑡): Number of humans in severely infested
class at time 𝑡𝐼𝐴ℎ(𝑡): Number of animals in severely infested
class at time 𝑡𝑇𝐻(𝑡): Number of humans who are receiving
treatments at time 𝑡𝐹𝐸(𝑡): The density of fleas population in the
environment at time 𝑡𝐿𝐸(𝑡): The density of larvae population in the
environment at time 𝑡𝑁𝐻(𝑡),𝑁𝐴(𝑡): Total human and animal reservoirs
populations at time 𝑡

The Parameters of the Model with Control Measures (Source:
Kahuru et al. [19])

𝐾: Maximal larval carrying capacity𝑘: Half saturation constant𝛾𝐿: Maturation (transition) rate from larvae to
adult jigger fleas

𝜎𝐻, 𝜎𝐴: Disease induced death rates for humans
and animal reservoirs, respectively𝜇𝐻, 𝜇𝐴, 𝜇𝐹, 𝜇𝐿: Natural mortality rates for humans,
animals, fleas, and larvae, respectively𝑟𝐹: The rate of removal of jigger fleas that
leaves the soil to attack the hosts𝛽𝐸𝐻: Effective contact rate between
environment and humans𝛽𝐸𝐴: Effective contact rate between
environment and animal reservoirs𝜌𝐴𝐻: Effective contact rate between infested
animals and susceptible humans𝜌𝐴: Effective contact rate between infested
animals and susceptible animals𝑏𝐻, 𝑏𝐴: Recruitment birth rates for humans and
animal reservoirs, respectively𝛿𝑒: The rate of flea eggs deposit on the ground𝜀𝐴: Shedding rates for adult fleas into the
environment𝛼𝐸𝐻, 𝛼𝐸𝐴: The proportions of infestation for humans
and animals, respectively𝜔: Progression rate of treated humans to
susceptible class𝑝1, 𝑝2: Progression rates from infested human
classes to the treatment class.
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Hematopoietic stem cell (HSC) has been discussed as a basis for gene-based therapy aiming to cure immune system infections,
such as HIV. This therapy protects target cells from infections or specifying technic and immune responses to face virus by using
genetically modified HSCs. A mathematical model approach could be used to predict the dynamics of HSC gene-based therapy
of viral infections. In this paper, we present a fractional mathematical model of HSC gene-based therapy with the fractional order
derivative 𝛼 ∈ (0, 1]. We determine the stability of fractional model equilibriums. Based on the model analysis, we obtained three
equilibriums, namely, free virus equilibrium (FVE) 𝐸0, CTL-Exhaustion Equilibrium (CEE) 𝐸1, and control immune equilibrium
(CIE)𝐸2. Besides, we obtained Basic ReproductionNumber𝑅0 that determines the existence and stability of the equilibriums.These
three equilibriums will be conditionally locally asymptotically stable.We also analyze the sensitivity of parameters to determine the
most influence parameter to the spread of therapy. Furthermore, we perform numerical simulations with variations of 𝛼 to illustrate
the dynamical HSC gene-based therapy to virus-system immune interactions. Based on the numerical simulations, we obtained
that HSC gene-based therapy can decrease the concentration of infected cells and increase the concentration of the immune cells.

1. Introduction
An immune system is body’s primary defense system that
has a function to fight against microbes. Humoral immunity
consists of innate immunity and adaptive immunity. The
main principle of innate immunity is an initial defense which
responds quickly against microbes. Meanwhile, adaptive
immunity would be activated when innate immunity failed
to eradicate microbes. Adaptive immunity consists of B
lymphocytes cells (B cells) and T lymphocytes cells (T cells).
T cells consist of CD4+ T cells and cytotoxic T lymphocytes
(CTL and CD8+ T cells). Adaptive immunity has some
capabilities such as specificity, diversity, and memory, so it
can eradicate microbes effectively [1].

Viruses are one of the microorganisms that infect the
immune system. A virus will be detected and then eradicated
by innate immunity. However, there are several viruses that
can escape from innate immunity and infect CD4+ T cells.
Infected CD4+ T cells will produce cytokines to stimulate
proliferation and differentiation of precursor CTL cells to
become effector CTL cells that would eradicate infected
CD4+ T cells [2].

Hematopoiesis is the process to derive blood cells that are
located in bone marrow. The first stage of hematopoietic is a
stem cell. Hematopoietic stem cells (HSCs) have an ability to
multipotency and self-renewing. While in embryonic phase,
HSCs that migrate to thymus would be differentiated to
mature T cells [1]. Gene-based therapy has been discussed to
cure immune impairing infections, such asHIV.The therapy’s
concept is specifying technic and immune responses to face
viruses by using genetically modified HSCs. In 2012, Kitchen
et al. performed an in vivo experiment withHSCs gene-based
therapy. Based on the experiment, engineered HSCs have the
ability to establish functional antivirus responses that sup-
pressed HIV replication. Hence, it will allow suppression of
infected CD4+ T cells and prevent suppression of uninfected
CD4+ T cells [3].

Korpusik [4] developed a mathematical model to study
the influence of a constant influx of CTLs on the dynamic
of the virus and immune system interactions, using a mod-
ification of the basic mathematical model of virus-induced
impairment of help [2]. In addition, Korpusik and Kolev
[5] developed a mathematical model to study the dynamical
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virus-immune system interactions after a single injection of
CD8+ T cells derived from HSCs.

Ordinary differential equation (ODE) system that con-
sists of first-order differential equations can be generalized
to fractional differential equation (FDE) system that consists
of fractional order differential equations 𝛼, with a fractional
order parameter 0 < 𝛼 ≤ 1 [6]. In most biological systems,
FDE are naturally connected to systems with memory [7].
In addition, memory effect has an important role in the
disease spread.The presence ofmemory effects on past events
will affect the disease spread in the future. The distance of
memory effect indicates the history of disease spread. Thus,
memory effects on the spread of an infectious disease can be
investigated using fractional derivatives [8–13].

In this paper, we extend the ODE model from Korpusik
and Kolev [14] into a fractional differential equation system
model. We also determined equilibria and stability of the
equilibria from the proposed model. Finally, we perform
numerical simulation to support the mathematical model
interpretation.

2. Mathematical Model Formulation
In this section, we proposed a mathematical model of HSCs
gene-based therapy based on [5].Themodel was constructed
under the following assumptions:

(1) The model consists of five compartments, namely,
concentration of uninfected CD4+ T cells (𝑋), con-
centration of infected CD4+ T cells (𝑌), concentra-
tion of precursor CTL (𝑊), concentration of effector
CTL (𝑍), and concentration of CD8+ T lymphocytes
derived from HSCs (𝐻).

(2) Uninfected CD4+ T cells are produced with constant
rate.

(3) Viral infections occur only in a human body.
(4) Free virus particle only infected uninfected CD4+ T

cells.
(5) Effector CTL only killed infected CD4+ T cells.
(6) Injected HSCs will be differentiated into a precursor

CTL.
(7) The proliferation rate of precursor CTL cells depends

on susceptible CD4+ T cells, infected CD4+ T cells,
and CTL precursor cells at the current time.

The transmission diagram of the model is shown in
Figure 1.

The basic model from Korpusik and Kolev [5] was given
as follows: 𝑑𝑋𝑑𝑡 = Λ − 𝜃𝑋 − 𝛽𝑋𝑌 (1a)𝑑𝑌𝑑𝑡 = 𝛽𝑋𝑌 − 𝑎𝑌 − 𝑝𝑌𝑍 (1b)𝑑𝑊𝑑𝑡 = 𝑚𝛾𝐻 + 𝑐𝑊𝑋𝑌 − 𝑞𝑊𝑌 − 𝑏1𝑊 (1c)𝑑𝑍𝑑𝑡 = 𝑞𝑊𝑌 − 𝑏2𝑍 (1d)𝑑𝐻𝑑𝑡 = −𝛾𝐻 (1e)

b2Z

b1W

Λ

X

XY

aY pYZ

mH

cWXY

qWY

H

X

Y Z

W

H

Figure 1: HSCs gene-based therapy transmission diagram.

Here, all parameters Λ, 𝜃, 𝛽, 𝑎, 𝑝, 𝑐, 𝑏1, 𝑏2, 𝛾 > 0, 0 ≤ 𝑚, 𝑞 ≤ 1
and 𝑋(0), 𝑌(0),𝑊(0), 𝑍(0),𝐻(0) ≥ 0. The description of the
parameter for the model is presented in Table 1.

The differential equation (1a) describes the dynamic of
uninfected CD4+ T cells concentration. Concentrations of
CD4+ T cells increase by production of bone marrow and
decreased caused by natural death rate and infected by
free virus particle. The differential equation (1b) shows the
dynamic of infected CD4+ T cells concentrations. Concen-
trations of infectedCD4+T cells increase, caused by infection
of free virus particle. Infected CD4+ T cells will be decreased
because of natural death rate and it was killed by effector CTL
cells.

The differential equation (1c) describes the dynamic
of precursor CTL cells concentrations. Concentrations of
precursor CTL cells increased by CTL proliferation process
and HSCs were differentiated into CD8+ T cells that are parts
of precursorCTL cells. Concentrations of precursorCTL cells
are decreased, caused by differentiating into effector CTL,
and decreased by natural death rate. Equation (1d) shows
the dynamic of concentrations of effector CTL cells at time.
Concentrations of effector CTL cells are increased, caused
by differentiating of precursor CTL into effector CTL phase,
and decreased, caused by natural death rate.The last equation
(1e) shows the dynamic of CD8+ T cells concentrations
that derived from HSCs. Concentrations of CD8+ T cells
are decreased, caused by successfully passing the thymic
selection and differentiating into functional precursor CTL
cells.

Next, we consider a fractional order model of (1a)-(1e)
above. The fractional model corresponding to system (1a)-
(1e) is as follows:𝑑𝛼𝑋𝑑𝑡𝛼 = Λ − 𝜃𝑋 − 𝛽𝑋𝑌𝑑𝛼𝑌𝑑𝑡𝛼 = 𝛽𝑋𝑌 − 𝑎𝑌 − 𝑝𝑌𝑍𝑑𝛼𝑊𝑑𝑡𝛼 = 𝑚𝛾𝐻 + 𝑐𝑊𝑋𝑌 − 𝑞𝑊𝑌 − 𝑏1𝑊
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Table 1: The description of parameters in the model.

Parameter Description UnitΛ Production rate of uninfected CD4+ T cells Concentration cells/time unit𝜃 Death rate of uninfected CD4+ T cells 1/ time unit𝛽 Infection rate Concentration cells−1/ time unit𝑎 Death rate of infected CD4+ T cells 1/ time unit𝑝 Effector CTL rate of killing infected CD4+ T cells Concentration cells−1/ time unit𝑚 Fractions of HSCs that successfully differentiated into functional CTL cells -𝑐 Proliferation rate of precursor CTL Concentration cells−2/ time unit𝑞 Fraction of precursor CTL cells that differentiated into effector CTL cells -𝑏1 Death rate of precursor CTL 1/ time unit𝑏2 Death rate of effector CTL 1/ time unit𝛾 Differentiation rate of CD8+ T lymphocytes 1/ time unit

𝑑𝛼𝑍𝑑𝑡𝛼 = 𝑞𝑊𝑌 − 𝑏2𝑍𝑑𝛼𝐻𝑑𝑡𝛼 = −𝛾𝐻
(2)

where the fractional order derivative 0 < 𝛼 ≤ 1. Fractional
derivative of the model (2) is adopted from Caputo’s defini-
tion. The main advantages of Caputo approach are the initial
values for fractional differential equations with the Caputo
derivatives taking on the same form as for integer order
differential equations [15]. The Caputo fractional derivative
is defined as follows.

Definition 1 (see [15]). Let 𝛼 > 0, 𝑡 > 0, and 𝑛 ∈ N. Caputo
fractional derivative𝐷𝛼 fl 𝑑𝛼/𝑑𝑡𝛼, with fractional order 𝛼, of
function 𝑓(𝑡) is defined by𝐷𝛼𝑓 (𝑡) = 𝐼𝑛−𝛼𝐷𝑛𝑓 (𝑡)

= {{{{{
1Γ (𝑛 − 𝛼) ∫𝑡0 𝑓(𝑛) (𝑠)(𝑡 − 𝑠)𝛼−𝑛+1 𝑑𝑠, 𝑛 − 1 < 𝛼 < 𝑛𝑓(𝑛) (𝑡) , 𝛼 = 𝑛,

(3)

where Γ(∙) is the gamma function.

3. Stability Analysis

In this section, we study stability of the equilibriums of the
fractional order model (2) above. We begin by computed
the basic reproduction number 𝑅0 of model (2). Basic
reproduction number 𝑅0 is defined as the average number
of new cases of an infection caused by one typical infected
individual, in a population consisting of susceptible only [16].
If𝑅0 < 1, then the infections will die out, while if𝑅0 > 1, then
there is an epidemic case [17].

The stability theorem on fractional order system was
given in the following theorem.

Theorem 2 (see [18]). Consider a nonlinear fractional order
system 𝐷𝛼𝑥 (𝑡) = 𝑓 (𝑥) (4)

where 0 < 𝛼 ≤ 1, 𝑥 ∈ R𝑛, and 𝑓 ∈ R𝑛. The equilibrium points𝑥∗ of system (4) are calculated by solving equation 𝑓(𝑥) = 0.
The equilibrium points 𝑥∗ are locally asymptotically stable if
all the eigenvalues 𝜆𝑗 (𝑗 = 1, 2, . . . , 𝑛) of the Jacobian matrix𝐴 = 𝜕𝑓/𝜕𝑥 evaluated at the equilibrium points 𝑥∗ satisfy the
following condition:

arg 𝜆𝑗 > 𝛼𝜋2 . (5)

The equilibriums of the fractional mathematical model in (2)
satisfy the following equations:

Λ − 𝜃𝑋 − 𝛽𝑋𝑌 = 0 (6)𝛽𝑋𝑌 − 𝑎𝑌 − 𝑝𝑌𝑍 = 0 (7)𝑚𝛾𝐻 + 𝑐𝑊𝑋𝑌 − 𝑞𝑊𝑌 − 𝑏1𝑊 = 0 (8)𝑞𝑊𝑌 − 𝑏2𝑍 = 0 (9)−𝛾𝐻 = 0 (10)

The fractional model in (2) has three equilibriums, namely,
virus-free equilibrium (𝐸0), CTL-Exhaustion Equilibrium(𝐸1), and control immune equilibrium 𝐸2. The virus-free
equilibrium is condition when there is CD4+ T cells in human
body (𝑋 ̸= 0), no infected CD4+ T cells (𝑌 = 0), and CTL
precursor is not activated (𝑊 = 0). The virus-free equilibrium
of model (2) above is given by 𝐸0 = (𝑋0, 𝑌0,𝑊0, 𝑍0, 𝐻0) =(Λ/𝜃, 0, 0, 0, 0).

Basic reproduction number (𝑅0) is an important parameter
in epidemiological cases. Basic reproduction number 𝑅0 is
defined by average secondary infections caused by one primary
infection in susceptible population. In this paper, we use Next
GenerationMatrix (NGM) that developed by [19] to determine𝑅0. By using the Next Generation method, we obtained the
basic reproduction number 𝑅01 = 𝛽Λ/𝜃𝑎. Stability of virus-
free equilibrium is presented in Theorem 3.

Theorem 3. The virus-free equilibrium 𝐸0 of model (2) is
locally asymptotically stable if and only if 𝑅01 < 1.
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Proof. The Jacobi matrix that evaluated at the virus-free
equilibrium (𝐸0) of the model (2) above is as follows:

𝐽 (𝐸0) =(((((
(

−𝜃 −𝛽Λ𝜃 0 0 0
0 𝛽Λ𝜃 − 𝑎 0 0 00 0 −𝑏1 0 𝑚𝛾0 0 0 −𝑏2 00 0 0 0 −𝛾

)))))
)

. (11)

The eigenvalues of the Jacobi matrix 𝐽(𝐸0) are 𝜆1 = −𝜃, 𝜆2 =𝛽Λ/𝜃 − 𝑎, 𝜆3 = −𝑏1, 𝜆4 = −𝑏2, and 𝜆5 = −𝛾. Hence, we have|arg(𝜆1)| = |arg(𝜆3)| = |arg(𝜆4)| = |arg(𝜆5)| = 𝜋 > 𝜋/2.
Meanwhile, |arg(𝜆2)| = 𝜋 > 𝜋/2 if and only if 𝑅01 = 𝛽Λ/𝑎𝜃 <1. If the condition𝑅01 = 𝛽Λ/𝑎𝜃 < 1 is satisfied, then it is clear
that all the eigenvalues satisfy the condition |arg 𝜆𝑗| > 𝛼𝜋/2,
for 𝑗 = 1, 2, 3, 4, 5. Hence, the virus-free equilibrium (𝐸0) of
model (2) is locally asymptotically stable if 𝑅01 < 1.

We continue with the stability analysis of the CTL-
Exhaustion Equilibrium (𝐸1) of the model (2). The CTL-
Exhaustion Equilibrium is condition when there is CD4+ T
cells in human body (𝑋 ̸= 0), there are infected CD4+ T cells(𝑌 ̸= 0), but CTL precursor is not activated yet (𝑊 = 0). The
CTL-Exhaustion Equilibrium of the model in (2) is given by𝐸1 = (𝑎/𝛽, (𝛽Λ − 𝑎𝜃)/𝛽𝑎, 0, 0, 0). This equilibrium will exist
whenever 𝑅01 > 1.
Theorem 4. Let 𝑞𝛽−𝑐𝑎 < 0 and 𝑅02 = 𝑏1𝑎𝛽2/(𝑎𝜃−𝛽Λ)(𝑞𝛽−𝑐𝑎). The CTL-Exhaustion Equilibrium (𝐸1) of the model in (2)
is locally asymptotically stable if and only if 𝑅02 > 1.
Proof. The Jacobi matrix evaluated at the free virus equilib-
rium 𝐸1 = (𝑎/𝛽, (𝛽Λ − 𝑎𝜃)/𝛽𝑎, 0, 0, 0) of the model in (2)
above is as follows:

𝐽 (𝐸1)

=(((((((
(

−𝛽Λ𝑎 −𝑎 0 0 0𝛽Λ𝑎 − 𝜃 0 −𝑝(Λ𝑎 − 𝜃𝛽) 0 0
0 0 (𝑎𝜃 − 𝛽𝜆) (−𝑐𝑎 + 𝑞𝛽𝑎𝛽2 ) − 𝑏1 0 𝑚𝛾
0 0 𝑞 (Λ𝑎 − 𝜃𝛽) −𝑏2 00 0 0 0 −𝛾

)))))))
)

. (12)

The eigenvalues of the Jacobi matrix 𝐽(𝐸1) above are 𝜆1 = −𝛾,𝜆2 = −𝑏2, 𝜆3 = (𝑎𝜃 − 𝛽Λ)((−𝑐𝑎 + 𝑞𝛽)/𝑎𝛽2) − 𝑏1, and 𝜆4,5 is
root of polynomial 𝜆2 + 𝑏𝜆 + 𝑐 = 0, where 𝑏 = 𝛽Λ/𝜃, and𝑐 = 𝛽Λ − 𝑎𝜃. We have |arg(𝜆1)| = |arg(𝜆2)| = 𝜋 > 𝜋/2.
Then we determined the argument of 𝜆4 and 𝜆5. Based on
the condition of existence of 𝐸1 that 𝑅01 = 𝛽Λ/𝑎𝜃 > 1, we
obtained 𝑐 = 𝛽Λ−𝑎𝜃 > 0. By using Routh-Hurwitz criterion,
we obtained |arg(𝜆4)| = |arg(𝜆5)| > 𝜋/2.

Since all parameters are assumed to have positive value,
the third eigenvalue 𝜆3 is a real number. We obtained that|arg(𝜆3)| = 𝜋 > 𝜋/2 if and only if the condition ((𝑎𝜃 −𝛽Λ)(𝑞𝛽 − 𝑐𝑎) < 𝑏1𝑎𝛽2) is fulfilled. It is clear that all the
eigenvalues satisfy the condition |arg 𝜆𝑗| > 𝛼𝜋/2, for 𝑗 =(1, 2, 3, 4, 5). Hence, the CTL-Exhaustion Equilibrium 𝐸1 of
model (2) is locally asymptotically stable if and only if (𝑎𝜃 −𝛽Λ)(𝑞𝛽 − 𝑐𝑎) < 𝑏1𝑎𝛽2 or 𝑅02 > 1. This completes the
proof

Last, we analyze the stability of the control immune
equilibrium (𝐸2). The control immune equilibrium is the
condition when there are CD4+ T cells in human body(𝑋 ̸= 0), there is infected CD4+ T cells (𝑌 ̸= 0), and
CTL precursor is activated (𝑊 ̸= 0) so that can give the
immune response. The control immune equilibrium is given
by 𝐸2(𝑋∗, 𝑌∗,𝑊∗, 𝑍∗, 𝐻∗), where

𝑋∗ = Λ(𝜃 + 𝛽𝑌∗) = 𝑞𝑌∗ + 𝑏1𝑐𝑌∗ ,
𝑌∗ = 𝜃𝑞 + 𝛽𝑏1 − Λ𝑐 ± √𝐴2𝛽𝑞 ,
𝑊∗ = ( 𝑏2𝑞𝑌∗)(𝛽Λ − 𝑎𝜃 + 𝑎𝛽𝑌∗𝑝𝜃 − 𝑝𝛽𝑌∗ )

= 𝑏2 (𝑅01 + 𝛽𝑌∗/𝜃 − 1)𝑝𝑞𝑌∗ (𝜃 − 𝛽𝑌∗) ,
𝑍∗ = 𝑞𝑏2𝑊∗𝑌∗ = 𝛽Λ − 𝑎𝜃 + 𝑎𝛽𝑌∗𝑝𝜃 − 𝑝𝛽𝑌∗ ,

and 𝐻∗ = 0.

(13)

The equilibriums will exist if the conditions𝐴 = (Λ𝑐 − 𝜃𝑞)2 −2𝛽𝑏1(Λ𝑐 + 𝜃𝑞) + (𝛽𝑏1)2 ≥ 0, 𝜃 > 𝛽𝑌∗ and 𝑅01 +𝛽𝑌∗/𝜃 > 1 are
satisfied.

The Jacobi matrix of themodel in (2) that evaluated in the
equilibrium point 𝐸2 is

𝐽 (𝐸2) =(((
(

−𝛽𝑌∗ − 𝜃 −𝛽𝑋∗ 0 0 0𝛽𝑌∗ 𝛽𝑋∗ − 𝑝𝑍∗ − 𝑎 −𝑝𝑌∗ 0 0𝑐𝑊∗𝑌∗ 𝑐𝑊∗𝑋∗ − 𝑞𝑊∗ 𝑐𝑋𝑌∗ − 𝑞𝑌∗ − 𝑏1 0 𝑚𝛾0 𝑞𝑊∗ 𝑞𝑌∗ −𝑏2 00 0 0 0 −𝛾
)))
)

. (14)
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By using the control immune equilibrium condition, the
Jacobi matrix 𝐽(𝐸2) could be simplified into

𝐽 (𝐸2)

=(((
(

− Λ𝑋∗ −𝛽𝑋∗ 0 0 0𝛽𝑌∗ 0 −𝑝𝑌∗ 0 0𝑐𝑊∗𝑌∗ 𝑐𝑊∗𝑋∗ − 𝑞𝑊∗ 0 0 𝑚𝛾0 𝑞𝑊∗ 𝑞𝑌∗ −𝑏2 00 0 0 0 −𝛾
)))
)

. (15)

From the Jacobi matrix 𝐽(𝐸2) above, we get the polynomial
characteristic equations as follows:

(𝜆 + 𝛾) (𝜆 + 𝑏2) (𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3) = 0 (16)

where 𝑎1 = Λ/𝑋∗, 𝑎2 = 𝛽2𝑋∗𝑌∗ + 𝑝𝑌∗𝑊∗(𝑐𝑋∗ − 𝑞), and𝑎3 = 𝑝𝑌∗𝑊∗(Λ𝑐 − Λ𝑞/𝑋∗ − 𝑐𝛽𝑋∗𝑌∗).
Based on the characteristic equations (16) above, we

obtain eigen values 𝜆1 = −𝛾, 𝜆2 = −𝑏2, and 𝜆3,4,5 is the roots
of the following equation:

𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 = 0. (17)

The argument of the first and second eigen values is 𝜋,|arg(𝜆1)| = |arg(𝜆2)| = 𝜋. Next, we will determine the
argument of the third, fourth, and fifth eigen values. The
third, fourth, and fifth eigen values are roots of polynomial
with degree of three (17), satisfying the following conditions:

(i) 𝜆3 + 𝜆4 + 𝜆5 = −𝑎1
(ii) 𝜆3𝜆4 + 𝜆4𝜆5 + 𝜆3𝜆5 = 𝑎2
(iii) 𝜆3𝜆4𝜆5 = −𝑎3

Then, we will analyze two conditions when 𝑎3 < 0 and 𝑎3 > 0.
If 𝑎3 < 0, then we have Theorem 5. On the other hand, if𝑎3 > 0 then we obtainTheorem 6 below.

Theorem 5. If Λ(𝑐𝑋∗ − 𝑞)/𝑐𝛽(𝑋∗)2𝑌∗ < 1, then the immune
control equilibrium 𝐸2 of model (2) is unstable.

Proof. Let 𝑎3 = 𝑝𝑌∗𝑊∗(Λ𝑐 − Λ𝑞/𝑋∗ − 𝑐𝛽𝑋∗𝑌∗) < 0; we
obtained Λ(𝑐𝑋∗ − 𝑞)/𝑐𝛽(𝑋∗)2𝑌∗ < 1. Since 𝑎3 < 0, then
based on the third condition (iii) above we have 𝜆3𝜆4𝜆5 >0. There are two possibilities, either all the eigen values of
the polynomial (17) are real number or one of the eigen
values is real number and two other eigen values are complex
numbers.

(1) Let all the eigen values 𝜆3, 𝜆4, 𝜆5 be real number.
Because of 𝜆3𝜆4𝜆5 > 0, then there are two possibili-
ties. First, all the eigen values are real positive number.
If all the eigen values are real positive numbers, then
it is clear that |arg(𝜆3)| = |arg(𝜆4)| = |arg(𝜆5)| = 0 <𝛼𝜋/2. Second, one of the eigen values is real positive
number and two others are real negative number. Let𝜆3 ∈ R, then |arg(𝜆3)| = 0 < 𝛼𝜋/2.

(2) Let one of the eigen values be real number, 𝜆3 ∈ R,
and two others eigen values are complex numbers,𝜆4 = 𝑎 + 𝑏𝑖, 𝜆5 = 𝑎 − 𝑏𝑖, where 𝑎, 𝑏 ∈ R. Because𝜆3𝜆4𝜆5 > 0 and 𝜆4𝜆5 > 0, then we obtained 𝜆3 > 0.
As a result, |arg(𝜆3)| = 0 < 𝛼𝜋/2.

From the two conditions above, we find that the immune
control equilibrium 𝐸2 of the model (2) is unstable wheneverΛ(𝑐𝑋∗ − 𝑞)/𝑐𝛽(𝑋∗)2𝑌∗ < 1.
Theorem 6. The immune control equilibrium 𝐸2 of the model
(2) is asymptotically stable if Λ(𝑐𝑋∗ − 𝑞)/𝑐𝛽(𝑋∗)2𝑌∗ > 1 for
some fractional order 𝛼.
Proof. Let we consider the polynomial

𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 = 0 (18)

where 𝑎1 = Λ/𝑋∗, 𝑎2 = 𝛽2𝑋∗𝑌∗ + 𝑝𝑌∗𝑊∗(𝑐𝑋∗ − 𝑞), and𝑎3 = 𝑝𝑌∗𝑊∗(Λ𝑐 − Λ𝑞/𝑋∗ − 𝑐𝛽𝑋∗𝑌∗).
Let 𝑎3 = 𝑝𝑌∗𝑊∗(Λ𝑐 − Λ𝑞/𝑋∗ − 𝑐𝛽𝑋∗𝑌∗) > 0. Hence we

obtained Λ(𝑐𝑋∗ − 𝑞)/𝑐𝛽(𝑋∗)2𝑌∗ > 1. If 𝑎3 > 0, then based
on the third condition (iii) above we have 𝜆3𝜆4𝜆5 < 0.

(i) Let the polynomial characteristic (18) above have
complex number roots. Let one of the eigen values be
real number, 𝜆3 ∈ R, and two other eigen values are
complex number, 𝜆4 = 𝑎 + 𝑏𝑖, 𝜆5 = 𝑎 − 𝑏𝑖, where𝑎, 𝑏 ∈ R. Since 𝜆3𝜆4𝜆5 < 0 and 𝜆4𝜆5 > 0, then
we obtained 𝜆3 < 0. As a result, |arg(𝜆3)| = 𝜋 >𝛼𝜋/2. In addition, we can found a fractional order
value 𝛼 ∈ (0, 1] such that the arguments of the third
and fourth eigen values satisfy |arg(𝜆4)| > 𝛼𝜋/2 and|arg(𝜆5)| > 𝛼𝜋/2. As a result, the immune control
equilibrium 𝐸2 of model (2) is asymptotically stable
for some fractional order 𝛼.

(ii) Let all the eigen values of the polynomial character-
istic (18) above 𝜆3, 𝜆4, 𝜆5 be real numbers. Then we
will determine the conditions such that all roots of the
polynomial (18) above are either negative or complex
roots with negative real parts by using Routh-Hurwitz
criterion.
Based on Routh-Hurwitz criteria, the polynomial (18)
will have real negative or real negative parts roots if it
satisfies 𝑎1, 𝑎2, 𝑎3 > 0 and 𝑎1𝑎2 − 𝑎3 > 0. Hence, we
obtained the following conditions:

(a) Since all parameters are assumed to be positive
and𝑋∗ ̸= 0, then it is clear that 𝑎1 > 0.

(b) The coefficient 𝑎2 will have positive value if 𝑎3 is
positive.

(c) The coefficient 𝑎3 will have positive value if it
satisfies Λ(𝑐𝑋∗ − 𝑞)/𝑐𝛽(𝑋∗)2𝑌∗ > 1.

(d) It is clear that the coefficients 𝑎1, 𝑎2, 𝑎3 satisfy𝑎1𝑎2 − 𝑎3 > 0.
Based on [20], for𝛼 ∈ (0, 1] these conditions are sufficient

but not necessary. Therefore, the argument of 𝜆3, 𝜆4, 𝜆5 will
satisfy |arg(𝜆3)| = |arg(𝜆4)| = |arg(𝜆5)| = 𝜋 > 𝜋/2 if
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Table 2: The sensitivity indices of 𝑅
01
.

Parameter Sensitivity indices
𝛽 1
Λ 1
𝑎 -1
𝜃 -1

Table 3: The sensitivity indices of 𝑅
02
.

Parameter Sensitivity indices𝛽 0.945Λ 1𝑎 -0.994𝜃 -1𝑏1 -0.049𝑞 -0.006𝑐 0.055

the condition Λ(𝑐𝑋∗ − 𝑞)/𝑐𝛽(𝑋∗)2𝑌∗ > 1 is satisfied. As a
result, the immune control equilibrium 𝐸2 of the model (2) is
asymptotically stable. This completes the proof.

4. Sensitivity Analysis

In this section, we will analyze the sensitivity of parameters of
the model (2) above. Sensitivity analysis is used to determine
the relative importance of model parameters to disease
transmission and prevalence based on the sensitivity index of
basic reproduction number 𝑅0. The calculation of sensitivity
index of 𝑅0 follows the approach in Chitnis [21].

Definition 7 (see [21]). The normalized forward sensitivity
index of a variable, 𝑚, that depends differentially on a
parameter, 𝑘, is defined as

Υ𝑚𝑘 fl
𝜕𝑚𝜕𝑘 × 𝑘𝑚. (19)

Based on Definition 7, the sensitivity indices of 𝑅01 with
respect to each parameter such as 𝛽, Λ, 𝑎, and 𝜃 can be
computed in the same way as (19). The sensitivity indices of𝑅01 are given in Table 2. Based on Table 2, it can be seen
that parameters 𝛽 and Λ positively affect the rate of model
changed. Respectively, the parameters 𝑎 and 𝜃 negatively
affect the rate of model changed. But, we did not know what
is the relative importance of model parameters of 𝑅01. So, we
also analyze the sensitivity parameters of 𝑅02.

Based on Definition 7, the sensitivity indices of 𝑅02 with
respect to each parameter such as 𝛽, Λ, 𝑎, 𝜃, 𝑏1, 𝑞, and 𝑐 can be
computed in the same way as (19). The sensitivity indices of
parameter Λ are (𝜕𝑅02/𝜕Λ)(Λ/𝑅02) = Λ(𝑐𝑎 − 𝑞𝛽)/𝛽(−𝑎𝑏1 −Λ𝑞) + 𝑎𝑐Λ; we next substituted the value of parameters of
Table 4 so we obtain (𝜕𝑅02/𝜕Λ)(Λ/𝑅02) = 1. The sensitivity
indices of 𝑅02 are given in Table 3.

Based on Table 3, it can be seen that if production rate
of uninfected CD4+ T cells (Λ) is increased (decreased)
about 10%, then 𝑅02 will increase (decrease) about 10%.

Respectively, if death rate of infected CD4+ T cells (𝑎) is
increased (decreased) about 10%, then 𝑅02 will decrease
(increase) about 9.94%, and the same for other parameters.

5. Numerical Simulation

In this section, we present numerical simulations to show
the dynamics of the model at free virus condition, CTL-
exhaustion condition, and control immune condition using
MATLAB R2009a. The initial conditions of simulations of
free virus condition are 𝑋0 = 3.6, 𝑌0 = 0.2,𝑊0 = 0.01, 𝑍0 =0.01, and𝐻0 = 0.001. The parameter values are presented in
Table 4. Based on Table 4, we have that basic reproduction
number R0 is 𝑅01 = 𝛽Λ/𝑎𝜃 = (0.15)(0.2)/(0.8)(0.05) =0.75 < 1 that shows free virus condition or there is no spread
of viral infection.This simulation used variations of fractional
order 𝛼 and time interval for 2500 time units.

The result of simulation of free virus condition can be
seen in Figure 2. Based on Figure 2, greater the fractional
order 𝛼 leads to the increase of concentrations of uninfected
CD4+ T cells but concentrations of infected CD4+ T cells
are decreasing that show free virus conditions. Besides,
concentrations of precursor CTL cells are decreasing caused
by the decrease ofCD4+T cells.That also implies the decrease
of effector CTL. Meanwhile, concentrations of CD8+ T cells
are decreasing because theywere differentiated into precursor
CTL cells.

Next, we will interpret the simulation of CTL-exhaustion
condition. The initial conditions of simulations of CTL-
exhaustion condition are 𝑋0 = 1.5, 𝑌0 = 0.8,𝑊0 = 0.6, 𝑍0 =0.3, and 𝐻0 = 0.001. The parameter values are presented in
Table 4 except for 𝛽, 𝑎, and 𝜃, which are 𝛽 = 0.216, 𝑎 = 0.4,
and 𝜃 = 0.02. Therefore, we have basic reproduction number𝑅01 = (0.216)(0.2)/(0.4)(0.02) = 5.4 > 1 and 𝑅02 = 𝛽Λ/𝑎𝜃 +𝑏1𝛽2/𝜃(𝑞𝛽 − 𝑐𝑎) = 10.1 > 1 which is condition when there is
spread of viral infections in the human body.This simulation
used variations of fractional order 𝛼 and time interval for
2500 time units.

Based on Figure 3, it can be seen that greater the fractional
order 𝛼 leads to the decrease of concentrations of uninfected
CD4+ T cells but concentrations of infected CD4+ T cells
are increasing.That implies the conditions of viral infections.
But, concentrations of effector CTL cells are decreasing. That
implies the CTL-exhaustion conditions where CTL are not
activated yet so they cannot against the viral infections.
Meanwhile, concentrations of CD8+ T cells were decreased
because they differentiated into precursor CTL cells.

Last, we will show the simulation of control immune
conditions. The initial conditions of simulations of CTL-
exhaustion condition are 𝑋0 = 5, 𝑌0 = 1,𝑊0 = 2.5, 𝑍0 =0.8, and 𝐻0 = 0.001. The parameter values are showed in
Table 4 except for 𝜃, that is, 𝜃 = 0.02. Therefore, we have
basic reproduction number 𝑅01 = 1.87 > 1 and 𝑅02 =1.01 > 1 which is condition when there is spread of viral
infections in the human body.This simulation used variations
of fractional order 𝛼 and time interval for 2500 time units.
Based on Figure 4, it can be seen that greater the fractional
order 𝛼 leads to the increase of concentrations of uninfected
CD4+ T cells but concentrations of infected CD4+ T cells
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Figure 2: The dynamics of mathematical model of HSCs gene-based therapy for free virus conditions.
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Figure 3: The dynamics of mathematical model of HSCs gene-based therapy for CTL-exhaustion conditions.
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Figure 4: The dynamics of fractional order mathematical model of HSCs gene-based therapy for control immune conditions.
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Table 4: Parameters value of the model.

Parameter Description Value SourceΛ Production rate of uninfected CD4+ T cells 0.2 [14]𝜃 Death rate of uninfected CD4+ T cells 0.05 Assumption𝛽 Infection rate 0.15 [14].𝑎 Death rate of infected CD4+ T cells 0.8 [14]𝑝 Effector CTL rate of killing infected CD4+ T cells 0.016 [14]𝑚 Fractions of HSCs that successfully differentiated into functional CTL cells 0.01 Assumption𝑐 Proliferation rate of precursor CTL 0.1 Assumption𝑞 Fraction of precursor CTL cells that differentiated into effector CTL cells 0.1 Assumption𝑏1 Death rate of precursor CTL 0.05 [14]𝑏2 Death rate of effector CTL 0.05 [14]𝛾 Differentiation rate of CD8+ T cells 0.005 Assumption

are decreasing. Meanwhile, concentrations of precursor and
effector CTL cells are increasing, which means the precursor
and effector CTL cells are activated so they can fight against
the viral infections.That implies control immune conditions.
Meanwhile, concentrations of CD8+ T cells were decreased
because they differentiated into precursor CTL cells.

6. Conclusions

We were discussed about the stability analysis of fractional
order mathematical model of HSCs gene-based therapy. The
model has three equilibriums points. The existence and
stability of the equilibriums were achieved. Based on the
numerical simulations, we conclude that HSCs gene-based
therapy has potential to reduce the viral infections because it
can decrease the concentration of infection cells and increase
the concentration of the immune cells.
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For the tuple set of commuting invertible matrices with coefficients in a given field, the joint determinants are defined as
generalizations of the determinant map for the square matrices. We introduce a natural topology on Milnor’s 𝐾-groups of a
topological field as the quotient topology induced by the joint determinant map and investigate the existence of a nontrivial
continuous joint determinant by utilizing this topology, generalizing the author’s previous results on the continuous joint
determinants for the commuting invertible matrices over R and C.

1. Introduction

In [1], a joint determinant is introduced as a generalization of
the determinant map for invertible matrices. More precisely,
for a field 𝑘, a joint determinant 𝐷 (= 𝐷𝑙) (𝑙 ≥ 1) is defined
as a map from the set of 𝑙-tuples of commuting matrices in
GL𝑛(𝑘) (𝑛 ≥ 1) into some abelian group (𝐺, +)which satisfies
the following properties.

(i) Multilinearity: for 𝑙 + 1 commuting matrices 𝐴1,. . . , 𝐴 𝑙 and 𝐵 in GL𝑛(𝑘) for some 𝑛 ≥ 1, we have 𝐷(𝐴1, . . .,𝐴 𝑖𝐵, . . . , 𝐴 𝑙) = 𝐷(𝐴1, . . . , 𝐴 𝑖, . . . , 𝐴 𝑙) +𝐷(𝐴1, . . . , 𝐵, . . . , 𝐴 𝑙).
(ii) Block diagonal matrices: for commuting𝐴1, . . . , 𝐴 𝑙 ∈

GL𝑚(𝑘) and commuting 𝐵1, . . . , 𝐵𝑙 ∈ GL𝑛(𝑘) for some𝑚, 𝑛 ≥1, we have 𝐷((𝐴1 00 𝐵1) , . . . , (𝐴 𝑙 00 𝐵𝑙))= 𝐷 (𝐴1, . . . , 𝐴 𝑙) + 𝐷 (𝐵1, . . . , 𝐵𝑙) . (1)

(iii) Similar matrices: for commuting matrices 𝐴1, . . .,𝐴 𝑙 ∈ GL𝑛(𝑘) and any 𝑆 ∈ GL𝑛(𝑘), we have 𝐷(𝑆𝐴1𝑆−1, . . .,𝑆𝐴 𝑙𝑆−1) = 𝐷(𝐴1, . . . , 𝐴 𝑙).
(iv) Polynomial homotopy: for commuting 𝐴1(𝑡), . . .,𝐴 𝑙(𝑡) ∈ GL𝑛(𝑘[𝑡]), we have 𝐷(𝐴1(0), . . . , 𝐴 𝑙(0)) = 𝐷(𝐴1(1),. . . , 𝐴 𝑙(1)).

Using the standard inclusion GL𝑛(𝑘) → GL𝑛+1(𝑘)
(𝑎11 ⋅ ⋅ ⋅ 𝑎1𝑛... d

...𝑎𝑛1 ⋅ ⋅ ⋅ 𝑎𝑛𝑛) → (𝑎11 ⋅ ⋅ ⋅ 𝑎1𝑛 0... d
... 0𝑎𝑛1 ⋅ ⋅ ⋅ 𝑎𝑛𝑛 00 ⋅ ⋅ ⋅ 0 1), (2)

we define GL(𝑘) as the direct limit of these groups GL(𝑘) =∪𝑛→∞GL𝑛(𝑘). Using the above inclusions, we may identify
the direct limit Comm𝑙(𝑘) of the set of 𝑙-tuples of commuting
matrices in GL𝑛(𝑘)𝑙 = GL𝑛(𝑘)× ⋅ ⋅ ⋅×GL𝑛(𝑘) over 𝑛 as a subset
of GL(𝑘)𝑙 = GL(𝑘) × ⋅ ⋅ ⋅ × GL(𝑘). Then, a joint determinant
may be thought of as a map from Comm𝑙(𝑘) into an abelian
group 𝐺.

The main result in [1] about the joint determinants is that
there exists a one-to-one correspondence between the set of
joint determinants from Comm𝑙(𝑘) into an abelian group 𝐺
and the set of group homomorphisms fromMilnor’s𝐾-group𝐾𝑀𝑙 (𝑘) into 𝐺. Milnor’s 𝐾-group is introduced in [2] as the
quotient group of the tensor product 𝑘∗ ⊗ ⋅ ⋅ ⋅ ⊗ 𝑘∗ by the
subgroup generated by elements of the form 𝑎1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑎𝑙,
where 𝑎𝑖 + 𝑎𝑗 = 1 for some 𝑖, 𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑙). It is
a major object of study in algebraic 𝐾-theory and appears
in numerous literatures. For example, Voevodsky’s proof of
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Bloch-Kato conjecture [3] relates Milnor’s 𝐾-group of a field
with its étale cohomology.The element of𝐾𝑀𝑙 (𝑘) represented
by 𝑎1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑎𝑙 is typically denoted by a symbol {𝑎1, . . . ,𝑎𝑙}.

To describe the “universal” joint determinant
Comm𝑙(𝑘) → 𝐾𝑀𝑙 (𝑘), we need the Goodwillie group GW𝑙(𝑘)
which is defined to be the abelian group generated by 𝑙-tuples
of commuting matrices (𝐴1, . . . , 𝐴 𝑙) (𝐴1, . . . , 𝐴 𝑙 ∈ GL𝑛(𝑘)
for various 𝑛 ≥ 1), subject to the following 4 kinds of
relations.

(i) Identity matrices: (𝐴1, . . . , 𝐴 𝑙) = 0 when 𝐴 𝑖 for some𝑖 is equal to the identity matrix 𝐼𝑛 ∈ GL𝑛(𝑘).
(ii) Similarmatrices: (𝐴1, . . . , 𝐴 𝑙) = (𝑆𝐴1𝑆−1, . . . , 𝑆𝐴 𝑙𝑆−1)

for commuting 𝐴1, . . . , 𝐴 𝑙 ∈ GL𝑛(𝑘) and any 𝑆 ∈ GL𝑛(𝑘).
(iii) Direct sum: (𝐴1, . . . , 𝐴 𝑙) + (𝐵1, . . . , 𝐵𝑙) = (( 𝐴1 00 𝐵1 ) ,. . . , ( 𝐴𝑙 00 𝐵𝑙 )) for commuting 𝐴1, . . . , 𝐴 𝑙 ∈ GL𝑛(𝑘) and

commuting 𝐵1, . . . , 𝐵𝑙 ∈ GL𝑚(𝑘).
(iv) Polynomial homotopy: (𝐴1(0), . . . , 𝐴 𝑙(0)) = (𝐴1(1),. . . , 𝐴 𝑙(1)) for commuting matrices 𝐴1(𝑡), . . . , 𝐴 𝑙(𝑡) in

GL𝑛(𝑘[𝑡]), where 𝑘[𝑡] is the polynomial ring over 𝑘 with the
indeterminate 𝑡.

The universal joint determinant map Φ𝑙 : Comm𝑙(𝑘) →𝐾𝑀𝑙 (𝑘) is then the composite of the naturalmapComm𝑙(𝑘) →
GW𝑙(𝑘), which sends an 𝑙-tuple of commuting matrices to a
generator of GW𝑙(𝑘) and the isomorphism 𝜙𝑙 : GW𝑙(𝑘) ∼→𝐾𝑀𝑙 (𝑘), which is described in the proof ofTheorem 6.7 of [1].
From the fact that 𝜙 is an isomorphism follows easily the one-
to-one correspondence between the set of joint determinants
from Comm𝑙(𝑘) into an abelian group 𝐺 and the set of
group homomorphisms from Milnor’s 𝐾-group 𝐾𝑀𝑙 (𝑘) into𝐺.

When 𝑙 = 1, GW𝑙(𝑘) ≃ 𝑘∗ and the universal joint
determinant is nothing but the traditional determinant map
(Proposition 4.4 of [1]).

The definition of joint determinant maps is given in
purely algebraic terms and so there are possibilities of very
complicated joint determinants; for example, when 𝑘 is the
field C of complex numbers or R of real numbers, Milnor’s𝐾-groups𝐾𝑀𝑙 (𝑘) for 𝑙 ≥ 2 are known to be uniquely divisible
or a direct sum of a cyclic group of order 2 and a uniquely
divisible group, respectively [2].

Thus, if we disregard the topological continuity of a joint
determinant map, the joint determinants are far from trivial,
but if we require a joint determinant to be continuous, then
the situation becomes drastically different. It is proven that,
for 𝑙 ≥ 2, there exists only one nontrivial joint determi-
nant from Comm𝑙(R) into R×, which is continuous when
restricted to the set of commuting matrices in GL𝑛(R),
for each 𝑛, with the standard topology (Corollary 7.3 of
[1]).

In the present article, we generalize this result to
determine all possible continuous joint determinants from
Comm𝑙(R) or Comm𝑙(C) to a topological abelian group 𝐺.
For this purpose, we introduce a natural topology onMilnor’s𝐾-groups 𝐾𝑀𝑙 (𝑘) for a topological field 𝑘 as the quotient
topology induced by the joint determinant map and show

that, in case of 𝑘 = R or C, the natural topology on 𝐾𝑀𝑙 (𝑘)
is disjoint union of two indiscrete components or indiscrete
topology, respectively. This indicates that, for 𝑘 = R or C,
the “universal” continuous joint determinant turns out to
be Comm𝑙(R) → Z2 or Comm𝑙(C) → {1}, respective-
ly.

2. A Natural Topology on 𝐾𝑀𝑙 (𝑘)
For a topological field 𝑘, GL(𝑘) = ∪𝑛→∞GL𝑛(𝑘) is a
topological group with the direct limit topology, that is, a
subset 𝑈 of GL(𝑘) is open if and only if 𝑈 ∩ GL𝑛(𝑘) is open
for each 𝑛 ≥ 1 (e.g., 3.1 of [4]). The topology on Comm𝑙(𝑘)
is given by the subspace topology regarding it as a subspace
of the product space GL(𝑘)𝑙 = GL(𝑘) × ⋅ ⋅ ⋅ × GL(𝑘). Then
it coincides with the direct limit topology if we think of
Comm𝑙(𝑘) as the direct limit of the subspace of 𝑙-tuples of
commuting matrices in the space GL𝑛(𝑘)𝑙 = GL𝑛(𝑘) × ⋅ ⋅ ⋅ ×
GL𝑛(𝑘) over 𝑛.
Definition 1. For a topological field 𝑘, the topology on Mil-
nor’s𝐾-group𝐾𝑀𝑙 (𝑘) is the quotient topology with respect to
the mapΦ𝑙 : Comm𝑙(𝑘) → 𝐾𝑀𝑙 (𝑘), which is the composite of
a natural map Comm𝑙(𝑘) → GW𝑙(𝑘) followed by the group
isomorphism 𝜙𝑙 : GW𝑙(𝑘) ∼→ 𝐾𝑀𝑙 (𝑘) which is described in
the proof of Theorem 6.7 of [1].

The obvious map Comm𝑙(𝑘) → GW𝑙(𝑘) is actually
surjective by Corollary 4.3 of [1] and so Φ𝑙 is a surjection.
Theorem 2. 𝐾𝑀𝑙 (𝑘) is a topological group with respect to the
topology given in Definition 1.

Proof. By the definition of the Goodwillie group GW𝑙(𝑘),
the group law on 𝐾𝑀𝑙 (𝑘) is given via 𝜙𝑙 : GW𝑙(𝑘) ∼→𝐾𝑀𝑙 (𝑘) by the direct sum rule: (𝐴1, . . . , 𝐴 𝑙) + (𝐵1, . . . , 𝐵𝑙) =(( 𝐴1 00 𝐵1 ) , . . . , ( 𝐴𝑙 00 𝐵𝑙 )) for commuting 𝐴1, . . . , 𝐴 𝑙 ∈ GL𝑝(𝑘)
and commuting 𝐵1, . . . , 𝐵𝑙 ∈ GL𝑞(𝑘) (𝑝, 𝑞 ≥ 1). This addition
rule is not expressed by a continuous map Comm𝑙(𝑘) ×
Comm𝑙(𝑘) → Comm𝑙(𝑘), but the following continuous map
Comm𝑙(𝑘) × Comm𝑙(𝑘) → Comm𝑙(𝑘) actually induces the
group operation on 𝐾𝑀𝑙 (𝑘):

(
(

(
(

(
(

𝑎11 𝑎12 𝑎13 ⋅ ⋅ ⋅𝑎21 𝑎22 𝑎23 ⋅ ⋅ ⋅𝑎31 𝑎32 𝑎33 ⋅ ⋅ ⋅... ... ... d

)
)

, . . .)
)

,

(
(

(
(

𝑏11 𝑏12 𝑏13 ⋅ ⋅ ⋅𝑏21 𝑏22 𝑏23 ⋅ ⋅ ⋅𝑏31 𝑏32 𝑏33 ⋅ ⋅ ⋅... ... ... d

)
)

, . . .)
)

)
)
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→ (((((((((((
(

(((((((((((
(

𝑎11 0 𝑎12 0 𝑎13 0 ⋅ ⋅ ⋅0 𝑏11 0 𝑏12 0 𝑏13 ⋅ ⋅ ⋅𝑎21 0 𝑎22 0 𝑎23 0 ⋅ ⋅ ⋅0 𝑏21 0 𝑏22 0 𝑏23 ⋅ ⋅ ⋅𝑎31 0 𝑎32 0 𝑎33 0 ⋅ ⋅ ⋅0 𝑏31 0 𝑏32 0 𝑏33 ⋅ ⋅ ⋅... ... ... ... ... ... d

)))))))))))
)

,

. . .)))))))))
)

.
(3)

To prove that the two elements

(((((
(

(((((
(

𝑎11 0 𝑎12 0 ⋅ ⋅ ⋅0 𝑏11 0 𝑏12 ⋅ ⋅ ⋅𝑎21 0 𝑎22 0 ⋅ ⋅ ⋅0 𝑏21 0 𝑏22 ⋅ ⋅ ⋅... ... ... ... d

)))))
)

, . . .)))))
)

,

(((((((
(

((((((
(

𝑎11 𝑎12 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅𝑎21 𝑎22 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅... ... d
... ... ...0 0 ⋅ ⋅ ⋅ 𝑏11 𝑏12 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅ 𝑏21 𝑏22 ⋅ ⋅ ⋅... ... ⋅ ⋅ ⋅ ... ... d

))))))
)

, . . .)))))))
)

(4)

of Comm𝑙(𝑘) map to the same element under Φ𝑙 :
Comm𝑙(𝑘) → 𝐾𝑀𝑙 (𝑘), it is enough to verify that an 𝑙-tuple(𝐴1, . . . , 𝐴 𝑙) of commutingmatrices inGL𝑛(𝑘)𝑙 represents the
same element in GW𝑙(𝑘) which is represented by the 𝑙-tuple
of matrices which is obtained by simultaneously changing𝑖th and 𝑗th rows and also 𝑖th and 𝑗th columns of all 𝑙 𝑛 ×𝑛 matrices 𝐴1, . . . , 𝐴 𝑙. For notational convenience, we will
prove this for 1st and 2nd rows and columns of 2 × 2matrices
and the proof is easily generalized to 𝑛 × 𝑛 matrices. Let us
write the (𝑖, 𝑗)th entry of the matrix 𝐴𝑘 as 𝑎𝑘𝑖𝑗 (𝑘 = 1, 2, . . . , 𝑙).
In GW𝑙(𝑘), we have(𝐴1, . . . , 𝐴 𝑙) = ((𝑎111 𝑎112𝑎121 𝑎122) , . . . , (𝑎𝑙11 𝑎𝑙12𝑎𝑙21 𝑎𝑙22))

= ((𝑎111 𝑎112 0 0𝑎121 𝑎122 0 00 0 1 00 0 0 1) , . . . ,
(𝑎𝑙11 𝑎𝑙12 0 0𝑎𝑙21 𝑎𝑙22 0 00 0 1 00 0 0 1)).

(5)

Using the polynomial homotopy

((
(

((
(

1 − 𝑡2 0 0 𝑡0 1 0 00 0 1 0𝑡3 − 2𝑡 0 0 1 − 𝑡2
))
)

((
(

𝑎111 𝑎112 0 0𝑎121 𝑎122 0 00 0 1 00 0 0 1
))
)

((
(

1 − 𝑡2 0 0 −𝑡0 1 0 00 0 1 02𝑡 − 𝑡3 0 0 1 − 𝑡2
))
)

, . . . ,

((
(

1 − 𝑡2 0 0 𝑡0 1 0 00 0 1 0𝑡3 − 2𝑡 0 0 1 − 𝑡2
))
)

((
(

𝑎𝑙11 𝑎𝑙12 0 0𝑎𝑙21 𝑎𝑙22 0 00 0 1 00 0 0 1
))
)

((
(

1 − 𝑡2 0 0 −𝑡0 1 0 00 0 1 02𝑡 − 𝑡3 0 0 1 − 𝑡2
))
)

))
)

,
(6)
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which results in interchanging the 1st and 4th rows with
negative sign to the new 4th row and then interchanging 1st
and 4th columns with negative sign to the new 4th column,
we see that, in GW𝑙(𝑘),

(
(

(
(

𝑎111 𝑎112 0 0𝑎121 𝑎122 0 00 0 1 00 0 0 1))
, . . . ,(

(
𝑎𝑙11 𝑎𝑙12 0 0𝑎𝑙21 𝑎𝑙22 0 00 0 1 00 0 0 1

)
)

)
)

= ((1 0 0 00 𝑎122 0 −𝑎1210 0 1 00 −𝑎112 0 𝑎111), . . . ,
(1 0 0 00 𝑎𝑙22 0 −𝑎𝑙210 0 1 00 −𝑎𝑙12 0 𝑎𝑙11)).

(7)

Again, by applying the polynomial homotopy

(
(

(
(

1 0 0 00 1 − 𝑡2 𝑡 00 𝑡3 − 2𝑡 1 − 𝑡2 00 0 0 1
)
)

(
(

1 0 0 00 𝑎122 0 −𝑎1210 0 1 00 −𝑎112 0 𝑎111
)
)

(
(

1 0 0 00 1 − 𝑡2 −𝑡 00 2𝑡 − 𝑡3 1 − 𝑡2 00 0 0 1
)
)

, . . . ,

(
(

1 0 0 00 1 − 𝑡2 𝑡 00 𝑡3 − 2𝑡 1 − 𝑡2 00 0 0 1
)
)

(
(

1 0 0 00 𝑎𝑙22 0 −𝑎𝑙210 0 1 00 −𝑎𝑙12 0 𝑎𝑙11
)
)

(
(

1 0 0 00 1 − 𝑡2 −𝑡 00 2𝑡 − 𝑡3 1 − 𝑡2 00 0 0 1
)
)

)
)

,
(8)

which results in interchanging the 2nd and 3rd rows with
negative sign to the new 3rd row and then interchanging 2nd
and 3rd columns with negative sign to the new 3rd column,
we have, in GW𝑙(𝑘),
((1 0 0 00 𝑎122 0 −𝑎1210 0 1 00 𝑎112 0 𝑎111), . . . ,(1 0 0 00 𝑎𝑙22 0 −𝑎𝑙210 0 1 00 𝑎𝑙12 0 𝑎𝑙11))

= ((1 0 0 00 1 0 00 0 𝑎122 𝑎1210 0 𝑎112 𝑎111), . . . ,
(1 0 0 00 1 0 00 0 𝑎𝑙22 𝑎𝑙210 0 𝑎𝑙12 𝑎𝑙11)),

(9)

which is equal to (( 𝑎122 𝑎121
𝑎1
12
𝑎1
11

) , . . . , ( 𝑎𝑙22 𝑎𝑙21
𝑎𝑙
12
𝑎𝑙
11

)) in GW𝑙(𝑘).

3. The Topological Structures of𝐾𝑀𝑙 (R) and 𝐾𝑀𝑙 (C)
Theorem 3. For 𝑙 ≥ 2, the topological space 𝐾𝑀𝑙 (R) is a
disjoint union of two indiscrete open sets.

Proof. Note that we have 𝐾𝑀𝑙 (R) ≃ (Z/2) ⊕ 𝐻, where
the first direct factor Z/2 is generated by {−1, . . . , −1} and𝐻 is a uniquely divisible group [2]. For {𝑎1, . . . , 𝑎𝑙} where𝑎𝑖 are negative for all 𝑖 = 1, . . . , 𝑙, we have {𝑎1, . . . , 𝑎𝑙} ={−1, 𝑎2, . . . , 𝑎𝑙} + {−𝑎1, 𝑎2, . . . , 𝑎𝑙} = {−1, −1, 𝑎3, . . . , 𝑎𝑙} +{−1, −𝑎2, . . . , 𝑎𝑙} + {−𝑎1, 𝑎2, . . . , 𝑎𝑙} = ⋅ ⋅ ⋅ which is equal
to the sum of {−1, −1, −1, . . . , −1} and various symbols
of the form {𝑏1, . . . , 𝑏𝑙} where at least one of 𝑏𝑖 is posi-
tive.

Every element of 𝐻 can be written as a sum of symbols
of the form 𝑏1, . . . , 𝑏𝑙, where at least one of 𝑏𝑖 is positive. By
writing a positive real number as a square of its square root,
we may assume that 𝑏𝑖 is positive for every 𝑖 = 1, . . . , 𝑙 (e.g.,{𝑏1, 𝑏2} = {𝑏21 , √𝑏2} in case 𝑏2 > 0).

Let 𝑈 be any open set of 𝐾𝑀𝑙 (R) containing the
identity element and consider its inverse image 𝑉 =Φ−1𝑙 (𝑈) in Comm𝑙(R). Let ℎ ∈ 𝐻 be any element. Then
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Φ−1𝑙 ({ℎ}) contains an 𝑙-tuple of diagonal matrices of the
form

((𝑎11 𝑎12
d 𝑎1𝑛), . . . ,(𝑎𝑙1 𝑎𝑙2

d 𝑎𝑙𝑛)), (10)

where 𝑎𝑖𝑘 is positive for every 𝑘 = 1, . . . , 𝑛 and 𝑖 = 1, . . . , 𝑙.
By taking 𝑚th root of 𝑎1𝑘 for sufficiently large 𝑚, we may
assume that 𝑎1𝑘 is arbitrarily close to 1.ThenΦ−1𝑙 ({ℎ}) contains
an element which is arbitrarily close to (𝐴1, . . . , 𝐴 𝑙) with 𝐴1
equal to the identity matrix. So,Φ−1𝑙 ({ℎ}) contains an element
which is contained in the open set 𝑉 = Φ−1𝑙 (𝑈). Hence 𝑈
must contain𝐻.

Similarly, the coset 𝐻 + {−1, −1, . . . , −1} is also an indis-
crete subspace. In fact, 𝐻 is the image under Φ𝑙 of the set of𝑙-tuples (𝐴1, . . . , 𝐴 𝑙) of commuting matrices in GL𝑛(R)𝑙 (𝑛 ≥1) such that the determinants of 𝐴 𝑖 are positive for some 𝑖 ∈{1, . . . , 𝑙}. On the other hand,𝐻+{−1, −1, . . . , −1} is the image
under Φ𝑙 of the set of 𝑙-tuples (𝐴1, . . . , 𝐴 𝑙) of commuting
matrices where the determinants of 𝐴 𝑖 are negative for all𝑖 = 1, . . . , 𝑙. Therefore, the proper open sets of 𝐾𝑀𝑙 (R) are 𝐻
and𝐻 + {−1, −1, . . . , −1}.
Corollary 4. For 𝑙 ≥ 2, the topological space 𝐾𝑀𝑙 (C) is
indiscrete (trivial).

Proof. Let𝑈 be an open set of𝐾𝑀𝑙 (C) containing the identity
element and let 𝑉 = Φ−1(𝑈) ⊂ Comm𝑙(C). For any elementℎ ∈ 𝐾𝑀𝑙 (C), Φ−1({ℎ}) contains an 𝑙-tuple (𝐴1, . . . , 𝐴 𝑙) of
diagonal matrices. Write each diagonal element of 𝐴 𝑖 as a
product of a positive real number and a complex number
with absolute value 1. Any complex number with absolute
value 1 is arbitrarily close to a root of unity and any symbol
containing a root of unity is trivial since, for example, {𝜁, 𝑏} =(1/𝑚){𝜁𝑚, 𝑏} = 0 if 𝜁 is an 𝑚th root of unity. Combining this
fact with the arguments given in the proof of Theorem 3, we
see that Φ−1({ℎ}) contains an element which is contained in𝑉 = Φ−1(𝑈). This shows that the natural topology on𝐾𝑀𝑙 (C)
is indiscrete.

4. Applications to Joint Determinants

When 𝑘 is a topological field, a joint determinant from
Comm𝑙(𝑘) into a topological abelian group 𝐺 is called
continuous if Comm𝑙(𝑘) is given the subspace topology of
GL(𝑘) = ∪𝑛→∞GL𝑛(𝑘) with the direct limit topology as
described in Section 2. Since the natural topology on 𝐾𝑀𝑙 (𝑘)
in Definition 1 is the quotient topology, any continuous joint
determinant induces a continuous map from 𝐾𝑀𝑙 (𝑘) into 𝐺
and vice versa.

Corollary 5. For 𝑙 ≥ 2 and any topological abelian group 𝐺
which is𝑇0, any continuous joint determinant fromComm𝑙(R)
into 𝐺 factors through the discrete group Z2.

Proof. This follows directly from Theorem 3. Note that a
topological group is Hausdorff if it is 𝑇0 (cf. Lemma 10.1 of
[5]).

The following is a direct consequence of Corollary 4.

Corollary 6. For 𝑙 ≥ 2 and any topological abelian group 𝐺
which is𝑇0, any continuous joint determinant fromComm𝑙(C)
into 𝐺 is trivial.

We summarize our results on the continuous joint deter-
minants for 𝑘 = R and 𝑘 = C in the following theorem, which
is virtually equivalent to Theorem 3 and Corollary 4.

Theorem 7. For 𝑘 = R or 𝑘 = C and a topological abelian
group 𝐺, let 𝐷 : Comm𝑙(𝑘) → 𝐺 be a continuous surjective
joint determinant. When 𝑙 = 1, 𝐷 is a composite of the usual
determinant map followed by a canonical epimorphism 𝑘∗ 𝐺 with 𝐺 equipped with a coarser topology than the quotient
topology induced by the epimorphism. When 𝑘 = R and 𝑙 ≥ 2,𝐺 either is an indiscrete space or has an indiscrete subgroup of
index 2. If 𝑘 = C, then 𝐺 has the indiscrete topology.
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It is a well-established fact in regression analysis that multicollinearity and autocorrelated errors have adverse effects on the
properties of the least squares estimator. Huang and Yang (2015) and Chandra and Tyagi (2016) studied the PCTP estimator and
the 𝑟 − (𝑘, 𝑑) class estimator, respectively, to deal with both problems simultaneously and compared their performances with the
estimators obtained as their special cases. However, to the best of our knowledge, the performance of both estimators has not been
compared so far. Hence, this paper is intended to compare the performance of these two estimators under mean squared error
(MSE) matrix criterion. Further, a simulation study is conducted to evaluate superiority of the 𝑟 − (𝑘, 𝑑) class estimator over the
PCTP estimator by means of percentage relative efficiency. Furthermore, two numerical examples have been given to illustrate the
performance of the estimators.

1. Introduction

Let us consider a linear regression model as

𝑦 = 𝑋𝛽 + 𝑢, (1)

where 𝑦 is an 𝑛 × 1 vector of observations on dependent
variable,𝑋 is an 𝑛 × 𝑝 full column rankmatrix of observations
on 𝑝 explanatory variables, 𝛽 is a 𝑝 × 1 vector of unknown
regression coefficients, and 𝑢 is an 𝑛 × 1 vector of disturbance
term with mean vector 0 and covariance matrix 𝜎2𝐼𝑛.

Ordinary least squares estimator (OLSE) is one of the
most widely used estimator for 𝛽, given as

�̂� = (𝑋𝑋)−1𝑋𝑦. (2)

In the presence of multicollinearity among explanatory
variables, OLSE becomes unstable and shows undesirable
properties, such as inflated variance, wide confidence inter-
vals which leads to wrong inferences and sometimes it even
produces wrong signs of the estimates.

Numerous alternative methods of estimation have been
designed to lower the effects of multicollinearity in literature.

For instance, Stein [1] proposed stein estimator; Hoerl and
Kennard [2, 3] introduced the technique of ordinary ridge
regression estimator (ORRE); Massy [4] suggested princi-
pal component regression estimator (PCRE) to deal with
the problem. Several authors combined two techniques of
estimation in the hope that the combination will contain
the advantages of the both. Baye and Parker [5] gave 𝑟 −
𝑘 class estimator by combining the PCRE and the ORRE,
which includes the OLSE, ORRE, and PCRE as special cases.
Nomura and Ohkubo [6] obtained conditions for dominance
of the 𝑟 − 𝑘 class estimator over its special cases under mean
squared error (MSE) criterion. Liu [7] gave an estimator by
combining the advantages of the stein and ORRE, known as
Liu estimator (LE). Kaçiranlar and Sakallıoğlu [8] proposed
𝑟 − 𝑑 class estimator which is a combination of the LE and
PCRE and showed the superiority of the 𝑟 − 𝑑 class estimator
over the OLSE, LE, and PCRE. Özkale and Kaçıranlar [9]
proposed two-parameter estimator (TPE) by utilizing the
advantages of the ORRE and LE and obtained necessary and
sufficient condition for dominance of the TPE over the OLSE
in MSE matrix sense. Further, Yang and Chang [10] also
combined the ORR and Liu estimator in a different way and
introduced an another two-parameter estimator (ATPE) and
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derived necessary and sufficient conditions for superiority of
the ATPE over OLSE, ORRE, LE, and TPE underMSEmatrix
criterion. Özkale [11] put forward a general class of estimators,
𝑟 − (𝑘, 𝑑) class estimator which is a mingle of the TPE [9]
and PCRE; they evaluated the performance of the 𝑟 − (𝑘, 𝑑)
class estimator under MSE criterion. Chang and Yang [12]
suggested another general class of estimators by merging the
PCRE and ATPE [10] named as principal component two-
parameter estimator (PCTPE) and analyzed its performance
under MSE matrix sense.

In applied work, it is quite common to have autocorrela-
tion in error terms; that is, cov(𝑢) = 𝜎2Ω, whereΩ is a known
symmetric positive definite (p.d.) 𝑛 × 𝑛 matrix and it is well
known to statisticians that autocorrelated errors reduce the
efficiency of theOLSE. Now, sinceΩ is a symmetrical positive
definite matrix there exists an orthogonal matrix 𝐸 such that
𝐸𝐸 = Ω. On premultiplying model (1) by 𝐸−1, we have

𝐸−1𝑦 = 𝐸−1𝑋𝛽 + 𝐸−1𝑢

𝑦∗ = 𝑋∗𝛽 + 𝑢∗.
(3)

Note that 𝐸(𝑢∗) = 0 and cov(𝑢∗) = 𝜎2𝐼.
To overcome the effect of autocorrelated errors, Aitken

[13] proposed the generalized least squares estimator (GLSE)
for 𝛽 in (1) which can be obtained by applying least squares
technique in model (3) as

�̂�GLS = (𝑋
Ω−1𝑋)−1𝑋Ω−1𝑦. (4)

It has been observed that the problem of autocorrelation
and multicollinearity arise simultaneously in several cases.
Keeping this in mind, a good amount of literature has been
devoted to study these problems simultaneously by Trenkler
[14], Firinguetti [15], G. M. Bayhan and M. Bayhan [16],
Alheety and Kibria [17], Özkale [18], Güler and Kaçiranlar
[19], Alkhamisi [20], Yang andWu [21], EledumandAlkhalifa
[22], Şiray [23], and Chandra and Sarkar [24], to name a
few.

Further, to define the estimators, let 𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑝)
be a 𝑝 × 𝑝 orthogonal matrix with 𝑇𝑋Ω−1𝑋𝑇 = Λ =
diag (𝜆1, 𝜆2, . . . , 𝜆𝑝), where Λ is a 𝑝 × 𝑝 diagonal matrix
of eigenvalues of 𝑋Ω−1𝑋 matrix such that 𝜆1 ≥ 𝜆2 ≥
⋅ ⋅ ⋅ ≥ 𝜆𝑝. Now, let 𝑇𝑟 = (𝑡1, 𝑡2, . . . , 𝑡𝑟) be 𝑝 × 𝑟 orthogonal
matrix after deleting last 𝑝 − 𝑟 columns from 𝑇 matrix,
where 𝑟 ≤ 𝑝. Thus, 𝑇𝑟𝑋Ω−1𝑋𝑇𝑟 = Λ 𝑟 where Λ 𝑟 =
diag (𝜆1, 𝜆2, . . . , 𝜆𝑟) and 𝑇𝑝−𝑟𝑋Ω−1𝑋𝑇𝑝−𝑟 = Λ 𝑝−𝑟, where
Λ 𝑝−𝑟 = diag (𝜆𝑟+1, 𝜆2, . . . , 𝜆𝑝). Also, 𝑇𝑇 = 𝑇𝑟𝑇𝑟 + 𝑇𝑝−𝑟𝑇𝑝−𝑟.

Chandra and Tyagi [25] modified the 𝑟 − (𝑘, 𝑑) class
estimator [11] to address multicollinearity and autocorrelated
errors simultaneously, which is expressed as

�̂�𝑟 (𝑘, 𝑑) = 𝑇𝑟 (𝑇

𝑟𝑋
Ω−1𝑋𝑇𝑟 + 𝑘𝐼𝑟)

−1

⋅ (𝑇𝑟𝑋
Ω−1𝑋𝑇𝑟)

−1 (𝑇𝑟𝑋
Ω−1𝑋𝑇𝑟 + 𝑘𝑑𝐼𝑟)

⋅ 𝑇𝑟𝑋
Ω−1𝑦 = 𝑇𝑟𝑆𝑟 (𝑘)−1 Λ−1𝑟 𝑆𝑟 (𝑘𝑑) 𝑇


𝑟𝑋
Ω−1𝑦,

(5)

where 𝑆𝑟(𝑞) = Λ 𝑟 + 𝑞𝐼𝑟, 𝑞 = 1, 𝑘, 𝑑, 𝑘𝑑.

Huang and Yang [26] proposed PCTP estimator in the
presence of autocorrelated errors as

�̃�𝑟 (𝑘, 𝑑) = 𝑇𝑟 (𝑇

𝑟𝑋
Ω−1𝑋𝑇𝑟 + 𝐼𝑟)

−1

⋅ (𝑇𝑟𝑋
Ω−1𝑋𝑇𝑟 + 𝑑𝐼𝑟) (𝑇𝑟𝑋

Ω−1𝑋𝑇𝑟 + 𝑘𝐼𝑟)
−1

⋅ 𝑇𝑟𝑋
Ω−1𝑦 = 𝑇𝑟𝑆𝑟 (1)−1 𝑆𝑟 (𝑑) 𝑆𝑟 (𝑘)−1 𝑇𝑟𝑋

Ω−1𝑦,

𝑘 > 0, 0 < 𝑑 < 1.

(6)

Some other biased estimators in the presence of multi-
collinearity and autocorrelation can be obtained as special
cases. �̂�𝑟(𝑘, 0) = �̃�𝑟(𝑘, 1) = �̂�𝑟(𝑘) is the 𝑟 − 𝑘 class estimator
proposed by Şiray et al. [23]; �̂�𝑝(0, 𝑑) = �̃�𝑝(1, 0) = �̂�GLS
is the GLSE by Aitken [13]; �̂�𝑝(𝑘, 0) = �̃�𝑝(𝑘, 1) = �̂�(𝑘)
is the ridge regression estimator (RRE) given by Trenkler
[14] and so forth. The special cases of the estimators have
been compared with the 𝑟 − (𝑘, 𝑑) class estimator and the
PCTP estimator by Chandra and Tyagi [25] and Huang
and Yang [26], respectively. Hence, this paper focuses on
the comparison of the performance of the two general
estimators.

Further, the rest of the paper is organized as follows:
the necessary and sufficient condition for dominance of the
PCTP estimator over the 𝑟 − (𝑘, 𝑑) class estimator under
the MSE matrix criterion has been derived in Section 2.
Section 3 is devoted to simulation study to compare these
estimators under MSE criterion. Some methods of selection
of the unknown biasing parameters have been given in
Section 4. Section 5 includes two numerical examples. Finally,
the paper is summed up in Section 6 with some concluding
remarks.

2. MSE Matrix Comparison of
�̂�𝑟(𝑘,𝑑) and �̃�𝑟(𝑘,𝑑)

The MSE matrix criterion is a strong and one of the most
widely used criteria for comparison of the estimators. Let �̆�
be an estimator of 𝛽; then the expression for the MSE matrix
is given as

𝑀(�̆�) = 𝐸 [(�̆� − 𝛽) (�̆� − 𝛽)]

= cov (�̆�) − Bias (�̆�)Bias (�̆�) ,
(7)

where cov(�̆�) and Bias(�̆�) are the covariance matrix and bias
vector of �̆�.

From (5) and (6), the covariancematrices and bias vectors
of the 𝑟−(𝑘, 𝑑) estimator and PCTP estimator can be obtained
as

cov (�̂�𝑟 (𝑘, 𝑑)) = 𝜎
2𝑇𝑟𝑆𝑟 (𝑘)−1 𝑆𝑟 (𝑘𝑑) Λ−1𝑟 𝑆𝑟 (𝑘𝑑)

⋅ 𝑆𝑟 (𝑘)−1 𝑇𝑟
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cov (�̃�𝑟 (𝑘, 𝑑)) = 𝜎
2𝑇𝑟𝑆𝑟 (1)−1 𝑆𝑟 (𝑑) 𝑆𝑟 (𝑘)−1 Λ 𝑟𝑆𝑟 (𝑘)−1

⋅ 𝑆𝑟 (𝑑) 𝑆𝑟 (1)−1 𝑇𝑟

Bias (�̂�𝑟 (𝑘, 𝑑))

= − (𝑘 (1 − 𝑑) 𝑇𝑟𝑆𝑟 (𝑘)−1 𝑇𝑟 + 𝑇𝑝−𝑟𝑇

𝑝−𝑟) 𝛽

= −𝑇𝐵1𝑇𝛽

Bias (�̃�𝑟 (𝑘, 𝑑))

= (𝑇𝑟𝑆𝑟 (1)−1 𝑆𝑟 (𝑑) 𝑆𝑟 (𝑘)−1 Λ 𝑟𝑇𝑟 − 𝐼𝑝) 𝛽

= −𝑇𝐵2𝑇𝛽,
(8)

where 𝐵1 = ( 𝑘(1−𝑑)𝑆𝑟(𝑘)
−1 0

0 𝐼𝑝−𝑟
) and 𝐵2 =

( 𝑆𝑟(1)
−1(Λ 𝑟(1+𝑘−𝑑)+𝑘𝐼𝑟)𝑆𝑟(𝑘)

−1 0
0 𝐼𝑝−𝑟

) .
Thus, the MSE matrices of the estimators can be given as

𝑀(�̂�𝑟 (𝑘, 𝑑)) = 𝜎
2𝑇𝑟𝑆𝑟 (𝑘)−1 𝑆𝑟 (𝑘𝑑) Λ−1𝑟 𝑆𝑟 (𝑘𝑑)

⋅ 𝑆𝑟 (𝑘)−1 𝑇𝑟 + 𝑇𝐵1𝑇
𝛽𝛽𝑇𝐵1𝑇

(9)

𝑀(�̃�𝑟 (𝑘, 𝑑)) = 𝜎
2𝑇𝑟𝑆𝑟 (1)−1 𝑆𝑟 (𝑑) 𝑆𝑟 (𝑘)−1 Λ 𝑟𝑆𝑟 (𝑘)−1

⋅ 𝑆𝑟 (𝑑) 𝑆𝑟 (1)−1 𝑇𝑟 + 𝑇𝐵2𝑇
𝛽𝛽𝑇𝐵2𝑇.

(10)

To compare the performance of these estimators, the differ-
ence of the MSE matrices can be obtained as

Δ𝑀 = 𝑀(�̂�𝑟 (𝑘, 𝑑)) −𝑀(�̃�𝑟 (𝑘, 𝑑)) = 𝜎
2𝑇𝑟𝑆𝑟 (𝑘)−1

⋅ 𝑆𝑟 (𝑘𝑑) Λ−1𝑟 𝑆𝑟 (𝑘𝑑) 𝑆𝑟 (𝑘)
−1 𝑇𝑟 + 𝑇𝐵1𝑇

𝛽𝛽𝑇𝐵1𝑇

− 𝑇𝑟𝑆𝑟 (1)−1 𝑆𝑟 (𝑑) 𝑆𝑟 (𝑘)−1 Λ 𝑟𝑆𝑟 (𝑘)−1 𝑆𝑟 (𝑑) 𝑆𝑟 (1)−1

⋅ 𝑇𝑟 − 𝑇𝐵2𝑇
𝛽𝛽𝑇𝐵2𝑇 = 𝐷 + 𝑎1𝑎1 − 𝑎2𝑎


2,

(11)

where 𝐷 = 𝜎2𝑇𝑟𝑆𝑟(𝑘)−1[𝑆𝑟(𝑘𝑑)Λ−1𝑟 𝑆𝑟(𝑘𝑑) −
𝑆𝑟(1)−1𝑆𝑟(𝑑)Λ 𝑟𝑆𝑟(𝑑)𝑆𝑟(1)−1]𝑆𝑟(𝑘)−1𝑇𝑟 , 𝑎1 = 𝑇𝐵1𝑇𝛽,
𝑎2 = 𝑇𝐵2𝑇𝛽.

On further simplification,𝐷 can be written as

𝐷 = 𝜎2𝑇𝑟𝑆𝑟 (𝑘)−1 𝑆𝑟 (1)−1 ((𝑘𝑑 + 1 − 𝑑) 𝐼𝑟 + 𝑘𝑑Λ−1𝑟 )

⋅ (2Λ2𝑟 + (𝑘𝑑 + 𝑑 + 1)Λ 𝑟 + 𝑘𝑑𝐼𝑟) 𝑆𝑟 (1)
−1

⋅ 𝑆𝑟 (𝑘)−1 𝑇𝑟 .

(12)

It is easy to note that 𝐷 is positive definite. For the conve-
nience of the derivation of the dominance conditions, we state
the following Lemma.

Lemma 1. Assume that �̂�𝑗 = 𝐴𝑗𝑦, 𝑗 = 1, 2, are two competing
linear estimators of𝛽. Suppose that𝐷 = cov(�̂�1)−cov(�̂�2) > 0,
where cov(�̂�𝑗), 𝑗 = 1, 2, denotes the covariance matrix of �̂�𝑗.
Then Δ(�̂�1, �̂�2) = 𝑀(�̂�1) − 𝑀(�̂�2) ≥ 0 if and only if 𝑑2(𝐷 +
𝑑1𝑑1)
−1𝑑2 ≤ 1, where 𝑑𝑗 denote the bias vector of �̂�𝑗.

From the expressions in (5) and (6), it is easy to verify
that the 𝑟 − (𝑘, 𝑑) class estimator and the PCTP estimator
can be written as �̂�𝑟(𝑘, 𝑑) = 𝐴1�̂�GLS and �̃�𝑟(𝑘, 𝑑) =
𝐴2�̂�GLS, where 𝐴1 = 𝑇𝑟𝑆𝑟(𝑘)−1𝑆𝑟(𝑘𝑑)𝑇𝑟 and 𝐴2 =
𝑇𝑟𝑆𝑟(1)−1Λ 𝑟𝑆𝑟(𝑑)𝑆𝑟(𝑘)−1𝑇𝑟 . Further, it is evident from (12)
that 𝐷 = cov(�̂�𝑟(𝑘, 𝑑)) − cov(�̃�𝑟(𝑘, 𝑑)) is a positive definite
matrix. Thus from the above lemma, Δ𝑀 ≥ 0 if and only if

𝑎2 (𝐷 + 𝑎1𝑎1)
−1 𝑎2 ≤ 1. (13)

Hence, the comparison under MSE matrix can be concluded
in the following theorem.

Theorem 2. The PCTP estimator dominates the 𝑟−(𝑘, 𝑑) class
estimator inMSEmatrix sense if and only if 𝑎2(𝐷+𝑎1𝑎1)−1𝑎2 ≤
1.

3. Selection of 𝑘 and 𝑑
It is an important problem to find optimum value of the
biasing parameters. A general approach to select an optimum
value of the biasing parameters is to minimize the scalarMSE
of the estimator.

3.1. For �̂�𝑟(𝑘, 𝑑). The scalar MSE of the 𝑟 − (𝑘, 𝑑) class
estimator can be obtained by taking trace of the MSE matrix
in (9), which is given as

𝑚1 (𝑟, 𝑘, 𝑑) =
𝑟

∑
𝑖=1

𝜎2 (𝜆𝑖 + 𝑘𝑑)
2 + 𝑘2 (1 − 𝑑)2 𝜆𝑖𝛼2𝑖

𝜆𝑖 (𝜆𝑖 + 𝑘)
2

+
𝑝

∑
𝑖=𝑟+1

𝛼2𝑖 ,

(14)

where 𝛼𝑖 = ith component of 𝛼 = 𝑇𝛽. The optimum
value of 𝑘(𝑑) for a fixed 𝑑(𝑘) and 𝑟 can be obtained by
differentiating 𝑚1(𝑟, 𝑘, 𝑑) with respect to 𝑘(𝑑) and equating
it to zero. Further, first derivative of 𝑚1(𝑟, 𝑘, 𝑑) with respect
to 𝑘 for fixed 𝑟 and 𝑑 is obtained as

𝜕𝑚1 (𝑟, 𝑘, 𝑑)
𝜕𝑘

=
𝑟

∑
𝑖=1

2 (1 − 𝑑) 𝜆𝑖 {(𝑘𝜆𝑖𝛼2𝑖 − 𝜎2) − 𝑘𝑑 (𝜎2 + 𝜆i𝛼2𝑖 )}
(𝜆𝑖 + 𝑘)

3

(15)
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On equating to zero, we get the value of 𝑘 for the 𝑟 − (𝑘, 𝑑)
class estimator as

𝑘1 (say) =
𝜎2

(𝛼2𝑖 − 𝑑 (𝜎2/𝜆𝑖 + 𝛼2𝑖 ))
, ∀𝑖 = 1, 2, . . . , 𝑟. (16)

By taking harmonic mean as suggested by Hoerl et al. [27]
and arithmetic mean and geometric mean [28] of the values
in (16), we propose the following estimators:

𝑘1HM
= 𝑟𝜎2
∑𝑟𝑖=1 (𝛼2𝑖 − 𝑑 (𝜎2/𝜆𝑖 + 𝛼2𝑖 ))

,

𝑘1AM = 1
𝑟
𝑟

∑
𝑖=1

𝜎2
(𝛼2𝑖 − 𝑑 (𝜎2/𝜆𝑖 + 𝛼2𝑖 ))

,

𝑘1GM = 𝜎2

(∏𝑟𝑖=1 (𝛼2𝑖 − 𝑑 (𝜎2/𝜆𝑖 + 𝛼2𝑖 )))
1/𝑟
.

(17)

Further, the positiveness of 𝑘1 can be ensured when we have
𝑑 < min𝑖=1,2,...,𝑟{𝛼2𝑖 /(𝜎2/𝜆𝑖 + 𝛼2𝑖 )} = 𝑑1(say). It can be noted
that when 𝑑 = min𝑖=1,2,...,𝑟{𝛼2𝑖 /(𝜎2/𝜆𝑖 + 𝛼2𝑖 )}, 𝑘1GM is not
defined and 𝑘1GM will give zero. This way we can choose a
value of 𝑑 satisfying 𝑑 < 𝑑1 and further the value of 𝑘 is
obtained by replacing 𝑑 in (17).

Alternatively, for fixed 𝑟 and 𝑘, the optimumvalue of 𝑑 for
the 𝑟 − (𝑘, 𝑑) class estimator by minimizing 𝑚1(𝑟, 𝑘, 𝑑) with
respect to 𝑑 is obtained as

𝑑1opt =
∑𝑟𝑖=1 ((𝑘𝛼2𝑖 − 𝜎2) / (𝜆𝑖 + 𝑘)

2)
∑𝑟𝑖=1 (𝑘 (𝜎2 + 𝜆𝑖𝛼2𝑖 ) /𝜆𝑖 (𝜆𝑖 + 𝑘)

2)
. (18)

Clearly, 𝑑1opt is positive when 𝑘 > 𝜎2/𝛼2min. Hence, we can
choose a value of 𝑘 > 𝜎2/𝛼2min and making use of this value
we can find optimum value 𝑑1opt .

3.2. For �̃�𝑟(𝑘, 𝑑). The scalar MSE of the PCTP estimator
obtained by taking trace of the MSE matrix in (10) is given
as

𝑚2 (𝑟, 𝑘, 𝑑)

=
𝑟

∑
𝑖=1

𝜎2𝜆𝑖 (𝜆𝑖 + 𝑑)
2 + (𝜆𝑖 (1 + 𝑘 − 𝑑) + 𝑘)

2 𝛼2𝑖
(𝜆𝑖 + 1)

2 (𝜆𝑖 + 𝑘)
2

+
𝑝

∑
𝑖=𝑟+1

𝛼2𝑖 .

(19)

The first order derivative of𝑚2(𝑟, 𝑘, 𝑑) is obtained as

𝜕𝑚2 (𝑟, 𝑘, 𝑑)
𝜕𝑘 =

𝑟

∑
𝑖=1

(2 (𝜆𝑖 + 1) (𝜆𝑖 + 𝑘) (𝜆𝑖 (1 + 𝑘 − 𝑑) + 𝑘) 𝛼2𝑖 − 2𝜆𝑖 (𝜆𝑖 + 𝑑)
2 𝜎2 − 2 (𝜆𝑖 (1 + 𝑘 − 𝑑) + 𝑘)

2 𝛼2𝑖 )
(𝜆𝑖 + 1)

2 (𝜆𝑖 + 𝑘)
3

. (20)

The optimum value of 𝑘 for the PCTP estimator is
obtained as

𝑘2 =
(𝜆𝑖 + 𝑑) 𝜎2 − (1 − 𝑑) 𝜆𝑖𝛼2𝑖

(𝜆𝑖 + 1) 𝛼2𝑖
, ∀𝑖 = 1, 2, . . . , 𝑟. (21)

Since 𝑘2 depends on 𝑖, following Hoerl et al. [27] and
Kibria [28], we propose the following estimators:

𝑘2HM

= 𝑟
∑𝑟𝑖=1 (((𝜆𝑖 + 𝑑) 𝜎2 − (1 − 𝑑) 𝜆𝑖𝛼2𝑖 ) / (𝜆𝑖 + 1) 𝛼2𝑖 )

,

𝑘2AM = 1
𝑟
𝑟

∑
𝑖=1

((𝜆𝑖 + 𝑑) 𝜎
2 − (1 − 𝑑) 𝜆𝑖𝛼2𝑖

(𝜆𝑖 + 1) 𝛼2𝑖
) ,

𝑘2GM = (
𝑟

∏
𝑖=1

(𝜆𝑖 + 𝑑) 𝜎2 − (1 − 𝑑) 𝜆𝑖𝛼2𝑖
(𝜆𝑖 + 1) 𝛼2𝑖

)
1/𝑟

.

(22)

Further, the positiveness of 𝑘2 can be ensured when we have
𝑑 > max𝑖=1,2,...,𝑟{(𝛼2𝑖 −𝜎2)/(𝜎2/𝜆𝑖+𝛼2𝑖 )} = 𝑑2.This way we can
chose a value of 𝑑 satisfying 𝑑 > 𝑑2 for the PCTP estimator
and the value of 𝑘 is then obtained by replacing 𝑑 in (22).

Alternatively, for fixed 𝑟 and 𝑘, the optimum values of
𝑑 for the PCTP estimator by minimizing 𝑚2(𝑟, 𝑘, 𝑑) with
respect to 𝑑 are obtained as

𝑑2opt

=
∑𝑟𝑖=1 ((𝑘 (𝜆𝑖 + 1) 𝛼2𝑖 − 𝜆𝑖 (𝜎2 − 𝛼2𝑖 )) / (𝜆𝑖 + 1)

2 (𝜆𝑖 + 𝑘)
2)

∑𝑟𝑖=1 ((𝜎2 + 𝜆𝑖𝛼2𝑖 ) / (𝜆𝑖 + 1)
2 (𝜆𝑖 + 𝑘)

2)
.
(23)

When 𝜎2 − 𝛼2𝑖 > 0 for some 𝑖 = 1, 2, . . . , 𝑟, 0 < 𝑑2opt < 1 for

max
𝑖=1,2,...,𝑟

{
𝜆𝑖 (𝜎2 − 𝛼2𝑖 )
(𝜆𝑖 + 1) 𝛼2𝑖

} < 𝑘 < 𝜎2
𝛼2max

. (24)

When 𝜎2 − 𝛼2𝑖 < 0 for all 𝑖 = 1, 2, . . . , 𝑟, 0 < 𝑑2opt < 1 for
0 < 𝑘 < 𝜎2/𝛼2max.

Further, the values of 𝑘 and 𝑑 can be easily obtained
by replacing the unknown parameters 𝜎2 and 𝛼 with their
unbiased estimators.
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4. Monte Carlo Study

In this section, we will evaluate the performance of the esti-
mators through Monte Carlo simulation. Following McDon-
ald and Galarneau [29] and Gibbons [30],𝑋matrix has been
generated as follows:

𝑥𝑖𝑗 = (1 − 𝛾2)
1/2 𝑧𝑖𝑗 + 𝛾𝑧𝑖𝑝+1,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑝,
(25)

where 𝑧𝑖𝑗 are generated from standard normal pseudorandom
numbers and 𝑥𝑖𝑗’s are generated such that the correlation
between any pair of 𝑋-variables is 𝛾2. In this study, we
consider the values of 𝛾 to be 0.90, 0.95, and 0.99. Following
McDonald and Galarneau [29], Gibbons [30], Kibria [28],
and others, 𝛽 has been chosen as the normalized eigenvector
corresponding to the largest eigenvalue of the 𝑋𝑋 matrix.
The dependent variable 𝑦 is obtained by

𝑦 = 𝑋𝛽 + 𝑢. (26)

Following Firinguetti [15], Judge et al. [31], and Chandra
and Sarkar [24], 𝑢 are generated from AR(1) process as

𝑢𝑖 = 𝜌𝑢𝑖−1 + 𝑒𝑖, 𝑖 = 1, 2, . . . , 𝑛, (27)

where 𝑒𝑖 are independent normal pseudorandom numbers
with mean 0 and variance 𝜎2𝑒 and 𝜌 is autoregressive coeffi-
cient such that |𝜌| < 1. The covariance matrix Ω for AR(1)
errors is given by

Ω = (𝜔𝑖𝑗)𝑛×𝑛 , 𝜔𝑖𝑗 = 𝜎2𝜌|𝑖−𝑗|, where 𝜎2 =
𝜎2𝑒

1 − 𝜌2 .
(28)

The value of 𝑟 is decided by a scree plot which is drawn
between eigenvalues and components (see Johnson and
Wichern [32]). In this simulation we chose 𝑛 = 20, 50, 100,
𝑝 = 5, 10, 𝜎2𝑒 = 0.1, 1, 10, 𝜌 = 0, 0.3, 0.9, 𝑘 = 0.1, 0.5, 0.9, 2,
and 𝑑 = 0.1, 0.5, 0.9. Then the experiment is repeated 2000
times by generating errors in every repetition and estimated
MSE (EMSE) is calculated by the following formula:

EMSE (�̂�) = 1
2000
2000

∑
𝑖=1

(�̂�(𝑖) − 𝛽)
 (�̂�(𝑖) − 𝛽) , (29)

where �̂�(𝑖) is the estimated value of 𝛽 in ith iteration. To
compare the performances of the estimators, percentage
relative efficiency of the 𝑟 − (𝑘, 𝑑) class estimator over the
PCTP estimator has been calculated as follows:

% RE =
EMSE (�̃�𝑟 (𝑘, 𝑑)) − EMSE (�̂�𝑟 (𝑘, 𝑑))

EMSE (�̂�𝑟 (𝑘, 𝑑))
× 100. (30)

For brevity, we have reported some selected results in
Tables 1–3, where 𝐸1, 𝐸2, and 𝐸3 give percent relative effi-
ciency of the 𝑟−(𝑘, 𝑑) class estimator over the PCTP estimator
when 𝛾 takes values 0.90, 0.95, and 0.99, respectively.

Since all the values of percent relative efficiency shown
in Tables 1–3 are positive, it implies that the 𝑟 − (𝑘, 𝑑)

class estimator is more efficient than the PCTP estimator
in all the cases considered in this study. However, when we
examine the behavior of the percent relative efficiency for
different parameters considered here, it is observed that the
parameters 𝑛, 𝑝, 𝜌, and 𝛾 affect the percent relative efficiency
negatively. That is, when these parameters take larger values,
the percent relative efficiency decreases and approaches zero.
Alternatively, we can say that there are some values of the
parameters for which the value of percent relative efficiency
is so low that it can be considered that both the estimators
perform equally well, for example, when 𝜎2𝑒 = 0.1, 𝑛 =
20, 50, 100, and 𝑝 = 10 and 𝜎2𝑒 = 0.1, 𝑛 = 20, 50, 100, 𝑝 = 5,
and 𝜌 = 0.9 for most of the values of 𝑘 and 𝑑.

5. Numerical Example

In this section we examine the performance of the two
estimators, namely, the 𝑟−(𝑘, 𝑑) class estimator and the PCTP
estimator inMSE sense using two numerical examples; one is
for US GDP data and the other is the famous Hald data [33].

Example 1 (US GDP Data). The quarterly US data on GDP
growth (𝑦), personal disposable income (𝑋1), personal con-
sumption expenditure (𝑋2), and corporate tax after profits
(𝑋3) for the years 1970–1991 have been taken from Gujarati
[34].The data has also been used by Chandra and Sarkar [24].
The variables are standardized and the eigenvalues of 𝑋𝑋
matrix are obtained as 324.6527396, 21.8742084, 1.2365875,
and 0.2364645, which shows high multicollinearity in the
data. Further, the value of the DW statistic for the data is
found to be 0.4784, which indicates the presence of positive
autocorrelation at the significance level of 0.05 with the two
limits of the critical value being 𝑑𝐿 = 1.429 and 𝑑𝑈 =
1.611 for 𝑛 = 88. The error structure follows AR(1) process
with estimated 𝜌 to be 0.7530 and 𝜎2𝑒 = 0.001118. Thus
the Ω matrix can be constructed using (28). The condition
number of𝑋Ω−1𝑋 is obtained to be 246.3951which indicates
high multicollinearity in the data. Although the GLSE is
unstable in the presence of multicollinearity, several studies
have suggested that the estimate of variance based on least
squares estimator is superior to the estimates based on other
shrinkage estimators, for instance, see Ohtani [35], Dube and
Chandra [36], and Ünal [37]. Hence, we have estimated the
value of 𝜎2 by using the GLSE of 𝛽, which comes out to
be 0.00292. The eigenvalues of 𝑋Ω−1𝑋 are 𝜆1 = 23.78081,
𝜆2 = 3.0276, 𝜆3 = 0.2420, and 𝜆4 = 0.0965. We chose 𝑟 = 2
which accounts for 99.57% of variation in the data. Now, we
chose a value of 𝑘 to be 0.2505 such that 𝑘 > 𝜎2/𝛼2min = 0.1505
for the 𝑟 − (𝑘, 𝑑) class estimator and thus the optimum value
𝑑1opt is obtained to be 0.4286. Further, since estimated 𝜎2 is
smaller than 𝛼2𝑟 = (0.258642223, 0.0194366), 𝑘 is selected
as 0.0056 which belongs to the interval 0 < 𝑘 < 𝜎2/𝛼2max =
0.01131 and hence 𝑑2opt is found to be 0.8501. The MSEs of
the 𝑟 − (𝑘, 𝑑) class estimator and the PCTP estimator for
the obtained optimum values are 0.1396499 and 0.1396482,
respectively. Clearly, the values are almost the same which
suggests that both the estimators perform equally well for the
corresponding optimum values. However, the difference can
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Figure 1: Estimated mean squared error of 𝑟 − (𝑘, 𝑑) class and the PCTP estimators for US GDP data.

be noticed after 5 decimal places, indicating superiority of the
PCTP estimator over the 𝑟 − (𝑘, 𝑑) class estimator in MSE
sense.

Further, the estimatedMSEs of the 𝑟 − (𝑘, 𝑑) class and the
PCTP estimators with respect to 𝑑 for fixed 𝑘 = 0.25, 0.5 and
with respect to 𝑘 for 𝑑 = 0.7, 0.95 are represented in Figure 1.
The values of 𝑘 and 𝑑 are selected so that we can observe the
behavior of estimators for 𝑘 and 𝑑 near and far from their
respective optimum values. The figures depict superiority of
the 𝑟 − (𝑘, 𝑑) estimator over the PCTP estimator for larger
range of 𝑘 and 𝑑. Further, it can be seen from Figure 1(a)
that the PCTP estimator starts dominating the 𝑟 − (𝑘, 𝑑) class
estimator after a point, whereas for 𝑘 = 0.5 in Figure 1(b) we
do not see a superiority of the PCTP estimator in the whole
range of 0 < 𝑑 < 1. Similarly, we get a range of 𝑘 in which the
PCTP estimator dominates the 𝑟 − (𝑘, 𝑑) class estimator for
𝑑 = 0.95 and not for 𝑑 = 0.7; see Figures 1(c) and 1(d).

Example 2 (Hald Data). Now, let us consider the data set on
Portland cement originally due to Woods et al. [38] and then
analyzed by Hald [33] and known as Hald data.The data is an
outcome of an experiment conducted to investigate the heat
evolved during setting and hardening of Portland cements of

varied composition and the dependence of this heat on the
percentages of four compounds in the clinkers from which
the cement was produced.The data includes the heat evolved
in calories per gram of cement (𝑦) as dependent variable
and four ingredients: tricalcium aluminate (𝑋1), tetracalcium
silicate (𝑋2), tetracalcium aluminoferrite (𝑋3), and dicalcium
silicate (𝑋4) as explanatory variables.

Following Özkale [11], the variables are standardized so
that the 𝑋𝑋 matrix forms a correlation matrix and the
eigenvalues obtained are 𝜆1 = 2.235704, 𝜆2 = 1.576066, 𝜆3 =
0.186606, and 𝜆4 = 0.001623. The value of Durbin-Watson
test comes out to be 2.052597 resulting in the conclusion of
no autocorrelation in error term at 5% level of significance
with 𝑑𝐿 = 0.574 and 𝑑𝑈 = 2.094 for 𝑛 = 13; hence we
can consider Ω = 𝐼𝑛. The estimated value of 𝜎2 is 0.00196
and the value of 𝑟 has been chosen to be 2, which accounts
for 95.29% of variation in data. The optimum value of 𝑑
for a selected value of 𝑘 is chosen for the 𝑟 − (𝑘, 𝑑) class
and PCTP estimators. For the 𝑟 − (𝑘, 𝑑) class estimator, we
chose value of 𝑘 as 1.322 such that 𝑘 > 𝜎2/𝛼2min = 1.222,
and for this value of 𝑘 the optimum value 𝑑1opt is obtained
as 0.9899. Further, we obtain 𝛼2𝑟 = (0.4348143, 0.0016061)
which indicates that 𝜎2 is larger than the second value of 𝛼2𝑟 ,
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Figure 2: Estimated mean squared error of 𝑟 − (𝑘, 𝑑) class and the PCTP estimators for Hald data.

hence we chose a value of 𝑘 in the range max𝑖=1,2,...,𝑟{𝜆𝑖(𝜎2 −
𝛼2𝑖 )/(𝜆𝑖 + 1)𝛼2𝑖 } < 𝑘 < 𝜎2/𝛼2max. The value of lower bound is
obtained as 0.000000574, which is approximately 0 and the
upper bound is 0.004516; hence we chose a value 𝑘 as 0.0022
and for this value 𝑑2opt for the PCTP estimator is obtained as
0.9854. TheMSEs of the 𝑟 − (𝑘, 𝑑) class and PCTP estimators
are obtained to be the same up to 7 decimal places, that is,
0.3704072, indicating the same performance at the optimum
values.

Moreover, the performance of both estimators for various
𝑘 and 𝑑 is represented in Figures 2(a)–2(d). Clearly, the
𝑟 − (𝑘, 𝑑) class estimator is exhibiting better performance for
larger range of 𝑘 and 𝑑. However, a careful examination of
Figures 2(a) and 2(d) suggests that there may be some points
of 𝑘 and 𝑑 where the PCTP may perform better. Figures 2(b)
and 2(c) show that there is no value of 𝑑 and 𝑘, respectively,
for 𝑘 = 0.5 and 𝑑 = 0.7.

Looking at the results of both examples we observe that
the 𝑟 − (𝑘, 𝑑) class estimator performs better than the PCTP
estimator in scalar MSE sense for most of the values of 𝑘 and
𝑑 under study. However, Figures 1(a), 1(d), 2(a), and 2(d) are
showing a possibility of superiority of the PCTP estimator
over the 𝑟 − (𝑘, 𝑑) class estimator.

6. Conclusion

In this paper we have examined the performance of two
biased estimators in the presence of multicollinearity with
autocorrelated errors which include the same number of
unknown parameters with same range. Further, a method of
selection of 𝑘 and 𝑑 in both estimators has been suggested
in terms of minimizing scalar MSE. The conditions of
dominance of the PCTP estimator over the 𝑟 − (𝑘, 𝑑) class
estimator have been derived usingMSEmatrix as comparison
criterion. Further, we have performed a simulation study
and the percentage relative efficiency of the 𝑟 − (𝑘, 𝑑) class
estimator over the PCTP estimator has been evaluated.More-
over, two numerical examples are considered to compare
the two estimators. The simulation study suggests that for
all the parametric conditions considered here the 𝑟 − (𝑘, 𝑑)
class estimator performs better than the PCTP estimator in
scalar MSE sense. The numerical examples give the results
in favor of the simulation results; that is, the 𝑟 − (𝑘, 𝑑) class
estimator performed better than the PCTP estimator under
scalar MSE criterion for most of the values of 𝑘 and 𝑑.
However, for optimum values of 𝑘 and 𝑑 the performance
of both estimators is similar and the superiority of the PCTP
estimator may be seen after the fourth or fifth decimal places.
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Human Immunodeficiency Virus (HIV) is a virus that attacks or infects cells in the immune system that causes immune decline.
Acquired Immunodeficiency Syndrome (AIDS) is the most severe stage of HIV infection. AIDS is the rapidly spreading and
becoming epidemic diseases in the world of almost complete influence across the country. A mathematical model approach
of HIV/AIDS dynamic is needed to predict the spread of the diseases in the future. In this paper, we presented a fractional-
order model of the spread of HIV and AIDS diseases which incorporates two-sex population. The fractional derivative order
of the model is in the interval (0, 1]. We compute the basic reproduction number and prove the stability of the equilibriums
of the model. The sensitivity analysis also is done to determine the important factor controlling the spread. Using the Adams-
type predictor-corrector method, we then perform some numerical simulations for variation values of the order of the fractional
derivative. Finally, the effects of various antiretroviral therapy (ART) treatments are studied and compared with numerical
approach.

1. Introduction

Human ImmunodeficiencyVirus (HIV) is a virus that attacks
or infects cells in the immune system that causes immune
decline. Acquired Immunodeficiency Syndrome (AIDS) is
the most severe stage of HIV infection, which can take from
2 to 15 years to develop depending on the individual. AIDS is
defined by the development of certain cancers, infections, or
other severe clinical manifestations. HIV can be transmitted
via the exchange of a variety of body fluids from infected
individuals, such as blood, breast milk, semen, and vaginal
secretions. There were approximately 36.7 million people
livingwithHIV at the end of 2016with 1.0million people died
from HIV-related causes globally. In 2015, an estimated 44%
of new infections occurred among key populations and their
partners [1].

Until now, there is no cure for HIV infection. However,
effective antiretroviral therapy (ART) can inhibit HIV pro-
gression in immune defects. Since 1996, ART has begun to
be used by people living with HIV in the world because
it can prevent death early [2]. The benefits of ART for

people with HIV/AIDS are to improve quality of life, pre-
vent mother-to-child transmission of HIV, prolong survival,
and restore the immune system [3]. In 2016, 19.5 mil-
lion people with HIV have been receiving ART globally
[1].

Mathematical models are needed to understand the
dynamics of epidemic infection [4–8]. At present many
models have been proposed to describe the dynamics ofHIV/
AIDS infection [9–11]. For instance, authors in [9] formulated
a mathematical model for the transmission dynamics of
HIV/AIDS in a two-sex population considering counseling
and antiretroviral therapy. Authors in [10] studied the impact
of the optimal control on the treatment of HIV/AIDS incor-
porating use of condom, screening of unaware infective, and
treatment of HIV individuals. In recent year, Yang et al. [11]
formulated a two-group (female sex workers and senior male
clients) compartmental model to study the impact of senior
male clients on the transmission dynamics, the containment,
and the elimination of the HIV.

Memory effect plays an important role in the spread
of disease. The presence of memory effects on past events
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will affect the spread of disease in the future so that the
spread of disease in the future can be controlled.The distance
of memory effect indicates the history of disease spread.
Thus, memory effects on the spread of infectious diseases
can be investigated using fractional derivatives. Fractional
derivatives have been used in the literature to observe the
effect of memory on a system dynamics by replacing the
ordinary derivative order with the fractional derivative order
[12–15]. Sardar et al. [13] formulated the dengue model with
memory in the transmission process by using fractional
differential operator and order of the fractional derivative as
an index of memory. Huo et al. [12] analyzed the effects of
vaccines on mathematical models of fractional order of HIV
disease spread. They also performed a local stability analysis
on the fractional-order framework of HIV disease spread and
bifurcation behavior of the system. In 2017, Saeedian et al. [14]
studied the evolution of the SIR epidemic model, considering
memory effects. Using the fractional calculus technique, the
authors in [14] show that the dynamics of such a system
depend on the strength of memory effects, controlled by the
order of fractional derivatives. In 2017, Pinto and Carvalho
[15] derived a fractional-order model for the dynamics of the
coinfection of HIV and TB in the presence of TB resistant
strains.

In this paper, we proposed a fractional order of two-
sex mathematical model for dynamic HIV transmission, as a
generalization of an integer model, proposed by Kimbir et al.
[9].We alsomodified the basicmodel in [9] by distinguishing
populations infected with HIV and infected with AIDS.
By using fractional ordinary differential equation, we hope
that the fractional-order model can accommodate the real
phenomenon of the spread ofHIV/AIDS.The structure of the
paper is organized as follows. In Section 2, we introduce the
description of the fractional order of the HIV/AIDS model.
In Section 3, the stability analysis of the equilibriums of the
model is proven. In Section 4, we carry out the sensitivity
analysis of the reproduction number to the parameters in the
model. Section 5 shows some numerical results for distinct
values of the fractional order 𝛼. Finally, in Section 6, we give
a brief conclusion.

2. Description of the Model

In this section we propose a mathematical model of two-
sex HIV/AIDS transmission based on [9]. The model is
constructed under the following assumptions:

(1) The total population is divided into two groups,
namely, the population of males and females.

(2) The population of males is divided into three com-
partments: the susceptible males (𝑆𝑚), the HIV
infected males (𝐼𝑚), and the AIDS infected males(𝐴𝑚). The population of females is also divided into
three compartments: the susceptible females (𝑆𝑓), the
HIV infected females (𝐼𝑓), and the AIDS infected
females (𝐴𝑓). Moreover, the total population ofmales
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Figure 1: HIV/AIDS transmission diagram.

and females is given by𝑁 = 𝑆𝑚 + 𝐼𝑚 + 𝐴𝑚 + 𝑆𝑓 + 𝐼𝑓
+ 𝐴𝑓.

(3) TheHIV transmission is by heterosexual contact only.

(4) Vertical transmission and age-structure are ignored.

(5) The population is homogeneous mixing.

(6) Male and female AIDS populations were isolated and
then do not contribute to HIV infection.

The transmission diagram of the model is shown in Figure 1.
The basic model is derived as follows:𝑑𝑆𝑚𝑑𝑡 = 𝑝Λ − 𝛽𝑓𝐼𝑓𝑆𝑚 − 𝜇𝑆𝑚.𝑑𝐼𝑚𝑑𝑡 = 𝛽𝑓𝐼𝑓𝑆𝑚 − (1 − 𝑟) 𝛾𝑚𝐼𝑚 − 𝜇𝐼𝑚,𝑑𝐴𝑚𝑑𝑡 = (1 − 𝑟) 𝛾𝑚𝐼𝑚 − (𝜇 + 𝛿)𝐴𝑚,𝑑𝑆𝑓𝑑𝑡 = (1 − 𝑝)Λ − 𝛽𝑚𝐼𝑚𝑆𝑓 − 𝜇𝑆𝑓,𝑑𝐼𝑓𝑑𝑡 = 𝛽𝑚𝐼𝑚𝑆𝑓 − (1 − 𝑟) 𝛾𝑓𝐼𝑓 − 𝜇𝐼𝑓,𝑑𝐴𝑓𝑑𝑡 = (1 − 𝑟) 𝛾𝑓𝐼𝑓 − (𝜇 + 𝛿)𝐴𝑓,

(1)

The description of the parameter for model (1) could be
seen in Table 1. The biologically feasible region of model (1)
is

Ω = {(𝑆𝑚, 𝐼𝑚, 𝐴𝑚, 𝑆𝑓, 𝐼𝑓, 𝐴𝑓) ∈ R
6
+ : 0 ≤ 𝑁 ≤ Λ𝜇 } , (2)

and all of the parameters used in model (1) are nonnegative.
The regionΩ is positively invariant. In this region, model

(1) is well-posed. So, if it is given an initial condition in the
region, then the solution is defined for all time 𝑡 ≥ 0 and
remains in the region.
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Next, we consider a fractional-order model of system
(1). The fractional model corresponding to system (1) is as
follows:

𝑑𝛼𝑆𝑚𝑑𝑡𝛼 = 𝑝Λ − 𝛽𝑓𝐼𝑓𝑆𝑚 − 𝜇𝑆𝑚,𝑑𝛼𝐼𝑚𝑑𝑡𝛼 = 𝛽𝑓𝐼𝑓𝑆𝑚 − (1 − 𝑟) 𝛾𝑚𝐼𝑚 − 𝜇𝐼𝑚,𝑑𝛼𝐴𝑚𝑑𝑡𝛼 = (1 − 𝑟) 𝛾𝑚𝐼𝑚 − (𝜇 + 𝛿)𝐴𝑚,𝑑𝛼𝑆𝑓𝑑𝑡𝛼 = (1 − 𝑝)Λ − 𝛽𝑚𝐼𝑚𝑆𝑓 − 𝜇𝑆𝑓,𝑑𝛼𝐼𝑓𝑑𝑡𝛼 = 𝛽𝑚𝐼𝑚𝑆𝑓 − (1 − 𝑟) 𝛾𝑓𝐼𝑓 − 𝜇𝐼𝑓,𝑑𝛼𝐴𝑓𝑑𝑡𝛼 = (1 − 𝑟) 𝛾𝑓𝐼𝑓 − (𝜇 + 𝛿)𝐴𝑓,

(3)

where 𝛼 ∈ (0, 1] is the order of the fractional derivative.
Fractional derivative of model (3) is in the sense of Caputo.
The Caputo approach is mostly used in real applications. The
main advantages of Caputo approach are the initial values for
fractional differential equations with the Caputo derivatives
taking on the same form as for integer order differential
equations [16]. The Caputo fractional derivative is defined as
follows.

Definition 1 (see [16]). The Caputo fractional differential
operator of order 𝛼 > 0, with 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N, is
defined by

𝑑𝛼𝑓 (𝑡)𝑑𝑡𝛼 fl 𝐼𝑛−𝛼 𝑑𝑛𝑓 (𝑡)𝑑𝑡𝑛
= 1Γ (𝑛 − 𝛼) ∫𝑡0 (𝑡 − 𝑠)(𝑛−𝛼−1) 𝑓(𝑛) (𝑠) 𝑑𝑠, (4)

where Γ(⋅) is the gamma function.

3. Model Analysis

In this section, we study the stability of the equilibrium of
the fractional-order model (3). We begin by computing the
basic reproduction number (𝑅0) of model (3). The basic
reproduction number is defined as the number of secondary
cases of primary case during the infectious period due to the
type of infection [17, 18].

Now, we recall the properties of the stability of the
fractional-order systems.The stability theorem on fractional-
order system is as follows.

Table 1: Parameters of model (1).

Description Parameter

Recruitment rate Λ
Proportion of the recruitment rate 𝑝
Natural death rate 𝜇
Transmission rate by an infected male 𝛽𝑚
Transmission rate by an infected female 𝛽𝑓
Progression rate from male HIV infection to
AIDS 𝛾𝑚
Progression rate from female HIV infection to
AIDS 𝛾𝑓
AIDS disease induced death rate 𝛿
Proportion of the efficacy of ART treatment for
HIV infection 𝑟
Theorem 2 (see [19, 20]). Consider the following autonomous
nonlinear fractional-order system:

𝑑𝛼𝑥𝑑𝑡𝛼 = 𝑓 (𝑥) ,𝑥 (0) = 𝑥0, (5)

with 0 < 𝛼 < 1 and𝑥 ∈ R𝑛.The equilibriumpoints of the above
system are solutions to the equation 𝑓(𝑥) = 0. An equilibrium
is locally asymptotically stable if all eigenvalues (𝜆𝑗) of the
Jacobianmatrix 𝐽 = 𝜕𝑓/𝜕𝑥 evaluated at the equilibrium satisfy| arg(𝜆𝑗)| > 𝛼𝜋/2.

Based onTheorem 2, the equilibria are obtained by setting
the right-hand sides of the equations in model (3) to zero.
The disease-free equilibrium of model (3) to the coordinate(𝑆𝑚, 𝐼𝑚, 𝐴𝑚, 𝑆𝑓, 𝐼𝑓, 𝐴𝑓) is given by 𝐸0 = (Λ𝑝/𝜇, 0, 0, Λ(1 −𝑝)/𝜇, 0, 0).

Then, the basic reproduction number (𝑅0) is computed
by using the next-generation method [21, 22]. For the next-
generation matrix method [22], we take the infected com-
partments (𝐼𝑚, 𝐼𝑓).The Jacobianmatrices𝐹 and𝑉 for the new
infection in the compartment and the transfer of individuals
between the compartment respectively, evaluated at 𝐸0, are
given by

𝐹 = ( 0 𝛽𝑓Λ𝑝𝜇𝛽𝑚Λ (1 − 𝑝)𝜇 0 ) ,
𝑉 = ( 1(1 − 𝑟) 𝛾𝑚 + 𝜇 00 1(1 − 𝑟) 𝛾𝑓 + 𝜇) .

(6)
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The basic reproduction number of model (3) is the spectral
radius of the matrix 𝐹𝑉−1 such that we have

𝑅0 = Λ𝜇√ 𝛽𝑚𝛽𝑓𝑝 (1 − 𝑝)((1 − 𝑟) 𝛾𝑚 + 𝜇) ((1 − 𝑟) 𝛾𝑓 + 𝜇) . (7)

The following theorem provides the local stability of the
disease-free equilibrium.

Theorem 3. The disease-free equilibrium 𝐸0 is locally asymp-
totically stable if 𝑅0 < 1.
Proof. The Jacobian matrix of model (3) around the disease-
free equilibrium, 𝐸0, is given by

𝐽 =
(((((((((((((((((
(

−𝜇 0 0 0 −𝛽𝑓𝑝Λ𝜇 0
0 − (1 − 𝑟) 𝛾𝑚 − 𝜇 0 0 𝛽𝑓𝑝Λ𝜇 00 (1 − 𝑟) 𝛾𝑚 −𝜇 − 𝛿 0 0 0
0 𝛽𝑚Λ (𝑝 − 1)𝜇 0 −𝜇 0 0
0 −𝛽𝑚Λ (𝑝 − 1)𝜇 0 0 − (1 − 𝑟) 𝛾𝑓 − 𝜇 00 0 0 0 (1 − 𝑟) 𝛾𝑓 −𝜇 − 𝛿

)))))))))))))))))
)

. (8)

The eigenvalues of matrix 𝐽 are 𝜆1 = 𝜆2 = −𝜇 and 𝜆3 =𝜆4 = −(𝜇 + 𝛿) and the roots of quadratic equation 𝑥2 +𝑎1𝑥 + 𝑎2 = 0, where 𝑎1 = 2(1 − 𝑟)𝜇(𝛾𝑚 + 𝛾𝑓) and 𝑎2 =[(1 − 𝑟)2𝛾𝑚𝛾𝑓 + 𝜇(1 − 𝑟)(𝛾𝑚 + 𝛾𝑓) + 𝜇2](1 − 𝑇0), with 𝑅0 =√𝑇0. Thus, we have | arg(𝜆1)| = | arg(𝜆2)| = | arg(𝜆3)| =| arg(𝜆4)| = 𝜋 > 𝛼𝜋/2. Next, we check the roots of the
quadratic equation 𝑥2 + 𝑎1𝑥 + 𝑎2 = 0. Authors in [23] show
that the Routh-Hurwitz criteria, 𝑎1, 𝑎2 > 0, are necessary
and sufficient for | arg(𝜆𝑖)| > 𝛼𝜋/2. It is clear that all of the
eigenvalues are negative (| arg(𝜆𝑗)| > 𝛼𝜋/2, for 𝑗 = 1, 2, . . . , 6)
if 𝑇0 < 1 or equivalently 𝑅0 < 1. Hence, the disease-free
equilibrium 𝐸0 is locally asymptotically stable for 𝛼 ∈ (0, 1] if𝑅0 < 1.

We continue with the computing of the endemic equilib-
rium (𝐸1) of model (3). The endemic equilibrium 𝐸1 is given
by

𝐸1 = (𝑆∗𝑚, 𝐼∗𝑚, 𝐴∗𝑚, 𝑆∗𝑓, 𝐼∗𝑓 , 𝐴∗𝑓) , (9)

where

𝑆∗𝑚 = 𝑝Λ𝛽𝑓𝐼∗𝑓 + 𝜇,𝐼∗𝑚
= [(1 − 𝑟) 𝛾𝑚 + 𝜇] [(1 − 𝑟) 𝛾𝑓 + 𝜇] 𝜇2 [𝑇0 − 1]𝛽𝑚 [(1 − 𝑟) 𝛾𝑚 + 𝜇] [𝛽𝑓Λ (1 − 𝑝) + ((1 − 𝑟) 𝛾𝑓 + 𝜇) 𝜇] ,

𝐴∗𝑚 = (1 − 𝑟) 𝛾𝑚𝐼∗𝑚𝜇 + 𝛿 ,
𝑆∗𝑓 = (1 − 𝑝)Λ𝛽𝑚𝐼∗𝑚 + 𝜇,
𝐼∗𝑓 = 𝛽𝑚𝐼∗𝑚 (1 − 𝑝)Λ[(1 − 𝑟) 𝛾𝑓 + 𝜇] [𝛽𝑚𝐼∗𝑚 + 𝜇] ,
𝐴∗𝑓 = (1 − 𝑟) 𝛾𝑓𝐼∗𝑓𝜇 + 𝛿 ,

(10)

with 𝑅0 = √𝑇0. The endemic equilibrium 𝐸1 exists if 𝑇0 > 1
or equivalently 𝑅0 > 1.

The stability of the endemic equilibrium 𝐸1 is difficult
to prove analytically, because it involves a quartic equation
which depend on the variables 𝐼𝑚 and 𝐼𝑓. Numerical simu-
lations show that the endemic equilibrium is locally asymp-
totically stable if 𝑅0 > 1. This can be seen in Figures
2 and 3. Using three different initial conditions for the
simulation, these orbits converge to the same point as time
evolves.

4. Sensitivity Analysis

In this section we present the sensitivity analysis of the
reproduction number 𝑅0 to the parameters in model (3). The
aim of this analysis was to measure the parameters that have
the most effects on the reproduction number. We derived
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Figure 2: Phase portrait of model (3) in 𝑆𝑚-𝑆𝑓 plane for 𝛼 = 0.8.
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Figure 3: Phase portrait of model (3) in 𝑆𝑚-𝑆𝑓 plane for 𝛼 = 0.9.
analytically the sensitivity index of 𝑅0 to each parameter
following the approach in [24].

Definition 4 (see [24]). The normalized forward sensitivity
index of a variable, 𝑅0, that depends differentially on a
parameter, 𝑙, is defined as

Υ𝑅0
𝑙

fl
𝜕𝑅0𝜕𝑙 × 𝑙𝑅0 . (11)

Based on Definition 4, the sensitivity indices of 𝑅0 with
respect to each parameter such as Λ, 𝜇, 𝛽𝑚, 𝛽𝑓, 𝛾𝑚, 𝛾𝑓, and 𝑝
can be computed in the same way as (11). For example, the
sensitivity index of 𝑅0 with respect to Λ is

Υ𝑅0Λ fl
𝜕𝑅0𝜕Λ × Λ𝑅0 = 1. (12)

Table 2: Parameter values for simulations.

Parameter Value Ref.𝑝 0.5 AssumedΛ 20 [12]𝛽𝑚 2 × 10−3 Assumed𝛽𝑓 5 × 10−3 Assumed𝜇 0.02 [12]𝛿 0.125 [12]𝛾𝑚 8 × 10−3 Assumed𝛾𝑓 9 × 10−3 Assumed𝑟 0.5 Assumed

Table 3: Sensitivity indices to parameter for model (3).

Parameter Sensitivity indexΛ 1𝛽𝑚 0.5𝛽𝑓 0.5𝑟 0.175𝜇 −1.825𝛾𝑓 −0.092𝛾𝑚 −0.083𝑝 0

Thus, we compute the sensitivity indexes of the remaining
parameters using the parameter values in the Table 2. The
results are given in Table 3.

The sensitivity index can be analyzed as follows. The
positive sensitivity index shows that an increase in the
parameters will lead to increase in the basic reproduction
number, while a negative sensitivity index means that an
increase in the parameter will lead to a decrease in the basic
reproduction number. For example, for Υ𝑅0

𝛽𝑚
= 0.5, increasing

the value 𝛽𝑚 by 10% increases the reproduction number 𝑅0
by 5%.Thus, increasing natural death rate 𝜇 by 10% decreases𝑅0 by 18.25%.

We also perform sensitivity simulation to verify our sen-
sitivity analysis.The parameter values used in the simulations
are given in Table 2. In Figures 4 and 5, we can see that,
for the parameter chosen with distinct values of 𝛽𝑓 and 𝛽𝑚,
respectively,𝑅0 increasesmonotonicallywith both𝛽𝑚 and𝛽𝑓.
This results indicate that increasing 𝛽𝑚 and 𝛽𝑓 will increase
the basic reproduction number 𝑅0.
5. Numerical Simulation

In this section, we conduct several numerical simulations
of model (3). An Adams-type predictor-corrector method
[25–27] is applied to solve the numerical solution of the
fractional-order model (3). Parameters values used in these
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simulations could be seen in Table 2. The adopted initial
conditions are (𝑆𝑚(0), 𝐼𝑚(0), 𝐴𝑚(0), 𝑆𝑓(0), 𝐼𝑓(0), 𝐴𝑓(0)) =(150, 10, 6, 300, 7, 2). Here, we take 500 days for the
time horizon. The simulations are carried out with
varying values of the order of the fractional derivative𝛼 ∈ [0.5, 1.0].
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Figure 6: Dynamic of nonendemic 𝑆𝑚.
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Figure 7: Dynamic of nonendemic 𝑆𝑓.

In Figures 6–11, we display the dynamic of the populations
when𝑅0 < 1 and in Figures 12–17 when𝑅0 > 1. In each figure
six different values of 𝛼 are employed.

Now, we set 𝛽𝑚 = 2 × 10−5 and 𝛽𝑓 = 5 × 10−5 and
the remaining of parameters as in Table 2 to simulate Figures
6–11. In this case, the value of 𝑅0 is 𝑅0 = 0.6521 < 1
which means that the infection will die out in the population.
This condition is confirmed by simulation results in Figures
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Figure 8: Dynamic of nonendemic 𝐼𝑚.
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Figure 9: Dynamic of nonendemic 𝐼𝑓.
6 and 7, Figures 8 and 9, and Figures 10 and 11 for sus-
ceptible male and female populations, respectively, infected
by HIV and infected by AIDS. These figures show that the
solutions of model (3) are convergent to the disease-free
equilibrium. Moreover, we observe that the solutions with
higher order𝛼have faster convergence speed compared to the
smaller.

Next, we plot in Figures 12–17 the numerical simulations
using the parameters as in Table 2. In this condition, the
value of 𝑅0 is 𝑅0 = 65.2051 > 1 which means that the
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Figure 10: Dynamic of nonendemic 𝐴𝑚.
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Figure 11: Dynamic of nonendemic 𝐴𝑓.
infection will persist in the population. In Figures 12 and 13,
Figures 14 and 15, and Figures 16 and 17 the dynamics of
the susceptible male and female populations, respectively, are
seen, infected by HIV and infected by AIDS with different
values of 𝛼. The figures show that the solutions of model
(3) converge to the endemic equilibrium when 𝑅0 > 1.
Similar to the nonendemic condition, we see that as the order𝛼 increases, the convergence of solutions is faster for the
endemic condition.
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Figure 12: Dynamic of endemic 𝑆𝑚.
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Figure 13: Dynamic of endemic 𝑆𝑓.
In Figures 18–23, we depict the dynamic of bothmale and

female populations infected by AIDS for different values of
the efficacy of ART treatment (𝑟) for 𝛼 = 1, 𝛼 = 0.7, and𝛼 = 0.5. For 𝛼 = 1, we observe that the AIDS infected
both male and female populations decrease when the value
of 𝑟 is increase. On the contrary, the number of both AIDS
infections increases when the efficacy of ART treatment, 𝑟,
is smaller. The similar behavior is seen for 𝛼 = 0.7 and𝛼 = 0.5. It is well known that the ART treatment could
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Figure 14: Dynamic of endemic 𝐼𝑚.

 = 0.5
 = 0.6
 = 0.7

 = 0.8
 = 0.9
 = 1

100 200 300 400 5000
Time

0

50

100

150

200

250

300

350

400

In
fe

ct
ed

 fe
m

al
e b

y 
H

IV

Figure 15: Dynamic of endemic 𝐼𝑓.
improve the quality of HIV infected both male and female
patients.

6. Conclusion

In this paper, we have investigated a fractional order of two-
sex mathematical model for dynamic HIV, as a generaliza-
tion of an integer order model, proposed by Kimbir et al.
[9]. The basic model in [9] is modified by distinguishing

135A Fractional-Order Model for HIV Dynamics in a Two-Sex Population

__________________________ WORLD TECHNOLOGIES __________________________



WT
100 200 300 400 5000

Time

3

4

5

6

7

8

9

10

11

12
In

fe
ct

ed
 m

al
e b

y 
A

ID
S

 = 0.5
 = 0.6
 = 0.7

 = 0.8
 = 0.9
 = 1

Figure 16: Dynamic of endemic 𝐴𝑚.
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Figure 17: Dynamic of endemic 𝐴𝑓.

populations infected withHIV andAIDS.We have computed
the basic reproduction number (𝑅0) and proved the stability
of equilibriums of the fractional-order model of the HIV
infection. Based on the mathematical analysis, the disease-
free equilibrium is locally asymptotically stable when 𝑅0 <1 that means the infection will die out in the population.
Numerically, the endemic equilibrium tends to be locally
asymptotically stable when 𝑅0 > 1 which means that the
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Figure 18: Dynamic of 𝐴𝑚 with 𝛼 = 1 for various 𝑟.
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Figure 19: Dynamic of 𝐴𝑓 with 𝛼 = 1 for various 𝑟.

infection will persist in the population. We also studied ana-
lytically and numerically the sensitivity analysis to measure
the parameters that have high impact on 𝑅0. Finally, we have
carried out the numerical simulations for different values of
the order (𝛼) of the fractional derivative. The simulations
results show that the solutions with higher order 𝛼 have
faster convergence compared to the smaller 𝛼. We also found
that as the efficacy of ART treatment (𝑟) increases there is a
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Figure 20: Dynamic of 𝐴𝑚 with 𝛼 = 0.7 for various 𝑟.
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Figure 21: Dynamic of 𝐴𝑓 with 𝛼 = 0.7 for various 𝑟.
corresponding decrease in the number of the AIDS infected
bothmale and female populations for three values of 𝛼.These
results indicate the effectiveness of the ART treatment to
reduce the AIDS infected.
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Figure 22: Dynamic of 𝐴𝑚 with 𝛼 = 0.5 for various 𝑟.

r = 0.16
r = 0.37
r = 0.56

r = 0.71
r = 0.96

100 200 300 400 5000
Time

0

2

4

6

8

10

12

14

In
fe

ct
ed

 fe
m

al
e b

y 
A

ID
S

Figure 23: Dynamic of 𝐴𝑓 with 𝛼 = 0.5 for various 𝑟.
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A trapezoidal number, a sum of at least two consecutive positive integers, is a figurate number that can be represented by points
rearranged in the plane as a trapezoid. Such numbers have been of interest and extensively studied. In this paper, a generalization
of trapezoidal numbers has been introduced. For each positive integer𝑚, a positive integer𝑁 is called an𝑚-trapezoidal number if
𝑁 can be written as an arithmetic series of at least 2 terms with common difference 𝑚. Properties of 𝑚-trapezoidal numbers have
been studied together with their trapezoidal representations. In the special case where𝑚 = 2, the characterization and enumeration
of such numbers have been given as well as illustrative examples. Precisely, for a fixed 2-trapezoidal number 𝑁, the ways and the
number of ways to write𝑁 as an arithmetic series with common difference 2 have been determined. Some remarks on 3-trapezoidal
numbers have been provided as well.

1. Introduction

A triangular number is a figurate number that can be rep-
resented by an equilateral triangular arrangement of points
equally spaced. For each positive integer ℓ, the ℓth triangular
number is the number of points composing a triangle with
ℓ points on a side and is equal to the sum of the ℓ natural
numbers of the form Tri(ℓ) = 1 + 2 + 3 + ⋅ ⋅ ⋅ + ℓ.The ℓth
triangular number can be represented as points in an equi-
lateral triangle as in Figure 1.

Triangular numbers have been studied since the ancient
Greeks. The Pythagoreans revered the Tetractys which is
Tri(4). Triangular numbers have applications to other areas
of number theory, such as perfect numbers and binomial
coefficients. They are also practically the simplest example
of an arithmetic sequence.Therefore, the triangular numbers
have fascinated people and cultures all over the world (see [1–
3] and references therein).

A trapezoidal number (see [4], e.g.) is a generalization
of a triangular number defined to be a sum of at least two
consecutive positive integers. Precisely, a positive integer 𝑁
is a trapezoidal number if

𝑁 = (𝑘 + 1) + (𝑘 + 2) + ⋅ ⋅ ⋅ + (𝑘 + ℓ) (1)

for some integers 𝑘 ≥ 0 and ℓ ≥ 2. Trapezoidal numbers form
an important class of figurate numbers that has extensively
been studied (see [2–7]).

From the definition, it is not difficult to see that every
trapezoidal number𝑁 can be represented by a rearrangement
of 𝑁 points in the plane as a trapezoid as in Figure 2.
For convenience, denote by 𝑇(ℓ, 𝑘) the number of the form
(1). The characterization and enumeration of trapezoidal
numbers have been given in [4, 8]. The main results are
summarized as follows.

Theorem 1 ([4, Proposition 1]). Let 𝑁 be a positive integer.
Then 𝑁 is a trapezoidal number if and only if 𝑁 is not of the
form 2𝑖 for all 𝑖 ∈ N ∪ {0}.
Theorem 2 ([4, Proposition 2]). Let 𝑁 = 2𝑟𝑝𝑟11 𝑝𝑟22 ⋅ ⋅ ⋅ 𝑝𝑟𝑠𝑠 be
a positive integer such that 𝑠 ≥ 1 and 𝑟 ≥ 0 are integers,
𝑝1, 𝑝2, . . . , 𝑝𝑠 are distinct odd primes, and 𝑟𝑖 ≥ 1 is an integer
for all 𝑖 = 1, 2, . . . , 𝑠.Then𝑁 is a trapezoidal number and there
are

𝜏 ( 𝑛2𝑟 ) − 1 = (𝑟1 + 1) (𝑟2 + 1) ⋅ ⋅ ⋅ (𝑟𝑠 + 1) − 1 (2)

ways of writing𝑁 as a sum of at least two consecutive integers.
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Figure 1: The ℓth triangular number.
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Figure 2: Trapezoidal number 𝑇(ℓ, 𝑘).

Some properties of nontrapezoidal numbers can be found
in [9].

Triangular numbers and trapezoidal numbers have a
closed connection (see Section 2 for more details) with a
rectangular number which is defined to be

𝑅 (ℓ, 𝑘) fl ℓ𝑘, (3)

where ℓ ≥ 2 and 𝑘 ≥ 2 are integers. A rectangular number
can be represented as a rectangle as in Figure 3.

In this paper, we focus on a general concept of trapezoidal
numbers. For each positive integer 𝑚, a positive integer 𝑁
is called an 𝑚-trapezoidal number if 𝑁 can be written as an
arithmetic series of at least 2 terms with common difference
𝑚. It follows that an 𝑚-trapezoidal number can be repre-
sented as

(𝑘 + 1) + (𝑘 + 1 + 𝑚) + (𝑘 + 1 + 2𝑚) + ⋅ ⋅ ⋅
+ (𝑘 + 1 + 𝑚 (ℓ − 1)) (4)

for some integers 𝑘 ≥ 0 and ℓ ≥ 2. It is not difficult to see that
a 1-trapezoidal number is a classical trapezoidal number. For
convenience, denote by 𝑇(ℓ, 𝑘,𝑚) the series in (4).

We note that an 𝑚-trapezoidal number is not uniquely
determined by a triple (ℓ, 𝑘, 𝑚) (see Example 3). Every 𝑚-
trapezoidal number can be represented by an arrangement of
points in the plane as a trapezoid. Some examples are given
as follows.

 points
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Figure 3: Rectangular number 𝑅(ℓ, 𝑘).

(b) T(4, 3, 1) = 18(a) T(3, 4, 1) = 18

=

Figure 4: 𝑇(3, 4, 1) = 18 = 𝑇(4, 3, 1).

Example 3. The positive integer 18 is a (1-)trapezoidal num-
ber represented in the forms of series

𝑇 (3, 4, 1) = 5 + 6 + 7 = 18 = 3 + 4 + 5 + 6
= 𝑇 (4, 3, 1) . (5)

The above series can be represented as trapezoids of 18 points
in the plane as in Figure 4.

Example 4. The numbers 𝑇(3, 4, 2) = 5 + 7 + 9 = 21 and
𝑇(3, 4, 3) = 5 + 8+ 11 = 24 are examples of 2-trapezoidal and
3-trapezoidal numbers, respectively.They can be represented
as trapezoids in Figure 5.

In this paper, we focus on properties of 𝑚-trapezoidal
numbers and their representations as trapezoids in the plane.
The characterization and enumeration of 𝑚-trapezoidal
numbers are studied in the special case where 𝑚 = 2. The
paper is organized as follows. In Section 2, general properties
of 𝑚-trapezoidal numbers are discussed as well as links with
other figurate numbers. In Section 3, the characterization
and enumeration of 2-trapezoidal numbers have been given
together with some illustrative examples. Remarks on 3-
trapezoidal numbers have been provided in Section 4. Con-
clusion and open problems are given in Section 5.

2. Generalized Trapezoidal Numbers

In this section, we focus on general properties of 𝑚-
trapezoidal numbers and links with other figurate numbers
such as triangular numbers, trapezoidal number, and rectan-
gular numbers.

First, we simplify the formula for an 𝑚-trapezoidal
number.

Lemma 5. Let 𝑘 ≥ 0,𝑚 ≥ 1, and 𝑙 ≥ 2 be integers. Then

𝑇 (ℓ, 𝑘,𝑚) = ℓ (2 (𝑘 + 1) + 𝑚 (ℓ − 1))2 . (6)
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(b) T(3, 4, 3) = 24(a) T(3, 4, 2) = 21

Figure 5: 𝑇(3, 4, 2) = 21 and 𝑇(3, 4, 3) = 24.

Proof. From the definition, we have

𝑇 (ℓ, 𝑘,𝑚) = (𝑘 + 1) + (𝑘 + 1) + ⋅ ⋅ ⋅ + (𝑘 + 1)
+ 𝑚 (1 + 2 + ⋅ ⋅ ⋅ + (ℓ − 1))

= ℓ (𝑘 + 1) + 𝑚 (ℓ − 1) ℓ2
= ℓ (2 (𝑘 + 1) + 𝑚 (ℓ − 1))2

(7)

as desired.

From the formula in Lemma 5, the following properties
can be deduced.

Corollary 6. Let 𝑚 be a positive integer. If 𝑚 is even, then an
𝑚-trapezoidal number 𝑇(ℓ, 𝑘,𝑚) is a rectangular number for
all integers 𝑘 ≥ 0 and ℓ ≥ 2.
Proof. Assume that𝑚 is even. Let 𝑘 ≥ 0 and ℓ ≥ 2 be integers.
Then

𝑇 (ℓ, 𝑘,𝑚) = ℓ (2 (𝑘 + 1) + 2𝑎 (ℓ − 1))2
= ℓ (𝑘 + 1 + 𝑎 (ℓ − 1)) .

(8)

Since ℓ ≥ 2 and 𝑘 + 1 + 𝑎(ℓ − 1) ≥ 1 + 𝑎 ≥ 2, 𝑇(ℓ, 𝑘,𝑚) is a
rectangular number.

Corollary 7. Let 𝑚 be a positive integer. If 𝑚 is odd, then an
𝑚-trapezoidal number 𝑇(ℓ, 𝑘,𝑚) is a rectangular number for
all integers 𝑘 ≥ 0 and ℓ ≥ 3.
Proof. Assume that𝑚 is odd. Let 𝑘 ≥ 0 and ℓ ≥ 3 be integers.
We consider the following two cases.

Case 1 (ℓ is even). Then ℓ = 2𝑎 for some 𝑎 ∈ N \ {1} and

𝑇 (ℓ, 𝑘,𝑚) = ℓ (2 (𝑘 + 1) + 𝑚 (ℓ − 1))2
= (2𝑎) (2 (𝑘 + 1) + 𝑚 (2𝑎 − 1))2
= 𝑎 (2 (𝑘 + 1) + 𝑚 (2𝑎 − 1)) .

(9)

Since 𝑎 ≥ 2 and (2(𝑘 + 1) + 𝑚(2𝑎 − 1)) ≥ 5 ≥ 2, 𝑇(ℓ, 𝑘,𝑚) is
a rectangular number.

Case 2 (ℓ is odd). Then ℓ = 2𝑏 + 1 for some 𝑏 ∈ N and

𝑇 (ℓ, 𝑘,𝑚) = ℓ (2 (𝑘 + 1) + 𝑚 (ℓ − 1))2
= (2𝑏 + 1) (2 (𝑘 + 1) + 𝑚 (2𝑏 + 1 − 1))2
= (2𝑏 + 1) ((𝑘 + 1) + 𝑚𝑏) .

(10)

Since (2𝑏 + 1) ≥ 3 ≥ 2 and ((𝑘 + 1) + 𝑚𝑏) ≥ 2, 𝑇(ℓ, 𝑘,𝑚) is a
rectangular number.

From the two cases, 𝑇(ℓ, 𝑘, 𝑚) is rectangular for all 𝑘 ≥ 0
and ℓ ≥ 3.

Trapezoidal numbers, 𝑚-trapezoidal numbers, rectan-
gular numbers, and triangular numbers are linked via the
following relations.

Theorem 8. Let ℓ, 𝑘,𝑚 be integers such that ℓ ≥ 2,𝑚 ≥ 1, and
𝑘 ≥ 0. Then

𝑇 (ℓ, 𝑘,𝑚) = 𝑇 (ℓ, 𝑘,𝑚 − 𝑖) + (𝑚 − 𝑖)Tri (ℓ − 1) (11)

for all positive integers 𝑖 ≤ 𝑚.
Proof. Let 𝑖 be a positive integer. Then

𝑇 (ℓ, 𝑘,𝑚) = ℓ (2 (𝑘 + 1) + 𝑚 (ℓ − 1))2
= ℓ (2 (𝑘 + 1) + 𝑖ℓ − 𝑖 + 𝑖 + 𝑚ℓ − 𝑚 − 𝑖ℓ)2
= ℓ (2 (𝑘 + 1) + 𝑖 (ℓ + 1))2
+ ℓ (𝑚ℓ − 𝑚 + 𝑖 − 𝑖ℓ)2
= ℓ (2 (𝑘 + 1) + 𝑖 (ℓ + 1))2
+ (𝑚 − 𝑖) (ℓ − 1) ℓ2
= 𝑇 (ℓ, 𝑘, 𝑖) + (𝑚 − 𝑖)Tri (ℓ − 1) .

(12)

Hence, the result follows.

The next corollary follows immediately fromTheorem 8.

Corollary 9. Let ℓ, 𝑘,𝑚 be integers such that ℓ ≥ 2,𝑚 ≥ 1,
and 𝑘 ≥ 0. Then the following statements hold:

(1) 𝑇(ℓ, 𝑘,𝑚) = 𝑇(ℓ, 𝑘, 1) + (𝑚 − 1)Tri(ℓ − 1).
(2) 𝑇(ℓ, 𝑘,𝑚) = 𝑇(ℓ, 𝑘,𝑚 − 1) + Tri(ℓ − 1).
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Figure 6: 𝑇(5, 3, 3) = 𝑇(5, 3, 1) + 2Tri(4).

Figure 7: 𝑇(5, 3, 3) = 𝑇(5, 3, 2) + Tri(4).

Illustrative examples of results in Corollary 9 are given as
follows.

Example 10. Let ℓ = 5, ℓ = 5, 𝑘 = 3 and 𝑚 = 3. From
Theorem 8, we have

𝑇 (5, 3, 3) = 4 + 7 + 10 + 13 + 16
= (4 + 5 + 6 + 7 + 8) + 2 (1 + 2 + 3 + 4)
= 𝑇 (5, 3, 1) + 2Tri (4) ,

𝑇 (5, 3, 3) = 4 + 7 + 10 + 13 + 16
= (4 + 6 + 8 + 10 + 12) + (1 + 2 + 3 + 4)
= 𝑇 (5, 3, 2) + Tri (4) .

(13)

The above relations can be represented in the plane as in
Figures 6 and 7.

Theorem 11. Let 𝑚 and 𝑁 be positive integers. If 𝑁 is an 𝑚-
trapezoidal number such that 𝑁 ≥ 𝑚 + 4, then 𝑁 can be
written as a sumof a rectangular number and an𝑚-trapezoidal
number.

Proof. Assume that𝑁 is an 𝑚-trapezoidal number such that
𝑁 ≥ 𝑚 + 4. Then

𝑁 = 𝑏 (2 (𝑎 + 1) + 𝑚 (𝑏 − 1))2 = 𝑇 (𝑏, 𝑎,𝑚) (14)

for some integers 𝑎 ≥ 1 and 𝑏 ≥ 2.
Let𝑁1 = (𝑎 + 1)𝑏 and𝑁2 = (𝑏 − 1)(2𝑚 + 𝑚(𝑏 − 2))/2 =𝑇(𝑏 − 1, 𝑎,𝑚). Then𝑁1 is a rectangular number and𝑁2 is an𝑚-trapezoidal number. It follows that

𝑁1 + 𝑁2 = (𝑎 + 1) 𝑏 + (𝑏 − 1) (2𝑚 + 𝑚 (𝑏 − 2))2
= 𝑏 (2 (𝑎 + 1) + (𝑚) (𝑏 − 1))2 = 𝑁.

(15)

Hence, 𝑁 is a sum of a rectangular number and an 𝑚-
trapezoidal number.

Figure 8: 𝑇(6, 5, 2) = 𝑅(6, 6) + 𝑇(5, 1, 2).

Example 12. Let ℓ = 6, 𝑘 = 5, and𝑚 = 2. Then

𝑇 (6, 5, 2) = 6 + 8 + 10 + 12 + 14 + 16
= 6 ⋅ 6 + (2 + 4 + 6 + 8 + 10)
= 𝑅 (6, 6) + 𝑇 (5, 1, 2)

(16)

which can be represented in the plane as in Figure 8.

3. Characterization and Enumeration of
2-Trapezoidal Numbers

In this section, we focus on the special case where𝑚 = 2. The
characterization and enumeration of 2-trapezoidal numbers
are given together with some illustrative examples.

The characterization of 2-trapezoidal numbers is given in
the next theorem which is totally different from the case of
1-trapezoidal numbers in Theorem 1.

Theorem 13. Let 𝑁 ≥ 2 be an integer. Then 𝑁 is a 2-trap-
ezoidal number if and only if𝑁 is not a prime.

Proof. Assume that 𝑁 is a 2-trapezoidal number. By Corol-
lary 6, 𝑁 is a rectangular number. Hence, 𝑁 is not a prime
number.

Conversely, assume that 𝑁 is not a prime number. Then
there exist integers 1 < 𝑟 ≤ 𝑠 < 𝑁 such that𝑁 = 𝑟𝑠. Choose
ℓ = 𝑟 and 𝑘 = 𝑠 − 𝑟. Then ℓ ≥ 2, 𝑘 ≥ 0, and

𝑁 = 𝑟𝑠 = ℓ (𝑘 + ℓ) = ℓ (2 (𝑘 + 1) + 2 (ℓ − 1))2
= 𝑇 (ℓ, 𝑘, 2) .

(17)

Hence,𝑁 is a 2-trapezoidal number as desired.

From the proof ofTheorem 13, a 2-trapezoidal number𝑁
can be represented as a series𝑇(ℓ, 𝑘, 2) via the following steps:

(1) Determine the divisors 𝑟 of𝑁 such that 1 < 𝑟 ≤ √𝑁.
(2) For each 𝑟, compute 𝑠 = 𝑁/𝑟.
(3) Write 𝑇(ℓ, 𝑘, 2), where ℓ = 𝑟 and 𝑘 = 𝑠 − 𝑟.

Let us consider the following examples.

Example 14. Consider the 2-trapezoidal number𝑁 = 54. We
have 54 = 2 ⋅ 33 which can be written as arithmetic series of
at least 2 terms with common difference 2 as in Table 1.
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Table 1: Trapezoidal representations of 54.
ℓ = 𝑟 𝑠 = 𝑁/𝑟 𝑘 = 𝑠 − 𝑟 𝑇(ℓ, 𝑘, 2)
2 27 25 26 + 28
3 18 15 16 + 18 + 20
6 9 3 4 + 6 + 8 + 10 + 12 + 14

Table 2: Trapezoidal representations of 100.
ℓ = 𝑟 s =𝑁/𝑟 𝑘 = 𝑠− 𝑟 𝑇(ℓ, 𝑘, 2)
2 50 48 49 + 51
4 25 21 22 + 24 + 26 + 28
5 20 15 16 + 18 + 20 + 22 + 24
10 10 0 1+3+5+7+9+11+13+15+17+19

Table 3: Trapezoidal representations of 175.
ℓ = 𝑟 𝑠 = 𝑁/𝑟 𝑘 = 𝑠 − 𝑟 𝑇(ℓ, 𝑘, 2)
5 35 30 31 + 33 + 35 + 37 + 39
7 25 18 19 + 21 + 23 + 25 + 27 + 29 + 31

Example 15. Consider the 2-trapezoidal number 𝑁 = 100.
Then 100 = 22 ⋅ 52 which can be written as arithmetic series
of at least 2 terms with common difference 2 as in Table 2.

Example 16. Consider the 2-trapezoidal number 𝑁 = 175.
Then 175 = 52 ⋅ 7 which can be written as arithmetic series of
at least 2 terms with common difference 2 as in Table 3.

By the definition, every 2-trapezoidal number can be
written as an arithmetic series with common difference 2. In
the following theorem, we determine the number of ways to
write a 2-trapezoidal number in terms of an arithmetic series
of at least 2 terms with common difference 2.
Theorem 17. Let 𝑁 be a 2-trapezoidal number. Then the
number of ways to write 𝑁 as an arithmetic series of at least
2 terms with common difference 2 is

𝜏 (𝑁) − 1
2 if 𝑁 is a square,

𝜏 (𝑁)
2 − 1 if 𝑁 is not a square,

(18)

where 𝜏(𝑁) is the number of divisors of𝑁.
Proof. From the proof of Theorem 13, it follows that 𝑁 = 𝑟𝑠
for some integers 1 < 𝑟 ≤ 𝑠. Next, we consider the following
two cases.

Case 1 (𝑁 is a square). In this case, we have 1 < 𝑟 ≤ 𝑠.Then the
number of ways to write 𝑁 as an arithmetic series of at least
2 terms with common difference 2 is the number of divisors
𝑟 of 𝑁 such that 1 < 𝑟 ≤ √𝑁. Since 𝑁 is a square, 𝑁 =
𝑝𝑟11 𝑝𝑟22 ⋅ ⋅ ⋅ 𝑝𝑟𝑠𝑠 for some 𝑠 ≥ 1, 𝑝1, 𝑝2, . . . , 𝑝𝑠 are distinct odd
primes, and 𝑟𝑖 is an even positive integer for all 𝑖 = 1, 2, . . . , 𝑠.
Then the number of divisors of 𝑁 is 𝜏(𝑁) = (𝑟1 + 1)(𝑟2 +1) ⋅ ⋅ ⋅ (𝑟𝑠+1)which is odd. Hence, the number of ways to write

Table 4: Number of representations of square 2-trapezoidal num-
bers.

𝑁 𝜏 (𝑁) − 1
2

25 = 52 (2 + 1) − 1
2 = 1

36 = 22 ⋅ 32 (2 + 1)(2 + 1) − 1
2 = 4

49 = 72 (2 + 1) − 1
2 = 1

81 = 34 (4 + 1) − 1
2 = 2

100 = 22 ⋅ 52 (2 + 1)(2 + 1) − 1
2 = 4

256 = 28 (8 + 1) − 1
2 = 4

400 = 24 ⋅ 52 (4 + 1)(2 + 1) − 1
2 = 7

𝑁 as an arithmetic series of at least 2 terms with common
difference 2 is (𝜏(𝑁) − 1)/2 + 1 − 1 = (𝜏(𝑁) − 1)/2.
Case 2 (𝑁 is not a square). In this case, we have 1 < 𝑟 < 𝑠.
Then the number of ways to write 𝑁 as an arithmetic series
of at least 2 terms with common difference 2 is the number
of divisors 𝑟 of 𝑁 such that 1 < 𝑟 < √𝑁. Since 𝑁 is not
a square, 𝑁 = 𝑝𝑟11 𝑝𝑟22 ⋅ ⋅ ⋅ 𝑝𝑟𝑠𝑠 , where 𝑠 ≥ 1, 𝑝1, 𝑝2, . . . , 𝑝𝑠 are
distinct odd primes and 𝑟𝑖 is a positive integer for all 𝑖 =
1, 2, . . . , 𝑠 such that 𝑟𝑗 is odd for some 1 ≤ 𝑗 ≤ 𝑠. Then the
number of divisors of𝑁 is 𝜏(𝑁) = (𝑟1 + 1)(𝑟2 + 1) ⋅ ⋅ ⋅ (𝑟𝑠 + 1)
which is even.Therefore, the number of ways to write𝑁 as an
arithmetic series of at least 2 terms with common difference
2 is 𝜏(𝑁)/2 − 1.

From the two cases, the result follows.

The next corollary is a direct consequence ofTheorem 17.

Corollary 18. Let 𝑁 be a 2-trapezoidal number. Then 𝑁 has
a unique representation as an arithmetic series of at least 2
terms with common difference 2 if and only one of the following
statements holds:

(1) 𝑁 is a product of two distinct primes.
(2) 𝑁 is the square of a prime.
(3) 𝑁 is the cube of a prime.

Some illustrative examples of the number of ways to write
a 2-trapezoidal number𝑁 as an arithmetic series of at least 2
terms with common difference 2 are shown in Tables 4 and 5.
4. Some Properties of 3-Trapezoidal Numbers

In this section, we focus on properties of 3-trapezoidal
numbers. A necessary condition for a positive integer to be
a 3-trapezoidal number is given. However, this condition is
not sufficient.

Theorem 19. Let𝑁 be a positive integer. If𝑁 is a 3-trapezoidal
number, then𝑁 is not in the form of 2𝑖 for all 𝑖 ∈ N ∪ {0}.
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Table 5: Number of representations of nonsquare 2-trapezoidal
numbers.

𝑁 𝜏(𝑁)
2 − 1

10 = 2 ⋅ 5 (1 + 1)(1 + 1)
2 − 1 = 2 − 1 = 1

24 = 23 ⋅ 3 (3 + 1)(1 + 1)
2 − 1 = 3

27 = 33 (3 + 1)
2 − 1 = 1

42 = 2 ⋅ 3 ⋅ 7 (1 + 1)(1 + 1)(1 + 1)
2 − 1 = 4 − 1 = 3

54 = 2 ⋅ 33 (1 + 1)(3 + 1)
2 − 1 = 4 − 1 = 3

Proof. Assume that𝑁 is a 3-trapezoidal number. Then

𝑁 = ℓ (2 (𝑘 + 1) + 3 (ℓ − 1))2 (19)

for some ℓ ≥ 2 and 𝑘 ≥ 0. We consider the following two
cases.

Case 1 (ℓ is odd). It follows that 3(ℓ − 1) is even and (2(𝑘 +
1) + 3(ℓ − 1))/2 ∈ N. It follows that ℓ ≥ 3 is odd and ℓ | 𝑁.
Hence,𝑁 ̸= 2𝑖 for all 𝑖 ∈ N ∪ {0}.
Case 2 (ℓ is even). We have that 3(ℓ − 1) is odd and 2(𝑘 + 1) +
3(ℓ−1) is odd. Since ℓ/2 ∈ N, it follows that (2(𝑘+1)+3(ℓ−1)) |
𝑁 and 2(𝑘+1)+3(ℓ−1) ≥ 5. Hence,𝑁 ̸= 2𝑖 for all 𝑖 ∈ N∪{0}.

Altogether, we have that 𝑁 ̸= 2𝑖 for all 𝑖 ∈ N ∪ {0} as
desired.

We note that the necessary condition given inTheorem 19
is not sufficient. It is not difficult to see that 6 is not of the form
2𝑖 for all 𝑖 ∈ N ∪ {0} but 6 is not a 3-trapezoidal number.

5. Conclusion and Remarks

A general concept of trapezoidal numbers has been intro-
duced. Some properties of𝑚-trapezoidal numbers have been
determined as well as links with other figurate numbers.
Complete characterization and enumeration of 2-trapezoidal
numbers are given. Anecessary condition of a positive integer
to be a 3-trapezoidal number is determined. However, the
given condition is not sufficient.

In general, it is interesting to study the characterization
and enumeration of𝑚-trapezoidal numbers with𝑚 ≥ 3.
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We introduce a quantity which is called Rényi’s-Tsalli’s entropy of order 𝜉 and discussed some of its major properties with Shannon
and other entropies in the literature. Further, we give its application in coding theory and a coding theorem analogous to the
ordinary coding theorem for a noiseless channel is proved. The theorem states that the proposed entropy is the lower bound of
mean code word length.

1. Introduction

Let Δ 𝑛 = {𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) : 𝑎𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛;∑𝑛𝑖=1 𝑎𝑖 = 1}, 𝑛 ≥ 2, be set of 𝑛-complete probability distribu-
tions. For any probability distribution 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈Δ 𝑛, Shannon [1] defined an entropy given as

𝐻(𝐴) = − 𝑛∑
𝑖=1

(𝑎𝑖) log (𝑎𝑖) , (1)

where the convention 0 log(0) = 0 is adopted (see Shannon
[1]). Throughout this paper, logarithms are taken to the base𝐷(𝐷 > 1). A number of parametric generalizations of Shan-
non entropy are proposed bymany authors in literaturewhich
produces (1) for specific values of parameters.The presence of
parameters makes an entropy more flexible from application
point of view. One of the first generalizations of (1) was
proposed by Rényi [2] as

𝐻𝑅𝑒 (𝐴; 𝜉) = 11 − 𝜉 log(
𝑛∑
𝑖=1

𝑎𝜉𝑖 ) ; 𝜉 > 0 ( ̸= 1) . (2)

Another well-known entropy was proposed by Havrda and
Charvát [3]

𝐻ℎ𝑐 (𝐴; 𝜉) = (21−𝜉 − 1)−1( 𝑛∑
𝑖=1

𝑎𝜉𝑖 − 1) ; 𝜉 > 0 ( ̸= 1) . (3)

Independently, Tsalli [4] proposed another parametric gen-
eralization of the Shannon entropy as

𝐻𝑇 (𝐴; 𝜉) = 11 − 𝜉 (
𝑛∑
𝑖=1

𝑎𝜉𝑖 − 1) ; 𝜉 > 0 ( ̸= 1) . (4)

Equations (3) and (4) essentially have the same expression
except the normalized factor. The Havrda and Charvát
entropy is normalized to 1. That is, if 𝐴 = (1/2, 1/2) then𝐻ℎ𝑐(𝐴; 𝜉) = 1whereas Tsalli’s entropy is not normalized. Both
the entropies yield the same result and we call these entropies
as Tsalli-Havrda-Charvát entropy. Equations (2), (3), and (4)
reduce to (1) when 𝜉 → 1.

N. R. Pal and S. K. Pal [5, 6] have proposed an exponential
entropy as

𝐻𝑝𝑝 (𝐴) = 𝑛∑
𝑖=1

𝑎𝑖 (𝑒1−𝑎𝑖 − 1) . (5)

These authors claim that the exponential entropy has some
advantage over Shannon’s entropy, especially within context
of image processing. One such claim is that the exponential
entropy has a fixed upper bound such as that for uniform
distribution (1/𝑛, 1/𝑛, . . . , 1/𝑛) and for the entropy in (5).

lim
𝑛→∞

𝐻𝑝𝑝 (1𝑛 , 1𝑛 , . . . , 1𝑛) = 𝑒 − 1, (6)
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as compared to infinite limit (as 𝑛 → ∞) for the entropies in
(1) and (2) and also for that in (3) when 𝜉 ∈ (0, 1). Equation
(5) was further generalized by Kvalseth [7] introducing a
parameter as

𝐻𝐾 (𝐴; 𝜉) = 1𝜉
𝑛∑
𝑖=1

𝑎𝑖 (𝑒1−𝑎𝜉𝑖 − 1) ; 𝜉 ∈ R. (7)

In this paper, we introduce and study a new information
measure which is called Rényi’s-Tsalli’s entropy of order 𝜉 and
a new mean code word length and discuss the relation with
each other. In Section 2, Rényi’s and Tsalli’s entropy is intro-
duced and also some of its major properties are discussed. In
Section 3, the application of proposed information measure
in coding theory is given and it is proved that the proposed
information measure is the lower bound of mean code word
length.

Now, in the next section, we propose a new parametric
information measure.

2. A New Generalized Information Measure

However, in literature of information theory, there exists
various generalizations of Shannon entropy; we introduce a
new information measure as

𝐻𝜉 (𝐴)

= {{{{{{{{{

1𝜉−1 − 𝜉 [log(
𝑛∑
𝑖=1

𝑎𝜉𝑖 ) + 𝑛∑
𝑖=1

𝑎𝜉𝑖 − 1] , 𝜉 > 0 ( ̸= 1) ;
− 𝑛∑
𝑖=1

(𝑎𝑖) log (𝑎𝑖) , 𝜉 = 1.
(8)

Second case in (8) is a well-known Shannon entropy.
The quantity (8) introduced in the present section is a

joint representation of Rényi’s and Tsalli’s entropy of order𝜉. Such a name will be justified, if it shares some major
properties with Shannon entropy and other entropies in
the literature. We study some such properties in the next
theorem.

2.1. Properties of Proposed Entropy

Theorem 1. The parametric entropy 𝐻𝜉(𝐴), {𝐴 = (𝑎1, 𝑎2, . . . ,𝑎𝑛), 0 < 𝑎𝑖 ≤ 1,∑𝑛𝑖=1 𝑎𝑖 = 1} has the following properties.
(1) Symmetry. 𝐻𝜉(𝑎1, 𝑎2, . . . , 𝑎𝑛) is a symmetric function of(𝑎1, 𝑎2, . . . , 𝑎𝑛).
(2) Nonnegative.𝐻𝜉(𝐴) ≥ 0 for all 𝜉 > 0( ̸= 1).
(3) Expansible

𝐻𝜉 (𝑎1, 𝑎2, . . . , 𝑎𝑛; 0) = 𝐻𝜉 (𝑎1, 𝑎2, . . . , 𝑎𝑛) . (9)

(4) Decisive

𝐻𝜉 (0, 1) = 𝐻𝜉 (1, 0) = 0. (10)

(5) Maximality

𝐻𝜉 (𝑎1, 𝑎2, . . . , 𝑎𝑛) ≤ 𝐻𝜉 (1𝑛 , 1𝑛 , . . . , 1𝑛)
= 1𝜉−1 − 𝜉 [log (𝑛1−𝜉) + 𝑛1−𝜉 − 1] .

(11)

(6) Concavity.The entropy𝐻𝜉(𝐴) is a concave function for 0 <𝜉 < 1 of the probability distribution 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛), 𝑎𝑖 ≥0; ∑𝑛𝑖=1 𝑎𝑖 = 1.
(7) Continuity. 𝐻𝜉(𝑎1, 𝑎2, . . . , 𝑎𝑛) is continuous in the region𝑎𝑖 ≥ 0 for all 𝑖 = 1, 2, . . . , 𝑛 and 𝜉 > 0( ̸= 1).
Proof. The properties (1), (3), (4), and (5) follow immediately
from the definition. For property (7), we know that

log( 𝑛∑
𝑖=1

𝑎𝜉𝑖 ) + 𝑛∑
𝑖=1

𝑎𝜉𝑖 − 1 (12)

is continuous in the region 𝑎𝑖 ≥ 0 for all 𝜉 > 0. Thus,𝐻𝜉(𝐴),
is also continuous in the region 𝑎𝑖 ≥ 0 and 𝜉 > 0( ̸= 1) and𝑖 = 1, 2, . . . , 𝑛.
Property (2)

Case 1 (0 < 𝜉 < 1)
𝑛∑
𝑖=1

𝑎𝜉𝑖 ≥ 1. (13)

From (13), we get

log( 𝑛∑
𝑖=1

𝑎𝜉𝑖 ) + 𝑛∑
𝑖=1

𝑎𝜉𝑖 − 1 ≥ 0, (14)

since 0 < 𝜉 < 1 ⇒ 𝜉−1 − 𝜉 > 0.
Therefore, we get

1𝜉−1 − 𝜉 [log(
𝑛∑
𝑖=1

𝑎𝜉𝑖 ) + 𝑛∑
𝑖=1

𝑎𝜉𝑖 − 1] ≥ 0; (15)

that is,𝐻𝜉(𝐴) ≥ 0.
Therefore, we conclude that𝐻𝜉(𝐴) ≥ 0 for all 0 < 𝜉 < 1.

Case 2 (1 < 𝜉 < ∞). The proof is on the same lines as in Case1. (Note that inequality in (14) will get reversed for 1 < 𝜉 <∞.)

Property (6). Now, we prove that𝐻𝜉(𝐴) is a concave function
of 𝐴 ∈ Δ 𝑛.
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Differentiating (8) twice with respect to 𝑎𝑖, we get
𝜕2𝐻𝜉 (𝐴)𝜕𝑎2𝑖 = 𝜉𝜉−1 − 𝜉 ((𝜉 − 1)∑𝑛𝑖=1 (𝑎𝜉𝑖 )∑𝑛𝑖=1 (𝑎𝜉−2𝑖 ) (∑𝑛𝑖=1 𝑎𝜉𝑖 + 1) − 𝜉 (∑𝑛𝑖=1 𝑎𝜉−1𝑖 )2

(∑𝑛𝑖=1 𝑎𝜉𝑖 )2 ) . (16)

Now, for 0 < 𝜉 < 1,
(𝜉 − 1) 𝑛∑

𝑖=1

(𝑎𝜉𝑖 ) 𝑛∑
𝑖=1

(𝑎𝜉−2𝑖 )( 𝑛∑
𝑖=1

𝑎𝜉𝑖 + 1) − 𝜉( 𝑛∑
𝑖=1

𝑎𝜉−1𝑖 )2
< 0,𝜉𝜉−1 − 𝜉 > 0.

(17)

This implies that𝐻𝜉(𝐴) is a concave function of 𝐴 ∈ Δ 𝑛.
3. A Measure of Length

Let a finite set of 𝑛 input symbols 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be
encoded using alphabet of𝐷 symbols; then it has been shown
by Feinstein [8] that there is a uniquely decipherable code
with lengths 𝑁1, 𝑁2, . . . , 𝑁𝑛 if and only if Kraft’s inequality
holds; that is,

𝑛∑
𝑖=1

𝐷−𝑁𝑖 ≤ 1, (18)

where𝐷 is the size of code alphabet. Furthermore, if

𝐿 = 𝑛∑
𝑖=1

𝑁𝑖𝑎𝑖 (19)

is the average codeword length, then for a code satisfying (18),
the inequality

𝐿 ≥ 𝐻 (𝐴) (20)

is also fulfilled and the equality 𝐿 = 𝐻(𝐴) holds if and only if
𝑁𝑖 = −log𝐷 (𝑎𝑖) ; ∀𝑖 = 1, 2, . . . , 𝑛,

𝑛∑
𝑖=1

𝐷−𝑁𝑖 = 1. (21)

If 𝐿 < 𝐻(𝐴), then by being suitably encoded into words of
long sequences, the average length can be made arbitrarily
close to 𝐻(𝐴) (see Feinstein [8]). This is Shannon’s noiseless
coding theorem. By considering Rényi’s entropy [2], a coding
theorem analogous to the above noiseless coding theoremhas
been established by Campbell [9] and the authors obtained
bounds for it in terms of𝐻𝑅𝑒(𝐴; 𝜉).

Kieffer [10] defined class rules and showed𝐻𝑅𝑒(𝐴; 𝜉) is the
best decision rule for deciding which of the two sources can
be coded with expected cost of sequence of length 𝑁 when𝑁 → ∞, where the cost of encoding a sequence is assumed

to be a function of length only. Further, in Jelinek [11], it is
shown that coding with respect to Campbell’s mean length
is useful in minimizing the problem of buffer overflow which
occurs when the source symbol is produced at a fixed rate and
the code words are stored temporarily in a finite buffer.

There are many different codes whose lengths satisfy
the constraints (18). To compare different codes and pick
out an optimum code it is customary to examine the mean
length, ∑𝑛𝑖=1𝑁𝑖𝑎𝑖, and to minimize this quantity. This is a
good procedure if the cost of using a sequence of length𝑁𝑖 is
directly proportional to𝑁𝑖. However, there may be occasions
when the cost is more nearly an exponential function of 𝑁𝑖.
This could be the case, for example, if the cost of encoding and
decoding equipment was an important factor. Thus, in some
circumstances, it might bemore appropriate to choose a code
which minimizes the quantity

𝐶 = [[𝜉 log𝐷(
𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖((𝜉−1)/𝜉))

+ ( 𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖(𝜉−1)/𝜉)𝜉 − 1]] ; 𝜉 > 0 ( ̸= 1) ,
(22)

where 𝜉 is a parameter related to the cost. For reasons which
will become evident later we prefer to minimize a monotonic
function of 𝐶. Clearly, this will minimize 𝐶.

In order to make the result of this paper more directly
comparable with the usual coding theorem we introduce a
quantity which resembles the mean length. Let a code length
of order 𝜉 be defined by

𝐿𝜉 (𝐴) = 1𝜉−1 − 𝜉 [[𝜉 log𝐷(
𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖((𝜉−1)/𝜉))

+ ( 𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖(𝜉−1)/𝜉)𝜉 − 1]] , 𝜉 > 0 ( ̸= 1) .
(23)

Remark 2. If 𝜉 = 1, then (23) becomes the well-known result
studied by Shannon.

Remark 3. If all 𝑁𝑖 are the same, say, 𝑁𝑖 = 𝑁, then (23)
becomes

𝐿𝜉 (𝑃) = 1𝜉−1 − 𝜉 [𝑁 (1 − 𝜉) + 1 − 𝐷𝑁(1−𝜉)] ;
𝜉 > 0 ( ̸= 1) . (24)

This is reasonable property for any measure of length to
possess.
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Table 1: 𝜉 > 0( ̸= 1) (taking 𝜉 = 0.5). Relation between the entropy𝐻𝜉(𝐴) and the average code word length 𝐿𝜉(𝐴).𝑁𝑖 denote the lengths of
Huffman code words, 𝜂 = 𝐻𝜉(𝐴)/𝐿𝜉(𝐴) is the efficiency code, and ] = 1 − 𝜂 is the redundancy of the code.

Relation between𝐻𝜉(𝐴) and 𝐿𝜉(𝐴)
Length of Huffman
code words (𝑁𝑖) Huffman code words 𝑎𝑖 𝜉 𝐻𝜉(𝐴) 𝐿𝜉(𝐴) Efficiency code

𝜂 = 𝐻𝜉(𝐴)𝐿𝜉(𝐴)
Redundancy code

] = 1 − 𝜂
2 00 0.3

0.5 1.7228 1.8707 0.9209 0.0791

2 10 .25
2 11 0.2
3 011 0.1
4 0100 0.1
4 0101 .05

In the following theorem,we give a lower bound for𝐿𝜉(𝐴)
in terms of𝐻𝜉(𝐴).
Theorem 4. If𝑁1, 𝑁2, . . . , 𝑁𝑛, denote the length of a uniquely
decipherable code satisfying (18); then

𝐿𝜉 (𝐴) ≥ 𝐻𝜉 (𝐴) . (25)
Proof. By Hölder’s inequality,

[ 𝑛∑
𝑖=1

𝑥𝑝𝑖 ]
1/𝑝 [ 𝑛∑
𝑖=1

𝑦𝑞𝑖 ]
1/𝑞 ≤ 𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖, (26)

for all 𝑥𝑖, 𝑦𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛, and 1/𝑝 + 1/𝑞 = 1; 𝑝 < 1( ̸=0); 𝑞 < 0; or 𝑞 < 1( ̸= 0); 𝑝 < 0; equality holds if and only
if, for some 𝑐, 𝑥𝑝𝑖 = 𝑐𝑦𝑞𝑖 . Note that the direction of Hölder’s
inequality is reverse of the usual one for 𝑝 < 1. (Beckenbach
and Bellman [12], see p. 19). Making the substitutions, 𝑝 =(𝜉 − 1)/𝜉; 𝑞 = 1 − 𝜉; 𝑥𝑖 = 𝑎𝜉/(𝜉−1)𝑖 𝐷−𝑁𝑖 ; 𝑦𝑖 = 𝑎𝜉/(1−𝜉)𝑖 , in (26)
and simplifying using (18). The following cases arise.

Case 1 (when 𝜉 > 1)
[ 𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖((𝜉−1)/𝜉)] ≤ [ 𝑛∑
𝑖=1

𝑎𝜉𝑖 ]
1/𝜉 . (27)

From (27), we get

𝜉 log𝐷( 𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖((𝜉−1)/𝜉)) + ( 𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖((𝜉−1)/𝜉))𝜉

− 1 ≤ log𝐷( 𝑛∑
𝑖=1

𝑎𝜉𝑖 ) + ( 𝑛∑
𝑖=1

𝑎𝜉𝑖 ) − 1.
(28)

Also, 𝜉−1 − 𝜉 < 0 for 𝜉 > 1. (29)

Thus, from (28) and (29), we may conclude that 𝐻𝜉(𝐴) ≤𝐿𝜉(𝐴).
Case 2 (when 0 < 𝜉 < 1)

[ 𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖((𝜉−1)/𝜉)] ≥ [ 𝑛∑
𝑖=1

𝑎𝜉𝑖 ]
1/𝜉 . (30)

From (30), we get

𝜉 log𝐷( 𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖((𝜉−1)/𝜉)) + ( 𝑛∑
𝑖=1

𝑎𝑖𝐷−𝑁𝑖((𝜉−1)/𝜉))𝜉

− 1 ≥ log𝐷( 𝑛∑
𝑖=1

𝑎𝜉𝑖 ) + ( 𝑛∑
𝑖=1

𝑎𝜉𝑖 ) − 1.
(31)

Also,

𝜉−1 − 𝜉 > 0 for 0 < 𝜉 < 1. (32)

From (31) and (32), we get

𝐻𝜉 (𝐴) ≤ 𝐿𝜉 (𝐴) . (33)

Case 3. It is clear that the equality in (25) is valid if𝑁𝑖 = −log𝐷(𝑎𝜉𝑖 /∑𝑛𝑖=1 𝑎𝜉𝑖 ). The necessity of this condition for
equality in (25) follows from the condition for equality in
Hölder’s inequality: in the case of reverse Hölder’s equality
given above, equality holds if and only if for some 𝑐,

𝑥𝑝𝑖 = 𝑐𝑦𝑞𝑖 , 𝑖 = 1, 2, . . . , 𝑛. (34)

Plugging this condition into our situation, with the 𝑥𝑖, 𝑦𝑖 and𝑝, 𝑞 as specified, and using the fact that ∑𝑛𝑖=1 𝑎𝑖 = 1, the
necessity is true one. This proves the theorem.

Remark 5. Huffman [13] introduced a measure for designing
a variable length source code which achieves performance
close to Shannon’s entropy bound. For individual code word
lengths𝑁𝑖, the average length 𝐿 = ∑𝑛𝑖=1 𝑎𝑖𝑁𝑖 of Huffman code
is always within one unit of Shannon’s measure of entropy;
that is,𝐻(𝐴) ≤ 𝐿 < 𝐻(𝐴)+1, where𝐻(𝐴) = −∑𝑛𝑖=1 𝑎𝑖 log2(𝑎𝑖)
is the Shannon’s measure of entropy. Huffman coding scheme
can also be applied to code word length 𝐿𝜉(𝐴) for code word
length𝑁𝑖; the average length 𝐿𝜉(𝐴) of Huffman code satisfies

𝐿𝜉 (𝐴) ≥ 𝐻𝜉 (𝐴) . (35)

In Table 1, we have developed the relation between the
entropy𝐻𝜉(𝐴) and average code word length 𝐿𝜉(𝐴).
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Table 2: Computed values 𝐿𝜉(𝐴) with respect to 𝜉 (𝜉 < 1).
𝜉 .1 .2 .3 .4 .5 .6 .7 .8 .9𝐿𝜉(𝐴) 1.25 1.67 1.78 1.82 1.87 1.92 1.96 1.99 2.01

Table 3: Computed values 𝐿𝜉(𝐴) with respect to 𝜉 (𝜉 > 1).
𝜉 10 20 30 40 50 60 70 80 90 100𝐿𝜉(𝐴) 2.1618 2.2037 2.2199 2.2285 2.2337 2.2373 2.2399 2.2418 2.2433 2.2446
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Figure 1: Monotonic behaviour of mean code word length 𝐿𝜉(𝐴)
(𝜉 < 1).
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Figure 2: Monotonic behaviour of mean code word length 𝐿𝜉(𝐴)
(𝜉 > 1).

From the Table 1, we can observe that average code word
length 𝐿𝜉(𝐴) exceeds the entropy𝐻𝜉(𝐴).
4. Monotonic Behaviour of Mean Code
Word Length

In this section, we study the monotonic behaviour of mean
code word length (23) with respect to parameter 𝜉. Let𝑃 = (0.3, 0.25, 0.2, 0.1, 0.1, 0.05) be the set of probabilities.
For different values of 𝜉, the calculated values of 𝐿𝜉(𝐴) are
displayed in Tables 2 and 3.

Graphical representation of monotonic behaviour of𝐿𝜉(𝐴) for (𝜉 < 1) is shown in Figure 1.
Graphical representation of monotonic behaviour of𝐿𝜉(𝐴) for (𝜉 > 1) is shown in Figure 2.
Figures 1 and 2 explain themonotonic behaviour of 𝐿𝜉(𝐴)

for 𝜉 < 1 and 𝜉 > 1, respectively. From the figures, it is clear

that 𝐿𝜉(𝐴) is monotonically increasing for 𝜉 < 1 as well as𝜉 > 1.
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Let 𝐺 be a graph of order V and size 𝑒. An edge-magic labeling of 𝐺 is a bijection 𝑓 : 𝑉(𝐺) ∪ 𝐸(𝐺) → {1, 2, 3, . . . , V + 𝑒} such that
𝑓(𝑥)+𝑓(𝑥𝑦)+𝑓(𝑦) is a constant for every edge 𝑥𝑦 ∈ 𝐸(𝐺). An edge-magic labeling 𝑓 of𝐺with𝑓(𝑉(𝐺)) = {1, 2, 3, . . . , V} is called a
super edge-magic labeling. Furthermore, the edge-magic deficiency of a graph 𝐺, 𝜇(𝐺), is defined as the smallest nonnegative integer
𝑛 such that 𝐺∪ 𝑛𝐾1 has an edge-magic labeling. Similarly, the super edge-magic deficiency of a graph 𝐺, 𝜇𝑠(𝐺), is either the smallest
nonnegative integer 𝑛 such that 𝐺 ∪ 𝑛𝐾1 has a super edge-magic labeling or +∞ if there exists no such integer 𝑛. In this paper, we
investigate the (super) edge-magic deficiency of chain graphs. Referring to these, we propose some open problems.

1. Introduction

Let 𝐺 be a finite and simple graph, where 𝑉(𝐺) and 𝐸(𝐺)
are its vertex set and edge set, respectively. Let V = |𝑉(𝐺)|
and 𝑒 = |𝐸(𝐺)| be the number of the vertices and edges,
respectively. In [1], Kotzig and Rosa introduced the concepts
of edge-magic labeling and edge-magic graph as follows: an
edge-magic labeling of a graph 𝐺 is a bijection 𝑓 : 𝑉(𝐺) ∪
𝐸(𝐺) → {1, 2, 3, . . . , V + 𝑒} such that 𝑓(𝑥) + 𝑓(𝑥𝑦) + 𝑓(𝑦) is
a constant, called the magic constant of 𝑓, for every edge 𝑥𝑦
of 𝐺. A graph that admits an edge-magic labeling is called an
edge-magic graph. A super edge-magic labeling of a graph 𝐺
is an edge-magic labeling 𝑓 of 𝐺 with the extra property that
𝑓(𝑉(𝐺)) = {1, 2, 3, . . . , 𝑒}. A super edge-magic graph is a graph
that admits a super edge-magic labeling.These concepts were
introduced by Enomoto et al. [2] in 1998.

In [1], Kotzig and Rosa introduced the concept of edge-
magic deficiency of a graph. They define the edge-magic
deficiency of a graph 𝐺, 𝜇(𝐺), as the smallest nonnegative
integer 𝑛 such that𝐺∪𝑛𝐾1 is an edge-magic graph.Motivated
by Kotzig and Rosa’s concept of edge-magic deficiency,
Figueroa-Centeno et al. [3] introduced the concept of super
edge-magic deficiency of a graph. The super edge-magic
deficiency of a graph 𝐺, 𝜇𝑠(𝐺), is defined as the smallest

nonnegative integer 𝑛 such that𝐺∪𝑛𝐾1 is a super edge-magic
graph or +∞ if there exists no such 𝑛.

A chain graph is a graph with blocks 𝐵1, 𝐵2, . . . , 𝐵𝑘 such
that, for every 𝑖, 𝐵𝑖 and 𝐵𝑖+1 have a common vertex in
such a way that the block-cut-vertex graph is a path. We
will denote the chain graph with 𝑘 blocks 𝐵1, 𝐵2, . . . , 𝐵𝑘 by𝐶[𝐵1, 𝐵2, . . . , 𝐵𝑘]. If 𝐵1 = ⋅ ⋅ ⋅ = 𝐵𝑡 = 𝐵, we will write
𝐶[𝐵1, 𝐵2, . . . , 𝐵𝑘] as𝐶[𝐵(𝑡), 𝐵𝑡+1, . . . , 𝐵𝑘]. If, for every 𝑖,𝐵𝑖 = 𝐻
for a given graph 𝐻, then 𝐶[𝐵1, 𝐵2, . . . , 𝐵𝑘] is denoted by
𝑘𝐻-path. Suppose that 𝑐1, 𝑐2, . . . , 𝑐𝑘−1 are the consecutive cut
vertices of 𝐶[𝐵1, 𝐵2, . . . , 𝐵𝑘]. The string of 𝐶[𝐵1, 𝐵2, . . . , 𝐵𝑘]
is (𝑘 − 2)-tuple (𝑑1, 𝑑2, . . . , 𝑑𝑘−2), where 𝑑𝑖 is the distance
between 𝑐𝑖 and 𝑐𝑖+1, 1 ≤ 𝑖 ≤ 𝑘 − 2. We will write
(𝑑1, 𝑑2, . . . , 𝑑𝑘−2) as (𝑑(𝑡), 𝑑𝑡+1, . . . , 𝑑𝑘−2), if 𝑑1 = ⋅ ⋅ ⋅ = 𝑑𝑡 = 𝑑.

For any integer 𝑚 ≥ 2, let 𝐿𝑚 = 𝑃𝑚 × 𝑃2. Let TL𝑚 and
DL𝑚 be the graphs obtained from the ladder 𝐿𝑚 by adding
a single diagonal and two diagonals in each rectangle of 𝐿𝑚,
respectively. Thus, |𝑉(TL𝑚)| = |𝑉(DL𝑚)| = 2𝑚, |𝐸(TL𝑚)| =4𝑚 − 3, and |𝐸(DL𝑚)| = 5𝑚 − 4. TL𝑚 and DL𝑚 are called
triangle ladder and diagonal ladder, respectively.

Recently, the author studied the (super) edge-magic
deficiency of 𝑘DL𝑚-path, 𝐶[𝐾(𝑘)4 ,DL𝑚, 𝐾(𝑛)4 ], and 𝑘𝐶4-path
with some strings. Other results on the (super) edge-magic
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deficiency of chain graphs can be seen in [4]. The latest
developments in this area can be found in the survey of graph
labelings by Gallian [5]. In this paper, we further investigate
the (super) edge-magic deficiency of chain graphs whose
blocks are combination of TL𝑚 and DL𝑚 and 𝐾4 and TL𝑚,
as well as the combination of 𝐶4 and 𝐿𝑚. Additionally, we
propose some open problems related to the (super) edge-
magic deficiency of these graphs. To present our results, we
use the following lemmas.

Lemma 1 (see [6]). A graph 𝐺 is a super edge-magic graph
if and only if there exists a bijective function 𝑓 : 𝑉(𝐺) →
{1, 2, . . . , V} such that the set 𝑆 = {𝑓(𝑥) + 𝑓(𝑦) : 𝑥𝑦 ∈ 𝐸(𝐺)}
consists of 𝑒 consecutive integers.
Lemma 2 (see [2]). If 𝐺 is a super edge-magic graph, then 𝑒 ≤
2V − 3.

2. Main Results

For 𝑘 ≥ 3, let 𝐺 = 𝐶[𝐵1, 𝐵2, . . . , 𝐵𝑘], where 𝐵𝑗 = TL𝑚 when 𝑗
is odd and 𝐵𝑗 = DL𝑚 when 𝑗 is even. Thus 𝐺 is a chain graph
with |𝑉(𝐺)| = (2𝑚−1)𝑘+1 and |𝐸(𝐺)| = (1/2)(𝑘+1)(4𝑚−3)+
(1/2)(𝑘−1)(5𝑚−4)when 𝑘 is odd, or |𝐸(𝐺)| = (𝑘/2)(4𝑚−3)+
(𝑘/2)(5𝑚− 4) when 𝑘 is even. By Lemma 2, it can be checked
that 𝐺 is not super edge-magic when 𝑚 ≥ 3 and 𝑘 is even
and when𝑚 ≥ 4 and 𝑘 is odd. As we can see later, when𝑚 =
3 and 𝑘 is odd, 𝐺 is super edge-magic. Next, we investigate
the super edge-magic deficiency of𝐺. Our first result gives its
lower bound.This result is a direct consequence of Lemma 2,
so we state the result without proof.

Lemma 3. Let 𝑘 ≥ 3 be an integer. For any integer𝑚 ≥ 3,

𝜇𝑠 (𝐺)

≥
{{{{
{{{{
{

⌊14𝑘 (𝑚 − 3)⌋ + 1, if 𝑘 is even,

⌊14 (𝑘 (𝑚 − 3) − (𝑚 − 1))⌋ + 1, if 𝑘 is odd.

(1)

Notice that the lower bound presented in Lemma 3 is
sharp. We found that when𝑚 is odd, the chain graph 𝐺 with
particular string has the super edge-magic deficiency equal
to its lower bound as we state in Theorem 4. First, we define
vertex and edge sets of 𝐵𝑗 as follows.
𝑉(𝐵𝑗) = {𝑢𝑖𝑗, V𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑚}, for 1 ≤ 𝑗 ≤ 𝑘. 𝐸(𝐵𝑗) =

{𝑢𝑖𝑗𝑢𝑖+1𝑗 , V𝑖𝑗V𝑖+1𝑗 : 1 ≤ 𝑖 ≤ 𝑚 − 1} ∪ {𝑒𝑖𝑗: where 𝑒𝑖𝑗 is either
𝑢𝑖𝑗V𝑖+1𝑗 or V𝑖𝑗𝑢𝑖+1𝑗 , 1 ≤ 𝑖 ≤ 𝑚−1}∪{𝑢𝑖𝑗V𝑖𝑗: 1 ≤ 𝑖 ≤ 𝑚}, for 1 ≤ 𝑗 ≤
𝑘, when 𝑗 is odd, and 𝐸(𝐵𝑗) = {𝑢𝑖𝑗𝑢𝑖+1𝑗 , V𝑖𝑗V𝑖+1𝑗 , 𝑢𝑖𝑗V𝑖+1𝑗 , V𝑖𝑗𝑢𝑖+1𝑗 :
1 ≤ 𝑖 ≤ 𝑚 − 1} ∪ {𝑢𝑖𝑗V𝑖𝑗 : 1 ≤ 𝑖 ≤ 𝑚}, for 1 ≤ 𝑗 ≤ 𝑘, when 𝑗 is
even.

Theorem4. Let 𝑘 ≥ 3 be an integer and𝐺 = 𝐶[𝐵1, 𝐵2, . . . , 𝐵𝑘]
with string (𝑚 − 1, 𝑑1, 𝑚 − 1, 𝑑2, 𝑚 − 1, . . . , 𝑑(1/2)(𝑘−3), 𝑚 − 1)
when 𝑘 is odd or (𝑚 − 1, 𝑑1, 𝑚 − 1, 𝑑2, . . . , 𝑚 − 1, 𝑑(1/2)(𝑘−2))

when 𝑘 is even, where 𝑑1, 𝑑2, . . . , 𝑑⌊(1/2)(𝑘−2)⌋ ∈ {𝑚− 1,𝑚}. For
any odd integer𝑚 ≥ 3,

𝜇𝑠 (𝐺) =
{{{
{{{
{

1
4𝑘 (𝑚 − 3) + 1, if 𝑘 is even,
1
4 (𝑘 − 1) (𝑚 − 3) , if 𝑘 is odd.

(2)

Proof. First, we define 𝐺 as a graph with vertex set 𝑉(𝐺) =
⋃𝑘𝑗=1 𝑉(𝐵𝑗), where 𝑢𝑚𝑗 = V1𝑗+1, 1 ≤ 𝑗 ≤ 𝑘 − 1, and edge set
𝐸(𝐺) = ⋃𝑘𝑗=1 𝐸(𝐵𝑗). Under this definition, 𝑢𝑚𝑗 = V1𝑗+1, 1 ≤ 𝑗 ≤
𝑘 − 1, are the cut vertices of 𝐺.

Next, for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑘, define the labeling
𝑓 : 𝑉(𝐺) ∪ 𝛼𝐾1 → {1, 2, 3, . . . , (2𝑚 − 1)𝑘 + 1 + 𝛼}, where
𝛼 = (1/4)𝑘(𝑚−3)+1when 𝑘 is even or 𝛼 = (1/4)(𝑘−1)(𝑚−3)
when 𝑘 is odd, as follows:
𝑓 (𝑥)

=

{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{
{

1
4 (𝑗 − 1) (9𝑚 − 7) + 2𝑖 − 1, if 𝑥 = 𝑢𝑖𝑗, 𝑗 is odd,
1
4 (𝑗 − 1) (9𝑚 − 7) + 2𝑖, if 𝑥 = V𝑖𝑗, 𝑗 is odd,

𝛽 + 12 (5𝑖 − 3) , if 𝑥 = 𝑢𝑖𝑗, 𝑖 is odd, 𝑗 is even,

𝛽 + 12 (5𝑖 − 4) , if 𝑥 = 𝑢𝑖𝑗, 𝑖 is even, 𝑗 is even,

𝛽 + 12 (5𝑖 − 7) , if 𝑥 = V𝑖𝑗, 𝑖 is odd, 𝑗 is even,

𝛽 + 12 (5𝑖 − 6) , if 𝑥 = V𝑖𝑗, 𝑖 is even, 𝑗 is even,

(3)

where 𝛽 = (1/4)(𝑗 − 2)(9𝑚 − 7) + 2𝑚.
Under the vertex labeling 𝑓, it can be checked that no

labels are repeated, 𝑓(𝑢𝑚𝑗 ) = 𝑓(V1𝑗+1), 1 ≤ 𝑗 ≤ 𝑘 − 1,
{𝑓(𝑥) + 𝑓(𝑦) : 𝑥𝑦 ∈ 𝐸(𝐺)} is a set of |𝐸(𝐺)| consecutive
integers, and the largest vertex label used is (1/4)(𝑘−2)(9𝑚−
7)+(1/2)(9𝑚−3)when 𝑘 is even or (1/4)(𝑘−1)(9𝑚−7)+2𝑚
when 𝑘 is odd. Also, it can be checked that 𝑓(𝑢𝑖𝑗) + 𝑓(V𝑖+1𝑗 ) =
𝑓(V𝑖𝑗) + 𝑓(𝑢𝑖+1𝑗 ) when 𝑗 is odd.

Next, label the isolated vertices in the following way.

Case 𝑘 Is Odd. In this case, we denote the isolated verticeswith
{ 𝑧𝑙2𝑗−1 | 1 ≤ 𝑙 ≤ (1/2)(𝑚 − 3), 1 ≤ 𝑗 ≤ (1/2)(𝑘 − 1)} and set
𝑓(𝑧𝑙2𝑗−1) = 𝑓(V𝑚2𝑗−1) + 5𝑙.
Case 𝑘 Is Even. In this case, we denote the isolated vertices
with {𝑧𝑙2𝑗−1 | 1 ≤ 𝑙 ≤ (1/2)(𝑚 − 3), 1 ≤ 𝑗 ≤ 𝑘/2} ∪ {𝑧0} and set
𝑓(𝑧𝑙2𝑗−1) = 𝑓(V𝑚2𝑗−1) + 5𝑙 and 𝑓(𝑧0) = 𝑓(V𝑚𝑘 ) + 1.

By Lemma 1, 𝑓 can be extended to a super edge-magic
labeling of𝐺∪𝛼𝐾1 with themagic constant (𝑘/4)(27𝑚−21)+5
when 𝑘 is even or (1/4)(𝑘 − 1)(27𝑚 − 21) + 6𝑚 when 𝑘 is
odd. Based on these facts and Lemma 3, we have the desired
result.

An example of the labeling defined in the proof of
Theorem 4 is shown in Figure 1(a).

Notice that when 𝑚 = 3 and 𝑘 is odd, 𝜇𝑠(𝐺) = 0.
In other words, the chain graph 𝐺 with string (2, 𝑑1, 2, 𝑑2,2, . . . , 𝑑(1/2)(𝑘−3), 2), where 𝑑𝑖 ∈ {2, 3}, is super edge-magic
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Figure 1: (a) Vertex labeling of 𝐶[TL5,DL5,TL5,DL5,TL5] ∪ 2𝐾1 with string (4, 5, 4). (b) Vertex and edge labelings of 𝑐[𝐶(3+2)4 , 𝐿4, 𝐶(2)4 ] with
string (2, 1(2), 2, 4, 2).

when 𝑚 = 3 and 𝑘 is odd. Based on this fact and previous
results, we propose the following open problems.

Open Problem 1. Let 𝑘 ≥ 3 be an integer. For𝑚 = 2, decide if
there exists a super edge-magic labeling of𝐺. Further, for any
even integer 𝑚 ≥ 2, find the super edge-magic deficiency of
𝐺.

Next, we investigate the super edge-magic deficiency
of the chain graph 𝐻 = 𝐶[𝐾(𝑝)4 ,TL𝑚, 𝐾(𝑞)4 ] with string
(1(𝑝−1), 𝑑, 1(𝑞−1)), where 𝑑 ∈ {𝑚 − 1,𝑚}.𝐻 is a graph of order
3(𝑝 + 𝑞) + 2𝑚 and size 6(𝑝 + 𝑞) + 4𝑚 − 3. We define the
vertex and edge sets of 𝐻 as follows: 𝑉(𝐻) = {𝑎𝑖, 𝑏𝑖: 1 ≤ 𝑖 ≤
𝑝} ∪ {𝑐𝑖: 1 ≤ 𝑖 ≤ 𝑝 + 1} ∪ {𝑢𝑗, V𝑗: 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑥𝑡, 𝑦𝑡: 1 ≤
𝑡 ≤ 𝑞} ∪ {𝑧𝑡: 1 ≤ 𝑡 ≤ 𝑞 + 1}, where 𝑐𝑝+1 = 𝑢1 and
V𝑚 = 𝑧1, and 𝐸(𝐻) = {𝑎𝑖𝑏𝑖, 𝑎𝑖𝑐𝑖, 𝑎𝑖𝑐𝑖+1, 𝑏𝑖𝑐𝑖, 𝑏𝑖𝑐𝑖+1, 𝑐𝑖𝑐𝑖+1: 1 ≤𝑖 ≤ 𝑝} ∪ {𝑢𝑗V𝑗 | 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑢𝑗𝑢𝑗+1, V𝑗V𝑗+1: 1 ≤ 𝑗 ≤𝑚 − 1} ∪ {𝑒𝑗: 𝑒𝑗 is either 𝑢𝑗V𝑗+1 or V𝑗𝑢𝑗+1, 1 ≤ 𝑗 ≤ 𝑚 − 1} ∪{𝑥𝑡𝑦𝑡, 𝑥𝑡𝑧𝑡, 𝑥𝑡𝑧𝑡+1, 𝑦𝑡𝑧𝑡, 𝑦𝑡𝑧𝑡+1, 𝑧𝑡𝑧𝑡+1: 1 ≤ 𝑡 ≤ 𝑞}. Hence, the
cut vertices of 𝐻 are 𝑐𝑖, 2 ≤ 𝑖 ≤ 𝑝 + 1, and 𝑧𝑡, 1 ≤ 𝑡 ≤ 𝑞.
Notice that 𝐻 has string (1(𝑝−1), 𝑚 − 1, 1(𝑞−1)), if at least one
of 𝑒𝑗 is 𝑢𝑗V𝑗+1, and its string is (1(𝑝−1), 𝑚, 1(𝑞−1)), if 𝑒𝑗 = V𝑗𝑢𝑗+𝑖
for every 1 ≤ 𝑗 ≤ 𝑚 − 1.
Theorem 5. For any integers 𝑝, 𝑞 ≥ 1 and𝑚 ≥ 2, 𝜇𝑠(𝐻) = 0.

Proof. Define a bijective function 𝑔 : 𝑉(𝐻) →
{1, 2, 3, . . . , 3(𝑝 + 𝑞) + 2𝑚} as follows:
𝑔 (𝑥)

=

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

3𝑖 − 2, if 𝑥 = 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑝,
3𝑖, if 𝑥 = 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑝,
3𝑖 − 1, if 𝑥 = 𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑝 + 1,
3𝑝 + 2𝑗, if 𝑥 = 𝑢𝑗, 1 ≤ 𝑗 ≤ 𝑚,
3𝑝 + 2𝑗 − 1, if 𝑥 = V𝑗, 1 ≤ 𝑗 ≤ 𝑚,
3𝑝 + 2𝑚 + 3𝑡 − 2, if 𝑥 = 𝑥𝑡, 1 ≤ 𝑡 ≤ 𝑞,
3𝑝 + 2𝑚 + 3𝑡, if 𝑥 = 𝑦𝑡, 1 ≤ 𝑡 ≤ 𝑞,
3𝑝 + 2𝑚 + 3𝑡 − 4, if 𝑥 = 𝑧𝑡, 1 ≤ 𝑡 ≤ 𝑞 + 1.

(4)

Under the labeling 𝑔, it can be checked that 𝑔(𝑐𝑝+1) =𝑔(𝑢1) and 𝑔(V𝑚) = 𝑔(𝑧1). Also, it can be checked that 𝑔(𝑢𝑗) +𝑔(V𝑗+1) = 𝑔(V𝑗) + 𝑔(𝑢𝑗+1), 1 ≤ 𝑗 ≤ 𝑚 − 1, and {𝑔(𝑥) + 𝑔(𝑦) |𝑥𝑦 ∈ 𝐸(𝐻)} = {3, 4, 5, . . . , 6(𝑝 + 𝑞) + 4𝑚 − 1}. By Lemma 1, 𝑔
can be extended to a super edge-magic labeling of𝐻with the
magic constant 9(𝑝 + 𝑞) + 6𝑚. Hence, 𝜇𝑠(𝐻) = 0.
Open Problem 2. For any integers𝑝, 𝑞 ≥ 1 and𝑚 ≥ 2, find the
super edge-magic deficiency of𝐶[𝐾(𝑝)4 ,TL𝑚, 𝐾(𝑞)4 ]with string
(1(𝑝−1), 𝑑, 1(𝑞−1)), where 𝑑 ∈ {1, 2, 3, . . . , 𝑚 − 2}.
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Next, we study the edge-magic deficiency of ladder 𝐿𝑚
and chain graphs whose blocks are combination of 𝐶4 and𝐿𝑚 with some strings. In [6], Figueroa-Centeno et al. proved
that the ladder 𝐿𝑚 is super edge-magic for any odd 𝑚 and
suspected that 𝐿𝑚 is super edge-magic for any even 𝑚 > 2.
Here, we can prove that 𝐿𝑚 is edge-magic for any 𝑚 ≥ 2
by showing its edge-magic deficiency is zero. The result is
presented inTheorem 6.

Theorem 6. For any integer𝑚 ≥ 2, 𝜇(𝐿𝑚) = 0.
Proof. Let 𝑉(𝐿𝑚) = {𝑢𝑖, V𝑖 : 1 ≤ 𝑖 ≤ 𝑚} and 𝐸(𝐺) =
{𝑢𝑖𝑢𝑖+1, V𝑖V𝑖+1: 1 ≤ 𝑖 ≤ 𝑚 − 1} ∪ {𝑢𝑖V𝑖 : 1 ≤ 𝑖 ≤ 𝑚} be the
vertex set and edge set, respectively, of 𝐿𝑚. It is easy to verify
that the labeling ℎ : 𝑉(𝐿𝑚)∪𝐸(𝐿𝑚) → {1, 2, 3, . . . , 5𝑚−2} is a
bijection and, for every𝑥𝑦 ∈ 𝐸(𝐿𝑚), ℎ(𝑥)+ℎ(𝑥𝑦)+ℎ(𝑦) = 6𝑚.

ℎ (𝑥) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, if 𝑥 = 𝑢𝑖, 𝑖 is odd,
3𝑚 + 12 (𝑖 − 2) , if 𝑥 = 𝑢𝑖, 𝑖 is even,

𝑚 + 12 (𝑖 + 1) , if 𝑥 = V𝑖, 𝑖 is odd,
𝑖, if 𝑥 = V𝑖, 𝑖 is even,
3𝑚 − 12 (3𝑖 − 1) , if 𝑥 = 𝑢𝑖𝑢𝑖+1, 𝑖 is odd,

3𝑚 − 32 𝑖, if 𝑥 = 𝑢𝑖𝑢𝑖+1, 𝑖 is even,

5𝑚 − 32 (𝑖 + 1) , if 𝑥 = V𝑖V𝑖+1, 𝑖 is odd,

5𝑚 − 12 (3𝑖 + 2) , if 𝑥 = V𝑖V𝑖+1, 𝑖 is even,

5𝑚 − 12 (3𝑖 + 1) , if 𝑥 = 𝑢𝑖V𝑖, 𝑖 is odd,

3𝑚 − 12 (3𝑖 − 2) , if 𝑥 = 𝑢𝑖V𝑖, 𝑖 is even.

(5)

Thus, 𝜇(𝐿𝑚) = 0 for every𝑚 ≥ 2.
Theorem 7. Let 𝑝 and 𝑞 ≥ 1 be integers.

(a) If 𝑚 ≥ 2 is an even integer and 𝐹1 = 𝐶[𝐶(𝑝)4 , 𝐿𝑚, 𝑐(𝑞)4 ]
with string (2(𝑝−1), 𝑚, 2(𝑞−1)), then 𝜇(𝐹1) = 0.

(b) If 𝑚 ≥ 3 is an odd integer and 𝐹2 = 𝐶[𝐶(𝑝)4 , 𝐿𝑚, 𝑐(𝑞)4 ]
with string (2(𝑝−1), 𝑚 − 1, 2(𝑞−1)), then 𝜇(𝐹2) = 0.

Proof. (a) First, we introduce a constant 𝜆 as follows: 𝜆 = 1, if
𝑚 is odd and 𝜆 = 2, if𝑚 is even. Next, we define 𝐹1 as a graph
with𝑉(𝐹1) = {𝑎𝑖, 𝑏𝑖: 1 ≤ 𝑖 ≤ 𝑝}∪{𝑐𝑖: 1 ≤ 𝑖 ≤ 𝑝+1}∪{𝑢𝑗, V𝑗: 1 ≤𝑗 ≤ 𝑚} ∪ {𝑥𝑡, 𝑦𝑡: 1 ≤ 𝑡 ≤ 𝑞} ∪ {𝑧𝑡: 1 ≤ 𝑡 ≤ 𝑞 + 1}, where𝑐𝑝+1 = V1 and 𝑢𝑚 = 𝑧1, and 𝐸(𝐻) = {𝑐𝑖𝑎𝑖, 𝑐𝑖𝑏𝑖, 𝑎𝑖𝑐𝑖+1, 𝑏𝑖𝑐𝑖+1: 1 ≤𝑖 ≤ 𝑝} ∪ {𝑢𝑗V𝑗 | 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑢𝑗𝑢𝑗+1, V𝑗V𝑗+1: 1 ≤ 𝑗 ≤𝑚− 1} ∪ {𝑧𝑡𝑥𝑡, 𝑧𝑡𝑦𝑡, 𝑥𝑡𝑧𝑡+1, 𝑦𝑡𝑧𝑡+1: 1 ≤ 𝑡 ≤ 𝑞}.The cut vertices
of 𝐹1 are 𝑐𝑖, 2 ≤ 𝑖 ≤ 𝑝 + 1, and 𝑧𝑡, 1 ≤ 𝑡 ≤ 𝑞.

Next, define a bijection 𝑓1 : 𝑉(𝐹1) ∪ 𝐸(𝐹1) → {1, 2, 3, . . . ,7(𝑝 + 𝑞) + 5𝑚 − 2} as follows:

𝑓1 (𝑥)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

4 (𝑝 + 𝑞) + 3𝑚 + 𝑖 − 1, if 𝑥 = 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑝,
𝑝 + 𝑞 + 𝑚 + 𝑖, if 𝑥 = 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑝,
𝑖, if 𝑥 = 𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑝 + 1,
5𝑝 + 4𝑞 + 3𝑚 + 12 (𝑗 − 1) , if 𝑥 = 𝑢𝑗, 𝑗 is odd,
𝑝 + 𝑗, if 𝑥 = 𝑢𝑗, 𝑗 is even,
𝑝 + 𝑗, if 𝑥 = V𝑗, 𝑗 is odd,
2𝑝 + 𝑞 + 𝑚 + 𝑗2 , if 𝑥 = V𝑗, 𝑗 is even,
5𝑝 + 4𝑞 + 𝛾1 + 𝑡, if 𝑥 = 𝑥𝑡, 1 ≤ 𝑡 ≤ 𝑞,
2𝑝 + 𝑞 + 𝛾2 + 𝑡, if 𝑥 = 𝑦𝑡, 1 ≤ 𝑡 ≤ 𝑞,
𝑝 + 𝑚 + 𝑡 − 1, if 𝑥 = 𝑧𝑡, 1 ≤ 𝑡 ≤ 𝑞 + 1,
4 (𝑝 + 𝑞) + 3𝑚 + 1 − 2𝑖, if 𝑥 = 𝑐𝑖𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑝,
7 (𝑝 + 𝑞) + 5𝑚 − 2𝑖, if 𝑥 = 𝑐𝑖𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑝,
4 (𝑝 + 𝑞) + 3𝑚 − 2𝑖, if 𝑥 = 𝑎𝑖𝑐𝑖+1, 1 ≤ 𝑖 ≤ 𝑝,
7 (𝑝 + 𝑞) + 5𝑚 − 1 − 2𝑖, if 𝑥 = 𝑏𝑖𝑐𝑖+1, 1 ≤ 𝑖 ≤ 𝑝,
2𝑝 + 4𝑞 + 3𝑚 − 12 (3𝑗 + 1) , if 𝑥 = 𝑢𝑗𝑢𝑗+1, 𝑗 is odd,
2𝑝 + 4𝑞 + 3𝑚 − 12 (3𝑗) , if 𝑥 = 𝑢𝑗𝑢𝑗+1, 𝑗 is even,
5𝑝 + 7𝑞 + 5𝑚 − 12 (3𝑗 + 1) , if 𝑥 = V𝑗V𝑗+1, 𝑗 is odd,
5𝑝 + 7𝑞 + 5𝑚 − 12 (3𝑗 + 2) , if 𝑥 = V𝑗V𝑗+1, 𝑗 is even,
2𝑝 + 4𝑞 + 3𝑚 − 12 (3𝑖 − 1) , if 𝑥 = 𝑢𝑗V𝑗, 𝑗 is odd,
5𝑝 + 7𝑞 + 5𝑚 − 32𝑗, if 𝑥 = 𝑢𝑗V𝑗, 𝑗 is even,
2𝑝 + 4𝑞 + 𝛾3 − 2𝑡 if 𝑥 = 𝑧𝑡𝑥𝑡, 1 ≤ 𝑡 ≤ 𝑞,
5𝑝 + 7𝑞 + 𝛾4 − 2𝑡, if 𝑥 = 𝑧𝑡𝑦𝑡, 1 ≤ 𝑡 ≤ 𝑞,
2𝑝 + 4𝑞 + 𝛾5 − 2𝑡, if 𝑥 = 𝑥𝑡𝑧𝑡+1, 1 ≤ 𝑡 ≤ 𝑞,
5𝑝 + 7𝑞 + 𝛾6 − 2𝑡, if 𝑥 = 𝑦𝑡𝑧𝑡+1, 1 ≤ 𝑡 ≤ 𝑞,

(6)

where 𝛾1 = (1/2)(𝜆 − 1)(7𝑚 − 2) − (1/2)(𝜆 − 2)(7𝑚 − 1), 𝛾2 =(1/2)(𝜆−1)(3𝑚)−(1/2)(𝜆−2)(3𝑚−1), 𝛾3 = (1/2)(𝜆−1)(3𝑚+4)−(1/2)(𝜆−2)(3𝑚+3), 𝛾4 = (1/2)(𝜆−1)(7𝑚+2)−(1/2)(𝜆−2)(7𝑚 + 3), 𝛾5 = (1/2)(𝜆 − 1)(3𝑚 + 2) − (1/2)(𝜆 − 2)(3𝑚 + 1),
and 𝛾6 = (1/2)(𝜆 − 1)(7𝑚) − (1/2)(𝜆 − 2)(7𝑚+ 1). It is easy to
verify that, for every edge 𝑥𝑦 ∈ 𝐸(𝐹1), 𝑓(𝑥) + 𝑓(𝑥𝑦) + 𝑓(𝑦) =8(𝑝 + 𝑞) + 6𝑚.

(b) We define 𝐹2 as graph with 𝑉(𝐹2) = 𝑉(𝐹1), where𝑐𝑝+1 = V1 and V𝑚 = 𝑧1, and 𝐸(𝐹2) = 𝐸(𝐹1). Under this
definition, the cut vertices of 𝐹2 are 𝑐𝑖, 2 ≤ 𝑖 ≤ 𝑝 + 1, and𝑧𝑡, 1 ≤ 𝑡 ≤ 𝑞.Next, we define a bijection𝑓2 : 𝑉(𝐹2)∪𝐸(𝐹2) →{1, 2, 3, . . . , 7(𝑝 + 𝑞) + 5𝑚 − 2}, where 𝑓2(𝑥) = 𝑓1(𝑥) for all𝑥 ∈ 𝑉(𝐹2) ∪ 𝐸(𝐹2). It can be checked that 𝑓2 is an edge-magic
labeling of 𝐹2 with the magic constant 8(𝑝 + 𝑞) + 6𝑚.
Open Problem 3. Let 𝑝 and 𝑞 ≥ 1 be integers.

(a) If 𝑚 ≥ 3 is an odd integer, find the super edge-magic
deficiency of 𝐶[𝐶(𝑝)4 , 𝐿𝑚, 𝑐(𝑞)4 ] with string (2(𝑝−1),
𝑚, 2(𝑞−1)).

(b) If𝑚 ≥ 2 is an even integer, find the super edge-magic
deficiency of 𝐶[𝐶(𝑝)4 , 𝐿𝑚, 𝑐(𝑞)4 ] with string (2(𝑝−1), 𝑚 −
1, 2(𝑞−1)).
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Theorem 8. Let 𝑝, 𝑞 ≥ 2 and 𝑟 ≥ 1 be integers.
(a) If𝑚 ≥ 2 is an even integer and𝐻1 = 𝐶[𝐶(𝑝+𝑞)4 , 𝐿𝑚, 𝑐(𝑟)4 ]

with string (2(𝑝−2), 1(2), 2(𝑞−1), 𝑚, 2(𝑟−1)), then 𝜇(𝐻1) = 0.
(b) If𝑚 ≥ 3 is an odd integer and𝐻2 = 𝐶[𝐶(𝑝+𝑞)4 , 𝐿𝑚, 𝑐(𝑟)4 ]

with string (2(𝑝−2), 1(2),2(𝑞−1),𝑚−1,2(𝑟−1)), then 𝜇(𝐻2) = 0.
Proof. (a) First, we define𝐻1 as a graphwith𝑉(𝐻1) = {𝑎𝑖: 1 ≤𝑖 ≤ 2𝑝} ∪ {𝑏𝑖: 1 ≤ 𝑖 ≤ 𝑝 + 1} ∪ {𝑢𝑗: 1 ≤ 𝑗 ≤ 2𝑞} ∪

{V𝑗: 1 ≤ 𝑗 ≤ 𝑞 + 1} ∪ {𝑤𝑠: 1 ≤ 𝑠 ≤ 2𝑚} ∪ {𝑥𝑡: 1 ≤ 𝑡 ≤2𝑟} ∪ {𝑦𝑡: 1 ≤ 𝑡 ≤ 𝑟 + 1}, where 𝑎2𝑝 = 𝑢1, V𝑞+1 = 𝑤1,
and 𝑤2𝑚 = 𝑦1, and 𝐸(𝐻1) = {𝑏𝑖𝑎𝑖, 𝑏𝑖𝑎𝑝+𝑖, 𝑎𝑖𝑏𝑖+1, 𝑎𝑝+𝑖𝑏𝑖+1: 1 ≤𝑖 ≤ 𝑝} ∪ {V𝑗𝑢𝑗, V𝑗𝑢𝑞+𝑗, 𝑢𝑗V𝑗+1, 𝑢𝑞+𝑗V𝑗+1 | 1 ≤ 𝑗 ≤ 𝑞} ∪{𝑤𝑠𝑤𝑠+1, 𝑤𝑚+𝑠𝑤𝑚+𝑠+1 : 1 ≤ 𝑠 ≤ 𝑚 − 1} ∪ {𝑤𝑠𝑤𝑚+𝑠: 1 ≤ 𝑠 ≤𝑚} ∪ {𝑦𝑡𝑥𝑡, 𝑦𝑡𝑥𝑟+𝑡, 𝑥𝑡𝑦𝑡+1, 𝑥𝑟+𝑡𝑦𝑡+1: 1 ≤ 𝑡 ≤ 𝑟}.

Next, define a bijection 𝑔1 : 𝑉(𝐻1) ∪ 𝐸(𝐻1) → {1, 2,
3, . . . , 7(𝑝 + 𝑞 + 𝑟) + 5𝑚 − 2} as follows:

𝑔1 (𝑧) =

{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{
{

6𝑝 + 7 (𝑞 + 𝑟) + 5𝑚 + 𝑖 − 2, if 𝑧 = 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑝,
3𝑝 + 𝑞 + 𝑟 + 𝑚 + 1 + 𝑖, if 𝑧 = 𝑎𝑝+𝑖, 1 ≤ 𝑖 ≤ 𝑝,
𝑖, if 𝑧 = 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑝 + 1,
4𝑝 + 𝑞 + 𝑟 + 𝑚 + 𝑗, if 𝑧 = 𝑢𝑗, 1 ≤ 𝑗 ≤ 𝑞,
4 (𝑝 + 𝑞 + 𝑟) + 3𝑚 + 𝑗 − 1, if 𝑧 = 𝑢𝑞+𝑗, 1 ≤ 𝑗 ≤ 𝑞,
𝑝 + 1 + 𝑗, if 𝑧 = V𝑗, 1 ≤ 𝑗 ≤ 𝑞 + 1,
𝑝 + 𝑞 + 1 + 𝑠, if 𝑧 = 𝑤𝑠, 𝑠 is odd,
4𝑝 + 2𝑞 + 𝑟 + 𝑚 + 12𝑠, if 𝑧 = 𝑤𝑠, 𝑠 is even,
4𝑝 + 5𝑞 + 4𝑟 + 3𝑚 + 12 (𝑠 − 1) , if 𝑧 = 𝑤𝑚+𝑠, 𝑠 is odd,
𝑝 + 𝑞 + 1 + 𝑠, if 𝑧 = 𝑤𝑚+𝑠, 𝑠 is even,

𝑔1 (𝑧) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

4𝑝 + 2𝑞 + 𝑟 + 𝛾2 + 𝑡, if 𝑧 = 𝑥𝑡, 1 ≤ 𝑡 ≤ 𝑟,
4𝑝 + 5𝑞 + 4𝑟 + 𝛾1 + 𝑡, if 𝑧 = 𝑥𝑟+𝑡, 1 ≤ 𝑡 ≤ 𝑟,
𝑝 + 𝑞 + 𝑚 + 𝑡, if 𝑧 = 𝑦𝑡, 1 ≤ 𝑡 ≤ 𝑟 + 1,
3𝑝 + 𝑞 + 𝑟 + 𝑚 + 3 − 2𝑖, if 𝑧 = 𝑏𝑖𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑝,
6𝑝 + 7 (𝑞 + 𝑟) + 5𝑚 − 2𝑖, if 𝑧 = 𝑏𝑖𝑎𝑝+𝑖, 1 ≤ 𝑖 ≤ 𝑝,
3𝑝 + 𝑞 + 𝑟 + 𝑚 + 2 − 2𝑖, if 𝑧 = 𝑎𝑖𝑏𝑖+1, 1 ≤ 𝑖 ≤ 𝑝,
6𝑝 + 7 (𝑞 + 𝑟) + 5𝑚 − 2𝑖 − 1, if 𝑧 = 𝑎𝑝+𝑖𝑏𝑖+1, 1 ≤ 𝑖 ≤ 𝑝,
4𝑝 + 7 (𝑞 + 𝑟) + 5𝑚 − 2𝑗, if 𝑧 = V𝑗𝑢𝑗, 1 ≤ 𝑗 ≤ 𝑞,
4 (𝑝 + 𝑞 + 𝑟) + 3𝑚 + 1 − 2𝑗, if 𝑧 = V𝑗𝑢𝑞+𝑗, 1 ≤ 𝑗 ≤ 𝑞,
4𝑝 + 7 (𝑞 + 𝑟) + 5𝑚 − 2𝑗 − 1, if 𝑧 = 𝑢𝑗V𝑗+1, 1 ≤ 𝑗 ≤ 𝑞,
4 (𝑝 + 𝑞 + 𝑟) + 3𝑚 − 2𝑗, if 𝑧 = 𝑢𝑞+𝑗V𝑗+1, 1 ≤ 𝑗 ≤ 𝑞,
4𝑝 + 5𝑞 + 7𝑟 + 5𝑚 − 12 (3𝑠 + 1) , if 𝑧 = 𝑤𝑠𝑤𝑠+1, 𝑠 is odd,
4𝑝 + 5𝑞 + 7𝑟 + 5𝑚 − 12 (3𝑠 + 2) , if 𝑧 = 𝑤𝑠𝑤𝑠+1, 𝑠 is even,
4𝑝 + 2𝑞 + 4𝑟 + 3𝑚 − 12 (3𝑠 + 1) , if 𝑧 = 𝑤𝑚+𝑠𝑤𝑚+𝑠+1, 𝑠 is odd,
4𝑝 + 2𝑞 + 4𝑟 + 3𝑚 − 12 (3𝑠) , if 𝑧 = 𝑤𝑚+𝑠𝑤𝑚+𝑠+1, 𝑠 is even,
4𝑝 + 2𝑞 + 4𝑟 + 3𝑚 − 12 (3𝑠 − 1) , if 𝑧 = 𝑤𝑠𝑤𝑚+𝑠, 𝑠 is odd,
4𝑝 + 5𝑞 + 7𝑟 + 5𝑚 − 32𝑠, if 𝑧 = 𝑤𝑠𝑤𝑚+𝑠, 𝑠 is even,
4𝑝 + 5𝑞 + 7𝑟 + 𝛾4 − 2𝑡, if 𝑧 = 𝑦𝑡𝑥𝑡, 1 ≤ 𝑡 ≤ 𝑟,
4𝑝 + 2𝑞 + 4𝑟 + 𝛾3 − 2𝑡, if 𝑧 = 𝑦𝑡𝑥𝑟+𝑡, 1 ≤ 𝑡 ≤ 𝑟,
4𝑝 + 5𝑞 + 7𝑟 + 𝛾6 − 2𝑡, if 𝑧 = 𝑥𝑡𝑦𝑡+1, 1 ≤ 𝑡 ≤ 𝑟,
4𝑝 + 2𝑞 + 4𝑟 + 𝛾5 − 2𝑡, if 𝑧 = 𝑥𝑟+𝑡𝑦𝑡+1, 1 ≤ 𝑡 ≤ 𝑟,

(7)
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where 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5, 𝛾6, and 𝜆 are defined as in the proof of
Theorem 7. It can be checked that, for every edge 𝑥𝑦 ∈ 𝐸(𝐻1),𝑔1(𝑥)+𝑔1(𝑥𝑦)+𝑔1(𝑦) = 9𝑝+8(𝑞+𝑟)+6𝑚+1.Hence𝜇(𝐻1) = 0.

An illustration of the labeling defined in the proof of
Theorem 8 is given in Figure 1(b).

(b) We define 𝐻2 as graph with 𝑉(𝐻2) = 𝑉(𝐻1), where𝑎2𝑝 = 𝑢1, V𝑞+1 = 𝑤1, and 𝑤𝑚 = 𝑦1, and 𝐸(𝐻2) = 𝐸(𝐻1). It can
be checked that𝑔2 : 𝑉(𝐻2)∪𝐸(𝐻2) → {1, 2, 3, . . . , 7(𝑝+𝑞+𝑟)+5𝑚 − 2} defined by 𝑔2(𝑥) = 𝑔1(𝑥), for all 𝑥 ∈ 𝑉(𝐻2) ∪ 𝐸(𝐻2),
is an edge-magic labeling of𝐻2 with the magic constant 9𝑝+
8(𝑞 + 𝑟) + 6𝑚 + 1.
Open Problem 4. Let 𝑝, 𝑞 ≥ 2 and 𝑟 ≥ 1 be integers.

(a) If 𝑚 ≥ 3 is an odd integer, find the edge-magic defi-
ciency of 𝐶[𝐶(𝑝)4 , 𝑐(𝑞)4 , 𝐿𝑚, 𝑐(𝑟)4 ] with string (2(𝑝−2), 1(2),
2(𝑞−1), 𝑚, 2(𝑟−1)).

(b) If 𝑚 ≥ 2 is an even integer, find the edge-magic defi-
ciency of 𝐶[𝐶(𝑝)4 , 𝑐(𝑞)4 , 𝐿𝑚, 𝑐(𝑟)4 ] with string (2(𝑝−2), 1(2),
2(𝑞−1), 𝑚 − 1, 2(𝑟−1)).
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The Irwin-Hall distribution is the distribution of the sum of a finite number of independent identically distributed uniform random
variables on the unit interval. Many applications arise since round-off errors have a transformed Irwin-Hall distribution and the
distribution supplies spline approximations to normal distributions. We review some of the distribution’s history. The present
derivation is very transparent, since it is geometric and explicitly uses the inclusion-exclusion principle. In certain special cases, the
derivation can be extended to linear combinations of independent uniform random variables on other intervals of finite length.The
derivation adds to the literature about methodologies for finding distributions of sums of random variables, especially distributions
that have domains with boundaries so that the inclusion-exclusion principle might be employed.

1. Introduction

The simple continuous uniform or rectangular distribution
Uniform(0, 1) with probability density function (PDF)𝑓(𝑥) =1 for 0 < 𝑥 < 1 and 𝑓(𝑥) = 0 otherwise is very important.
Two applications arise in numerical simulation and Bayesian
analysis of proportions. If 𝐹 is the cumulative distribution
function (CDF) of the continuous random variable 𝑋, then
the random variable 𝑌 = 𝐹(𝑋) has a Uniform(0, 1) dis-
tribution. The random variable 𝑋 can be simulated by first
simulating 𝑌 and then letting 𝑋 = 𝐹–1(𝑌). This is called
the inversion method ([1, page 295], [2, pages 194–196]). The
transformation is called the probability integral transforma-
tion ([3], [4, pages 203-204]). The uniform distribution is a
Bayesian noninformative prior distribution for the distribu-
tion of a random variable defined on the unit interval, such
as a beta distribution for a proportion ([2, page 33], [5, pages
82–90]). For other applications and generalizations of the
uniform distribution, see [6–8].

The present goal is to derive the CDF and the PDF of
the sum 𝑇 = ∑𝑛𝑖=1𝑋𝑖, where 𝑋𝑖 are independent identically
distributed Uniform(0, 1) random variables for 𝑖 = 1, 2, . . . , 𝑛.
The CDF and PDF are

𝐹 (𝑡) = 𝑛∑
𝑖=0

[(−1)𝑖 (𝑛𝑖) (𝑡 − 𝑖)𝑛𝑛! 𝑠𝑖 (𝑡)] , (1)

𝑓 (𝑡) = 𝑛∑
𝑖=0

[(−1)𝑖 (𝑛𝑖) (𝑡 − 𝑖)𝑛–1(𝑛 − 1)! 𝑠𝑖 (𝑡)] , (2)

respectively, where 𝑠𝑎(𝑡) is the unit step function

𝑠𝑎 (𝑡) = {{{
0 𝑡 < 𝑎
1 𝑎 ≤ 𝑡. (3)

The derivation in Section 2 is geometric and explicitly uses
the inclusion-exclusion principle.

Derivations of the distribution, which more recently
acquired its name Irwin-Hall, go back to Lagrange and
Laplace in the latter 18th century and the early 19th century.
Lagrange used generating functions based on 𝑎𝑥 to obtain the
distribution of T ([9, pages 603–612], [10, page 283]). Those
generating functions are a predecessor of characteristic func-
tions [10, page 286]. Laplace often revisited the problem of
finding the distribution of 𝑇 and employed many methods
([9, pages 714-715], [10, pages 286–301]). The distribution is
described in [1, pages 296–300], where it is called the Irwin-
Hall distribution.

Some derivations employ characteristic functions in a
variety of ways, since the characteristic function of a sum
of independent random variables is the product of each
summand’s characteristic function and the inverse transform
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is not intractable ([11, pages 188-189], [12–14], [15, pages 362-
363], [16, 17]). Others utilize the convolution integral for sums
and mathematical induction ([4, page 225], [11, pages 190-191
and 244–246], [18]). The distribution of the sum of uniform
random variables that may have differing domains is found
in [18–21]. Sums of dependent uniform random variables are
examined in [22, 23].

Direct integration techniques can be used to obtain the
distribution of a linear combination of Uniform(0, 1) random
variables ([15, pages 358–360], [24, 25]). Similar techniques
are used in [26] for uniform distributions whose domains are
intervals with zero as their left endpoints. The distribution of
the mean is obtained when all the constants are 1/𝑛. In
this case, the distribution is called the Bates distribution
([1, page 297], [27]), which can also be found by a simple
transformation of the Irwin-Hall distribution ([15, page 359],
[25, page 241]). Using moment generating functions, instead
of characteristic functions, Gray and Odell [28] found the
distribution of any linear combination of uniform random
variables with different domains allowed. In Section 3, the
present method or style of proof is extended to those cases
giving the same distributions.

Because 𝑇 is a sum, the Irwin-Hall distribution approx-
imates a normal distribution with a spline, since the Irwin-
Hall distribution in (2) is composed of polynomials.The sup-
port of 𝑇 is the interval [0, 𝑛]; the mean, mode, and median
of 𝑇 are 𝑛/2; and its variance is 𝑛/12. By symmetry, all odd
central moments are zero, including skewness. The kurtosis
is 3−6/(5𝑛) [1, page 300].This is the measure of kurtosis that
is 3 for a normal distribution, so Irwin-Hall distributions are
platykurtic, and the kurtosis is close to 3 for large 𝑛. According
to the Central Limit Theorem,

𝑍 = 𝑇 − 𝑛/2√𝑛/12 𝐷→ Normal (0, 1) as 𝑛 → ∞ (4)

([4, pages 280–283], [11, pages 213–218 and 245], [29, pages
220–222]). Figure 1 contains a normal distributionwithmean𝑛/2 = 3/2 and variance 𝑛/12 = 3/12 = 1/4 and its approx-
imating Irwin-Hall distribution with 𝑛 = 3. The approxi-
mation is very good even for this small value of 𝑛 [30]. The
uniform error bound for the normal(0, 1) CDF Φ(𝑧) is

|𝐹 (𝑧) − Φ (𝑧)| ≤ √320√𝑛 (5)

([31], [32, page 51]). Approximations with spline fitting can
be useful with or without complete information about the
distributional shape [33, 34].

Since round-off errors for random variables that are
rounded to the nearest integer are distributed Uniform(−1/2,
1/2), the sum of round-off errors is a linearly transformed
Irwin-Hall distribution [12]. For large 𝑛, the sum of round-off
errors is easily described with a normal distribution [29,
page 222]. For small 𝑛, the Irwin-Hall distribution is also
appropriate and not too complicated.

Lee et al. [35] use the Irwin-Hall distribution to examine
the efficacy of goodness-of-fit tests. Heinrich et al. [36]
adapt the Irwin-Hall distribution in consideration of the
accumulated accuracy of round-off errors. Inequalities for

0.5

0 1.5 3

1

f
(t

t

)

Figure 1: Irwin-Hall distribution with 𝑛 = 3 and the matching nor-
mal distribution with mean 3/2 and variance 1/4.

linear combinations of independent random variables whose
domains have an upper bound are given in [37].

2. Derivation of the Irwin-Hall Distribution

Theorem 1. Let 𝑋𝑖 for 𝑖 = 1, 2, . . . , 𝑛 be independent random
variables, each having the continuous uniform distribution on
the unit interval, and let 𝑇 = ∑𝑛𝑖=1𝑋𝑖. Then, the CDF and PDF
of 𝑇 are given by (1) and (2), respectively.

Proof. For𝑚 ∈ {0, 1, 2, . . . , 𝑛 − 1} and 𝑡 ∈ [𝑚,𝑚 + 1), let
𝐴𝑛 (𝑡) = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 𝑥𝑖 ≥ 0 for 𝑖

∈ {1, 2, . . . , 𝑛} , 𝑛∑
𝑖=1

𝑥𝑖 ≤ 𝑡} ,
𝐵𝑗 (𝑡) = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐴𝑛 (𝑡) : 𝑥𝑗 > 1} ,
𝐶𝑛 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 0 ≤ 𝑥𝑖 ≤ 1} ,

(6)

which is the 𝑛-dimensional unit cube.The set complement of𝐶𝑛 with respect toR𝑛 is denoted by 𝐶𝑛.
The hypervolume of the 𝑛-dimensional solid 𝐴𝑛(𝑡) has

value

Vol (𝐴𝑛 (𝑡)) = 𝑡𝑛𝑛! (7)

[38], since the solid is a standard orthogonal simplex from
the corner of an 𝑛-cube. Similarly, if 𝑘 ∈ {1, 2, . . . , 𝑚}, then
the hypervolume of⋂𝑘𝑗=1 𝐵𝑗(𝑡) is

Vol( 𝑘⋂
𝑗=1

𝐵𝑗 (𝑡)) = (𝑡 − 𝑘)𝑛𝑛! . (8)

For 𝑘 ∈ {𝑚 + 1,𝑚 + 2, . . . , 𝑛},
𝑘⋂
𝑗=1

𝐵𝑗 (𝑡) = 𝜑,

Vol( 𝑘⋂
𝑗=1

𝐵𝑗 (𝑡)) = 0,
(9)

since the sumof nonnegative coordinates exceeds the number
of coordinates which are greater than 1.
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Figure 2: The CDF 𝐹(𝑡) increases as 𝑡 increases.

By the inclusion-exclusion principle,
𝐹 (𝑡) = 𝑃 (𝑇 ≤ 𝑡) = Vol (𝐴𝑛 (𝑡) ∩ 𝐶𝑛) = Vol (𝐴𝑛 (𝑡))

− Vol (𝐴𝑛 (𝑡) ∩ 𝐶𝑛) = Vol (𝐴𝑛 (𝑡))
− Vol( 𝑛⋃

𝑗=1

𝐵𝑗 (𝑡)) = 𝑡𝑛𝑛! −
𝑚∑
𝑘=1

(–1)𝑘–1
⋅ ∑
1≤𝑗1<𝑗2<⋅⋅⋅<𝑗𝑘≤𝑛

Vol (𝐵𝑗1 (𝑡) ∩ 𝐵𝑗2 (𝑡) ∩ ⋅ ⋅ ⋅ ∩ 𝐵𝑗𝑘 (𝑡))
= 𝑡𝑛𝑛! −

𝑚∑
𝑘=1

(–1)𝑘–1

⋅ (𝑛𝑘)Vol (𝐵1 (𝑡) ∩ 𝐵2 (𝑡) ∩ ⋅ ⋅ ⋅ ∩ 𝐵𝑘 (𝑡)) = 𝑡𝑛𝑛!
− 𝑚∑
𝑘=1

(−1)𝑘–1 (𝑛𝑘) (𝑡 − 𝑘)𝑛𝑛! = 𝑚∑
𝑘=0

(−1)𝑘 (𝑛𝑘)
⋅ (𝑡 − 𝑘)𝑛𝑛! .

(10)

In (1), 𝐹(𝑛) is the Stirling number of the second kind with
both parameters equal to 𝑛 and has numerical value 1 [39,
pages 38-39]. If 𝑡 ≥ 𝑛, then 𝐶𝑛 ⊂ 𝐴𝑛(𝑡), so 𝐹(𝑡) = 1 in this
case. Since 𝐹 is a polynomial, ∑𝑛𝑘=0(–1)𝑘 ( 𝑛𝑘 ) ((𝑡–𝑘)𝑛/𝑛!) = 1
for all real-valued 𝑡. Introducing the unit step function gives
(1), and differentiation with respect to 𝑡 gives (2).
3. Discussion and a Generalization

Figures 2 and 3 reveal the structure of the CDF

𝐹 (𝑡) = 12𝑡2𝑠0 (𝑡) − (𝑡 − 1)2 𝑠1 (𝑡) + 12 (𝑡 − 2)2 𝑠2 (𝑡) (11)

for 𝑛 = 2. Figure 2 demonstrates how the hyperplane (line),
which is the line of a constant sumof the values of the random
variables and is perpendicular to the 𝑛-cube’s (square’s) main
diagonal, accrues volume (area) below it. Figure 3 illustrates
the regions that are included and excluded for various
positions of the hyperplane (line) and how vertices are meet
in sets. For 𝑛 = 2, the binomial coefficients, which provide the
counts of the vertices, are 1 for (0, 0), 2 for (1, 0) and (0, 1),
and 1 for (1, 1), as seen in Figures 2 and 3. In (11), the first
term is the area of the large triangle in Figures 3(a), 3(b),
and 3(c); the second term is the sum of the areas of the two
hatched triangles in Figure 3(b), where exactly one of {𝑥1, 𝑥2}
is greater than 1, and in Figure 3(c); and the third term is the
area of the crosshatched triangle in Figure 3(c), where both𝑥1 and 𝑥2 are greater than 1.

Figure 4 shows the same geometric interpretation for 𝑛 =3. In its CDF

𝐹 (𝑡) = 16𝑡3𝑠0 (𝑡) − 12 (𝑡 − 1)3 𝑠1 (𝑡) + 12 (𝑡 − 2)3 𝑠2 (𝑡)
− 16 (𝑡 − 3)3 𝑠3 (𝑡) ,

(12)

the first term is the volume using (7) of the large orthogonal
simplex in Figures 4(a), 4(b), and 4(c) with edges of length 𝑡.
The second term is the sum of the volumes using (8) of the
three orthogonal simplexes, where exactly one of {𝑥1, 𝑥2, 𝑥3}
is greater than 1. In Figure 4(b), the vertices 𝑃1, 𝑃2, 𝑃3, and 𝑃4
of the simplex with 𝑥1 > 1 are labeled. Their coordinates are𝑃1 : (𝑡, 0, 0), 𝑃2 : (1, 0, 𝑡−1), 𝑃3 : (1, 𝑡−1, 0), and 𝑃4 : (1, 0, 0).
The lengths of the edges 𝑃1𝑃4, 𝑃2𝑃4, and 𝑃3𝑃4 are 𝑡 − 1. The
third term of (12) is the sum of the three volumes using
(8), where exactly two of {𝑥1, 𝑥2, 𝑥3} are greater than 1.
In Figure 4(c), the vertices are labeled 𝑃3, 𝑃5, 𝑃6, and 𝑃7 in
the region where both 𝑥1 and 𝑥2 are greater than 1. Their
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Figure 3: Computing the CDF for 𝑛 = 2 for increasing values of 𝑡.

coordinates are 𝑃3 : (1, 𝑡 − 1, 0), 𝑃5 : (𝑡 − 1, 1, 0), 𝑃6 : (1, 1, 𝑡 −2), and 𝑃7 : (1, 1, 0). The lengths of the edges 𝑃3𝑃7, 𝑃5𝑃7, and𝑃6𝑃7 are 𝑡 − 2. The fourth term is the region that is shared by
all the other regions, analogous to the crosshatched region in
Figure 3(c).

In the same way, for any 𝑛, the terms are the 𝑛-volumes
of orthogonal 𝑛-simplexes, whose multiplicity is counted by
binomial coefficients determined by the number of vertices
of the 𝑛-cube in sets as the “moving” 𝑛 − 1-dimensional
hyperplane “passes” them as 𝑡 increases. The hyperplane is
perpendicular to the diagonal line 𝑥1 = 𝑥2 = 𝑥3 = ⋅ ⋅ ⋅ = 𝑥𝑛.
The volumes of the simplexes are computed using (7) and (8).

The Website [40] has a free simulator for 𝑇, where
selecting 𝑛 yields the PDF (2). Other calculators are at [41, 42].

The method of proof in Section 2 can be extended to
linear combinations of uniform randomvariables on different
intervals. Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent, that

𝑋𝑘 is uniformly distributed on the interval [𝑎𝑘, 𝑏𝑘], and that𝑐1, 𝑐2, . . . , 𝑐𝑛 are real constants. Also,
𝑃( 𝑛∑
𝑘=1

𝑐𝑘𝑋𝑘 ≤ 𝑡) = 𝑃( 𝑛∑
𝑘=1

𝑑𝑘𝑌𝑘 ≤ 𝑡) , (13)

where

𝑌𝑘 = 𝑋𝑘 − 𝑎𝑘𝑏𝑘 − 𝑎𝑘 ,
𝑑𝑘 = 𝑐𝑘 (𝑏𝑘 − 𝑎𝑘) ,
𝑡 = 𝑛∑
𝑘=1

𝑎𝑘𝑐𝑘.
(14)

Then, 𝑌1, 𝑌2, . . . , 𝑌𝑛 are independent uniform random vari-
ables on [0, 1], and 𝑃(∑𝑛𝑘=1 𝑐𝑘𝑋𝑘 ≤ 𝑡) can be interpreted as
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Figure 4: Computing the CDF for 𝑛 = 3 for increasing values of 𝑡.

the hypervolume of the solid that consists of all points that lie
inside the unit hypercube [0, 1]𝑛 and on one side of the hyper-
plane∑𝑛𝑘=1 𝑑𝑘𝑌𝑘 = 𝑡. Now, proceed by inclusion-exclusion as
in Section 2. In general, the formula for 𝑃(∑𝑛𝑘=1 𝑐𝑘𝑋𝑘 ≤ 𝑡) is
complicated because of the lack of symmetry that is caused
by the presence of 𝑑1, 𝑑2, . . . , 𝑑𝑛. This increases the number
cases and removes the congruence of the solids of each size
whose hypervolumes need to be added or subtracted at each
stage of the inclusion-exclusion process. Nevertheless, the
correct distribution is obtained in this manner. A special case
in which these problems disappear is 𝑑1 = 𝑑2 = ⋅ ⋅ ⋅ = 𝑑𝑛 = 𝑑,
so that

𝑃( 𝑛∑
𝑘=1

𝑐𝑘𝑋𝑘 ≤ 𝑡) =
{{{{{{{{{{{

𝐹(𝑡𝑑) for 𝑑 > 0
1 − 𝐹(𝑡𝑑) for 𝑑 < 0,

(15)

where 𝐹 is given in (1).
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Human malaria remains a major killer disease worldwide, with nearly half (3.2 billion) of the world’s population at risk of malaria
infection.The infectious protozoan disease is endemic in tropical and subtropical regions, with an estimated 212 million new cases
and 429,000 malaria-related deaths in 2015. An in-host mathematical model of Plasmodium falciparummalaria that describes the
dynamics and interactions of malaria parasites with the host’s liver cells (hepatocytic stage), the red blood cells (erythrocytic stage),
and macrophages is reformulated. By a theoretical analysis, an in-host basic reproduction number 𝑅0 is derived. The disease-free
equilibrium is shown to be locally and globally asymptotically stable. Sensitivity analysis reveals that the erythrocyte invasion
rate 𝛽𝑟, the average number of merozoites released per bursting infected erythrocyte 𝐾, and the proportion of merozoites that
cause secondary invasions at the blood phase 𝜁 are the most influential parameters in determining the malaria infection outcomes.
Numerical results show that macrophages have a considerable impact in clearing infected red blood cells through phagocytosis.
Moreover, the density of infected erythrocytes and hence the severity of malaria are shown to increase with increasing density
of merozoites in the blood. Concurrent use of antimalarial drugs and a potential erythrocyte invasion-avoidance vaccine would
minimize the density of infected erythrocytes and hence malaria disease severity.

1. Introduction

Human malaria remains a major killer disease worldwide,
with nearly half (3.2 billion) of the world’s population at risk
of malaria infection [1]. The infectious disease is endemic
in tropical and subtropical regions, with an estimated 212
million new cases (uncertainty range: 148–304 million) and
429,000 malaria-related deaths (range: 235,000–639,000) in
2015 [2]. 92% of the deaths and 90% of the cases occurred
in sub-Saharan Africa. 70% of the reported deaths occurred
among children below the age of five. Despite existing vector
control measures and tremendous progress in the develop-
ment of antimalarial therapy accompanied with worldwide
decline in incidence rate (fell by 21% in 2015) and mortality
rate (fell by 29% in 2015), malaria remains one of the greatest
global health challenges to date [2].

The protozoan disease is caused by parasites of the genus
Plasmodium which are transmitted to humans by the bite of
female Anopheles mosquito. Plasmodium falciparum, which

is predominant in sub-Saharan Africa, New Guinea, and
Haiti [3], is the major cause of malaria infections. The other
Plasmodium species that cause malaria are P. vivax, P. ovale,
P. malariae, and P. knowlesi [4]. P. vivax and P. ovale can hide
in the liver for prolonged periods as hypnozoites, causing
relapsing malaria months or even years after the initial
infection [5]. P. vivax has the greatest geographical range of
the disease and hence is the main contributor to worldwide
malaria morbidity [3]. Our study focuses on the dynamics of
Plasmodium falciparum in the human host.

During their obligatory blood meals, infected female
Anopheles mosquitoes inject sporozoites belonging to Plas-
modium falciparum species into the human dermis [6]. The
motile sporozoites travel through the blood vessels and
enter the host’s liver. Hepatocyte invasion is accompanied
by the formation of parasitophorous vacuole (PV) around
the sporozoite [7]. They form preerythrocytic schizonts and
multiply by schizogony, culminating in the production of
8–24 first generation merozoites that are released into the
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blood when the liver schizonts burst open [8]. The released
merozoites invade susceptible erythrocytes and undergo
another phase of schizogony, which is relatively faster com-
pared to that at the exoerythrocytic stage [9].

Within a period of two days, the infected red blood
cells rupture to release about 16 daughter merozoites [10].
Most of the released merozoites quickly invade susceptible
erythrocytes, leading to another cycle of infections. The
waves of bursting erythrocytes and the invasion of fresh
erythrocytes by the newly released merozoites increase par-
asitemia and produce malaria’s characteristic symptoms [11].
In the absence of adequate protective immune response
or antimalarial therapy, the host is likely to suffer severe
anaemia or even die [12]. The rest of the daughter merozoites
develop into sexual forms called gametocytes [10]. These
gametocytes are later taken up by other female Anopheles
mosquitoes during feeding [13]. This marks the beginning
of the sporogenic cycle that occurs within the mosquito
vector.

The presence of the malaria parasites in the human
body elicits response from numerous immune cells. The
innate immune system and the adaptive immune system form
the first and the second lines of defence, respectively [14].
Adaptive immune system further provides protection against
future exposures to malaria pathogens. Innate immune cells
such as the Plasmodium falciparum DNA, natural killer cells
(NK cells), dendritic cells (DCs), macrophages, natural killer
T (NKT) cells, and T cells are involved in the clearance
of circulating parasites, infected erythrocytes, and infected
hepatocytes [14]. Subject to parasite strain, the DCs and
NK cells may prompt or restrain inflammatory responses
[15]. The NKT cells also help regulate DCs and T cell
responses to Plasmodium [14]. Moreover, studies in [16] have
demonstrated that malaria infection induces activation of
Toll-like receptors (TLRs): TLR1, TLR2, TLR4 (which are
located on the cell surface), and TLR9 which is not expressed
on the cell surface. TLR2 and TLR9 are also activated
by malarial glycosylphosphatidylinositol (GPI) anchors and
parasite-derived DNA bound to hemozoin [16].

Unlike the NK cells, the macrophages have been shown
to effectively phagocytose malaria-infected red blood cells
during the erythrocytic phase [17]. A part from its ability
to wholly ingest infected red blood cells, the macrophages
can also selectively extract malaria parasites from recently
infected erythrocytes [18]. The parasite-extraction capability
of macrophage therefore leaves the surviving erythrocytes to
continue circulating like the other healthy red blood cells.

The rest of the paper is organized as follows: in Sec-
tion 2, we formulate the in-host malaria model and state
the invariant region in which the model is defined. In
Section 3, we compute and describe the model in-host
reproduction number. The results on model equilibrium
points (disease-free equilibrium and endemic equilibrium
points) and the stability of the disease-free equilibrium point
are also considered in Section 3. Section 4 is devoted to
numerical solution of the in-host model under different
conditions of the threshold parameter (in-host reproduction
number). Parameter sensitivity analysis and the effects of
parameter variation on different populations are investigated

in Section 4. A conclusion and discussion complete the paper
in Section 5.

2. In-Host Malaria Model

Several studies onmathematicalmodelling of in-hostmalaria
and its dynamics within the human host have been done.
Nearly all the earlier mathematical models (see, e.g., [25–27])
focused on improving Plasmodium falciparum control while
focusing on the blood stage of parasite development. These
models have been found to be useful in explaining in-host
observations by means of biologically plausible assumptions
such as parasite diversity, predicting the impact of interven-
tions or the use of antimalarials [28], and estimating hidden
parameter values [29]. Although the models in [19, 21, 23,
30] have considered the impact of immune response and
treatment, the modelling is only limited to the blood stage
of Plasmodium falciparum development. In [20, 22, 31], the
liver stage is incorporated in the malaria model. However,
the contribution of immune system is ignored in [20, 31].
Moreover, all the immune cells are assumed to play an active
role duringmalaria infection in [22].Thismay not be entirely
true. The specific impacts of immune responses to malaria
infection are well discussed in [32–36].

In the following sections, we extended the model in [21]
by incorporating the liver stage of parasite development. The
reformulated in-host malaria model focuses on the erythro-
cytic and hepatocytic stages and describes the dynamics of
interactions between the malaria parasites, the liver hepa-
tocytes, the red blood cells, and the macrophages (immune
system cells). Unlike the work in [20, 22], we ignored the
vector stage of parasite development and assumed a twofold
process in the generation of hepatocytes: from the bone
marrow and from self-replication of the existing hepatocytes.
Again, we have assumed that the generation of macrophages
and the susceptible red blood cells from the bone marrow
increase with increasing density of the infected erythrocytes.
However, whatever density of the infected erythrocytes, there
is a limit on the rate at which cells can be released from the
bone marrow.

2.1. Model Formulation. Thehepatocytic-erythrocyticmalar-
ia model describes the dynamics of Plasmodium falciparum
parasite during the hepatocytic and erythrocytic stages and
their interactions with the host’s red blood cells, liver hep-
atocytes, and the macrophages. The compartmental model
assumes seven interacting populations of sporozoites 𝑆(𝑡),
susceptible hepatocytes 𝐻(𝑡), infected hepatocytes 𝐻𝑋(𝑡),
susceptible red blood cells (RBCs) 𝑅(𝑡), infected red blood
cells (IRBCs) 𝑅𝑋(𝑡), merozoites𝑀(𝑡), and macrophages 𝑍(𝑡)
at any time 𝑡. The dynamics of malaria parasites and host-cell
populations in each compartment are described as follows.

Sporozoites (𝑆).The femaleAnophelesmosquito is assumed to
inject sporozoites into the human system during blood meal
at a constant rate Λ. The sporozoites molt through the blood
stream and reach the liver in about 2 hours, where they invade
the hepatocytes at the rate 𝛽𝑠. We assume that the sporozoites
can die naturally at a rate 𝛿𝑠.
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Susceptible Hepatocytes (𝐻). We consider the bone marrow
and self-replication as the main sources of the liver hepato-
cytes. The recruitment of hepatocytes from the bone marrow
is assumed to occur at a constant rate 𝜆ℎ. Just like during
liver transplant [37], we argue that, during severe malaria
infections, the rate of generation of healthy hepatocytes is
likely to increase tremendously and in proportion to the
concentrations of the infected liver cells [38]. This additional
increase is represented by the term 𝜌1𝐻𝑋/(𝜅1 + 𝐻𝑋) =𝜓1(𝐻𝑋), where𝐻𝑋 and 𝜌1, respectively, represent the concen-
tration of infected hepatocytes and their rates of generation.
The parameter 𝜅1 represents the number/concentration of
the infected hepatocytes at which the recruitment of the
healthy hepatocytes is a half of the maximum rate. Owing to
invasion by sporozoites at the rate 𝛽𝑠, susceptible hepatocytes
get infected and progress to subpopulation 𝐻𝑋. In addition,
hepatocytes in compartment𝐻 are assumed to have a natural
life expectancy and may hence die naturally at the rate 𝜇1.
Infected Hepatocytes (𝐻𝑋). Infected hepatocytes mature into
liver-stage schizonts. These schizonts burst open releasing
2000–40000 uninucleate merozoites into the blood stream
[39]. The term 𝑁𝜇2𝐻𝑋 represents the total population of
merozoites released upon bursting of infected hepatocytes.
The parameter 𝜇2 represents the death rate of the infected
hepatocytes.

Susceptible Red Blood Cells (𝑅). Similar to malaria models
in [21, 23, 30], we have assumed that the susceptible RBCs
get recruited at a constant rate 𝜆𝑟 from the bone marrow.
We further assume that, during infection, the erythrocyte
production is accelerated owing to the presence of IRBCs at
the rate 𝜌2. This increase is denoted by the term 𝜌2𝑅𝑋/(𝜅2 +𝑅𝑋) = 𝜓2(𝑅𝑋), where 𝜅2 represents number/concentration
of the infected red blood cells at which the recruitment of
susceptible red blood cells is a half of the maximum rate. The
particular mechanisms involved in this accelerated process
are, however, still poorly understood [40]. The susceptible
RBCs get infected by merozoites at a rate proportional to
the contact rate of their density, 𝛽𝑟𝑀𝑅. The positive constant𝛽𝑟 describes the rate of successful invasion by a malaria
merozoite. The susceptible RBCs die naturally at a rate 𝜇3.
Infected Red Blood Cells (𝑅𝑋). Upon invasion by merozoites,
the healthy RBCs get infected, leading to the formation of
infected red blood cells 𝑅𝑋. Although the RBCs die at a
constant rate 𝜇4, they can similarly be killed through phago-
cytosis by the macrophages at the rate 𝜂. At maturity, the
IRBCs burst open, releasing free merozoites into the blood
system, causing secondary invasion and disease progression.

Merozoites (𝑀). After 2–15 days, the infected hepatocytes
burst open and release merozoites into the blood system.
This is represented by the term 𝑁𝜇2𝐻𝑋, where 𝑁 is the
average number of merozoites released per bursting infected
hepatocytes. An average of 𝐾 merozoites is released per each
bursting IRBC.These free parasites suffer a natural death at a
rate 𝛿𝑚 and invade susceptible RBCs at a rate 𝛽𝑟. Within the
red blood cells, themerozoites mature either into uninucleate

Figure 1: Schematic diagram for hepatocytic-erythrocytic and
malaria parasite dynamics.The dotted lines without arrows indicate
cell-parasite interaction and the solid lines show progression from
one compartment to another.

gametocyte or into erythrocytic stage schizont containing
10–36 merozoites [39]. After about 48–72 hours, the erythro-
cytic stage schizont ruptures, releasing more merozoites into
blood stream to cause further invasion of healthy RBCs. We
assume that a proportion 𝜁 of the merozoites contribute to
secondary invasion of the susceptible RBCs. The rest of the
merozoites (1 − 𝜁) transform into gametocytes that are later
picked up by female Anophelesmosquitoes during feeding.

Macrophages (𝑍). Owing to their effectiveness in elimination
of infected erythrocytes and infective malaria parasites, we
have considered the innate macrophage cells as the main part
of the immune response in malaria infection. Consequently,
we have assumed that the macrophage cells are recruited
at a constant rate 𝜆𝑧 from the bone marrow. Moreover,
they proliferate at a rate 𝜌3 in the sites of infection in
proportion to the density of IRBCs. This is represented by
the term 𝜌3𝑅𝑋/(𝜅3 + 𝑅𝑋) = 𝜓3(𝑅𝑋), where 𝜅3 denotes the
number/concentration of the infected red blood cells atwhich
the recruitment of the macrophages is a half of the maximum
rate. We further assume that they can die naturally at a
constant rate 𝛿𝑧.

The variables and parameters that describe in-host
malaria dynamics are as in Tables 1 and 2, respectively.

The above transmission dynamics of malaria are sum-
marised in the compartmental diagram in Figure 1.

From the above description of the in-host dynamics of
malaria and the representation in Figure 1, we derive the
following system of ordinary differential equations:

d𝐻
d𝑡 = 𝜆ℎ + 𝜌1𝐻𝑋𝜅1 + 𝐻𝑋 − 𝜇1𝐻 − 𝛽𝑠𝑆𝐻,
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Table 1: Symbols and definition of state variables considered in the model.

Variable Description𝐻(𝑡) The population of susceptible hepatocytes at time 𝑡𝐻𝑋(𝑡) The population of infected hepatocytes at time 𝑡𝑅(𝑡) The population of susceptible red blood cells (erythrocytes) at time 𝑡𝑅𝑋(𝑡) The population of infected red blood cells at time 𝑡𝑍(𝑡) The density of macrophages in the human body at time 𝑡𝑆(𝑡) The population of sporozoites at time 𝑡𝑀(𝑡) The population of merozoites at time 𝑡
Table 2: Symbols and description of parameters used in the model.

Parameter DescriptionΛ The total rate of injection of sporozoites into liver due to mosquito bites𝛿𝑠 The death rate of sporozoites𝜆ℎ Recruitment rate of susceptible hepatocytes from the bone marrow𝜇1 Natural death rate of susceptible hepatocytes𝛽𝑠 The invasion rate of hepatocytes by sporozoites𝜇2 Death rate of infected hepatocytes𝜆𝑟 Recruitment rate of susceptible RBCs by the bone marrow𝜇3 The natural death rate of RBCs𝛽𝑟 The invasion rate of RBCs by merozoites𝜇4 Death rates of IRBCs𝛿𝑚 The death rate of merozoites𝜆𝑧 Recruitment rate of macrophages from the bone marrow𝛿𝑧 The death rate of a macrophage𝜂 Elimination rate of IRBCs by macrophages𝜌1 Production rate of hepatocytes due to presence of infected hepatocytes𝜌2 Production rate of RBCs due to presence of IRBCs𝜌3 Immunogenicity of IRBCs𝜅1 Number of 𝐻𝑋 at which the recruitment of 𝐻 is a half of the maximum rate𝜅2 Number of 𝑅𝑋 at which the recruitment of 𝑅 is a half of the maximum rate𝜅3 Number of 𝑅𝑋 at which the recruitment of 𝑍 is a half of the maximum rate𝜁 The proportion of the merozoites that cause secondary infections𝐾 The average number of merozoites released per bursting IRBCs𝑁 The average number of merozoites released per bursting infected hepatocytes

d𝐻𝑋
d𝑡 = 𝛽𝑠𝑆𝐻 − 𝜇2𝐻𝑋,
d𝑅
d𝑡 = 𝜆𝑟 + 𝜌2𝑅𝑋𝜅2 + 𝑅𝑋 − 𝜇3𝑅 − 𝛽𝑟𝑅𝑀,

d𝑅𝑋
d𝑡 = 𝛽𝑟𝑅𝑀 − 𝜇4𝑅𝑋 − 𝜂𝑅𝑋𝑍,
d𝑍
d𝑡 = 𝜆𝑧 + 𝜌3𝑅𝑋𝜅3 + 𝑅𝑋 − 𝛿𝑧𝑍,
d𝑆
d𝑡 = Λ − 𝛿𝑠𝑆 − 𝛽𝑠𝑆𝐻,

d𝑀
d𝑡 = 𝑁𝜇2𝐻𝑋 + 𝐾𝜁𝜇4𝑅𝑋 − 𝛿𝑚𝑀 − 𝛽𝑟𝑅𝑀,

(1)

where 𝐻(0) ≥ 0, 𝐻𝑋(0) ≥ 0, 𝑅(0) ≥ 0, 𝑅𝑋(0) ≥ 0, 𝑍(0) ≥ 0,𝑆(0) ≥ 0, and 𝑀(0) ≥ 0.
3. Model Analysis

3.1. Basic Properties. In this section, we study whether the
formulated model (1) is biologically and mathematically
meaningful. We establish model equilibrium points and
investigate their stability properties.

3.1.1. Well-Posedness of the Model. For the in-host malaria
model (1) to be mathematically and biologically meaningful,
we need to prove that all the solutions of model system (1)
with nonnegative initial conditions would remain nonnega-
tive for all time 𝑡 ≥ 0. Positivity in the model is shown by
proving the following theorem.
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Theorem 1. Let the parameters in model (1) be positive
constants. A nonnegative solution (𝐻(𝑡),𝐻𝑋(𝑡), 𝑅(𝑡), 𝑅𝑋(𝑡),𝑍(𝑡), 𝑆(𝑡),𝑀(𝑡)) exists for all the state variables with nonnega-
tive initial conditions {𝐻(0) = 𝐻0 ≥ 0, 𝐻𝑋(0) = 𝐻𝑋0 ≥ 0,𝑅(0) = 𝑅0 ≥ 0, 𝑅𝑋(0) = 𝑅𝑋0 ≥ 0, 𝑍(0) = 𝑍0 ≥ 0,𝑆(0) = 𝑆0 ≥ 0, 𝑀(0) = 𝑀0 ≥ 0}∀𝑡 ≥ 0.
Proof. Considering the first equation in system (1), let𝜓1(𝑡) =𝜌1𝐻𝑋/(𝜅1 + 𝐻𝑋), so that

d𝐻
d𝑡 = 𝜆ℎ + 𝜑 (𝑡) − 𝜇1𝐻 − 𝛽𝑠𝑆𝐻,
d𝐻
d𝑡 ≥ − (𝜇1 + 𝛽𝑠𝑆)𝐻, (2)

which yields𝐻(𝑡) ≥ 𝐻 (0) exp{−(∫𝑡
0
𝛽𝑠𝑆 (𝑠) 𝑑𝑠 + 𝜇1𝑡)} > 0. (3)

In a similar fashion, this procedure can be applied to all the
remaining six equations in model system (1), so that we have
the following solutions:𝐻𝑋 (𝑡) ≥ 𝐻𝑋 (0) exp {−𝜇2𝑡} > 0,𝑅 (𝑡) ≥ 𝑅 (0) exp{−(∫𝑡

0
𝛽𝑟𝑀(𝑠) 𝑑𝑠 + 𝜇3𝑡)} > 0,

𝑅𝑋 (𝑡) ≥ 𝑅𝑋 (0) exp{−(∫𝑡
0
𝜂𝑍 (𝑠) 𝑑𝑠 + 𝜇4𝑡)} > 0,𝑍 (𝑡) ≥ 𝑍 (0) exp {−𝛿𝑧𝑡} > 0,𝑆 (𝑡) ≥ 𝑆 (0) exp{−(∫𝑡

0
𝛽𝑠𝐻(𝑠) 𝑑𝑠 + 𝛿𝑠𝑡)} > 0,

𝑀 (𝑡) ≥ 𝑀 (0) exp{−(∫𝑡
0
𝛽𝑟𝑅 (𝑠) 𝑑𝑠 + 𝛿𝑚𝑡)} > 0.

(4)

Therefore, state variables (𝐻,𝐻𝑋, 𝑅, 𝑅𝑋, 𝑍, 𝑆,𝑀) of model
system (1) are nonnegative for all time 𝑡 > 0.
3.1.2. Invariant Region. Let𝑁𝐻(𝑡) represent the total hepato-
cyte population, so that 𝑁𝐻(𝑡) = 𝐻(𝑡) + 𝐻𝑋(𝑡).

On substituting the derivatives in system (1) and simpli-
fying, we have 𝑑𝑁𝐻𝑑𝑡 ≤ 𝜆ℎ + 𝜓1 (𝑡) − 𝜇ℎ𝑁𝐻, (5)

where 𝜓1(𝑡) = 𝜌1𝐻𝑋/(𝜅1 + 𝐻𝑋) and 𝜇ℎ = min{𝜇1, 𝜇2}.
Using integrating factor 𝑒𝜇ℎ𝑡,𝑁𝐻 (𝑡) ≤ 𝜆ℎ𝜇ℎ + 𝑒−𝜇ℎ𝑡 ∫𝑡

0
𝜓1 (𝜏) 𝑒𝜇ℎ𝜏𝑑𝜏 + 𝑐1𝑒−𝜇ℎ𝑡, (6)

where 𝑐1 is a constant of integration. By applying the initial
condition 𝑁𝐻(0) = 𝑁𝐻0 > 0 in (6), we obtain𝑐1 = (𝑁𝐻 (0) − 𝜆ℎ𝜇ℎ ) − ∫𝑡

0
𝜓1 (𝜏) 𝑒−𝜇ℎ𝜏𝑑𝜏. (7)

Substituting the value of 𝑐1 into𝑁𝐻(𝑡) in (6) and simplifying,
we get 𝑁𝐻 (𝑡) ≤ 𝜆ℎ𝜇ℎ + 𝑒−𝜇ℎ𝑡 (𝑁𝐻 (0) − 𝜆ℎ𝜇ℎ ) . (8)

There are two possible cases in analyzing the behaviour of𝑁𝐻(𝑡) in (8). In the first case, we consider 𝑁𝐻(0) > 𝜆ℎ/𝜇ℎ
so that, at time 𝑡 = 0, the right-hand side (RHS) of (8)
experiences the largest possible value of 𝑁𝐻(0). That is,𝑁𝐻(𝑡) ≤ 𝑁𝐻(0) for all time 𝑡 > 0.

In the second case, we consider 𝑁𝐻(0) < 𝜆ℎ/𝜇ℎ, so
that the largest possible value of the RHS of (8) approaches𝜆ℎ/𝜇ℎ as time 𝑡 goes to infinity. Thus, 𝑁𝐻(𝑡) ≤ 𝜆ℎ/𝜇ℎ,∀𝑡 > 0. From these two cases, we conclude that 𝑁𝐻(𝑡) ≤
max{𝑁𝐻(0), 𝜆ℎ/𝜇ℎ} for all time 𝑡 > 0.

Using the above approach, let the total red blood cells
population be 𝑁𝑅(𝑡), so that 𝑁𝑅(𝑡) = 𝑅(𝑡) + 𝑅𝑋(𝑡). From the
model equations in system (1), we have𝑑𝑁𝑅𝑑𝑡 ≤ 𝜆𝑟 + 𝜓2 (𝑡) − 𝜇𝑟𝑁𝑅 (𝑡) , (9)

where 𝜓2(𝑡) = 𝜌2𝑅𝑋/(𝜅2 + 𝑅𝑋) and 𝜇𝑟 = min{𝜇3, 𝜇4}. Upon
solving for 𝑁𝑅 in (9), we have 𝑁𝑅(𝑡) ≤ max{𝑁𝑅(0), 𝜆𝑟/𝜇𝑟},∀𝑡 > 0.

For the macrophage compartment 𝑍(𝑡), we have
d𝑍
d𝑡 = 𝜆𝑧 + 𝜓3 (𝑡) − 𝛿𝑧𝑍, for 𝜓3 (𝑡) = 𝜌3𝑅𝑋𝜅3 + 𝑅𝑋 . (10)

By integration, the solution of (10) is presented as𝑍 (𝑡) ≤ 𝜆𝑧𝛿𝑧 + 𝑒−𝛿𝑧𝑡 (𝑍 (0) − 𝜆𝑧𝛿𝑧 ) . (11)

By inspection, 𝑍(𝑡) ≤ max{𝑍(0), 𝜆𝑧/𝛿𝑧} for all time 𝑡 > 0.
Finally, let𝑁𝑃(𝑡) represent the total population ofmalaria

parasites at any time 𝑡. That is,𝑁𝑃(𝑡) = 𝑆(𝑡) +𝑀(𝑡) and, from
system (1),

d𝑁𝑃
d𝑡 = Λ − 𝛿𝑠𝑆 − 𝛽𝑠𝑆𝐻 + 𝑁𝜇2𝐻𝑋 + 𝐾𝜁𝜇4𝑅𝑋− 𝛿𝑚𝑀,≤ Λ + (𝐾𝜁𝜇4𝑅𝑋 + 𝑁𝜇2𝐻𝑋) − 𝛿𝑝𝑁𝑝,

where 𝛿𝑝 = min {𝛿𝑠, 𝛿𝑚} . (12)

Let (𝐾𝜁𝜇4𝑅𝑋 + 𝑁𝜇2𝐻𝑋) = 𝜓4(𝑡), so that on solving for𝑁𝑃(𝑡)
we get

𝑁𝑝 (𝑡) ≤ Λ𝛿𝑝 + 𝑒−𝛿𝑝𝑡 (𝑁𝑝 (0) − Λ𝛿𝑝) (13)

Clearly, the malaria parasite populations 𝑆(𝑡) and 𝑀(𝑡) are
bounded above. That is,𝑁𝑃(𝑡) ≤ max{𝑁𝑃(0), Λ/𝛿𝑝} for all time 𝑡 > 0.
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Based on this discussion, we have shown the existence of
a bounded positive invariant region for our model system (1).
Let us denote this region as Ω ∈ R7+, whereΩ = {(𝐻,𝐻𝑋, 𝑅, 𝑅𝑋, 𝑍, 𝑆,𝑀) ∈ R

7
+ : 𝑁𝑃 (𝑡)

≤ max{𝑁𝑃 (0) , Λ𝛿𝑝} ,𝑁𝐻 (𝑡)
≤ max{𝑁𝐻 (0) , 𝜆ℎ𝜇ℎ } ,𝑁𝑅 (𝑡)≤ max{𝑁𝑅 (0) , 𝜆𝑟𝜇𝑟 } , 𝑍 (𝑡) ≤ max{𝑍 (0) , 𝜆𝑧𝛿𝑧 }} .

(14)

Moreover, any solution of our system (1)which commences inΩ at any time 𝑡 ≥ 0will always remain confined in that region.
We therefore deduce that the region Ω is positively invariant
and attracting with respect to malaria model (1). Our in-host
malaria model (1) is hence well posed mathematically and
biologically.

3.1.3. Disease-Free Equilibrium Point. The disease-free equi-
librium point,E0, is the state in which the human host is free
of malaria infection. At E0, the sporozoite recruitment rate,Λ = 0, and parasite and host-infected compartments have
zero values; that is, 𝑆∗ = 𝑀∗ = 𝑅∗𝑋 = 𝐻∗𝑋 = 0. Therefore,

E0 = (𝐻∗, 𝐻∗𝑋, 𝑅∗, 𝑅∗𝑋, 𝑍∗, 𝑆∗,𝑀∗)= (𝜆ℎ𝜇1 , 0, 𝜆𝑟𝜇3 , 0, 𝜆𝑧𝛿𝑧 , 0, 0) . (15)

3.1.4. In-Host Basic Reproduction Number. The in-host repro-
duction number of model (1) denoted by 𝑅0 is computed
using the technique of the next-generation matrix approach
described in [41]. We consider 𝐻𝑋, 𝑅𝑋, 𝑆, and 𝑀 as the par-
asite infested compartments. Adopting the notations in [41],
we generate a nonnegative matrix 𝐹 of new infections and a
nonsingularmatrix𝑉, showing the transfer of infections from
one compartment to the other as follows:

𝐹 = ((
(

0 0 𝛽𝑠𝜆ℎ𝜇1 00 0 0 𝛽𝑟𝜆𝑟𝜇30 0 0 00 0 0 0
))
)

(16)

and

𝑉
= ((((

(
𝜇2 0 0 00 𝜇4 + 𝜂𝜆𝑧𝛿𝑧 0 00 0 𝛿𝑠 + 𝛽𝑠𝜆ℎ𝜇1 0−𝑁𝜇2 −𝐾𝜁𝜇4 0 𝛿𝑚 + 𝛽𝑟𝜆𝑟𝜇3

))))
)

. (17)

The inverse of matrix 𝑉 is hence given by

𝑉−1 = (((((
(

1𝜇2 0 0 00 𝛿𝑧𝜂𝜆𝑧 + 𝛿𝑧𝜇4 0 00 0 1𝛿𝑠 + 𝛽𝑠𝜆ℎ/𝜇1 0𝑁𝜇3𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3 𝐾𝜁𝛿𝑧𝜇3𝜇4(𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3) (𝜂𝜆𝑧 + 𝛿𝑧𝜇4) 0 1𝛿𝑚 + 𝛽𝑟𝜆𝑟/𝜇3
)))))
)

. (18)

The next-generation matrix 𝐺, which is the product of
matrices 𝐹 and 𝑉−1, works out to be

𝐺 = ((((
(

0 0 𝛽𝑠𝜆ℎ𝛽𝑠𝜆ℎ + 𝛿𝑠𝜇1 0𝑁𝛽𝑟𝜆𝑟𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3 𝐾𝜁𝛽𝑟𝛿𝑧𝜆𝑟𝜇4(𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3) (𝜂𝜆𝑧 + 𝛿𝑧𝜇4) 0 𝛽𝑟𝜆𝑟𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇30 0 0 00 0 0 0
))))
)

. (19)

167Mathematical Model for Hepatocytic-Erythrocytic Dynamics of Malaria

__________________________ WORLD TECHNOLOGIES __________________________



WT

The in-host basic reproduction number 𝑅0 is the spectral
radius of the next-generation matrix 𝐺. It can clearly be seen
that three of the four eigenvalues of matrix 𝐺 in (19) have
zero values; that is, 𝜆1 = 𝜆2 = 𝜆3 = 0. The fourth and
largest nonnegative eigenvalue 𝜆4 becomes the in-host model
reproduction number. We therefore have𝑅0 = 𝐾𝛽𝑟𝜆𝑟(𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3) ⋅ 𝜁𝛿𝑧𝜇4(𝜂𝜆𝑧 + 𝛿𝑧𝜇4) . (20)

The terms in model 𝑅0 can be interpreted as follows:

(1) The term 𝐾𝛽𝑟𝜆𝑟/(𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3) represents the
expected number of infectious merozoite parasites
resulting from bursting blood schizonts at the blood
stage of malaria infection.

(2) The second term 𝜁𝛿𝑧𝜇4/(𝜂𝜆𝑧 + 𝛿𝑧𝜇4) represents the
expected proportion of merozoites that participate in
the cycle of erythrocytic schizogony.

(3) Observe that the terms (𝛽𝑟𝜆𝑟)/(𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3) < 1
and (𝛿𝑧𝜇4)/(𝜂𝜆𝑧 + 𝛿𝑧𝜇4) < 1. So our 𝑅0 ≤ 𝐾𝜁.
This implies that the number of secondary infections
during malaria infections is largely influenced by the
average number of merozoites released 𝐾, from a
bursting blood schizont, most of which are respon-
sible for secondary infections at the blood stage.

Despite the inclusion of the liver stage dynamics, it is
interesting to observe that the above in-host reproduction
number and hence the disease progression are heavily driven
by the dynamics at the erythrocytic stage.

In the sections that follow, we shall establish both the local
stability and global stability of disease-free equilibrium point
(15) of model system (1).

3.1.5. Local Stability of the Disease-Free Equilibrium Point,E0.
The Jacobian matrix of model system (1) evaluated at the
disease-free equilibrium E0 is given by

𝐽1 (E0) =
(((((((((((((((((
(

−𝜇1 𝜌1𝜅1 0 0 0 −𝛽𝑠𝜆ℎ𝜇1 00 −𝜇2 0 0 0 𝛽𝑠𝜆ℎ𝜇1 00 0 −𝜇3 𝜌2𝜅2 0 0 −𝛽𝑟𝜆𝑟𝜇30 0 0 −𝜂𝜆𝑧𝛿𝑧 − 𝜇4 0 0 𝛽𝑟𝜆𝑟𝜇30 0 0 𝜌3𝜅3 −𝛿𝑧 0 00 0 0 0 0 −𝛽𝑠𝜆ℎ𝜇1 − 𝛿𝑠 00 𝑁𝜇2 0 𝐾𝜁𝜇4 0 0 −𝛽𝑟𝜆𝑟𝜇3 − 𝛿𝑚

)))))))))))))))))
)

. (21)

It is clear from the first, third, and fifth columns of matrix
(21) that the Jacobian matrix has negative eigenvalues 𝜆1 =−𝜇1, 𝜆2 = −𝜇3, and 𝜆3 = −𝛿𝑧. Upon deleting the first, third,
and fifth rows and columns, matrix (21) is reduced to the
following 4 × 4 matrix:

𝐽2 (E0)
= (((((

(

−𝜇2 0 𝛽𝑠𝜆ℎ𝜇1 00 −𝜂𝜆𝑧𝛿𝑧 − 𝜇4 0 𝛽𝑟𝜆𝑟𝜇30 0 −𝛽𝑠𝜆ℎ𝜇1 − 𝛿𝑠 0𝑁𝜇2 𝐾𝜁𝜇4 0 −𝛽𝑟𝜆𝑟𝜇3 − 𝛿𝑚
)))))
)

. (22)

From row three in (22),𝜆4 = −𝛽𝑠𝜆ℎ/𝜇1−𝛿𝑠.We further reduce
matrix (22) by deleting row three and column three. So,

𝐽3 (E0) = (−𝜇2 0 00 −𝜂𝜆𝑧𝛿𝑧 − 𝜇4 𝛽𝑟𝜆𝑟𝜇3𝑁𝜇2 𝐾𝜁𝜇4 −𝛽𝑟𝜆𝑟𝜇3 − 𝛿𝑚). (23)

Note from rowone of (23) that the fifth eigenvalue𝜆5 = −𝜇2 <0.
The remaining two eigenvalues can be obtained by reduc-

ing matrix (23) into the following 2 × 2 matrix:

𝐽6 (E0) = (−𝜂𝜆𝑧𝛿𝑧 − 𝜇4 𝛽𝑟𝜆𝑟𝜇3𝐾𝜁𝜇4 −𝛽𝑟𝜆𝑟𝜇3 − 𝛿𝑚). (24)

Using the variable 𝜆, the characteristic polynomial associated
with matrix (24) is 𝑝 (𝜆) = 𝜆2 + 𝐴𝜆 + 𝐵, (25)
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where 𝐴 = 𝛿𝑚 + 𝜂𝜆𝑧𝛿𝑧 + 𝛽𝑟𝜆𝑟𝜇3 + 𝜇4 and (26)

𝐵 = 𝜂𝛿𝑚𝜆𝑧𝛿𝑧 + 𝜂𝛽𝑟𝜆𝑟𝜆𝑧𝛿𝑧𝜇3 + 𝛿𝑚𝜇4 + 𝛽𝑟𝜆𝑟𝜇4𝜇3− 𝐾𝜁𝛽𝑟𝜆𝑟𝜇4𝜇3 . (27)

The characteristic polynomial (25) has negative roots (eigen-
values) if 𝐴 > 0 and 𝐵 > 0. The coefficient 𝐴 in (26) is
clearly positive. We now need to show that 𝐵 in (27) is strictly
positive if 𝑅0 < 1. This is done by expressing the coefficient
term 𝐵 in terms of model 𝑅0 as follows:𝐵 = 1𝛿𝑧𝜇3 [(𝜇4𝛿𝑧 + 𝜂𝜆𝑧) (𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3)− 𝐾𝜁𝛽𝑟𝛿𝑧𝜆𝑟𝜇4] ,= 1𝛿𝑧𝜇3 [(𝜇4𝛿𝑧 + 𝜂𝜆𝑧) (𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3)

⋅ [1 − 𝐾𝜁𝛽𝑟𝛿𝑧𝜆𝑟𝜇4(𝜇4𝛿𝑧 + 𝜂𝜆𝑧) (𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3)]] ,
= (𝜇4𝛿𝑧 + 𝜂𝜆𝑧) (𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3)𝛿𝑧𝜇3 [1 − 𝑅0] .

(28)

It can clearly be seen from (28) that the coefficient𝐵 is positive
if and only if 𝑅0 < 1. We have thus established the following
result.

Theorem 2. The disease-free equilibrium E0 is locally asymp-
totically stable in Ω if 𝑅0 < 1. If 𝑅0 > 1, then E0 is unstable.

Biologically, Theorem 2 implies that malaria infection
can be eliminated from the human host when 𝑅0 < 1.
To ensure that elimination of malaria is independent of the
initial sizes of the subpopulations, it is necessary to show that
E0 is globally asymptotically stable in Ω, where the model is
mathematically and biologically sensible.

3.1.6. Global Asymptotic Stability of the Disease-Free Equilib-
rium. Using the results obtained in [42], we show that the
malaria-free equilibrium state E0 is globally asymptotically
stable when 𝑅0 < 1. We begin by rewriting the model system
(1) in pseudotriangular form as follows:�̇�1 = 𝐴1 (𝑋) (𝑋1 − 𝑋∗1 ) + 𝐴2 (𝑋)𝑋2,�̇�2 = 𝐴3 (𝑋)𝑋2, (29)

where 𝑋1 is the vector representing the state of different
compartment of liver and blood cells that are not infected and
do not transmit malaria infections. 𝑋2 represents the states
of malaria parasites and host’s cells that are responsible for
disease transmission. Hence,𝑋 = (𝑋1, 𝑋2) ,𝑋1 = (𝐻, 𝑅, 𝑍) ,𝑋2 = (𝐻𝑋, 𝑅𝑋, 𝑆,𝑀) and𝑋∗1 = (𝜆ℎ𝜇1 , 𝜆𝑟𝜇3 , 𝜆𝑧𝛿𝑧 ) .

(30)

From the subsystem 𝑋1, we have
𝐴1 (𝑋) = (−𝜇1 0 00 −𝜇3 00 0 −𝛿𝑧) and

𝐴2 (𝑋) = (𝜌1𝜅1 0 −𝜆ℎ𝜇1 𝛽𝑠 00 𝜌2𝜅2 0 −𝜆𝑟𝜇3 𝛽𝑟0 𝜌3𝜅3 0 0 ). (31)

A direct computation indicates that the eigenvalue of matrix𝐴1(𝑋) is real and negative. This shows that the system �̇�1 =𝐴1(𝑋)(𝑋1 −𝑋∗1 ) + 𝐴2(𝑋)𝑋2 is globally asymptotically stable
at the disease-free equilibrium, E0. Similarly, the subsystem𝑋2 gives rise to the following matrix 𝐴3(𝑋):

𝐴3 (𝑋) = (((((((
(

−𝜇2 0 𝛽𝑠 𝜆ℎ𝜇1 00 −(𝜂𝜆𝑧𝛿𝑧 + 𝜇4) 0 𝛽𝑟 𝜆𝑟𝜇30 0 −(𝛽𝑠 𝜆ℎ𝜇1 + 𝛿𝑠) 0𝑁𝜇2 𝐾𝜁𝜇4 0 −(𝛽𝑟 𝜆𝑟𝜇3 + 𝛿𝑚)
)))))))
)

. (32)

It can clearly be seen that 𝐴3(𝑋) is a Metzler matrix:
all the off-diagonal elements of 𝐴3(𝑋) are nonnegative.

In order to establish the global stability of the disease-
free equilibrium, we need to show that the matrix 𝐴3(𝑋)
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is Metzler stable by providing a proof of the following
lemma.

Lemma 3. Let 𝑀 be a square Metzler matrix that is block
decomposed: 𝑀 = (𝐴 𝐵𝐶 𝐷) , (33)

where 𝐴 and 𝐷 are square matrices. The matrix 𝑀 is Metzler
stable if and only if 𝐴 and 𝐷 − 𝐶𝐴−1𝐵 are Metzler stable.

In our case, matrix𝑀 is represented bymatrix𝐴3 in (32),
so that𝐴 = (−𝜇2 00 −(𝜂𝜆𝑧𝛿𝑧 + 𝜇4)) ,

𝐵 = (𝛽𝑠 𝜆ℎ𝜇1 00 𝛽𝑟 𝜆𝑟𝜇3),
𝐶 = ( 0 0𝑁𝜇2 𝐾𝜁𝜇4 ) and

𝐷 = (−(𝛽𝑠 𝜆ℎ𝜇1 + 𝛿𝑠) 00 −(𝛽𝑟 𝜆𝑟𝜇3 + 𝛿𝑚) ) .
(34)

Upon computation in Mathematica software, we obtain𝐷 − 𝐶𝐴−1𝐵 = (−𝜔1 0𝜔2 −𝜔3) , (35)

where 𝜔1 = 𝛿𝑠 + 𝛽𝑠(𝜆ℎ/𝜇1), 𝜔2 = 𝑁𝛽𝑠𝜆ℎ/𝜇1, and 𝜔3 = 𝛿𝑚 +𝛽𝑟𝜆𝑟(𝜂𝜆ℎ + (1 − 𝐾𝜁)𝛿𝑧𝜇4)/𝜇3(𝜂𝜆𝑧 + 𝛿𝑧𝜇4).
For the matrix 𝐷 − 𝐶𝐴−1𝐵 to be Metzler stable, 𝜔3

should be strictly nonnegative. Therefore, the expression in
the numerator𝛽𝑟𝜆𝑟 (𝜂𝜆ℎ + (1 − 𝐾𝜁) 𝛿𝑧𝜇4) ≥ 0. (36)

Upon simplification of (36),𝐾𝜁𝛽𝑟𝜆𝑟𝛿𝑧𝜇4 ≤ 𝛽𝑟𝜆𝑟 (𝜂𝜆ℎ + 𝛿𝑧𝜇4) , (37)(𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3𝛽𝑟𝜆𝑟 )( 𝐾𝜁𝛽𝑟𝜆𝑟𝛿𝑧𝜇4(𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3) (𝜂𝜆𝑧 + 𝛿𝑧𝜇4))≤ 1, (38)

(𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3𝛽𝑟𝜆𝑟 )𝑅0 ≤ 1 (39)

𝑅0 ≤ 𝛽𝑟𝜆𝑟𝛽𝑟𝜆𝑟 + 𝛿𝑚𝜇3 < 1. (40)

Clearly, matrix 𝐴 in (34) is Metzler stable. However, the
matrix 𝐷 − 𝐶𝐴−1𝐵 is Metzler stable if and only if 𝑅0 < 1.
From Lemma 3, we deduce the following theorem.

Theorem 4. Themalaria-free equilibriumE0 of model system
(1) is globally asymptotically stable if the threshold quantity𝑅0 < 1.

The above result is quite significant in malaria control.
The global stability of the disease-free statuswould be guaran-
teed if and only if the in-host basic reproduction number𝑅0 is
less than one. Malaria intervention should therefore focus on
eliminating infected erythrocytes and/or malaria merozoites
that are responsible for erythropoiesis cycle and invasions at
the blood stage.

3.2. The Endemic Equilibrium Analysis. When 𝑅0 > 1, the
stability of the disease-free equilibrium (15) is violated. A
different equilibrium state termed the endemic equilibrium is
achieved. Equating to zero the RHS of system (1) and solving
for the state variables 𝑅, 𝐻, 𝑍, 𝑆, and 𝑀 in terms of the
infected states𝐻𝑋 and 𝑅𝑋, we obtain the endemic stateE1 =(𝐻∗, 𝐻∗𝑋, 𝑅∗, 𝑅∗𝑋, 𝑍∗, 𝑆∗,M∗), where𝐻∗ = 1𝜇1 {𝜆ℎ + 𝜌1𝐻∗𝑋𝜅1 + 𝐻∗𝑋 − 𝜇2𝐻∗𝑋} ,

𝑆∗ = 𝜇1𝜇2𝐻∗𝑋𝛽𝑠 (𝜆ℎ + 𝜌1𝐻∗𝑋/ (𝜅1 + 𝐻∗𝑋) − 𝜇2𝐻∗𝑋) , (41)

𝑅∗ = 1𝜇3 {𝜆𝑟 + 𝜌2𝑅∗𝑋𝜅2 + 𝑅∗𝑋 − 𝜇4𝑅∗𝑋} ,
𝑀∗ = 𝜇3 (𝑅∗𝑋𝜇4 + 𝜂𝑅∗𝑋 (𝜌3𝑅∗𝑋/ (𝜅3 + 𝑅∗𝑋) + 𝜆𝑧)𝜇1 ) (42)

𝑍∗ = 1𝛿𝑧 {𝜆𝑧 + 𝜌3𝑅∗𝑋𝜅3 + 𝑅∗𝑋} (43)

Substituting (41) into the 2𝑛𝑑 equation in (1) and simplifying,
we obtain the following cubic equation:𝛼3𝐻∗3𝑋 + 𝛼2𝐻∗2𝑋 + 𝛼1𝐻∗𝑋 + 𝛼0 = 0, (44)

where𝛼3 = 𝜇22𝛽𝑠 > 0,𝛼2 = 𝜇2 (𝜇1 (−𝛿𝑠) − 𝛽𝑠 (𝜆ℎ − 𝜅1𝜇2 + Λ + 𝜌1)) ,𝛼1 = 𝛽𝑠 (𝜆ℎ (Λ − 𝜅1𝜇2) + Λ (𝜌1 − 𝜅1𝜇2))− 𝜅1𝜇1𝜇2𝛿𝑠, and𝛼0 = 𝜅1Λ𝜆ℎ𝛽𝑠 > 0.
(45)

The number and nature of the roots of (44) are determined
by the following discriminant:Δ = 18𝛼3𝛼2𝛼1𝛼0 − 4𝛼23𝛼0 + 𝛼22𝛼12 − 4𝛼3𝛼13− 27𝛼32𝛼02. (46)
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So

(i) if Δ = 0, then (44) has multiple real roots and only
one endemic equilibrium would exist,

(ii) if Δ < 0, then (44) has 1 real root and a complex con-
jugate root and hence only one endemic equilibrium,

(iii) ifΔ > 0, then (44) has 3 distinct real roots and so there
is more than one endemic equilibrium when 𝑅0 > 1
for model system (1).

Analysis under (46) implies that, in the absence of external
interventions in the form of antimalarial treatment, there
will always be some infected hepatocytes during malaria
infection. We then evaluate the possible values of the state
variable 𝑅𝑋 at equilibrium by substituting expressions in (42)
and (43) into the 4𝑡ℎ equation in (1). After simplification
in Mathematica software, we obtain the following cubic
equation: 𝑅∗𝑋 (𝜃3𝑅∗3𝑋 + 𝜃2𝑅∗2𝑋 + 𝜃1𝑅∗𝑋 + 𝜃0) = 0, (47)

where𝜃3 = −𝜇4𝛽𝑟 (𝜇1𝜇4 + 𝜂 (𝜌3 + 𝜆𝑧)) < 0,𝜃2 = 𝜂𝜌3 (𝛽𝑟 (−𝜅2𝜇4 + 𝜌2 + 𝜆𝑟) − 1) + (𝜇1𝜇4 + 𝜂𝜆𝑧)⋅ (𝛽𝑟 (− (𝜅2 + 𝜅3) 𝜇4 + 𝜌2 + 𝜆𝑟) − 1) ,𝜃1 = 𝜂𝜅2𝜌3 (𝛽𝑟𝜆𝑟 − 1) − (𝜇1𝜇4 + 𝜂𝜆𝑧) (𝜅3+ 𝜅2 (𝛽𝑟 (𝜅3𝜇4 − 𝜆𝑟) + 1) + 𝜅3 (−𝛽𝑟) (𝜌2 + 𝜆𝑟)) ,𝜃0 = 𝜅2𝜅3 (𝛽𝑟𝜆𝑟 − 1) (𝜇1𝜇4 + 𝜂𝜆𝑧) .
(48)

Clearly, 𝑅∗𝑋 = 0 or𝜃3𝑅∗3𝑋 + 𝜃2𝑅∗2𝑋 + 𝜃1𝑅∗𝑋 + 𝜃0 = 0. (49)

The state 𝑅∗𝑋 = 0 corresponds to a scenario in which there
are no parasite-infected red blood cells. This could signify
the liver stage of parasite development so that an endemic
state (𝐻∗∗, 𝐻∗∗𝑋 , 𝑅∗∗, 0, 0, 𝑆∗∗, 0) exists. Alternatively, 𝑅∗𝑋 = 0
could correspond to the disease-free equilibrium point (15)
for system (1).

The roots of the cubic equation (49) are given as𝑅∗𝑋1 = − 𝜅3 (𝜇1𝜇4 + 𝜂𝜆𝑧)𝜂𝜌3 + 𝜇1𝜇4 + 𝜂𝜆𝑧 < 0,
𝑅∗𝑋2,3 = (𝛽𝑟𝜆𝑟 − 𝜅2𝜇4𝛽𝑟 + 𝜌2𝛽𝑟 − 1) ± √Θ2𝜇4𝛽𝑟 , (50)

where Θ = 4𝜇4𝛽𝑟 (𝜅2𝛽𝑟𝜆𝑟 − 𝜅2)+ (𝛽𝑟𝜆𝑟 − 𝜅2𝜇4𝛽𝑟 + 𝜌2𝛽𝑟 − 1)2 . (51)

The root 𝑅∗𝑋1 < 0 should be ignored, since all the model state
variables are nonnegative for all time 𝑡 ≥ 0. This leaves 𝑅∗𝑋2,3
as the only two possible roots of (49).

From the above discussion, model (1) could experience
a single endemic state or multiple endemic states subject to
the roots of (44) and (47). If 𝑅∗𝑋2,3 are real and positive,
then one or two endemic equilibrium points are possible
for model (1). It is thus evident that the explicit form of
the endemic equilibrium state for model (1) is cumbersome.
We shall therefore show its existence numerically based on
a certain choice of parameter values in Section 4. Note that
case (iii) of (46) indicates the possibility of having multiple
endemic equilibria and hence the likelihood of experiencing a
backward bifurcation phenomenon. This will be investigated
in another research paper.

4. Numerical Simulations and Discussions

In this section, we provide some numerical simulations to
illustrate the behaviour of model system (1). We carry out
model sensitivity analysis and investigate parameter influence
on the dynamics of red blood cells, macrophages, and
malaria parasites under different conditions on the in-host
reproduction number, 𝑅0.
4.1. Sensitivity Analysis. In epidemic modelling, sensitivity
analysis is performed to investigate model parameters with
significant influence on𝑅0 andhence on the transmission and
the spread of the disease under study [43]. Following [44], the
normalised forward-sensitivity index of a variable, △, which
depends differentially on a parameter, 𝛼, is defined asΥ△𝛼 = 𝜕△𝜕𝛼 × 𝛼△. (52)

Using the formulation in (52) and the parameter values in
Table 3, the local sensitivity indices (SI) of 𝑅0 (see (20)) rel-
ative to the model parameters are calculated in Mathematica
software and the results summarised inTable 4.Note that, due
to limited data on in-host dynamics, all the parameter values
used in evaluating the sensitivity indices are obtained from
indicated past literature.

A positive sign on the SI indicates that an increase
(decrease) in the value of such a parameter increases
(decreases) the value of 𝑅0 and hence the growth of malaria
infection. On the other hand, a negative sign is indicative of
a parameter that negatively affects 𝑅0. In order to eliminate
in-host malaria infection, the in-host reproduction number
should be less than one, that is, 𝑅0 < 1.

The average number of merozoites released per bursting
infected erythrocyte𝐾 and the proportion of merozoites that
cause secondary invasions at the blood phase 𝜁 are the most
sensitive parameters in determining the disease outcomes.
They have the highest sensitivity indices of +1.0000. For
instance, a 10% increase (decrease) 𝜁 or 𝐾 generates a
10% increase (decrease) on 𝑅0 and hence malaria infection
severity.

The parameters 𝜆𝑧, 𝜂, 𝜇4, and 𝛿𝑧 occupy the second
rank in influencing the model outcomes. An increase in
the parameters 𝜇4 and 𝛿𝑧 is likely to increase the model𝑅0. On the other hand, an increase in 𝜆𝑧 and 𝜂 has a
direct negative influence on 𝑅0. Macrophages are highly
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Table 3: Parameter values used in the numerical simulation and demonstration of the existence of endemic equilibrium point. See Table 2
for detailed parameter descriptions.

Symbol Interpretation Value Source𝛿𝑧 Death rate of macrophages 0.05/day [19]𝛿𝑠 Death rate of sporozoites 1.2 × 10−11 /day [20]𝜂 Elimination rate of IRBCs by macrophages 10−10𝑐𝑒𝑙𝑙𝑠𝜇𝑙−1//𝑑𝑎𝑦 [19]𝜆ℎ Recruitment rate of 𝐻 2.5 × 108𝑐𝑒𝑙𝑙𝑠/𝜇𝑙−1/𝑑𝑎𝑦 [21]𝜌1 Production rate of 𝐻 due to 𝐻𝑋 2.5 × 10−5/𝑑𝑎𝑦 [19]𝜇1 Death rate of 𝐻 0.029 /day [20]Λ Rate of injection of sporozoites 20 sporozoites/day [20]𝜌2 Production rate of RBCs due to IRBCs 2.5 × 10−5/𝑑𝑎𝑦 [19]𝛽𝑠 Hepatocyte invasion rate 1.0 × 10−6/𝑠𝑝𝑜𝑟𝑜𝑧𝑜𝑖𝑡𝑒𝑠/𝑑𝑎𝑦 [20]𝜌3 Immunogenicity of IRBCs 2.5 × 10−5/𝑑𝑎𝑦 [19]𝜇2 Death rate of infected hepatocytes 0.02/day [20]𝜅1 Inhibition rate 1 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙−1 [22]𝜆𝑟 Recruitment rate of RBCs 2.5 × 108𝑐𝑒𝑙𝑙𝑠/𝜇𝑙−1/𝑑𝑎𝑦 [23]𝜁 Merozoites that cause secondary infections 0.726 (unitless) [24]𝜇3 Death rate of healthy RBCs 0.0083/day [23]𝜅2 Inhibition rate 1 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙−1 [22]𝛽𝑟 Invasion rate of RBCs 2.0 × 10−9/𝑚𝑒𝑟𝑜𝑧𝑜𝑖𝑡𝑒𝑠/𝑑𝑎𝑦 [23]𝑁 Merozoites per liver schizont 10000/day [21]𝜇4 Death rate of infected RBCs 0.025/day [19]𝜅3 Inhibition rate 1 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙−1 [22]𝛿𝑚 Death rate of merozoites 48/day [23]𝐾 Merozoites per blood schizont 16 [21]𝜆𝑧 Recruitment rate of macrophages 30/𝜇𝑙−1/𝑑𝑎𝑦 [19]

Table 4: Sensitivity indices of 𝑅0 relative to the model parameters.

Parameter SI Parameter SI
K +1.0000 𝜁 +1.0000𝛽𝑟 +0.920422 𝜇3 -0.920422𝜆𝑟 +0.920422 𝜆𝑧 -0.998585𝜇4 +0.998585 𝜂 -0.998585𝛿𝑧 +0.998585 𝛿𝑚 -0.920422

instrumental in malaria parasite clearance and should be
preserved.

The rate of generation of macrophages from the bone
marrow, 𝜆𝑧, together with the rate of phagocytosis of infected
red blood cells, 𝜂, is likely to decrease, proportionally, the
disease progression when they are increased. With increased𝜆𝑧, there would be more macrophages to phagocytose
and clear the rapidly growing density of blood schizonts.
This would negatively affect the erythrocytic schizogony.
Decreased clearance rate by macrophages would only guar-
antee successful multiplication of the merozoites through
the erythrocytic schizogonic cycle. The subsequent result is
increased concentration of merozoites in the host blood and
disease progression to even deadly levels.

The parameters 𝛽𝑟 and 𝜆𝑟 increase (or decrease) 𝑅0
when they are increased (or decreased). Epidemiologically, an
improved erythrocyte invasion rate, 𝛽𝑟, is likely to generate
even more new blood schizonts. This increases parasitemia

in the host. A 10% increase (decrease) in 𝛽𝑟 would increase
(decrease) the threshold parameter 𝑅0 by about +9.2%.

Any therapeutic effort that clears the blood schizonts and
the infectious merozoites at the blood stage would definitely
guarantee immense reduction in model 𝑅0. Therefore, an
increase in the death rate of the infected red blood cells
and that of the merozoites is likely to decrease significantly
the in-host reproduction number 𝑅0. This can be achieved
through the use of effective antimalarials such as the use
of artemisinin based combination therapy (ACT) in malaria
treatment. Moreover, effective vaccines at the erythrocytic
stage could greatly help minimize erythrocyte infection rate𝛽𝑟.

Since the local sensitivity indices are relatively close, we
carry out further investigation on parameter influence on
disease progression by generating the partial rank correlation
coefficients (PRCCs) for each parameter value inmodel𝑅0 in
the following section.
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4.1.1. Global Sensitivity Analysis. A global sensitivity analysis
(GSA) is performed to examine the response of an epi-
demic model to parameter variation within a wider range
of parameter space [45]. Applying the approach in [45], the
PRCCs between the in-host basic reproduction number 𝑅0
and each of the parameters in Table 2 are derived. Using
1000 simulations per run of the Latin Hypercube Sampling
(LHS) scheme [46], the established PRCCs are derived and
presented in Figure 2.

Unlike the results in Table 4, the model parameter with
the highest influence on 𝑅0 according to the PRCCs results
shown in Figure 2 is the rate of invasion of red blood cells by
merozoites,𝛽𝑟.This is followed closely by the recruitment rate
of susceptible red blood cells 𝜆𝑟 from the bone marrow. The
second set of parameters that also increase (decrease) model𝑅0 when they are increased (decreased) are 𝜁, 𝐾, 𝜇3, and 𝛿𝑧,
respectively.

The merozoites’ death rate 𝛿𝑚, the death rate of IRBCs𝜇4, and the rate of elimination of IRBCs by macrophages𝜂 are shown to have the highest negative influence on
disease progression. Although an increase in 𝜇4 was shown
to decrease disease progression in Table 4, the results from
global sensitivity analysis are contradictory. An increase
in the death rate of parasitized erythrocytes 𝜇4 decreases
parasitemia and hence disease progression.

Based on these results of sensitivity analysis, we make
the following remarks: (1) results of global sensitivity analysis
are robust and a lot more realistic for implementation,
(2) malaria control should target elimination of merozoites
and infected red blood cells, (3) an effective and efficient
malaria vaccine that deactivates infectious merozoites could
be helpful in limiting erythrocyte invasion rate, and (4) a
vaccine that is protective of susceptible erythrocytes could
further ensure reduced density of second and future gener-
ation of merozoites that are responsible for disease progres-
sion.

4.2. Numerical Results. Model system (1) is solved numer-
ically using the package scipy.integrate.odeint in Python
language. The simulations are performed to illustrate the
possible dynamics of the red blood cells, the malaria parasite,
and macrophages. For purposes of these simulations, the
initial conditions of the variables are hereby assumed. We
note that different dynamics could be achieved for a different
set of initial conditions.

For 𝑅0 < 1 (see Figure 3), the density of suscepti-
ble hepatocyte initially declines as the density of infected
hepatocytes rises due to invasion from sporozoites. The
host’s immune system responds to sporozoite invasion by
increasing hepatocyte density that levels off at the disease-
free equilibriumpointE0 (see Figure 3(a)). As the sporozoites
decline to near zero (see Figure 3(b)), infected hepatocytes
decline and stabilize at E0 in (15).

At the blood stage, the rising density of infected erythro-
cytes declines in a similar fashion to that of the infective
merozoites when 𝑅0 < 1 (see Figure 3(c)). The densities
of the infected erythrocytes and merozoites approach E0
asymptotically. On the other hand, we observe that the
density of susceptible red blood cells initially diminishes due
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Figure 2: Tornado plots of PRCCs of parameters that influence
model 𝑅0 generated using parameter values in Table 3. Parameters
with 𝑃𝑅𝐶𝐶 > 0 and 𝑃𝑅𝐶𝐶 < 0 increase and decrease model 𝑅0,
respectively.

to infection by merozoites and later rises before it plateaus as
shown in Figure 3(c).

When 𝑅0 > 1, a sharp fall in the density of susceptible
hepatocytes in the liver is observed (see Figure 4(a)). This
is due to rapid invasion of hepatocytes by the sporozoites.
An invasion on susceptible hepatocyte generates a corre-
sponding steady rise in the density of infected hepatocytes
(see Figure 4(b)). Owing to natural intervention by the
immune system cells, the respective decline and rising levels
of susceptible and infected hepatocytes level off and remain
relatively constant after the third month. More liver cells are
generated to replace infected ones. Figure 4(c) indicates a
steady decline in sporozoite density at the liver stage during
infections. Invaded hepatocytes burst open to produce mero-
zoites instead of sporozoites and hence the steady decline in
sporozoite levels.

Malaria infection dynamics are most rapid in the first 2
weeks within the host liver as illustrated in Figures 4(a), 4(b),
and 4(c). This is similar to results in [22, 31]. In the absence
of clinical intervention, some of the sporozoites may remain
dormant in the human liver and could cause future malaria
infections. As the liver schizonts releasemerozoites into host’s
blood stream, a rapid decline in the density of red blood cells
is observed (see Figure 5(a)). However, the density of infected
erythrocytes is noted to rise with equal proportion as shown
in Figure 5(b).

An early sharp rise in the density of merozoites in the
first one week of the blood stage is noted in Figure 5(c). The
density remains high for several weeks and does not decline
for the entire infection period of one month. A second-
generation merozoite invades other sets of healthy erythro-
cytes within minutes, leading to an exponential growth in
the density of blood schizonts and hence merozoites in
the human blood. Without therapeutic intervention, the
density of merozoites stabilizes several weeks after infection
at the endemic equilibrium point. This is consistent with the
findings in [19, 20, 23].
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Figure 3: Graphs showing the simulation of in-host malaria model (1) when the model 𝑅0 = 0.22866 < 1. Figures (a) and (b) show model
dynamics at the liver stage. The chosen initial conditions are 𝐻0 = 300000, 𝐻𝑋0 = 20000, 𝑅0 = 500000, 𝑅𝑋0 = 50, 𝑍0 = 300000, 𝑆0 = 2000,
and 𝑀 = 70. Used parameter values are given in Table 3.

The invasion of healthy erythrocytes prompts an immune
response from host’s macrophages. These macrophages
phagocyte on the generated blood schizonts. At the onset
of erythrocytic infection, several macrophages are generated.
The rise in the density of macrophages is proportional to that
of infected erythrocytes as shown in Figure 5(d). This rising
density is shown to level off after about 16 days at the endemic
equilibrium point. It remains high throughout the infection
period.

From these discussions, we make the following observa-
tions: (1) if 𝑅0 < 1, low level malaria infection can easily be
contained by the host’s defence mechanism and loss of life
is less likely; (2) therapeutically, 𝑅0 < 1 may be achieved

through quick interventions targeting the blood schizonts
and the merozoites responsible for secondary infections
during the erythrocytic cycle; (3) Figures 4 and 5 prove the
existence of malaria endemic equilibrium point.

Hematological parameters such as the density of healthy
and infected erythrocytes in malaria hosts have considerable
influence on malaria infection and possible impacts [47].
According to WHO [48], hyperparasitemia causes dras-
tic reduction in concentrations of erythrocytes, leading to
anaemia among malaria patients. The impacts of increasing
the model parameters 𝛿𝑚 and 𝛽𝑟 on healthy and infected
red blood cells are as shown in Figures 6 and 7, respec-
tively.
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(a) Susceptible hepatocytes (b) Infected hepatocytes

(c) Sporozoites

Figure 4: Graphs showing population dynamics of the liver hepatocytes and malaria sporozoites when 𝑅0 = 1.58690 > 1. Used parameter
values can be found in Table 3 with the chosen initial conditions described by 𝐻0 = 300000, 𝐻𝑋0 = 10, 𝑅0 = 500000, 𝑅𝑋0 = 10, 𝑍0 = 10,𝑆0 = 2000, and 𝑀 = 20.

Observe that increased death rate of malaria merozoites𝛿𝑚 decreases and increases the concentration of parasitized
red blood cells and healthy red blood cells, respectively (see
Figures 6(a) and 6(b)). Malaria control should thus target the
infectious merozoites at the blood stage.

Results in Figure 7(a) indicate that an improved invasion
rate by merozoites on susceptible red blood cells causes more
loss in healthy erythrocytes. The reverse effect is observed
in Figure 7(b), where an increase in the rate of infection of
healthy erythrocytes produces a corresponding increase in
the density of IRBCs. A keen look at Figure 7(b) reveals that
the infected red blood cells begin to appear after about 10–15
days of initial infection.This is consistent with the incubation
period of Plasmodium falciparummalaria [49].

The severity of malaria infection can easily increase if the
density or production of macrophages is compromised [19].
Figure 8(b) shows a near direct relationship on the density
of infected red blood cells 𝑅𝑋 and the death rate of the
macrophages 𝛿𝑧. An increase in the death of macrophages

would propel erythrocytic schizogony and hence increased
merozoite numbers in the human blood. A high merozoite
density increases the severity of malaria infection. This
result is quite vital in malaria intervention, especially with
respect to malaria patients who may be suffering from other
infections that are deleterious to immune cells. Diseases
such as HIV/AIDS greatly weaken the immune system of
the patient as crucial immune cells such as macrophages
are destroyed. Macrophages are important target cells for
HIV-1 virus [50]. During malaria infections, such patients
often suffer from severe malaria and should seek immediate
medical attention.

Like the senescent red blood cells, aberrant infected
erythrocytes formed during malaria infection are eliminated
phagocytically by the host’s macrophage cells in the red pulp
of the spleen [51]. The phagocytic potential of the spleen
is vital at the erythrocytic cycle. The higher the phagocytic
behaviour of the macrophage, the lower the density of
parasitized erythrocytes (see Figure 8(a)). The severity of
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Figure 5: Graphs showing population dynamics of red blood cells, macrophages, andmalaria merozoites when𝑅0 = 1.58690 > 1. Simulation
parameter values are available in Table 3.

malaria infection increases with decreasing ability of the
host’s phagocytic merozoites to clear infected red blood cells
from circulation during the erythrocytic cycle.

5. Conclusion and Discussion

In this paper, a mathematical model of in-host malaria infec-
tion in [21] is extended to include the liver stage of parasite
development. Unlike themodels in [19, 23, 30], we considered
the macrophages as the most effective innate immune cells
in eliminating malaria parasites from the human blood
circulation. In addition, the liver hepatocytes are assumed to
be generated from the bonemarrow and through a process of
self-regeneration from existing hepatocytes.

We proved that the formulated model is biologically and
mathematically well posed in an invariant region Ω. The
malaria-free equilibrium is shown to be locally asymptotically
stable when the in-host reproduction number is less than
unity. The global stability of the malaria-free state is only
guaranteed if the threshold quantity 𝑅0 is less than unity.

Our numerical results show that intervention during
malaria infection should focus on minimizing merozoite
invasion rate on healthy erythrocytes and the density of
merozoites in circulation, which are responsible for sec-
ondary invasion at the blood stage. In the absence of malaria
treatment, the immune cells (macrophages) are shown to be
vital in eliminating infected red blood cells at the blood stage.
The higher the rate of phagocytosis of infected erythrocytes
by macrophages, the lower the density of infected red blood
cells and hence malaria parasitemia. Patients suffering from
such infections as HIV/AIDS and TB that have deleterious
effect on the protective immune cells should seek immediate
medical treatment when infected with malaria. Their com-
promised immune system exposes them to severe malaria
attacks and possible untimely death.

For quick and timely reduction of parasitemia, an
increased merozoite death rate using antimalarial drugs such
as ACT would be necessary. This would further ensure
reduced density of infected red blood cells and hence future
generation merozoites. By killing a single blood schizont,
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Figure 6: Graphs showing the behaviour of (a) susceptible RBCs and (b) infected RBCs. They were obtained by varying the death rate of
merozoites 𝛿𝑚 from 20 to 80 in steps of 20, while keeping the other parameters (see Table 3) constant.
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Figure 7: Graphs showing the behaviour of (a) susceptible RBCs and (b) infectedRBCs.Theywere obtained by varying themerozoite invasion
rate 𝛽𝑟 from 2 × 10−8 to 2 × 10−5 in steps of 10−1, while keeping the other parameters in Table 3 constant.

we are likely to avoid the production of sixteen merozoites
at maturity. Moreover, an appropriate vaccine that targets
erythrocyte invasion process may equally guarantee minimal
erythropoiesis. The erythrocyte invasion-avoidance vaccine
would minimize the density of infected erythrocytes and
hence malaria disease severity. This intervention could help
terminate the erythrocytic schizont, leading tominimal para-
site transmission to mosquito vector for further development
and sexual reproduction.

In this study, drug resistance was not analyzed; this
can be considered as a potential area for future investiga-
tion.
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Let 𝐺(𝑉, 𝐸) be a graph with the vertex set 𝑉 and the edge set 𝐸, respectively. By a graph 𝐺 = (𝑉, 𝐸) we mean a finite undirected
graph with neither loops nor multiple edges. The number of vertices of 𝐺 is called order of 𝐺 and it is denoted by 𝑝. Let 𝐺 be a(𝑝, 𝑞) graph. A super mean graph on 𝐺 is an injection 𝑓 : 𝑉 → {1, 2, 3 . . . , 𝑝 + 𝑞} such that, for each edge 𝑒 = 𝑢V in 𝐸 labeled by𝑓∗(𝑒) = ⌈(𝑓(𝑢) + 𝑓(V))/2⌉, the set 𝑓(𝑉) ∪ {𝑓∗(𝑒) : 𝑒 ∈ 𝐸} forms {1, 2, 3, . . . , 𝑝 + 𝑞}. A graph which admits super mean labeling is
called super mean graph. The total graph 𝑇(𝐺) of 𝐺 is the graph with the vertex set 𝑉 ∪ 𝐸 and two vertices are adjacent whenever
they are either adjacent or incident in 𝐺. We have showed that graphs 𝑇(𝑃

𝑛
) and 𝑇(𝐶

𝑛
) are super mean, where 𝑃

𝑛
is a path on 𝑛

vertices and 𝐶
𝑛
is a cycle on 𝑛 vertices.

1. Introduction and Preliminary Results

Let 𝐺(𝑉, 𝐸) be a graph with the vertex set 𝑉 and the edge
set 𝐸, respectively. By a graph 𝐺 = (𝑉, 𝐸) we mean a finite
undirected, graph with neither loops nor multiple edges. The
number of vertices of 𝐺 is called order of 𝐺 and it is denoted
by 𝑝. The number of edges of 𝐺 is called size of 𝐺 and it is
denoted by 𝑞. A (𝑝, 𝑞) graph 𝐺 is a graph with 𝑝 vertices and𝑞 edges. Terms and notations not defined here are used in the
sense of Harary [1].

In 2003, Somasundaram and Ponraj [2] have introduced
the notion of mean labelings of graphs. Let 𝐺 be a (𝑝, 𝑞)
graph. A graph𝐺 is called amean graph if there is an injective
function 𝑓 from the vertices of G to {0, 1, 2, ⋅ ⋅ ⋅, 𝑞} such that
when each edge 𝑒 = 𝑢V is labeled with 𝑓∗(𝑒) = (𝑓(𝑢) +𝑓(V) + 1)/2 if 𝑓(𝑢) + 𝑓(V) is even and 𝑓∗(𝑒) = (𝑓(𝑢) +𝑓(V) + 1)/2 if 𝑓(𝑢) + 𝑓(V) is odd, then the resulting edge
labels are distinct. Furthermore, the concept of super mean
labeling was introduced by Ponraj and Ramya [3]. Let 𝑓 :𝑉 → {1, 2, 3, ⋅ ⋅ ⋅, 𝑝+𝑞} be an injection on𝐺. For each edge 𝑒 =𝑢V and an integer 𝑚 ≥ 2, the induced Smarandachely edge𝑚−𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔 𝑓∗ is defined by𝑓∗(𝑒 = 𝑢V) = ⌈(𝑓(𝑢)+𝑓(V))/𝑚⌉.
Then 𝑓 is called a Smarandachely super𝑚 − 𝑚𝑒𝑎𝑛 labeling if𝑓(𝑉) ∪ {𝑓∗(𝑒) : 𝑒 ∈ 𝐸} = {1, 2, 3, ⋅ ⋅ ⋅, 𝑝 + 𝑞}. A graph that

admits a Smarandachely super mean 𝑚 − 𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔 is called
Smarandachely super𝑚−𝑚𝑒𝑎𝑛 graph. Particularly, if𝑚 = 2,
we know that

𝑓∗ (𝑒 = 𝑢V)

= {{{{{
𝑓 (𝑢) + 𝑓 (V)2 , if𝑓 (𝑢) + 𝑓 (V) is even;
𝑓 (𝑢) + 𝑓 (V) + 12 , if𝑓 (𝑢) + 𝑓 (V) is odd.

(1)

Such a labeling 𝑓 is called a super mean labeling of 𝐺 if𝑓(𝑉) ∪ {𝑓∗(𝑒) : 𝑒 ∈ 𝐸} = {1, 2, 3, ⋅ ⋅ ⋅, 𝑝 + 𝑞}. A graph that
admits a super mean labeling is called a super mean graph.
Further discussions of mean and super mean labelings for
some families of graph are provided in [4–10] andGallian [11].

The total graph 𝑇(𝐺) of 𝐺 is the graph with the vertex
set 𝑉 ∪ 𝐸 and two vertices are adjacent whenever they are
either adjacent or incident in 𝐺. For instance, when 𝐺 = 𝑃

𝑛
,

total graph of path 𝑇(𝑃
𝑛
) is provided in Figure 1. Since the

problem on super mean labeling for total graph of path and
cycle are still open, the new our contributions are stated in
the following sections.
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Figure 1: The total graph of path on n vertices.
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Figure 2: The super mean labeling for total graph of path on 5 vertices, 𝑇(𝑃
5
).

2. On Super Mean Labeling for Total
Graph of Path

The theorem proposed in this section deals with the super
mean labeling for total graph of path on 𝑛 vertices, 𝑇(𝑃

𝑛
).

Theorem 1. The total graph of path on n vertices, 𝑇(𝑃
𝑛
), is a

super mean graph for all 𝑛 ≥ 3.
Proof. Let 𝑉(𝑇(𝑃

𝑛
)) = {V

𝑖
: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢

𝑖
: 1 ≤ 𝑖 ≤ 𝑛 − 1}

and 𝐸(𝑇(𝑃
𝑛
)) = {𝑒

𝑖
, 𝑒
𝑖
, 𝑒
𝑖

: 1 ≤ 𝑖 ≤ 𝑛−1}∪ {𝑒𝑚
𝑖

: 1 ≤ 𝑖 ≤ 𝑛−2}
with 𝑒

𝑖
= V
𝑖
V
𝑖+1

, 𝑒
𝑖

= V
𝑖
𝑢
𝑖
, 𝑒
𝑖

= V
𝑖+1

𝑢
𝑖
for 1 ≤ 𝑖 ≤ 𝑛–1,

and 𝑒
𝑖

= 𝑢
𝑖
𝑢
𝑖+1

for 1 ≤ 𝑖 ≤ 𝑛–2. Immediately, we have that
the cardinality of the vertex set and the edge set of 𝑇(𝑃

𝑛
) are𝑝 = 2𝑛 − 1 and 𝑞 = 4𝑛 − 5, respectively, and so 𝑝+ 𝑞 = 6𝑛 − 6.

Define an injection𝑓 : 𝑉(𝑇(𝑃
𝑛
)) → {1, 2, . . . , 6𝑛−6} for 𝑛 ≥ 3

as follows. 𝑓(V
𝑖
) = 2𝑖 − 1 for 𝑖 = 1, 2, . . . , 𝑛. 𝑓(𝑢

𝑖
) = 2𝑖 + 4𝑛− 4

for 𝑖 = 1, 2, . . . , 𝑛 − 1.
And so we have

𝑓∗ (𝑒
𝑖
) = 2𝑖 for 𝑖 = 1, 2, . . . , 𝑛 − 1.

𝑓∗ (𝑒
𝑖
) = 2𝑛 + 2𝑖 − 2 for 𝑖 = 1, 2, . . . , 𝑛 − 1.

𝑓∗ (𝑒
𝑖
) = 2𝑛 + 2𝑖 − 1 for 𝑖 = 1, 2, . . . , 𝑛 − 1.

𝑓∗ (𝑒
𝑖

) = 4𝑛 + 2𝑖 − 3 for 𝑖 = 1, 2, . . . , 𝑛 − 2.
(2)

Next, we consider the following sets:

𝐴
1
= {𝑓 (V

𝑖
) = 2𝑖 − 1 : 𝑖 = 1, 2, . . . , 𝑛} ;

𝐴
2
= {𝑓 (𝑢

𝑖
) = 4𝑛 + 2𝑖 − 4 : 𝑖 = 1, 2, . . . , 𝑛 − 1} ;

𝐴
3
= {𝑓∗ (𝑒

𝑖
) = 2𝑖 : 𝑖 = 1, 2, . . . , 𝑛 − 1} ;

𝐴
4
= {𝑓∗ (𝑒

𝑖
) = 2𝑛 + 2𝑖 − 2 : 𝑖 = 1, 2, . . . , 𝑛 − 1} ;

𝐴
5
= {𝑓∗ (𝑒

𝑖
) = 2𝑛 + 2𝑖 − 1 : 𝑖 = 1, 2, . . . , 𝑛 − 1} ;

𝐴
6
= {𝑓∗ (𝑒

𝑖
) = 4𝑛 + 2𝑖 − 3 : 𝑖 = 1, 2, . . . , 𝑛 − 2} .

(3)
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Figure 3: The total graph of cycle on n vertices, 𝑇(𝐶
𝑛
).

It can be verified that 𝑓(𝑉(𝑇(𝑃
𝑛
))) ∪ 𝑓∗(𝐸(𝑇(𝑃

𝑛
))) =⋃6

𝑖=1
𝐴
𝑖
= {1, 2, 3, . . . , 6𝑛−6} and so𝑓 is a supermean labeling

of 𝑇(𝑃
𝑛
). Hence, 𝑇(𝑃

𝑛
) is a super mean graph. For a simple

example, the super mean labeling for total graph of path on
five vertices is provided in Figure 2.

3. On Super Mean Labeling for Total
Graph of Cycle

The theorem proposed in this section deals with the super
mean labeling for total graph of cycle on 𝑛 vertices, 𝑇(𝐶

𝑛
).

For illustration, total graph of cycle on 𝑛 vertices is provided
in Figure 3.

Theorem 2. The total graph of cycle on n vertices, 𝑇(𝐶
𝑛
), is a

super mean graph if either 𝑛 is odd and 𝑛 ≥ 3 or n is even and𝑛 ≥ 6.
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Proof. Let 𝑉(𝑇(𝐶
𝑛
)) = {V

𝑖
, 𝑢
𝑖
: 1 ≤ 𝑖 ≤ 𝑛} and 𝐸(𝑇(𝐶

𝑛
)) ={𝑒

𝑖
, 𝑒
𝑖
, 𝑒
𝑖
, 𝑒
𝑖

: 1 ≤ 𝑖 ≤ 𝑛}, where
𝑒
𝑖
= {V𝑖V𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1;

V
1
V
𝑖
, 𝑖 = 𝑛.

𝑒
𝑖
= V
𝑖
𝑢
𝑖

for 1 ≤ 𝑖 ≤ 𝑛
𝑒
𝑖

= {V𝑖+1𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1;
V
1
𝑢
𝑖
, 𝑖 = 𝑛.

𝑒
𝑖

= {𝑢
𝑖
𝑢
𝑖+1

, 1 ≤ 𝑖 ≤ 𝑛 − 1;
𝑢
1
𝑢
𝑖
, 𝑖 = 𝑛.

(4)

Immediately, we have that the cardinality of the vertex set and
the edge set of 𝑇(𝐶

𝑛
) are 𝑝 = 2𝑛 and 𝑞 = 4𝑛, respectively, and

so 𝑝 + 𝑞 = 6𝑛.
Define an injection 𝑓 : 𝑉(𝑇(𝐶

𝑛
)) → {1, 2, . . . , 6𝑛} for odd𝑛 ≥ 3 as follows:

𝑓 (V
𝑖
) = {{{{{

2𝑖 − 1 𝑖 = 1, 2, 3, . . . , ⌈𝑛2⌉ ;
2𝑖 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛.

𝑓 (𝑢
𝑖
) = {{{{{

4𝑛 + 2𝑖 − 1, 𝑖 = 1, 2, 3, . . . , ⌈𝑛2⌉ ;
4𝑛 + 2𝑖, 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛.

(5)

And so we have

𝑓∗ (𝑒
𝑖
) =

{{{{{{{{{{{{{{{{{

2𝑖, 𝑖 = 1, 2, 3, . . . , ⌈𝑛2⌉ − 1;
𝑛 + 2, 𝑖 = ⌈𝑛2⌉ ;
2𝑖 + 1, 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛 − 1;
𝑛 + 1, 𝑖 = 𝑛.

𝑓 (𝑒
𝑖
) = {{{{{

2𝑛 + 2𝑖 − 1, 𝑖 = 1, 2, 3, . . . , ⌈𝑛2⌉ ;
2𝑛 + 2𝑖, 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛.

𝑓∗ (𝑒
𝑖
)

=
{{{{{{{{{{{{{{{{{

2𝑛 + 2𝑖, 𝑖 = 1, 2, 3, . . . , ⌈𝑛2⌉ − 1;
3𝑛 + 2, 𝑖 = ⌈𝑛2⌉ ;
2𝑛 + 2𝑖 + 1, 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛 − 1;
3𝑛 + 1, 𝑖 = 𝑛.

𝑓∗ (𝑒
𝑖

)

=
{{{{{{{{{{{{{{{{{

4𝑛 + 2𝑖, 𝑖 = 1, 2, 3, . . . , ⌈𝑛2⌉ − 1;
5𝑛 + 2, 𝑖 = ⌈𝑛2⌉ ;
4𝑛 + 2𝑖 + 1, 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛 − 1;
5𝑛 + 1, 𝑖 = 𝑛.

(6)

Next, we consider the following sets:

𝐴
1
= {𝑓 (V

𝑖
) = 2𝑖 − 1 : 𝑖 = 1, 2, . . . , ⌈𝑛2⌉} ;

𝐴
2
= {𝑓 (V

𝑖
) = 2𝑖 : 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛} ;

𝐴
3
= {𝑓 (𝑢

𝑖
) = 4𝑛 + 2𝑖 − 1 : 𝑖 = 1, 2, . . . , ⌈𝑛2⌉} ;

𝐴
4
= {𝑓 (𝑢

𝑖
) = 4𝑛 + 2𝑖 : 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛} ;

𝐴
5
= {𝑓∗ (𝑒

𝑖
) = 2𝑖 : 𝑖 = 1, 2, . . . , ⌈𝑛2⌉ − 1} ;

𝐴
6
= {𝑓∗ (𝑒

𝑖
) = 𝑛 + 2 : 𝑖 = ⌈𝑛2⌉} ;

𝐴
7
= {𝑓∗ (𝑒

𝑖
) = 2𝑖 + 1 : 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛

− 1} ;
𝐴
8
= {𝑓 (𝑒

𝑖
) = 𝑛 + 1 : 𝑖 = 𝑛} ;

𝐴
9
= {𝑓∗ (𝑒

𝑖
) = 2𝑛 + 2𝑖 − 1 : 𝑖 = 1, 2, . . . , ⌈𝑛2⌉} ;

𝐴
10

= {𝑓∗ (𝑒
𝑖
) = 2𝑛 + 2𝑖 : 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉

+ 2, . . . , 𝑛} ;
𝐴
11

= {𝑓∗ (𝑒
𝑖
) = 2𝑛 + 2𝑖 : 𝑖 = 1, 2, . . . , ⌈𝑛2⌉ − 1} ;

𝐴
12

= {𝑓∗ (𝑒
𝑖
) = 3𝑛 + 2 : 𝑖 = ⌈𝑛2⌉} ;

𝐴
13

= {𝑓∗ (𝑒
𝑖
) = 2𝑛 + 2𝑖 + 1 : 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉

+ 2, . . . , 𝑛 − 1} ;
𝐴
14

= {𝑓∗ (𝑒
𝑖
) = 3𝑛 + 1 : 𝑖 = 𝑛} ;

𝐴
15

= {𝑓∗ (𝑒
𝑖

) = 4𝑛 + 2𝑖 : 𝑖 = 1, 2, . . . , ⌈𝑛2⌉ − 1} ;
𝐴
16

= {𝑓∗ (𝑒
𝑖

) = 5𝑛 + 2 : 𝑖 = ⌈𝑛2⌉} ;
𝐴
17

= {𝑓∗ (𝑒
𝑖

) = 4𝑛 + 2𝑖 + 1 : 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉
+ 2, . . . , 𝑛 − 1} ;

𝐴
18

= {𝑓∗ (𝑒
𝑖

) = 5𝑛 + 1 : 𝑖 = 𝑛} .

(7)

It can be verified that 𝑓(𝑉(𝑇(𝐶
𝑛
))) ∪ 𝑓∗(𝐸(𝑇(𝐶

𝑛
))) =⋃18

𝑖=1
𝐴
𝑖
= {1, 2, 3, . . . , 6𝑛} and so 𝑓 is a super mean labeling

of 𝑇(𝐶
𝑛
). Hence 𝑇(𝐶

𝑛
) is a super mean graph for odd 𝑛 ≥ 3.
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Now define an injection 𝑓
1
: 𝑉(𝑇(𝐶

𝑛
)) → {1, 2, 3, . . . , 6𝑛}

for even 𝑛 ≥ 6 as follows:

𝑓
1
(V
𝑖
) =

{{{{{{{{{{{{{{{{{{{{{

1, 𝑖 = 1;
3𝑖 − 3, 𝑖 = 2, 3;
4𝑖 − 7, 𝑖 = 4, 5, 6, . . . 𝑛2 + 1;
4𝑛 − 4𝑖 + 8, 𝑖 = 𝑛2 + 2, 𝑛3 + 3, . . . , 𝑛 − 1
7, 𝑖 = 𝑛

𝑓
1
(𝑢
𝑖
) =

{{{{{{{{{{{{{{{{{{{{{

4𝑛 + 1, 𝑖 = 1;
4𝑛 + 3𝑖 − 3, 𝑖 = 2, 3;
4𝑛 + 4𝑖 − 7, 𝑖 = 4, 5, 6, . . . 𝑛2 + 1;
8𝑛 − 4𝑖 + 8, 𝑖 = 𝑛2 + 2, 𝑛3 + 3, . . . , 𝑛 − 1
4𝑛 + 7, 𝑖 = 𝑛

(8)

and so we have

𝑓∗
1
(𝑒
𝑖
) =

{{{{{{{{{{{{{{{{{{{{{

2, 𝑖 = 1;
3𝑖 − 1, 𝑖 = 2, 3;
4𝑖 − 5, 𝑖 = 4, 5, 6, . . . 𝑛2 + 1;
4𝑛 − 4𝑖 + 6, 𝑖 = 𝑛2 + 2, 𝑛3 + 3, . . . , 𝑛 − 1
4, 𝑖 = 𝑛

𝑓∗
1
(𝑒
𝑖
) =

{{{{{{{{{{{{{{{{{{{{{

2𝑛 + 1, 𝑖 = 1;
2𝑛 + 3𝑖 − 3, 𝑖 = 2, 3;
2𝑛 + 4𝑖 − 7, 𝑖 = 4, 5, 6, . . . 𝑛2 + 1;
6𝑛 − 4𝑖 + 8, 𝑖 = 𝑛2 + 2, 𝑛3 + 3, . . . , 𝑛 − 1
2𝑛 + 7, 𝑖 = 𝑛

𝑓∗
1
(𝑒
𝑖
) =

{{{{{{{{{{{{{{{{{{{{{

2𝑛 + 2, 𝑖 = 1;
2𝑛 + 3𝑖 − 1, 𝑖 = 2, 3;
2𝑛 + 4𝑖 − 5, 𝑖 = 4, 5, 6, . . . 𝑛2 + 1;
6𝑛 − 4𝑖 + 6, 𝑖 = 𝑛2 + 2, 𝑛3 + 3, . . . , 𝑛 − 1
2𝑛 + 4, 𝑖 = 𝑛

𝑓∗
1
(𝑒
𝑖

) =
{{{{{{{{{{{{{{{{{{{{{

4𝑛 + 2, 𝑖 = 1;
4𝑛 + 3𝑖 − 1, 𝑖 = 2, 3;
4𝑛 + 4𝑖 − 5, 𝑖 = 4, 5, 6, . . . 𝑛2 + 1;
8𝑛 − 4𝑖 + 6, 𝑖 = 𝑛2 + 2, 𝑛3 + 3, . . . , 𝑛 − 1
4𝑛 + 4, 𝑖 = 𝑛

(9)

It can be verified that 𝑓
1
(𝑉(𝑇(𝐶

𝑛
))) ∪ 𝑓∗

1
(𝐸(𝑇(𝐶

𝑛
))) ={1, 2, 3, . . . , 6𝑛} and so𝑓

1
is a super mean labeling of 𝑇(𝐶

𝑛
).

Hence 𝑇(𝐶
𝑛
) is a super mean graph for even 𝑛 ≥ 6. For
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Figure 4: The super mean labeling for total graph of cycle on 8
vertices, 𝑇(𝐶

8
).

illustration, a super mean labeling for total graph of cycle on8
vertices is provided in Figure 4.

4. The Duality of Super Mean Labeling

Let 𝐺 be a (𝑝, 𝑞) graph. Given any Smarandachely super 2 −𝑚𝑒𝑎𝑛 labeling 𝜆 on graph 𝐺, the labeling 𝜆
1
defined by

𝜆
1 (𝑥) = 𝑝 + 𝑞 + 1 − 𝜆 (𝑥) , for any vertex 𝑥,

𝜆∗
1
(𝑥𝑦) = 𝑝 + 𝑞 + 1 − 𝜆∗ (𝑥𝑦) , for any edges 𝑥𝑦 (10)

is also a Smarandachely super 2 − 𝑚𝑒𝑎𝑛 labeling of 𝐺.
For the proof, since 𝜆 is an injection then it is follows that𝜆
1
is also an injection on 𝐺. Hence it can be verified that the

set 𝜆
1
(𝑉)∪{𝜆∗1(𝑒) : 𝑒 ∈ 𝐸} forms {1, 2, 3, ⋅ ⋅ ⋅, 𝑝+𝑞} and so the

injection 𝜆
1
is also a Smarandachely super 2 − 𝑚𝑒𝑎𝑛 labeling

on graph𝐺. Furthermore we call that the labeling 𝜆
1
is a dual

super mean labeling of 𝜆.
By using the duality property above,Theorems 1 and 2, we

have the following corollary.

Corollary 3. Let 𝑇(𝑃
𝑛
) and 𝑇(𝐶

𝑛
) be the total graph of path

and cycle with 𝑛 vertices, respectively.
(i) For all 𝑛 ≥ 3, if 𝜆(V

𝑖
) = 6𝑛 − 2𝑖 − 4 for 1 ≤ 𝑖 ≤ 𝑛 and𝜆(𝑢

𝑖
) = 2𝑛 − 2𝑖 − 1 for 1 ≤ 𝑖 ≤ 𝑛 − 1 then 𝜆 is a super

mean labeling for 𝑇(𝑃
𝑛
).

(ii) For odd 𝑛 ≥ 3 if
𝜆 (V
𝑖
) = {{{{{

6𝑛 − 2𝑖 + 2, 𝑖 = 1, 2, 3, . . . , ⌈𝑛2⌉ ;
6𝑛 − 2𝑖 + 1 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛,

𝜆 (𝑢
𝑖
) = {{{{{

2𝑛 − 2𝑖 + 2, 𝑖 = 1, 2, 3, . . . , ⌈𝑛2⌉ ;
2𝑛 − 2𝑖 + 1 𝑖 = ⌈𝑛2⌉ + 1, ⌈𝑛2⌉ + 2, . . . , 𝑛

(11)

then 𝜆 is a super mean labeling for 𝑇(𝐶
𝑛
).
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(iii) For even 𝑛 ≥ 6, if

𝜆
1
(V
𝑖
) =

{{{{{{{{{{{{{{{{{{{{{

6𝑛, 𝑖 = 1;
6𝑛 − 3𝑖 + 4, 𝑖 = 2, 3;
6𝑛 − 4𝑖 + 8, 𝑖 = 4, 5, 6, . . . 𝑛2 + 1;
2𝑛 + 4𝑖 − 7, 𝑖 = 𝑛2 + 2, 𝑛3 + 3, . . . , 𝑛 − 1
6𝑛 − 6, 𝑖 = 𝑛,

𝜆
1
(𝑢
𝑖
) =

{{{{{{{{{{{{{{{{{{{{{

2𝑛, 𝑖 = 1;
2𝑛 − 3𝑖 + 4, 𝑖 = 2, 3;
2𝑛 − 4𝑖 + 8, 𝑖 = 4, 5, 6, . . . 𝑛2 + 1;
2𝑛 − 4𝑖 − 7, 𝑖 = 𝑛2 + 2, 𝑛3 + 3, . . . , 𝑛 − 1
2𝑛 − 6, 𝑖 = 𝑛

(12)

then 𝜆
1
is a super mean labeling for 𝑇(𝐶

𝑛
).

5. Summary and Remarks

Here we propose new results corresponding to super mean
labeling for total graph of path and cycle.Thiswork is an effort
to relate Smarandachely super𝑚−𝑚𝑒𝑎𝑛 labeling and its dual
for 𝑚 ≥ 2. All results reported here are in total graph of path
and cycle,𝑇(𝑃

𝑛
) and𝑇(𝐶

𝑛
). In future, it is not only possible to

investigate some more results corresponding to other graph
families but also Smarandachely super m-mean labeling in
general as well.
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We analyze the dynamics of a fractional order modified Leslie-Gower model with Beddington-DeAngelis functional response and
additive Allee effect by means of local stability. In this respect, all possible equilibria and their existence conditions are determined
and their stability properties are established. We also construct nonstandard numerical schemes based on Grünwald-Letnikov
approximation. The constructed scheme is explicit and maintains the positivity of solutions. Using this scheme, we perform
some numerical simulations to illustrate the dynamical behavior of the model. It is noticed that the nonstandard Grünwald-
Letnikov scheme preserves the dynamical properties of the continuous model, while the classical scheme may fail to maintain
those dynamical properties.

1. Introduction

The dynamical interaction of predator and prey is one of
important subjects in ecological science. In recent years,
one of the most important species interactions is predator-
prey model [1]. One of well-known mathematical models
which describe the dynamics of prey-predator interaction is
the modified Leslie-Gower model proposed by Aziz-Alaoui
and Okiye [2]. In this model, the growth rate of predator is
in the form of logistics-type where its carrying capacity is
proportional to the prey number and environment protection
for predator. One of important parameters describing the
prey-predator interaction is the functional response which
describes the predator’s rate of prey consumption per capita.
Aziz-Alaoui and Okiye [2] and Yu [3] have considered a
modified Leslie-Gowermodel withHolling type II functional
response, while Yu [4] considered the same model but with
Beddington-DeAngelis functional response. In the normal-
ized variables, the modified Leslie-Gower equation with
Beddington-DeAngelis functional response can be written as

𝑑𝑁
𝑑𝑡 = 𝑁 (1 − 𝑁) − 𝜔𝑁𝑃

𝑎 + 𝑏𝑁 + 𝑐𝑃
𝑑𝑃
𝑑𝑡 = 𝑠𝑃 (1 −

𝑃
𝑁 + 𝑘) ,

(1)

where𝑁 = 𝑁(𝑡) and 𝑃 = 𝑃(𝑡) denote population densities of
prey and predator at time 𝑡, respectively. The pa rameters 𝜔,
𝑎, 𝑏, 𝑐, 𝑠, and 𝑘 are positive constants.

One of other factors that influence the interaction of
predator and prey is Allee effect, referring to a decrease in
per capita fertility rate at low population densities. Allee effect
may occur under several mechanisms, such as difficulties
in finding mates when population density is low or social
dysfunction at small population sizes. When such a mech-
anism operates, the per capita fertility rate of the species
increases with density; that is, positive interaction among
species occurs [5–8]. Recently Indrajaya et al. [9] investigate a
modified Leslie-Gower equationwith Beddington-DeAngelis
functional response and additive (both weak and strong)
Allee effect on prey

𝑑𝑁
𝑑𝑡 = 𝑁(1 − 𝑁 − 𝑚

𝑁 + ℎ) −
𝜔𝑁𝑃

𝑎 + 𝑏𝑁 + 𝑐𝑃
𝑑𝑃
𝑑𝑡 = 𝑠𝑃 (1 −

𝑃
𝑁 + 𝑘) ,

(2)

with initial conditions𝑁(0) > 0 and 𝑃(0) > 0. The criteria of
the Allee effect are as follows [7, 8]:

(i) If 0 < 𝑚 < ℎ, then the Allee effect is weak.
(ii) If𝑚 > ℎ, then the Allee effect is strong.
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It is shown in system (2) that the growth rates of both
prey and predator depend only on the current state. In many
situations, the growth rate is also dependent on the history
of variable or its memory. With the rapid development of
fractional calculus, fractional differential equations have been
implemented in various fields including biological system.
This is due the fact that fractional differential equations are
naturally related to the real life phenomena with memory
which exists in most of biological system [10–16]. To describe
such memory effect, we first recall the definition of fractional
integral operator as well as fractional differential operator.

Definition 1 (see [17]). The Riemann-Liouville 𝛼-order frac-
tional integral operator of any function 𝑢 ∈ 𝐿1[0, 𝑎], 𝑥 ∈
[0, 𝑎] is defined by

𝐽𝛼𝑢 (𝑥) = 1
Γ (𝛼) ∫

𝑎

0
(𝑥 − 𝑡)𝛼−1 𝑢 (𝑡) 𝑑𝑡, (3)

where Γ(⋅) is the Euler Gamma function.

Definition 2 (see [17]). Let 𝑚 be an integer which satisfies
𝑚 − 1 < 𝛼 < 𝑚. The Riemann-Liouville 𝛼-order fractional
derivative of function 𝑢 ∈ 𝐿1[0, 𝑎] is defined as

𝐷𝛼𝑅𝐿𝑢 (𝑥) fl 𝑑𝑚
𝑑𝑥𝑚 𝐽

𝑚−𝛼𝑢 (𝑥)

= 1
Γ (𝑚 − 𝛼)

𝑑𝑚
𝑑𝑥𝑚 ∫

𝑎

0
(𝑥 − 𝑡)𝑚−𝛼−1 𝑢 (𝑡) 𝑑𝑡,

(4)

where 𝑑𝑚/𝑑𝑥𝑚 is the common𝑚-order derivative.

The Riemann-Liouville fractional derivative is histori-
cally the first concept of fractional derivative and theoretically
well established. However, in the case of Riemann-Liouville
fractional differential equation, the initial value is usually
given in the form of fractional derivative, which is not
practical. Consequently, one applies the Caputo fractional
derivative which is defined as follows.

Definition 3 (see [17]). The Caputo fractional differential
operator of order 𝛼 > 0, with 𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ 𝑁, is
defined by

𝐷𝛼𝐶𝑢 (𝑥) fl 𝐽𝑚−𝛼𝑢(𝑚) (𝑥)
= 1
Γ (𝑚 − 𝛼) ∫

𝑎

0
(𝑥 − 𝑡)𝑚−𝛼−1 𝑢(𝑚) (𝑡) 𝑑𝑡. (5)

For simplicity, the Caputo fractional derivative of function
𝑢(𝑡) of order 𝛼 is denoted by 𝑑𝛼𝑢(𝑡)/𝑑𝑡𝛼.

From Definition 3, we see the 𝛼-order fractional deriva-
tive at time t is not defined locally; it relies on the total
effects of the commonly used m-order integer derivative on
the interval [0, 𝑡]. So it can be used to describe the variation
of a system in which the instantaneous change rate depends
on the past state, which is called the “memory effect” in a
visualized manner [18].

In this paper we reconsider system (2). By assuming that
the growth rates of both prey and predator at time 𝑡 do

not only depend instantaneously on the current state but
also depend on the past state, we replace the first order
derivatives in system (2) with the fractional order Caputo
type derivatives:

𝑑𝛼𝑁
𝑑𝑡𝛼 = 𝑁(1 − 𝑁 − 𝑚

𝑁 + ℎ) −
𝜔𝑁𝑃

𝑎 + 𝑏𝑁 + 𝑐𝑃
𝑑𝛼𝑃
𝑑𝑡𝛼 = 𝑠𝑃 (1 −

𝑃
𝑁 + 𝑘) ,

(6)

where 0 < 𝛼 < 1. Hence we have a system of fractional dif-
ferential equation. In the following we discuss the dynamical
properties of system (6). To study the stability of equilibrium
points, we apply the following stability theorem.

Theorem 4 (see [19]). Consider the following autonomous
nonlinear fractional order system:

𝑑𝛼�⃗� (𝑡)
𝑑𝑡𝛼 = ⃗𝑓 (�⃗� (𝑡)) ; �⃗� (0) = �⃗�0; 0 < 𝛼 < 1. (7)

The equilibrium points of the above system are solutions to the
equation ⃗𝑓(�⃗�(𝑡)) = 0. An equilibrium point �⃗�∗ is locally as-
ymptotically stable if all eigenvalues (𝜆𝑗) of the Jacobianmatrix
𝐽 = 𝜕 ⃗𝑓/𝜕�⃗� evaluated at equilibrium �⃗�∗ satisfy |arg (𝜆𝑗)| >𝛼𝜋/2.
2. Equilibria and Their Stability

Based on Theorem 4, equilibria of model (6) can be deter-
mined by solving the following system:

𝑁(1 − 𝑁 − 𝑚
𝑁 + ℎ) −

𝜔𝑁𝑃
𝑎 + 𝑏𝑁 + 𝑐𝑃 = 0

𝑠𝑃 (1 − 𝑃
𝑁 + 𝑘) = 0.

(8)

System (8) has been solved by Indrajaya et al. [9], and the
obtained equilibria are as follows:

(1) The equilibria of system (6) for the weak Allee effect
case are

(a) trivial equilibrium 𝐸𝑤0 = (0, 0), that is, the ex-
tinction of both prey and predator point,

(b) two axial equilibria, that is, the prey extinction
point 𝐸𝑤1 = (0, 𝑘) and the predator extinction
point 𝐸𝑤2 = (𝑁𝑤2, 0) where

𝑁𝑤2 = 1
2 (1 − ℎ + √(1 − ℎ)

2 + 4 (ℎ − 𝑚)) , (9)

(c) positive or coexistence equilibrium 𝐸∗𝑤 = (𝑁∗𝑤,𝑃∗𝑤 = 𝑁∗𝑤 + 𝑘), where 𝑁∗𝑤 are all possible real
positive solutions of cubic equation

𝑁3 + 3𝜂1𝑁2 + 3𝜂2𝑁 + 𝜂3 = 0, (10)

186 Mathematics: A Conceptual Approach

__________________________ WORLD TECHNOLOGIES __________________________



WT

where

𝜂1 = −(𝑏 + 𝑐) (1 − ℎ) − (𝑎 + 𝑐𝑘) − 𝜔3 (𝑏 + 𝑐) ,

𝜂2 = −(𝑎 + 𝑐𝑘) (1 − ℎ) + (𝑏 + 𝑐) (ℎ − 𝑚) − 𝜔 (ℎ + 𝑘)3 (𝑏 + 𝑐) ,

𝜂3 = −(𝑎 + 𝑐𝑘) (ℎ − 𝑚) − ℎ𝜔𝑘(𝑏 + 𝑐) .

(11)

(2) The equilibria of system (6) for the strong Allee effect
case are

(a) trivial equilibrium 𝐸𝑠0 = (0, 0), that is, the
extinction of both prey and predator point,

(b) three axial equilibria that are the prey extinction
point 𝐸𝑤1 = (0, 𝑘) and two predator extinction
points: 𝐸𝑠2 = (𝑁𝑠2, 0) and 𝐸𝑠3 = (𝑁𝑠3, 0), where

𝑁𝑠2 = 1
2 (1 − ℎ + √(1 − ℎ)

2 + 4 (ℎ − 𝑚)) ,

𝑁𝑠3 = 1
2 (1 − ℎ − √(1 − ℎ)

2 + 4 (ℎ − 𝑚)) ,
(12)

(c) positive or coexistence equilibrium point 𝐸∗𝑠 =(𝑁∗𝑠 , 𝑃∗𝑠 = 𝑁∗𝑠 +𝑘), where𝑁∗𝑠 are also all possible
real positive solutions of cubic equation (10).

Using transformation 𝑧 = 𝑁∗ + 𝜂1, (10) can be reduced to

ℎ (𝑧) = 𝑧3 + 3𝑝𝑧 + 𝑞 = 0, (13)

where 𝑝 = 𝜂2 − 𝜂21 and 𝑞 = 𝜂3 − 3𝜂1𝜂2 + 2𝜂1. Implementing
Cardan’s method as performed by Cai et al. [7], we obtain the
existence of the positive equilibria as follows.

Lemma 5 (existence of positive equilibria). Let (𝑁∗, 𝑃∗) be
the interior equilibrium of model (6) for both weak and strong
Allee effects where𝑁∗is a real positive solution of (10).Then the
following statements hold:

(a) If 𝑞 < 0, then (13) has a single positive root 𝑧1. As a
result, model (6) has a unique positive equilibrium
point, that is,𝐸∗ = (𝑁∗, 𝑁∗+𝑘) = (𝑧1−𝜂1, 𝑧1−𝜂1+𝑘),
with 𝑧1 > 𝜂1.

(b) Suppose that 𝑞 > 0 and 𝑝 < 0, then
(b1) If 𝑞2 + 4𝑝3 = 0, then (13) has a positive root of

multiplicity two. Thus, model (6) has a unique
positive equilibrium point, that is, 𝐸∗ = (𝑁∗,
𝑁∗ + 𝑘) = (√−𝑝,√−𝑝 + 𝑘).

(b2) If 𝑞2 + 4𝑝3 < 0, then (13) has two positive
roots 𝑧1 and 𝑧2. Thus, model (6) has two positive
equilibrium points, namely, 𝐸1∗ = (𝑁1∗, 𝑁1∗ +𝑘) = (𝑧1 −𝜂1, 𝑧1 −𝜂1 +𝑘) and 𝐸2∗ = (𝑁2∗, 𝑁2∗ +𝑘) = (𝑧2−𝜂1, 𝑧2−𝜂1+𝑘), with𝐸1∗ = (𝑁1∗, 𝑁1∗+𝑘) 𝑧1,2 > 𝜂1.

(c) If 𝑞 = 0 and 𝑝 < 0, then (13) has a unique positive
root 𝑧1 = √−3𝑝. As a result, model (6) has a unique
positive equilibrium point, that is,𝐸∗ = (𝑁∗, 𝑁∗+𝑘) =
(√−3𝑝,√−3𝑝 + 𝑘) with 𝑞|𝑚=0 = 0.

Moreover, algebraic computations show that if (13) has
two positive roots, then they are

𝑧1 =
(−4𝑞 + 4√4𝑝3 + 𝑞2)2/3 − 4𝑝
2 (−4𝑞 + 4√4𝑝3 + 𝑞2)2/3

,

𝑧2 = −𝑧12 + √𝑧31 + 4𝑞
2√𝑧1 .

(14)

If (13) has a positive root, then it must be

𝑧1 =
(−4𝑞 + 4√4𝑝3 + 𝑞2)2/3 − 4𝑝
2 (−4𝑞 + 4√4𝑝3 + 𝑞2)2/3

. (15)

To check the local stability of each equilibrium point, we
linearize system (6) around the equilibrium and verify all
eigenvalues of the Jacobian matrix evaluated at the equilib-
rium. The stability properties of trivial and axial equilibrium
points for the case of weak and strong Allee effect are,
respectively, stated inTheorems 6 and 7.

Theorem 6. Stability of trivial and axial equilibrium for weak
Allee effect (0 < 𝑚 < ℎ):

(i) the trivial equilibrium 𝐸𝑤0 = (0, 0) and the axial equi-
librium 𝐸𝑤2 = (𝑁𝑤2, 0) are always unstable;

(ii) the axial equilibrium 𝐸𝑤1 = (0, 𝑘) is asymptotically
stable if ℎ − 𝑚 < ℎ𝜔𝑘/(𝑎 + 𝑐𝑘).

Proof. (i) The Jacobian matrix at 𝐸𝑤0 is 𝐽(𝐸𝑤0) = ( 1−𝑚/ℎ 0
0 𝑠

),
and the eigenvalues are 𝜆1 = 1 − 𝑚/ℎ > 0 and 𝜆1 = 𝑠 >
0. It is clear that arg(𝜆1,2) = 0 < 𝛼𝜋/2, 𝛼 > 0. Hence
𝐸𝑤0 is unstable. The Jacobian matrix at 𝐸𝑤2 is 𝐽(𝐸𝑤2) =
( 1−2𝑁∗𝑤2−𝑚ℎ/(2𝑁∗𝑤2+ℎ)2 −𝜔𝑁∗𝑤2/(𝑎+𝑏𝑁∗𝑤2)

0 𝑠
) where one of its eigen-

values is 𝜆 = 𝑠 > 0 and therefore 𝐸𝑤2 is unstable because
arg(𝜆) = 0 < 𝛼𝜋/2, 𝛼 > 0.

(ii) The Jacobian matrix at 𝐸𝑤1 is 𝐽(𝐸𝑤1) =
( 1−𝑚/ℎ−𝜔𝑘/(𝑎+𝑐𝑘) 0

0 −𝑠
). The eigenvalues of 𝐽(𝐸𝑤1) are 𝜆1 = −𝑠 <0 and 𝜆2 = 1 − 𝑚/ℎ − 𝜔𝑘/(𝑎 + 𝑐𝑘). Thus arg(𝜆1) = 𝜋 > 𝛼𝜋/2

and arg(𝜆2) = 𝜋 > 𝛼𝜋/2 whenever ℎ − 𝑚 < ℎ𝜔𝑘/(𝑎 + 𝑐𝑘).
This proves part (ii).

Using the same argument as in the proof of Theorem 6,
we obtain the following stability properties of equilibria for
the case of strong Allee effect.

Theorem7. Stability of trivial and axial equilibrium for strong
Allee effect (𝑚 > ℎ):

(i) the trivial equilibrium𝐸𝑠0 = (0, 0); the axial equilibria:𝐸𝑠2 = (𝑁𝑠2, 0) and 𝐸𝑠3 = (𝑁𝑠3, 0) are always unstable;
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(ii) the axial equilibrium 𝐸𝑠1 = (0, 𝑘) is always asymptoti-
cally stable.

The stability properties of positive (coexistence) equilib-
rium for the case of weak and strong Allee effect are stated in
Theorems 8 and 9.

Theorem 8. Stability of coexistence equilibrium for weak Allee
effect (0 < 𝑚 < ℎ):

suppose 𝐽(𝐸∗𝑤) is the Jacobianmatrix at coexistence equilib-
rium 𝐸∗𝑤. Equilibrium 𝐸∗𝑤 is asymptotically stable if one of the
following mutually exclusive conditions holds:

(i) Trace(𝐽(𝐸∗𝑤)) < 0; Det(𝐽(𝐸∗𝑤)) > 0 and Δ =
Trace2(𝐽(𝐸∗𝑤)) − 4Det(𝐽(𝐸∗𝑤)) ≥ 0.

(ii) Det(𝐽(𝐸∗𝑤)) > 0, Δ < 0 and
√|Δ|

Trace (𝐽 (𝐸∗𝑤)) > tan(𝛼𝜋2 ) . (16)

Proof. The characteristics equation of 𝐽(𝐸∗𝑤) is given by

𝜆2 − Trace (𝐽 (𝐸∗𝑤)) 𝜆 + Det (𝐽 (𝐸∗𝑤)) = 0. (17)

(i) If Trace(𝐽(𝐸∗𝑤)) < 0; Det(𝐽(𝐸∗𝑤)) > 0; and Δ ≥ 0 then
𝜆1,2 < 0; hence arg(𝜆1,2) = 𝜋 > 𝛼𝜋/2 and the result
follows.

(ii) If 𝜆 is an eigenvalue of 𝐽(𝐸∗𝑤) and Δ < 0, then 𝜆
is also an eigenvalue. Using √|Δ|/Trace(𝐽(𝐸∗𝑤)) >
tan (𝛼𝜋/2), we have that |(𝜆 − 𝜆)/(𝜆 + 𝜆)| =
|Im (𝜆)/Re(𝜆)| = |arg (𝜆)| > tan(𝛼𝜋/2). Therefore
the stability of 𝐸∗𝑤 follows.

Similarly we have Theorem 9 for the stability of coexis-
tence equilibrium for strong Allee effect case.

Theorem 9. Stability of coexistence equilibrium for strong
Allee effect (𝑚 > ℎ):

suppose 𝐽(𝐸∗𝑠 ) is the Jacobian matrix evaluated at the
coexistence equilibrium 𝐸∗𝑠 . Equilibrium 𝐸∗𝑠 is asymptotically
stable if one of the following mutually exclusive conditions
holds:

(i) Trace(𝐽(𝐸∗𝑠 )) < 0; Det(𝐽(𝐸∗𝑠 )) > 0; and
Δ = Trace2 (𝐽 (𝐸∗𝑠 )) − 4Det (𝐽 (𝐸∗𝑠 )) ≥ 0. (18)

(ii) Det(𝐽(𝐸∗𝑠 )) > 0, Δ < 0, and
√|Δ|

Trace (𝐽 (𝐸∗𝑠 )) > tan(𝛼𝜋2 ) . (19)

Based on the above theorems it can be seen that the
stability properties of both trivial and axial equilibriumpoints
are not dependent on 𝛼 (order of fractional derivative). But
𝛼 may influence significantly the stability of coexistence

equilibrium point. Coexistence point can be asymptotically
stable although the eigenvalue of Jacobian matrix has posi-
tive real part, provided that conditions of Theorem 8(ii) or
Theorem 9(ii) are met. This is in contrast to the coexistence
equilibrium point of the integer-order model (2) where
coexistence point is asymptotically stable only if all real parts
of the eigenvalues of the Jacobian matrix are negative [9].

3. Numerical Simulations

To solve system (6), we implement a nonstandard Grünwald-
Letnikov scheme which is a combination of the Grünwald-
Letnikov approximation [20] and the nonstandard finite
difference (NSFD) method [21, 22]. According to [20], the
explicit (or implicit) Grünwald-Letnikov (GL) approxima-
tion for a fractional differential equation with initial value

𝑑𝛼𝑦 (𝑡)
𝑑𝑡𝛼 = 𝑓 (𝑦 (𝑡)) , 𝑦 (0) = 𝑦0 (0 < 𝛼 < 1) (20)

is given by

𝑦 (𝑡𝑛+1) −
𝑛+1

∑
V=1

𝑐𝛼V 𝑦 (𝑡𝑛+1−V) − 𝑟𝛼𝑛+1𝑦0 = Δ𝑡𝛼𝑓 (𝑦𝑛)

(or = Δ𝑡𝛼𝑓 (𝑦𝑛+1)) ,
(21)

where 𝑐𝛼V = (1 − (𝛼 + 1)/V)𝑐𝛼V−1; 𝑐𝛼1 = 𝛼; and 𝑟𝛼𝑛+1 =
Δ𝑡𝛼𝑟𝛼0 (𝑡𝑛+1) = (𝑛 + 1)−𝛼/Γ(1 − 𝛼). Here, Δ𝑡 represents the
time step of numerical integration. The Grünwald-Letnikov
approximation is proceeding iteratively but the sum in the
scheme becomes longer and longer which represents the
memory effects. Scherer et al. [20] have shown that the
coefficient 𝑐𝛼V is positive and satisfies 0 < 𝑐𝛼𝑛+1 < 𝑐𝛼𝑛 < ⋅ ⋅ ⋅ <
𝑐𝛼1 = 𝛼 for 𝑛 ≥ 1. Observe that in the standard Grünwald-
Letnikov approximation (21), the right hand side of (20) is
approximated locally. We implement a nonstandard method
which is adopted from the NSFD method [23]. A numerical
scheme for an initial value problem

𝑑�⃗�
𝑑𝑡 = ⃗𝑓 (𝑡, �⃗�) ; �⃗� (0) = �⃗�0 (22)

is called a NSFD method if at least one of the following
conditions is satisfied [21, 22]:

(i) The left hand side is approximated by the generaliza-
tion of forward difference scheme

𝑑�⃗�𝑛
𝑑𝑡 ≈ �⃗�𝑛+1 − �⃗�𝑛

𝜓 (Δ𝑡) . (23)

The nonnegative denominator function has to satisfy
𝜓(Δ𝑡) = Δ𝑡 + 𝑂(Δ𝑡2).

(ii) The approximation of 𝑓(𝑡, �⃗�) is nonlocal.
By implementing the Grünwald-Letnikov approximation

for the fractional derivative and the nonlocal approximation
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Figure 1: Phase portrait of system (6). The values of parameters are 𝑠 = 1, 𝑘 = 0.5, 𝑚 = 0.2, ℎ = 0.1, 𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.05, and
Δ𝑡 = 0.1.

for the right hand side of system (6) we get the following
scheme:

𝑁𝑛+1

= 𝑟𝛼𝑛+1𝑁0 + ∑𝑛+1𝑗=1 𝑐𝛼𝑗𝑁𝑛+1−𝑗 + Δ𝑡𝛼𝑁𝑛
1 + Δ𝑡𝛼 (𝑁𝑛 + 𝑚/ (𝑁𝑛 + ℎ) + 𝜔𝑃𝑛/ (𝑎 + 𝑏𝑁𝑛 + 𝑐𝑃𝑛))

𝑃𝑛+1 =
𝑟𝛼𝑛+1𝑃0 + ∑𝑛+1𝑗=1 𝑐𝛼𝑗 𝑃𝑛+1−𝑗 + Δ𝑡𝛼𝑠𝑃𝑛

1 + Δ𝑡𝛼𝑠𝑃𝑛/ (𝑁𝑛 + 𝑘) .

(24)

Observe that scheme (24) is explicit and hence it is simple
and easy to be implemented. Besides that, the nonstandard
Grünwald-Letnikov scheme (24) alsomaintains the positivity
solutions.

To verify our stability analysis as well as the effective-
ness our numerical scheme, we perform some numerical
simulations. First we use hypothetic values of parameters
𝑠 = 1, 𝑘 = 0.5, 𝑚 = 0.2, ℎ = 0.1, 𝜔 = 0.7, 𝑎 = 1,
𝑏 = 0.5, 𝑐 = 0.05, and Δ𝑡 = 0.1. Model (6) with these
parameters has four equilibrium points: (0, 0), (0.1298, 0),
(0.7701, 0), and (0, 0.5). According to Theorem 7, only axial
equilibrium (0, 0.5) is stable for any order of fractional
derivative (𝛼), where 0 < 𝛼 < 1. This stability behavior is
confirmed by our numerical solutions; see Figures 1 and 2.
This shows that strong Allee effect may lead to an extinction
of prey population. It is shown in Figure 2 that our numerical
solutions for 𝛼 = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 are convergent
to the axial equilibrium (0, 0.5), indicating that equilibrium
(0, 0.5) is stable asymptotically for any order of fractional
derivative. Detail observation shows that as the order of
fractional derivative increases the convergence of solution is
faster and the solution of system (6) closes to the integer-
order model (2).

Next, we set 𝑠 = 0.02 and ℎ = 0.3 and keep the rest
of parameters as in Figure 1. This weak Allee case has a
trivial equilibrium (0, 0); two axial equilibria: (0.8217, 0) and
(0, 0.5); and two interior points: 𝐸∗𝑤1 = (0.0128, 0.5128) and
𝐸∗𝑤2 = (0.1373, 0.6373). Theorems 7 and 9 state that axial
equilibrium (0, 0.5) is locally stable for 0 < 𝛼 < 1 and interior
point 𝐸∗𝑤2 = (0.1373, 0.6373) is locally stable if 𝛼 < 𝛼∗ =
0.886, and other equilibria are always unstable. Such behavior
is in accordance with our numerical results depicted in
Figures 3(a) and 3(b). It is clearly seen in Figure 3(a) that
𝛼 = 0.8 produces bistable dynamic where depending on the
initial values, solutions may be convergent to the extinction
of prey point (0, 0.5) or to interior point. In other words,
the solution of system (6) is highly sensitive to the initial
conditions. An initially relatively small prey will converge to
the prey extinction point. On the other hand, if the prey is
initially relatively large then prey and predator will coexist.
If we increase the order of derivative such that 𝛼 = 0.95, the
axial equilibrium (0, 0.5) is still locally stable but the interior
point becomes unstable; see Figure 3(b). In latter case, there
exists a stable limit cycle which shows that both prey and
predator are fluctuating around the interior point. However,
the appearance of limit cyclemay be suppressed by increasing
the coefficient of predator interference. For example we
plot in Figure 4(a) the numerical solution using the same
parameters as in Figure 3(b) but with 𝑐 = 0.1. We see that
the interior point is now stable while the axial equilibrium
point (0, 0.5) is unstable. It can be said that relatively large
predator interference can stabilize the interior point. On the
other hand, strong Allee effect can destabilize or even remove
the interior equilibrium and can cause the extinction of
prey population. For example, we show numerical simulation
using parameters the same as in Figure 3(b) except 𝑚 = 0.3.
This simulation shows that all initial values converge to the
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Figure 2: Solutions of system (6) with initial value (1, 0.2) and parameter values: 𝑠 = 1, 𝑘 = 0.5, 𝑚 = 0.2, ℎ = 0.1, 𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5,
𝑐 = 0.05, and Δ𝑡 = 0.1, for various values of 𝛼. All numerical solutions are convergent to axial equilibrium (0, 0.5). Solution of system (6)
with larger order of fractional derivative (𝛼) has faster convergence compared to that with smaller 𝛼.
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Figure 3: Phase portrait of system (6). The values of parameters are 𝑠 = 0.02, 𝑘 = 0.5,𝑚 = 0.2, ℎ = 0.3, 𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.05, and
Δ𝑡 = 0.1.

axial equilibrium (0, 0.5) which shows the extinction of prey
population but predator species can still survive in the habitat
because there is an enough environmental protection; see
Figure 4(b).

Finally, we compare our numerical results obtained by the
NSGL scheme to those obtained by the standard GL scheme
using parameters 𝑠 = 0.02, 𝑘 = 0.5,𝑚 = 0.2, ℎ = 0.3,

𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.1, and 𝛼 = 0.95; see Figure 5.
We see that both NSGL and GL schemes using Δ𝑡 = 0.005
produce solutions where their difference cannot be observed
in the scale of Figure 5. Using Δ𝑡 = 0.01, the numerical
solutions of both NSGL and GL schemes are in excellent
agreement with those of both schemes using Δ𝑡 = 0.005. If
we take time step Δ𝑡 = 0.1, both schemes have comparable

190 Mathematics: A Conceptual Approach

__________________________ WORLD TECHNOLOGIES __________________________



WT
E∗
w

0.2 0.4 0.6 0.8 10
N

0

0.2

0.4

0.6

0.8

1

P

(a) 𝑚 = 0.2; 𝑐 = 0.1

0

0.2

0.4

0.6

0.8

1

P

0.2 0.4 0.6 0.8 10
N

(b) 𝑚 = 0.3; 𝑐 = 0.05

Figure 4: Phase portrait of system (6). The values of parameters are 𝑠 = 0.02, 𝑘 = 0.5, ℎ = 0.3, 𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5, 𝛼 = 0.95, and Δ𝑡 = 0.1.
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Figure 5: Phase portrait of system (6) calculated using nonstandard (NSGL) and standard (GL) schemes. The values of parameters are
𝑠 = 0.02, 𝑘 = 0.5,𝑚 = 0.2, ℎ = 0.3, 𝜔 = 0.7, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.1, and 𝛼 = 0.95.

solutions which are initially distorted from solutions with
much smaller time step; see Figure 5(a). In Figure 5(b), we
plot solutions using relatively large time step (Δ𝑡 = 2.0 and
Δ𝑡 = 2.25). Although the NSGL scheme has solutions which
are quantitatively different from solution with Δ𝑡 = 0.005,
nevertheless those solutions still have the same behavior as
before; that is, they are always positive and convergent to the
correct equilibrium point. However, the GL scheme in this

case gives unrealistic negative value for prey population. If the
time step is further increased, the GL scheme will be unstable
and leads to blowing up solutions.

4. Conclusion

The dynamic of a fractional order modified Leslie-Gower
model with Beddington-DeAngelis functional response and
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additive Allee effect has been analyzed. Our model has four
types of equilibria that are the trivial (extinction of both
prey and predator) equilibrium, two axial equilibria (the
prey extinction point and the predator extinction point), and
the interior (coexistence) point. The trivial and the predator
extinction for both weak and strong Allee effects are always
unstable. For the case of weak Allee effect, the prey extinction
is conditionally stable while for that of strong Allee effect,
the prey extinction is always stable. Our analysis also shows
that the interior point for both weak and Allee effects is
conditionally stable. The order of fractional derivative may
influence the stability of interior point. Here, when the order
𝛼 is larger than critical order 𝛼∗, then the interior point may
be destabilized. These dynamical properties are confirmed
by our NSGL schemes which shows the effectiveness of
NSGL scheme. It is also shown that the NSGL scheme
preserves the positivity of numerical solutions. Furthermore,
our numerical results show that the NSGL scheme produces
numerical solutions which satisfy the dynamical behavior
of our model. However, the standard GL scheme may fail
to preserve such properties; for example, it can produce
nonrealistic negative solutions.
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In the problem of testing one-sided hypotheses, a frequentistmaymeasure evidence against the null hypothesis by the𝑝 value, while
a Bayesian may measure it by the posterior probability that the null hypothesis is true. In this paper, we consider the relationship
between the generalized 𝑝 value and the Bayesian evidence in testing one-sided hypotheses in the presence of nuisance parameters.
The sufficient conditions for the agreement between these two kinds of evidence are given. Some examples are provided to show
the agreement of Bayesian and frequentist evidence in many classical testing problems. This is an illustration of reconcilability of
evidence in a general framework where the nuisance parameters are present.

1. Introduction

In testing a statistical hypothesis 𝐻0, Lindley [1] illustrated
the possible discrepancy between the Bayesian and frequen-
tist evidence. The relationship between these two kinds
of evidence is then extensively studied in the literature.
Some important references on this topic include Bartlett [2],
Edwards et al. [3], Pratt [4], Dickey [5], Shafer [6], Berger and
Delampady [7], Berger and Sellke [8], Meng [9], andMicheas
and Dey [10].

For the one-sided testing problem
𝐻0: 𝜃 ≤ 𝜃0

versus 𝐻1: 𝜃 > 𝜃0,
(1)

the Bayesian evidence is typically given by the posterior
probability of 𝐻0 and the frequentist evidence is given by
the 𝑝 value. For the situation of testing a location parameter,
Casella and Berger [11] considered testing hypotheses (1)
based on observing 𝑋 = 𝑥, where 𝑋 has a location density
𝑓(𝑥−𝜃). Under the assumptions that𝑓(⋅) is symmetric about
zero and that 𝑓(𝑥 − 𝜃) has monotone likelihood ratio, it is
showed that the lower bound of the posterior probability of
𝐻0 is equal to the corresponding 𝑝 value for many classes of
prior distributions.

Thismeans that the Bayesian and frequentist evidence are
reconcilable in the situation of testing one-sided hypothe-
ses of a location parameter. However, this is not a very
general result on the agreement between the Bayesian and
frequentist evidence which can cover more testing situations.
The relationship of evidence in testing a scale parameter or
other parameters is not considered. More generally, it does
not consider the situation where nuisance parameters are
present. However, the presence of nuisance parameters is
very common in practice. For example, we are frequently
confronted with the problem of testing a location parameter
in the presence of an unknown scale parameter.

In the presence of nuisance parameters, Yin [12] derived
the equality of the generalized 𝑝 value and Bayesian posterior
probability of the null hypothesis in the one-sided testing
problem under the exponential distribution. However, this
is also a result of agreement of evidence in quite specific
situation. In this paper, we focus on the one-sided testing
problem and study the relationship between the Bayesian
and frequentist evidence in a more general setting where the
presence of nuisance parameters is allowed. The sufficient
conditions for the equivalence between the Bayesian and
frequentist evidence are, respectively, given for the one
sample and two (or more) samples testing situations.
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This paper is organized as follows. In Section 2, we give
the main results on the agreement between the Bayesian
and frequentist evidence in the one-sided testing problem.
Section 3 illustrates the proposed method by applying it to
several classical examples of testing one-sided hypotheses.
Conclusions are stated in Section 4.

2. Agreement of Evidence

In the presence of nuisance parameters, we consider testing
one-sided hypotheses in (1) based on a random sample
𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛). However, the classical 𝑝 value is
typically not available when nuisance parameters are present.
Tsui and Weerahandi [13] introduced the concept of the
generalized 𝑝 value which appears to be useful in situations
where conventional frequentist approaches do not provide
appropriate measure of evidence.

Let𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) be a random sample distributed
with distribution function 𝐹(𝑥; 𝜁), where 𝜁 = (𝜃, 𝛿) is an
unknown vector in parameter spaceΩ, 𝜃 ∈ Θ is a real-valued
parameter of interest, and 𝛿 ∈ Δ is the nuisance parameter.
Assume that 𝑥 ∈ 𝜒 is the observed value of𝑋.

Definition 1. Let 𝑇 = 𝑇(𝑋; 𝑥, 𝜁) be a function of 𝑋, 𝑥, and
𝜁 = (𝜃, 𝛿). 𝑇 is said to be a generalized test variable if it has
the following three properties:

(a) 𝑡 = 𝑇(𝑥; 𝑥, 𝜁) does not depend on unknown parame-
ters.

(b) When 𝜃 is specified, 𝑇 has a probability distribution
that is free of nuisance parameters.

(c) For fixed 𝑥 and 𝛿, 𝑃(𝑇(𝑋; 𝑥, 𝜁) ≥ 𝑇(𝑥; 𝑥, 𝜁) | 𝜃) is
nondecreasing in 𝜃 for any given 𝑡 = 𝑇(𝑥; 𝑥, 𝜁).

According to properties (a)–(c) of Definition 1, the larger
observed values 𝑇(𝑥; 𝑥, 𝜁) of 𝑇(𝑋; 𝑥, 𝜁) can be considered as
extreme values of the distribution under the null hypothesis
𝐻0, so they suggest stronger evidence against𝐻0.

Definition 2. Based on a generalized test variable 𝑇 = 𝑇(𝑋; 𝑥,
𝜁), the generalized 𝑝 value for testing the one-sided hypothe-
ses (1) is defined as

𝑝 (𝑥) = sup
𝜃≤𝜃0

𝑃 (𝑇 (𝑋; 𝑥, 𝜁) ≥ 𝑇 (𝑥; 𝑥, 𝜁) | 𝜃)

= 𝑃 (𝑇 (𝑋; 𝑥, 𝜁) ≥ 𝑇 (𝑥; 𝑥, 𝜁) | 𝜃 = 𝜃0) .
(2)

Many researches have been carried out to construct the
generalized 𝑝 value for many specific examples including
the well-known Behrens-Fisher problem. Hannig et al. [14]
provided a general method for constructing the generalized
𝑝 value under the framework of fiducial inference.

Definition 3. Suppose that there is a random variable 𝐸 with
known distribution on space Ξ and that ℎ(𝜁, 𝑒) is a function
fromΩ × Ξ to 𝜒 such that

𝑋 = ℎ (𝜁, 𝐸) (3)

for every 𝜁 ∈ Ω. Furthermore, assume that for any observa-
tion 𝑥 ∈ 𝜒 of𝑋 and 𝑒 ∈ Ξ of 𝐸, the equation 𝑥 = ℎ(𝜁, 𝑒) has a
unique solution inΩ which is denoted by 𝜁𝑥(𝑒). Then

(a) the distribution of 𝜁𝑥(𝐸) is called the fiducial distribu-
tion of 𝜁 with respect to 𝑥;

(b) the distribution of 𝜃(𝜁𝑥(𝐸)) is called the (marginal)
fiducial distribution of 𝜃 = 𝜃(𝜁) with respect to 𝑥.

By Definition 3, the fiducial distribution of 𝜃 = 𝜃(𝜁) is

𝐹𝑥 (𝜃) = 𝑃 (𝜃 (𝜁𝑥 (𝐸)) ≤ 𝜃) . (4)

Hannig et al. established that if the conditions in Definition 3
hold and if the equation 𝑥 = ℎ(𝜁, 𝑒) has a unique solution
in Ξ for any 𝜁 and 𝑥, the generalized 𝑝 value for testing the
one-sided hypotheses (1) is just equal to the fiducial 𝑝 value,
𝑝 = 𝐹𝑥(𝜃0).

For one-sided hypothesis testing problem (1) and in the
presence of nuisance parameters, we now give the conditions
for the agreement between the frequentist evidence, the
generalized 𝑝 value, and the Bayesian evidence, the posterior
probability that𝐻0 is true.

Theorem 4. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independently distributed
with 𝐹(𝑥; 𝜉), where 𝜉 = (𝜇, 𝜎). Suppose that there exit two
statistics 𝑇1 and 𝑇2 which satisfy

(𝑇1, 𝑇2) = (𝜇 + 𝜎𝐸1, 𝜎𝐸2) , (5)

where 𝐸1 and 𝐸2 are two independent random variables with a
known joint probability density 𝑔(𝑒1, 𝑒2), and suppose that the
prior distribution of (𝜇, 𝜎) is 𝜋(𝜇, 𝜎) = 1/𝜎.

(i) The fiducial distribution of (𝜇, 𝜎) is equivalent to its
posterior distribution.

(ii) For the one-sided testing problem of form (1), where 𝜃 =
𝜃(𝜇, 𝜎) is the parameter of interest, the generalized 𝑝
value is equivalent to the posterior probability of𝐻0.

Proof. (i) On the one hand, since (𝑇1, 𝑇2) = (𝜇 + 𝜎𝐸1, 𝜎𝐸2),
we can obtain the functional model as

𝑇1 = 𝜇 + 𝜎𝐸1,

𝑇2 = 𝜎𝐸2,
(6)

based on which we have

𝜇 = 𝑇1 − 𝑇2
𝐸1
𝐸2
,

𝜎 = 𝑇2
𝐸2
.

(7)

Since (𝐸1, 𝐸2) has a density 𝑔(𝑒1, 𝑒2), it can be obtained that
the fiducial distribution of (𝜇, 𝜎) is

𝑓𝑡1,𝑡2 (𝜇, 𝜎) =
𝑡2
𝜎3𝑔(

𝑡1 − 𝜇
𝜎 , 𝑡2𝜎 ) . (8)

On the other hand, the density of (𝑇1, 𝑇2) can be obtained as

𝑓 (𝑡1, 𝑡2 | 𝜇, 𝜎) =
1
𝜎2𝑔(

𝑡1 − 𝜇
𝜎 , 𝑡2𝜎 ) . (9)
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If the prior distribution for (𝜇, 𝜎) is 𝜋(𝜇, 𝜎) = 1/𝜎, the pos-
terior distribution of (𝜇, 𝜎) is

𝑓 (𝜇, 𝜎 | 𝑡1, 𝑡2)

=
(1/𝜎3) 𝑔 ((𝑡1 − 𝜇) /𝜎, 𝑡2/𝜎)

∬ (1/𝜎3) 𝑔 ((𝑡1 − 𝜇) /𝜎, 𝑡2/𝜎) 𝑑𝜇 𝑑𝜎

= 𝑡2
𝜎3𝑔(

𝑡1 − 𝜇
𝜎 , 𝑡2𝜎 ) .

(10)

By (8) and (10) we know that the fiducial distribution of (𝜇, 𝜎)
is equivalent to its posterior distribution.

(ii) On the one hand, we know by (i) that the posterior
probability of𝐻0 is equivalent to the corresponding fiducial𝑝
value 𝐹𝑥(𝜃0), where 𝐹𝑥(𝜃) denotes the fiducial distribution of
𝜃. On the other hand, under the assumptions of the theorem
it is obvious that the conditions of Definition 3 are satisfied
and (𝑡1, 𝑡2) = (𝜇 + 𝜎𝑒1, 𝜎𝑒2) has unique solution in the
space of (𝐸1, 𝐸2) for any given (𝑡1, 𝑡2) and (𝜇, 𝜎), so that the
generalized𝑝 value is equivalent to the fiducial𝑝 value𝐹𝑥(𝜃0).
This completes the proof.

For the two-sample testing situation, we also have the
result on the agreement between the Bayesian and frequentist
evidence which we summarize as Theorem 5.

Theorem 5. Let 𝑋1, 𝑋2, . . . , 𝑋𝑚 and 𝑌1, 𝑌2, . . . , 𝑌𝑛 be inde-
pendently distributed with 𝐹(𝑥; 𝜉1) and 𝐺(𝑦; 𝜉2), respectively,
where 𝜉1 = (𝜇1, 𝜎1) and 𝜉2 = (𝜇2, 𝜎2). Suppose that there exit
four statistics 𝑇11, 𝑇12, 𝑇21, and 𝑇22 which satisfy

(𝑇11, 𝑇12, 𝑇21, 𝑇22)

= (𝜇1 + 𝜎1𝐸11, 𝜎1𝐸12, 𝜇2 + 𝜎2𝐸21, 𝜎2𝐸22) ,
(11)

where𝐸11,𝐸12,𝐸21, and𝐸22 are four independent randomvari-
ables with a known joint probability density 𝑔(𝑒11, 𝑒12, 𝑒21, 𝑒22),
and suppose that the prior distribution of (𝜇1, 𝜎1, 𝜇2, 𝜎2) is
𝜋(𝜇1, 𝜎1, 𝜇2, 𝜎2) = 1/(𝜎1𝜎2).

(i) The fiducial distribution of (𝜇1, 𝜎1, 𝜇2, 𝜎2) is equivalent
to its posterior distribution.

(ii) For the one-sided testing problem of form (1), where
𝜃 = 𝜃(𝜇1, 𝜎1, 𝜇2, 𝜎2) is the parameter of interest, the
generalized𝑝 value is equivalent to the posterior proba-
bility of𝐻0.

Proof. (i) By the assumptions that

(𝑇11, 𝑇12, 𝑇21, 𝑇22)

= (𝜇1 + 𝜎1𝐸11, 𝜎1𝐸12, 𝜇2 + 𝜎2𝐸21, 𝜎2𝐸22) ,
(12)

the functional model can be obtained as

𝑇11 = 𝜇1 + 𝜎1𝐸11,

𝑇12 = 𝜎1𝐸12,

𝑇21 = 𝜇2 + 𝜎2𝐸21,

𝑇22 = 𝜎2𝐸22.

(13)

Consequently, we have

𝜇1 = 𝑇11 − 𝑇12
𝐸11
𝐸12

,

𝜎1 =
𝑇12
𝐸12

,

𝜇2 = 𝑇21 − 𝑇22
𝐸21
𝐸22

,

𝜎2 =
𝑇22
𝐸22

.

(14)

Since (𝐸11, 𝐸12, 𝐸21, 𝐸22) has a density 𝑔(𝑒11, 𝑒12, 𝑒21, 𝑒22), we
can obtain the fiducial distribution of (𝜇1, 𝜎1, 𝜇2, 𝜎2) as

𝑓𝑡11 ,𝑡12 ,𝑡21 ,𝑡22 (𝜇1, 𝜎1, 𝜇2, 𝜎2)

= 𝑡12𝑡22
𝜎31𝜎32

𝑔(𝑡11 − 𝜇1𝜎1
, 𝑡12𝜎1

, 𝑡21 − 𝜇2𝜎2
, 𝑡22𝜎2

) .
(15)

On the other hand, the density of (𝑇11, 𝑇12, 𝑇21, 𝑇22) is

𝑓 (𝑡11, 𝑡12, 𝑡21, 𝑡22 | 𝜇1, 𝜎1, 𝜇2, 𝜎2)

= 1
𝜎21𝜎22

𝑔(𝑡11 − 𝜇1𝜎1
, 𝑡12𝜎1

, 𝑡21 − 𝜇2𝜎2
, 𝑡22𝜎2

) .
(16)

Consequently, the posterior distribution of (𝜇1, 𝜎1, 𝜇2, 𝜎2)
under the prior 𝜋(𝜇1, 𝜎1, 𝜇2, 𝜎2) = 1/(𝜎1𝜎2) is

𝑓 (𝜇1, 𝜎1, 𝜇2, 𝜎2 | 𝑡11, 𝑡12, 𝑡21, 𝑡22) =
(1/𝜎31𝜎32) 𝑔 ((𝑡11 − 𝜇1) /𝜎1, 𝑡12/𝜎1, (𝑡21 − 𝜇2) /𝜎2, 𝑡22/𝜎2)

∫∫∫∫ (1/𝜎31𝜎32) 𝑔 ((𝑡11 − 𝜇1) /𝜎1, 𝑡12/𝜎1, (𝑡21 − 𝜇2) /𝜎2, 𝑡22/𝜎2) 𝑑𝜇1𝑑𝜇2𝑑𝜎1𝑑𝜎2

= 𝑡12𝑡22
𝜎31𝜎32

𝑔(𝑡11 − 𝜇1𝜎1
, 𝑡12𝜎1

, 𝑡21 − 𝜇2𝜎2
, 𝑡22𝜎2

) .

(17)

By (15) and (17), it is obtained that the fiducial distribution of
(𝜇, 𝜎) is equivalent to its posterior distribution.

(ii)The proof is by analogy with that of (ii) ofTheorem 4.
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Note that the result on the agreement between the Baye-
sian and frequentist evidence in the two samples situation of
Theorem 5 can be easily extended to the general situation of
𝑛 (𝑛 ≥ 2) samples.

3. Examples

3.1. Normal Distribution. The problem of testing parame-
ters of a normal distribution has its wide applicability. Let
𝑋1, 𝑋2, . . . , 𝑋𝑛 be independently distributed according to
the normal distribution 𝑁(𝜇, 𝜎2), where both 𝜇 and 𝜎2 are
unknown. Let

𝑇1 = 𝑋 = ∑𝑛𝑖=1𝑋𝑖
𝑛 ,

𝑇22 = 𝑆
2 =

∑𝑛𝑖=1 (𝑋𝑖 − 𝑋)
2

𝑛 − 1 .

(18)

We know that √𝑛(𝑇1 − 𝜇)/𝜎 and (𝑛 − 1)𝑇22 /𝜎2 are indepen-
dently distributed with𝑁(0, 1) and 𝜒2(𝑛 − 1). Let

𝐸1 ∼ 𝑁 (0, 1) ,

𝐸22 ∼ 𝜒
2 (𝑛 − 1)

(19)

be independent. We have

(𝑇1, 𝑇2) = (𝜇 +
𝜎𝐸1
√𝑛 ,

𝜎𝐸2
√𝑛 − 1

) . (20)

By Theorem 4 we know that if the noninformative prior
distribution for 𝜋(𝜇, 𝜎) = 1/𝜎 is used, then for any parameter
𝜃 = 𝜃(𝜇, 𝜎) of interest in the problem of testing hypotheses
in (1) the generalized 𝑝 value is equivalent to the posterior
probability that the null hypothesis is true.

The problem of comparing the parameters of two normal
distributions arises in comparing two treatments, products,
and so forth. We now consider the two-sample testing situa-
tion. Let 𝑋1, 𝑋2, . . . , 𝑋𝑚 and 𝑌1, 𝑌2, . . . , 𝑌𝑛 be independently
distributed with the normal distributions 𝑁(𝜇1, 𝜎21) and
𝑁(𝜇2, 𝜎22), respectively. Let

𝑇11 = 𝑋 = ∑𝑚𝑖=1𝑋𝑖
𝑚 ,

𝑇212 = 𝑆
2
1 =

∑𝑚𝑖=1 (𝑋𝑖 − 𝑋)
2

𝑚 − 1 ,

𝑇21 = 𝑌 = ∑𝑛𝑖=1 𝑌𝑖
𝑛 ,

𝑇222 = 𝑆
2
2 =

∑𝑛𝑖=1 (𝑌𝑖 − 𝑌)
2

𝑛 − 1 ,

(21)

and let

𝐸11 ∼ 𝑁 (0, 1) ,

𝐸212 ∼ 𝜒
2 (𝑚 − 1) ,

Table 1: Fiducial (or posterior) distributions for some important pa-
rameters of interest under the normal distribution.

Parameter Fiducial (or posterior) distribution

𝑐1𝜇 + 𝑐2𝜎 𝑐1(𝑥 −
√𝑛 − 1𝑠𝑍
√𝑛√𝜒2𝑛−1

)+ 𝑐2
√𝑛 − 1𝑠
√𝜒2𝑛−1

𝜇1 − 𝜇2 𝑥 − 𝑦 −(
√𝑚 − 1𝑠1𝑍
√𝑚√𝜒2𝑚−1

−
√𝑛 − 1𝑠2𝑍
√𝑛√𝜒2𝑛−1

)

𝜎1
𝜎2

𝑠21
𝑠22
𝐹𝑛−1,𝑚−1

𝐸21 ∼ 𝑁 (0, 1) ,

𝐸222 ∼ 𝜒
2 (𝑛 − 1) ,

(22)

which are independent. We then have that (𝑇11, 𝑇12, 𝑇21, 𝑇22)
are sufficient statistics and

(𝑇11, 𝑇12, 𝑇21, 𝑇22)

= (𝜇1 +
𝜎1𝐸11
√𝑚 , 𝜎1𝐸12

√𝑚 − 1
, 𝜇2 +

𝜎2𝐸21
√𝑛 , 𝜎2𝐸22√𝑛 − 1

) .
(23)

By applying Theorem 5, it is obtained that if we use the
noninformative prior 𝜋(𝜇1, 𝜎1, 𝜇2, 𝜎2) = 1/(𝜎1𝜎2), then for
any parameter 𝜃 = 𝜃(𝜇1, 𝜎1, 𝜇2, 𝜎2) in testing hypotheses
(1), the generalized 𝑝 value is equivalent to the posterior
probability of the null hypothesis being true.

The fiducial (or posterior) distributions for some impor-
tant parameters of interest are listed inTable 1, based onwhich
we can give the generalized𝑝 value which is also the posterior
probability of the null hypothesis for testing hypotheses of
form (1). In Table 1, 𝑍 is a standard normal random variable,
𝜒2𝑚−1 and 𝜒2𝑛−1 are chi-squared random variables with the
indicated degrees of freedom, 𝐹𝑛−1,𝑚−1 is 𝐹-variable with the
indicated degrees of freedom, and 𝑐1 and 𝑐2 are two constants.

From Table 1 we observe that if 𝑐1 = 1 and 𝑐2 = 0, the
distribution reduces to the fiducial (or posterior) distribution
of a normal mean. If 𝑐1 = 0 and 𝑐2 = 1, the distribution
reduces to the fiducial (or posterior) distribution of a normal
standard variance. If 𝑐1 = 1 and 𝑐2 = 𝑧𝑝, the distribution then
reduces to the fiducial (or posterior) distribution of the 𝑝-
quantile, where 𝑧𝑝 is the 𝑝-quantile of the standard normal
distribution.

In addition, by Theorem 4, an immediate agreement of
evidence can be obtained in testing𝐻0: 𝜃 = 𝜇/𝜎 ≤ 𝜃0, which
is the hypothesis about the mean expressed in 𝜎-unit, and in
testing 𝐻0: 𝜃 = 𝑃(𝑋 ≤ 𝑥0) ≤ 𝜃0, which is the hypothesis
about the distribution function of the normal variable with
mean 𝜇 and variance 𝜎2 at a fixed value 𝑥0. The generalized
𝑝 value which is equivalent to the posterior probability of
𝐻0 can be easily obtained according to Table 1 since these
two null hypotheses can be equivalently expressed as𝐻0: 𝜇−
𝜃0𝜎 ≤ 0 and𝐻0: − 𝜇 − Φ−1(𝜃0)𝜎 ≤ −𝑥0, respectively.
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3.2. Two-Parameter Exponential Distribution. We first con-
sider the relationship between the Bayesian and frequentist
evidence for testing one-sided hypotheses in the one-sample
situation. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independently distributed
according to the two-parameter exponential population
𝐸(𝜇, 𝜎), where both 𝜇 and 𝜎 are unknown. Suppose that the
observations are type II censored data 𝑋(1) < 𝑋(2) < ⋅ ⋅ ⋅ <
𝑋(𝑘), 𝑘 < 𝑛.

We know that

𝑇1 = 𝑋(1),

𝑇2 =
𝑘

∑
𝑖=1

𝑋(𝑖) + (𝑛 − 𝑘)𝑋(𝑘) − 𝑛𝑋(1)
(24)

are jointly sufficient statistics for (𝜇, 𝜎) and

2𝑛 (𝑋(1) − 𝜇)
𝜎 ,

2 (∑𝑘𝑖=1𝑋(𝑖) + (𝑛 − 𝑘)𝑋(𝑘) − 𝑛𝑋(1))
𝜎

(25)

are independently distributed with 𝜒2(2) and 𝜒2(2𝑘 − 2). Let

𝐸1 ∼ 𝜒2 (2) ,

𝐸2 ∼ 𝜒2 (2𝑘 − 2)
(26)

be independent. We have

(𝑇1, 𝑇2) = (𝜇 +
𝜎𝐸1
2𝑛 , 𝜎𝐸22 ) . (27)

If the prior distribution of (𝜇, 𝜎) is 𝜋(𝜇, 𝜎) = 1/𝜎, then
according to Theorem 4, for each parameter 𝜃 = 𝜃(𝜇, 𝜎)
of interest in testing hypotheses (1) under a two-parameter
exponential distribution, the generalized𝑝 value is equivalent
to the corresponding posterior probability of the null hypoth-
esis.

The problemof comparing parameters of two exponential
distributions arises in many theoretical and applied contexts.
A case in point is the problem of lifetime testing in the theory
of reliability. We then begin to consider the relationship
between the Bayesian and frequentist evidence in a two-
population context.

Let 𝑋1, 𝑋2, . . . , 𝑋𝑚 and 𝑌1, 𝑌2, . . . , 𝑌𝑛 be independently
distributed with the two-parameter exponential distributions
𝐸(𝜇1, 𝜎1) and 𝐸(𝜇2, 𝜎2), respectively, where all the parameters
are unknown. The observations are type II censored data
𝑋(1) < 𝑋(2) < ⋅ ⋅ ⋅ < 𝑋(𝑘), 𝑘 < 𝑚, and 𝑌(1) < 𝑌(2) <
⋅ ⋅ ⋅ < 𝑌(𝑙), 𝑙 < 𝑛. The prior distribution in the situation of
two populations is 𝜋(𝜇1, 𝜎1, 𝜇2, 𝜎2) = 1/(𝜎1𝜎2).

If we denote

𝑇11 = 𝑋(1),

𝑇12 =
𝑘

∑
𝑖=1

𝑋(𝑖) + (𝑚 − 𝑘)𝑋(𝑘) − 𝑚𝑋(1),

𝑇21 = 𝑌(1),

𝑇22 =
𝑙

∑
𝑖=1

𝑌(𝑖) + (𝑛 − 𝑙) 𝑌(𝑙) − 𝑛𝑌(1)

(28)

and if

𝐸11 ∼ 𝜒2 (2) ,

𝐸12 ∼ 𝜒2 (2𝑘 − 2) ,

𝐸21 ∼ 𝜒2 (2) ,

𝐸22 ∼ 𝜒2 (2𝑙 − 2) ,

(29)

which are independent, then we have that (𝑇11, 𝑇12, 𝑇21, 𝑇22)
are sufficient statistics and

(𝑇11, 𝑇12, 𝑇21, 𝑇22)

= (𝜇1 +
𝜎1𝐸11
2𝑚 , 𝜎1𝐸122 , 𝜇2 +

𝜎2𝐸21
2𝑛 , 𝜎2𝐸222 ) .

(30)

By Theorem 5, for any parameter 𝜃 = 𝜃(𝜇1, 𝜎1, 𝜇2, 𝜎2) of
interest in one-sided testing problem (1), the equivalence
between the generalized 𝑝 value and the posterior probability
of the null hypothesis being true can be obtained.

Table 2 lists the fiducial (or posterior) distributions
for some important parameters of interest under the two-
parameter exponential distribution. The generalized 𝑝 value
which is also the posterior probability of the null hypothesis
for testing one-sided hypotheses (1) can be easily obtained
according to the corresponding distribution in Table 2, where
𝜒22 , 𝜒22𝑘−2, and 𝜒22𝑙−2 are chi-squared random variables with
the indicated degrees of freedom, 𝐹2𝑙−2,2𝑘−2 is a 𝐹-variable
with the indicated degrees of freedom, and 𝑐1 and 𝑐2 are two
constants.

Note fromTable 2 that if 𝑐1 = 1 and 𝑐2 = 0, the distribution
reduces to the fiducial (or posterior) distribution for testing
the location parameter 𝜇. If 𝑐1 = 0 and 𝑐2 = 1, the distribution
reduces to the fiducial (or posterior) distribution for testing
the scale parameter 𝜎.

In the theory of reliability, a parameter of particular
interest under a two-parameter exponential distribution is
often a quantile of the form 𝜇 + 𝑏𝜎, where 𝑏 is a known
and fixed constant. The agreement between the generalized
𝑝 value and the Bayesian evidence for testing this quantile
can be obtained byTheorem 5 and the evidence can be given
easily according to Table 2.

Moreover, the agreement between the Bayesian and
frequentist evidence for testing the reliability function 𝜃 =
𝑃(𝑋 ≥ 𝑥0) = exp{−(𝑥0 − 𝜇)/𝜎}, where 𝑥0 is a fixed
value, can be obtained by Theorem 5. Since the hypothesis
𝐻0: exp{−(𝑥0 − 𝜇)/𝜎} ≤ 𝜃0 can be equivalently expressed
as 𝐻0: 𝜇 − ln𝜃0𝜎 ≤ 𝑥0, the generalized 𝑝 value which is
equivalent to the posterior probability of the null hypothesis
can be obtained easily according to Table 2.
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Table 2: Fiducial (or posterior) distribution for some important parameters of interest under the two-parameter exponential distribution.

Parameter Fiducial (or posterior) distribution

𝑐1𝜇 + 𝑐2𝜎 𝑐1𝑥(1) −
𝑐1 [∑
𝑘
𝑖=1 𝑥(𝑖) + (𝑛 − 𝑘) 𝑥(𝑘) − 𝑛𝑥(1)] 𝜒22

𝑛𝜒2
2𝑘−2

+
2𝑐2 [∑

𝑘
𝑖=1 𝑥(𝑖) + (𝑛 − 𝑘) 𝑥(𝑘) − 𝑛𝑥(1)]

𝜒2
2𝑘−2

𝜇1 − 𝜇2 𝑥(1) − 𝑦(1) +
∑𝑙𝑖=1 𝑦(𝑖) + (𝑛 − 𝑙) 𝑦(𝑙) − 𝑛𝑦(1)

𝑛
𝜒22
𝜒2
2𝑙−2

−
∑𝑘𝑖=1 𝑥(𝑖) + (𝑚 − 𝑘) 𝑥(𝑘) − 𝑚𝑥(1)

𝑚
𝜒22
𝜒2
2𝑘−2

𝜎1
𝜎2

(𝑙 − 1) [∑𝑘𝑖=1 𝑥(𝑖) + (𝑚 − 𝑘) 𝑥(𝑘) − 𝑚𝑥(1)]
(𝑘 − 1) [∑𝑙𝑖=1 𝑦(𝑖) + (𝑛 − 𝑙) 𝑦(𝑙) − 𝑛𝑦(1)]

𝐹2𝑙−2,2𝑘−2

3.3. Weibull Distribution. In the theory of survival analysis
and the theory of reliability, one of the most important dis-
tributions is the Weibull distribution 𝑊(𝜏, 𝜂) whose density
is

𝑓 (𝑥) = 𝜏𝑥𝜏−1
𝜂𝜏 𝑒−𝑥

𝜏/𝜂𝜏 , 𝑥 > 0, (31)

where 𝜏 > 0 and 𝜂 > 0.
Suppose that 𝑋 ∼ 𝑊(𝜏, 𝜂) and let 𝑌 = ln𝑋, then the

density of 𝑌 is

𝑓 (𝑦) = 1
𝜎𝑒
(𝑦−𝜇)/𝜎𝑒−𝑒

(𝑦−𝜇)/𝜎

, (32)

where 𝜇 = ln 𝜂 and 𝜎 = 1/𝜏. We know that (32) is the
density of the extreme value distribution which is denoted by
EV(𝜇, 𝜎). It can be verified that 𝐸(𝑌) = 𝜇 − 𝑟𝜎 and Var(𝑌) =
𝜋2𝜎2/6, where 𝑟 is the Euler constant.

Note that it is more convenient to make inferences on
the parameters of a Weibull distribution under (32) since it is
a location-scale family. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independently
distributed according to the Weibull distribution 𝑊(𝜏, 𝜂)
and let 𝑌𝑖 = ln𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑛. Then 𝑌1, 𝑌2, . . . , 𝑌𝑛 are
independently distributed according to the density (32). Let

𝑇1 = 𝑌 = ∑𝑛𝑖=1 𝑌𝑖
𝑛 = ln∏𝑛𝑖=1𝑋𝑖

𝑛 ,

𝑇22 = 𝑆
2 =

∑𝑛𝑖=1 (𝑌𝑖 − 𝑌)
2

𝑛 − 1 ,

(33)

and let

𝐸1 =
√6 [𝑇1 − (𝜇 − 𝑟𝜎)]

𝜋𝜎 ,

𝐸2 =
√6𝑇2
𝜋𝜎 ,

(34)

and then we have

(𝑇1, 𝑇2) = (𝜇 + 𝜎(
𝜋𝐸1
√6

+ 𝑟) , 𝜎𝜋𝐸2√6
) . (35)

If the prior distribution for (𝜇, 𝜎) is 𝜋(𝜇, 𝜎) = 1/𝜎, then ac-
cording toTheorem4, we can obtain the equivalence between

the generalized 𝑝 value and the posterior probability of the
null hypothesis for the problem of testing hypotheses about
𝜃 = 𝜃(𝜇, 𝜎) = 𝜃∗(𝜏, 𝜂). But we have to note that (𝑇1, 𝑇2) is not
sufficient for (𝜇, 𝜎) in this situation and therefore may lead
to some loss of information about the parameters which is
contained in the sample.

Now we consider the two-sample situation. Let
𝑋11, 𝑋12, . . . , 𝑋1𝑚 and 𝑋21, 𝑋22, . . . , 𝑋2𝑛 be independently
distributed with the Weibull distributions 𝑊(𝜏1, 𝜂1) and
𝑊(𝜏2, 𝜂2), respectively. Let 𝑌1𝑖 = ln𝑋1𝑖, 𝑖 = 1, 2, . . . , 𝑚,
and 𝑌2𝑗 = ln𝑋2𝑗, 𝑗 = 1, 2, . . . , 𝑛. Then 𝑌11, 𝑌12, . . . , 𝑌1𝑚
and 𝑌21, 𝑌22, . . . , 𝑌2𝑛 are independently distributed with
the extreme value distributions EV(𝜇1, 𝜎1) and EV(𝜇2, 𝜎2),
respectively, where 𝜇𝑖 = ln 𝜂𝑖, 𝑖 = 1, 2, and 𝜎𝑗 = 1/𝜏𝑗, 𝑗 = 1, 2.
Now let

𝑇11 = 𝑌1 =
∑𝑚𝑖=1 𝑌1𝑖
𝑚 = ln∏𝑚𝑖=1𝑋1𝑖

𝑚 ,

𝑇212 = 𝑆
2
1 =

∑𝑚𝑖=1 (𝑌1𝑖 − 𝑌1)
2

𝑚 − 1 ,

𝑇21 = 𝑌2 =
∑𝑛𝑖=1 𝑌2𝑖

𝑛 = ln∏𝑛𝑖=1𝑋2𝑖
𝑛 ,

𝑇222 = 𝑆
2
2 =

∑𝑛𝑖=1 (𝑌2𝑖 − 𝑌2)
2

𝑛 − 1 ,

(36)

and let

𝐸11 =
√6 [𝑇11 − (𝜇1 − 𝑟𝜎1)]

𝜋𝜎1
,

𝐸12 =
√6𝑇12
𝜋𝜎1

,

𝐸21 =
√6 [𝑇21 − (𝜇2 − 𝑟𝜎2)]

𝜋𝜎2
,

𝐸22 =
√6𝑇22
𝜋𝜎2

,

(37)
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and then we have

(𝑇11, 𝑇12, 𝑇21, 𝑇22) = (𝜇1

+ 𝜎1 (
𝜋𝐸11
√6

+ 𝑟) , 𝜎1
𝜋𝐸12
√6

, 𝜇2

+ 𝜎2 (
𝜋𝐸21
√6

+ 𝑟) , 𝜎2
𝜋𝐸22
√6

) .

(38)

Consequently, we can obtain the equivalence between the
Bayesian and frequentist evidence in testing one-sided
hypotheses about 𝜃 = 𝜃(𝜇1, 𝜎1, 𝜇2, 𝜎2) = 𝜃∗(𝜏1, 𝜂1, 𝜏2, 𝜂2) of
interest by Theorem 5 given that the prior distribution for
(𝜇1, 𝜎1, 𝜇2, 𝜎2) is 𝜋(𝜇1, 𝜎1, 𝜇2, 𝜎2) = 1/(𝜎1𝜎2).

4. Conclusions

For the one-sided testing problem, we give the sufficient
conditions for the equivalence between the generalized 𝑝
value and the posterior probability that the null hypothesis
is true. By applying the proposed method to some specific
examples we show the agreement between the Bayesian
and frequentist evidence in many classical testing situations.
This is an illustration of reconcilability of the Bayesian and
frequentist evidence in the one-sided testing problems under
a quite general framework where the presence of nuisance
parameters is allowed.

For the testing problemswe have considered in this paper,
the posterior distribution of the parameter of interest is
equivalent to the corresponding fiducial distribution, which
is basically the main reason for the equivalence between
the generalized 𝑝 value and the posterior probability of the
null hypothesis. In the problem of testing a normal standard
variance, we have that

𝜎 | 𝑥 ∼ √𝑛 − 1𝑠 (𝜒2𝑛−1)
−1/2 , (39)

where𝜒2𝑛−1 is a chi-squared randomvariablewith 𝑛−1degrees
of freedom. This means that we can give a constructive
form of the posterior distribution for a parameter of interest
since we have a general method of formulating a fiducial
distribution. This kind of constructive form of distributions
may bring us significant convenience in computation and
simulation. If the conditions for the agreement of evidence
hold for a certain distribution or a family of distributions, the
corresponding fiducial (or posterior) distribution table like
Table 1 or Table 2 can be given for the convenience of use in
theory and practice.
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Let 𝜔0, 𝜔1, . . . , 𝜔𝑛 be a full set of outcomes (symbols) and let positive 𝑝𝑖, 𝑖 = 0, . . . , 𝑛, be their probabilities (∑𝑛
𝑖=0 𝑝𝑖 = 1). Let us treat𝜔0 as a stop symbol; it can occur in sequences of symbols (we call them words) only once, at the very end.The probability of a word

is defined as the product of probabilities of its symbols. We consider the list of all possible words sorted in the nonincreasing order
of their probabilities. Let 𝑝(𝑟) be the probability of the 𝑟th word in this list. We prove that if at least one of the ratios log𝑝𝑖/ log𝑝𝑗,𝑖, 𝑗 ∈ {1, . . . , 𝑛}, is irrational, then the limit lim𝑟→∞𝑝(𝑟)/𝑟−1/𝛾 exists and differs from zero; here 𝛾 is the root of the equation∑𝑛

𝑖=1 𝑝𝛾𝑖 =1. The limit constant can be expressed (rather easily) in terms of the entropy of the distribution (𝑝𝛾1 , . . . , 𝑝𝛾𝑛).

1. Introduction: The Statement of
the Main Theorem

1.1. Brief Literature Overview. The wide presence of power
laws in real networks, biology, economics, and linguistics
can be explained in the framework of various mathematical
models (see, e.g., [1, 2]). According to Zipf ’s law [3], in a list of
word forms ordered by the frequency of occurrence, the fre-
quency of the 𝑟th word form obeys a power function of 𝑟 (the
value 𝑟 is called the rank of the word form). One can easily
explain this law with the help of the so-called monkeymodel.

Recall that the word forms “the”; “of”; and “and” are used
most frequently in English texts. According to Zipf ’s law, the
word “the” is used in the texts twice as much as “of” and
three times as much as “and”; in other words the word form
occurrence frequency obeys the power function of rank 𝑟 (the
position number of the word form in an ordered frequency
list) whose exponent is approximately −1. It should be noted
that further surveys showed that Zipf ’s law is roughly realised
only for the most frequent words. At present, the researches
try to describe the main part of the lexicon using the power
law with an exponent −𝛼, where 𝛼 > 1. Zipf explained his law
on the basis of the principle of least effort. In accordance with

this principle, the authors aim to minimise the length of the
text, which is required to convey their thoughts, even if this
introduces ambiguities. On the other hand, readers want to
minimize the effort required to understand the text [4].

Another explanation of Zipf ’s law was suggested byMan-
delbrot who slightly modified the law by introducing trans-
lation constant [5] into the argument of the power function.
The important thing for our case is that later he hypothesized
the existence of more simple explanation of the Zipf law
associated with a simple probability model when all symbols
in the text (including white-space) appear independently of
each otherwith certain probability.Moreover, he analysed the
Markovian dependence between these symbols andwrote out
the correct (in a typical case) formula on the basis of special
cases to determine the parameter 𝛼 by the transition proba-
bilities matrix in the Markov model [6].

First, we will consider themodel thoroughly described by
Miller [7] and Li [8] for a special case of Mandelbrot’s exper-
iment in which the monkey types the keys with uniform pro-
bability. To learn some other important references on the
monkey model, we recommend to read the recent article by
Richard Perline andRon Perline [9] (see also references in the
next subsection).
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1.2. Statement of the Main Theorem and Its Connection with
Other Results. Assume that a monkey types any of 26 Latin
letters or the space on a keyboardwith the same probability of1/27. We understand a word as a sequence of symbols typed
by themonkey before the space. Let us sort the list of possible
words with respect to probabilities of their occurrence (the
empty word, whose probability equals 1/27, will go first in
this list followed by 26 one-letter words whose probabilities
equal 1/272 and then by 262 possible two-letters words and
so on). We can prove (see [7, 8]) that the probability 𝑝(𝑟) of a
word with the rank of 𝑟 satisfies the inequality

𝑐1𝑟−𝛼 < 𝑝 (𝑟) < 𝑐2𝑟−𝛼, (1)

where𝛼 = log 27/ log 26 and 𝑐1, 𝑐2 > 0 (here and belowwe use
the symbol log if the base of the logarithm is not significant;
but for the natural logarithm we use the symbol ln).

Relatively recently inequality (1) was generalized to the
case of nonequiprobable letters. Let 𝑝0 be the probability
that the monkey types the space, let 𝑝𝑖, 𝑖 = 1, . . . , 𝑛, denote
probabilities of choosing the 𝑖th letter from the set of 𝑛 letters
(𝑝𝑖 > 0,∑𝑛

𝑖=0 𝑝𝑖 = 1), and let 𝑝(𝑟) be, as above, the probability
of a wordwith a rank of 𝑟.Then, as is proved in [10, 11], the fol-
lowing inequality analogous to (1) takes place; namely,∃𝑐1, 𝑐2 :0 < 𝑐1 < 𝑐2, such that

𝑐1𝑟−𝛼 < 𝑝 (𝑟) < 𝑐2𝑟−𝛼, where 𝛼 = 1𝛾 (2)

and 𝛾 is the root of the equation ∑𝑛
𝑖=1 𝑝𝛾𝑖 = 1 (evidently,0 < 𝛾 < 1). Note that inequality (2) is equivalent to the

boundedness of the difference − log𝑝(𝑟) − 𝛼 log 𝑟.
In the case when the probability of each letter is not fixed

but depends on the previous one, words represent trajectories
of a Markov chain with the absorbing state 𝜔0 and transient
states 𝜔1, . . . , 𝜔𝑛. Then the value 𝑝(𝑟) is the probability of
the 𝑟th trajectory in the list of possible trajectories sorted
in the nonincreasing order of probabilities. In this case, the
asymptotic behavior of𝑝(𝑟) does not necessarily have a power
order. Namely, in this case one of the two alternatives takes
place [12, 13]. The first variant is that there exists the limit

lim
𝑟→∞

− log𝑝 (𝑟)𝑟1/𝑚 = 𝑐, 𝑐 > 0, (3)

where𝑚 is some positive integer constant value that depends
on the structure of the transition probability matrix and
the structure of states, where the initial distribution of the
Markov chain is concentrated. The second variant is that
independently of the initial distribution there exists the
following nonzero limit (the so-called weak power law):

lim
𝑟→∞

− log𝑝 (𝑟)
log 𝑟 . (4)

This limit equals 1/𝛾, where 𝛾 is now defined with the help of
the substochastic matrix 𝑃 of transition probabilities where
the row and the column that correspond to the absorbing
state 𝜔0 are deleted. Namely, raising all elements of the
mentioned matrix to the power of 𝛾 would equate its spectral
radius to 1.

These results were obtained independently in [12, 14] and
later refined in [13]. Namely, as appeared, the first alternative
means the subexponential order of the asymptotics; that is, in
this case ∃𝑐1, 𝑐2 : 0 < 𝑐1 < 𝑐2, such that

𝑐1 exp (−𝑐𝑟−1/𝑚) < 𝑝 (𝑟) < 𝑐2 exp (−𝑐𝑟−1/𝑚) . (5)

The case of the second alternative is much more difficult.
If the matrix 𝑃 does not have the block-diagonal structure
with coinciding powers such that raising elements of blocks
to these powers makes the spectral radius equal 1, then one
can replace the weak power law with a strong one. Namely, in
this case the asymptotic behavior of 𝑝(𝑟) has the power order;
that is, inequality (2) is valid (with “matrix” 𝛾 defined above).
Therefore, inequality (2) takes place in a “typical” case of letter
probabilities.

However, onemore natural question still remains without
an answer.

Inequality (2) means that the asymptotic form has a
power order but does not imply the exact power asymptotics.
In a general case, as follows from the first example given in
this section, useful properties can be established neitherwhen
letters in words are Markov-dependent nor when they are
independent. However, as we prove later in this paper, in a
“typical” case, for words composed of independent letters, the
asymptotic behavior of the function 𝑝(𝑟) is exact power. The
following theorem is valid.

Theorem 1 (main). Let at least one of the ratios log𝑝𝑖/ log𝑝𝑗,𝑖, 𝑗 ∈ {1, . . . , 𝑛}, be irrational and let 𝛾 be the root of the
equation ∑𝑛

𝑖=1 𝑝𝛾𝑖 = 1. Then the limit

lim
𝑟→∞

𝑝 (𝑟)−𝛾 /𝑝−𝛾0𝑟 (6)

exists and equals 𝐻(p𝛾), where 𝐻(p𝛾) is the entropy of p𝛾 =(𝑝𝛾1 , . . . , 𝑝𝛾𝑛); that is,𝐻(p𝛾) = −𝛾∑𝑛
𝑖=1 𝑝𝛾𝑖 ln𝑝𝑖.

Here and below we always write the function under
consideration in the numerator and do the norming (defined
analytically) function in the denominator of the fraction,
whose limit is to be calculated. In intermediate calculations
it may be more convenient to do the opposite, but since this
results only in the trivial raising of the limit constant to the
power of −1, we sacrifice the convenience of calculations
for the clarity of statements of results. Evidently, the theo-
rem asserts that under certain assumptions there exists the
nonzero limit 𝑝(𝑟)/𝑟−𝛼 (where 𝛼 = 1/𝛾) as 𝑟 → ∞. It is equal
to 𝑝0𝐻(p𝛾)−1/𝛾.

Let us describe the structure of the remaining part of the
paper. In Section 2 we state the main theorem in terms of
multinomial coefficients (of the Pascal pyramid). The proof
of the theorem is reduced to the estimation of the limit
behavior of the sum of these coefficients over some simplex.
In Section 3 we prove an analog of this theorem with an
integral in place of the sum. In this section we essentially use
the Stirling formula which allows us to reduce calculations
to the evaluation of a multivariate Gaussian integral. We
establish an explicit formula for the determinant of thematrix
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of the quadratic form that defines the integrand. Finally, in
Section 4 we prove that the ratio of the integral to the sum
tends to 1. Here we use the general properties of the Riemann
integral and uniformly distributed sequences. In conclusion
we discuss possible generalizations and unsolved problems.

2. Equivalent Statements of the Main Theorem
and the Pascal Pyramid

Let us first note that if 𝑝0 → 0, then 𝛾 → 1. Reducing
the nominator of fraction (6) by 𝑝−𝛾0 , we write the following
statement in this case:

Theorem 2 (the case of 𝛾 = 1). Let 𝑝𝑖 > 0 be the probability of
the symbol 𝜔𝑖, 𝑖 = 1, . . . , 𝑛, while ∑𝑛

𝑖=1 𝑝𝑖 = 1 (there is no stop
symbol). Assume that at least one of the ratios log𝑝𝑖/ log𝑝𝑗,𝑖, 𝑗 ∈ {1, . . . , 𝑛}, is irrational. Let us consider all possible
finite words (including the empty one) and sort them in the
nonincreasing order of probabilities (we equate the probability
of the empty word to 1 and calculate the probability of any other
word as the product of probabilities of its letters). Let𝑝(𝑟) be the
probability of the 𝑟th word in the list (the word with the rank
of 𝑟).Then the limit lim𝑟→∞𝑝(𝑟)/𝑟−1 exists and equals𝐻−1(p),
where𝐻(p) is the entropy of the vector p = (𝑝1, . . . , 𝑝𝑛); that is,𝐻(p) = −∑𝑛

𝑖=1 𝑝𝑖 ln𝑝𝑖.
In the statement of Theorem 2, as well as in Theorem 1,

we use the bold font for the vector whose components are
denoted by the same letter with the index ranging from 1
to 𝑛. In what follows we use the bold font for analogous
denotations without mentioning this fact.

One can easily see that Theorem 2 is not just a particular
case ofTheorem 1, but these theorems are equivalent. Namely,
the replacement of probabilities 𝑝𝛾𝑖 with new ones 𝑝𝑖 turns
the general case into the particular one. Therefore, in what
follows we neglect 𝑝0, assuming (without loss of generality)
that ∑𝑛

𝑖=1 𝑝𝑖 = 1.
Fix some probability 𝑞 ∈ (0, 1] and denote by 𝑄(𝑞) the

rank of the last word whose probability is not less than 𝑞 in
the list of all words sorted in the nonincreasing order of their
probabilities. Let us redefine the function 𝑝(𝑟) for noninteger𝑟 as 𝑝(𝑟) = 𝑝(⌊𝑟⌋) (here ⌊⋅⌋ is the integer part of a number).
Evidently, functions 𝑞 = 𝑝(𝑟) and 𝑟 = 𝑄(𝑞) (𝑞 ∈ (0, 1], 𝑟 ≥ 1)
are inverse (more exactly, quasi-inverse); namely, the graph of
one of the hyperbola-shaped, decreasing stepwise functions
turns into another one when axes 𝑟 and 𝑞 switch roles (in the
first case, 𝑞 is the argument and 𝑟 is the value and vice versa
in the second case).

It can be clearly seen that lim𝑟→∞𝑐𝑝(𝑟)/𝑟−1 = 1 is
equivalent to

lim𝑞→0𝑐−1𝑄 (𝑞)
𝑞−1 = 1. (7)

Therefore the equality in the assertion of Theorem 2 is
equivalent to that

lim𝑞→0𝑄 (𝑞)
𝑞−1 = 𝐻−1 (p) . (8)

Denote the logarithm of the denominator in the last frac-
tion by 𝑧 = − ln 𝑞 (i.e., 𝑞 = 𝑒−𝑧) and let𝑄(𝑧) = 𝑄(𝑒−𝑧). In view
of considerations in the above paragraph the equality in the
assertion of Theorem 2 is equivalent to that

lim
𝑧→∞

(ln𝑄 (𝑧) − 𝑧) = − ln𝐻(p) . (9)

Recall the proof of inequality (2) in [11]. It is reduced to
the proof of the boundedness of the difference ln𝑄(𝑧) − 𝑧 for
the introduced function𝑄(𝑧)with 𝑧 ≥ 0. Nonnegative values
of 𝑧 form the definition domain of the function𝑄(𝑧) because𝑞 ≤ 1 ⇔ 𝑧 ≥ 0. For convenience we redefine the function𝑄(𝑧) by putting 𝑄(𝑧) = 0 for 𝑧 < 0.

Let 𝑎𝑖 = − ln𝑝𝑖. Considering all possible variants of the
last letters in words, whose quantity equals the value of the
function 𝑄, we obtain the functional equation 𝑄(𝑧) = 𝑄(𝑧 −𝑎1) + ⋅ ⋅ ⋅ + 𝑄(𝑧 − 𝑎𝑛) + 𝜒(𝑧), where 𝜒 is the Heaviside step
(i.e., the function that vanishes with negative values of the
argument and equals 1 with nonnegative values). For 𝑧 ≥ 𝑀 =
max{𝑎1, . . . , 𝑎𝑛} we get the following recurrent correlation:

𝑄𝑛 (𝑧) = 𝑄𝑛 (𝑧 − 𝑎1) + ⋅ ⋅ ⋅ + 𝑄𝑛 (𝑧 − 𝑎𝑛) , (10)

where 𝑄𝑛(𝑧) = 𝑄(𝑧) + 1/(𝑛 − 1).
The equality ∑𝑛

𝑖=1 𝑝𝑖 = 1 implies that the function
const exp 𝑧 satisfies (10). Since the function 𝑄𝑛(𝑧) takes a
finite number of positive values within [0,𝑀] interval, there
exist positive 𝑐1 and 𝑐2 such that

𝑐1 exp 𝑧 < 𝑄𝑛 (𝑧) < 𝑐2 exp 𝑧 (11)

for all 0 ≤ 𝑧 ≤ 𝑀.
Replacing terms in the right-hand side of the recurrent

correlation (10) with their lower (upper) bounds, we extend
the solution set of inequality (11) to the domain 0 ≤ 𝑧 ≤𝑀+𝑚, where𝑚 = min{𝑎1, . . . , 𝑎𝑛}. Repeating this procedure
several times, in a finite number of steps we prove that the
inequality is valid for any arbitrarily large 𝑧. Performing the
logarithmic transformation of the inequality, we conclude
that ln𝑄𝑛(𝑧) − 𝑧 is bounded, and then so is the difference
ln𝑄(𝑧) − 𝑧.

Let us return to Theorem 2. As was mentioned above,
Theorem 2 asserts (under certain assumptions) not only the
boundedness of ln𝑄(𝑧) − 𝑧 but also the validity of equality
(9). Let us recall the combinatory sense of the function 𝑄;
it is mentioned in [11]. Evidently, all words that contain 𝑘1
letters of the 1st kind, 𝑘2 letters of the 2nd kind, . . ., and 𝑘𝑛
letters of the 𝑛th kind have one and the same probability of
Pr(k) = 𝑝𝑘11 ⋅ ⋅ ⋅ 𝑝𝑘𝑛𝑛 (i.e., − ln Pr(k) = ∑𝑛

𝑖=1 𝑘𝑖𝑎𝑖); ranks of these
words are consecutive. The quantity of such words is defined
by the multinomial coefficient

𝑀(k) = (𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑛)!𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛! . (12)

Considering the nonnegative part of the 𝑛-dimensional
integer grid and associating the point (𝑘1, . . . , 𝑘𝑛) with the
number𝑀(𝑘1, . . . , 𝑘𝑛), we get one of the variants of the Pascal
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pyramid. By the definition of the function 𝑄 the value 𝑄(𝑧)
equals the sum of multinomial coefficients 𝑀(k) over all
integer vectors k that lie inside the 𝑛-dimensional simplex𝑆(𝑧) = {x : x ≥ 0, ∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 ≤ 𝑧}:
𝑄 (𝑧) = ∑

k∈𝑆(𝑧)
𝑀(k) . (13)

As a result, we obtain one more equivalent statement of
the main theorem, which we are going to prove.

Theorem 3 (the multinomial statement). Let 𝑎𝑖, 𝑖 = 1, . . . , 𝑛,
be arbitrary positive numbers such that at least one of the ratios𝑎𝑖/𝑎𝑗, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, be irrational and ∑𝑛

𝑖=1 𝑝𝑖 = 1, where𝑝𝑖 = exp(−𝑎𝑖). Let a function 𝑄 obey formula (13). Then

lim
𝑧→∞

𝑄 (𝑧)
exp (𝑧) = 𝐻−1 (p) , (14)

where𝐻(p) = ∑𝑛
𝑖=1 𝑎𝑖𝑝𝑖.

3. The Proof of an Analog of Theorem 3 with
Integration instead of Summation

3.1. Reduction of the Integration to the Calculation of a Gaus-
sian Integral. The function𝑀(𝑘1, . . . , 𝑘𝑛) is defined for inte-
ger nonnegative vectors k. Let us redefine it for noninteger
vectors by replacing (in this case) 𝑥! in Definition (12) withΓ(𝑥+1). In what follows we use the denotation𝑀(𝑥1, . . . , 𝑥𝑛)
(or 𝑀(x)) for the corresponding function which is con-
tinuous for nonnegative 𝑥𝑖. Further we consider this
function and study its properties only for such (nonnegative)𝑥𝑖.

In this section we prove the following theorem.

Theorem 4 (on the integral). Let 𝑎𝑖, 𝑖 = 1, . . . , 𝑛, be arbitrary
positive numbers such that ∑𝑛

𝑖=1 𝑝𝑖 = 1, where 𝑝𝑖 = exp(−𝑎𝑖).
Let a function 𝑓(𝑧) obey the formula 𝑓(𝑧) = ∫x∈𝑆(𝑧)𝑀(x)𝑑x,
where 𝑑x = ∏𝑛

𝑖=1𝑑𝑥𝑖. Then

lim
𝑧→∞

𝑓 (𝑧)
exp (𝑧) = 𝐻−1 (p) . (15)

Proof. Let us first recall some evident properties of the
integrand. Note that the existence of the (Riemann) integral
of 𝑓(𝑧) over the compact set 𝑆(𝑧) evidently follows from the
continuity of𝑀(x) in the domain under consideration.

If all components of the vector (𝑥1, . . . , 𝑥𝑛), possibly,
except one component 𝑥𝑖, equal zero, then by definition we
have 𝑀(𝑥1, . . . , 𝑥𝑛) ≡ 1. Let us prove that otherwise the
function 𝑀(𝑥1, . . . , 𝑥𝑛) is strictly increasing in 𝑥𝑖. Since the
gamma function is positive definite, it suffices to prove that
in this case the partial derivative of ln𝑀(𝑥1, . . . , 𝑥𝑛) with
respect to 𝑥𝑖 is positive. It equals

(ln Γ) (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛 + 1) − (ln Γ) (𝑥𝑖 + 1) . (16)

The positiveness of this difference follows from the fact that
the function (ln Γ) is increasing; this property, in turn, fol-
lows from the logarithmic convexity of the gamma function

(it is well known [15] that (ln Γ)(𝑥) = ∑∞
𝑖=0 1/(𝑖 + 𝑥)2 > 0

with 𝑥 > 0).
The proved assertion implies that the function 𝑀(x)

attains its maximum in the domain 𝑆(𝑧) at the boundary⟨a, x⟩ = 𝑧, where ⟨a, x⟩ = ∑𝑛
𝑖=1 𝑎𝑖𝑥𝑖. Let us calculate the exact

asymptotics of the maximal value of the function𝑀(x) in the
domain 𝑆(𝑧)with 𝑧 → ∞. For the vector xwe denote by 𝑥 the
sum of its components and parameterize x by the value 𝑥 and
ratios 𝑞𝑖 = 𝑥𝑖/𝑥:

𝑥𝑖 = 𝑞𝑖𝑥, 𝑞𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,
𝑛∑
𝑖=1

𝑞𝑖 = 1. (17)

Let us use one simplest corollary of the Stirling formula [15],
namely, the fact that with a nonnegative argument the value
of the difference ln Γ(𝑥 + 1) − (𝑥 ln(𝑥) − 𝑥 + ln(𝑥 + 1)/2) is
bounded. We obtain that, with any 𝑥 > 0,

ln𝑀(𝑥1, . . . , 𝑥𝑛) = 𝑥𝐻 (q) + 𝑂 (ln (𝑥 + 1)) , (18)

where 𝐻(q) = −∑𝑛
𝑖=1 𝑞𝑖 ln 𝑞𝑖 (this correlation is closely con-

nected with the so-called entropy inequality for multinomial
coefficients).

We seek for the maximum of this function with 𝑧 → ∞
under one additional condition (namely, the requirement that
the maximum is attained at the boundary) ⟨a, x⟩ = 𝑧, where𝑎𝑖 = − ln𝑝𝑖, 0 < 𝑝𝑖 < 1, and ∑𝑛

𝑖=1 𝑝𝑖 = 1. Since 𝑎𝑖 > 0, we get𝑂(ln(𝑥 + 1)) = 𝑂(ln 𝑧). Moreover, the condition ⟨a, x⟩ = 𝑧
with mentioned 𝑥𝑖 gives the correlation

𝑥 = 𝑧𝐻 (q; p)−1 , (19)

where 𝐻(q; p) = ∑𝑛
𝑖=1 𝑎𝑖𝑞𝑖 = −∑𝑛

𝑖=1 𝑞𝑖 ln𝑝𝑖. Substituting this
expression in (18), we conclude that the maximum of ln𝑀
(accurate to 𝑂(ln 𝑧)) is attained at a vector q such that the
fraction 𝐻(q)/𝐻(q; p) takes on the maximal value. Recall
that the difference𝐻(q; p) − 𝐻(q) takes on only nonnegative
values and is called the Kullback–Leibler distance (diver-
gence) 𝐷(q | p) between distributions q and p (see [16]).
The minimum of this difference is attained at only one value
of q = p; evidently, an analogous assertion is also true for𝐻(q; p)/𝐻(q): if q ̸= p

𝐻(q)𝐻 (q; p) < 1. (20)

Consequently, the maximum of the function ln𝑀(x) in
the domain 𝑆(𝑧) is attained (accurate to 𝑂(ln 𝑧)) at the
intersection of the hyperplane ⟨a, x⟩ = 𝑧 with the straight
line 𝑥𝑖 = 𝑝𝑖𝑥, 𝑖 = 1, . . . , 𝑛, where it equals 𝑧 + 𝑂(ln 𝑧).

Let us now immediately prove Theorem 4. Note first that
by using the L’Hopital rule we can reduce the proof to that of
the formula obtained by differentiating 𝑓(𝑧)/ exp(𝑧) numer-
ator and denominator with respect to 𝑧 and to the proof
of the equality

lim
𝑧→∞

𝑓 (𝑧)
exp (𝑧) = 𝐻−1 (p) , (21)
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where 𝑓(𝑧) = ∫x≥0𝑀(x)𝛿(𝑧 − ⟨a, x⟩)𝑑x and 𝛿(⋅) is the delta
function.

Let 𝜀 be a real arbitrarily small positive value. Denote byΛ 𝜀 the sector consisting of points x, 𝑥𝑖 = 𝑞𝑖𝑥, and ∑𝑖 𝑞𝑖 = 1,
such that

𝑝𝑖 − 𝜀 < 𝑞𝑖 < 𝑝𝑖 + 𝜀, 𝑖 = 1, . . . , 𝑛. (22)

With fixed 𝑧 on the hyperplane ⟨a, x⟩ = 𝑧 correlations (18)
and (19) take the form

ln𝑀(x) = 𝑧𝐻 (q)𝐻 (q; p) + 𝑂 (ln (𝑧)) . (23)

Let us now strengthen inequality (20); namely, let us prove
that if for q correlations (22) are violated, then

𝐻(q)𝐻 (q; p) < 1 − 𝐶1 (p) 𝜀2, (24)

where 𝐶1(p) is a positive constant independent of q.
Since 𝐻(q; p) is a convex combination of − ln𝑝𝑖, it

evidently is bounded:

0 < min
𝑖
(− ln𝑝𝑖) ≤ 𝐻 (q; p) ≤ max

𝑖
(− ln𝑝𝑖) . (25)

Consequently, formula (24) is equivalent to the inequality

𝐻(q; p) − 𝐻 (q) = 𝐷 (q | p) > 𝐶2 (p) 𝜀2. (26)

The latter correlation follows from the well-known property
of the Kullback-Leibler divergence

𝐷 (q | p) ≥ 14 (
𝑛∑
𝑖=1

𝑝𝑖 − 𝑞𝑖)
2

(27)

(see, e.g., lemma 3.6.10 in [16]).
The proved inequality (24) (in view of formula (23))

implies that outside the domain Λ 𝜀 the function 𝑀(x) is
exponentially small in comparison to the maximal value
inside the domain which equals exp(𝑧). More precisely, with𝑥 ∉ Λ 𝜀 and ⟨a, x⟩ = 𝑧, we get

𝑀(x) < exp {(1 − 𝐶𝜀2) 𝑧} for some 𝐶 > 0. (28)

Note that the condition of the exponential smallness in
comparison to exp 𝑧 remains valid, even if 𝜀 depends on 𝑧 and
tends to 0 as 𝑧 increases, though not too fast. In what follows
we assume that

𝜀 = 𝜀 (𝑧) = 𝑧−1/2+𝛿,
where 𝛿 > 0 is sufficiently small. (29)

One can easily see that the same exponential upper bound
as in (28) also takes place not only for𝑀 function but also for
its integral over the domain whose volume grows according
to a power law:

∫
x∉Λ 𝜀(𝑧) ,x≥0

𝑀(x) 𝛿 (𝑧 − ⟨a, x⟩) 𝑑x
< exp {(1 − 𝐶𝜀2) 𝑧}

(30)

with 𝑧 → ∞. Therefore in limit (21) we can treat 𝑓(𝑧) as the
integral

∫
x∈Λ 𝜀(𝑧)

𝑀(x) 𝛿 (𝑧 − ⟨a, x⟩) 𝑑x. (31)

Let us define the asymptotics (18) of the function 𝑀(x)
in the domain Λ 𝜀(𝑧) more precisely. Let us use the standard
Stirling formula, namely, the fact that with 𝑥 → ∞ it holds
that ln Γ(𝑥+1) = 𝑥 ln(𝑥)−𝑥+ln(𝑥)/2+ln(2𝜋)/2+𝑅(𝑥), where0 < 𝑅(𝑥) < 1/(12𝑥). We obtain that, in the domain Λ 𝜀(𝑧),

𝑀(x) = 1
√(2𝜋)𝑛−1

⋅ exp{𝑥𝐻 (q) + ln (𝑥)2 − ∑𝑛
𝑖=1 ln (𝑥𝑖)2 + 𝑂(1𝑧)} .

(32)

Here, as usual, 𝑥 = ∑𝑛
𝑖=1 𝑥𝑖; 𝑞𝑖 = 𝑥𝑖/𝑥. Therefore, we conclude

that when considering the asymptotics of function (31)we can
treat𝑀(x) as follows:
�̃� (x)
= 1
√(2𝜋)𝑛−1 exp{𝑥𝐻 (q) + ln (𝑥)2 − ∑𝑛

𝑖=1 ln (𝑥𝑖)2 } . (33)

In the latter formula we can write the exponent as

{} = 𝑥 ln𝑥 + ln (𝑥)2 − 𝑛∑
𝑖=1

(𝑥𝑖 ln𝑥𝑖 + ln (𝑥𝑖)2 ) . (34)

Let us write the Taylor expansion up to second-order terms
near the maximum point in the plane ⟨a, x⟩ = 𝑧, that is, near
the point x = p𝑧/𝐻(p) (in what follows we denote by 𝑥𝑖
coordinates of the point x and do by 𝑥 the sum of these
coordinates which evidently equals 𝑧𝐻(p)−1).

First of all, note that

�̃� (x) = 1
√(2𝜋𝑥)𝑛−1∏𝑛

𝑖=1𝑝𝑖 exp (𝑧) . (35)

One can easily calculate second derivatives of expression (34):

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗 {}

= {{{
𝑥−1 − (2𝑥2)−1 , if 𝑖 ̸= 𝑗,
𝑥−1 − (2𝑥2)−1 − 𝑥−1𝑖 + (2𝑥2𝑖 )−1 , else.

(36)

(note that we do not use first derivatives in the Taylor
expansion near the maximum point).

If 𝑥 ∈ Λ 𝜀, then by formula (19) we have 𝑥 − 𝑥 =𝑧(𝐻(q; p)−1 − 𝐻(p)−1) = 𝑧𝑂(𝜀) (in the latter inequality we
use the continuity of the function𝐻(q; p)−1). Consequently,
𝑥𝑖 − 𝑥𝑖 = 𝑥𝑞𝑖 − 𝑥𝑝𝑖

= (𝑥 + 𝑧𝑂 (𝜀)) (𝑝𝑖 + 𝑂 (𝜀)) − 𝑥𝑝𝑖 = 𝑧𝑂 (𝜀) . (37)
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In particular, with chosen 𝜀 = 𝜀(𝑧) we have |𝑥𝑖 − 𝑥𝑖 | =𝑂(𝑧1/2+𝛿). We obtain that, in the domain Λ 𝜀(𝑧),

�̃� (x) = 1
√(2𝜋𝑥)𝑛−1∏𝑛

𝑖=1𝑝𝑖 exp (𝑧)

× exp
{{{
∑𝑛
𝑖,𝑗=1 (𝑥𝑖 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑗)2𝑥

− ∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑖)22𝑝𝑖𝑥 + 𝑂 (𝑧−1/2+3𝛿)}}} .

(38)

Here the term 𝑂(𝑧−1/2+3𝛿) contains both the remainder of
terms of the series whose order exceeds 2 and the value of𝑂(𝑧−1+2𝛿) added by some omitted second-order terms. With𝑧 → ∞ we can neglect the term of 𝑂(𝑧−1/2+3𝛿). Therefore,
in integral (31) in place of 𝑀(x) we should substitute the
function �̂�(x) which differs from �̃�(x) in the fact that its
exponent does not contain the term of 𝑂(𝑧−1/2+3𝛿).

Let us change variables in the integral as follows: 𝑦𝑖 =(𝑥𝑖 − 𝑥𝑖 )/√𝑥. Since the degree of homogeneity of the delta-
function equals −1, we obtain that limit (21) coincides with

1
√(2𝜋)𝑛−1∏𝑛

𝑖=1𝑝𝑖 ∫R𝑛 𝛿 (⟨a, y⟩) exp{−
⟨By, y⟩2 }𝑑y, (39)

whereB is 𝑛 × 𝑛matrix, whose all elements equal −1, except
diagonal components which are greater by 1/𝑝𝑖.
3.2. Calculation of the Determinant

Lemma 5. Let 𝑛 ≥ 2. Consider 𝑛 × 𝑛 matrix 𝐵, where all
nondiagonal elements equal 1, while 𝑏𝑖𝑖 = 1 + 𝑘𝑖. Then

(1) the determinant of this matrix equals

𝑛∏
𝑖=1

𝑘𝑖(1 + 𝑛∑
𝑗=1

1𝑘𝑗) ; (40)

(2) the algebraic complement of the element with indices(𝑖, 𝑗), 𝑖 ̸= 𝑗, equals
− ∏
ℓ∈[𝑛]\{𝑖,𝑗}

𝑘ℓ, where [𝑛] = {1, . . . , 𝑛} . (41)

Corollary 6. The matrixB in formula (39) is degenerate.

Proof of Lemma 5. Note that the first item of Lemma 5 defines
the value of the algebraic complement of the diagonal element
of such a matrix. Let us prove the theorem by induction.

With 𝑛 = 2 in the formula in item (2) we get the product
over the empty set; it is accepted that this product equals 1.
The formula in item (1) remains valid with 𝑛 = 1. In the
induction step we assume that the formula in item (1) is
proved for all dimensions less than 𝑛 and has to be proved

for the case when the dimension equals 𝑛, while the formula
in item (2) is proved for all dimensions not greater than 𝑛 and
has to be proved for (𝑛 + 1) × (𝑛 + 1)matrix.

For proving item (1) we can use the expansion by the last
row. Multiplying the algebraic complement by the diagonal
element 𝑘𝑛 + 1, we get the sum

𝑛∏
𝑖=1

𝑘𝑖(1 + 𝑛−1∑
𝑗=1

1𝑘𝑗) + 𝑛−1∏
𝑖=1

𝑘𝑖(1 + 𝑛−1∑
𝑗=1

1𝑘𝑗)

= 𝑛∏
𝑖=1

𝑘𝑖(1 + 𝑛−1∑
𝑗=1

1𝑘𝑗) + 𝑛−1∏
𝑖=1

𝑘𝑖 + 𝑛−1∑
𝑗=1

∏
ℓ∈[𝑛]\{𝑛,𝑗}

𝑘ℓ.
(42)

The expansion by the entire last row, taking into account the
induction hypothesis for item (2), make the third part in row
(42) vanish. First two terms in formula (42) together give the
desired sum.

In order to prove item (2), let us expand the determinant
considered in this item (algebraic complement of the element
with (𝑖, 𝑗) indices of the matrix 𝐵 with (𝑛 + 1) × (𝑛 + 1)
dimension) by the row whose number in the initial matrix
of 𝐵was equal to 𝑗. Generally speaking, for clarity, we use the
same indices as in the numeration of the initial matrix. Since
the algebraic complement considered in this item and the
occurring algebraic complement for the element with indices(𝑗, 𝑖) (obtained by the expansion by a row of the determinant
under consideration) have opposite signs, the value added by
the element with indices (𝑗, 𝑖) equals

− ∏
𝑟∈[𝑛+1]\{𝑖,𝑗}

𝑘𝑟(1 + ∑
ℓ∈[𝑛+1]\{𝑖,𝑗}

1𝑘ℓ) (43)

(herewe have used the induction hypothesis for item (1)).The
difference from the desired formula consists in the last term
which equals (taking into account the first multiplier)

− ∑
ℓ∈[𝑛+1]\{𝑖,𝑗}

∏
𝑟∈[𝑛+1]\{𝑖,𝑗,ℓ}

𝑘𝑟. (44)

It vanishes, when taking into account the contribution of the
remaining 𝑛 − 1 elements in the 𝑗th row of the considered
matrix.

Lemma 7. Let 𝐵1 be the matrix mentioned in Lemma 5 (its
dimension is 𝑛 × 𝑛, 𝑛 ≥ 2). Assume that 𝑏𝑖𝑖 = 1 − 1/𝑝𝑖,𝑖 = 1, . . . , 𝑛, where 𝑝𝑖 are arbitrary nonzero numbers. Denote
by 𝐵2 a matrix of the same dimension in the form 𝑎𝑇𝑎, where𝑎 = (𝑎1, . . . , 𝑎𝑛) is an arbitrary numeric row and 𝑇 is the trans-
position sign. Let 𝑠 be an arbitrary real number. Then

det (𝑠𝐵2 − 𝐵1)
= det (−𝐵1)
+ 𝑠 ((∑𝑛

𝑖=1 𝑎𝑖𝑝𝑖)2 − (∑𝑛
𝑗=1 𝑝𝑗 − 1)∑𝑛

𝑖=1 𝑎2𝑖 𝑝𝑖)∏𝑛
ℓ=1𝑝ℓ .

(45)
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Corollary 8. Let a vector p = (𝑝1, . . . , 𝑝𝑛) satisfy additional
constraints 𝑝𝑖 > 0, ∑𝑛

𝑖=1 𝑝𝑖 = 1 (i.e., −𝐵1 = B), while 𝑎𝑖 =− ln𝑝𝑖. Then

√𝑠 det (𝑠−1𝐵2 − 𝐵1) = 𝐻 (p)
√∏𝑛

ℓ=1𝑝ℓ . (46)

Proof of Lemma 7. By the differentiation rule for determi-
nants, the derivative of the determinant of 𝑛×𝑛matrix equals
the sum of determinants of 𝑛matrices such that in the 𝑖th one
all elements of the 𝑖th row are replaced with their derivatives.
We obtain that 𝜕2 det(𝑠𝐵2−𝐵1)/𝜕𝑠2 is the sumof determinants
of matrices each one of which contains either the zero row or
two various rows of the matrix 𝐵2. Since rank 𝐵2 = 1, we get𝜕2 det(𝑠𝐵2 − 𝐵1)/𝜕𝑠2 = 0.

Thus, det(𝑠𝐵2 − 𝐵1) is a linear function of 𝑠, whose free
term evidently equals det(−𝐵1). It is clear that for calculating
the coefficient det(𝑠𝐵2 − 𝐵1) at 𝑠 it suffices to summate
products of each element of the matrix 𝐵2 by the algebraic
complement of the corresponding element of the matrix −𝐵1.
If an element has indices (𝑖, 𝑗), 𝑖 ̸= 𝑗, then by item (2) of
Lemma 5 this product equals 𝑎𝑖𝑎𝑗𝑝𝑖𝑝𝑗/∏𝑛

ℓ=1𝑝ℓ.
Let us explain the positive sign in the last formula. We

calculate an algebraic complement of the−𝐵1matrix element.
The matrix has 𝑛 × 𝑛 dimension, and therefore the found
algebraic complement differs from the algebraic complement
of the corresponding 𝐵1 matrix element for (−1)𝑛−1 times.
According to item (2) of Lemma 5, the algebraic complement
of the corresponding 𝐵1 matrix element is a “minus” product
of 𝑛 − 2 multipliers 𝑘𝑖. In the given case each of 𝑘𝑖 factors is
negative (equals −1/𝑝𝑖) which results in positive sign of the
last formula in the above paragraph.

Assume that this formula is valid for all (𝑖, 𝑗). Then we get
the sum

∑𝑛
𝑖,𝑗=1 𝑎𝑖𝑎𝑗𝑝𝑖𝑝𝑗∏𝑛

ℓ=1𝑝ℓ = (∑𝑛
𝑖=1 𝑎𝑖𝑝𝑖)2∏𝑛
ℓ=1𝑝ℓ . (47)

However by item (1) of Lemma 5 the algebraic complement
of the diagonal element 𝑏𝑖𝑖 of the matrix −𝐵1 equals

(−1)𝑛−1(∏
𝑗:𝑗 ̸=𝑖

(−1𝑝𝑗 ) + ∑
𝑗:𝑗 ̸=𝑖

∏
ℓ∉{𝑖,𝑗}

(−1𝑝ℓ )) (48)

(here and below we omit the evident requirement that values
of all indices belong to the set [𝑛]).

Multiplying the first term in parentheses, that is,∏𝑗:𝑗 ̸=𝑖(−1/𝑝𝑗), by (−1)𝑛−1𝑎2𝑖 and summing over all 𝑖, we
get ∑𝑛

𝑖=1 𝑎2𝑖 𝑝𝑖/∏𝑛
ℓ=1𝑝ℓ. Let us multiply the resting term in

parentheses (48) by (−1)𝑛−1𝑎2𝑖 , sum over all 𝑖, and subtract
the value

∑𝑛
𝑖=1 𝑎2𝑖 𝑝2𝑖∏𝑛
ℓ=1𝑝ℓ (49)

from the obtained result (note that the subtrahend was
“illegally” included in formula (47)). It gives the overall con-
tribution of the second term in formula (48), which equals

−∑𝑛
𝑗=1 𝑝𝑗∑𝑛

𝑖=1 𝑎2𝑖 𝑝𝑖∏𝑛
ℓ=1𝑝ℓ . (50)

Taking into account all the calculation elements of the
determinant det(𝑠𝐵2 − 𝐵1) allows completing the proof of
Lemma 7.

For completing the proof of Theorem 4 let us use
Corollary 8. Let us replace the 𝛿-function in integral (39) (as
was proved earlier, this integral equals the limit considered in
Theorem 4): 𝛿(𝑡) = lim𝜎→0(1/√2𝜋𝜎)exp{−𝑡2/2𝜎2}. Treating
the limit multiplied by the coefficient at the exponent as a
multiplier in the integral, we come to the limit of theGaussian
integral

lim
𝜎→0

∫
R𝑛

exp {− ⟨(𝜎−2𝐵2 +B) y, y⟩ /2} 𝑑y
𝜎√(2𝜋)𝑛∏𝑛

𝑖=1𝑝𝑖 , (51)

that is,

lim
𝜎→0

1
𝜎√∏𝑛

𝑖=1𝑝𝑖 det (𝜎−2𝐵2 +B) ; (52)

Immediately applying Corollary 8, we get desired 𝐻−1(p).
This completes the proof.

4. The Ratio between the Sum and the Integral

What remains is to prove that, under assumptions of Theo-
rem 3, the ratio of the integral of the function 𝑀 calculated
over the domain 𝑆(𝑧) to the sum of values of this function
at integer points of this domain tends to 1 as 𝑧 → ∞.
For comparing the integral of the function and the sum
of its values in the same domain one usually applies the
Koksma-Hlawka inequality (see [17]). Note that usually one
considers the integral over a fixed domain (as a rule, the cube[0, 1]𝑛), whereas the domain in the case under consideration
is varying. However, we intend only to prove the convergence
of the fraction to 1 and do not need to estimate the asymptotic
difference between the integral and the sum, which simplifies
the task.

Evidently, it suffices to calculate the limit of the ratio for
an arbitrary infinite increasing sequence 𝑧1, 𝑧2, . . ., such that𝑧𝑖 →∞.

Theorem 9. Let Ω1, Ω2, . . . be a sequence of Jordan measur-
able sets such that Ω𝑖 ⊂ Ω𝑖+1 for all 𝑖 = 1, 2, . . .. Assume that𝑓(𝑥), 𝑥 ∈ Ω, where Ω = ⋃𝑖Ω𝑖, is an integrable and bounded
on each of the domains Ω𝑖 function such that 𝑓(𝑥) ≥ 0 and∫𝑓(𝑥)𝑑Ω𝑖 →∞ as 𝑖 → ∞. Assume also that𝐾 is a countable
set of points from Ω such that each of the sets 𝐾𝑖 = 𝐾 ∩ Ω𝑖

is finite. Then if for any sufficiently small 𝛼 > 0 there exists a
partition of Ω onto a countable number of Jordan measurable
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sets𝑋𝑗 = 𝑋𝑗(𝛼), 𝑗 = 1, 2, . . ., such thatΩ𝑖 = ⋃𝑛𝑖
𝑗=1𝑋𝑗 for some𝑛𝑖 = 𝑛𝑖(𝛼), while

sup𝑥∈𝑋𝑗𝑓 (𝑥)
inf𝑥∈𝑋𝑗𝑓 (𝑥) < 1 + 𝛼 starting with some 𝑗, (53)

𝐾 ∩ 𝑋𝑗

𝜇𝑋𝑗

→ 1 as 𝑗 → ∞, (54)

then in this case there exists the limit

lim
𝑖→∞

∫𝑓 (𝑥) 𝑑Ω𝑖∑𝑥∈𝐾𝑖
𝑓 (𝑥) = 1. (55)

Proof. Evidently,

𝜇𝑋𝑗 inf
𝑥∈𝑋𝑗

𝑓 (𝑥) ≤ ∫𝑓 (𝑥) 𝑑𝑋𝑗 ≤ 𝜇𝑋𝑗 sup
𝑥∈𝑋𝑗

𝑓 (𝑥) . (56)

Therefore, in view of (53) we conclude that starting with some𝑗 it holds that
∫𝑓 (𝑥) 𝑑𝑋𝑗/𝜇𝑋𝑗∑𝑥∈𝐾∩𝑋𝑗

𝑓 (𝑥) / 𝐾 ∩ 𝑋𝑗

 ∈ (1 − 𝛼, 1 + 𝛼) (57)

with 𝛼 < 1. In accordance with (54) we conclude that𝜇𝑋𝑗/|𝐾 ∩𝑋𝑗| ∈ (1 − 𝛼, 1 + 𝛼) for all 𝑗, except a finite number
of values of the index.Therefore, there exists ℓ such that, with
all 𝑗 > 𝑛ℓ,

∫𝑓 (𝑥) 𝑑𝑋𝑗∑𝑥∈𝐾∩𝑋𝑗
𝑓 (𝑥) ∈ ((1 − 𝛼)2 , (1 + 𝛼)2) . (58)

Representing this correlation as a double inequality and
summing it over all 𝑗 from 𝑛ℓ + 1 to 𝑛𝑖, we obtain

∫𝑓 (𝑥) 𝑑 (Ω𝑖 \ Ωℓ)∑𝑥∈𝐾𝑖\𝐾ℓ
𝑓 (𝑥) ∈ ((1 − 𝛼)2 , (1 + 𝛼)2) (59)

with 𝑖 > ℓ.
Note that by condition the numerator in the latter fraction

(different from the integral ∫𝑓(𝑥)𝑑Ω𝑖 by a constant value)
tends to infinity. Then the same is true for the denominator.
Note that the denominator differs from ∑𝑥∈𝐾𝑖

𝑓(𝑥) by a
constant value.

Thereforewe conclude that all limit points of the sequence∫𝑓(𝑥)𝑑Ω𝑖/∑𝑥∈𝐾𝑖
𝑓(𝑥) lie inside the interval ((1 − 𝛼)2, (1 +𝛼)2). Due to the arbitrariness of the choice of positive 𝛼

Theorem 9 is proved.

Corollary 10 (completion of the proof of Theorem 1). Let𝑓(𝑧) be the function mentioned in assumptions of Theorem 4
and let𝑄(𝑧) obey formula (13).Then if at least one of the ratios𝑎𝑖/𝑎𝑘, 𝑖, 𝑘 ∈ {1, . . . , 𝑛}, 𝑖 ̸= 𝑘, is irrational, then

lim
𝑧→∞

𝑓 (𝑧)𝑄 (𝑧) = 1. (60)

Proof. For clarity we denote by 𝑧 the parameter that defines
the boundary of the considered domain, and do by 𝜁 the
corresponding parameter of the hyperplane that contains a
certain interior point x of this domain; that is, 𝜁(x) = ⟨a, x⟩.

First of all, note that considerations in Section 3.1 imply
that both in the sum and in the integral we can replace 𝑆(𝑧)
with the domain

Λ̂ (𝑧) = 𝑆 (𝑧) ∩ Λ 𝜀(𝜁), where 𝜀 (𝜁) = 𝜁−1/2+𝛿, (61)

and replace the function𝑀(x)with �̃�(x) defined by formula
(34). Therefore, we need to prove that

∫x∈Λ̂(𝑧) �̃� (x) 𝑑x
∑k∈Λ̂(𝑧) �̃� (k) → 1 (62)

(or that the difference of logarithms of the numerator and
denominator tends to zero).

In view of Theorem 4 the logarithm of the numerator
in the latter fraction is a uniformly continuous function of𝑧, while the logarithm of the denominator evidently is a
nondecreasing function. Therefore for proving the existence
of the limitwith 𝑧 → ∞ it suffices to prove the existence of the
limit for a sequence in the form 𝑧𝑛 = 𝜅𝑛, 𝑛 = 1, 2, . . ., where 𝜅
is an arbitrarily small positive value (as the difference between
the numerator and denominator of the logarithms in an arbi-
trary point slightly differs from the value of difference in the
nearest points 𝑧𝑛 in this sequence). Namely, just for this fixed
sequence we consider the ratio from the right-hand side of
(62).

In order to apply Theorem 9, for an arbitrary sufficiently
small positive 𝛼 we construct a partition of Λ 𝜀(𝜁) onto
domains 𝑋𝑗 satisfying assumptions of the theorem. Namely,
we construct this partition by dividing of an infinite quantity
of “flapjacks” located between neighboring hyperplanes in
the forms 𝜁(x) = 𝑐𝑟 and 𝜁(x) = 𝑐𝑟+1, 𝑟 = 1, 2, . . ., where𝑐𝑟+1 = 𝑐𝑟 + Const, onto a finite number of domains𝑋𝑗.

Evidently, for any 𝛼 ≤ 2𝜅 we can choose a sequence 𝑐𝑟
such that

𝑐𝑟+1 − 𝑐𝑟 = Const < 𝛼2 ; for any 𝑛 ∃𝑟 : 𝑧𝑛 = 𝑐𝑟. (63)

To this end, it suffices to put 𝑐𝑟 = Const 𝑟, where Const =𝜅/⌈2𝜅/𝛼⌉ (here ⌈⋅⌉ is an upward rounding to the nearest
integer).

Let 𝐶𝑟 = {x : 𝑐𝑟 ≤ 𝜁(x) < 𝑐𝑟+1}. Denote by 𝐹𝑟 the𝑟th “flapjack” 𝐶𝑟 ∩ Λ 𝜀(𝜁). We are going to “cut” 𝐹𝑟 onto a
finite number of domains 𝑋𝑗. We numerate the countable
number of domains𝑋𝑗, 𝑗 = 1, 2, . . ., so as tomake domains𝑋𝑗

obtained by “cutting” 𝐹𝑟 with the least 𝑟 have lesser numbers,
while the order of numbering inside the partition of 𝐹𝑟 plays
no role.

Since 𝜀(𝜁) = 𝑜(𝜁), with x, y ∈ 𝐹𝑟, it holds that 𝑦𝑖 = 𝑥𝑖 +𝑜(𝑥𝑖) (cf. with (37)). Consequently, with 𝑟 → ∞we get ln𝑦𝑖−
ln𝑥𝑖 → 0 and ln𝑦 − ln𝑥 → 0.

By formula (33),

ln �̃� (x) = const + 𝑔 (x) + ln (𝑥)2 − ∑𝑛
𝑖=1 ln (𝑥𝑖)2 , (64)
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where

𝑔 (x) = 𝑥𝐻 (q) = 𝑛∑
𝑖=1

𝑥𝑖 ln𝑥𝑖 − ( 𝑛∑
𝑖=1

𝑥𝑖) ln( 𝑛∑
𝑗=1

𝑥𝑖) . (65)

We get grad𝑔 = ln q = (ln 𝑞1, . . . , ln 𝑞𝑛) and
𝜕2𝑔𝜕𝑥𝑖𝜕𝑥𝑗 = 𝑂(1𝑥) , 𝑖, 𝑗 ∈ {1, . . . , 𝑛} . (66)

Using expansion in a series ln �̃� with evaluation of the
second-order terms and considerations of the previous para-
graphwe obtain the following important observation. If x, y ∈𝐹𝑟 and 𝑥𝑖 − 𝑦𝑖 = 𝑜 (√𝑥) = 𝑜 (√𝑐𝑟) , 𝑖 = 1, . . . , 𝑛, (67)

then with sufficiently large 𝑟 it holds that
ln �̃� (x) − ln �̃� (y) < ⟨ln q, x − y⟩ + 𝛼10 . (68)

Since q → p as 𝑟 → ∞, with sufficiently large 𝑟 it holds
that

⟨ln q, x − y⟩ < ⟨a, x − y⟩ + 𝛼20 < (𝑐𝑟+1 − 𝑐𝑟) + 𝛼20 . (69)

As a result, we obtain that with sufficiently small 𝛼, starting
with some 𝑟, it holds that

�̃� (x)�̃� (y) < 1 + 𝛼. (70)

Therefore, dividing𝐹𝑟 onto domains𝑋𝑗 so as to fulfill cor-
relation (67) for all points x, y that belong to one domain, we
guarantee the validity of assumption (53) inTheorem 9. Note
that it suffices to fulfill condition (67) for all indices 𝑖 except
one, because the validity of this condition for the remaining
index follows from the fact that x, y ∈ 𝐶𝑟.

Finally, let us use the irrationality of 𝑎𝑖∗/𝑎𝑘∗ for some 𝑖∗ ̸=𝑘∗. Let us denote by 𝐼𝑘∗ the set {1, . . . , 𝑛} \ {𝑘∗} and do by 𝐼𝑖∗𝑘∗
the set {1, . . . , 𝑛}\{𝑖∗, 𝑘∗}.We are going to prove that, defining
domains𝑋𝑗 by inequalities

𝑙𝑗𝑖 ≤ 𝑥𝑖 < 𝐿𝑗𝑖,
𝑖 ∈ 𝐼𝑘∗ , where 𝐿𝑗𝑖 − 𝑙𝑗𝑖 > const 𝑐1/2−𝛿𝑟 , (71)

we fulfill condition (54) (with 𝐾 = Z𝑛). Here, as usual, 𝛿 is
a sufficiently small real positive value, though in this case we
can choose 𝛿 as any number in the interval (0, 1/2) (roughly
speaking, it is sufficient that the radius of the pieces 𝑋𝑗 used
to divide “flapjacks” 𝐹𝑟 tends to infinity at 𝑟 → ∞).

Evidently, we can divide “almost all” 𝐹𝑟 onto domains𝑋𝑗

so as to simultaneously fulfill inequalities (67) and conditions
(71) on 𝑙 and 𝐿 (the remaining “cuttings” on the edges of the
domain 𝐹𝑟 which occur due to the inconsistency between the
inequality 𝑙𝑗𝑖 ≤ 𝑥𝑖 < 𝐿𝑗𝑖, 𝑖 ∈ 𝐼𝑘∗ and the definition of the
boundary of the domain Λ 𝜀(𝑧) are asymptotically small).

Evidently, 𝜇𝑋𝑗 = ∏𝑖∈𝐼𝑘∗
(𝐿𝑗𝑖 − 𝑙𝑗𝑖) × (𝑐𝑟+1 − 𝑐𝑟)/𝑎𝑘∗ . Since

the difference (𝐿𝑗𝑖 − 𝑙𝑗𝑖) grows as 𝑗 → ∞, the asymptotics of
the number of ways for choosing integer 𝑥𝑖 such that 𝑙𝑗𝑖 ≤𝑥𝑖 < 𝐿𝑗𝑖 for 𝑖 ∈ 𝐼𝑖∗𝑘∗ coincide with∏𝑖∈𝐼𝑖∗𝑘∗

(𝐿𝑗𝑖 −𝑙𝑗𝑖). Here and
below we understand the asymptotics as a function of 𝑗 such
that the ratio of the considered quantity to this function tends
to 1 as 𝑗 → ∞. In order to complete the proof of Corollary 10,
what remains is to prove the following lemma.

Lemma 11. Let the ratio 𝑎𝑖∗/𝑎𝑘∗ be irrational and (𝐿𝑗𝑖∗ −𝑙𝑗𝑖∗) → ∞. Assume also that the ratio (𝑐𝑟+1 − 𝑐𝑟)/𝑎𝑘∗ equals
a constant value lesser than 1 which is independent of 𝑟. Then
for fixed 𝑥𝑖, 𝑖 ∈ 𝐼𝑖∗𝑘∗ , the asymptotics of the number of ways to
choose integer 𝑥𝑖, 𝑖 ∈ {𝑖∗, 𝑘∗}, such that 𝑙𝑗𝑖∗ ≤ 𝑥𝑖∗ < 𝐿𝑗𝑖∗ and𝑐𝑟 ≤ 𝜁(x) < 𝑐𝑟+1 simultaneously, equal (𝐿𝑗𝑖−𝑙𝑗𝑖)×(𝑐𝑟+1−𝑐𝑟)/𝑎𝑘∗ .
Proof of Lemma 11. In what follows we need standard deno-
tations for the fractional part {⋅}, floor ⌊⋅⌋, and ceil ⌈⋅⌉ of a
number.

Let 𝑐 = ∑𝑖∈𝐼𝑖∗𝑘∗
𝑎𝑖𝑥𝑖,𝑑𝑟 = (𝑐𝑟−𝑐)/𝑎𝑘∗ ,𝐷𝑟 = (𝑐𝑟+1−𝑐)/𝑎𝑘∗ ,

and 𝜃 = 𝑎𝑖∗/𝑎𝑘∗ . The condition 𝑐𝑟 ≤ 𝜁(x) < 𝑐𝑟+1 is equivalent
to the condition

𝜃𝑥𝑖∗ + 𝑥𝑘∗ ∈ [𝑑𝑟, 𝐷𝑟) . (72)

If the difference𝐷𝑟−𝑑𝑟 (it equals (𝑐𝑟+1−𝑐𝑟)/𝑎𝑘∗) is less than
1 (this inequality obviously holds for sufficiently small 𝛼) then
with fixed 𝑥𝑖∗ the integer value 𝑥𝑘∗ satisfying condition (72) is
defined uniquely, provided that it exists. Therefore, we need
to estimate the quantity of values 𝑥𝑖∗ in the interval [𝑙𝑗𝑖∗ , 𝐿𝑗𝑖∗)
such that {𝜃𝑥𝑖∗} ∈ [{𝑑𝑟}, {𝐷𝑟}); here the latter correlation is
understood in the sense of an interval on the unit circle, and
the length of the considered interval is independent of 𝑟.

Recall the definition of a well-distributed sequence [17,
section 1.5].

Let (𝑦𝑛) 𝑛 = 1, 2, . . ., be a sequence of real
numbers. For integers 𝑁 ≥ 1 and 𝑘 ≥ 0 and a
subset𝐸 of [0, 1), let𝐴(𝐸,𝑁, 𝑘) be the number of
terms among {𝑦𝑘+1}, {𝑦𝑘+2}, . . . , {𝑦𝑘+𝑁} that are
lying in 𝐸.
The sequence (𝑦𝑛) 𝑛 = 1, 2, . . ., is said to be
well-distributed mod 1 if for all pairs 𝑎, 𝑏 of real
numbers with 0 ≤ 𝑎 < 𝑏 ≤ 1 we have

lim
𝑁→∞

𝐴 ([𝑎, 𝑏) ;𝑁, 𝑘)𝑁 = 𝑏 − 𝑎
uniformly in 𝑘 = 0, 1, 2, . . . . (73)

Example. The sequence (𝑛𝜃) 𝑛 = 1, 2, . . ., with 𝜃
irrational is well-distributed mod 1.

The latter fact would have proved Lemma 11, if the interval
of the unit circle [{𝑑𝑟}, {𝐷𝑟}) was independent of 𝑟. Let us
clarify this property in the case of the inequality {𝐷𝑟} >{𝑑𝑟}. In what follows we always assume that this inequality
is valid (evidently, as in the definition of the well-distribution
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property, this leads to no loss of generality). Really, if 𝑘 equals⌈𝑙𝑗𝑖∗⌉ − 1 and𝑁 does the difference ⌊𝐿𝑗𝑖∗⌋ − ⌈𝑙𝑗𝑖∗⌉ + 1, then we
obtain the uniform (in 𝑗) convergence

lim
𝑁→∞

𝐴([{𝑑} , {𝐷}) ;𝑁, ⌈𝑙𝑗𝑖∗⌉ − 1)𝑁 = 𝐷 − 𝑑, (74)

which is equivalent to the assertion of the lemma with the
fixed value of {𝑑𝑟}, {𝐷𝑟}.

Note that if with fixed 𝑗 equality (74) is valid for any
subinterval in [0, 1), then we say that the corresponding
sequence is uniformly distributed modulo 1. This property
follows from the property of the well-distribution modulo 1.
It is well known that (see [17, section 2.1]) for any sequence
uniformly distributed modulo 1 the convergence is uniform
with respect to all subintervals in [0, 1). Consequently, we get
the uniform (in 𝑗) convergence

lim
𝑁→∞

𝐴([{𝑑𝑟} , {𝐷𝑟}) ;𝑁, ⌈𝑙𝑗𝑖∗⌉ − 1)𝑁 = Δ, (75)

where the constant Δ equals𝐷𝑟 − 𝑑𝑟. Therefore,

lim
𝑗→∞

𝐴([{𝑑𝑟} , {𝐷𝑟}) ; ⌊𝐿𝑗𝑖∗⌋ − ⌈𝑙𝑗𝑖∗⌉ + 1, ⌈𝑙𝑗𝑖∗⌉ − 1)(𝐿𝑗𝑖∗ − 𝑙𝑗𝑖∗) Δ
= 1,

(76)

which coincides with the lemma assertion in a general case.
This completes the proof.

5. Conclusion

We have proved that in the monkey model the probability
of words in the sorted list has the exact power asymptotics,
provided that the ratio of logarithms of probabilities of
certain letters is irrational.

Note that this condition is not only sufficient but also
necessary. Really, otherwise logarithms of probabilities 𝑎𝑖 =− ln𝑝𝑖, 𝑖 = 1, . . . , 𝑛, allow the representation 𝑎𝑖 = 𝑚𝑖V, where𝑚𝑖 are natural numbers and V is independent of 𝑖. In this case
formula (10) defines a linear recurrent correlation on a grid
with the step of V. This does not affect the initial constancy
of the function𝑄 in cells of the grid with the mentioned step
with any value of the argument. Such constancy piecewise of
the function 𝑄 contradicts the existence of a finite limit for
the ratio of 𝑝(𝑟)/𝑟−𝛾.

It should be noted that using the expression for terms of
linear recurring sequences via the corresponding powers of
roots of the characteristic equation allows clear analysis of
rate of convergence to the power law of the function𝑄 (with a
step of V on the grid) in this degenerate case. It would bemore
interesting to conduct such studies for more general case to
which the main theorem of this paper is devoted.

A generalization of results obtained in this paper to the
case of the Markov dependence is of even more interest.
In this case an analog of the vector p𝛾 is a substochastic
matrix of transition probabilities where the row and column

that correspond to the absorbing state are deleted, and all
elements of this matrix are raised to a power of 𝛾 such that
its spectral radius equals 1. Denote this matrix by P𝛾. In the
case considered above all rows of the matrix P𝛾 coincide with
p𝛾. In a typical case, when the strong power law takes place
(see Introduction), the matrix P is irreducible and the matrix
transposed with respect to P𝛾 has a positive eigenvector that
corresponds to the unit eigenvalue. Let us norm this vector
so as to make the sum of its components equal 1 and denote
the result by w. In the case of the Markov chain with the
transition probabilitymatrixP𝛾 this vector defines an ergodic
distribution.

If all rows of the consideredmatrix coincide with p𝛾, then
one can easily see that w coincides with p𝛾. It is possible that,
in the case of the Markov dependence with the irreducible
matrix P, an analog of Theorem 1 takes place. The role of
the entropy of the vector p𝛾 in this case plays the conditional
entropy of the matrix P𝛾 rows with the weights equal to the
corresponding components of the vector w. We will discuss
this fact in another publication.

It should be noted that mean values defined by other
type recurrent relations occur in the process of analyzing the
digital trees (cf. formula (10) and the recurrent relation for𝐴𝑁, where𝑁 is a natural number, in [18, p. 404]). Neverthe-
less, the results for these values almost wholly coincide with
Theorem 2 (see [19]). These results were obtained using the
Mellin transform. The Mellin transform may also be useful
for our case but it is a discussible problem.
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Measures of cumulative residual entropy (CRE) and cumulative entropy (CE) about predictability of failure time of a system
have been introduced in the studies of reliability and life testing. In this paper, cumulative distribution and survival function are
used to develop weighted forms of CRE and CE. These new measures are denominated as weighted cumulative residual entropy
(WCRE) and weighted cumulative entropy (WCE) and the connections of these new measures with hazard and reversed hazard
rates are assessed.These information-theoretic uncertainty measures are shift-dependent and various properties of these measures
are studied, including their connections with CRE, CE, mean residual lifetime, and mean inactivity time. The notions of weighted
mean residual lifetime (WMRL) and weighted mean inactivity time (WMIT) are defined.The connections of weighted cumulative
uncertainties with WMRL and WMIT are used to calculate the cumulative entropies of some well-known distributions. The joint
versions ofWCEandWCREare definedwhich have the additive properties similar to those of Shannon entropy for two independent
random lifetimes. The upper boundaries of newly introduced measures and the effect of linear transformations on them are
considered. Finally, empirical WCRE and WCE are proposed by virtue of sample mean, sample variance, and order statistics to
estimate the new measures of uncertainty. The consistency of these estimators is studied under specific choices of distributions.

1. Introduction

The concept of entropy was originally introduced in Shannon
[1] in the context of communication theory. Since then, it has
been of great theoretical and applied interest. Shannon char-
acterized the properties of information sources and of com-
munication channels to analyze the outputs of these sources.
Statisticians have played a crucial role in the development of
information theory and have shown that it provides a frame-
work for dealing with a wide variety of problems in reliability.

Let 𝑋 be a nonnegative absolutely continuous random
variable describing a component failure time.The probability
density function of𝑋 is denoted as 𝑓(𝑥), the failure distribu-
tion is denoted as 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥), and the survival func-
tion is denoted as 𝐹(𝑥) = 1 − 𝐹(𝑥). The Shannon entropy of
𝑋, which has been shown by 𝐻(𝑋) in the literature of com-
munication, is defined as

𝐻(𝑋) = −∫
∞

0
𝑓 (𝑥) log𝑓 (𝑥) 𝑑𝑥, (1)

where log denotes the natural logarithm. Entropy (1) is not
scale invariant because 𝐻(𝑐𝑋) = log |𝑐| + 𝐻(𝑋), but it is

translation invariant, so that𝐻(𝑐+𝑋) = 𝐻(𝑋) for some con-
stant 𝑐. The latter property can be interpreted as the shift
independence of Shannon information.

Let 𝑋 be random lifetime of a system with support set
(0,∞); the Shannon entropy can be rewritten as

𝐻(𝑋) = 1 − 𝐸 [log (𝑟 (𝑋))] = 1 − 𝐸 [log (𝜏 (𝑋))] . (2)

Recall that hazard rate (HR) and reversed hazard rate (RHR)
of random lifetime 𝑋 are defined as 𝑟(𝑡) = 𝑓(𝑡)/(𝐹(𝑡)) and
𝜏(𝑡) = 𝑓(𝑡)/𝐹(𝑡), respectively. The HR and RHR have been
used in the literature of reliability in both theory and appli-
cations of them.

The notion of cumulative residual entropy (CRE) as an
alternative measure of uncertainty was introduced in Wang
et al. [2]. This measure is based on survival function and is
defined as follows:

E (𝑋) = −∫
∞

0
𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥 = 𝐸 (𝑚𝐹 (𝑋)) , (3)

22

__________________________ WORLD TECHNOLOGIES __________________________



WT

where

𝑚𝐹 (𝑡) = 𝐸 (𝑋 − 𝑡 | 𝑋 ≥ 𝑡) = 1
𝐹 (𝑡)

∫
∞

𝑡
𝐹 (𝑥) 𝑑𝑥 (4)

is the mean residual life (MRL) of 𝑋 for 𝑡 ≥ 0. CRE has been
applied to reliability engineering and computer vision in Rao
et al. [3] and Wang et al. [2].

The role of CRE in residual lifetimes was considered in
Asadi and Zohrevand [4]. The dynamic cumulative residual
entropy (DCRE) of lifetime𝑋 at time 𝑡 ≥ 0 is defined by

E (𝑋; 𝑡) = −∫
∞

𝑡

𝐹 (𝑥)
𝐹 (𝑡)

log 𝐹 (𝑥)
𝐹 (𝑡)

𝑑𝑥

= − 1
𝐹 (𝑡)

∫
∞

𝑡
𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥

+ 𝑚𝐹 (𝑡) log𝐹 (𝑡) .

(5)

Entropy (5) is, in fact, the CRE for residual lifetime distribu-
tion of𝑋 at time 𝑡 > 0.

Recently, the cumulative entropy (CE) has been proposed
in Di Crescenzo and Longobardi [5] with properties similar
to those of CRE. Formally, the cumulative entropy of a non-
negative random lifetime𝑋 is defined as

CE (𝑋) = −∫
∞

0
𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥 = 𝐸 (𝜇𝐹 (𝑋)) , (6)

where

𝜇𝐹 (𝑡) = 𝐸 (𝑡 − 𝑋 | 𝑋 ≤ 𝑡) = 1
𝐹 (𝑡) ∫

𝑡

0
𝐹 (𝑥) 𝑑𝑥 (7)

is the mean inactivity time (MIT) of 𝑋 for 𝑡 ≥ 0. Entropy
(6) measures the uncertainty about the inactivity time of
𝑋, which is the time elapsing between the failure time of a
system and the time when it is found to be down. In other
words,CE(𝑋) is a suitable measure of information when the
uncertainty is related to the past.

Furthermore, Di Crescenzo and Longobardi [5] intro-
duced the dynamic cumulative past entropy (DCPE) in past
lifetimes. DCPE of lifetime𝑋 at time 𝑡 ≥ 0 is defined by

CE (𝑋; 𝑡) = −∫
𝑡

0

𝐹 (𝑥)
𝐹 (𝑡) log

𝐹 (𝑥)
𝐹 (𝑡) 𝑑𝑥

= − 1
𝐹 (𝑡) ∫

𝑡

0
𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥

+ 𝜇𝐹 (𝑡) log𝐹 (𝑡) .

(8)

Entropy (8)measures the uncertainty about a systemwhich is
observed only at deterministic inspection times and is found
to be down at time 𝑡; then the uncertainty relies on which
instant in (0, 𝑡) it has failed.

This paper is aimed at defining and assessing theweighted
forms of CRE and CE. In Section 2, some properties of
newly introduced measures are discussed, including the
connections with reliability notions and determined various

bounds. Section 3 is devoted to estimation of proposed
measures by means of empirical distribution function and
order statistics. Some conclusions are given in Section 4.

Throughout the remaining of this paper, all random
variables are assumed as absolutely continuous.

2. Weighted Cumulative
Measures of Information

In this section, two new measures of uncertainty are pre-
sented in nonnegative random variables and then some prop-
erties are discussed about these new measures.

In some practical situations of reliability and neurobiol-
ogy, a shift-dependent measure of uncertainty is desirable.
The notion of weighted entropy addresses this requirement.
An important feature of the human visual system is that it can
recognize objects in a scale- and transformation-invariant
manner. To intercept or avoid moving objects successfully, a
visual system must compensate for the sensorimotor delays
associated with visual processing and motor movement. In
spite of straightforwardness in the case of constant velocity
motion, it is unclear how humans compensate for acceler-
ations, as our visual system is relatively poor at detecting
changes in velocity (see Wallis [6] and de Rugy et al. [7]).
Neurophysiological evidence shows that some neurons in
the macaque temporal cortical visual areas have responses
which are invariant with respect to the position, size, and
view of faces and objects and that these neurons show
rapid processing and rapid learning. Wallis and Rolls [8]
propose that neurons in these visual areas use a modified
rule with a short-termmemory trace to capture whatever can
be captured at each stage which is invariant about objects
as the object changes in retinal position, size, rotation, and
view. Transformation-invariantmeasures have been attracted
by researchers from finance and industry. In robotics and
machinery analysis, line and screw systems are singular at
particular geometric configurations. Otherwise, measures
that describe how far they are from being so are required.
Hartley andKerr [9] proposed a newmeasurewhose outcome
is strictly invariant with respect to coordinate frame, origin,
and unit of length. Kerr and Hartley [10] describe a general
analytical method for determining the proximity to linear
dependence of any system of lines and screws. Their method
gives invariant scalars for 𝑛-system of screws. The robustness
of optimal portfolio with respect to the choice of riskmeasure
has been investigated in Adam et al. [11]. Argenti et al.
[12] studied filtering of generalized signal-dependent noise
which is performed and estimated in shift-invariant wavelet
domains.They address the scheme which filtered pixel values
obtaining as adaptive combinations of raw and local average
values, driven by locally computed statistics. Ghosh et al. [13]
analyze experimental data in order to characterize strange
attractors in terms of invariant measures such as correlation,
embedding, Lyapunov dimensions, and entropy. Misagh
and Yari [14] studied some theoretic uncertainty measures
which are shift-dependent. They introduced the weighted
differential information measure for two-sided truncated
random variables which is generalization of dynamic entropy
measures.
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In analogy with (3) and (6), Misagh et al. [15] defined
the notions of weighted cumulative residual entropy (WCRE)
and weighted cumulative entropy (WCE). The measures
WCRE and WCE are defined for nonnegative random life-
time𝑋 as

E
𝜔 (𝑋) = −∫

∞

0
𝑥𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥, (9)

CE
𝜔 (𝑋) = −∫

∞

0
𝑥𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥, (10)

respectively. The designation of (9) and (10) as weighted
entropies arises from coefficient 𝑥 which emphasizes the
importance of the occurrence of events {𝑋 > 𝑥} and {𝑋 ≤ 𝑥},
respectively.

The definitions given in (9) and (10) are suitablemodifica-
tions of the notions of weighted entropy functions introduced
in Di Crescenzo and Longobardi [16]. Misagh et al. [15]
studied various properties of these measures, including their
connections with CRE and CE. They showed that, in some
cases, there is a direct relation between variance and WCE.
In such cases WCE may be used instead of variance. In addi-
tion, some extensions of weighted cumulative entropy are
presented in Suhov and Yasaei Sekeh [17]. Furthermore, they
defined the notion of weighted Kullback-Leibler divergence
between two random lifetimes.

Remark 1. Due to (9) and (10), it can be shown that 0 ≤
E𝜔(𝑋) and CE𝜔(𝑋) ≤ ∞, with E𝜔(𝑋) = 0 or CE𝜔(𝑋) = 0,
if and only if𝑋 follows a degenerate distribution.

Example 2. Suppose 𝑋 and 𝑌 be random lifetimes of two
systems with common support (0,∞) and density functions
𝑓(𝑥) = (1/3) exp(−𝑥/3) and𝑓(𝑦) = (4×34)/(3+4𝑥)4, respec-
tively. From (3), E(𝑋) = E(𝑌) = 3. Therefore, the expected
cumulative residual uncertainties in the predictability of the
residual lifetimes of𝑋 and 𝑌 are identical. By simple calcula-
tions,E𝜔(𝑋) = 0.097 andE𝜔(𝑌) = 0.73. Hence, even though
E(𝑋) = E(𝑌), the expected weighted cumulative residual
uncertainty of the predictability of the failure time of com-
ponent 𝑌 is larger than that of𝑋.

The forthcoming proposition is analogous to (3) and (6);
the proof is given in Misagh et al. [15] and here it is omitted.
First definitions of weighted mean residual lifetime (WMRL)
and weighted mean inactivity time (WMIT) are given.

Definition 3. The WMRL and WMIT of a nonnegative ran-
dom variable𝑋 are given by

𝑚∗𝐹 (𝑡) =
1

𝐹 (𝑡)
∫
∞

𝑡
𝑥𝐹 (𝑥) 𝑑𝑥, (11)

𝜇∗𝐹 (𝑡) =
1

𝐹 (𝑡) ∫
𝑡

0
𝑥𝐹 (𝑥) 𝑑𝑥, (12)

respectively.

Proposition 4. Let 𝑋 be a nonnegative random variable with
WMRL𝑚∗𝐹(𝑡) and WMIT 𝜇∗𝐹(𝑡). Then

(a) E𝜔(𝑋) = 𝐸(𝑚∗𝐹(𝑋)),
(b) CE𝜔(𝑋) = 𝐸(𝜇∗𝐹(𝑋)).

Example 5. (i) If𝑋 is distributed as exponential withmean 𝜆,
then𝑚∗𝐹(𝑡) = 𝜆𝑡 + 𝜆2. Hence, E𝜔(𝑋) = 2𝜆2.

(ii) If𝑋 has power distribution with density function,

𝑓 (𝑥)

=
{
{
{

(𝛽𝛼) ⋅ (
𝑥
𝛼)
𝛽−1

, 0 ≤ 𝑥 ≤ 𝛼, 𝛼 > 0, 𝛽 > 0,

0, otherwise,

(13)

then 𝜇∗𝐹(𝑡) = 𝑡2/(𝛽 + 2) and CE𝜔(𝑋) = (1/(𝛽 + 2))𝐸(𝑋2) =
𝛽(𝛼/(𝛽 + 2))2.

(iii) If 𝑋 is distributed uniformly on (0, 𝑎), 𝑎 > 0, then
𝑚∗𝐹(𝑡) = (1/2)𝑎(𝑎 + 𝑡) − (1/3)(𝑎2 + 𝑎𝑡 + 𝑡2) and 𝜇∗𝐹(𝑡) =
(1/3)𝑡3. From Proposition 4, E𝜔(𝑋) = (1/4)𝑎2 − (1/9)𝑎3 and
CE𝜔(𝑋) = (1/9)𝑎2.

WCRE is based on survival function and then a close
relationship between it andmean residual life is expected.The
same can be argued about WCE and MIT.

Proposition 6. For nonnegative random variable 𝑋, there
holds

(a) E𝜔(𝑋) = ∫∞
0
𝐹(𝑡)(E(𝑋; 𝑡) − 𝑚𝐹(𝑡) log𝐹(𝑡))𝑑𝑡,

(b) CE𝜔(𝑋) = ∫∞
0
𝐹(𝑡)(CE(𝑋; 𝑡) − 𝜇𝐹(𝑡) log𝐹(𝑡))𝑑𝑡.

Proof. Part (a) is proven inMisagh et al. [15].The second part
is proven in a similar way.

For independent random variables 𝑋 and 𝑌, 𝐻(𝑋, 𝑌) =
𝐻(𝑋) + 𝐻(𝑌), where𝐻(𝑋, 𝑌) = −𝐸(log𝑓(𝑋, 𝑌)) is the two-
dimensional Shannon entropy. In the following proposition,
similar properties are presented for weighted cumulative
entropies.

Proposition 7. Let 𝑋 and 𝑌 be two nonnegative independent
random variables with finite WMRL and WMIT. Then

(a) E𝜔(𝑋, 𝑌) = (∫∞
0
𝑥𝐹𝑋(𝑥)𝑑𝑥)E𝜔(𝑌)

+ (∫∞
0
𝑦𝐹𝑌(𝑦)𝑑𝑦)E𝜔(𝑋),

(b) CE𝜔(𝑋, 𝑌) = (∫∞
0
𝑥𝐹𝑋(𝑥)𝑑𝑥)CE𝜔(𝑌)

+ (∫∞
0
𝑦𝐹𝑌(𝑦)𝑑𝑦)CE𝜔(𝑋).

Proof. The proof is straightforward. For part (a),

E
𝜔 (𝑋, 𝑌) = −∬

∞

0
𝑥𝑦𝐹 (𝑥, 𝑦) log𝐹 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= −∬
∞

0
𝑥𝑦𝐹𝑋 (𝑥) 𝐹𝑌 (𝑦) log𝐹𝑋 (𝑥) 𝑑𝑥 𝑑𝑦

−∬
∞

0
𝑥𝑦𝐹𝑋 (𝑥) 𝐹𝑌 (𝑦) log𝐹𝑌 (𝑦) 𝑑𝑥 𝑑𝑦,

(14)

where the second equality comes from the independence of
random variables.
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Remark 8. If the support sets of𝑋 and 𝑌 are limited to finite
sets (𝑎𝑋, 𝑏𝑋) and (𝑎𝑌, 𝑏𝑌), respectively, from Proposition 7,

E
𝜔 (𝑋, 𝑌) = 𝑚∗𝐹 (𝑎𝑋)E

𝜔 (𝑌) + 𝑚∗𝐺 (𝑎𝑌)E
𝜔 (𝑋) ,

CE
𝜔 (𝑋, 𝑌) = 𝜇∗𝐹 (𝑏𝑋)CE

𝜔 (𝑌) + 𝜇∗𝐺 (𝑏𝑌)CE
𝜔 (𝑋) .

(15)

Furthermore, for

𝑚∗𝐺 (𝑎𝑌) = 𝑚
∗
𝐹 (𝑎𝑋) = 𝑚

∗,

𝜇∗𝐺 (𝑏𝑌) = 𝜇
∗
𝐹 (𝑏𝑋) = 𝜇

∗,
(16)

it is obtained that

E
𝜔 (𝑋, 𝑌) = 𝑚∗ (E𝜔 (𝑌) +E

𝜔 (𝑋)) ,

CE
𝜔 (𝑋, 𝑌) = 𝜇∗ (CE

𝜔 (𝑌) +CE
𝜔 (𝑋)) ,

(17)

which is similar to the property of Shannon entropy for two
independent random variables. For instance, if𝑋 and 𝑌 have
same uniformdistribution in the interval (0,√3), then𝜇∗ = 1
andCE𝜔(𝑋, 𝑌) = CE𝜔(𝑋) +CE𝜔(𝑌).

In the following proposition, alternative expressions to
(9) and (10) are provided in terms of double integrals of
hazard and reversed hazard rates. A similar result for CE has
been considered in Di Crescenzo and Longobardi [5].

Proposition 9. Let 𝑋 be a nonnegative random variable with
finite WCE and WCRE; then

(a) E𝜔(𝑋) = 𝐸((𝑋 − 1/𝑟(𝑋))�̃�2(𝑋)),

(b) CE𝜔(𝑋) = 𝐸((𝑋 + 1/𝜏(𝑋))𝑇2(𝑋)),

where

�̃�2 (𝑥) = −∫
𝑥

0
log𝐹 (𝑡) 𝑑𝑡 = ∫

𝑥

0
∫
𝑡

0
𝑟 (𝑢) 𝑑𝑢 𝑑𝑡,

𝑇2 (𝑥) = −∫
∞

𝑥
log𝐹 (𝑡) 𝑑𝑡 = ∫

∞

𝑥
∫
∞

𝑡
𝜏 (𝑢) 𝑑𝑢 𝑑𝑡.

(18)

Proof. By recalling (9),

E
𝜔 (𝑋) = −∫

∞

0
𝑥𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥

= ∫
∞

0
(∫
∞

𝑥
(𝐹 (𝑡) − 𝑡𝑓 (𝑡)) 𝑑𝑡) log𝐹 (𝑥) 𝑑𝑥

= ∫
∞

0
∫
𝑡

0
𝐹 (𝑡) log𝐹 (𝑥) 𝑑𝑥 𝑑𝑡

− ∫
∞

0
∫
𝑡

0
𝑡𝑓 (𝑡) log𝐹 (𝑥) 𝑑𝑥 𝑑𝑡

= ∫
∞

0
𝐹 (𝑡) (∫

𝑡

0
log𝐹 (𝑥) 𝑑𝑥)𝑑𝑡

− ∫
∞

0
𝑡𝑓 (𝑡) (∫

𝑡

0
log𝐹 (𝑥) 𝑑𝑥)𝑑𝑡

= −∫
∞

0
𝑓 (𝑡) 𝐹 (𝑡)𝑓 (𝑡) �̃�

2 (𝑡) 𝑑𝑡

+ ∫
∞

0
𝑡𝑓 (𝑡) �̃�2 (𝑡) 𝑑𝑡

= 𝐸((𝑋 − 𝐹 (𝑋)
𝑓 (𝑋)) �̃�

2 (𝑋)) .

(19)

Part (b) is proven in a similar way. Note that

CE
𝜔 (𝑋) = −∫

∞

0
𝑥𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥

= −∫
∞

0
(∫
𝑥

0
(𝐹 (𝑡) + 𝑡𝑓 (𝑡)) 𝑑𝑡) log𝐹 (𝑥) 𝑑𝑥;

(20)

this completes the proof.

Example 10. (i) Let𝑋 be exponentially distributed withmean
𝜆; then �̃�2(𝑥) = 𝑥2/2𝜆 and 𝑟(𝑥) = 1/𝜆. From Proposition 9,
E𝜔(𝑋) = 𝐸[(𝑋 − 𝜆)(𝑋2/2𝜆)] = (1/2𝜆)𝐸(𝑋3) − (1/2)𝐸(𝑋2) =
2𝜆2.

(ii) Consider the random variable 𝑋 with the following
density function:

𝑓 (𝑥) = 2𝛼
𝑥3 exp(−

𝛼
𝑥2 ) , 𝑥 > 0, 𝛼 > 0. (21)

Then𝑇2(𝑥) = 𝛼/𝑥 and 𝜏(𝑥) = 2𝛼/𝑥3 and, fromProposition 9,
it is obtained that

CE
𝜔 (𝑋) = 𝛼 + 1

2𝐸 (𝑋
2) = 𝛼 + 1

2𝛼𝐸𝑖 (1,
𝛼
𝑥2 ) , (22)

where

𝐸𝑖 (𝑎, 𝑧) = ∫
∞

1
𝑥𝑎𝑒−𝑧𝑥𝑑𝑥 (23)

is the exponential integral function (see Abramowitz and
Stegun [18]).

Proposition 11. Let𝑋 be a randomvariablewith finite support
set (𝛼, 𝛽) with 𝛽 > 𝛼 > 0. Then, for 𝜃 in (0, 1],

(a) E𝜔(𝑋) ≤ 𝜃((𝛽2 − 𝛼2)/2) − 𝑚∗𝐹(𝛼) log(𝜃𝑒),
(b) CE𝜔(𝑋) ≤ 𝜃((𝛽2 − 𝛼2)/2) − 𝜇∗𝐹(𝛽) log(𝜃𝑒).

Proof. FromTaylor expansion (seeWalker [19]), it can be seen
that, for all 𝜃 in (0, 1],

−𝑥 log𝑥 ≤ 𝜃 − 𝑥 (1 + log 𝜃) . (24)
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Now, from (9),

E
𝜔 (𝑋) ≤ ∫

𝛽

𝛼
𝑥 (𝜃 − 𝐹 (𝑥) (1 + log 𝜃)) 𝑑𝑥

= 𝜃∫
𝛽

𝛼
𝑥 𝑑𝑥 − (1 + log 𝜃) ∫

𝛽

𝛼
𝑥𝐹 (𝑥) 𝑑𝑥

= 𝜃𝛽
2 − 𝛼2
2 − 𝑚∗𝐹 (𝛼) log (𝜃𝑒) .

(25)

Similarly, from (10),

CE
𝜔 (𝑋) ≤ 𝜃∫

𝛽

𝛼
𝑥 𝑑𝑥 − (1 + log 𝜃) ∫

𝛽

𝛼
𝑥𝐹 (𝑥) 𝑑𝑥

= 𝜃𝛽
2 − 𝛼2
2 − 𝜇∗𝐹 (𝛽) log (𝜃𝑒) .

(26)

This completes the proof.

Remark 12. From Proposition 11, we get, for all 𝜃 in (0, 1],

E
𝜔 (𝑋) +CE

𝜔 (𝑋) ≤ 𝜃 (𝛽2 − 𝛼2)

− [𝑚∗𝐹 (𝛼) + 𝜇
∗
𝐹 (𝛽)] log (𝜃𝑒) .

(27)

Remark 13. The right-hand sides of (a) and (b) in Proposi-
tion 11 are minimized at the points 𝜃 = 2𝑚∗𝐹(𝛼)/(𝛽2 −𝛼2) and
𝜃 = 2𝜇∗𝐹(𝛽)/(𝛽2 − 𝛼2), respectively.

The following proposition considers the effect of linear
transformations on WCE andWCRE.

Proposition 14. Let 𝑋 be a nonnegative random variable.
Then, for positive constants 𝑎 and 𝑏,

(a) E𝜔(𝑎𝑋 + 𝑏) = 𝑎2E𝜔(𝑋) + 𝑎𝑏E(𝑋),
(b) CE𝜔(𝑎𝑋 + 𝑏) = 𝑎2CE𝜔(𝑋) + 𝑎𝑏CE(𝑋).

Proof. The proof is straightforward. Note that

E
𝜔 (𝑎𝑋 + 𝑏)

= −∫
∞

𝑏
𝑦𝑃(𝑋 > 𝑦 − 𝑏

𝑎 ) log𝑃(𝑋 > 𝑦 − 𝑏
𝑎 )𝑑𝑦

= −∫
∞

0
𝑎 (𝑎𝑥 + 𝑏) 𝑃 (𝑋 > 𝑥) log𝑃 (𝑋 > 𝑥) 𝑑𝑥

= −𝑎2 ∫
∞

0
𝑥𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥

− 𝑎𝑏∫
∞

0
𝐹 (𝑥) log𝐹 (𝑥) 𝑑𝑥.

(28)

Part (b) is proven in a similar way.

According to Proposition 14, it is realized that there may
exist a close relation between WCE, WCRE, and variance.

WCRE
WCE
Variance

1 20 53 4

b

0

5

10

15

20

25

Figure 1: WCRE, WCE, and variance for Weibull distribution.

Example 15. Let 𝑋 be a nonnegative random variable with
Weibull distributionwith scale parameter 𝑏 and shape param-
eter 2. Its probability density function is given by

𝑓 (𝑥) = 𝑥
𝑏2 𝑒
−1/2 exp(𝑥

2

𝑏2 ) , 𝑏 > 0, 𝑥 > 0. (29)

The plot of Var(𝑋) = (2 − (1/2)𝜋)𝑏2, E𝜔(𝑋), and CE𝜔(𝑋)
are given in Figure 1 which shows a direct relation between
variance and cumulative entropies. Furthermore, Var(𝑋) ≤
CE𝜔(𝑋) ≤ E𝜔(𝑋). In such cases, WCRE and WCE may be
used instead of variance as a discrepancy measure. It should
be noticed that as 𝑏 grows, the tendency of WCE and WCRE
to overestimate the variance of𝑋 increases.

Hereafter, the weighted cumulative measures of informa-
tion are studied when the lifetimes have proportional hazard
(PH) and reversed proportional hazard (RPH) rates.

Two random variables 𝑋 and 𝑌 with survival functions
𝐹 and 𝐺 are said to have PH model if there exists 𝜃 > 0
such that 𝐺(𝑥) = [𝐹(𝑥)]𝜃. The PH model, introduced by Cox
[20], plays an important role in reliability and survival anal-
ysis. The RPH model is based on the assumption that the
cumulative distribution functions of𝑋 and𝑌 are related with
𝐺(𝑥) = [𝐹(𝑥)]𝜃 with 𝜃 > 0. Some results on these models are
presented in Ebrahimi and Kirmani [21], Di Crescenzo [22],
R. C. Gupta and R. D. Gupta [23], and Gupta et al. [24].

Proposition 16. Let 𝑋 and 𝑌 be two nonnegative random
variables; then, for 𝜃 ≥ 1 and for PH and RPH models,
E𝜔(𝑌) ≤ E𝜔(√𝜃𝑋) andCE𝜔(𝑌) ≤ CE𝜔(√𝜃𝑋), respectively.
For 0 < 𝜃 < 1, the inequalities are reversed.

Proof. The proof is easy and is omitted. Note that 𝐹(𝑥) ≥
[𝐹(𝑥)]𝜃 and 𝐹(𝑥) ≥ [𝐹(𝑥)]𝜃, 𝑥 ≥ 0, when 𝜃 > 1.
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Example 17. Let𝑌1 = min{𝑋1, 𝑋2, . . . , 𝑋𝑛} and𝑌𝑛 = max{𝑋1,
𝑋2, . . . , 𝑋𝑛}, where 𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑛, are nonnegative
independently and identically distributed with common dis-
tribution 𝐹. Suppose also that 𝑌𝑗, 𝑗 = 1, 2, has distribution
function 𝐺𝑗, 𝑗 = 1, 2, where 𝐺1(𝑥) = [𝐹(𝑥)]𝑛 and 𝐺𝑛(𝑥) =
[𝐹(𝑥)]𝑛. From Proposition 16, it is obtained that E𝜔(𝑌1) ≤
E𝜔(√𝑛𝑋) andCE𝜔(𝑌𝑛) ≤ CE𝜔(√𝑛𝑋).

3. Empirical WCRE and WCE

Suppose 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample with distribu-
tion𝐹.The empirical distribution is a discrete probability dis-
tribution with probability function generated from the given
sample. The empirical distribution and survival functions of
random sample𝑋1, 𝑋2, . . . , 𝑋𝑛 at point𝑥 are given by𝐹𝑛(𝑥) =
(1/𝑛)∑𝑛𝑖=1 𝐼{𝑋𝑖 ≤ 𝑥} and 𝐹𝑛 = 1 − 𝐹𝑛, respectively, where

𝐼 {𝑋 ≤ 𝑥} =
{
{
{

1, 𝑋 ≤ 𝑥,

0, 𝑋 > 𝑥
(30)

is the indicator function of event {𝑋 ≤ 𝑥}.

Definition 18. Let𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample drawn
from a population having distribution function 𝐹(𝑥). The
empirical WCRE (EWCRE) and empirical WCE (EWCE) are
defined as

E
𝜔 (𝐹𝑛) = −∫

∞

0
𝑥𝐹𝑛 (𝑥) log𝐹𝑛 (𝑥) 𝑑𝑥, (31)

CE
𝜔 (𝐹𝑛) = −∫

∞

0
𝑥𝐹𝑛 (𝑥) log𝐹𝑛 (𝑥) 𝑑𝑥, (32)

respectively.

The following proposition presents alternative expres-
sions of (31) and (32) in terms of sample mean 𝑋 =
(1/𝑛)∑𝑛𝑖=1𝑋𝑖, sample variance 𝑆2 = (1/(𝑛−1))∑𝑛𝑖=1(𝑋𝑖−𝑋)

2,
and order statistics.

Proposition 19. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample
drawn from a population having order statistics 𝑋(1) ≤ 𝑋(2) ≤
⋅ ⋅ ⋅ ≤ 𝑋(𝑛); then

(a)

E
𝜔 (𝐹𝑛) = [𝑋

2 − 𝑋2(1) + (1 −
1
𝑛) 𝑆
2] log√𝑛

−
𝑛−1

∑
𝑗=1

𝐶𝑗 (𝑛 − 𝑗) log (𝑛 − 𝑗) ,
(33)

(b)

CE
𝜔 (𝐹𝑛) = (𝑋2(𝑛) − 𝑋

2 − (1 − 1
𝑛) 𝑆
2) log√𝑛

−
𝑛−1

∑
𝑗=1

𝐶𝑗𝑗 log 𝑗,
(34)

where 𝐶𝑗 = (1/2)(𝑋2(𝑗+1) − 𝑋2(𝑗)).

Proof. From (31), we get

E
𝜔 (𝐹𝑛) = −

𝑛−1

∑
𝑗=1

∫
𝑋(𝑗+1)

𝑋(𝑗)

𝑥𝐹𝑛 (𝑥) log𝐹𝑛 (𝑥) 𝑑𝑥. (35)

Recalling that, for𝑋(𝑗) ≤ 𝑥 < 𝑋(𝑗+1),

𝐹𝑛 (𝑥) = 1 −
𝑗
𝑛 , 𝑗 = 1, 2, . . . , 𝑛 − 1, (36)

so

E
𝜔 (𝐹𝑛) = −

𝑛−1

∑
𝑗=1

∫
𝑋(𝑗+1)

𝑋(𝑗)

𝑥(𝑛 − 𝑗𝑛 ) log(𝑛 − 𝑗𝑛 ) 𝑑𝑥

= −
𝑛−1

∑
𝑗=1

(
𝑋2(𝑗+1) − 𝑋2(𝑗)

2 )(𝑛 − 𝑗𝑛 ) log(𝑛 − 𝑗𝑛 )

= −1𝑛
𝑛−1

∑
𝑗=1

𝐶𝑗 (𝑛 − 𝑗) log(
𝑛 − 𝑗
𝑛 ) ,

(37)

where 𝐶𝑗 = (1/2)(𝑋2(𝑗+1) − 𝑋2(𝑗)).
In addition,

𝑛−1

∑
𝑗=1

𝐶𝑗 (𝑛 − 𝑗) =
𝑛
2
𝑛−1

∑
𝑗=1

(𝑋2(𝑗+1) − 𝑋
2
(𝑗))

− 1
2
𝑛−1

∑
𝑗=1

𝑗 (𝑋2(𝑗+1) − 𝑋
2
(𝑗))

= 𝑛
2 (𝑋
2 − 𝑋2(1)) ,

(38)

where

𝑋2 = 1
𝑛
𝑛

∑
𝑗=1

𝑋2(𝑗) =
1
𝑛
𝑛

∑
𝑗=1

𝑋2𝑗 . (39)

Now, by virtue of (1 − 1/𝑛)𝑆2 = 𝑋2 − 𝑋2, (33) is obtained.
Part (b) is proven in a similar way. Note that ∑𝑛−1𝑗=1 𝐶𝑗𝑗 =
(𝑛/2)(𝑋2(𝑛) − 𝑋2).

Here, the consistency of EWCRE and EWCE is studied
under specific choices of function 𝐹. According to (33) and
(34), the estimators E𝜔(𝐹𝑛) and CE𝜔(𝐹𝑛) are calculated for
𝑛 = 100 simulated observations of distribution 𝐹 and the
process is repeated for 1000 times. Table 1 shows mean and
mean squares of errors (MSE) of EWCRE and EWCE. Rele-
vant values of 𝐸[E𝜔(𝐹100)] and 𝐸[CE𝜔(𝐹100)] are the mean
of E𝜔(𝐹100) and CE𝜔(𝐹100) values generated in every step
of simulation process. The numbers in brackets indicate the
corresponding real values of E𝜔(𝑋) and CE𝜔(𝑋) calculated
from (9) and (10). The MSE values are the mean of squared
errors between empirical and real entropies. According to
Table 1, the estimates are almost equal to real values of
weighted cumulative information measures and MSE values
are nearly zero.
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Table 1: Mean and MSE of the empirical cumulative entropy for random samples of some familiar distributions.

Distribution Survival function 𝐸[CE𝜔(𝐹100)] 𝐸[E𝜔(𝐹100)] MSE[CE𝜔(𝐹100)] MSE[E𝜔(𝐹100)]

Finite range (1 − (1/2)𝑥)3, 0 < 𝑥 < 2 0.15377 0.26319 0.00087 0.00127
(0.15477) (0.27)

Uniform 1 − 𝑥, 0 < 𝑥 < 1 0.11018 0.13698 0.00005 0.00004
(0.11111) (0.13889)

Power 1 − (𝑥/5)2, 0 < 𝑥 < 5 3.10340 3.09780 0.01958 0.01778
(3.125) (3.125)

Exponential exp(−2𝑥), 𝑥 > 0 0.21012 0.46532 0.00271 0.02267
(0.21175) (0.5)

4. Conclusion

Reliability and survival analysis is a branch of statistics
which deals with death in biological organisms and failure in
mechanical systems. There are several uncertainty measures
that play a central role in understanding and describing
reliability. Most of these information measures do not take
into account the values of a random variable. Two shift-
dependent measures of uncertainty are considered related to
cumulative distribution and survival functions so that higher
weight is assigned to large values of observed random vari-
ables.Thesemeasures are calledweighted cumulative residual
entropy (WCRE) and weighted cumulative entropy (WCE)
with properties similar to those of the legacy entropies.
Several propositions and examples forWCRE andWCE have
been presented, some of which parallel those for results
presented in Asadi and Zohrevand [4] and Di Crescenzo and
Longobardi [5, 16]. It must be remarked that the empirical
WCRE and WCE and the relationship with well-known
statistics have been assessed. Of course, many properties of
these measures are still waiting to be discovered.
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The 𝑘-ary divisibility relations are a class of recursively defined relations beginning with standard divisibility and culminating in
the so-called infinitary divisibility relation. We examine the summatory functions corresponding to the 𝑘-ary analogues of various
popular functions in number theory, proving various results about the structure of the 𝑘-ary divisibility relations along the way.

1. Introduction

Let 𝑛 be a positive integer and denote the set of divisors of 𝑛
by 𝐷(𝑛). The set of unitary divisors of 𝑛, denoted by 𝐷1(𝑛),
are the divisors 𝑑 of 𝑛 which satisfy 𝐷(𝑑) ∩ 𝐷(𝑛/𝑑) = {1}; in
other words, (𝑑, 𝑛/𝑑) = 1. The biunitary divisors of 𝑛 are the
divisors𝑑 of 𝑛which satisfy𝐷1(𝑑)∩𝐷1(𝑛/𝑑).This differs from
some definitions of biunitary divisibility in the literature (e.g.,
[1]) but is consistent with others (e.g., [2]). In general, wemay
define the 𝑘-ary divisors of an integer 𝑛 to be the set𝐷𝑘 (𝑛) fl {𝑑 ∈ 𝐷 (𝑛) | 𝐷𝑘−1 (𝑑) ∩ 𝐷𝑘−1 (𝑛𝑑) = {1}}= {𝑑 ∈ 𝐷 (𝑛) | (𝑑, 𝑛𝑑)𝑘−1 = 1} , (1)

where we define the greatest common 𝑘-ary divisor of𝑚 and𝑛 by (𝑚, 𝑛)𝑘 fl max {𝐷𝑘 (𝑚) ∩ 𝐷𝑘 (𝑛)} . (2)

We write 𝑑|𝑘𝑛 if 𝑑 ∈ 𝐷𝑘(𝑛).
The 𝑘-ary divisibility relations as defined above were first

introduced byCohen [3] and have been studiedmore recently
by Haukkanen [2] and Steuding et al. [4]. An alternative
definition can be seen in Suryanarayana [5].

One easily verifies the following basic properties:

(i) 1 ∈ 𝐷𝑘(𝑛) and 𝑛 ∈ 𝐷𝑘(𝑛) for all 𝑛.

(ii) If 𝑛 and𝑚 are coprime, then𝐷𝑘(𝑛𝑚) = 𝐷𝑘(𝑛)⋅𝐷𝑘(𝑚),
where 𝐴 ⋅ 𝐵 fl {𝑎𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

(iii) If 𝑑 ∈ 𝐷𝑘(𝑛), then 𝑛/𝑑 ∈ 𝐷𝑘(𝑛).
For example, the set of unitary divisors of a prime power𝑝𝑎 are 𝐷1(𝑝𝑎) = {1, 𝑝𝑎}. On the other hand, the biunitary

divisors of a prime power 𝑝𝑎 are given by 𝐷(𝑝𝑎) when 𝑎
is odd and 𝐷(𝑝𝑎) \ {𝑝𝑎/2} when 𝑎 is even. We may then
form the unitary and biunitary divisors of a positive integer 𝑛
by “multiplying” the prime-power divisor sets that form the
prime decomposition of 𝑛.

By viewing the sets 𝐷𝑘 as representing some of the 𝐴-
convolutions of Narkiewicz [6], we may define the 𝑘-ary
convolution of arithmetic functions 𝑓 and 𝑔:(𝑓⋆𝑘𝑔) (𝑛) fl ∑

𝑑|𝑘𝑛

𝑓 (𝑑) 𝑔 (𝑛𝑑) . (3)

The following properties of 𝑘-ary convolution can be
found in [2]:

(i) The 𝑘-ary convolution is commutative.
(ii) The function 𝜄(𝑛), which takes on value of 1 if𝑛 = 1 and 0 otherwise, is the identity under 𝑘-ary

convolution.
(iii) If an arithmetic function 𝑓 satisfies 𝑓(1) ̸= 0, then 𝑓

possesses a unique inverse under 𝑘-ary convolution.
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(iv) If 𝑓 and 𝑔 are multiplicative functions, then 𝑓⋆𝑘𝑔 is
multiplicative as well.

By choosing 𝑓 and 𝑔 appropriately, we may obtain multi-
plicative 𝑘-ary analogues to the following classical functions
from number theory in terms of the 𝑘-ary convolution:

(i) Let𝑓(𝑛) = 𝑔(𝑛) = 1 for all 𝑛.Then 𝜏𝑘(𝑛) fl (𝑓⋆𝑘𝑔)(𝑛)
is the number of 𝑘-ary divisors of 𝑛.

(ii) Let 𝑓(𝑛) = 𝑛 and 𝑔(𝑛) = 1 for all 𝑛. Then 𝜎𝑘(𝑛) fl(𝑓⋆𝑘𝑔)(𝑛) is the sum of the 𝑘-ary divisors of 𝑛.
(iii) Let 𝑓(𝑛) = 𝑛 and 𝑔(𝑛) = 𝜇𝑘(𝑛) for all 𝑛, where 𝜇𝑘 is

the unique inverse of the function 𝑈(𝑛) = 1 under
the 𝑘-ary convolution.Then 𝜑𝑘(𝑛) fl (𝑓⋆𝑘𝑔)(𝑛) is the
analogue of the Euler totient function.

(iv) Let 𝑓(𝑛) = 𝑛 and 𝑔(𝑛) = |𝜇𝑘(𝑛)|. Then 𝜓𝑘(𝑛) fl(𝑓⋆𝑘𝑔)(𝑛) is the analogue of the Dedekind 𝜓-
function.

Note that while 𝜑(𝑛) counts the totatives of 𝑛, in general𝜑𝑘 does not count the 𝑘-ary totatives of 𝑛.
In this paper, we prove results concerning the structure of𝑘-ary divisibility relations and use that to obtain formulae for

the number of integers𝑚 less than or equal to 𝑛which satisfy(𝑚, 𝑛)𝑘 = 1. We then apply this result to obtain asymptotics
for the summatory functions of 𝑘-ary generalizations of the
classical functions mentioned above.

2. The Behavior of 𝑘-Ary Divisibility Relations
Let𝐷∞(𝑛) be the set of infinitary divisors of 𝑛 introduced and
studied by Cohen [3, 7].The infinitary divisibility relation can
be thought of as the end behavior of the recursion defining the𝑘-ary divisibility relations. It satisfies

(i) All properties of 𝑘-ary divisibility relations listed
above

(ii) 𝑑 ∈ 𝐷∞(𝑛) if and only if𝐷∞(𝑑) ∩ 𝐷∞(𝑛/𝑑) = {1}
(iii) 𝐷∞ being transitive; that is, for all 𝑛, if 𝑑 ∈ 𝐷∞(𝑛),

then𝐷∞(𝑑) ⊆ 𝐷∞(𝑛).
Additionally, the following reformulation of Theorem

1 from [3] characterizes in what sense 𝑘-ary divisibility
relations “approach” the infinitary divisibility relation as 𝑘
increases.

Theorem 1. Let 𝑘 ⩾ 0 be given, and suppose that 𝑛 ∈ N is
such that, for every prime 𝑝, ]𝑝(𝑛) ⩽ 𝑘 + 1, where ]𝑝(𝑛) is the
exponent of the prime 𝑝 in the prime decomposition of 𝑛 (0 if 𝑝
does not divide 𝑛). Then𝐷𝑘(𝑛) = 𝐷∞(𝑛).
Proof. We proceed by induction on 𝑘. We need to only show
the result for prime powers 𝑝𝑎, since by the second property
listed above we obtain our theorem by multiplicative con-
struction, akin to the treatment of multiplicative arithmetical
functions. Therefore, we may speak of a set prime 𝑝 and
consider𝑝𝑎, with 𝑎 ⩽ 𝑘+1. For 𝑘 = 0, we have𝐷∞(𝑝) = 𝐷(𝑝)
and𝐷∞(1) = 𝐷(1).

Now assume that the result holds up to some𝐾− 1. Then
consider 𝐷𝐾(𝑝𝑎) = {𝑑 ∈ 𝐷(𝑝𝑎) | 𝐷𝐾−1(𝑑) ∩ 𝐷𝐾−1(𝑝𝑎/𝑑) ={1}}, with 𝑎 such that 𝑎 ⩽ 𝐾 + 1. Notice that all divisors 𝑑
of 𝑝𝑎, except 𝑝𝑎 itself, satisfy 𝑑 = 𝑝𝑏, with 𝑏 ⩽ 𝐾 − 1. Then,
for 𝑑 ̸= 𝑝𝑎, we have 𝐷𝐾−1(𝑑) = 𝐷∞(𝑑) and, for 𝑑 ̸= 1, we
have 𝐷𝐾−1(𝑝𝑎/𝑑) = 𝐷∞(𝑝𝑎/𝑑). So, for 𝑑 not equal to 1 or𝑝𝑎, 𝑑 ∈ 𝐷𝐾(𝑝𝑎) ⇐⇒ 𝐷∞(𝑑) ∩ 𝐷∞(𝑝𝑎/𝑑). But 1 and 𝑝𝑎 are
in 𝐷𝐾(𝑝𝑎) as well, so 𝐷𝐾(𝑝𝑎) = 𝐷∞(𝑝𝑎), and by the second
property of𝐷𝑘 and𝐷∞ listed above, we are done.

Additionally, we observe the following.

Theorem 2. For all 𝑛 ∈ N, 𝑘 ⩾ 0, 𝐷∞(𝑛) ⊆ 𝐷2𝑘+2(𝑛) ⊆𝐷2𝑘(𝑛), and𝐷2𝑘+1(𝑛) ⊆ 𝐷2𝑘+3(𝑛) ⊆ 𝐷∞(𝑛).
Proof. We will again use induction. One can immediately
verify that 𝐷∞(𝑛) ⊆ 𝐷2(𝑛) ⊆ 𝐷(𝑛) and 𝐷1(𝑛) ⊆ 𝐷3(𝑛) ⊆𝐷∞(𝑛); 𝐷3(𝑝𝑎) only differs from 𝐷1(𝑝𝑎) at 𝑎 = 3 and 𝑎 = 6,
where we have 𝐷3(𝑝3) = 𝐷∞(𝑝3) and 𝐷3(𝑝6) = 𝐷∞(𝑝6).
Assuming that the theorem holds up to some𝐾, observe that
for each divisor 𝑑 of 𝑛 the condition𝐷2𝐾+3(𝑑)∩𝐷2𝐾+3(𝑛/𝑑) ={1} implies that 𝐷2𝐾+1(𝑑) ∩ 𝐷2𝐾+1(𝑛/𝑑) = {1}} on account of𝐷2𝐾+1(𝑑) ⊆ 𝐷2𝐾+3(𝑑) for each 𝑑. Then𝐷2𝐾+4(𝑛) ⊆ 𝐷2𝐾+2(𝑛).
But then, by the same reasoning,𝐷2𝐾+3(𝑛) ⊆ 𝐷2𝐾+5(𝑛).

To see that 𝐷∞(𝑛) is ordered according to the theorem,
consider the statement 𝐷∞(𝑛) ⊆ 𝐷(𝑛) for all 𝑛. Using the
argument from above and the fact that 𝐷∞(𝑛) = {𝑑 ∈𝐷(𝑛) | 𝐷∞(𝑑) ∩ 𝐷∞(𝑛/𝑑) = {1}}, we conclude that, for
all 𝑘, 𝐷2𝑘+1(𝑛) ⊆ 𝐷∞(𝑛) ⊆ 𝐷2𝑘(𝑛) and hence our relations
hold.

We observe that when looking at the 𝑘-ary divisors of the
powers of a specific prime number, there is always an integer
after which, for each 𝑎, the 𝑘-ary divisors of 𝑝𝑎 will be either𝐷2(𝑝𝑎) or𝐷1(𝑝𝑎).
Theorem 3. Let 𝑘 > 2 be given. Then there is an integer 𝑁𝑘
such that, for all 𝑎 > 𝑁𝑘 and all primes 𝑝, 𝐷𝑘(𝑝𝑎) = 𝐷1(𝑝𝑎) if𝑘 is odd, and 𝐷𝑘(𝑝𝑎) = 𝐷2(𝑝𝑎) if 𝑘 is even.
Proof. We note first that, for 𝑘 = 1 and 𝑘 = 2, we have that𝑁1 = 1 and𝑁2 = 3 trivially suffice for bounds. Now assume
that such an𝑁𝑘 exists for all 𝑘 = 𝑀−1. We consider the cases
even𝑀 and odd𝑀, respectively.

For even 𝑀, take 𝑎 > 2𝑁𝑀−1 and let 𝑏 ⩽ 𝑎/2. Then𝐷𝑘(𝑝𝑎−𝑏) ∩ 𝐷𝑘(𝑝𝑏) = {1}, since 𝐷𝑘(𝑝𝑎−𝑏) = 𝐷1(𝑝𝑎−𝑏) and𝑏 < 𝑎 − 𝑏. For 2𝑏 = 𝑎, we have 𝑝𝑏 ∉ 𝐷𝑀(𝑝𝑎) as desired.
Since 𝑘-ary divisions are symmetric, this argument holds for𝑏 = 𝑎−𝑏 as well. We see then that wemay take𝑁𝑀 = 2𝑁𝑀−1
for even𝑀.

For odd 𝑀, take 𝑎 > 3𝑁𝑀−1. Let 𝑏 be such that 0 ⩽𝑏 ⩽ (2/3)𝑎. Then 𝐷𝑀−1(𝑝𝑎−𝑏) ∩ 𝐷𝑀−1(𝑝𝑏) = {1} if 𝑝𝑏 ∈𝐷𝑀−1(𝑝𝑎−𝑏). This occurs for all 𝑏 and 𝑎 satisfying 𝑎 ̸= 3𝑏. If𝑎 = 3𝑏, then 𝑏 > 𝑁𝑀−1, so 𝐷𝑘(𝑝𝑏) = 𝐷2(𝑝𝑏). In either case,𝐷𝑀−1(𝑝𝑎−𝑏) ∩ 𝐷𝑀−1(𝑝𝑏) = {1}, so that 𝐷𝑀−1(𝑝𝑎) = 𝐷1(𝑝𝑎).
We then see that we may take𝑁𝑀 > 3𝑁𝑀−1 for odd𝑀.

Definition 4. We denote by𝑁⋆𝑘 the least𝑁𝑘 for a given 𝑘.
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Our next section concerns itself with 𝑘-ary analogues of
some classical results on summatory functions.

3. Summatory Functions

Let 𝑘 > 0 be given and let 𝑓(𝑛) be an arithmetical function
constructed as follows:𝑓 (𝑛) fl ∑

𝑑∈𝐷𝑘(𝑛)

𝑔 (𝑑) (𝑛𝑑)𝑟 , (4)

where 𝑟 is a positive integer and 𝑔(𝑛) is a function such that𝑔(𝑛) = O(𝑛𝑟−1). We wish to explore the end behavior of the
summatory function of 𝑓:𝑆 (𝑓) (𝑥) fl ∑

𝑛⩽𝑥

𝑓 (𝑛) (5)

Wewill employ techniques already used in [7, 8] to derive
the result for the infinitary and unitary cases, respectively.

Definition 5. Let 𝑘 ⩾ 0 and 𝑟 > 0. We introduce the following
function: 𝜑𝑘,𝑟 (𝑥, 𝑛) fl ∑

𝑚⩽𝑥
(𝑚,𝑛)𝑘=1

𝑚𝑟.
(6)

For 𝑟 = 0, this function counts the number of integers 𝑚
that are less than 𝑥 and 𝑘-ary coprime to 𝑛. It is known that,
for 𝑘 = 0, 𝜑0,0(𝑥, 𝑛) = 𝑥(𝜑(𝑛)/𝑛) + O(𝜏(𝑛)). The summatory
functions for𝜑𝑘,0may be broken into the case of even 𝑘 or odd𝑘, in accordance with whether 𝐷𝑘(𝑛) ⊆ 𝐷∞(𝑛) or 𝐷∞(𝑛) ⊆𝐷𝑘(𝑛).
Theorem 6. Let 𝑘 > 0 be an integer. Then, for even 𝑘, 𝜑𝑘,0(𝑥,𝑛) = 𝑥(𝜑(𝑛)/𝑛)𝐾𝑘(𝑛) + O(𝜏𝑘(𝑛)𝜏(𝑛)), with

𝐾𝑘 (𝑛) = ∏
𝑝|𝑛

( ∞∑
𝑏=0

(𝑝𝑏,𝑝]𝑝(𝑛))𝑘=1

1𝑝𝑏) (7)

and

𝜏𝑘 (𝑛) = ∏
𝑝|𝑛

( ∞∑
𝑏=0

(𝑝𝑏,𝑝]𝑝(𝑛))𝑘=1

1) ; (8)

for odd 𝑘,
𝜑𝑘,0 (𝑥, 𝑛) = 𝑥(1 − ∑

𝑑∈𝐷1(𝑛)

𝜑 (𝑑) 𝜇1 (𝑑)𝑑 𝐾𝑘 (𝑑))+ O (𝜏𝑘 (𝑛) 𝜏1 (𝑛) 𝜏 (𝑛)) , (9)

with the following:

(i) 𝜏1(𝑛) is the number of elements (divisors) in𝐷1(𝑛).

(ii) 𝜇1(𝑛) is the Möbius function corresponding to 𝐷1:𝜇1(𝑛) = (−1)𝜔(𝑛), where 𝜔(𝑛) is the number of distinct
prime factors of 𝑛, counted without multiplicity.

(iii)

𝐾𝑘 (𝑛) = ∏
𝑝|𝑛

( ∑
𝑏=0

(𝑝𝑏 ,𝑝]𝑝(𝑛))𝑘>1

1𝑝𝑏). (10)

(iv)

𝜏𝑘 (𝑛) = ∏
𝑝|𝑛

( ∑
𝑏=0

(𝑝𝑏 ,𝑝]𝑝(𝑛))𝑘>1

1) . (11)

Proof. First note that 𝐾𝑘(𝑛) and 𝜏𝑘(𝑛) are well defined: by
Theorem 3, for even 𝑘, the number of integers 𝑚 satisfying
the condition (𝑚, 𝑛)𝑘 = 1 for a given integer 𝑛 must be
finite, whereas for odd 𝑘 and for each maximal prime power
dividing 𝑛, the number of integers satisfying (𝑝𝑏, 𝑝]𝑝(𝑛))𝑘 > 1
must be finite, and hence the product over sums of prime
powers 𝑘-ary-coprime to 𝑛must be finite.Therefore, the sums
are finite. We will prove the result for even 𝑘 first.

Let 𝑘 be even and consider𝜑𝑘,0 (𝑥, 𝑛) = ∑
𝑚⩽𝑥
(𝑚,𝑛)𝑘=1

1 = ∑
𝑚⩽𝑥
𝑚=𝑚1𝑚2
(𝑚1 ,𝑛)=1
(𝑚2 ,𝑛)𝑘=1
core(𝑚2)|𝑛

1,
(12)

where

core (𝑚2) fl ∏
𝑝|𝑚2

𝑝 (13)

is the square-free part of the integer 𝑚2, from [8]. Here we
have split each 𝑚 uniquely into a part that has no common
divisor with 𝑛 and a part whose prime decomposition uses
only the primes of 𝑛 (note that there is no restriction on
the prime powers used; e.g., 𝑚2 = 𝑛2 may appear in this
decomposition for large enough 𝑥).

We proceed:∑
𝑚⩽𝑥
𝑚=𝑚1𝑚2
(𝑚1 ,𝑛)=1
(𝑚2 ,𝑛)𝑘=1
core(𝑚2)|𝑛

1 = ∑
𝑚2 :core(𝑚2)|𝑛
(𝑚2 ,𝑛)𝑘=1

∑
𝑚1⩽𝑥/𝑚2
(𝑚1 ,𝑛)=1

1
= ∑
𝑚2 :core(𝑚2)|𝑛
(𝑚2 ,𝑛)𝑘=1

𝜑0,0 ( 𝑥𝑚2 , 𝑛)
= ∑
𝑚2 :core(𝑚2)|𝑛
(𝑚2 ,𝑛)𝑘=1

(𝑥𝜑 (𝑛)𝑛𝑚2 + O (𝜏 (𝑛))) ,
(14)

using the fact that the behavior of 𝜑0,0(𝑥, 𝑛) is known. Pulling
out the constants with respect to the sum then immediately
gives us our result.
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For odd 𝑘, we proceed in a different manner:∑
𝑚⩽𝑥
(𝑚,𝑛)𝑘=1

= [𝑥] − ∑
𝑚⩽𝑥
(𝑚,𝑛)𝑘>1

1.
(15)

We then analyze the term ∑
𝑚⩽𝑥
(𝑚,𝑛)𝑘>1

1 :
(16)

We wish to split 𝑚 into 𝑚1𝑚2 as before. However, this
should be done in such a way as to be both unique and useful
in dealing with the requirement that (𝑚, 𝑛)𝑘 > 1. For each
divisor 𝑑 of 𝑛, let 𝑚 = 𝑚1𝑚2, with core(𝑚2) | 𝑑 | 𝑛,(𝑚1, 𝑛) = 1, and (𝑚2, 𝑝]𝑝(𝑑))𝑘 > 1 for each 𝑝 | 𝑑. We invoke
the principle of inclusion-exclusion, enabling us to write∑

𝑚⩽𝑥
(𝑚,𝑛)𝑘>1

= ∑
𝑚⩽𝑥
𝑚=𝑚1𝑚2

(𝑚1 ,𝑝
]𝑝1 (𝑛)
1
)=1

core(𝑚2)|𝑝
]𝑝1 (𝑛)
1

(𝑚2 ,𝑝
]𝑝1 (𝑛)
1
)𝑘>1

1 + ∑
𝑚⩽𝑥
𝑚=𝑚1𝑚2

(𝑚1 ,𝑝
]𝑝2 (𝑛)
2
)=1

core(𝑚2)|𝑝
]𝑝2 (𝑛)
2

(𝑚2 ,𝑝
]𝑝2 (𝑛)
2
)𝑘>1

1 + ⋅ ⋅ ⋅

+ ∑
𝑚⩽𝑥
𝑚=𝑚1𝑚2

(𝑚1 ,𝑝
]𝑝𝑠 (𝑛)
𝑠 )=1

core(𝑚2)|𝑝
]𝑝𝑠 (𝑛)
𝑠

(𝑚2 ,𝑝
]𝑝𝑠 (𝑛)
𝑠 )𝑘>1

1 −
(((((((((((((
(

∑
𝑚⩽𝑥
𝑚=𝑚1𝑚2

(𝑚1 ,𝑝
]𝑝1 (𝑛)
1
𝑝
]𝑝2 (𝑛)
2
)=1

core(𝑚2)|𝑝
]𝑝1 (𝑛)
1
𝑝
]𝑝2 (𝑛)
2

(𝑚2 ,𝑝
]𝑝1 (𝑛)
1
)𝑘>1

(𝑚2 ,𝑝
]𝑝2 (𝑛)
2
)𝑘>1

1

+ ∑
𝑚⩽x
𝑚=𝑚1𝑚2

(𝑚1 ,𝑝
]𝑝1 (𝑛)
1
𝑝
]𝑝3 (𝑛)
3
)=1

core(𝑚2)|𝑝
]𝑝1 (𝑛)
1
𝑝
]𝑝3 (𝑛)
3

(𝑚2 ,𝑝
]𝑝1 (𝑛)
1
)𝑘>1

(𝑚2 ,𝑝
]𝑝3 (𝑛)
3
)𝑘>1

1 + ⋅ ⋅ ⋅

+ ∑
𝑚⩽𝑥
𝑚=𝑚1𝑚2

(𝑚1 ,𝑝
]𝑝𝑠−1 (𝑛)
𝑠−1
𝑝
]𝑝𝑠 (𝑛)
𝑠 )=1

core(𝑚2)|𝑝
]𝑝𝑠−1 (𝑛)
𝑠−1
𝑝
]𝑝𝑠 (𝑛)
𝑠

(𝑚2 ,𝑝
]𝑝𝑠−1 (𝑛)
𝑠−1
)𝑘>1

(𝑚2 ,𝑝
]𝑝𝑠 (𝑛)
𝑠 )𝑘>1

1
)))))))))))))
)

+ ⋅ ⋅ ⋅ + (−1)𝑠

⋅
((((((((((((((((((
(

∑
𝑚⩽𝑥
𝑚=𝑚1𝑚2
(𝑚1 ,𝑛)=1
core(𝑚2)|𝑛
(𝑚2 ,𝑝

]𝑝1 (𝑛)
1
)𝑘>1

(𝑚2 ,𝑝
]𝑝2 (𝑛)
2
)𝑘>1

...

(𝑚2 ,𝑝
]𝑝𝑠 (𝑛)
𝑠 )𝑘>1

1
))))))))))))))))))
)

,

(17)

where 𝑛 = 𝑠∏
𝑙=1

𝑝]𝑝𝑙 (𝑛)
𝑙

, (18)

with 𝑝𝑙 being an appropriately indexed set of primes, and we
use the fact that, for d = 1, the sum is 0.

This simplifies to− ∑
𝑑∈𝐷1(𝑛)

𝜇1 (𝑑) ∑
𝑚2:core(𝑚2)|𝑑
∀𝑝|𝑑,(𝑚2 ,𝑝

]𝑝(𝑑))𝑘>1

∑
𝑚1⩽𝑥/𝑚2
(𝑚1 ,𝑑)=1

1
= − ∑
𝑑∈𝐷1(𝑛)

𝜇1 (𝑑) ∑
𝑚2:core(𝑚2)|𝑑
∀𝑝|𝑑,(𝑚2 ,𝑝

]𝑝(𝑑))𝑘>1

𝜑0,0 ( 𝑥𝑚2 , 𝑑) ==
− ∑
𝑑∈𝐷1(𝑛)

𝜇1 (𝑑)
⋅ ∑
𝑚2:core(𝑚2)|𝑑
∀𝑝|𝑑,(𝑚2 ,𝑝

]𝑝(𝑑))𝑘>1

(𝑥𝜑 (𝑑)𝑑𝑚2 + O (𝜏 (𝑑))) ==
− 𝑥 ∑
𝑑∈𝐷1(𝑛)

𝜇1 (𝑑) 𝜑 (𝑑)𝑑 ∑
𝑚2 :core(𝑚2)|𝑑
∀𝑝|𝑑,(𝑚2 ,𝑝

]𝑝(𝑑))𝑘>1

1𝑚2
+ O( ∑

𝑑∈𝐷1(𝑛)

𝜇1 (𝑑) 𝜏 (𝑑) 𝜑 (𝑑)𝑑
⋅ ∑
𝑚2:core(𝑚2)|𝑑
∀𝑝|𝑑,(𝑚2 ,𝑝

]𝑝(𝑑))𝑘>1

1) ==
− ∑
𝑑∈𝐷1(𝑛)

𝜑 (𝑑) 𝜇1 (𝑑)𝑑 𝐾𝑘 (𝑑) + O (𝜏𝑘 (𝑛) 𝜏1 (𝑛) 𝜏 (𝑛)) ,

(19)

and our result follows.

223Arithmetical Functions Associated with the k-ary Divisors of an Integer

__________________________ WORLD TECHNOLOGIES __________________________



WT

We let 𝐿𝑘(𝑛) be the coefficient appearing in front of the
“𝑥” term in𝜑𝑘,0(𝑥, 𝑛) and let𝐸𝑘(𝑛) be the function in the error
term, so that 𝜑𝑘,0(𝑥, 𝑛) = 𝑥𝐿𝑘(𝑛) + O(𝐸(𝑛)).
Remark 7. Regarding the function 𝜏𝑘(𝑛), we may estimate
that 𝜏𝑘(𝑛) ⩽ 𝑁⋆𝑘 through the following reasoning: for even𝑘, consider 𝑎 ⩽ 𝑁⋆𝑘 (see Definition 4). If 𝑏 ⩽ 𝑁⋆𝑘 , then(𝑝𝑏, 𝑝𝑎)𝑘 = 1 for at most 𝑁⋆𝑘 − 1 such 𝑏 (excluding 𝑏 = 𝑎).
If 𝑏 > 𝑁⋆𝑘 , then (𝑝𝑏, 𝑝𝑎)𝑘 = 1 for at most 1 such 𝑏 (the case of𝐷𝑘(𝑝𝑎) = {1, 𝑝𝑎} and 𝑏 = 2𝑎 > 𝑁⋆𝑘 , as here𝐷𝑘(𝑝𝑏) = 𝐷2(𝑝𝑏)).
Thus, 𝜏𝑘(𝑝𝑎) ⩽ 𝑁⋆𝑘 for 𝑎 ⩽ 𝑁⋆𝑘 . For 𝑎 > 𝑁⋆𝑘 ,𝐷𝑘(𝑝𝑎) = 𝐷2(𝑝𝑎),
and so (𝑝𝑏, 𝑝𝑎)𝑘 = 1 for at most 2 such 𝑏 by the above
comments.

For odd 𝑘, a similar argument gives (𝑝𝑏, 𝑝𝑎)𝑘 > 1 for at
most 𝑁⋆𝑘 choices of 𝑏 when 𝑎 ⩽ 𝑁⋆𝑘 , and precisely 2 choices
of 𝑏 when 𝑎 > 𝑁⋆𝑘 ; namely, 𝑏 = 0 and 𝑏 = 𝑎. So 𝑁⋆𝑘 bounds𝜏𝑘(𝑝𝑎) for all 𝑎.

Now, 𝜏𝑘(𝑝) = 2 for all 𝑘, and for some 𝐵𝑘 ⩽ 𝑁⋆𝑘 , 2𝐵𝑘 ⩾𝑁⋆𝑘 ⩾ 𝜏𝑘(𝑛). Thus, since 𝜏𝑘(𝑝𝑎) ⩾ 2 for all 𝑎 > 0, we have that𝜏𝑘(𝑛)𝐵𝑘 ⩾ 𝜏𝑘(𝑛). In particular, there is a least 𝐵𝑘 such that, for
all 𝑛, 𝜏𝑘(𝑛)𝐵𝑘 ⩾ 𝜏𝑘(𝑛). We will use this 𝐵𝑘 in our asymptotic
estimates.

We immediately get the following result as a consequence
of Theorem 6.

Corollary 8. 𝜑𝑘,𝑟(𝑥, 𝑛) = (𝑥𝑟/(𝑟 + 1))𝜑𝑘,0(𝑥, 𝑛) for 𝑟 ∈ N.

Proof. The case 𝑟 = 0 is trivially true. We prove for each 𝑟 > 0
using Stieltjes Integration. Then

( ∑
𝑚⩽𝑥
(𝑚,𝑛)𝑘=1

𝑚𝑟)+ O (𝑥𝑟)
= 𝑟∫𝑥
0
( ∑
𝑚⩽𝑦
(𝑚,𝑛)𝑘=1

𝑚𝑟−1)𝑑𝑦
= 𝑟∫𝑥
0
(𝑦𝑟𝜑 (𝑛)𝑛 𝐾𝑘 (𝑛) + O (𝑦𝑟−1𝐸𝑘 (𝑛))) 𝑑𝑦

= 𝑥𝑟+1𝑟 + 1 𝜑 (𝑛)𝑛 𝐾𝑘 (𝑛) + O (𝑥𝑟𝐸𝑘 (𝑛))= 𝑥𝑟𝑟 + 1𝜑𝑘,0 (𝑥, 𝑛) ,

(20)

where the error term from the integral is absorbed by
O(𝑥𝑟𝐸𝑘(𝑛)).
Theorem 9. Let 𝑘 ⩾ 0. Suppose that an arithmetical function𝑓 is of the form

𝑓 (𝑛) = ∑
𝑑|𝑘𝑛

𝑔 (𝑑) (𝑛𝑑)𝑟 , (21)

with 𝑘 > 0 and 𝑟 ∈ N and 𝑔(𝑛) is O(𝑛𝑠), with 𝑠 ⩽ 𝑟 − 1. Then∑
𝑛⩽𝑥

𝑓 (𝑛) = 𝑥𝑟+1𝑟 + 1 ∞∑𝑛=1𝑔 (𝑛) 𝐿𝑘 (𝑛)𝑛𝑟+1 + O (𝑥𝑟 (log𝑥)𝐵𝑘+2) (22)

Proof. Let 𝑘, 𝑟, and 𝑠 be given. Then∑
𝑛⩽𝑥

𝑓 (𝑛) = ∑
𝑛⩽𝑥

∑
𝑑|𝑘+1𝑛

𝑔 (𝑑) (𝑛𝑑)𝑟= ∑
𝑛⩽𝑥

∑
𝑑𝑑=𝑛
(𝑑,𝑑)𝑘=1

𝑔 (𝑑) (𝑛𝑑)𝑟
= ∑
𝑑𝑑⩽𝑥
(𝑑,𝑑)𝑘=1

𝑔 (𝑑) (𝑛𝑑)𝑟
== ∑
𝑑⩽𝑥

𝑔 (𝑑) ∑
𝑑⩽𝑥/𝑑

(𝑑,𝑑)𝑘=1

(𝑑)𝑟
= ∑
𝑑⩽𝑥

𝑔 (𝑑) 𝜑𝑘,𝑟 (𝑥𝑑 , 𝑑)= ∑
𝑑⩽𝑥

𝑔 (𝑑) 𝜑𝑘,𝑟 (𝑥𝑑 , 𝑑)
== 𝑥𝑟+1𝑟 + 1 ∑

𝑑⩽𝑥

𝑔 (𝑑) 𝐿𝑘 (𝑑)𝑑𝑟+1
+ O(∑

𝑑⩽𝑥

𝑥𝑟𝑔 (𝑑) 𝐸𝑘 (𝑑)𝑑𝑟 ) .

(23)

By our remark above, we may find 𝐵𝑘 such that 𝜏𝑘(𝑛) ⩽(𝜏𝑘(𝑛))𝐵𝑘 for all 𝑛, which enables us to estimate

O(𝑥𝑟∑
𝑛⩽𝑥

𝑔 (𝑛) 𝐸𝑘 (𝑛)𝑛𝑟 ) ⩽ O(𝑥𝑟∑
𝑛⩽𝑥

(𝜏 (𝑛))𝐵𝑘+2𝑛 )
= O (𝑥𝑟 (log𝑥)𝐵𝑘+2) , (24)

where we use the fact that 𝑔 is O(𝑛𝑠) with 𝑠 ⩽ 𝑟 − 1. Also,𝑥𝑟+1𝑟 + 1∑𝑛⩽𝑥𝑔 (𝑛) 𝐿𝑘 (𝑛)𝑛𝑟+1 = 𝑥𝑟+1𝑟 + 1 ∞∑𝑛=1𝑔 (𝑛) 𝐿𝑘 (𝑛)𝑛𝑟+1
− 𝑥𝑟+1𝑟 + 1∑𝑛>𝑥𝑔 (𝑛) 𝐿𝑘 (𝑛)𝑛𝑟+1 , (25)

and since 𝑔 is O(𝑛𝑠) and 𝐿𝑘(𝑛) is bounded, the infinite sums
converge, but 𝑥𝑟+1𝑟 + 1∑𝑛>𝑥𝑔 (𝑛) 𝐿𝑘 (𝑛)𝑛𝑟+1 = O (𝑥𝑠+1) , (26)

and 𝑠 < 𝑟, so this is absorbed into our error term and we have
our result.
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Note that, for each 𝑘 and for all 𝜖 > 0, we may state
our error term for the summatory function asO(𝑥𝑟+𝜖), where
the multiplicative constant implied by the Big-Oh notation
depends only on 𝜖 and 𝑘. This enables us to achieve roughly
the same error as Cohen [7], albeit not as asymptotically
strong as𝑥𝑟(log𝑥)𝐵𝑘 . However, as 𝑘 tends to infinity, our error
becomes unbounded, and sowe cannot achieveCohen’s result
for the infinitary case.

We recall that 𝜇𝑘, the 𝑘-ary analogue of the Möbius
function, is defined recursively via𝜇𝑘 (𝑝0) = 1,∑

𝑝𝑏|𝑘𝑝
𝑎

𝜇𝑘 (𝑝𝑏) = 0, (27)

which is extended to all 𝑛 by making 𝜇𝑘 multiplicative. We
then have the following.

Lemma 10. Let 𝑘 be given. Then there is a constant 𝐶𝑘
depending only on 𝑘 such that, for each 𝑘, |𝜇𝑘(𝑛)| ⩽ 𝜏(𝑛)𝐶𝑘 .
Proof. By Theorem 3, for each prime 𝑝 and each 𝑘, there is
an 𝑁⋆𝑘 that ensures 𝐷𝑘(𝑝𝑎) = 𝐷1(𝑝𝑎) or 𝐷2(𝑝𝑎), depending
on the parity of 𝑘, for all 𝑎 > 𝑁⋆𝑘 . The values of |𝜇𝑘(𝑝𝑎)| for𝑎 ⩽ 2𝑁⋆𝑘 are finite, being generated from a finite recursion.
For odd 𝑘 with 𝑎 > 𝑁⋆𝑘 , 𝜇𝑘(𝑝𝑎) = −1. For even 𝑘 and even 𝑎,
with 𝑎 > 2𝑁⋆𝑘 + 1,−𝜇𝑘 (𝑝𝑎) = ∑

𝑝𝑏|𝑘𝑝
𝑎

𝑏 ̸=𝑎

𝜇𝑘 (𝑝𝑏)
= ∑
𝑝𝑏|𝑘𝑝

𝑎−1

𝜇𝑘 (𝑝𝑏) − 𝜇𝑘 (𝑝𝑎/2) , (28)

since𝐷𝑘(𝑝𝑎) = 𝐷2(𝑝𝑎) and𝐷𝑘(𝑝𝑎−1) = 𝐷2(𝑝𝑎−1) = 𝐷(𝑝𝑎−1),
as 𝑎 − 1 is odd. But ∑

𝑝𝑏|𝑘𝑝
𝑎−1

𝜇𝑘 (𝑝𝑏) = 0, (29)

so 𝜇𝑘(𝑝𝑎) = 𝜇𝑘(𝑝𝑎/2). Also,−𝜇𝑘 (𝑝𝑎+1) = ∑
𝑝𝑏|𝑘𝑝

𝑎+1

𝑏 ̸=𝑎+1

𝜇𝑘 (𝑝𝑏)
= ∑
𝑝𝑏|𝑘𝑝

𝑎

𝜇𝑘 (𝑝𝑏) + 𝜇𝑘 (𝑝𝑎/2) = 𝜇𝑘 (𝑝𝑎/2) , (30)

so 𝜇𝑘 (𝑝𝑎) = 𝜇𝑘 (𝑝𝑎/2) = −𝜇𝑘 (𝑝𝑎+1) (31)

for even 𝑎. Hence, 𝜇𝑘(𝑝𝑎) is bounded in absolute value for
each 𝑘—call this bound 2𝐶𝑘—and so |𝜇𝑘(𝑛)| ⩽ 2𝐶𝑘𝜔(𝑛) =𝜏1(𝑛)𝐶𝑘 ⩽ 𝜏(𝑛)𝐶𝑘 and we are done.

We will analyze the summatory functions for the 𝑘-
ary analogues of several well-known families of arithmetical
functions:

(i) The 𝑘-ary divisor sum functions:𝜎𝑘,𝑟 (𝑛) fl ∑
𝑑|𝑘𝑛

𝑑𝑟 (32)

(ii) The 𝑘-ary Jordan totient functions:𝐽𝑘,𝑟 (𝑛) fl ∑
𝑑|𝑘𝑛

𝜇𝑘 (𝑛𝑑) 𝑑𝑟 (33)

(iii) The 𝑘-ary Dedekind functions:𝜓𝑘,𝑟 (𝑛) fl ∑
𝑑|𝑘𝑛

𝜇𝑘 (𝑛𝑑) 𝑑𝑟 (34)

Here 𝑟 denotes a positive integer. By Lemma 10, we may
apply Theorem 9 to the Jordan and Dedekind functions of
order 𝑟 > 0 without issue, since 𝜇𝑘(𝑛) is logarithmic in 𝑛; the
summatory functions for the divisor sum functions carry no
special restriction on 𝑟 aside from it being a positive integer:

(i)𝑆 (𝜎𝑘,𝑟) (𝑥) = 𝑥𝑟+1𝑟 + 1 ∞∑𝑛=1𝐿𝑘 (𝑛)𝑛𝑟+1 + O (𝑥𝑟 (log𝑥)𝐵𝑘) (35)

(ii) 𝑆 (𝐽𝑘,𝑟) (𝑥) = 𝑥𝑟+1𝑟 + 1 ∞∑𝑛=1𝜇𝑘 (𝑛) 𝐿𝑘 (𝑛)𝑛𝑟+1+ O (𝑥𝑟 (log𝑥)𝐵𝑘) (36)

(iii) 𝑆 (𝜓𝑘,𝑟) (𝑥) = 𝑥𝑟+1𝑟 + 1 ∞∑𝑛=1 𝜇𝑘 (𝑛) 𝐿𝑘 (𝑛)𝑛𝑟+1+ O (𝑥𝑟 (log𝑥)𝐵𝑘) (37)

ByTheorems 2 and 3, for each 𝑛, the sequence {𝐿2𝑘(𝑛)}∞𝑘=0
(resp., {𝐿2𝑘+1(𝑛)}∞𝑘=0) is monotonically increasing (resp.,
decreasing). Both sequences must have the same limit,𝐿∞(𝑛), which one can identify with the function𝐾∞(𝑛) from
Cohen’s manuscript. However, we cannot obtain the function𝜑∞,0(𝑥, 𝑛) via a limit as 𝑘 tends to infinity of 𝜑𝑘,0(𝑥, 𝑛), as the
error term grows without bound in 𝑘. A new approach will
likely be needed in order to unify the infinite case with the
finite cases.
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For a set𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑘} of vertices and a vertex V of a connected graph 𝐺, the multirepresentation of V with respect to𝑊
is the 𝑘-multiset 𝑚𝑟(V | 𝑊) = {𝑑(V, 𝑤1), 𝑑(V, 𝑤2), . . . , 𝑑(V, 𝑤𝑘)}, where 𝑑(V, 𝑤𝑖) is the distance between the vertices V and 𝑤𝑖 for
𝑖 = 1, 2, . . . , 𝑘. The set 𝑊 is a multiresolving set of 𝐺 if every two distinct vertices of 𝐺 have distinct multirepresentations with
respect to 𝑊. The minimum cardinality of a multiresolving set of 𝐺 is the multidimension dim𝑀(𝐺) of 𝐺. It is shown that, for
every pair 𝑘, 𝑛 of integers with 𝑘 ≥ 3 and 𝑛 ≥ 3(𝑘 − 1), there is a connected graph 𝐺 of order 𝑛 with dim𝑀(𝐺) = 𝑘. For a multiset
{𝑎1, 𝑎2, . . . , 𝑎𝑘} and an integer 𝑐, we define {𝑎1, 𝑎2, . . . , 𝑎𝑘} + {𝑐, 𝑐, . . . , 𝑐} = {𝑎1 + 𝑐, 𝑎2 + 𝑐, . . . , 𝑎𝑘 + 𝑐}. A multisimilar equivalence
relation 𝑅𝑊 on 𝑉(𝐺) with respect to 𝑊 is defined by 𝑢 𝑅𝑊 V if 𝑚𝑟(𝑢 | 𝑊) = 𝑚𝑟(V | 𝑊) + {𝑐𝑊(𝑢, V), 𝑐𝑊(𝑢, V), . . . , 𝑐𝑊(𝑢, V)} for
some integer 𝑐𝑊(𝑢, V). We study the relationship between the elements in multirepresentations of vertices that belong to the same
multisimilar equivalence class and also establish the upper bound for the cardinality of a multisimilar equivalence class. Moreover,
a multiresolving set with prescribed multisimilar equivalence classes is presented.

1. Introduction

The distance 𝑑(𝑢, V) between two vertices 𝑢 and V in a
connected graph 𝐺 is the length of a shortest 𝑢 − V path in
𝐺. For an ordered set 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑘} ⊆ 𝑉(𝐺) and a
vertex V of 𝐺, the 𝑘-vector

𝑟 (V | 𝑊) = (𝑑 (V, 𝑤1) , 𝑑 (V, 𝑤2) , . . . , 𝑑 (V, 𝑤𝑘)) (1)

is referred to as the representation of V with respect to
𝑊. The ordered set 𝑊 is called a resolving set of 𝐺 if
every two distinct vertices of 𝐺 have distinct represen-
tations with respect to 𝑊. A resolving set of a mini-
mum cardinality is called a minimum resolving set or a
basis of 𝐺 and this cardinality is the dimension dim(𝐺) of
𝐺.

To illustrate these concepts, consider a connected graph
𝐺 of Figure 1 with 𝑉(𝐺) = {𝑢, V, 𝑤, 𝑥, 𝑦, 𝑧}. Considering the

ordered set𝑊1 = {𝑤, 𝑧}, there are six representations of the
vertices of 𝐺 with respect to𝑊1:

𝑟 (𝑢 | 𝑊1) = (2, 3) ,

𝑟 (V | 𝑊1) = (3, 2) ,

𝑟 (𝑤 | 𝑊1) = (0, 3) ,

𝑟 (𝑥 | 𝑊1) = (1, 2) ,

𝑟 (𝑦 | 𝑊1) = (2, 1) ,

𝑟 (𝑧 | 𝑊1) = (3, 0) .

(2)

Since there is no 1-element resolving set of 𝐺, it follows that
𝑊1 is a basis of 𝐺, and so dim(𝐺) = 2.

The concepts of resolving sets and minimum resolving
sets have previously appeared in [1–4]. Slater in [3, 4]
introduced these ideas and used a locating set for what we
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Figure 1: A connected graph 𝐺.

have called a resolving set. He referred to the cardinality
of a minimum resolving set in a connected graph as its
locating number. He described the usefulness of these ideas
when working with US sonar and coast guard LORAN (long
range aids to navigation) stations. Harary and Melter [2]
discovered these concepts independently as well but used
the term metric dimension rather than locating number, the
terminology that we have adopted. These concepts were
rediscovered by Johnson [5] of the Pharmacia Company
while attempting to develop a capability of large datasets of
chemical graphs. More applications of these concepts to nav-
igation of robots in networks and other areas are discussed in
[6–9].

Amultiset is a generalization of the concept of a set, which
is like a set except that itsmembers need not to be distinct. For
example, the set {1, 1, 2} is the same as the set {1, 2} but not so
for the multiset. The multiset 𝑀 = {5, 5, 6, 𝑎, 𝑎, 𝑎, 𝑎, 𝑏, 𝑏, 𝑏}
has 10 elements of 4 different types: 2 of type 5, 1 of type
6, 4 of type 𝑎, and 3 of type 𝑏. So, the multiset is usually
indicated by specifying the number of times different types of
elements occur in it.Therefore, the multiset𝑀 can be written
by𝑀 = {2 ⋅ 5, 1 ⋅ 6, 4 ⋅ 𝑎, 3 ⋅ 𝑏}. The numbers 2, 1, 4, and 3 are
called the repetition numbers of the multiset𝑀. In particular,
a set is a multiset having all repetition numbers equal to
1.

As described in [1], all connected graphs 𝐺 contain an
ordered set 𝑊 such that each vertex of 𝐺 is distinguished
by a 𝑘-vector, known as a representation, consisting of its
distance from the vertices in𝑊. It may also occur that some
graph contains a set 𝑊 with property that the vertices of
graph have uniquely distinct 𝑘-multisets containing their
distances from each of the vertices in 𝑊. The goal of this
paper is to study the existence of such a set of connected
graphs.

For a set𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑘} of vertices and a vertex V
of a connected graph 𝐺, we refer to the 𝑘-multiset

𝑚𝑟 (V | 𝑊) = {𝑑 (V, 𝑤1) , 𝑑 (V, 𝑤2) , . . . , 𝑑 (V, 𝑤𝑘)} (3)

as the multirepresentation of V with respect to 𝑊. The set
𝑊 is called a multiresolving set of 𝐺 if every two distinct
vertices have distinct multirepresentations with respect to𝑊.
A multiresolving set of a minimum cardinality is called a
minimum multiresolving set or a multibasis of 𝐺 and this
cardinality is themultidimension dim𝑀(𝐺) of 𝐺.

For example, consider a connected graph 𝐺 of Figure 1.
As we know𝑊1 = {𝑤, 𝑧} is a basis of 𝐺. However,𝑊1 is not
a multiresolving set of 𝐺 since 𝑚𝑟(𝑢 | 𝑊1) = {2, 3} = 𝑚𝑟(V |
𝑊1). In fact, the set𝑊2 = {𝑤, 𝑥, 𝑧} is a multiresolving set of

𝐺with the followingmultirepresentations of the vertices of𝐺
with respect to𝑊2:

𝑚𝑟 (𝑢 | 𝑊2) = {1, 2, 3} ,

𝑚𝑟 (V | 𝑊2) = {2, 2, 3} ,

𝑚𝑟 (𝑤 | 𝑊2) = {0, 1, 3} ,

𝑚𝑟 (𝑥 | 𝑊2) = {0, 1, 2} ,

𝑚𝑟 (𝑦 | 𝑊2) = {1, 1, 2} ,

𝑚𝑟 (𝑧 | 𝑊2) = {0, 2, 3} .

(4)

It is routine to verify that there are no 1-element and 2-
element multiresolving sets of 𝐺. Hence, 𝑊2 is a multibasis
of 𝐺, and so dim𝑀(𝐺) = 3.

Not all connected graphs have a multiresolving set and
also dim𝑀(𝐺) is not defined for all connected graphs 𝐺. For
example, the complete graph 𝐾3 has no multiresolving set.
Thus, dim𝑀(𝐾3) is not defined. However, if 𝐺 is a connected
graph of order 𝑛, for which dim𝑀(𝐺) is defined, and then
every multiresolving set of 𝐺 is a resolving set of 𝐺, and so

1 ≤ dim (𝐺) ≤ dim𝑀 (𝐺) ≤ 𝑛. (5)

For every set 𝑊 of vertices of a connected graph 𝐺,
the vertices of 𝐺 whose multirepresentations with respect
to 𝑊 contain 0 are vertices in 𝑊. On the other hand, the
multirepresentations of vertices of 𝐺 which do not belong
to 𝑊 have elements, all of which are positive. In fact, to
determine whether a set 𝑊 is a multiresolving set of 𝐺, the
vertex set 𝑉(𝐺) can be partitioned into 𝑊 and 𝑉(𝐺) − 𝑊
to examine whether the vertices in each subset have distinct
multirepresentations with respect to𝑊.

The multiresolving set of a connected graph was intro-
duced by Saenpholphat [10] who showed that there is no
connected graph 𝐺 such that dim𝑀(𝐺) = 2. Moreover,
the multidimensions of complete graphs, paths, cycles, and
bipartite graphs were determined. Simanjuntak, Vetŕık, and
Mulia [11] discovered this concept independently and used a
notation 𝑚𝑑(𝐺) for a multidimension of a connected graph
𝐺.

2. The Multidimension of a Connected Graph

Two vertices 𝑢 and V of a connected graph 𝐺 are distance-
similar if 𝑑(𝑢, 𝑥) = 𝑑(V, 𝑥) for all 𝑥 ∈ 𝑉(𝐺) − {𝑢, V}. Certainly,
distance similarity in 𝐺 is an equivalence relation on 𝑉(𝐺).
For example, consider a complete bipartite graph 𝐾𝑟,𝑠 with
partite sets 𝑈 and 𝑉. Every pair of vertices in the same
partite set are distance-similar. Then the distance-similar
equivalence classes in 𝐾𝑟,𝑠 are its partite sets 𝑈 and 𝑉. The
following results were obtained in [10] showing the usefulness
of the distance-similar equivalence class to determine the
multidimensions of connected graphs.

Theorem 1 (see [10]). Let 𝐺 be a connected graph such that
dim𝑀(𝐺) is defined. If𝑈 is a distance-similar equivalence class
in 𝐺 with |𝑈| = 2, then every multiresolving set of 𝐺 contains
exactly one vertex of 𝑈.
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Theorem 2 (see [10]). If 𝑈 is a distance-similar equivalence
class in a connected graph 𝐺 with |𝑈| ≥ 3, then dim𝑀(𝐺) is
not defined.

It was shown in [10, 11] that a path is the only one of con-
nected graphswithmultidimension 1, and anymultiresolving
sets of a connected graph cannot contain only two vertices.
We state these results in the following theorems.

Theorem 3 (see [10, 11]). Let 𝐺 be a connected graph. Then
dim𝑀(𝐺) = 1 if and only if 𝐺 = 𝑃𝑛, the path of order 𝑛.

Theorem 4 (see [10, 11]). A connected graph has no multire-
solving set of cardinality 2.

Last, we are able to determine all pairs 𝑘, 𝑛 of positive
integers with 𝑘 ≥ 3 and 𝑛 ≥ 3(𝑘 − 1) which are realizable as
the multidimension and the order of some connected graph.
In order to do this, we present an additional notation. For
integers 𝑎 and 𝑏, let [𝑎, 𝑏] be a multiset such that

[𝑎, 𝑏] =
{{{{
{{{{
{

{𝑎, 𝑎 + 1, . . . , 𝑏 − 1, 𝑏} if 𝑎 < 𝑏
{𝑎} if 𝑎 = 𝑏
0 if 𝑎 > 𝑏.

(6)

Such a multiset is referred to as a consecutive multiset of
integers 𝑎 and 𝑏.

Theorem 5. For every pair 𝑘, 𝑛 of integers with 𝑘 ≥ 3 and
𝑛 ≥ 3(𝑘 − 1), there is a connected graph 𝐺 of order 𝑛 with
dim𝑀(𝐺) = 𝑘.

Proof. Let 𝑘 and 𝑛 be integers with 𝑘 ≥ 3 and 𝑛 ≥ 3(𝑘 − 1).
We consider two cases.

Case 1 (𝑛 = 3(𝑘 − 1)). Let 𝐺 be a graph obtained from the
path 𝑃𝑘−1 = (𝑢1, 𝑢2, . . . , 𝑢𝑘−1) by adding the 2(𝑘 − 1) vertices
V𝑖 and 𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 1 and joining V𝑖 and 𝑤𝑖 to 𝑢𝑖, as
it is shown in Figure 2. Then the order of 𝐺 is 𝑛 = 3(𝑘 − 1).
First, we claim that there is no multiresolving set of 𝐺 with
cardinality at most 𝑘 − 1. Assume, to the contrary, that there
is a multiresolving set 𝑆 of 𝐺 such that |𝑆| ≤ 𝑘 − 1. Since
a set 𝑉𝑖 = {V𝑖, 𝑤𝑖} for 1 ≤ 𝑖 ≤ 𝑘 − 1 is a distance-similar
equivalence class in𝐺, it follows byTheorem 1 that 𝑆 contains
exactly one vertex of 𝑉𝑖. Without loss of generality, let 𝑤𝑖 ∈ 𝑆
for 1 ≤ 𝑖 ≤ 𝑘 − 1. Thus, |𝑆| = 𝑘 − 1. Since 𝑑(𝑤1, 𝑤𝑖) =
𝑑(𝑤𝑘−1, 𝑤𝑘−𝑖) for all 1 ≤ 𝑖 ≤ 𝑘 − 1, it follows that 𝑚𝑟(𝑤1 |
𝑆) = 𝑚𝑟(𝑤𝑘−1 | 𝑆) and so a set 𝑆 = {𝑤1, 𝑤2, . . . , 𝑤𝑘−1} is not a
multiresolving set of 𝐺, thereby producing a contradiction.
Hence, dim𝑀(𝐺) ≥ 𝑘. Next, we claim that a set 𝑊 =
{𝑤1, 𝑤2, . . . , 𝑤𝑘−1} ∪ {𝑢1} is a multiresolving set of 𝐺. For a
vertex 𝑥 ∈ 𝑊, the multirepresentation of 𝑥 with respect to𝑊
is

𝑚𝑟 (𝑥 | 𝑊)

=
{
{
{

{0, 𝑖} ∪ [3, 𝑖 + 1] ∪ [3, 𝑘 − 𝑖 + 1] if 𝑥 = 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑘 − 1)
[0, 𝑘 − 1] if 𝑥 = 𝑢1.

(7)

For 2 ≤ 𝑖 ≤ 𝑘 − 1, the multirepresentation of 𝑢𝑖 with respect
to𝑊 is

𝑚𝑟 (𝑢𝑖 | 𝑊) = {1, 𝑖 − 1} ∪ [2, 𝑖] ∪ [2, 𝑘 − 𝑖] . (8)

For 1 ≤ 𝑖 ≤ 𝑘 − 1, the multirepresentation of V𝑖 with respect
to𝑊 is

𝑚𝑟 (V𝑖 | 𝑊) = {2, 𝑖} ∪ [3, 𝑖 + 1] ∪ [3, 𝑘 − 𝑖 + 1] . (9)

Therefore,𝑊 is amultiresolving set of𝐺with |𝑊| = 𝑘. Hence,
dim𝑀(𝐺) = 𝑘.

Case 2 (𝑛 > 3(𝑘 − 1)). Let 𝐻 be a graph obtained
from the graph 𝐺 in Case 1 by adding the path 𝑃 =
(𝑥1, 𝑥2, . . . , 𝑥𝑛−3(𝑘−1)) and joining 𝑥1 to V𝑘−1 and 𝑤𝑘−1, as it is
shown in Figure 3. By a similar argument to the one used in
Case 1, it is shown that there is no 𝑙−multiresolving set of 𝐻
with 1 ≤ 𝑙 ≤ 𝑘−1.We claim that a set𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑘−1}∪
{𝑢1} is a multiresolving set of 𝐻. For vertices in 𝑉(𝐻) −
{𝑥1, 𝑥2, . . . , 𝑥𝑛−3(𝑘−1)}, their multirepresentations with respect
to𝑊 are the same as in Case 1. For 1 ≤ 𝑖 ≤ 𝑛 − 3(𝑘 − 1), the
multirepresentation of 𝑥𝑖 with respect to𝑊 is

𝑚𝑟 (𝑥𝑖 | 𝑊) = {𝑖, 𝑖 + 𝑘 − 1} ∪ [𝑖 + 3, 𝑖 + 𝑘] . (10)

Hence,𝑊 is a multiresolving set of 𝐻 with |𝑊| = 𝑘, and so
dim𝑀(𝐻) = 𝑘.

3. Multisimilar Equivalence Relation

In this section, we investigate another equivalence relation on
a vertex set of a connected graph. First, we need some addi-
tional definitions and notations. Let 𝐴 = {{𝑎1, 𝑎2, . . . , 𝑎𝑘} |
𝑎𝑖 ∈ Z for 1 ≤ 𝑖 ≤ 𝑘} be a collection of multisets. For an
integer 𝑐, we define

{𝑎1, 𝑎2, . . . , 𝑎𝑘} + {𝑐, 𝑐, . . . , 𝑐}

= {𝑎1 + 𝑐, 𝑎2 + 𝑐, . . . , 𝑎𝑘 + 𝑐} ,
(11)

where {𝑎1, 𝑎2, . . . , 𝑎𝑘} ∈ 𝐴. Let 𝑊 be a set of vertices of
a connected graph 𝐺 and let 𝑢 and V be vertices of 𝐺. A
multisimilar relation 𝑅𝑊 with respect to 𝑊 on a vertex set
𝑉(𝐺) is defined by 𝑢𝑅𝑊 V if there is an integer 𝑐𝑊(𝑢, V) such
that

𝑚𝑟 (𝑢 | 𝑊) = 𝑚𝑟 (V | 𝑊)
+ {𝑐𝑊 (𝑢, V) , 𝑐𝑊 (𝑢, V) , . . . , 𝑐𝑊 (𝑢, V)} .

(12)

An integer 𝑐𝑊(𝑢, V) satisfying (12) is called a multisimilar
constant of 𝑢𝑅𝑊 V or simply a multisimilar constant. Clearly,
𝑅𝑊 is an equivalence relation on 𝑉(𝐺). For each vertex 𝑢 in
𝑉(𝐺), let [𝑢]𝑊 denote the multisimilar equivalence class of 𝑢
with respect to𝑊. Then
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Figure 2: A connected graph 𝐺 in Case 1.
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Figure 3: A connected graph𝐻 in Case 2.

𝑥 ∈ [𝑢]𝑊 if and only if 𝑚𝑟 (𝑥 | 𝑊) = 𝑚𝑟 (𝑢 | 𝑊) + {𝑐𝑊 (𝑥, 𝑢) , 𝑐𝑊 (𝑥, 𝑢) , . . . , 𝑐𝑊 (𝑥, 𝑢)} , (13)

where 𝑐𝑊(𝑥, 𝑢) is a multisimilar constant. Observe that if
𝑥 ∈ [𝑢]𝑊, then there is a multisimilar constant 𝑐𝑊(𝑥, 𝑢)
with a property that, for every vertex 𝑤 ∈ 𝑊, there is a
corresponding vertex 𝑤 ∈ 𝑊 such that

𝑑 (𝑥, 𝑤) = 𝑑 (𝑢, 𝑤) + 𝑐𝑊 (𝑥, 𝑢) . (14)

With this observation, wemay as well say that 𝑥 ∈ [𝑢]𝑊 if and
only if there are multisimilar constant 𝑐𝑊(𝑥, 𝑢) and a bijective
function 𝑓 on𝑊 defined as

𝑓 (𝑤) = 𝑤

whenever 𝑑 (𝑥, 𝑤) = 𝑑 (𝑢, 𝑤) + 𝑐𝑊 (𝑥, 𝑢) .
(15)

The function 𝑓 is called amultisimilar function of 𝑥 𝑅𝑊 𝑢 or
amultisimilar function if there is no ambiguity. Consequently,
it is not surprising that an inverse function 𝑓−1 is also
multisimilar function of V 𝑅𝑊 𝑢with a multisimilar constant
𝑐𝑊(V, 𝑢) = −𝑐𝑊(𝑢, V).

To illustrate these concepts, consider a vertex 𝑢 in a
connected graph 𝐺 of Figure 1 and the set 𝑊 = {𝑤, 𝑦, 𝑧}.
There is only one vertex𝑥 in𝑉(𝐺)−{𝑢} such that𝑥 is related to
𝑢 by a multisimilar relation 𝑅𝑊 with a multisimilar constant
𝑐𝑊(𝑥, 𝑢) = −1; that is,

𝑚𝑟 (𝑥 | 𝑊) = 𝑚𝑟 (𝑢 | 𝑊) + {−1, −1, −1} . (16)

Therefore, [𝑢]𝑊 = {𝑢, 𝑥}. Thus, a multisimilar function 𝑓 of
𝑥 𝑅𝑊 𝑢 is defined by

𝑓 (𝑤) = 𝑦,

𝑓 (𝑦) = 𝑤
and 𝑓 (𝑧) = 𝑧.

(17)

Moreover, there is another multisimilar function 𝑓 of
𝑥 𝑅𝑊 𝑢; that is,

𝑓 (𝑤) = 𝑤,

𝑓 (𝑦) = 𝑦

and 𝑓 (𝑧) = 𝑧.

(18)

The example just described shows an important point that
the multisimilar function of any two vertices in the same
multisimilar equivalence class with respect to a set𝑊 is not
necessarily unique.

More generally, for a vertex 𝑢 and a set𝑊 of vertices of a
connected graph 𝐺, let𝑚𝑟(𝑢 | 𝑊) = {𝑟1 ⋅ 𝑎1, 𝑟2 ⋅ 𝑎2, . . . , 𝑟𝑙 ⋅ 𝑎𝑙},
where 𝑎1 < 𝑎2 < ⋅ ⋅ ⋅ < 𝑎𝑙 and 𝑟𝑖 is a repetition number of type
𝑎𝑖 for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑙. If 𝑢 ∈ [V]𝑊, where V ∈ 𝑉(𝐺), then
it follows by (13) and (14) that, for each type of 𝑚𝑟(𝑢 | 𝑊),
there is a corresponding type of 𝑚𝑟(V | 𝑊) such that their
repetition numbers are equal. Therefore, we may assume that
𝑚𝑟(V | 𝑊) = {𝑟1 ⋅ 𝑏1, 𝑟2 ⋅ 𝑏2, . . . , 𝑟𝑙 ⋅ 𝑏𝑙}, where 𝑏1 < 𝑏2 < ⋅ ⋅ ⋅ < 𝑏𝑙.
For each integer 𝑖 with 1 ≤ 𝑖 ≤ 𝑙, let 𝐴 𝑖 = {𝑤 ∈ 𝑊 | 𝑑(𝑢, 𝑤) =
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𝑎𝑖} and 𝐵𝑖 = {𝑤 ∈ 𝑊 | 𝑑(V, 𝑤) = 𝑏𝑖}. Then the types of𝑚𝑟(𝑢 |
𝑊) partition𝑊 into 𝑙 sets𝐴1, 𝐴2, . . . , 𝐴 𝑙. On the other hand,
𝑊 is also partitioned into 𝑙 sets 𝐵1, 𝐵2, . . . , 𝐵𝑙 depending on
the types of𝑚𝑟(V | 𝑊). Hence, the multisimilar function𝑓 of
𝑢 𝑅𝑊 V has the property that, for every vertex 𝑤 ∈ 𝐴 𝑖, there
is a vertex 𝑤 ∈ 𝐵𝑖 such that

𝑓 (𝑤) = 𝑤, (19)

where 1 ≤ 𝑖 ≤ 𝑙. Indeed, there are 𝑟1!𝑟2! ⋅ ⋅ ⋅ 𝑟𝑙! distinct
multisimilar functions of 𝑢 𝑅𝑊 V. These observations yield
the following result.

Theorem 6. Let𝑊 be a set of vertices of a connected graph 𝐺
and let 𝑢 and V be vertices of𝐺 such that 𝑢 ∈ [V]𝑊. Suppose that
𝑚𝑟(𝑢 | 𝑊) = {𝑟1 ⋅𝑎1, 𝑟2 ⋅𝑎2, . . . , 𝑟𝑙 ⋅𝑎𝑙}, where 𝑎1 < 𝑎2 < ⋅ ⋅ ⋅ < 𝑎𝑙
and 𝑟𝑖 is a repetition number of type 𝑎𝑖 for each 𝑖with 1 ≤ 𝑖 ≤ 𝑙.
Then

(i) 𝑚𝑟(V | 𝑊) = {𝑟1 ⋅ 𝑏1, 𝑟2 ⋅ 𝑏2, . . . , 𝑟𝑙 ⋅ 𝑏𝑙} for some integers
𝑏1, 𝑏2, . . . , 𝑏𝑙 with 𝑏1 < 𝑏2 < ⋅ ⋅ ⋅ < 𝑏𝑙,

(ii) there is a multisimilar function 𝑓 of 𝑢 𝑅𝑊 V such that
𝑓(𝑤𝑖) = 𝑤𝑖 , where 𝑑(𝑢, 𝑤𝑖) = 𝑎𝑖 and 𝑑(V, 𝑤𝑖 ) = 𝑏𝑖 for
each 𝑖 with 1 ≤ 𝑖 ≤ 𝑙,

(iii) there are 𝑟1!𝑟2! ⋅ ⋅ ⋅ 𝑟𝑙! distinct multisimilar functions of
𝑢 𝑅𝑊 V.

ByTheorem 6, the following result is obtained.

Corollary 7. Let 𝑊 be a set of vertices of a connected graph
𝐺 and let 𝑢 and V be vertices of 𝐺 such that 𝑢 ∈ [V]𝑊 with a
multisimilar constant 𝑐𝑊(𝑢, V). Then

(i) if𝑀1 and𝑀2 are themaximum elements of𝑚𝑟(𝑢 | 𝑊)
and𝑚𝑟(V | 𝑊), respectively, then𝑀1 = 𝑀2 + 𝑐𝑊(𝑢, V),

(ii) if𝑚1 and𝑚2 are the minimum elements of𝑚𝑟(𝑢 | 𝑊)
and𝑚𝑟(V | 𝑊), respectively, then𝑚1 = 𝑚2 + 𝑐𝑊(𝑢, V).

Proof. Suppose that 𝑢 ∈ [V]𝑊. Let 𝑚𝑟(𝑢 | 𝑊) = {𝑟1 ⋅ 𝑎1, 𝑟2 ⋅
𝑎2, . . . , 𝑟𝑙 ⋅ 𝑎𝑙} and 𝑚𝑟(V | 𝑊) = {𝑟1 ⋅ 𝑏1, 𝑟2 ⋅ 𝑏2, . . . , 𝑟𝑙 ⋅ 𝑏𝑙},
where 𝑎1 < 𝑎2 < ⋅ ⋅ ⋅ < 𝑎𝑙 and 𝑏1 < 𝑏2 < ⋅ ⋅ ⋅ < 𝑏𝑙. Since
𝑀1 and 𝑀2 are the maximum elements of 𝑚𝑟(𝑢 | 𝑊) and
𝑚𝑟(V | 𝑊), respectively, there are vertices𝑤 and𝑤 in𝑊 such
that𝑀1 = 𝑑(𝑢, 𝑤) = 𝑎𝑙 and𝑀2 = 𝑑(V, 𝑤) = 𝑏𝑙. It follows by
Theorem 6 that there is a multisimilar function 𝑓 of 𝑢 𝑅𝑊 V
such that 𝑓(𝑤) = 𝑤. Then 𝑑(𝑢, 𝑤) = 𝑑(V, 𝑤) + 𝑐𝑊(𝑢, V),
where 𝑐𝑊(𝑢, V) is a multisimilar constant. Thus, (i) holds. For
(ii), the statement may be proven in the same way as (i), and
therefore such proof is omitted.

Next, we are prepared to establish the upper bound for
the cardinality of a multisimilar equivalence class of a vertex
in a connected graph. To show this, let us present a useful
proposition as follows.

Proposition 8. Let𝑊 be a set of vertices of a connected graph
𝐺 and let 𝑢 and V be vertices of 𝐺 such that 𝑢 ∈ [V]𝑊. Then
𝑚𝑟(𝑢 | 𝑊) and 𝑚𝑟(V | 𝑊) have the same minimum (or
maximum) element if and only if𝑚𝑟(𝑢 | 𝑊) = 𝑚𝑟(V | 𝑊).

Proof. If 𝑚𝑟(𝑢 | 𝑊) = 𝑚𝑟(V | 𝑊), then the minimum
(and maximum) elements of 𝑚𝑟(𝑢 | 𝑊) and 𝑚𝑟(V | 𝑊)
are the same. For the converse, assume that 𝑚1 and 𝑚2 are
the minimum elements of 𝑚𝑟(𝑢 | 𝑊) and 𝑚𝑟(V | 𝑊),
respectively, such that 𝑚1 = 𝑚2. Since 𝑢 ∈ [V]𝑊, there is a
multisimilar constant 𝑐𝑊(𝑢, V) such that

𝑚𝑟 (𝑢 | 𝑊) = 𝑚𝑟 (V | 𝑊)

+ {𝑐𝑊 (𝑢, V) , 𝑐𝑊 (𝑢, V) , . . . , 𝑐𝑊 (𝑢, V)} .
(20)

By Corollary 7 (ii), it follows that 𝑚1 = 𝑚2 + 𝑐𝑊(𝑢, V). Thus,
𝑐𝑊(𝑢, V) = 0. Hence, 𝑚𝑟(𝑢 | 𝑊) = 𝑚𝑟(V | 𝑊). Similarly, if
𝑚𝑟(𝑢 | 𝑊) and𝑚𝑟(V | 𝑊) have the same maximum element,
then𝑚𝑟(𝑢 | 𝑊) = 𝑚𝑟(V | 𝑊).

Theorem 9. If𝑊 is a multiresolving set of a connected graph
𝐺, then the cardinality of multisimilar equivalence class of each
vertex of 𝐺 with respect to𝑊 is at most diam(𝐺) + 1.

Proof. Assume, to the contrary, that there is a vertex V of 𝐺
such that [V]𝑊 has the cardinality at least diam(𝐺) + 2. Since
the minimum elements of multirepresentations of vertices in
[V]𝑊 with respect to 𝑊 have at most diam(𝐺) + 1 distinct
values, there are at least two vertices 𝑥 and 𝑦 in [V]𝑊 having
the same value of the minimum element of 𝑚𝑟(𝑥 | 𝑊) and
𝑚𝑟(𝑦 | 𝑊). It follows by Proposition 8 that 𝑚𝑟(𝑥 | 𝑊) =
𝑚𝑟(𝑦 | 𝑊), contradicting the fact that𝑊 is a multiresolving
set of 𝐺.

We can show that the upper bound in Theorem 9 is
sharp. Consider the path 𝑃𝑛 = (V1, V2, . . . , V𝑛). We have that
diam(𝑃𝑛) = 𝑛−1 and the set𝑊 = {V1} is amultiresolving set of
𝑃𝑛. Thus, [V1]𝑊 contains all vertices of 𝑃𝑛, and so |[V1]𝑊| = 𝑛.

In the last result, we describe the properties of a multi-
similar equivalence classes with respect to a set of vertices.

Theorem 10. Let 𝑢 and V be vertices of a connected graph 𝐺
and let𝑊 be a set of vertices of 𝐺. Then

(i) if [𝑢]𝑊 ̸= [V]𝑊, then 𝑚𝑟(𝑥 | 𝑊) ̸= 𝑚𝑟(𝑦 | 𝑊) for all
𝑥 ∈ [𝑢]𝑊 and 𝑦 ∈ [V]𝑊,

(ii) if [𝑢]𝑊 = {𝑢} for all 𝑢 ∈ 𝑉(𝐺), then 𝑊 is a
multiresolving set of 𝐺.

Proof. (i) Assume, to the contrary, that there exist two distinct
vertices 𝑥 ∈ [𝑢]𝑊 and 𝑦 ∈ [V]𝑊 such that 𝑚𝑟(𝑥 | 𝑊) =
𝑚𝑟(𝑦 | 𝑊). Then there are multisimilar constants 𝑐𝑊(𝑥, 𝑢)
and 𝑐𝑊(𝑦, V) such that 𝑚𝑟(𝑥 | 𝑊) = 𝑚𝑟(𝑢 | 𝑊) +
{𝑐𝑊(𝑥, 𝑢), 𝑐𝑊(𝑥, 𝑢), . . . , 𝑐𝑊(𝑥, 𝑢)} and 𝑚𝑟(𝑦 | 𝑊) = 𝑚𝑟(V |
𝑊) + {𝑐𝑊(𝑦, V), 𝑐𝑊(𝑦, V), . . . , 𝑐𝑊(𝑦, V)}. Therefore,

𝑚𝑟 (𝑢 | 𝑊) + {𝑐𝑊 (𝑥, 𝑢) , 𝑐𝑊 (𝑥, 𝑢) , . . . , 𝑐𝑊 (𝑥, 𝑢)}
= 𝑚𝑟 (V | 𝑊)

+ {𝑐𝑊 (𝑦, V) , 𝑐𝑊 (y, V) , . . . , 𝑐𝑊 (𝑦, V)} .
(21)

Thus,𝑚𝑟(𝑢 | 𝑊) = 𝑚𝑟(V | 𝑊)+{𝑐𝑊(𝑦, V)−𝑐𝑊(𝑥, 𝑢), 𝑐𝑊(𝑦, V)−
𝑐𝑊(𝑥, 𝑢), . . . , 𝑐𝑊(𝑦, V) − 𝑐𝑊(𝑥, 𝑢)}. Hence, 𝑢 belongs to [V]𝑊,
which is a contradiction.

231The Multiresolving Sets of Graphs with Prescribed Multisimilar Equivalence Classes

__________________________ WORLD TECHNOLOGIES __________________________



WT

(ii) Assume, to the contrary, that𝑊 is not amultiresolving
set of 𝐺. Then there exist two distinct vertices 𝑥 and 𝑦 such
that 𝑚𝑟(𝑥 | 𝑊) = 𝑚𝑟(𝑦 | 𝑊). Hence, 𝑦 belongs to [𝑥]𝑊,
producing a contradiction.

4. Final Remarks

The complete graph𝐾𝑛 is only one graph that its dimension is
𝑛−1 but not so for multidimensions. It follows by [10, 11] that
the multidimension of complete graph is not defined. Thus,
(5) leads us to the conjecture:

If 𝐺 is a connected graph such that dim𝑀(𝐺) is
defined, then dim𝑀(𝐺) ≤ 𝑛 − 2.
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