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PREFACE

It is with great pleasure that I present this book. It has been carefully written after numerous discussions
with my peers and other practitioners of the field. I would like to take this opportunity to thank my
family and friends who have been extremely supporting at every step in my life.

Special relativity and general relativity are the two interrelated theories that are usually encompassed in
the theory of relativity. Special relativity is applied to all physical phenomena in the absence of gravity.
The law of gravitation and its relation to other forces of nature is explained by general relativity. It is
applied to cosmological and astrophysical realm such as astronomy. The theory of relativity explores
the concepts like spacetime as a unified entity of space and time, kinematic and gravitational time
dilation, length contraction and relativity of simultaneity, etc. Relativistic effects are important practical
engineering concerns. Satellite-based measurements use relativistic effects to study the motion of an
Earth-bound user. This book provides comprehensive insights into the field of relativity. It aims to shed
light on some of the unexplored aspects of this field. The book is appropriate for those seeking detailed
information in this area.

The chapters below are organized to facilitate a comprehensive understanding of the subject:
Chapter - Introduction

The theories of relativity serve as the basis to understand the geometry of the universe as well as the
various cosmic processes. There are two major theories within this area of research, namely, general
relativity and special relativity. The topics elaborated in this chapter will help in gaining a better
perspective about various aspects of relativity.

Chapter - Special Relativity

The special theory of relativity establishes the relationship between time and space for problems that
classical physics is unable to understand or explain. Some of the focus areas of special relativity are
speed of light, rapidity, proper length and relativistic mass. The chapter closely examines these key
concepts of special relativity to provide an extensive understanding of the subject.

Chapter - Phenomena of Special Relativity

Some of the phenomena and concepts that are studied within special relativity are mass-energy
equivalence, time dilation, length contraction, relativity of simultaneity, relativistic Doppler effect,
Thomas precession, ladder paradox, twin paradox, etc. This chapter discusses in detail these phenomena
and concepts related to special relativity.

Chapter - General Relativity

The theory of general relativity states that the observed gravitational effect between masses results
from their warping of spacetime. Some of the areas which are studied in general relativity include
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equivalence principle, Penrose diagram, geodesics in general relativity, Mach’s principle, linearized
gravity, Raychaudhuri equation, etc. The diverse areas of general relativity have been thoroughly
discussed in this chapter.

Chapter - Phenomena of General Relativity

Some of the common phenomena which are studied within general relativity are black hole, event
horizon, frame-dragging, gravitational singularity, gravitational time dilation, gravitational redshift,
Shapiro time delay, gravitational wave and gravitational lensing. This chapter has been carefully written
to provide an easy understanding of these phenomena of general relativity.

Juliette Backer
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Introduction

The theories of relativity serve as the basis to understand the geometry of the universe as well as
the various cosmic processes. There are two major theories within this area of research, namely,
general relativity and special relativity. The topics elaborated in this chapter will help in gaining a
better perspective about various aspects of relativity.

( Relativity )

Relativity is a set of wide-ranging physical theories formed by the German-born physicist Albert
Einstein. With his theories of special relativity (1905) and general relativity (1915), Einstein over-
threw many assumptions underlying earlier physical theories, redefining in the process the fun-
damental concepts of space, time, matter, energy, and gravity. Along with quantum mechanics,
relativity is central to modern physics. In particular, relativity provides the basis for understanding
cosmic processes and the geometry of the universe itself.

“Special relativity” is limited to objects that are moving with respect to inertial frames of refer-
ence—i.e, in a state of uniform motion with respect to one another such that an observer cannot,
by purely mechanical experiments, distinguish one from the other. Beginning with the behaviour
of light (and all other electromagnetic radiation), the theory of special relativity draws conclusions
that are contrary to everyday experience but fully confirmed by experiments. Special relativity
revealed that the speed of light is a limit that can be approached but not reached by any material
object; it is the origin of the most famous equation in science, E = mc?; and it has led to other tan-
talizing outcomes, such as the “twin paradox”.

“General relativity” is concerned with gravity, one of the fundamental forces in the universe. (The
others are electricity and magnetism, which have been unified as electromagnetism, the strong
force, and the weak force.) Gravity defines macroscopic behaviour, and so general relativity de-
scribes large-scale physical phenomena such as planetary dynamics, the birth and death of stars,
black holes, and the evolution of the universe.

Special and general relativity have profoundly affected physical science and human existence, most
dramatically in applications of nuclear energy and nuclear weapons. Additionally, relativity and its
rethinking of the fundamental categories of space and time have provided a basis for certain philo-
sophical, social, and artistic interpretations that have influenced human culture in different ways.

Cosmology before Relativity
The Mechanical Universe

Relativity changed the scientific conception of the universe, which began in efforts to grasp the

WORLD TECHNOLOGIES




2 | Introduction to Relativity

dynamic behaviour of matter. In Renaissance times, the great Italian physicist Galileo Galilei
moved beyond Aristotle’s philosophy to introduce the modern study of mechanics, which requires
quantitative measurements of bodies moving in space and time. His work and that of others led to
basic concepts, such as velocity, which is the distance a body covers in a given direction per unit
time; acceleration, the rate of change of velocity; mass, the amount of material in a body; and force,
a push or pull on a body.

The next major stride occurred in the late 17th century, when the British scientific genius Isaac
Newton formulated his three famous laws of motion, the first and second of which are of special
concern in relativity. Newton’s first law, known as the law of inertia, states that a body that is not
acted upon by external forces undergoes no acceleration—either remaining at rest or continuing to
move in a straight line at constant speed. Newton’s second law states that a force applied to a body
changes its velocity by producing an acceleration that is proportional to the force and inversely
proportional to the mass of the body. In constructing his system, Newton also defined space and
time, taking both to be absolutes that are unaffected by anything external. Time, he wrote, “flows
equably,” while space “remains always similar and immovable.”

Newton’s laws proved valid in every application, as in calculating the behaviour of falling bodies,
but they also provided the framework for his landmark law of gravity. Beginning with the (perhaps
mythical) observation of a falling apple and then considering the Moon as it orbits Earth, Newton
concluded that an invisible force acts between the Sun and its planets. He formulated a compara-
tively simple mathematical expression for the gravitational force; it states that every object in the
universe attracts every other object with a force that operates through empty space and that varies
with the masses of the objects and the distance between them.

The law of gravity was brilliantly successful in explaining the mechanism behind Kepler’s laws of
planetary motion, which the German astronomer Johannes Kepler had formulated at the begin-
ning of the 17th century. Newton’s mechanics and law of gravity, along with his assumptions about
the nature of space and time, seemed wholly successful in explaining the dynamics of the universe,
from motion on Earth to cosmic events.

Light and the Ether

However, this success at explaining natural phenomena came to be tested from an unexpected
direction—the behaviour of light, whose intangible nature had puzzled philosophers and scientists
for centuries. In 1865 the Scottish physicist James Clerk Maxwellshowed that light is an electro-
magnetic wave with oscillating electrical and magnetic components. Maxwell’s equations predict-
ed that electromagnetic waves would travel through empty space at a speed of almost exactly 3
x 10® metres per second (186,000 miles per second)—i.e., according with the measured speed of
light. Experiments soon confirmed the electromagnetic nature of light and established its speed as
a fundamental parameter of the universe.

Maxwell’s remarkable result answered long-standing questions about light, but it raised another
fundamental issue: if light is a moving wave, what medium supports it? Ocean waves and sound
waves consist of the progressive oscillatory motion of molecules of water and of atmospheric gases,
respectively. But what is it that vibrates to make a moving light wave? Or to put it another way,
how does the energy embodied in light travel from point to point?
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For Maxwell and other scientists of the time, the answer was that light traveled in a hypothetical
medium called the ether (aether). Supposedly, this medium permeated all space without imped-
ing the motion of planets and stars; yet it had to be more rigid than steel so that light waves could
move through it at high speed, in the same way that a taut guitar string supports fast mechanical
vibrations. Despite this contradiction, the idea of the ether seemed essential—until a definitive
experiment disproved it.

In 1887 the German-born American physicist A.A. Michelson and the American chemist Edward
Morley made exquisitely precise measurements to determine how Earth’s motion through the
ether affected the measured speed of light. In classical mechanics, Earth’s movement would add
to or subtract from the measured speed of light waves, just as the speed of a ship would add to
or subtract from the speed of ocean waves as measured from the ship. But the Michelson-Mor-
ley experiment had an unexpected outcome, for the measured speed of light remained the same
regardless of Earth’s motion. This could only mean that the ether had no meaning and that the
behaviour of light could not be explained by classical physics. The explanation emerged, instead,
from Einstein’s theory of special relativity.

Special Relativity
Einstein’s Gedankenexperiments

Scientists such as Austrian physicist Ernst Mach and French mathematician Henri Poincaréhad cri-
tiqued classical mechanics or contemplated the behaviour of light and the meaning of the ether before
Einstein. Their efforts provided a background for Einstein’s unique approach to understanding the
universe, which he called in his native German a Gedankenexperiment, or “thought experiment.”

Einstein described how at age 16 he watched himself in his mind’s eye as he rode on a light wave
and gazed at another light wave moving parallel to his. According to classical physics, Einstein
should have seen the second light wave moving at a relative speed of zero. However, Einstein knew
that Maxwell’s electromagnetic equations absolutely require that light always move at 3 x 108 me-
tres per second in a vacuum. Nothing in the theory allows a light wave to have a speed of zero.
Another problem arose as well: if a fixed observer sees light as having a speed of 3 x 10% metres
per second, whereas an observer moving at the speed of light sees light as having a speed of zero, it
would mean that the laws of electromagnetism depend on the observer. But in classical mechanics
the same laws apply for all observers, and Einstein saw no reason why the electromagnetic laws
should not be equally universal. The constancy of the speed of light and the universality of the laws
of physics for all observers are cornerstones of special relativity.

Starting Points and Postulates

In developing special relativity, Einstein began by accepting what experiment and his own think-
ing showed to be the true behaviour of light, even when this contradicted classical physics or the
usual perceptions about the world.

The fact that the speed of light is the same for all observers is inexplicable in ordinary terms. If a pas-
senger in a train moving at 100 km per hour shoots an arrow in the train’s direction of motion at 200
km per hour, a trackside observer would measure the speed of the arrow as the sum of the two speeds,
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or 300 km per hour. In analogy, if the train moves at the speed of light and a passenger shines a laser in
the same direction, then common sense indicates that a trackside observer should see the light moving
at the sum of the two speeds, or twice the speed of light (6 x 10® metres per second).

R
200 km/hr
___________ —
. 200 km/hr \
_____________ ==

Invariance of the speed of light.

Arrows shot from a moving train (A) and from a stationary location (B) will arrive at a target at
different velocities—in this case, 300 and 200 km/hr, respectively, because of the motion of the
train. However, such commonsense addition of velocities does not apply to light. Even for a train
traveling at the speed of light, both laser beams, A and B, have the same velocity: c.

While such a law of addition of velocities is valid in classical mechanics, the Michelson-Morley
experiment showed that light does not obey this law. This contradicts common sense; it implies,
for instance, that both a train moving at the speed of light and a light beam emitted from the train
arrive at a point farther along the track at the same instant.

Nevertheless, Einstein made the constancy of the speed of light for all observers a postulate of his new
theory. As a second postulate, he required that the laws of physics have the same form for all observers.
Then Einstein extended his postulates to their logical conclusions to form special relativity.

Experimental Evidence for Special Relativity

Because relativistic changes are small at typical speeds for macroscopic objects, the confirmation
of special relativity has relied on either the examination of subatomic bodies at high speeds or the
measurement of small changes by sensitive instrumentation. For example, ultra-accurate clocks
were placed on a variety of commerecial airliners flying at one-millionth the speed of light. After two
days of continuous flight, the time shown by the airborne clocks differed by fractions of a microsec-
ond from that shown by a synchronized clock left on Earth, as predicted.

Larger effects are seen with elementary particles moving at speeds close to that of light. One such
experiment involved muons, elementary particles created by cosmic rays in Earth’s atmosphere at
an altitude of about 9 km (30,000 feet). At 99.8 percent of the speed of light, the muons should
reach sea level in 31 microseconds, but measurements showed that it took only 2 microseconds.
The reason is that, relative to the moving muons, the distance of 9 km contracted to 0.58 km (1,900
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feet). Similarly, a relativistic mass increase has been confirmed in measurements on fast-moving
elementary particles, where the change is large.

Such results leave no doubt that special relativity correctly describes the universe, although the
theory is difficult to accept at a visceral level. Some insight comes from Einstein’s comment that in
relativity the limiting speed of light plays the role of an infinite speed. At infinite speed, light would
traverse any distance in zero time. Similarly, according to the relativistic equations, an observer
riding a light wave would see lengths contract to zero and clocks stop ticking as the universe ap-
proached him at the speed of light. Effectively, relativity replaces an infinite speed limit with the
finite value of 3 x 108 metres per second.

General Relativity
Roots of General Relativity

Because Isaac Newton’s law of gravity served so well in explaining the behaviour of the solar sys-
tem, the question arises why it was necessary to develop a new theory of gravity. The answer is
that Newton’s theory violates special relativity, for it requires an unspecified “action at a distance”
through which any two objects—such as the Sun and Earth—instantaneously pull each other, no
matter how far apart. However, instantaneous response would require the gravitational interac-
tion to propagate at infinite speed, which is precluded by special relativity.

In practice, this is no great problem for describing our solar system, for Newton’s law gives val-
id answers for objects moving slowly compared with light. Nevertheless, since Newton’s theory
cannot be conceptually reconciled with special relativity, Einstein turned to the development of
general relativity as a new way to understand gravitation.

Experimental Evidence for General Relativity

Soon after the theory of general relativity was published in 1915, the English astronomer Arthur
Eddington considered Einstein’s prediction that light rays are bent near a massive body, and he
realized that it could be verified by carefully comparing star positions in images of the Sun taken
during a solar eclipse with images of the same region of space taken when the Sun was in a differ-
ent portion of the sky. Verification was delayed by World War I, but in 1919 an excellent opportu-
nity presented itself with an especially long total solar eclipse, in the vicinity of the bright Hyades
star cluster, that was visible from northern Brazil to the African coast. Eddington led one expedi-
tion to Principe, an island off the African coast, and Andrew Crommelin of the Royal Greenwich
Observatory led a second expedition to Sobral, Brazil. After carefully comparing photographs from
both expeditions with reference photographs of the Hyades, Eddington declared that the starlight
had been deflected about 1.75 seconds of arc, as predicted by general relativity. (The same effect
produces gravitational lensing, where a massive cosmic object focuses light from another object
beyond it to produce a distorted or magnified image. The astronomical discovery of gravitational
lenses in 1979 gave additional support for general relativity.)

In 1919, observation of a solar eclipse confirmed Einstein’s prediction that light is bent in the pres-
ence of mass. This experimental support for his general theory of relativity garnered him instant
worldwide acclaim.
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6 | Introduction to Relativity

Further evidence came from the planet Mercury. In the 19th century, it was found that Mercury
does not return to exactly the same spot every time it completes its elliptical orbit. Instead, the
ellipse rotates slowly in space, so that on each orbit the perihelion—the point of closest approach
to the Sun—moves to a slightly different angle. Newton’s law of gravity could not explain this peri-
helion shift, but general relativity gave the correct orbit.

Apparent position

Source

I ] Observer

Another confirmed prediction of general relativity is that time dilates in a gravitational field, mean-
ing that clocks run slower as they approach the mass that is producing the field. This has been
measured directly and also through the gravitational redshift of light. Time dilation causes light to
vibrate at a lower frequency within a gravitational field; thus, the light is shifted toward a longer
wavelength—that is, toward the red. Other measurements have verified the equivalence principle
by showing that inertial and gravitational mass are precisely the same.

The most striking prediction of general relativity is that of gravitational waves. Electromagnetic waves
are caused by accelerated electrical charges and are detected when they put other charges into mo-
tion. Similarly, gravitational waves would be caused by masses in motion and are detected when they
initiate motion in other masses. However, gravity is very weak compared with electromagnetism.
Only a huge cosmic event, such as the collision of two stars, can generate detectable gravitational
waves. Efforts to sense gravitational waves began in the 1960s, and such waves were first detected
in 2015 when LIGO observed two black holes 1.3 million light-years away spiralling into each other.

Applications of Relativistic Ideas

Although relativistic effects are negligible in ordinary life, relativistic ideas appear in a range of
areas from fundamental science to civilian and military technology.

Elementary Particles

The relationship E = mc? is essential in the study of subatomic particles. It determines the energy
required to create particles or to convert one type into another and the energy released when a
particle is annihilated. For example, two photons, each of energy E, can collide to form two parti-
cles, each with mass m = E/c2. This pair-production process is one step in the early evolution of the
universe, as described in the big-bang model.
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Particle Accelerators

Knowledge of elementary particles comes primarily from particle accelerators. These machines
raise subatomic particles, usually electrons or protons, to nearly the speed of light. When these
energetic bullets smash into selected targets, they elucidate how subatomic particles interact and
often produce new species of elementary particles.

Particle accelerators could not be properly designed without special relativity. In the type called an
electron synchrotron, for instance, electrons gain energy as they traverse a huge circular raceway.
At barely below the speed of light, their mass is thousands of times larger than their rest mass. As
a result, the magnetic field used to hold the electrons in circular orbits must be thousands of times
stronger than if the mass did not change.

Fission and Fusion: Bombs and Stellar Processes

Energy is released in two kinds of nuclear processes. In nuclear fission a heavy nucleus, such as
uranium, splits into two lighter nuclei; in nuclear fusion two light nuclei combine into a heavier
one. In each process the total final mass is less than the starting mass. The difference appears as
energy according to the relation E = Amc?, where Am is the mass deficit.

Fission is used in atomic bombs and in reactors that produce power for civilian and military appli-
cations. The fusion of hydrogen into helium is the energy source in stars and provides the power of
a hydrogen bomb. Efforts are now under way to develop controllable hydrogen fusion as a clean,
abundant power source.

Global Positioning System

The global positioning system (GPS) depends on relativistic principles. A GPS receiver determines
its location on Earth’s surface by processing radio signals from four or more satellites. The dis-
tance to each satellite is calculated as the product of the speed of light and the time lag between
transmission and reception of the signal. However, Earth’s gravitational field and the motion of
the satellites cause time-dilation effects, and Earth’s rotation also has relativistic implications.
Hence, GPS technology includes relativistic corrections that enable positions to be calculated to
within several centimetres.

Cosmology

Cosmology, the study of the structure and origin of the universe, is intimately connected with
gravity, which determines the macroscopic behaviour of all matter. General relativity has played
a role in cosmology since the early calculations of Einstein and Friedmann. Since then, the theory
has provided a framework for accommodating observational results, such as Hubble’s discovery
of the expanding universe in 1929, as well as the big-bang model, which is the generally accepted
explanation of the origin of the universe.

The latest solutions of Einstein’s field equations depend on specific parameters that characterize
the fate and shape of the universe. One is Hubble’s constant, which defines how rapidly the universe
is expanding; the other is the density of matter in the universe, which determines the strength of
gravity. Below a certain critical density, gravity would be weak enough that the universe would
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expand forever, so that space would be unlimited. Above that value, gravity would be strong enough
to make the universe shrink back to its original minute size after a finite period of expansion, a
process called the “big crunch.” In this case, space would be limited or bounded like the surface of a
sphere. Current efforts in observational cosmology focus on measuring the most accurate possible
values of Hubble’s constant and of critical density.

Relativity, Quantum Theory and Unified Theories

Cosmic behaviour on the biggest scale is described by general relativity. Behaviour on the sub-
atomic scale is described by quantum mechanics, which began with the work of the German phys-
icist Max Planck in 1900 and treats energy and other physical quantities in discrete units called
quanta. A central goal of physics has been to combine relativity theory and quantum theory into an
overarching “theory of everything” describing all physical phenomena. Quantum theory explains
electromagnetism and the strong and weak forces, but a quantum description of the remaining
fundamental force of gravity has not been achieved.

After Einstein developed relativity, he unsuccessfully sought a so-called unified field theory with
a space-time geometry that would encompass all the fundamental forces. Other theorists have
attempted to merge general relativity with quantum theory, but the two approaches treat forces in
fundamentally different ways. In quantum theory, forces arise from the interchange of certain ele-
mentary particles, not from the shape of space-time. Furthermore, quantum effects are thought to
cause a serious distortion of space-time at an extremely small scale called the Planck length, which
is much smaller than the size of elementary particles. This suggests that quantum gravity cannot
be understood without treating space-time at unheard-of scales.

Although the connection between general relativity and quantum mechanics remains elusive, some
progress has been made toward a fully unified theory. In the 1960s, the electroweak theory provid-
ed partial unification, showing a common basis for electromagnetism and the weak force within
quantum theory. Recent research suggests that superstring theory, in which elementary particles
are represented not as mathematical points but as extremely small strings vibrating in 10 or more
dimensions, shows promise for supporting complete unification, including gravitation. However,
until confirmed by experimental results, superstring theory will remain an untested hypothesis.

Intellectual and Cultural Impact of Relativity
Reactions in General Culture

The impact of relativity has not been limited to science. Special relativity arrived on the scene
at the beginning of the 20th century, and general relativity became widely known after World
War I—eras when a new sensibility of “modernism” was becoming defined in art and literature.
In addition, the confirmation of general relativity provided by the solar eclipse of 1919 received
wide publicity. Einstein’s 1921 Nobel Prize for Physics (awarded for his work on the photon nature
of light), as well as the popular perception that relativity was so complex that few could grasp it,
quickly turned Einstein and his theories into cultural icons.

The ideas of relativity were widely applied—and misapplied—soon after their advent. Some think-
ers interpreted the theory as meaning simply that all things are relative, and they employed this

WORLD TECHNOLOGIES




CHAPTER 1 Introduction 9

concept in arenas distant from physics. The Spanish humanist philosopher and essayist José Orte-
ga y Gasset, for instance, wrote in The Modern Theme:

“The theory of Einstein is a marvelous proof of the harmonious multiplicity of all possible
points of view. If the idea is extended to morals and aesthetics, we shall come to experience
history and life in a new way.”

The revolutionary aspect of Einstein’s thought was also seized upon, as by the American art critic
Thomas Craven, who in 1921 compared the break between classical and modern art to the break
between Newtonian and Einsteinian ideas about space and time.

Some saw specific relations between relativity and art arising from the idea of a four-dimensional
space-time continuum. In the 19th century, developments in geometry led to popular interest in
a fourth spatial dimension, imagined as somehow lying at right angles to all three of the ordinary
dimensions of length, width, and height. Edwin Abbott’s Flatland was the first popular presenta-
tion of these ideas. Other works of fantasy that followed spoke of the fourth dimension as an arena
apart from ordinary existence.

Einstein’s four-dimensional universe, with three spatial dimensions and one of time, is conceptu-
ally different from four spatial dimensions. But the two kinds of four-dimensional world became
conflated in interpreting the new art of the 20th century. Early Cubist works by Pablo Picasso that
simultaneously portrayed all sides of their subjects became connected with the idea of higher di-
mensions in space, which some writers attempted to relate to relativity. In 1949, for example, the
art historian Paul LaPorte wrote that “the new pictorial idiom created by [CJubism is most satis-
factorily explained by applying to it the concept of the space-time continuum.” Einstein specifically
rejected this view, saying, “This new artistic language’ has nothing in common with the Theory of
Relativity.” Nevertheless, some artists explicitly explored Einstein’s ideas. In the new Soviet Union
of the 1920s, for example, the poet and illustrator Vladimir Mayakovsky, a founder of the artistic
movement called Russian Futurism, or Suprematism, hired an expert to explain relativity to him.

The widespread general interest in relativity was reflected in the number of books written to eluci-
date the subject for nonexperts. Einstein’s popular exposition of special and general relativity ap-
peared almost immediately, in 1916, other scientists, such as the Russian mathematician Aleksan-
dr Friedmann and the British astronomer Arthur Eddington, wrote popular books on the subjects
in the 1920s. Such books continued to appear decades later.

When relativity was first announced, the public was typically awestruck by its complexity, a justi-
fied response to the intricate mathematics of general relativity. But the abstract, nonvisceral nature
of the theory also generated reactions against its apparent violation of common sense. These reac-
tions included a political undertone; in some quarters, it was considered undemocratic to present
or support a theory that could not be immediately understood by the common person.

In contemporary usage, general culture has accepted the ideas of relativity—the impossibility of faster-
than-light travel, E = mc?, time dilation and the twin paradox, the expanding universe, and black holes
and wormholes—to the point where they are immediately recognized in the media and provide plot de-
vices for works of science fiction. Some of these ideas have gained meaning beyond their strictly scien-
tific ones; in the business world, for instance, “black hole” can mean an unrecoverable financial drain.
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Philosophical Considerations

In 1925 the British philosopher Bertrand Russell, in his ABC of Relativity, suggested that
Einstein’s work would lead to new philosophical concepts. Relativity has indeed had a great effect
on philosophy, illuminating some issues that go back to the ancient Greeks. The idea of the ether,
invoked in the late 19th century to carry light waves, harks back to Aristotle. He divided the world
into earth, air, fire, and water, with the ether (aether) as the fifth element representing the pure
celestial sphere. The Michelson-Morley experiment and relativity eliminated the last vestiges of
this idea.

Relativity also changed the meaning of geometry as it was developed in Euclid’s Elements (c. 300
BCE). Euclid’s system relied on the axiom “a straight line is the shortest distance between two
points,” among others that seemed self-evidently true. Straight lines also played a special role in
Euclid’s Optics as the paths followed by light rays. To philosophers such as the German Immanuel
Kant, Euclid’s straight-line axiom represented a deep level of truth. But general relativity makes
it possible scientifically to examine space like any other physical quantity—that is, to investigate
Euclid’s premises. It is now known that space-time is curved near stars; no straight lines exist
there, and light follows curved geodesics. Like Newton’s law of gravity, Euclid’s geometry correctly
describes reality under certain conditions, but its axioms are not absolutely fundamental and uni-
versal, for the cosmos includes non-Euclidean geometries as well.

Considering its scientific breadth, its recasting of people’s view of reality, its ability to describe
the entire universe, and its influence outside science, Einstein’s relativity stands among the most
significant and influential of scientific theories.
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Special Theory of Relativity
Frame of Reference
Lorentz Transformation

Speed of Light

Michelson—Morley Experiment

Rapidity

Maxwell’s Equations
Proper Length
Proper Time

Relativistic Mass

The special theory of relativity establishes the relationship between time and space for problems
that classical physics is unable to understand or explain. Some of the focus areas of special relativ-
ity are speed of light, rapidity, proper length and relativistic mass. The chapter closely examines
these key concepts of special relativity to provide an extensive understanding of the subject.

C Special Theory of Relativity )

The special theory of relativity establishes the relationship between space and time for problems
that classical physics (Newtonian physics) fail to understand or explain.

The Postulates
The whole premise upon which special relativity is built consists of two simple postulates:

1. The laws of physics hold in non-accelerating frames of reference.
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2. The speed of light in a vacuum remains constant for all observers.

The reason these postulates were framed was that Einstein found an inconsistency when he tried
to apply Newtonian Mechanics to Maxwell’s equations of electromagnetism. This led Einstein to
believe that Newtonian Mechanics did not work according to Maxwell’s Equations of Electromag-
netism. However, it was not possible for the speed of time to be a variable, as it had been rigor-
ously analyzed and experimented upon by numerous scientists. Although Newtonian physics were
highly instrumental when it came to everyday calculations, they failed miserably when considering
high-velocity physics (physics at the speed of light).

The Mathematical Foundation

The funny thing about the special theory of relativity was that the math required for it had been
invented before the theory itself. Albert Einstein went through many mathematical tools before
finally settling on the mathematical framework of Hendrik Lorentz. Hendrik Lorentz was a Dutch
physicist who invented the Lorentz transformation, which helped accommodate the notion that
multiple frames of reference can be calculated simultaneously (the foundation upon which the
special theory of relativity was written). Using the infamous equations of Lorentz Transformation,
Albert Einstein published the scientific paper “On the electrodynamics of moving bodies”, which
we today know as the Special Theory of Relativity. The equations are as follows:

7/:1/(1—(02 /\)2))0'5

ct'=ct—f *x

x'=x—pf *ct
Phenomena Explained by Special Relativity

The case point scenarios where special theory comes into play can be proven through Lorentz
transformation. Special cases where the physics calculations must be performed at velocities close
to the speed of light are where special relativity comes to the fore.

This is when two events appear to occur at two different locations simultaneously in the reference
frame of one observer, but may also appear to happen non-simultaneously in the frame of anoth-
er observer. To take an example, let’s consider a man standing on a moving platform. There are
two light sources equidistant from him. Now, let another man be present at a different frame of
reference than the man on the platform. Whether the platform moves relative to the man or the
other way around, both observers do not report the same timing of the light sources flashing! The
man on the train always reports that both light beams are produced simultaneously, but the man
observing from the platform reports one light beam being faster than the other (the one closest to
him). How can this be and who is wrong?
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7

The observer moving relative to the platform.
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The platform moving relative to the observer.

The answer to this question is that neither observer is wrong. The two observers disagree on the
timing of the event and the synchronicity with which the events occur. This is because both observ-
ers view the same event from different spatial orientations to the relative motion of the occurring
event. Therefore, the same event’s occurrence appears differently for different observers due to the
relative motion being observed separately. This is relativity of simultaneity.

The second situation where this theory comes into play is length contraction. This is a very sur-
prising phenomenon arguing that the measurement of an object by one observer might be highly
different from that of another observer. The simplest way to explain this is with another “moving
platform” example. If you were standing on Earth and a spaceship were to pass above you at 10%
the speed of light you would be able to see the spaceship and note its length. Now, if you saw the
same spaceship pass you a second time at 85% the speed of light, you would see a significantly
shorter spaceship. At 99% the speed of light, you would probably see nothing but a line.

Free
Land
on Mars

e T i/' G s

One of the final points we will touch on is causality and the prohibition of motion faster than the
speed of light. This is by far the most interesting principle that we can deduce from the special
theory of relativity. The meaning of causality in classical physics implies that no action can occur
before its cause. In Einstein’s theory of special relativity, causality means that an effect cannot
occur from a cause that is not in the back (past) light cone of that event.
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A light cone is the path that a flash of light takes when emanating from a single point in space and
traveling in all directions of spacetime. If you imagine the current event (or the present moment)
to be a plane horizon, then the light from that spreads out as a growing circle of events, resulting in
a cone. This light cone that is formed is known as the future light cone. This light cone is a math-
ematical representation of all future events that will occur after the event horizon. The inverse of
this future light cone is what we call the past light cone. If anything were to cross the speed of light,
numerous paradoxes would begin to occur. One famous hypothesis is that if one were to travel
faster than the speed of light, there is a high chance that instead of going into the future light cone,
one would be able to break the space-time barrier and move into the past light cone. Therefore,
most scientists feel that it will be easier to travel into the future than into the past.

There are other phenomena that can be explained with the help the of the special theory of rela-
tivity, such as time dilation, the composition of velocities and certain optical effects. It may have
taken a while for the public to understand or accept Einstein’s wild postulations, but over time, we
have found that his scientific theories — and his genius-level reputation — continue to be supported
and validated.

C Frame of Reference ))

In physics, a frame of reference (or reference frame) consists of an abstract coordinate system and
the set of physical reference points that uniquely fix (locate and orient) the coordinate system and
standardize measurements.

In n dimensions, n + 1 reference points are sufficient to fully define a reference frame. Using rect-
angular (Cartesian) coordinates, a reference frame may be defined with a reference point at the
origin and a reference point at one unit distance along each of the n coordinate axes.

In Einsteinian relativity, reference frames are used to specify the relationship between a moving
observer and the phenomenon or phenomena under observation. In this context, the phrase often
becomes “observational frame of reference” (or “observational reference frame”), which implies
that the observer is at rest in the frame, although not necessarily located at its origin. A relativistic
reference frame includes (or implies) the coordinate time, which does not correspond across dif-
ferent frames moving relatively to each other. The situation thus differs from Galilean relativity,
where all possible coordinate times are essentially equivalent.
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Different aspects of “Frame of Reference”

The need to distinguish between the various meanings of “frame of reference” has led to a variety
of terms. For example, sometimes the type of coordinate system is attached as a modifier, as in
Cartesian frame of reference. Sometimes the state of motion is emphasized, as in rotating frame
of reference. Sometimes the way it transforms to frames considered as related is emphasized as in
Galilean frame of reference. Sometimes frames are distinguished by the scale of their observations,
as in macroscopic and microscopic frames of reference.

The term observational frame of reference is used when emphasis is upon the state of motion rath-
er than upon the coordinate choice or the character of the observations or observational apparatus.
In this sense, an observational frame of reference allows study of the effect of motion upon an
entire family of coordinate systems that could be attached to this frame. On the other hand, a co-
ordinate system may be employed for many purposes where the state of motion is not the primary
concern. For example, a coordinate system may be adopted to take advantage of the symmetry of a
system. In a still broader perspective, the formulation of many problems in physics employs gen-
eralized coordinates, normal modes or eigenvectors, which are only indirectly related to space and
time. We therefore take observational frames of reference, coordinate systems, and observational
equipment as independent concepts, separated as below:

« An observational frame (such as an inertial frame or non-inertial frame of reference) is a
physical concept related to state of motion.

« A coordinate system is a mathematical concept, amounting to a choice of language used to
describe observations. Consequently, an observer in an observational frame of reference
can choose to employ any coordinate system (Cartesian, polar, curvilinear, generalized)
to describe observations made from that frame of reference. A change in the choice of this
coordinate system does not change an observer’s state of motion, and so does not entail
a change in the observer’s observational frame of reference. This viewpoint can be found
elsewhere as well. Which is not to dispute that some coordinate systems may be a better
choice for some observations than are others.

« Choice of what to measure and with what observational apparatus is a matter separate
from the observer’s state of motion and choice of coordinate system.

Here is a quotation applicable to moving observational frames R and various associated Euclide-
an three-space coordinate systems [R, R’, etc.]:

“We first introduce the notion of reference frame, itself related to the idea of observer: the
reference frame is, in some sense, the “Euclidean space carried by the observer”. Let us give
a more mathematical definition: the reference frame is the set of all points in the Euclidean
space with the rigid body motion of the observer. The frame, denoted ‘R, is said to move
with the observer. The spatial positions of particles are labelled relative to a frame R by
establishing a coordinate system R with origin O. The corresponding set of axes, sharing
the rigid body motion of the frame R, can be considered to give a physical realization of
R . In aframe R, coordinates are changed from R to R’ by carrying out, at each instant of
time, the same coordinate transformation on the components of intrinsic objects (vectors
and tensors) introduced to represent physical quantities in this frame”.
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And this on the utility of separating the notions of ‘R and [R, R’, etc.]:

“As noted by Brillouin, a distinction between mathematical sets of coordinates and phys-
ical frames of reference must be made. The ignorance of such distinction is the source of
much confusion the dependent functions such as velocity for example, are measured with
respect to a physical reference frame, but one is free to choose any mathematical coordi-
nate system in which the equations are specified”.

And this, also on the distinction between R and [R, R/, etc.]:

“The idea of a reference frame is really quite different from that of a coordinate system.
Frames differ just when they define different spaces (sets of rest points) or times (sets of
simultaneous events). So the ideas of a space, a time, of rest and simultaneity, go inextrica-
bly together with that of frame. However, a mere shift of origin, or a purely spatial rotation
of space coordinates results in a new coordinate system. So frames correspond at best to
classes of coordinate systems”.

And from J. D. Norton:

“In traditional developments of special and general relativity it has been customary not to dis-
tinguish between two quite distinct ideas. The first is the notion of a coordinate system, un-
derstood simply as the smooth, invertible assignment of four numbers to events in spacetime
neighborhoods. The second, the frame of reference, refers to an idealized system used to assign
such numbers To avoid unnecessary restrictions, we can divorce this arrangement from metri-
cal notions. Of special importance for our purposes is that each frame of reference has a definite
state of motion at each event of spacetime. Within the context of special relativity and as long as
we restrict ourselves to frames of reference in inertial motion, then little of importance depends
on the difference between an inertial frame of reference and the inertial coordinate system it in-
duces. This comfortable circumstance ceases immediately once we begin to consider frames of
reference in nonuniform motion even within special relativity. More recently, to negotiate the
obvious ambiguities of Einstein’s treatment, the notion of frame of reference has reappeared as
a structure distinct from a coordinate system”.

Extension to coordinate systems using generalized coordinates underlies the Hamiltonian and La-
grangian formulations of quantum field theory, classical relativistic mechanics, and quantum gravity.

Coordinate Systems

4-position
of event

clocks and rulers
/-];\\ y inxy,z directions

i, L e,
82 =$
observer O

at the origin
of coordinate frame F

An observer O, situated at the origin of a local set of coordinates — a frame of reference F. The observer in this frame
uses the coordinates (x, y, z, t) to describe a spacetime event, shown as a star.
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Although the term “coordinate system” is often used (particularly by physicists) in a nontechnical
sense, the term “coordinate system” does have a precise meaning in mathematics, and sometimes
that is what the physicist means as well.

A coordinate system in mathematics is a facet of geometry or of algebra, in particular, a property
of manifolds (for example, in physics, configuration spaces or phase spaces). The coordinates of a
point r in an n-dimensional space are simply an ordered set of n numbers:

r=[x', x>, ..., x"].

In a general Banach space, these numbers could be (for example) coefficients in a functional ex-
pansion like a Fourier series. In a physical problem, they could be spacetime coordinates or nor-
mal mode amplitudes. In a robot design, they could be angles of relative rotations, linear dis-
placements, or deformations of joints. Here we will suppose these coordinates can be related to a
Cartesian coordinate system by a set of functions:

x'=x'(x,y,2..), j=L..,n,

where x, y, z, etc. are the n Cartesian coordinates of the point. Given these functions, coordinate
surfaces are defined by the relations:

x/(x,y,z,...)=constant, j=1,...,n.

The intersection of these surfaces define coordinate lines. At any selected point, tangents to the
intersecting coordinate lines at that point define a set of basis vectors {e1 €55 .. .,en} at that point.
That is:

X .
. r(x,...,x’+e,...,x )—r(x .

e;(r)=lm , i=1...,n,
e—>0 €

which can be normalized to be of unit length.

Coordinate surfaces, coordinate lines, and basis vectors are components of a coordinate system. If
the basis vectors are orthogonal at every point, the coordinate system is an orthogonal coordinate
system.

An important aspect of a coordinate system is its metric tensor g,,, which determines the arc length
ds in the coordinate system in terms of its coordinates:

(ds)* =g, dx' dx",
ik

where repeated indices are summed over.

As is apparent from these remarks, a coordinate system is a mathematical construct, part of an axi-
omatic system. There is no necessary connection between coordinate systems and physical motion
(or any other aspect of reality). However, coordinate systems can include time as a coordinate, and
can be used to describe motion. Thus, Lorentz transformations and Galilean transformations may
be viewed as coordinate transformations.
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Observational Frames of Reference

Three frames of reference in special relativity. The black frame is at rest. The primed frame moves at 40% of light
speed, and the double primed frame at 80%. Note the scissors-like change as speed increases.

An observational frame of reference, often referred to as a physical frame of reference, a frame of
reference, or simply a frame, is a physical concept related to an observer and the observer’s state
of motion. Here we adopt the view expressed by Kumar and Barve: an observational frame of refer-
ence is characterized only by its state of motion. However, there is lack of unanimity on this point.
In special relativity, the distinction is sometimes made between an observer and a frame. Accord-
ing to this view, a frame is an observer plus a coordinate lattice constructed to be an orthonormal
right-handed set of spacelike vectors perpendicular to a timelike vector. This restricted view is not
used here, and is not universally adopted even in discussions of relativity. In general relativity the
use of general coordinate systems is common.

There are two types of observational reference frame: inertial and non-inertial. An inertial frame
of reference is defined as one in which all laws of physics take on their simplest form. In special
relativity these frames are related by Lorentz transformations, which are parametrized by rapidity.
In Newtonian mechanics, a more restricted definition requires only that Newton’s first law holds
true; that is, a Newtonian inertial frame is one in which a free particle travels in a straight line at
constant speed, or is at rest. These frames are related by Galilean transformations. These rela-
tivistic and Newtonian transformations are expressed in spaces of general dimension in terms of
representations of the Poincaré group and of the Galilean group.

In contrast to the inertial frame, a non-inertial frame of reference is one in which fictitious fore-
es must be invoked to explain observations. An example is an observational frame of reference
centered at a point on the Earth’s surface. This frame of reference orbits around the center of the
Earth, which introduces the fictitious forces known as the Coriolis force, centrifugal force, and
gravitational force. (All of these forces including gravity disappear in a truly inertial reference
frame, which is one of free-fall.)

Measurement Apparatus

A further aspect of a frame of reference is the role of the measurement apparatus (for example,
clocks and rods) attached to the frame. This question and is of particular interest in quantum me-
chanics, where the relation between observer and measurement is still under discussion.

In physics experiments, the frame of reference in which the laboratory measurement devices are
at rest is usually referred to as the laboratory frame or simply “lab frame.” An example would be
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the frame in which the detectors for a particle accelerator are at rest. The lab frame in some exper-
iments is an inertial frame, but it is not required to be (for example the laboratory on the surface
of the Earth in many physics experiments is not inertial). In particle physics experiments, it is
often useful to transform energies and momenta of particles from the lab frame where they are
measured, to the center of momentum frame “COM frame” in which calculations are sometimes
simplified, since potentially all kinetic energy still present in the COM frame may be used for mak-
ing new particles.

In this connection it may be noted that the clocks and rods often used to describe observers’ mea-
surement equipment in thought, in practice are replaced by a much more complicated and indirect
metrology that is connected to the nature of the vacuum, and uses atomic clocks that operate ac-
cording to the standard model and that must be corrected for gravitational time dilation.

In fact, Einstein felt that clocks and rods were merely expedient measuring devices and they should
be replaced by more fundamental entities based upon, for example, atoms and molecules.

Types
+ Body-fixed frames of reference
+ Space-fixed frames of reference
« Inertial frames of reference

« Non-Inertial frames of reference

Examples of Inertial Frames of Reference

Vs vy

Two cars moving at different but constant velocities observed from stationary inertial frame
Sattached to the road and moving inertial frame S’attached to the first car.

Consider a situation common in everyday life. Two cars travel along a road, both moving at con-
stant velocities. At some particular moment, they are separated by 200 metres. The car in front
is travelling at 22 metres per second and the car behind is travelling at 30 metres per second. If
we want to find out how long it will take the second car to catch up with the first, there are three
obvious “frames of reference” that we could choose.

First, we could observe the two cars from the side of the road. We define our “frame of reference”
S as follows. We stand on the side of the road and start a stop-clock at the exact moment that the
second car passes us, which happens to be when they are a distance d = 200 m apart. Since neither
of the cars is accelerating, we can determine their positions by the following formulas,
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where x, (¢) is the position in meters of car one after time t in seconds and x,(¢) is the position of
car two after time t.

x,(t)=d+vt=200+22t, x,(t)=v,t =30

Notice that these formulas predict at t = 0 s the first car is 200 m down the road and the second car
is right beside us, as expected. We want to find the time at which x, = x, . Therefore, we set x, = x,
and solve for t, that is:

200+ 22¢ =30¢,

8¢t =200,

t =25 seconds.

Alternatively, we could choose a frame of reference S’ situated in the first car. In this case, the first
car is stationary and the second car is approaching from behind at a speed of v, — v, =8 m/s.

In order to catch up to the first car, it will take a time of =——s, that is, 25 seconds, as be-
fore. V2=V

Note how much easier the problem becomes by choosing a suitable frame of reference. The third
possible frame of reference would be attached to the second car. That example resembles the case
just discussed, except the second car is stationary and the first car moves backward towards it at
8 m/s.

It would have been possible to choose a rotating, accelerating frame of reference, moving in a compli-
cated manner, but this would have served to complicate the problem unnecessarily. It is also neces-
sary to note that one is able to convert measurements made in one coordinate system to another. For
example, suppose that your watch is running five minutes fast compared to the local standard time.
If you know that this is the case, when somebody asks you what time it is, you are able to deduct five
minutes from the time displayed on your watch in order to obtain the correct time. The measure-
ments that an observer makes about a system depend therefore on the observer’s frame of reference
(you might say that the bus arrived at 5 past three, when in fact it arrived at three).

M
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Simple-minded frame-of-reference example.

For a simple example involving only the orientation of two observers, consider two people stand-
ing, facing each other on either side of a north-south street. A car drives past them heading south.
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For the person facing east, the car was moving towards the right. However, for the person facing
west, the car was moving toward the left. This discrepancy is because the two people used two dif-
ferent frames of reference from which to investigate this system.

For a more complex example involving observers in relative motion, consider Alfred, who is stand-
ing on the side of a road watching a car drive past him from left to right. In his frame of reference,
Alfred defines the spot where he is standing as the origin, the road as the x-axis and the direction
in front of him as the positive y-axis. To him, the car moves along the x axis with some velocity v
in the positive x-direction. Alfred’s frame of reference is considered an inertial frame of reference
because he is not accelerating (ignoring effects such as Earth’s rotation and gravity).

Now consider Betsy, the person driving the car. Betsy, in choosing her frame of reference, defines
her location as the origin, the direction to her right as the positive x-axis, and the direction in front
of her as the positive y-axis. In this frame of reference, it is Betsy who is stationary and the world
around her that is moving — for instance, as she drives past Alfred, she observes him moving with
velocity v in the negative y-direction. If she is driving north, then north is the positive y-direction;
if she turns east, east becomes the positive y-direction.

Finally, as an example of non-inertial observers, assume Candace is accelerating her car. As she
passes by him, Alfred measures her acceleration and finds it to be a in the negative x-direction.
Assuming Candace’s acceleration is constant, what acceleration does Betsy measure? If Betsy’s
velocity v is constant, she is in an inertial frame of reference, and she will find the acceleration
to be the same as Alfred in her frame of reference, a in the negative y-direction. However, if she
is accelerating at rate A in the negative y-direction (in other words, slowing down), she will find
Candace’s acceleration to be a” = a — A in the negative y-direction—a smaller value than Alfred has
measured. Similarly, if she is accelerating at rate A in the positive y-direction (speeding up), she
will observe Candace’s acceleration as a’ = a + A in the negative y-direction—a larger value than
Alfred’s measurement.

Frames of reference are especially important in special relativity, because when a frame of refer-
ence is moving at some significant fraction of the speed of light, then the flow of time in that frame
does not necessarily apply in another frame. The speed of light is considered to be the only true
constant between moving frames of reference.

It is important to note some assumptions made above about the various inertial frames of ref-
erence. Newton, for instance, employed universal time, as explained by the following example.
Suppose that you own two clocks, which both tick at exactly the same rate. You synchronize
them so that they both display exactly the same time. The two clocks are now separated and
one clock is on a fast moving train, traveling at constant velocity towards the other. According
to Newton, these two clocks will still tick at the same rate and will both show the same time.
Newton says that the rate of time as measured in one frame of reference should be the same
as the rate of time in another. That is, there exists a “universal” time and all other times in all
other frames of reference will run at the same rate as this universal time irrespective of their
position and velocity. This concept of time and simultaneity was later generalized by Einstein
in his special theory of relativity where he developed transformations between inertial frames
of reference based upon the universal nature of physical laws and their economy of expression
(Lorentz transformations).
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The definition of inertial reference frame can also be extended beyond three-dimensional Euclide-
an space. Newton’s assumed a Euclidean space, but general relativity uses a more general geome-
try. As an example of why this is important, consider the geometry of an ellipsoid. In this geometry,
a “free” particle is defined as one at rest or traveling at constant speed on a geodesic path. Two
free particles may begin at the same point on the surface, traveling with the same constant speed
in different directions. After a length of time, the two particles collide at the opposite side of the
ellipsoid. Both “free” particles traveled with a constant speed, satisfying the definition that no
forces were acting. No acceleration occurred and so Newton’s first law held true. This means that
the particles were in inertial frames of reference. Since no forces were acting, it was the geometry
of the situation which caused the two particles to meet each other again. In a similar way, it is now
common to describe that we exist in a four-dimensional geometry known as spacetime. In this pic-
ture, the curvature of this 4D space is responsible for the way in which two bodies with mass are
drawn together even if no forces are acting. This curvature of spacetime replaces the force known
as gravity in Newtonian mechanics and special relativity.

Non-inertial Frames

Here the relation between inertial and non-inertial observational frames of reference is consid-
ered. The basic difference between these frames is the need in non-inertial frames for fictitious
forces, as described below.

An accelerated frame of reference is often delineated as being the “primed” frame, and all variables
that are dependent on that frame are notated with primes, e.g. x’, y’, a’.

The vector from the origin of an inertial reference frame to the origin of an accelerated reference
frame is commonly notated as R. Given a point of interest that exists in both frames, the vector
from the inertial origin to the point is called r, and the vector from the accelerated origin to the
point is called r’. From the geometry of the situation, we get:

r=R+r".

Taking the first and second derivatives of this with respect to time, we obtain:
v=V+V,
a=A+a’.

where V and A are the velocity and acceleration of the accelerated system with respect to the iner-
tial system and v and a are the velocity and acceleration of the point of interest with respect to the
inertial frame.

These equations allow transformations between the two coordinate systems; for example, we can
now write Newton’s second law as:

F=ma=mA +ma’.

When there is accelerated motion due to a force being exerted there is manifestation of inertia. If
an electric car designed to recharge its battery system when decelerating is switched to braking,
the batteries are recharged, illustrating the physical strength of manifestation of inertia. However,
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the manifestation of inertia does not prevent acceleration (or deceleration), for manifestation of
inertia occurs in response to change in velocity due to a force. Seen from the perspective of a ro-
tating frame of reference the manifestation of inertia appears to exert a force (either in centrifugal
direction, or in a direction orthogonal to an object’s motion, the Coriolis effect).

A common sort of accelerated reference frame is a frame that is both rotating and translating (an
example is a frame of reference attached to a CD which is playing while the player is carried). This
arrangement leads to the equation:

a=a'"+oxr'+2oxv +ox(oxr)+A,,

or, to solve for the acceleration in the accelerated frame,

a'=a—-oxr' -20xv' -ox(@xr)-A,.

Multiplying through by the mass m gives:

F'= K ysical Fiuer T Forions T Fc’entripetal —mA,,
Where:
F', .. =-maxr (Euler force),
F (oo = —2max v (Coriolis force),
c’entrifugal =-mox(@xr')= m(a)zl" —(o-r")w)(centrifugal force).

(C Lorentz Transformation )

Lorentz Transform are needed to relate events observed in inertial frames moving at relative
speeds v approaching the speed of light c.

We begin with the assumption that the same physical laws are valid in all inertial frames. Consid-
er two inertial coordinate frames S and the “primed” frame S' moving with a constant velocity v
along their common x-axis. The planes y = 0 and z = 0 always coincide with the planes y'=0
and z'= 0, and we can set the zero points on the clocks so that #=¢'=0 at the instant when
x=x".

‘event’ at
(xl‘ y/' 2/t )
s

-0

TN
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Thus (x,,2,7) might be coordinates in the rest frame of the Galaxy and (x',»',z",¢') an inertial
frame moving with the instantaneous velocity of a (non-inertial) cosmic-ray electron. An event is
something that occurs at one point (x', y',z',t') in space and time, such as firing the flash on a
camera at rest in the ' frame.

According to the “intuitively obvious” Galilean relativity, the event coordinates in the unprimed
frame S are:

x=x+vt' y=y' z=z' t=t'
Unfortunately, our intuition is shaped by experiences with objects moving at speeds much less
than the speed of light in a vacuum, and it does not correspond to reality at speeds approaching c.
We “know” by experience that time is absolute; that is, # =¢' in all inertial frames. Galilean rela-
tivity implies that parallel velocities simply add. The speed of a photon emitted by the flash in the
+x" direction will be seen as:
dx d(x'+vt') B dx'

c,=—=———>=—+v=C_+V
dt dt' dt'

by an observer in the frame S. Thus Galilean relativity is inconsistent with both observation and
Maxwell’s equations, which correctly predict that the speed of light in a vacuum is the same for all

observers in all inertial frames (Cx =c, ) , regardless of their relative velocities v. We therefore drop
the assumption that time is absolute.

The Lorentz transform is the only coordinate transform consistent with both relativity (equiva-
lence of inertial frames) and the existance of some still-unspecified invariant speed (for example,
the speed of light, or even o). Note that the latter assumption is much weaker than assuming
t =t' because if the invariant speed is infinite, then the assumption has no consequences and the
Lorentz transform reduces to the Galilean transform. The Lorentz transform can be derived with
two reasonable assumptions. We will assume that space is both homogeneous and isotropic: that
is, the laws of physics do not change from one place to another, or with orientation of the coordi-
nate frames.

Isotropy implies that the observers moving with the two frames agree on their relative speed |v|
since a 180 degree coordinate rotation exchanges the roles of the two frames. That rotation should
have no effect if space is isotropic. The assumption of homogeneity implies that any transforma-
tion from one inertial frame to another is linear; e.g., y'= Ay + B where A and B are constants.
Any nonlinear terms (e.g., y'= Ay + B+ Cy”) would cause the transform itself to vary under coor-
dinate translations and C must therefore be zero in a homogeneous space.

Since we can choose coordinate frames so y = 0 when y'=0, linearity requires that y'= Ay,
where A is some constant scale factor. Reversing the coordinate directions by 180 degrees reverses
therolesof Sand ,so y=A4'y' Only 4= A'=21 is consistent with isotropy. We can reject the
negative solution A= —1 because it implies y = —y'when v = 0, so the Lorentz transforms for the
y and z coordinates are:

y=y' and likewise z=z'
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in agreement with the Galilean transform.
We can proceed in a similar way with the x-coordinate. Linearity requires:
x=y'(x+v') and x'=y (x—vt)
where »' and y are (still unspecified) constant scale factors. Reversing the directions of Sand S
gives:

x:}/'(x'—vt') and x'zj/(x+vt).

Reversing the roles of the two frames gives:

x:}/(x'—vt') and x':;/(x+vt).

These two pairs of equations imply y = y'; that is, the observersin Sand  also agree on the scale
factor y associated with the relative velocity v.

Suppose that there is some speed ¢ which is the same in all inertial frames. (We already know from
Maxwell’s equations and by experiment that c is the speed of light in a vacuum, but for this argu-
ment, it could be any speed, even ¢ = o0, in which case the Lorentz transform would end up being
identical to the Galilean transform.) Then x = ct implies x'=ct' and:

ct= yt‘(c+v) and ct'= }/t(c—v)
The product of these these two equations is:
' = }/Ztt'(c+v)(c—v).

We solve for 7, which is called the Lorentz factor:

2 -1/2
v
c
Again, the negative solution to this equation can be rejected as unphysical. The x-coordinate trans-
form is:
xX= j/(x'+vt') and x'= )/(x—vt)
Eliminating x from this pair of equations yields:
t= }/(t'+vx'/ cz)
The Lorentz transform of special relativity is thus:
X= }/(x'+vt') y=y' z=z"'t= }/(t'+,3x'/c)
x'=y(x+vt') y'=y z'=z t'=y(t+px/c)
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Where =v/c. Note that the Galilean transform is just the limit of the Lorentz transform as
c— oo, If (Ax,Ay, AZ,AI) and (Ax', Ay ',AZ‘,At') are the coordinate differences between two
events, the differential form of the (linear) Lorentz transform is:

Ax=y(Ax'+vAr")  Ay=Ay' Az=Az'  Ar=y(At'+ fAxYc)
Ax'=y(Ax+vAr)  Ay'=Ay Az'=Az  Ar'=y(At+ BAx/c)

(C Speed of Light ))

The speed of light in vacuum, commonly denoted c, is a universal physical constant important in
many areas of physics. Its exact value is 299,792,458 metres per second (approximately 300,000
km/s (186,000 mi/s)). It is exact because by international agreement a metre is defined as the
length of the path travelled by light in vacuum during a time interval of 1/299792458 second.
According to special relativity, c is the upper limit for the speed at which conventional matter
and information can travel. Though this speed is most commonly associated with light, it is also
the speed at which all massless particles and field perturbations travel in vacuum, including elec-
tromagnetic radiation and gravitational waves. Such particles and waves travel at c regardless of
the motion of the source or the inertial reference frame of the observer. Particles with nonzero
rest mass can approach ¢, but can never actually reach it. In the special and general theories of
relativity, c interrelates space and time, and also appears in the famous equation of mass—energy
equivalence E = mc2.

The speed at which light propagates through transparent materials, such as glass or air, is less than
c; similarly, the speed of electromagnetic waves in wire cables is slower than c. The ratio between
c and the speed v at which light travels in a material is called the refractive index n of the material
(n =c / v). For example, for visible light the refractive index of glass is typically around 1.5, mean-
ing that light in glass travels at ¢ / 1.5 = 200,000 km/s (124,000 mi/s); the refractive index of air
for visible light is about 1.0003, so the speed of light in air is about 299,700 km/s (186,220 mi/s),
which is about 9o km/s (56 mi/s) slower than c.

For many practical purposes, light and other electromagnetic waves will appear to propagate in-
stantaneously, but for long distances and very sensitive measurements, their finite speed has no-
ticeable effects. In communicating with distant space probes, it can take minutes to hours for a
message to get from Earth to the spacecraft, or vice versa. The light seen from stars left them many
years ago, allowing the study of the history of the universe by looking at distant objects. The finite
speed of light also limits the theoretical maximum speed of computers, since information must
be sent within the computer from chip to chip. The speed of light can be used with time of flight
measurements to measure large distances to high precision.

Ole Romer first demonstrated in 1676 that light travels at a finite speed (as opposed to instanta-
neously) by studying the apparent motion of Jupiter’s moon Io. In 1865, James Clerk Maxwell
proposed that light was an electromagnetic wave, and therefore travelled at the speed c appearing
in his theory of electromagnetism. In 1905, Albert Einstein postulated that the speed of light ¢ with
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respect to any inertial frame is a constant and is independent of the motion of the light source. He
explored the consequences of that postulate by deriving the theory of relativity and in doing so
showed that the parameter c had relevance outside of the context of light and electromagnetism.

After centuries of increasingly precise measurements, in 1975 the speed of light was known to be
209792458 m/s (983571056 ft/s; 186282.397 mi/s) with a measurement uncertainty of 4 parts per
billion. In 1983, the metre was redefined in the International System of Units (SI) as the distance
travelled by light in vacuum in 1/299792458 of a second.

Numerical Value, Notation and Units

The speed of light in vacuum is usually denoted by a lowercase c, for “constant” or the Latin celer-
itas. In 1856, Wilhelm Eduard Weber and Rudolf Kohlrausch had used c for a different constant
later shown to equal V2 times the speed of light in vacuum. Historically, the symbol V was used as
an alternative symbol for the speed of light, introduced by James Clerk Maxwell in 1865. In 1894,
Paul Drude redefined c with its modern meaning. Einstein used V'in his original German-language
papers on special relativity in 1905, but in 1907 he switched to ¢, which by then had become the
standard symbol for the speed of light.

Sometimes c is used for the speed of waves in any material medium, and c_ for the speed of light
in vacuum. This subscripted notation, which is endorsed in official SI literature, has the same form
as other related constants: namely, 1| for the vacuum permeability or magnetic constant, ¢_ for the
vacuum permittivity or electric constant, and Z_ for the impedance of free space.

Since 1983, the metre has been defined in the International System of Units (SI) as the distance
light travels in vacaum in 7, . . of a second. This definition fixes the speed of light in vacuum at
exactly 299,792,458 m/s. As a dimensional physical constant, the numerical value of c is different
for different unit systems. In branches of physics in which c appears often, such as in relativity, it
is common to use systems of natural units of measurement or the geometrized unit system where
¢ = 1. Using these units, ¢ does not appear explicitly because multiplication or division by 1 does

not affect the result.

Fundamental Role in Physics

The speed at which light waves propagate in vacuum is independent both of the motion of the wave
source and of the inertial frame of reference of the observer. This invariance of the speed of light
was postulated by Einstein in 1905, after being motivated by Maxwell’s theory of electromagnetism
and the lack of evidence for the luminiferous aether; it has since been consistently confirmed by
many experiments. It is only possible to verify experimentally that the two-way speed of light (for
example, from a source to a mirror and back again) is frame-independent, because it is impossible
to measure the one-way speed of light (for example, from a source to a distant detector) without
some convention as to how clocks at the source and at the detector should be synchronized. How-
ever, by adopting Einstein synchronization for the clocks, the one-way speed of light becomes
equal to the two-way speed of light by definition. The special theory of relativity explores the con-
sequences of this invariance of ¢ with the assumption that the laws of physics are the same in all
inertial frames of reference. One consequence is that c is the speed at which all massless particles
and waves, including light, must travel in vacuum.
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The Lorentz factor y as a function of velocity. It starts at 1 and approaches infinity as v approaches c.

Special relativity has many counterintuitive and experimentally verified implications. These in-
clude the equivalence of mass and energy (E = mc?), length contraction (moving objects shorten),
and time dilation (moving clocks run more slowly). The factor y by which lengths contract and
times dilate is known as the Lorentz factor and is given by y = (1 — v?/c?)~/2, where v is the speed
of the object. The difference of y from 1 is negligible for speeds much slower than ¢, such as most
everyday speeds—in which case special relativity is closely approximated by Galilean relativity—
but it increases at relativistic speeds and diverges to infinity as v approaches c. For example, a
time dilation factor of y = 2 occurs at a relative velocity of 86.6% of the speed of light (v = .866¢).
Similarly, a time dilation factor of y = 10 occurs at v = 99.5% c.

The results of special relativity can be summarized by treating space and time as a unified structure
known as spacetime (with ¢ relating the units of space and time), and requiring that physical theories
satisfy a special symmetry called Lorentz invariance, whose mathematical formulation contains the
parameter c. Lorentz invariance is an almost universal assumption for modern physical theories, such
as quantum electrodynamics, quantum chromodynamics, the Standard Model of particle physics, and
general relativity. As such, the parameter c is ubiquitous in modern physics, appearing in many con-
texts that are unrelated to light. For example, general relativity predicts that c is also the speed of grav-
ity and of gravitational waves. In non-inertial frames of reference (gravitationally curved spacetime or
accelerated reference frames), the local speed of light is constant and equal to ¢, but the speed of light
along a trajectory of finite length can differ from c, depending on how distances and times are defined.

It is generally assumed that fundamental constants such as ¢ have the same value throughout
spacetime, meaning that they do not depend on location and do not vary with time. However, it
has been suggested in various theories that the speed of light may have changed over time. No con-
clusive evidence for such changes has been found, but they remain the subject of ongoing research.

It also is generally assumed that the speed of light is isotropic, meaning that it has the same value
regardless of the direction in which it is measured. Observations of the emissions from nuclear en-
ergy levels as a function of the orientation of the emitting nuclei in a magnetic field, and of rotating
optical resonators have put stringent limits on the possible two-way anisotropy.

Upper Limit on Speeds

According to special relativity, the energy of an object with rest mass m and speed v is given by
ymc?, where y is the Lorentz factor defined above. When v is zero, y is equal to one, giving rise to
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the famous E = mc? formula for mass—energy equivalence. The y factor approaches infinity as v
approaches c, and it would take an infinite amount of energy to accelerate an object with mass to
the speed of light. The speed of light is the upper limit for the speeds of objects with positive rest
mass, and individual photons cannot travel faster than the speed of light. This is experimentally
established in many tests of relativistic energy and momentum.

Event A precedes B in the red frame, is simultaneous with B in the green frame,
and follows B in the blue frame.

More generally, it is normally impossible for information or energy to travel faster than c. One
argument for this follows from the counter-intuitive implication of special relativity known as the
relativity of simultaneity. If the spatial distance between two events A and B is greater than the
time interval between them multiplied by ¢ then there are frames of reference in which A precedes
B, others in which B precedes A, and others in which they are simultaneous. As a result, if some-
thing were travelling faster than c relative to an inertial frame of reference, it would be travelling
backwards in time relative to another frame, and causality would be violated. In such a frame of
reference, an “effect” could be observed before its “cause”. Such a violation of causality has never
been recorded, and would lead to paradoxes such as the tachyonic antitelephone.

Faster than Light Observations and Experiments

There are situations in which it may seem that matter, energy, or information travels at speeds
greater than c, but they do not. For example, as is discussed in the propagation of light in a me-
dium, many wave velocities can exceed c. For example, the phase velocity of X-rays through most
glasses can routinely exceed c, but phase velocity does not determine the velocity at which waves
convey information.

If a laser beam is swept quickly across a distant object, the spot of light can move faster than c,
although the initial movement of the spot is delayed because of the time it takes light to get to the
distant object at the speed c. However, the only physical entities that are moving are the laser and
its emitted light, which travels at the speed c from the laser to the various positions of the spot.
Similarly, a shadow projected onto a distant object can be made to move faster than c, after a delay
in time. In neither case does any matter, energy, or information travel faster than light.

The rate of change in the distance between two objects in a frame of reference with respect to
which both are moving (their closing speed) may have a value in excess of c. However, this does not
represent the speed of any single object as measured in a single inertial frame.
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Certain quantum effects appear to be transmitted instantaneously and therefore faster than ¢, as in
the EPR paradox. An example involves the quantum states of two particles that can be entangled.
Until either of the particles is observed, they exist in a superposition of two quantum states. If the
particles are separated and one particle’s quantum state is observed, the other particle’s quantum
state is determined instantaneously (i.e., faster than light could travel from one particle to the oth-
er). However, it is impossible to control which quantum state the first particle will take on when it
is observed, so information cannot be transmitted in this manner.

Another quantum effect that predicts the occurrence of faster-than-light speeds is called the Hart-
man effect: under certain conditions the time needed for a virtual particle to tunnel through a
barrier is constant, regardless of the thickness of the barrier. This could result in a virtual particle
crossing a large gap faster-than-light. However, no information can be sent using this effect.

So-called superluminal motion is seen in certain astronomical objects, such as the relativistic jets
of radio galaxies and quasars. However, these jets are not moving at speeds in excess of the speed
of light: the apparent superluminal motion is a projection effect caused by objects moving near
the speed of light and approaching Earth at a small angle to the line of sight: since the light which
was emitted when the jet was farther away took longer to reach the Earth, the time between two
successive observations corresponds to a longer time between the instants at which the light rays
were emitted.

In models of the expanding universe, the farther galaxies are from each other, the faster they drift
apart. This receding is not due to motion through space, but rather to the expansion of space itself.
For example, galaxies far away from Earth appear to be moving away from the Earth with a speed
proportional to their distances. Beyond a boundary called the Hubble sphere, the rate at which
their distance from Earth increases becomes greater than the speed of light.

Propagation of Light

In classical physics, light is described as a type of electromagnetic wave. The classical behaviour of
the electromagnetic field is described by Maxwell’s equations, which predict that the speed ¢ with
which electromagnetic waves (such as light) propagate through the vacuum is related to the dis-
tributed capacitance and inductance of the vacuum, otherwise respectively known as the electric
constant £ and the magnetic constant u , by the equation,

1

Jeotty

In modern quantum physics, the electromagnetic field is described by the theory of quantum elec-
trodynamics (QED). In this theory, light is described by the fundamental excitations (or quanta)
of the electromagnetic field, called photons. In QED, photons are massless particles and thus, ac-
cording to special relativity, they travel at the speed of light in vacuum.

CcC =

Extensions of QED in which the photon has a mass have been considered. In such a theory, its
speed would depend on its frequency, and the invariant speed c of special relativity would then be
the upper limit of the speed of light in vacuum. No variation of the speed of light with frequency
has been observed in rigorous testing, putting stringent limits on the mass of the photon. The limit
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obtained depends on the model used: if the massive photon is described by Proca theory, the ex-
perimental upper bound for its mass is about 10757 grams; if photon mass is generated by a Higgs
mechanism, the experimental upper limit is less sharp, m < 1074 eV/c? (roughly 2 x 107 g).

Another reason for the speed of light to vary with its frequency would be the failure of special
relativity to apply to arbitrarily small scales, as predicted by some proposed theories of quantum
gravity. In 2009, the observation of the spectrum of gamma-ray burst GRB 090510 did not find
any difference in the speeds of photons of different energies, confirming that Lorentz invariance

is verified at least down to the scale of the Planck length (I, = VAG/c’ ~1.6163x10%°m) divided
by 1.2.

In a Medium

In a medium, light usually does not propagate at a speed equal to c; further, different types of light
wave will travel at different speeds. The speed at which the individual crests and troughs of a plane
wave (a wave filling the whole space, with only one frequency) propagate is called the phase ve-
locity v,-An actual physical signal with a finite extent (a pulse of light) travels at a different speed.
The largest part of the pulse travels at the group velocity v, and its earliest part travels at the front
velocity v,

The phase velocity is important in determining how a light wave travels through a material or from
one material to another. It is often represented in terms of a refractive index. The refractive index of
a material is defined as the ratio of c to the phase velocity v_in the material: larger indices of refrac-
tion indicate lower speeds. The refractive index of a material may depend on the light’s frequency,
intensity, polarization, or direction of propagation; in many cases, though, it can be treated as a
material-dependent constant. The refractive index of air is approximately 1.0003. Denser media,
such as water, glass, and diamond, have refractive indexes of around 1.3, 1.5 and 2.4, respectively,
for visible light. In exotic materials like Bose—Einstein condensates near absolute zero, the effective
speed of light may be only a few metres per second. However, this represents absorption and re-ra-
diation delay between atoms, as do all slower-than-c speeds in material substances. As an extreme
example of light “slowing” in matter, two independent teams of physicists claimed to bring light to
a “complete standstill” by passing it through a Bose—Einstein condensate of the element rubidium,
one team at Harvard University and the Rowland Institute for Science in Cambridge, Mass., and the
other at the Harvard—Smithsonian Center for Astrophysics, also in Cambridge. However, the popu-
lar description of light being “stopped” in these experiments refers only to light being stored in the
excited states of atoms, then re-emitted at an arbitrarily later time, as stimulated by a second laser
pulse. During the time it had “stopped,” it had ceased to be light. This type of behaviour is generally
microscopically true of all transparent media which “slow” the speed of light.

In transparent materials, the refractive index generally is greater than 1, meaning that the phase
velocity is less than c. In other materials, it is possible for the refractive index to become smaller
than 1 for some frequencies; in some exotic materials it is even possible for the index of refraction
to become negative. The requirement that causality is not violated implies that the real and imagi-
nary parts of the dielectric constant of any material, corresponding respectively to the index of re-
fraction and to the attenuation coefficient, are linked by the Kramers—Kronig relations. In practical
terms, this means that in a material with refractive index less than 1, the absorption of the wave is
so quick that no signal can be sent faster than c.
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A pulse with different group and phase velocities (which occurs if the phase velocity is not the same
for all the frequencies of the pulse) smears out over time, a process known as dispersion. Certain
materials have an exceptionally low (or even zero) group velocity for light waves, a phenomenon
called slow light, which has been confirmed in various experiments. The opposite, group velocities
exceeding c, has also been shown in experiment. It should even be possible for the group velocity
to become infinite or negative, with pulses travelling instantaneously or backwards in time.

None of these options, however, allow information to be transmitted faster than c. It is impossible
to transmit information with a light pulse any faster than the speed of the earliest part of the pulse
(the front velocity). It can be shown that this is (under certain assumptions) always equal to c.

It is possible for a particle to travel through a medium faster than the phase velocity of light in that
medium (but still slower than c¢). When a charged particle does that in a dielectric material, the
electromagnetic equivalent of a shock wave, known as Cherenkov radiation, is emitted.

Practical Effects of Finiteness

The speed of light is of relevance to communications: the one-way and round-trip delay time are
greater than zero. This applies from small to astronomical scales. On the other hand, some tech-
niques depend on the finite speed of light, for example in distance measurements.

Small Scales

In supercomputers, the speed of light imposes a limit on how quickly data can be sent between proces-
sors. If a processor operates at 1 gigahertz, a signal can only travel a maximum of about 30 centimetres
(1 ft) in a single cycle. Processors must therefore be placed close to each other to minimize communica-
tion latencies; this can cause difficulty with cooling. If clock frequencies continue to increase, the speed
of light will eventually become a limiting factor for the internal design of single chips.

Large Distances on Earth

Given that the equatorial circumference of the Earth is about 40075 km and that c is about 300000
km/s, the theoretical shortest time for a piece of information to travel half the globe along the surface
is about 67 milliseconds. When light is travelling around the globe in an optical fibre, the actual transit
time is longer, in part because the speed of light is slower by about 35% in an optical fibre, depending
on its refractive index n. Furthermore, straight lines rarely occur in global communications situations,
and delays are created when the signal passes through an electronic switch or signal regenerator.

Spaceflights and Astronomy

Similarly, communications between the Earth and spacecraft are not instantaneous. There is a brief
delay from the source to the receiver, which becomes more noticeable as distances increase. This
delay was significant for communications between ground control and Apollo 8 when it became
the first manned spacecraft to orbit the Moon: for every question, the ground control station had to
wait at least three seconds for the answer to arrive. The communications delay between Earth and
Mars can vary between five and twenty minutes depending upon the relative positions of the two
planets. As a consequence of this, if a robot on the surface of Mars were to encounter a problem,
its human controllers would not be aware of it until at least five minutes later, and possibly up to
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twenty minutes later; it would then take a further five to twenty minutes for instructions to travel
from Earth to Mars.

NASA must wait several hours for information from a probe orbiting Jupiter, and if it needs to cor-
rect a navigation error, the fix will not arrive at the spacecraft for an equal amount of time, creating
a risk of the correction not arriving in time.

Receiving light and other signals from distant astronomical sources can even take much longer.
For example, it has taken 13 billion (13x10°?) years for light to travel to Earth from the faraway
galaxies viewed in the Hubble Ultra Deep Field images. Those photographs, taken today, capture
images of the galaxies as they appeared 13 billion years ago, when the universe was less than a
billion years old. The fact that more distant objects appear to be younger, due to the finite speed
of light, allows astronomers to infer the evolution of stars, of galaxies, and of the universe itself.

Astronomical distances are sometimes expressed in light-years, especially in popular science pub-
lications and media. A light-year is the distance light travels in one year, around 9461 billion ki-
lometres, 5879 billion miles, or 0.3066 parsecs. In round figures, a light year is nearly 10 trillion
kilometres or nearly 6 trillion miles. Proxima Centauri, the closest star to Earth after the Sun, is
around 4.2 light-years away.

Distance Measurement

Radar systems measure the distance to a target by the time it takes a radio-wave pulse to return to
the radar antenna after being reflected by the target: the distance to the target is half the round-
trip transit time multiplied by the speed of light. A Global Positioning System (GPS) receiver mea-
sures its distance to GPS satellites based on how long it takes for a radio signal to arrive from each
satellite, and from these distances calculates the receiver’s position. Because light travels about
300000 kilometres (186000 mi) in one second, these measurements of small fractions of a sec-
ond must be very precise. The Lunar Laser Ranging Experiment, radar astronomy and the Deep
Space Network determine distances to the Moon, planets and spacecraft, respectively, by measur-
ing round-trip transit times.

High-frequency Trading

The speed of light has become important in high-frequency trading, where traders seek to gain
minute advantages by delivering their trades to exchanges fractions of a second ahead of other
traders. For example, traders have been switching to microwave communications between trading
hubs, because of the advantage which microwaves travelling at near to the speed of light in air,
have over fibre optic signals which travel 30—40% slower at the speed of light through glass.

Measurement

There are different ways to determine the value of c. One way is to measure the actual speed at
which light waves propagate, which can be done in various astronomical and earth-based setups.
However, it is also possible to determine ¢ from other physical laws where it appears, for example,
by determining the values of the electromagnetic constants £ and u_ and using their relation to c.
Historically, the most accurate results have been obtained by separately determining the frequen-
cy and wavelength of a light beam, with their product equalling c.
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In 1983 the metre was defined as “the length of the path travelled by light in vacuum during a
time interval of 0702458 of a second”, fixing the value of the speed of light at 209792458 m/s by
definition, as described below. Consequently, accurate measurements of the speed of light yield an

accurate realization of the metre rather than an accurate value of c.

Astronomical Measurements
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Outer space is a convenient setting for measuring the speed of light because of its large scale and nearly
perfect vacuum. Typically, one measures the time needed for light to traverse some reference distance
in the solar system, such as the radius of the Earth’s orbit. Historically, such measurements could be
made fairly accurately, compared to how accurately the length of the reference distance is known in
Earth-based units. It is customary to express the results in astronomical units (AU) per day.

Ole Christensen Remer used an astronomical measurement to make the first quantitative estimate
of the speed of light. When measured from Earth, the periods of moons orbiting a distant planet
are shorter when the Earth is approaching the planet than when the Earth is receding from it. The
distance travelled by light from the planet (or its moon) to Earth is shorter when the Earth is at the
point in its orbit that is closest to its planet than when the Earth is at the farthest point in its orbit,
the difference in distance being the diameter of the Earth’s orbit around the Sun. The observed
change in the moon’s orbital period is caused by the difference in the time it takes light to traverse
the shorter or longer distance. Remer observed this effect for Jupiter’s innermost moon Io and
deduced that light takes 22 minutes to cross the diameter of the Earth’s orbit.
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Aberration of light: Light from a distant source appears to be from a
different location for a moving telescope due to the finite speed of light.
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Another method is to use the aberration of light, discovered and explained by James Bradley in
the 18th century. This effect results from the vector addition of the velocity of light arriving from
a distant source (such as a star) and the velocity of its observer. A moving observer thus sees the
light coming from a slightly different direction and consequently sees the source at a position
shifted from its original position. Since the direction of the Earth’s velocity changes continuously
as the Earth orbits the Sun, this effect causes the apparent position of stars to move around. From
the angular difference in the position of stars (maximally 20.5 arcseconds) it is possible to express
the speed of light in terms of the Earth’s velocity around the Sun, which with the known length of
a year can be converted to the time needed to travel from the Sun to the Earth. In 1729, Bradley
used this method to derive that light travelled 10,210 times faster than the Earth in its orbit (the
modern figure is 10,066 times faster) or, equivalently, that it would take light 8 minutes 12 seconds
to travel from the Sun to the Earth.

Astronomical Unit

An astronomical unit (AU) is approximately the average distance between the Earth and Sun.
It was redefined in 2012 as exactly 149597870700 m. Previously the AU was not based on the
International System of Units but in terms of the gravitational force exerted by the Sun in the
framework of classical mechanics. The current definition uses the recommended value in metres
for the previous definition of the astronomical unit, which was determined by measurement.
This redefinition is analogous to that of the metre, and likewise has the effect of fixing the speed
of light to an exact value in astronomical units per second (via the exact speed of light in metres
per second).

Previously, the inverse of ¢ expressed in seconds per astronomical unit was measured by com-
paring the time for radio signals to reach different spacecraft in the Solar System, with their
position calculated from the gravitational effects of the Sun and various planets. By combining
many such measurements, a best fit value for the light time per unit distance could be obtained.
For example, in 2009, the best estimate, as approved by the International Astronomical Union
(IAU), was:

light time for unit distance: t_ = 499.004783836(10) s
¢ =0.00200398880410(4) AU/s = 173.144632674(3) AU/day.

The relative uncertainty in these measurements is 0.02 parts per billion (2x10™), equivalent to
the uncertainty in Earth-based measurements of length by interferometry. Since the metre is de-
fined to be the length travelled by light in a certain time interval, the measurement of the light time
in terms of the previous definition of the astronomical unit can also be interpreted as measuring
the length of an AU (old definition) in metres.

Time of Flight Techniques

A method of measuring the speed of light is to measure the time needed for light to travel to a
mirror at a known distance and back. This is the working principle behind the Fizeau—Foucault
apparatus developed by Hippolyte Fizeau and Léon Foucault.
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The setup as used by Fizeau consists of a beam of light directed at a mirror 8 kilometres (5 mi)
away. On the way from the source to the mirror, the beam passes through a rotating cogwheel. At
a certain rate of rotation, the beam passes through one gap on the way out and another on the way
back, but at slightly higher or lower rates, the beam strikes a tooth and does not pass through the
wheel. Knowing the distance between the wheel and the mirror, the number of teeth on the wheel,
and the rate of rotation, the speed of light can be calculated.

The method of Foucault replaces the cogwheel by a rotating mirror. Because the mirror keeps ro-
tating while the light travels to the distant mirror and back, the light is reflected from the rotating
mirror at a different angle on its way out than it is on its way back. From this difference in angle,
the known speed of rotation and the distance to the distant mirror the speed of light may be cal-
culated.

Nowadays, using oscilloscopes with time resolutions of less than one nanosecond, the speed of
light can be directly measured by timing the delay of a light pulse from a laser or an LED reflected
from a mirror. This method is less precise (with errors of the order of 1%) than other modern tech-
niques, but it is sometimes used as a laboratory experiment in college physics classes.

Diagram of the Fizeau apparatus.

Electromagnetic Constants

An option for deriving c that does not directly depend on a measurement of the propagation of
electromagnetic waves is to use the relation between c¢ and the vacuum permittivity ¢ and vacuum
permeability i established by Maxwell’s theory: ¢ = 1/(e u ). The vacuum permittivity may be
determined by measuring the capacitance and dimensions of a capacitor, whereas the value of the
vacuum permeability is fixed at exactly 4tx107 H-m™* through the definition of the ampere. Rosa
and Dorsey used this method in 1907 to find a value of 299710+22 km/s.
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Cavity Resonance

Electromagnetic standing waves in a cavity.

Another way to measure the speed of light is to independently measure the frequency f and wave-
length A of an electromagnetic wave in vacuum. The value of ¢ can then be found by using the
relation ¢ = fA. One option is to measure the resonance frequency of a cavity resonator. If the di-
mensions of the resonance cavity are also known, these can be used to determine the wavelength
of the wave. In 1946, Louis Essen and A.C. Gordon-Smith established the frequency for a variety
of normal modes of microwaves of a microwave cavity of precisely known dimensions. The dimen-
sions were established to an accuracy of about +0.8 pm using gauges calibrated by interferometry.
As the wavelength of the modes was known from the geometry of the cavity and from electromag-
netic theory, knowledge of the associated frequencies enabled a calculation of the speed of light.

The Essen—Gordon-Smith result, 299792+9 km/s, was substantially more precise than those
found by optical techniques. By 1950, repeated measurements by Essen established a result of
299792.5+3.0 km/s.

A household demonstration of this technique is possible, using a microwave oven and food such
as marshmallows or margarine: if the turntable is removed so that the food does not move, it will
cook the fastest at the antinodes (the points at which the wave amplitude is the greatest), where it
will begin to melt. The distance between two such spots is half the wavelength of the microwaves;
by measuring this distance and multiplying the wavelength by the microwave frequency (usually
displayed on the back of the oven, typically 2450 MHz), the value of ¢ can be calculated, “often with
less than 5% error”.

Interferometry

An interferometric determination of length. Left: constructive interference;
Right: destructive interference.

WORLD TECHNOLOGIES




38 | Introduction to Relativity

Interferometry is another method to find the wavelength of electromagnetic radiation for deter-
mining the speed of light. A coherent beam of light (e.g. from a laser), with a known frequency (f),
is split to follow two paths and then recombined. By adjusting the path length while observing the
interference pattern and carefully measuring the change in path length, the wavelength of the light
(A) can be determined. The speed of light is then calculated using the equation ¢ = Af.

Before the advent of laser technology, coherent radio sources were used for interferometry mea-
surements of the speed of light. However interferometric determination of wavelength becomes
less precise with wavelength and the experiments were thus limited in precision by the long wave-
length (~0.4 cm (0.16 in)) of the radiowaves. The precision can be improved by using light with
a shorter wavelength, but then it becomes difficult to directly measure the frequency of the light.
One way around this problem is to start with a low frequency signal of which the frequency can be
precisely measured, and from this signal progressively synthesize higher frequency signals whose
frequency can then be linked to the original signal. A laser can then be locked to the frequency, and
its wavelength can be determined using interferometry. This technique was due to a group at the
National Bureau of Standards (NBS) (which later became NIST). They used it in 1972 to measure
the speed of light in vacuum with a fractional uncertainty of 3.5x107°.

First Measurement Attempts

In 1629, Isaac Beeckman proposed an experiment in which a person observes the flash of a cannon
reflecting off a mirror about one mile (1.6 km) away. In 1638, Galileo Galilei proposed an experi-
ment, with an apparent claim to having performed it some years earlier, to measure the speed of
light by observing the delay between uncovering a lantern and its perception some distance away.
He was unable to distinguish whether light travel was instantaneous or not, but concluded that
if it were not, it must nevertheless be extraordinarily rapid. In 1667, the Accademia del Cimento
of Florence reported that it had performed Galileo’s experiment, with the lanterns separated by
about one mile, but no delay was observed. The actual delay in this experiment would have been
about 11 microseconds.

Fic. 70.

Romer’s observations of the occultations of Io from Earth.

The first quantitative estimate of the speed of light was made in 1676 by Remer. From the obser-
vation that the periods of Jupiter’s innermost moon Io appeared to be shorter when the Earth was
approaching Jupiter than when receding from it, he concluded that light travels at a finite speed,
and estimated that it takes light 22 minutes to cross the diameter of Earth’s orbit. Christiaan
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Huygens combined this estimate with an estimate for the diameter of the Earth’s orbit to obtain an
estimate of speed of light of 220000 km/s, 26% lower than the actual value.

Isaac Newton reported Romer’s calculations of the finite speed of light and gave a value of “sev-
en or eight minutes” for the time taken for light to travel from the Sun to the Earth (the modern
value is 8 minutes 19 seconds). Newton queried whether Rgmer’s eclipse shadows were coloured;
hearing that they were not, he concluded the different colours travelled at the same speed. In 1729,
James Bradley discovered stellar aberration. From this effect he determined that light must travel
10,210 times faster than the Earth in its orbit (the modern figure is 10,066 times faster) or, equiv-
alently, that it would take light 8 minutes 12 seconds to travel from the Sun to the Earth.

Connections with Electromagnetism

In the 19th century Hippolyte Fizeau developed a method to determine the speed of light based
on time-of-flight measurements on Earth and reported a value of 315000 km/s. His method was
improved upon by Léon Foucault who obtained a value of 298000 km/s in 1862. In the year 1856,
Wilhelm Eduard Weber and Rudolf Kohlrausch measured the ratio of the electromagnetic and
electrostatic units of charge, 1/Ve u, by discharging a Leyden jar, and found that its numerical
value was very close to the speed of light as measured directly by Fizeau. The following year Gus-
tav Kirchhoff calculated that an electric signal in a resistanceless wire travels along the wire at this
speed. In the early 1860s, Maxwell showed that, according to the theory of electromagnetism he
was working on, electromagnetic waves propagate in empty space at a speed equal to the above
Weber/Kohlrausch ratio, and drawing attention to the numerical proximity of this value to the
speed of light as measured by Fizeau, he proposed that light is in fact an electromagnetic wave.

Luminiferous Aether

Luminiferous aether

\AAEBEEREEEERE

It was thought at the time that empty space was filled with a background medium called the lu-
miniferous aether in which the electromagnetic field existed. Some physicists thought that this
aether acted as a preferred frame of reference for the propagation of light and therefore it should
be possible to measure the motion of the Earth with respect to this medium, by measuring the
isotropy of the speed of light. Beginning in the 1880s several experiments were performed to try to
detect this motion, the most famous of which is the experiment performed by Albert A. Michelson
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and Edward W. Morley in 1887. The detected motion was always less than the observational error.
Modern experiments indicate that the two-way speed of light is isotropic (the same in every direc-
tion) to within 6 nanometres per second. Because of this experiment Hendrik Lorentz proposed
that the motion of the apparatus through the aether may cause the apparatus to contract along its
length in the direction of motion, and he further assumed, that the time variable for moving sys-
tems must also be changed accordingly (“local time”), which led to the formulation of the Lorentz
transformation. Based on Lorentz’s aether theory, Henri Poincaré showed that this local time (to
first order in v/c) is indicated by clocks moving in the aether, which are synchronized under the as-
sumption of constant light speed. In 1904, he speculated that the speed of light could be a limiting
velocity in dynamics, provided that the assumptions of Lorentz’s theory are all confirmed. In 1905,
Poincaré brought Lorentz’s aether theory into full observational agreement with the principle of
relativity.

Special Relativity

In 1905 Einstein postulated from the outset that the speed of light in vacuum, measured by a
non-accelerating observer, is independent of the motion of the source or observer. Using this and
the principle of relativity as a basis he derived the special theory of relativity, in which the speed
of light in vacuum c featured as a fundamental constant, also appearing in contexts unrelated to
light. This made the concept of the stationary aether (to which Lorentz and Poincaré still adhered)
useless and revolutionized the concepts of space and time.

Increased Accuracy of ¢ and Redefinition of the Metre and Second

In the second half of the 20th century much progress was made in increasing the accuracy of mea-
surements of the speed of light, first by cavity resonance techniques and later by laser interferom-
eter techniques. These were aided by new, more precise, definitions of the metre and second. In
1950, Louis Essen determined the speed as 299792.5+1 km/s, using cavity resonance. This value
was adopted by the 12th General Assembly of the Radio-Scientific Union in 1957. In 1960, the
metre was redefined in terms of the wavelength of a particular spectral line of krypton-86, and, in
1967, the second was redefined in terms of the hyperfine transition frequency of the ground state
of caesium-133.

In 1972, using the laser interferometer method and the new definitions, a group at the US Nation-
al Bureau of Standards in Boulder, Colorado determined the speed of light in vacuum to be ¢ =
209792456.2+1.1 m/s. This was 100 times less uncertain than the previously accepted value. The
remaining uncertainty was mainly related to the definition of the metre. As similar experiments
found comparable results for ¢, the 15th General Conference on Weights and Measures in 1975
recommended using the value 299792458 m/s for the speed of light.

Defining the Speed of Light as an Explicit Constant

In 1983 the 17th CGPM found that wavelengths from frequency measurements and a given value
for the speed of light are more reproducible than the previous standard. They kept the 1967 defi-
nition of second, so the caesium hyperfine frequency would now determine both the second and
the metre. To do this, they redefined the metre as: “The metre is the length of the path travelled by
light in vacuum during a time interval of 1/299792458 of a second.” As a result of this definition,
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the value of the speed of light in vacuum is exactly 299792458 m/s and has become a defined con-
stant in the SI system of units. Improved experimental techniques that prior to 1983 would have
measured the speed of light, no longer affect the known value of the speed of light in SI units, but
instead allow a more precise realization of the metre by more accurately measuring the wavelength
of Krypton-86 and other light sources.

In 2011, the CGPM stated its intention to redefine all seven SI base units using what it calls “the ex-
plicit-constant formulation”, where each “unit is defined indirectly by specifying explicitly an exact
value for a well-recognized fundamental constant”, as was done for the speed of light. It proposed
a new, but completely equivalent, wording of the metre’s definition: “The metre, symbol m, is the
unit of length; its magnitude is set by fixing the numerical value of the speed of light in vacuum to
be equal to exactly 299792458 when it is expressed in the SI unit m s™.” This is one of the proposed
changes to be incorporated in the next revision of the SI, also termed the New SI.

C Michelson—Morley Experiment ))

The Michelson—Morley experiment was an attempt to detect the existence of aether, a supposed
medium permeating space that was thought to be the carrier of light waves. The experiment was per-
formed between April and July 1887 by Albert A. Michelson and Edward W. Morley at what is now
Case Western Reserve University in Cleveland, Ohio, and published in November of the same year. It
compared the speed of light in perpendicular directions, in an attempt to detect the relative motion
of matter through the stationary luminiferous aether (“aether wind”). The result was negative, in
that Michelson and Morley found no significant difference between the speed of light in the direction
of movement through the presumed aether, and the speed at right angles. This result is generally
considered to be the first strong evidence against the then-prevalent aether theory, and initiated a
line of research that eventually led to special relativity, which rules out a stationary aether. Of this
experiment, Einstein wrote, “If the Michelson—Morley experiment had not brought us into serious
embarrassment, no one would have regarded the relativity theory as a (halfway) redemption.”

Michelson—Morley type experiments have been repeated many times with steadily increasing sen-
sitivity. These include experiments from 1902 to 1905, and a series of experiments in the 1920s.
More recent optical resonator experiments confirmed the absence of any aether wind at the 1077
level. Together with the Ives—Stilwell and Kennedy—Thorndike experiments, Michelson—Morley
type experiments form one of the fundamental tests of special relativity theory.

Detecting the Aether

Physics theories of the late 19th century assumed that just as surface water waves must have a
supporting substance, i.e., a “medium”, to move across (in this case water), and audible sound
requires a medium to transmit its wave motions (such as air or water), so light must also require a
medium, the “luminiferous aether”, to transmit its wave motions. Because light can travel through
a vacuum, it was assumed that even a vacuum must be filled with aether. Because the speed of
light is so great, and because material bodies pass through the aether without obvious friction or
drag, it was assumed to have a highly unusual combination of properties. Designing experiments
to investigate these properties was a high priority of 19th century physics.
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Earth orbits around the Sun at a speed of around 30 km/s (18.64 mi/s), or 108,000 km/h (67,000
mph). The Earth is in motion, so two main possibilities were considered: (1) The aether is station-
ary and only partially dragged by Earth, or (2) the aether is completely dragged by Earth and thus
shares its motion at Earth’s surface. In addition, James Clerk Maxwell recognized the electromag-
netic nature of light and developed what are now called Maxwell’s equations, but these equations
were still interpreted as describing the motion of waves through an aether, whose state of motion
was unknown. Eventually, Fresnel’s idea of an (almost) stationary aether was preferred because it
appeared to be confirmed by the Fizeau experiment and the aberration of star light.

ti;] di5 o |

A depiction of the concept of the “aether wind”.

According to the stationary and the partially-dragged aether hypotheses, Earth and the aether are
in relative motion, implying that a so-called “aether wind” should exist. Although it would be pos-
sible, in theory, for the Earth’s motion to match that of the aether at one moment in time, it was not
possible for the Earth to remain at rest with respect to the aether at all times, because of the vari-
ation in both the direction and the speed of the motion. At any given point on the Earth’s surface,
the magnitude and direction of the wind would vary with time of day and season. By analyzing the
return speed of light in different directions at various different times, it was thought to be possible
to measure the motion of the Earth relative to the aether. The expected relative difference in the
measured speed of light was quite small, given that the velocity of the Earth in its orbit around the
Sun has a magnitude of about one hundredth of one percent of the speed of light.

During the mid-19th century, measurements of aether wind effects of first order, i.e., effects pro-
portional to v/c (v being Earth’s velocity, c the speed of light) were thought to be possible, but no
direct measurement of the speed of light was possible with the accuracy required. For instance, the
Fizeau—Foucault apparatus could measure the speed of light to perhaps 5% accuracy, which was
quite inadequate for measuring directly a first-order 0.01% change in the speed of light. A number
of physicists therefore attempted to make measurements of indirect first-order effects not of the
speed of light itself, but of variations in the speed of light. The Hoek experiment, for example, was
intended to detect interferometric fringe shifts due to speed differences of oppositely propagating
light waves through water at rest. The results of such experiments were all negative. This could be
explained by using Fresnel’s dragging coefficient, according to which the aether and thus light are
partially dragged by moving matter. Partial aether-dragging would thwart attempts to measure
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any first order change in the speed of light. As pointed out by Maxwell, only experimental arrange-
ments capable of measuring second order effects would have any hope of detecting aether drift,
i.e., effects proportional to v?/c?. Existing experimental setups, however, were not sensitive enough
to measure effects of that size.

Michelson Experiment

Michelson’s 1881 interferometer. Although ultimately it proved incapable of distinguishing between
differing theories of aether-dragging, its construction provided important lessons for the
design of Michelson and Morley’s 1887 instrument.

Michelson had a solution to the problem of how to construct a device sufficiently accurate to detect
aether flow. In 1877, while teaching at his alma mater, the United States Naval Academy in Annap-
olis, Michelson conducted his first known light speed experiments as a part of a classroom demon-
stration. In 1881, he left active U.S. Naval service while in Germany concluding his studies. In that
year, Michelson used a prototype experimental device to make several more measurements.

The device he designed, later known as a Michelson interferometer, sent yellow light from a sodi-
um flame (for alignment), or white light (for the actual observations), through a half-silvered mir-
ror that was used to split it into two beams traveling at right angles to one another. After leaving
the splitter, the beams traveled out to the ends of long arms where they were reflected back into
the middle by small mirrors. They then recombined on the far side of the splitter in an eyepiece,
producing a pattern of constructive and destructive interference whose transverse displacement
would depend on the relative time it takes light to transit the longitudinal vs. the transverse arms.
If the Earth is traveling through an aether medium, a beam reflecting back and forth parallel to the
flow of aether would take longer than a beam reflecting perpendicular to the aether because the
time gained from traveling downwind is less than that lost traveling upwind. Michelson expected
that the Earth’s motion would produce a fringe shift equal to 0.04 fringes—that is, of the separa-
tion between areas of the same intensity. He did not observe the expected shift; the greatest av-
erage deviation that he measured (in the northwest direction) was only 0.018 fringes; most of his
measurements were much less. His conclusion was that Fresnel’s hypothesis of a stationary aether
with partial aether dragging would have to be rejected, and thus he confirmed Stokes’ hypothesis
of complete aether dragging.

However, Alfred Potier (and later Hendrik Lorentz) pointed out to Michelson that he had made an
error of calculation, and that the expected fringe shift should have been only 0.02 fringes. Michel-
son’s apparatus was subject to experimental errors far too large to say anything conclusive about
the aether wind. Definitive measurement of the aether wind would require an experiment with
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greater accuracy and better controls than the original. Nevertheless, the prototype was successful
in demonstrating that the basic method was feasible.

Michelson—Morley Experiment
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This figure illustrates the folded light path used in the Michelson—Morley interferometer that en-
abled a path length of 11 m. a is the light source, an oil lamp. b is a beam splitter. c is a compensat-
ing plate so that both the reflected and transmitted beams travel through the same amount of glass
(important since experiments were run with white light which has an extremely short coherence
length requiring precise matching of optical path lengths for fringes to be visible; monochromatic
sodium light was used only for initial alignment ). d, d’ and e are mirrors. €’ is a fine adjustment
mirror. f is a telescope.

In 1885, Michelson began a collaboration with Edward Morley, spending considerable time and
money to confirm with higher accuracy Fizeau’s 1851 experiment on Fresnel’s drag coefficient, to
improve on Michelson’s 1881 experiment, and to establish the wavelength of light as a standard of
length. At this time Michelson was professor of physics at the Case School of Applied Science, and
Morley was professor of chemistry at Western Reserve University (WRU), which shared a campus
with the Case School on the eastern edge of Cleveland. Michelson suffered a nervous breakdown
in September 1885, from which he recovered by October 1885. Morley ascribed this breakdown
to the intense work of Michelson during the preparation of the experiments. In 1886, Michelson
and Morley successfully confirmed Fresnel’s drag coefficient — this result was also considered as a
confirmation of the stationary aether concept.

This result strengthened their hope of finding the aether wind. Michelson and Morley created an
improved version of the Michelson experiment with more than enough accuracy to detect this hy-
pothetical effect. The experiment was performed in several periods of concentrated observations
between April and July 1887, in the basement of Adelbert Dormitory of WRU.

As shown in figure, the light was repeatedly reflected back and forth along the arms of the
interferometer, increasing the path length to 11 m (36 ft). At this length, the drift would be about
0.4 fringes. To make that easily detectable, the apparatus was assembled in a closed room in
the basement of the heavy stone dormitory, eliminating most thermal and vibrational effects.
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Vibrations were further reduced by building the apparatus on top of a large block of sandstone,
about a foot thick and five feet square, which was then floated in a circular trough of mercury. They
estimated that effects of about 0.01 fringe would be detectable.

Fringe pattern produced with a Michelson interferometer using white light.
As configured here, the central fringe is white rather than black.

Michelson and Morley and other early experimentalists using interferometric techniques in an at-
tempt to measure the properties of the luminiferous aether, used (partially) monochromatic light
only for initially setting up their equipment, always switching to white light for the actual mea-
surements. The reason is that measurements were recorded visually. Purely monochromatic light
would result in a uniform fringe pattern. Lacking modern means of environmental temperature
control, experimentalists struggled with continual fringe drift even when the interferometer was
set up in a basement. Because the fringes would occasionally disappear due to vibrations caused by
passing horse traffic, distant thunderstorms and the like, an observer could easily “get lost” when
the fringes returned to visibility. The advantages of white light, which produced a distinctive col-
ored fringe pattern, far outweighed the difficulties of aligning the apparatus due to its low coher-
ence length. As Dayton Miller wrote, “White light fringes were chosen for the observations because
they consist of a small group of fringes having a central, sharply defined black fringe which forms
a permanent zero reference mark for all readings.” Use of partially monochromatic light (yellow
sodium light) during initial alignment enabled the researchers to locate the position of equal path
length, more or less easily, before switching to white light.

The mercury trough allowed the device to turn with close to zero friction, so that once having giv-
en the sandstone block a single push it would slowly rotate through the entire range of possible
angles to the “aether wind,” while measurements were continuously observed by looking through
the eyepiece. The hypothesis of aether drift implies that because one of the arms would inevitably
turn into the direction of the wind at the same time that another arm was turning perpendicularly
to the wind, an effect should be noticeable even over a period of minutes.

The expectation was that the effect would be graphable as a sine wave with two peaks and two
troughs per rotation of the device. This result could have been expected because during each full
rotation, each arm would be parallel to the wind twice (facing into and away from the wind giving
identical readings) and perpendicular to the wind twice. Additionally, due to the Earth’s rota-
tion, the wind would be expected to show periodic changes in direction and magnitude during the
course of a sidereal day.

Because of the motion of the Earth around the Sun, the measured data were also expected to show
annual variations.
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Most Famous “Failed” Experiment

. — pard
”J l"-| ——
'-l' .‘.lllul“‘I —
- _
— =
- -
L ‘f"
i -
N, -
e _— 0 ™, Lt
F - e T a
W T o TP
o =
- =]
e ,,.---____'__H_““-_-;‘;_:_’:_____________——‘r
e -
y & T, ra
— ') . o
-
- -
.-""II.F“"-

Michelson and Morley’s results.

The upper solid line is the curve for their observations at noon, and the lower solid line is that
for their evening observations. Note that the theoretical curves and the observed curves are not
plotted at the same scale: the dotted curves, in fact, represent only one-eighth of the theoretical
displacements.

After all this thought and preparation, the experiment became what has been called the most fa-
mous failed experiment in history. Instead of providing insight into the properties of the aether,
Michelson and Morley’s article in the American Journal of Science reported the measurement to
be as small as one-fortieth of the expected displacement, but “since the displacement is propor-
tional to the square of the velocity” they concluded that the measured velocity was “probably less
than one-sixth” of the expected velocity of the Earth’s motion in orbit and “certainly less than one-
fourth.” Although this small “velocity” was measured, it was considered far too small to be used as
evidence of speed relative to the aether, and it was understood to be within the range of an exper-
imental error that would allow the speed to actually be zero. For instance, Michelson wrote about
the “decidedly negative result” in a letter to Lord Rayleigh in August 1887:

“The Experiments on the relative motion of the earth and ether have been completed and the
result decidedly negative. The expected deviation of the interference fringes from the zero
should have been 0.40 of a fringe — the maximum displacement was 0.02 and the average
much less than 0.01 — and then not in the right place. As displacement is proportional to
squares of the relative velocities it follows that if the ether does slip past the relative velocity
is less than one sixth of the earth’s velocity.”

— Albert Abraham Michelson,

From the standpoint of the then current aether models, the experimental results were conflict-
ing. The Fizeau experiment and its 1886 repetition by Michelson and Morley apparently con-
firmed the stationary aether with partial aether dragging, and refuted complete aether dragging.
On the other hand, the much more precise Michelson—Morley experiment apparently confirmed
complete aether dragging and refuted the stationary aether. In addition, the Michelson—Mor-
ley null result was further substantiated by the null results of other second-order experiments
of different kind, namely the Trouton—Noble experiment and the experiments of Rayleigh and
Brace. These problems and their solution led to the development of the Lorentz transformation
and special relativity.

WORLD TECHNOLOGIES




CHAPTER 2  Special Relativity | 47

After the “failed” experiment Michelson and Morley ceased their aether drift measurements and start-
ed to use their newly developed technique to establish the wavelength of light as a standard of length.

Light Path Analysis and Consequences

Observer Resting in the Aether
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Expected differential phase shift between light traveling the
longitudinal versus the transverse arms of the Michelson—-Morley apparatus.

The beam travel time in the longitudinal direction can be derived as follows: Light is sent from the
source and propagates with the speed of light c in the aether. It passes through the half-silvered
mirror at the origin at T = 0. The reflecting mirror is at that moment at distance L (the length of the
interferometer arm) and is moving with velocity v. The beam hits the mirror at time 7, and thus
travels the distance c7;. At this time, the mirror has traveled the distance v7; Thus cT, = L +vT]
and consequently the travel time 7, = L/ (c - v).The same consideration applies to the backward
journey, with the sign of v reversed, resulting in ¢7, = L —vT, and T, = L /(c+v) The total travel
time 7, =T, +7, is:

2
T = L + L 2 1 z£[1+v—j

2
C

Michelson obtained this expression correctly in 1881, however, in transverse direction he obtained
the incorrect expression:
2L

T, ,
C

because he overlooked the increased path length in the rest frame of the aether. This was corrected
by Alfred Potier and Lorentz. The derivation in the transverse direction can be given as follows
(analogous to the derivation of time dilation using a light clock): The beam is propagating at the
speed of light ¢ and hits the mirror at time 7} traveling the distance c7;. At the same time, the
mirror has traveled the distance v7; in the x direction. So in order to hit the mirror, the travel path
of the beam is L in the y direction (assuming equal-length arms) and v7; in the x direction. This
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inclined travel path follows from the transformation from the interferometer rest frame to the
aether rest frame. Therefore, the Pythagorean theorem gives the actual beam travel distance of

12 + (v, )2 .Thus 7, =1 + (T, )2 and consequently the travel time T, = L/~/c* —v*, which

is the same for the backward journey. The total travel time 7, = 27, is:
2L 2L 1 2L ?
I =———=——F—~r—| 1+ V—2
Jet =y ¢ V2 c 2c
==
c
The time difference between T, and T, before rotation is given by:

n-1=2 -
c

- .
v v?
1 2 \/1_62

By multiplying with ¢, the corresponding length difference before rotation is:

L L

A =2 = = |
v v
c c?

A, =2 L B L2
v v
1-— l-—

c? c

Dividing A, —A, by the wavelength A, the fringe shift n is found:

A -A, 2LV

n .
A Ac?

Since L = 11 meters and A=500 nanometers, the expected fringe shift was n = 0.44. So the result
would be a delay in one of the light beams that could be detected when the beams were recombined
through interference. Any slight change in the spent time would then be observed as a shift in the
positions of the interference fringes. The negative result led Michelson to the conclusion that there
is no measurable aether drift.

Observer Comoving with the Interferometer

If the same situation is described from the view of an observer co-moving with the interferometer,
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then the effect of aether wind is similar to the effect experienced by a swimmer, who tries to move
with velocity c against a river flowing with velocity v.

In the longitudinal direction the swimmer first moves upstream, so his velocity is diminished due
to the river flow to ¢ — v. On his way back moving downstream, his velocity is increased to ¢ + v.
This gives the beam travel times 7, and 7, .

In the transverse direction, the swimmer has to compensate for the river flow by moving at a
certain angle against the flow direction, in order to sustain his exact transverse direction of mo-
tion and to reach the other side of the river at the correct location. This diminishes his speed to

V¢* —=v?, and gives the beam travel time 7.

Mirror Reflection

The classical analysis predicted a relative phase shift between the longitudinal and transverse
beams which in Michelson and Morley’s apparatus should have been readily measurable. What
is not often appreciated (since there was no means of measuring it), is that motion through the
hypothetical aether should also have caused the two beams to diverge as they emerged from the
interferometer by about 1078 radians.

For an apparatus in motion, the classical analysis requires that the beam-splitting mirror be slight-
ly offset from an exact 45° if the longitudinal and transverse beams are to emerge from the appa-
ratus exactly superimposed. In the relativistic analysis, Lorentz-contraction of the beam splitter in
the direction of motion causes it to become more perpendicular by precisely the amount necessary
to compensate for the angle discrepancy of the two beams.

Length Contraction and Lorentz Transformation

A first step to explaining the Michelson and Morley experiment’s null result was found in the FitzGer-
ald—Lorentz contraction hypothesis, now simply called length contraction or Lorentz contraction, first
proposed by George FitzGerald and Hendrik Lorentz. According to this law all objects physically con-

tractby L / y alongtheline of motion (originally thought to be relative to the aether), y =1/+/1-v*/¢*

being the Lorentz factor. This hypothesis was partly motivated by Oliver Heaviside’s discovery in 1888
that electrostatic fields are contracting in the line of motion. But since there was no reason at that time
to assume that binding forces in matter are of electric origin, length contraction of matter in motion
with respect to the aether was considered an Ad hoc hypothesis.

If length contraction of L is inserted into the above formula for 7, then the light propagation time
in the longitudinal direction becomes equal to that in the transverse direction:

However, length contraction is only a special case of the more general relation, according to which the
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transverse length is larger than the longitudinal length by the ratio y . This can be achieved in many
ways. If L, is the moving longitudinal length and L = L, being the rest lengths, then it is given:

-2
L o y

@ can be arbitrarily chosen, so there are infinitely many combinations to explain the Michelson—
Morley null result. For instance, if ¢ =1 the relativistic value of length contraction of L, occurs,
butif ¢ =1/ y thenno length contraction but an elongation of L, occurs. This hypothesis was later
extended by Joseph Larmor, Lorentz and Henri Poincaré, who developed the complete Lorentz
transformation including time dilation in order to explain the Trouton—Noble experiment, the
Experiments of Rayleigh and Brace, and Kaufmann’s experiments. It has the form:

[ ] ! 1 vx
X' =yp(x—vt), y' =y, z' =@z,t' = yp t—c—z

It remained to define the value of ¢, which was shown by Lorentz to be unity. In general, Poin-
caré demonstrated that only ¢ =1 allows this transformation te form a group, so it is the only
choice compatible with the principle of relativity, i.e., making the stationary aether undetect-
able. Given this, length contraction and time dilation obtain their exact relativistic values.

Special Relativity

Albert Einstein formulated the theory of special relativity by 1905, deriving the Lorentz transforma-
tion and thus length contraction and time dilation from the relativity postulate and the constancy
of the speed of light, thus removing the ad hoc character from the contraction hypothesis. Einstein
emphasized the kinematic foundation of the theory and the modification of the notion of space and
time, with the stationary aether no longer playing any role in his theory. He also pointed out the group
character of the transformation. Einstein was motivated by Maxwell’s theory of electromagnetism and
the lack of evidence for the luminiferous aether.

This allows a more elegant and intuitive explanation of the Michelson—Morley null result. In a
comoving frame the null result is self-evident, since the apparatus can be considered as at rest in
accordance with the relativity principle, thus the beam travel times are the same. In a frame rela-
tive to which the apparatus is moving, the same reasoning applies as described above in “Length
contraction and Lorentz transformation”, except the word “aether” has to be replaced by “non-co-
moving inertial frame”. Einstein wrote in 1916:

“Although the estimated difference between these two times is exceedingly small, Michelson
and Morley performed an experiment involving interference in which this difference
should have been clearly detectable. But the experiment gave a negative result — a fact
very perplexing to physicists. Lorentz and FitzGerald rescued the theory from this difficulty
by assuming that the motion of the body relative to the ather produces a contraction of
the body in the direction of motion, the amount of contraction being just sufficient to
compensate for the difference in time mentioned above. The standpoint of the theory of
relativity this solution of the difficulty was the right one. But on the basis of the theory
of relativity the method of interpretation is incomparably more satisfactory. According to
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this theory there is no such thing as a “specially favoured” (unique) co-ordinate system to
occasion the introduction of the &ther-idea, and hence there can be no ather-drift, nor any
experiment with which to demonstrate it. Here the contraction of moving bodies follows
from the two fundamental principles of the theory, without the introduction of particular
hypotheses; and as the prime factor involved in this contraction we find, not the motion in
itself, to which we cannot attach any meaning, but the motion with respect to the body of
reference chosen in the particular case in point. Thus for a co-ordinate system moving with
the earth the mirror system of Michelson and Morley is not shortened, but it is shortened
for a co-ordinate system which is at rest relatively to the sun.”

— Albert Einstein

The extent to which the null result of the Michelson—Morley experiment influenced Einstein is dis-
puted. Alluding to some statements of Einstein, many historians argue that it played no significant
role in his path to special relativity, while other statements of Einstein probably suggest that he was
influenced by it. In any case, the null result of the Michelson—Morley experiment helped the notion
of the constancy of the speed of light gain widespread and rapid acceptance.

It was later shown by Howard Percy Robertson and others, that it is possible to derive the Lorentz
transformation entirely from the combination of three experiments. First, the Michelson—Mor-
ley experiment showed that the speed of light is independent of the orientation of the apparatus,
establishing the relationship between longitudinal () and transverse (8) lengths. Then in 1932,
Roy Kennedy and Edward Thorndike modified the Michelson—Morley experiment by making the
path lengths of the split beam unequal, with one arm being very short. The Kennedy—Thorndike
experiment took place for many months as the Earth moved around the sun. Their negative result
showed that the speed of light is independent of the velocity of the apparatus in different inertial
frames. In addition it established that besides length changes, corresponding time changes must
also occur, i.e., it established the relationship between longitudinal lengths () and time changes
(a). So both experiments do not provide the individual values of these quantities. This uncertainty
corresponds to the undefined factor ¢ as described above. It was clear due to theoretical reasons
(the group character of the Lorentz transformation as required by the relativity principle) that the
individual values of length contraction and time dilation must assume their exact relativistic form.
But a direct measurement of one of these quantities was still desirable to confirm the theoretical
results. This was achieved by the Ives—Stilwell experiment, measuring a in accordance with time
dilation. Combining this value for a with the Kennedy—Thorndike null result shows that § must
assume the value of relativistic length contraction. Combining 3 with the Michelson—Morley null
result shows that § must be zero. Therefore, the Lorentz transformation with ¢ =1 is an unavoid-
able consequence of the combination of these three experiments.

Special relativity is generally considered the solution to all negative aether drift (or isotropy of the
speed of light) measurements, including the Michelson—Morley null result. Many high precision
measurements have been conducted as tests of special relativity and modern searches for Lorentz
violation in the photon, electron, nucleon, or neutrino sector, all of them confirming relativity.

Incorrect Alternatives

Michelson initially believed that his experiment would confirm Stokes’ theory, according to which
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the aether was fully dragged in the vicinity of the earth. However, complete aether drag contradicts
the observed aberration of light and was contradicted by other experiments as well. In addition,
Lorentz showed in 1886 that Stokes’s attempt to explain aberration is contradictory.

Furthermore, the assumption that the aether is not carried in the vicinity, but only within matter,
was very problematic as shown by the Hammar experiment. Hammar directed one leg of his in-
terferometer through a heavy metal pipe plugged with lead. If aether were dragged by mass, it was
theorized that the mass of the sealed metal pipe would have been enough to cause a visible effect.
Once again, no effect was seen, so aether-drag theories are considered to be disproven.

Walther Ritz’s emission theory (or ballistic theory) was also consistent with the results of the ex-
periment, not requiring aether. The theory postulates that light has always the same velocity in
respect to the source. However de Sitter noted that emitter theory predicted several optical effects
that were not seen in observations of binary stars in which the light from the two stars could be
measured in a spectrometer. If emission theory were correct, the light from the stars should expe-
rience unusual fringe shifting due to the velocity of the stars being added to the speed of the light,
but no such effect could be seen. It was later shown by J. G. Fox that the original de Sitter experi-
ments were flawed due to extinction, but in 1977 Brecher observed X-rays from binary star systems
with similar null results. Also terrestrial tests using particle accelerators have been made that were
inconsistent with source dependence of the speed of light. In addition, Emission theory might fail
the Ives—Stilwell experiment, but Fox questioned that as well.

Subsequent Experiments

Michelson-Morley

Simulation of the Kennedy/Illingworth refinement of the Michelson—Morley experiment. (a) Mi-
chelson—Morley interference pattern in monochromatic mercury light, with a dark fringe precisely
centered on the screen. (b) The fringes have been shifted to the left by 1/100 of the fringe spacing.
It is extremely difficult to see any difference between this figure and the one above. (c) A small step
in one mirror causes two views of the same fringes to be spaced 1/20 of the fringe spacing to the left
and to the right of the step. (d) A telescope has been set to view only the central dark band around
the mirror step. Note the symmetrical brightening about the center line. (e) The two sets of fringes
have been shifted to the left by 1/100 of the fringe spacing. An abrupt discontinuity in luminosity
is visible across the step.
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Although Michelson and Morley went on to different experiments after their first publication in
1887, both remained active in the field. Other versions of the experiment were carried out with
increasing sophistication. Morley was not convinced of his own results, and went on to conduct ad-
ditional experiments with Dayton Miller from 1902 to 1904. Again, the result was negative within
the margins of error.

Miller worked on increasingly larger interferometers, culminating in one with a 32-meter (105
ft) (effective) arm length that he tried at various sites, including on top of a mountain at the
Mount Wilson Observatory. To avoid the possibility of the aether wind being blocked by sol-
id walls, his mountaintop observations used a special shed with thin walls, mainly of canvas.
From noisy, irregular data, he consistently extracted a small positive signal that varied with
each rotation of the device, with the sidereal day, and on a yearly basis. His measurements in
the 1920s amounted to approximately 10 km/s (6.2 mi/s) instead of the nearly 30 km/s (18.6
mi/s) expected from the Earth’s orbital motion alone. He remained convinced this was due to
partial entrainment or aether dragging, though he did not attempt a detailed explanation. He
ignored critiques demonstrating the inconsistency of his results and the refutation by the Ham-
mar experiment. Miller’s findings were considered important at the time, and were discussed
by Michelson, Lorentz and others at a meeting reported in 1928. There was general agreement
that more experimentation was needed to check Miller’s results. Miller later built a non-mag-
netic device to eliminate magnetostriction, while Michelson built one of non-expanding In-
var to eliminate any remaining thermal effects. Other experimenters from around the world
increased accuracy, eliminated possible side effects, or both. So far, no one has been able to
replicate Miller’s results, and modern experimental accuracies have ruled them out. Roberts
has pointed out that the primitive data reduction techniques used by Miller and other early
experimenters, including Michelson and Morley, were capable of creating apparent periodic
signals even when none existed in the actual data. After reanalyzing Miller’s original data using
modern techniques of quantitative error analysis, Roberts found Miller’s apparent signals to be
statistically insignificant.

Using a special optical arrangement involving a 1/20 wave step in one mirror, Roy J. Kennedy and
K.K. Illingworth converted the task of detecting fringe shifts from the relatively insensitive one of
estimating their lateral displacements to the considerably more sensitive task of adjusting the light
intensity on both sides of a sharp boundary for equal luminance. If they observed unequal illumi-
nation on either side of the step, such as in figure, they would add or remove calibrated weights
from the interferometer until both sides of the step were once again evenly illuminated, as in
figure. The number of weights added or removed provided a measure of the fringe shift. Different
observers could detect changes as little as 1/300 to 1/1500 of a fringe. Kennedy also carried out an
experiment at Mount Wilson, finding only about 1/10 the drift measured by Miller and no seasonal
effects.

In 1930, Georg Joos conducted an experiment using an automated interferometer with 21-me-
ter-long (69 ft) arms forged from pressed quartz having very low thermal coefficient of expansion,
that took continuous photographic strip recordings of the fringes through dozens of revolutions of
the apparatus. Displacements of 1/1000 of a fringe could be measured on the photographic plates.
No periodic fringe displacements were found, placing an upper limit to the aether wind of 1.5 km/s
(0.93 mi/s).
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( Rapidity )

In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, ra-
pidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative
motion, each frame being associated with distance and time coordinates.

For one-dimensional motion, rapidities are additive whereas velocities must be combined by Ein-
stein’s velocity-addition formula. For low speeds, rapidity and velocity are proportional, but for
higher velocities, rapidity takes a larger value, the rapidity of light being infinite.

Using the inverse hyperbolic function artanh, the rapidity w corresponding to velocity v is w =
artanh(v / c) where c is the velocity of light. For low speeds, w is approximately v / c. Since in rel-
ativity any velocity v is constrained to the interval —c¢ < v < ¢ the ratio v / ¢ satisfies -1 <v /c < 1.
The inverse hyperbolic tangent has the unit interval (- 1, 1) for its domain and the whole real line
for its range, and so the interval —c < v < ¢ mapsonto —0o< w < ©.

In 1908 Hermann Minkowski explained how the Lorentz transformation could be seen as simply a
hyperbolic rotation of the spacetime coordinates, i.e., a rotation through an imaginary angle. This
angle therefore represents (in one spatial dimension) a simple additive measure of the velocity
between frames. The rapidity parameter replacing velocity was introduced in 1910 by Vladimir
Vari¢ak and by E. T. Whittaker. The parameter was named rapidity by Alfred Robb and this term
was adopted by many subsequent authors, such as Silberstein, Morley and Rindler.

Area of a Hyperbolic Sector

The quadrature of the hyperbola xy = 1 by Gregoire de Saint-Vincent established the natural loga-
rithm as the area of a hyperbolic sector, or an equivalent area against an asymptote. In spacetime
theory, the connection of events by light divides the universe into Past, Future, or Elsewhere based
on a Here and Now. On any line in space, a light beam may be directed left or right. Take the x-axis
as the events passed by the right beam and the y-axis as the events of the left beam. Then a resting
frame has time along the diagonal x = y. The rectangular hyperbola xy = 1 can be used to gauge
velocities (in the first quadrant). Zero velocity corresponds to (1,1). Any point on the hyperbola has
coordinates (e", e ") where w is the rapidity, and is equal to the area of the hyperbolic sector from
(1,1) to these coordinates. Many authors refer instead to the unit hyperbola x* — y*, using rapidity
for parameter, as in the standard spacetime diagram. There the axes are measured by clock and
meter-stick, more familiar benchmarks, and the basis of spacetime theory. So the delineation of
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rapidity as hyperbolic parameter of beam-space is a reference to the seventeenth century origin of
our precious transcendental functions, and a supplement to spacetime diagramming.

In One Spatial Dimension

The rapidity w arises in the linear representation of a Lorentz boost as a vector-matrix product:

ct' coshw —sinhw)(ct ct
=l . =Aw)| |
x' —sinhw coshw )\ x X
. . P q) . s .
The matrix A(w) is of the type ( ) with p and q satisfying p® - g* = 1, so that (p, g) lies on the
unit hyperbola. 9 P

Such matrices form the indefinite orthogonal group O(1,1) with one-dimensional Lie algebra
spanned by the anti-diagonal unit matrix, showing that the rapidity is the coordinate on this Lie

algebra. In matrix exponential notation, A(w) can be expressed as A(w) = e” where Z is the neg-

ative of the anti-diagonal unit matrix:

Z:(_Ol ‘01].

It is not hard to prove that:
A(Wl + Wz) = A(Wl)A(Wz)-

This establishes the useful additive property of rapidity: if A, B and C are frames of reference,
then:

Wac = Wag T Wae

where w,,, denotes the rapidity of a frame of reference Q relative to a frame of reference P. The
simplicity of this formula contrasts with the complexity of the corresponding velocity-addition
formula.

As we can see from the Lorentz transformation above, the Lorentz factor identifies with cosh w:

1
Yy = ——=—==coshw,

N1=v*/¢c?

so the rapidity w is implicitly used as a hyperbolic angle in the Lorentz transformation expressions
using y and 3. We relate rapidities to the velocity-addition formula:

u=u +u,)/ (+uu,/c’)

by recognizing:
B = % _ tanh w,
c

WORLD TECHNOLOGIES




56 | Introduction to Relativity

and so:

tanh w, + tanh w,
1+ tanh w, tanh w,

tanh w =

= tanh(w, +w,)

Proper acceleration (the acceleration ‘felt’ by the object being accelerated) is the rate of change
of rapidity with respect to proper time (time as measured by the object undergoing acceleration
itself). Therefore, the rapidity of an object in a given frame can be viewed simply as the velocity of
that object as would be calculated non-relativistically by an inertial guidance system on board the
object itself if it accelerated from rest in that frame to its given speed.

The product of  and y appears frequently, and is from the above arguments:
Py =sinhw.

Exponential and Logarithmic Relations

From the above expressions we have:

l+2
€W=7(1+,3)=;/(1+3J: e
c -2

and thus:
w v -
e"=y(-p)=y|l=-=|= Z.
C 1+;

or explicitly:
w= ln[;/(l +ﬁ)] = —11’1[]/(1 —ﬂ)].
The Doppler-shift factor associated with rapidity w is k =e".

In more than One Spatial Dimension

The relativistic velocity £ is associated to the rapidity w of an object via:
s0(3,1) ospan{K,,K,,K,} ~R* 5w =fBtanh™' 8, BeB’,

where the vector w is thought of as Cartesian coordinates on the 3-dimensional subspace of the
Lie algebra o(3,1) = s0(3,1) of the Lorentz group spanned by the boost generators K ,K,,K, —in
complete analogy with the one-dimensional case o(1,1) discussed above — and velocity space is
represented by the open ball B* with radius 1 since | £ |< 1. The latter follows from that c is a lim-
iting velocity in relativity (with units in which ¢ = 1).
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The general formula for composition of rapidities is:
w=ftanh' B, f=p5p,

where S, @ f, refers to relativistic velocity addition and ,[3’ is a unit vector in the direction of
p . This operation is not commutative nor associative. Rapidities w,,w,w ,w, with directions
inclined at an angle 6 have a resultant norm w=|w | (ordinary Euclidean length) given by the
hyperbolic law of cosines,

cosh w = cosh w, cosh w, + sinh w, sinh w, cos 6.
The geometry on rapidity space is inherited from the hyperbolic geometry on velocity space via the
map stated. This geometry, in turn, can be inferred from the addition law of relativistic velocities.
Rapidity in two dimensions can thus be usefully visualized using the Poincaré disk. Geodesics cor-
respond to steady accelerations. Rapidity space in three dimensions can in the same way be put in

isometry with the hyperboloid model (isometric to the 3-dimensional Poincaré disk (or ball)). This
is detailed in geometry of Minkowski space.

The addition of two rapidities results not only in a new rapidity; the resultant total transformation
is the composition of the transformation corresponding to the rapidity given above and a rotation
parametrized by the vector &,

—-i0-J _—iw'K
A=e""¢ s

where the physicist convention for the exponential mapping is employed. This is a consequence of
the commutation rule:

(K, K 1= i€, J,,

ik

Where J,,k =1,2,3, are the generators of rotation. This is related to the phenomenon of Thomas
precession.

In Experimental Particle Physics

The energy E and scalar momentum |p| of a particle of non-zero (rest) mass m are given by:
E =ymc’
|p[=ymv.

With the definition of w:

\%
w = artanh —,
C

and thus with:

cosh w= cosh (artanh K] = ; =y
c
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v
. . v
sinh w=sinh| artanh— |= —5— = fy,
C v2
1=
c
the energy and scalar momentum can be written as:
E =mc* coshw

| p |= mcsinh w.

So rapidity can be calculated from measured energy and momentum by:

[plc 1, E+[plc
2 E-[plc

w = artanh

However, experimental particle physicists often use a modified definition of rapidity relative to a
beam axis:
1, E+pc

=—In
4 2 E-pc

where p, is the component of momentum along the beam axis. This is the rapidity of the boost
along the beam axis which takes an observer from the lab frame to a frame in which the particle
moves only perpendicular to the beam. Related to this is the concept of pseudorapidity.

(C Maxwell’s Equations ))

Maxwell’s equations are a set of coupled partial differential equations that, together with the Lo-
rentz force law, form the foundation of classical electromagnetism, classical optics, and electric
circuits. The equations provide a mathematical model for electric, optical, and radio technologies,
such as power generation, electric motors, wireless communication, lenses, radar etc. Maxwell’s
equations describe how electric and magnetic fields are generated by charges, currents, and chang-
es of the fields. An important consequence of the equations is that they demonstrate how fluctuat-
ing electric and magnetic fields propagate at a constant speed (c) in a vacuum. Known as electro-
magnetic radiation, these waves may occur at various wavelengths to produce a spectrum of light
from radio waves to y-rays. The equations are named after the physicist and mathematician James
Clerk Maxwell, who between 1861 and 1862 published an early form of the equations that included
the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic
phenomenon.

The equations have two major variants. The microscopic Maxwell equations have universal
applicability but are unwieldy for common calculations. They relate the electric and magnet-
ic fields to total charge and total current, including the complicated charges and currents in
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materials at the atomic scale. The “macroscopic” Maxwell equations define two new auxiliary
fields that describe the large-scale behaviour of matter without having to consider atomic
scale charges and quantum phenomena like spins. However, their use requires experimentally
determined parameters for a phenomenological description of the electromagnetic response
of materials.

The term “Maxwell’s equations” is often also used for equivalent alternative formulations. Versions
of Maxwell’s equations based on the electric and magnetic potentials are preferred for explicitly
solving the equations as a boundary value problem, analytical mechanics, or for use in quantum
mechanics. The covariant formulation (on spacetime rather than space and time separately) makes
the compatibility of Maxwell’s equations with special relativity manifest. Maxwell’s equations in
curved spacetime, commonly used in high energy and gravitational physics, are compatible with
general relativity. In fact, Einstein developed special and general relativity to accommodate the
invariant speed of light, a consequence of Maxwell’s equations, with the principle that only relative
movement has physical consequences.

Since the mid-20th century, it has been understood that Maxwell’s equations are not exact, but a
classical limit of the fundamental theory of quantum electrodynamics.

Maxwell’s equations as featured on a monument in
front of Warsaw University’s Center of New Technologies.

Gauss’s Law

Gauss’s law describes the relationship between a static electric field and the electric charges that
cause it: a static electric field points away from positive charges and towards negative charges,
and the net outflow of the electric field through any closed surface is proportional to the charge
enclosed by the surface. Picturing the electric field by its field lines, this means the field lines be-
gin at positive electric charges and end at negative electric charges. ‘Counting’ the number of field
lines passing through a closed surface yields the total charge (including bound charge due to po-
larization of material) enclosed by that surface, divided by dielectricity of free space (the vacuum
permittivity).
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Gauss’s law for magnetism: Magnetic field lines never begin nor end but form loops
or extend to infinity as shown here with the magnetic field due to a ring of current.

Gauss’s Law for Magnetism

Gauss’s law for magnetism states that there are no “magnetic charges” (also called magnetic
monopoles), analogous to electric charges. Instead, the magnetic field due to materials is gen-
erated by a configuration called a dipole, and the net outflow of the magnetic field through any
closed surface is zero. Magnetic dipoles are best represented as loops of current but resemble
positive and negative ‘magnetic charges’, inseparably bound together, having no net ‘magnetic
charge’. In terms of field lines, this equation states that magnetic field lines neither begin nor
end but make loops or extend to infinity and back. In other words, any magnetic field line that
enters a given volume must somewhere exit that volume. Equivalent technical statements are
that the sum total magnetic flux through any Gaussian surface is zero, or that the magnetic field
is a solenoidal vector field.

Faraday’s Law

In a geomagnetic storm, a surge in the flux of charged particles temporarily alters Earth’s magnetic field, which
induces electric fields in Earth’s atmosphere, thus causing surges in electrical power grids.

The Maxwell-Faraday version of Faraday’s law of induction describes how a time varying magnet-
ic field creates (“induces”) an electric field. In integral form, it states that the work per unit charge
required to move a charge around a closed loop equals the rate of decrease of the magnetic flux
through the enclosed surface.

The dynamically induced electric field has closed field lines similar to a magnetic field, unless su-
perposed by a static (charge induced) electric field. This aspect of electromagnetic induction is the
operating principle behind many electric generators: for example, a rotating bar magnet creates a
changing magnetic field, which in turn generates an electric field in a nearby wire.
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Ampere’s Law with Maxwell’s Addition

Magnetic core memory is an application of Ampere’s law. Each core stores one bit of data.

Ampere’s law with Maxwell’s addition states that magnetic fields can be generated in two ways:
by electric current (this was the original “Ampere’s law”) and by changing electric fields (this was
“Maxwell’s addition”, which he called displacement current). In integral form, the magnetic field
induced around any closed loop is proportional to the electric current plus displacement current
(proportional to the rate of change of electric flux) through the enclosed surface.

Maxwell’s addition to Ampere’s law is particularly important: it makes the set of equations mathe-
matically consistent for non static fields, without changing the laws of Ampere and Gauss for static
fields. However, as a consequence, it predicts that a changing magnetic field induces an electric
field and vice versa. Therefore, these equations allow self-sustaining “electromagnetic waves” to
travel through empty space.

The speed calculated for electromagnetic waves, which could be predicted from experiments on
charges and currents, exactly matches the speed of light; indeed, light is one form of electromag-
netic radiation (as are X-rays, radio waves, and others). Maxwell understood the connection be-
tween electromagnetic waves and light in 1861, thereby unifying the theories of electromagnetism
and optics.

Formulation in Terms of Electric and Magnetic Fields

In the electric and magnetic field formulation there are four equations that determine the fields for
given charge and current distribution. A separate law of nature, the Lorentz force law, describes
how, conversely, the electric and magnetic field act on charged particles and currents. A version
of this law was included in the original equations by Maxwell but, by convention, is included no
longer. The vector calculus formalism, due to Oliver Heaviside, has become standard. It is man-
ifestly rotation invariant, and therefore mathematically much more transparent than Maxwell’s
original 20 equations in x,y,z components. The relativistic formulations are even more symmetric
and manifestly Lorentz invariant. For the same equations expressed using tensor calculus or dif-
ferential forms.

The differential and integral equations formulations are mathematically equivalent and are both
useful. The integral formulation relates fields within a region of space to fields on the boundary
and can often be used to simplify and directly calculate fields from symmetric distributions of
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charges and currents. On the other hand, the differential equations are purely local and are a more
natural starting point for calculating the fields in more complicated (less symmetric) situations, for
example using finite element analysis.

Key to the Notation

Symbols in bold represent vector quantities, and symbols in italics represent scalar quantities,
unless otherwise indicated. The equations introduce the electric field, E, a vector field, and the
magnetic field, B, a pseudovector field, each generally having a time and location dependence. The
sources are:

« The total electric charge density (total charge per unit volume), p,
« The total electric current density (total current per unit area), J.

The universal constants appearing in the equations (the first two ones explicitly only in the SI units
formulation) are:

«  The permittivity of free space, ¢,

«  The permeability of free space, u,,

.  The speed of light, C = —L—.
N Eoty

Differential Equations

In the differential equations,
+ The nabla symbol, V, denotes the three-dimensional gradient operator, del,
+ The V- symbol denotes the divergence operator,

« The Vx symbol denotes the curl operator.

Integral Equations

In the integral equations,
« Qis any fixed volume with closed boundary surface 042,
« Xis any fixed surface with closed boundary curve 9.

Here a fixed volume or surface means that it does not change over time. The equations are correct,
complete, and a little easier to interpret with time-independent surfaces. For example, since the sur-
face is time-independent, we can bring the differentiation under the integral sign in Faraday’s law:

d OB
E.UZB.dS - .”;Eds i

Maxwell’s equations can be formulated with possibly time-dependent surfaces and volumes by
using the differential version and using Gauss and Stokes formula appropriately.
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. 456 oo 1s a surface integral over the boundary surface 0Q, with the loop indicating the
surface is closed,

. ﬂ_[ a is a volume integral over the volume (2,

. @ 2> is aline integral around the boundary curve 9%, with the loop indicating the curve is
closed,

. I ,[ > is a surface integral over the surface X,

« The total electric charge Q enclosed in {2 is the volume integral over (2 of the charge density p:
0=[[fpar.
Q

where dV is the volume element.

« The net electric current I is the surface integral of the electric current density J passing
through a fixed surface, X:

1=jjJ-ds,
z

where dS denotes the differential vector element of surface area S, normal to surface X. (Vector
area is sometimes denoted by A rather than S, but this conflicts with the notation for magnetic
potential).

Formulation in SI Units Convention

Name Integral equations Differential equations

Gauss’s law

1

wEds=—[[[ pa¥ vVE=£

€ "0 )
Gauss’s law for magnetism L B-dS=0 VB=0
Maxwell-Faraday equation
(Faraday’s law of induction) 0 E . dl = _ij..[ B-dS VxE = _8_B

dr ¥ 2 ot
Ampére’s circuital law (with d OF,
Maxwell’s addition) Al — . el . VxB= J+e,—

§y B ,uoudeS+godthdS] w1+a %)

Formulation in Gaussian Units Convention

The definitions of charge, electric field, and magnetic field can be altered to simplify theoretical
calculation, by absorbing dimensioned factors of ¢ and y_ into the units of calculation, by convention.
With a corresponding change in convention for the Lorentz force law this yields the same physics,
i.e. trajectories of charged particles, or work done by an electric motor. These definitions are often
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preferred in theoretical and high energy physics where it is natural to take the electric and magnetic field
with the same units, to simplify the appearance of the electromagnetic tensor: the Lorentz covariant
object unifying electric and magnetic field would then contain components with uniform unit and
dimension. Such modified definitions are conventionally used with the Gaussian (CGS) units. Using
these definitions and conventions, colloquially “in Gaussian units”, the Maxwell equations become:

Name Integral equations Differential equations
Gauss’s law @m E-dS :47TJ‘_”PdV VE=4rp
Q
Gauss’s law for magnetism B ds =0 VB=0
Maxwell-Faraday equation (Far-
aday’s law of induction) (ﬁE -d/ = —liIIB -dS VXE = _la_B
S cdr; c ot

Ampere’s circuital law (with 1 d 1 OF.
Maxwell’s addition) (JS@Z B-d/ =—(47f”J‘dS +_”E.dsJ VxB :_(47ZJ+a—j

¢ & dr ¢ t

The equations are particularly readable when length and time are measured in compatible units
like seconds and lightseconds i.e. in units such that ¢ = 1 unit of length/unit of time. Ever since
1983, metres and seconds are compatible except for historical legacy since by definition ¢ = 299
792 458 m/s (= 1.0 feet/nanosecond).

Further cosmetic changes, called rationalisations, are possible by absorbing factors of 47t depending
on whether we want Coulomb’s law or Gauss’s law to come out nicely. In theoretical physics it is
often useful to choose units such that Planck’s constant, the elementary charge, and even Newton’s
constant are 1.

Relationship between Differential and Integral Formulations

The equivalence of the differential and integral formulations are a consequence of the Gauss diver-
gence theorem and the Kelvin—Stokes theorem.

Flux and Divergence

Volume Q and its closed boundary 9Q, containing (respectively enclosing) a source (+) and sink (-)
of a vector field F. Here, F could be the E field with source electric charges, but notthe B field, which
has no magnetic charges as shown. The outward unit normal is n.
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According to the (purely mathematical) Gauss divergence theorem, the electric flux through the
boundary surface 02 can be rewritten as:

gﬁﬁaz Eds=([[ VEdV

The integral version of Gauss’s equation can thus be rewritten as:

mQ(V-E—éjdV=0

Since Q is arbitrary (e.g. an arbitrary small ball with arbitrary center), this is satisfied iff the
integrand is zero. This is the differential equations formulation of Gauss equation up to a trivial
rearrangement.

Similarly rewriting the magnetic flux in Gauss’s law for magnetism in integral form gives:

gfﬁmnds :jﬂgv-BdV =0.
which is satisfied for all Q iff V-B=0.

Circulation and Curl

Surface X with closed boundary 0. F could be the E or B fields. Again, nis the unit normal.
(The curl of a vector field doesn’t literally look like the “circulations”, this is a heuristic depiction.)

By the Kelvin—Stokes theorem we can rewrite the line integrals of the fields around the closed
boundary curve 9% to an integral of the “circulation of the fields” (i.e. their curls) over a surface it
bounds, i.e:

§par=[[.vxmyas

Hence the modified Ampere law in integral form can be rewritten as:

HZ(V xB - p, (J e %—];:D-ds ~0.
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Since X can be chosen arbitrarily, e.g. as an arbitrary small, arbitrary oriented, and arbitrary
centered disk, we conclude that the integrand is zero iff Ampere’s modified law in differential
equations form is satisfied. The equivalence of Faraday’s law in differential and integral form
follows likewise.

The line integrals and curls are analogous to quantities in classical fluid dynamics: the circulation
of a fluid is the line integral of the fluid’s flow velocity field around a closed loop, and the vorticity
of the fluid is the curl of the velocity field.

Charge Conservation

The invariance of charge can be derived as a corollary of Maxwell’s equations. The left-hand side
of the modified Ampere’s Law has zero divergence by the div—curl identity. Expanding the diver-
gence of the right-hand side, interchanging derivatives, and applying Gauss’s law gives:

0 op
0=VVxB= VJ+g —VE |= VJ+—
/‘0( 0% ] ﬂo( 51‘]
ie:
P vy=o.
ot

By the Gauss Divergence Theorem, this means the rate of change of charge in a fixed volume equals
the net current flowing through the boundary:

d d
EQQ - EJ.”QPdV . _j.”aQJ.dS =l

In particular, in an isolated system the total charge is conserved.

Vacuum Equations, Electromagnetic Waves and Speed of Light

In a region with no charges (p = 0) and no currents (J = 0), such as in a vacuum, Maxwell’s equa-
tions reduce to:

VE=0 VxE=- B
ot

VB=0 VxB:yoeoaa—E.
t

Taking the curl (Vx) of the curl equations, and using the curl of the curl identity we obtain:
OE _,
& —-—VE=0
Ho&y o

0’B
,Llogo ?— VZB =0
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The quantity £4,&, has the dimension of (time/length)?. Defining ¢ = (ty8,)™"?, the equations
above have the form of the standard wave equations:

2
izaatlf—szzo
C

2
iza; ~V’B=0
C

Already during Maxwell’s lifetime, it was found that the known values for ¢, and #o give
c~2.998x10* m/s, then already known to be the speed of light in free space. This led him to
propose that light and radio waves were propagating electromagnetic waves, since amply
confirmed. In the old SI system of units, the values of x4, =47 x10”" and ¢ =299792458m/s are
defined constants, (which means that by definition &, =8.854...x 107" F/m) ) that define the am-

pere and the metre. In the new SI system, only ckeeps its defined value, and the electron charge
gets a defined value.

In materials with relative permittivity, € , and relative permeability, 4, the phase velocity of light
becomes:

1
A V—

’ \ Ho o€,

which is usually less than c.

In addition, E and B are perpendicular to each other and to the direction of wave propagation,
and are in phase with each other. A sinusoidal plane wave is one special solution of these equa-
tions. Maxwell’s equations explain how these waves can physically propagate through space. The
changing magnetic field creates a changing electric field through Faraday’s law. In turn, that elec-
tric field creates a changing magnetic field through Maxwell’s addition to Ampére’s law. This
perpetual cycle allows these waves, now known as electromagnetic radiation, to move through
space at velocity c.

Macroscopic Formulation

The above equations are the “microscopic” version of Maxwell’s equations, expressing the electric
and the magnetic fields in terms of the (possibly atomic-level) charges and currents present. This
is sometimes called the “general” form, but the macroscopic version below is equally general, the
difference being one of bookkeeping.

The microscopic version is sometimes called “Maxwell’s equations in a vacuum”: this refers to the
fact that the material medium is not built into the structure of the equations, but appears only in
the charge and current terms. The microscopic version was introduced by Lorentz, who tried to use
it to derive the macroscopic properties of bulk matter from its microscopic constituents.

“Maxwell’s macroscopic equations”, also known as Maxwell’s equations in matter, are more simi-
lar to those that Maxwell introduced himself.
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Name Integral equations (SI convention) Differential equa- Differential equations
tions (SI convention) | (Gaussian convention)

Gauss’s law . — T —

§p _pas=|[] p v V-D=p; VD =47rp,

Gauss’s‘law for Cﬁ-) B-dS =0 V-B=0 V-B=0

magnetism o0

Maxwell-Faraday

equation (Faraday’s Ed/ = —i'U B-dS VxE = —a—B VxE = —la—B

law of induction) oz dt 79z ot c ot

Ampére’s circuital D

law (with Maxwell's | § H-df =[] Jf-dS+iﬂ pds | vxH=J,+2 |vin=L(4z 3+ 2

addition) oz z dt vz ot c ot

In the “macroscopic” equations, the influence of bound charge Q, and bound current I, is
incorporated into the displacement field D and the magnetizing field H, while the equations de-
pend only on the free charges Q,and free currents I. This reflects a splitting of the total electric
charge Q and current I (and their densities p and J) into free and bound parts:

0-0+0.~[[[tn+ nJaV= [[] pa
I=1+1,=[[ (3, +3,)dS = [[ 3-d8

The cost of this splitting is that the additional fields D and H need to be determined through
phenomenological constituent equations relating these fields to the electric field E and the magnetic
field B, together with the bound charge and current.

Bound Charge and Current

OOO
@

+
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@
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Left: A schematic view of how an assembly of microscopic dipoles produces opposite surface charges as
shown at top and bottom. Right: How an assembly of microscopic current loops add together
to produce a macroscopically circulating current loop.

CC
C O

DO OO ®Q
O@O@
O@O@O

When anelectricfield is applied to a dielectric material its molecules respond by forming microscopic
electric dipoles — their atomic nuclei move a tiny distance in the direction of the field, while their
electrons move a tiny distance in the opposite direction. This produces a macroscopic bound
charge in the material even though all of the charges involved are bound to individual molecules.
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For example, if every molecule responds the same, similar to that shown in the figure, these tiny
movements of charge combine to produce a layer of positive bound charge on one side of the
material and a layer of negative charge on the other side. The bound charge is most conveniently
described in terms of the polarization P of the material, its dipole moment per unit volume. If P is
uniform, a macroscopic separation of charge is produced only at the surfaces where P enters and
leaves the material. For non-uniform P, a charge is also produced in the bulk.

Somewhat similarly, in all materials the constituent atoms exhibit magnetic moments that are
intrinsically linked to the angular momentum of the components of the atoms, most notably their
electrons. The connection to angular momentum suggests the picture of an assembly of micro-
scopic current loops. Outside the material, an assembly of such microscopic current loops is not
different from a macroscopic current circulating around the material’s surface, despite the fact
that no individual charge is traveling a large distance. These bound currents can be described
using the magnetization M.

The very complicated and granular bound charges and bound currents, therefore, can be repre-
sented on the macroscopic scale in terms of P and M, which average these charges and currents
on a sufficiently large scale so as not to see the granularity of individual atoms, but also sufficient-
ly small that they vary with location in the material. As such, Maxwell’s macroscopic equations
ignore many details on a fine scale that can be unimportant to understanding matters on a gross
scale by calculating fields that are averaged over some suitable volume.

Auxiliary Fields, Polarization and Magnetization
The definitions (not constitutive relations) of the auxiliary fields are:
D(r,t) = ¢, E(r,t) + P(r,1)

H(r,t) = LB(r, t)—M(r,1)

Ho

where P is the polarization field and M is the magnetization field, which are defined in terms
of microscopic bound charges and bound currents respectively. The macroscopic bound charge
density p, and bound current density J, in terms of polarization P and magnetization M are then
defined as:

Py =—VP
oP

J, =VxM+—
Ot

If we define the total, bound, and free charge and current density by:

P =Pyt Pr>
J=J,+J,,

and use the defining relations above to eliminate D, and H, the “macroscopic” Maxwell’s equations
reproduce the “microscopic” equations.
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Constitutive Relations

In order to apply ‘Maxwell’s macroscopic equations’, it is necessary to specify the relations between
displacement field D and the electric field E, as well as the magnetizing field H and the magnetic
field B. Equivalently, we have to specify the dependence of the polarization P (hence the bound
charge) and the magnetization M (hence the bound current) on the applied electric and magnetic
field. The equations specifying this response are called constitutive relations. For real-world ma-
terials, the constitutive relations are rarely simple, except approximately, and usually determined
by experiment.

For materials without polarization and magnetization, the constitutive relations are:

D=¢FE, H-1B

Ho

where ¢_ is the permittivity of free space and u, the permeability of free space. Since there is no
bound charge, the total and the free charge and current are equal.

An alternative viewpoint on the microscopic equations is that they are the macroscopic equa-
tions together with the statement that vacuum behaves like a perfect linear “material” without
additional polarization and magnetization. More generally, for linear materials the constitutive
relations are:

D=¢E, H:lB
U

where ¢ is the permittivity and p the permeability of the material. For the displacement field D
the linear approximation is usually excellent because for all but the most extreme electric fields
or temperatures obtainable in the laboratory (high power pulsed lasers) the interatomic electric
fields of materials of the order of 10" V/m are much higher than the external field. For the
magnetizing field H, however, the linear approximation can break down in common materials
like iron leading to phenomena like hysteresis. Even the linear case can have various complica-
tions, however.

« For homogeneous materials, ¢ and p are constant throughout the material, while for
inhomogeneous materials they depend on location within the material (and perhaps
time).

« For isotropic materials, € and p are scalars, while for anisotropic materials (e.g. due to
crystal structure) they are tensors.

« Materials are generally dispersive, so € and p depend on the frequency of any incident EM
waves.

Even more generally, in the case of non-linear materials, D and P are not necessarily proportional
to E, similarly H or M is not necessarily proportional to B. In general D and Hdepend on both E
and B, on location and time, and possibly other physical quantities.
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In applications one also has to describe how the free currents and charge density behave in terms of
E and B possibly coupled to other physical quantities like pressure, and the mass, number density,
and velocity of charge-carrying particles. E.g., the original equations given by Maxwell included
Ohm’s law in the form:

J, =0E.

Alternative Formulations

Following is a summary of some of the numerous other mathematical formalisms to write the
microscopic Maxwell’s equations, with the columns separating the two homogeneous Maxwell
equations from the two inhomogeneous ones involving charge and current. Each formulation
has versions directly in terms of the electric and magnetic fields, and indirectly in terms of the
electrical potential ¢ and the vector potential A. Potentials were introduced as a convenient
way to solve the homogeneous equations, but it was thought that all observable physics was
contained in the electric and magnetic fields (or relativistically, the Faraday tensor). The po-
tentials play a central role in quantum mechanics, however, and act quantum mechanically
with observable consequences even when the electric and magnetic fields vanish (Aharonov—
Bohm effect).

Each table describes one formalism. SI units are used throughout.

Vector Calculus

Formulation Homogeneous equations Inhomogeneous equations
Fields
1 V-B=0 vV-E =~
D Euclid ti

3D Euclidean space + time OB &

VxE+ a— =0 1 8E

t VxB-—"=puJ
c* ot #o

Potentials (any gauge) B =VxA _qu) _Q(V~A) _ ﬁ
3D Euclidean space + time oA ot &

E = —V(p - a— )

t 1 0 1 op
Vit —— |A+V|VA+—— |=pJ
¢’ ot ( ¢’ ot ] .

Potentials (Lorenz gauge) B =VxA L1 a? p
3D Euclidean space + time oA -V c_257 = g_

E=-Vp-—— ‘

ot | &
1 V5 A=yl
VA :__28_(/’ 2 or Hy
c” ot
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Tensor Calculus

Formulation Homogeneous equations Inhomogeneous equations
Fields
a[,Bjk] LG\/ZE‘ _
space + time \v4 . B " =0 \/Z !
i
spatial metric independent 5B VE = P
of time a[lEj] t— at €
OB, —0, \/_ i_ Ej _
' —
V[l.E At _81‘ =0 \/_ a
1 OE/ ;
-V,B' —— = HyJ’
¢’ ot
Potentials i
B a[lAj] _Laiﬁ[af¢+ai):
space (with topological =V A Jh o
restrictions) + time [ B P
VVip-=v.4=E
. P _ aA, ot €
spatial metric independent E = —E -0.¢ _
of time 1 —_ 1 004’ .
——=0 AN WO A J+——| —+0'¢ |=
__%—V¢ Jn l\/_ L] c’ 5t( ot ¢j
i 2 4)
y VVA’+L6A +R’A’+V’(VA’ : a;j HoJ”
Potentials (Lorenz gauge)
s i a[i Aj]
space (with topological -V A
restrictions) + time L=/
oA 13 _p
i -VVp+——>="—
spatial metric independent E = _8_ -0, Vot c* or? &
of time 4 1 A
A. )
M vy VYA + FRIA = )
ot c’
; 10
g L0
c” Ot
Differential Forms
Formulation Homogeneous equations Inhomogeneous equations
Fields dB=0 P
An ti OB d*E=—
space + time
vsb ! dE + a— =0 €
! 1 0*E
d*B iy = ,LIOJ
¢ ot
Potentials (any gauge) B=dA o4 P
. . L. —d=|d ¢ +— =L
Any space (with topological restrictions) ot €
+ time =—d¢— 5
10
dxdA+——x| dp+ 1o
c” ot
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Potential (Lorenz Gauge)

Any space (with topological restrictions)
+ time

spatial metric independent of time

B=dA
04
E=—d¢p——
¢ ot
d*A:_*iza_¢
c” ot

1 o’ P
| _Ap+——g |= L
( ? ¢’ ot ] €

1 0’4
*| -AAd+— = tyJ
( ¢’ 82tj Ho

Relativistic Formulations

The Maxwell equations can also be formulated on a spacetime-like Minkowski space where space
and time are treated on equal footing. The direct spacetime formulations make manifest that the
Maxwell equations are relativistically invariant. Because of this symmetry electric and magnetic
field are treated on equal footing and are recognised as components of the Faraday tensor. This
reduces the four Maxwell equations to two, which simplifies the equations, although we can no
longer use the familiar vector formulation. In fact the Maxwell equations in the space + time for-
mulation are not Galileo invariant and have Lorentz invariance as a hidden symmetry. This was
a major source of inspiration for the development of relativity theory. To repeat: the space + time
formulation is not a non-relativistic approximation and it describes the same physics by simply
renaming variables. For this reason the relativistic invariant equations are usually called the Max-

well equations as well.
Each table describes one formalism.

Tensor Calculus

Minkowski space

Formulation Homogeneous equations Inhomogeneous equations
Fields
O, 1 =0 0,F7 = pJ”
Minkowski space g’
Potentials (any gauge)
= [a 481 _ B
Faﬁ 20 [aAﬂ] 20,0 “A" = u,J

Potentials (Lorenz gauge)

Minkowski space

F, =20 ,440,4°

0,0°A" = uJ”’

Fields 1 ;
: ——0,(J—gF") =
An t _ _ _ “
v spacetime 0 (oF =V (oFyy =0 VTE
V F?=uJ’
Potentials (any gauge) o)
— [— o o® BV —
Any spacetime (with topological restrictions) Fop = 28[“145] [ g 0.(N-28"¢" 0, A,)
= 2V[ A 51
2V, (V") = p, "
Potentials (Lorenz gauge) _
gaug F, 3 =204
Any spacetime (with topological restrictions) _ o o
=2V, 4, V VA’ R’ A% = p,J”
V_A°=0
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Differential Forms

Formulation Homogeneous equations Inhomogeneous equations
Fields

dFr =0 dx F=puJ
Any spacetime
Potentials (any gauge)

F=d4 dxdA = p,J
Any spacetime (with topological restrictions)
Potentials (Lorenz gauge) F=d4

*0A4 = p,J

Any spacetime (with topological restrictions) | d x 4 =0

« In the tensor calculus formulation, the electromagnetic tensor F is an antisymmetric
covariant order 2 tensor; the four-potential, A , is a covariant vector; the current, J¢ is a
vector; the square brackets, [ ], denote antisymmetrization of indices; 0_ is the derivative
with respect to the coordinate, x*. In Minkowski space coordinates are chosen with respect
to an inertial frame; (x*) = (ct,x,y,z), so that the metric tensor used to raise and lower
indices is n ;= diag(1,~1,—-1,~1). The d’Alembert operator on Minkowski space is o = 8 9° as
in the vector formulation. In general spacetimes, the coordinate system x® is arbitrary, the
covariant derivative V , the Ricci tensor, R and raising and lowering of indices are defined
by the Lorentzian metric, g ; and the d’Alembert operator is defined as o = V V. The topo-
logical restriction is that the second real cohomology group of the space vanishes. This is
violated for Minkowski space with a line removed, which can model a (flat) spacetime with
a point-like monopole on the complement of the line.

« In the differential form formulation on arbitrary space times, F = F_dx* A dx? is the
electromagnetic tensor considered as a 2-form, A = A dx*is the potential 1-form, J is the
current 3-form, d is the exterior derivative, and * is the Hodge star on forms defined (up
to its an orientation, i.e. its sign) by the Lorentzian metric of spacetime. In the special
case of 2-forms such as F, the Hodge star * depends on the metric tensor only for its local
scale. This means that, as formulated, the differential form field equations are conformally
invariant, but the Lorenz gauge condition breaks conformal invariance. The operator
O=(—xd*d—-dxdx)is the d’Alembert-Laplace—Beltrami operator on 1-forms on an
arbitrary Lorentzian spacetime. The topological condition is again that the second real co-
homology group is trivial. By the isomorphism with the second de Rham cohomology this
condition means that every closed 2-form is exact.

Maxwell’s equations are partial differential equations that relate the electric and magnetic fields to
each other and to the electric charges and currents. Often, the charges and currents are themselves
dependent on the electric and magnetic fields via the Lorentz force equation and the constitutive
relations. These all form a set of coupled partial differential equations which are often very difficult
to solve: the solutions encompass all the diverse phenomena of classical electromagnetism. Some
general remarks follow.

As for any differential equation, boundary conditions and initial conditions are necessary for a
unique solution. For example, even with no charges and no currents anywhere in spacetime, there
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are the obvious solutions for which E and B are zero or constant, but there are also non-trivial
solutions corresponding to electromagnetic waves. In some cases, Maxwell’s equations are solved
over the whole of space, and boundary conditions are given as asymptotic limits at infinity. In other
cases, Maxwell’s equations are solved in a finite region of space, with appropriate conditions on
the boundary of that region, for example an artificial absorbing boundary representing the rest of
the universe, or periodic boundary conditions, or walls that isolate a small region from the outside
world (as with a waveguide or cavity resonator).

Jefimenko’s equations (or the closely related Liénard—Wiechert potentials) are the explicit solu-
tion to Maxwell’s equations for the electric and magnetic fields created by any given distribution
of charges and currents. It assumes specific initial conditions to obtain the so-called “retarded
solution”, where the only fields present are the ones created by the charges. However, Jefimenko’s
equations are unhelpful in situations when the charges and currents are themselves affected by the
fields they create.

Numerical methods for differential equations can be used to compute approximate solutions of
Maxwell’s equations when exact solutions are impossible. These include the finite element method
and finite-difference time-domain method.

Overdetermination of Maxwell’s Equations

Maxwell’s equations seem overdetermined, in that they involve six unknowns (the three compo-
nents of E and B) but eight equations (one for each of the two Gauss’s laws, three vector components
each for Faraday’s and Ampere’s laws). (The currents and charges are not unknowns, being freely
specifiable subject to charge conservation.) This is related to a certain limited kind of redundancy
in Maxwell’s equations: It can be proven that any system satisfying Faraday’s law and Ampere’s
law automatically also satisfies the two Gauss’s laws, as long as the system’s initial condition does.
This explanation was first introduced by Julius Adams Stratton in 1941. Although it is possible to
simply ignore the two Gauss’s laws in a numerical algorithm (apart from the initial conditions),
the imperfect precision of the calculations can lead to ever-increasing violations of those laws.
By introducing dummy variables characterizing these violations, the four equations become not
overdetermined after all. The resulting formulation can lead to more accurate algorithms that take
all four laws into account.

Both identities V-VxB =0, V-V xE = 0 which reduce eight equations to six independent ones, are
the true reason of overdetermination.

Maxwell’s Equations as the Classical Limit of QED

Maxwell’s equations and the Lorentz force law (along with the rest of classical electromagnetism)
are extraordinarily successful at explaining and predicting a variety of phenomena; however they
are not exact, but a classical limit of quantum electrodynamics (QED).

Some observed electromagnetic phenomena are incompatible with Maxwell’s equations. These
include photon—photon scattering and many other phenomena related to photons or virtual
photons, “nonclassical light” and quantum entanglement of electromagnetic fields. E.g. quantum
cryptography cannot be described by Maxwell theory, not even approximately. The approximate
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nature of Maxwell’s equations becomes more and more apparent when going into the extremely
strong field regime or to extremely small distances.

Finally, Maxwell’s equations cannot explain any phenomenon involving individual photons interact-
ing with quantum matter, such as the photoelectric effect, Planck’s law, the Duane—Hunt law, and
single-photon light detectors. However, many such phenomena may be approximated using a halfway
theory of quantum matter coupled to a classical electromagnetic field, either as external field or with
the expected value of the charge current and density on the right hand side of Maxwell’s equations.

Variations

Popular variations on the Maxwell equations as a classical theory of electromagnetic fields are rel-
atively scarce because the standard equations have stood the test of time remarkably well.

Magnetic Monopoles

Maxwell’s equations posit that there is electric charge, but no magnetic charge (also called magnetic
monopoles), in the universe. Indeed, magnetic charge has never been observed, despite extensive
searches, and may not exist. If they did exist, both Gauss’s law for magnetism and Faraday’s law
would need to be modified, and the resulting four equations would be fully symmetric under the
interchange of electric and magnetic fields.

(C Proper Length )

Proper length or rest length refers to the length of an object in the object’s rest frame.

The measurement of lengths is more complicated in the theory of relativity than in classical me-
chanics. In classical mechanics, lengths are measured based on the assumption that the locations
of all points involved are measured simultaneously. But in the theory of relativity, the notion of
simultaneity is dependent on the observer.

A different term, proper distance, provides an invariant measure whose value is the same for all
observers.

Proper distance is analogous to proper time. The difference is that the proper distance is defined
between two spacelike-separated events (or along a spacelike path), while the proper time is de-
fined between two timelike-separated events (or along a timelike path).

Proper Length or Rest Length

The proper length or rest length of an object is the length of the object measured by an observer
which is at rest relative to it, by applying standard measuring rods on the object. The measurement
of the object’s endpoints doesn’t have to be simultaneous, since the endpoints are constantly at rest
at the same positions in the object’s rest frame, so it is independent of At. This length is thus given by:

L, = Ax.
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However, in relatively moving frames the object’s endpoints have to be measured simultaneous-
ly, since they are constantly changing their position. The resulting length is shorter than the rest
length, and is given by the formula for length contraction (with y being the Lorentz factor):
L=t
/4

In comparison, the invariant proper distance between two arbitrary events happening at the end-
points of the same object is given by:

AG =~\AX — AP

So Ao depends on At, whereas the object’s rest length L can be measured independently of At. It
follows that Ao and L , measured at the endpoints of the same object, only agree with each other
when the measurement events were simultaneous in the object’s rest frame so that At is zero. As
explained by Fayngold:

“Note that the proper distance between two events is generally not the same as the proper
length of an object whose end points happen to be respectively coincident with these events.
Consider a solid rod of constant proper length [ . If you are in the rest frame K_ of the rod,
and you want to measure its length, you can do it by first marking its endpoints. And it is
not necessary that you mark them simultaneously in K . You can mark one end now (at a
moment t ) and the other end later (at a moment ¢t,) in K, and then quietly measure the
distance between the marks. We can even consider such measurement as a possible opera-
tional definition of proper length. From the viewpoint of the experimental physics, the re-
quirement that the marks be made simultaneously is redundant for a stationary object with
constant shape and size, and can in this case be dropped from such definition. Since the rod
is stationary in K , the distance between the marks is the proper length of the rod regardless
of the time lapse between the two markings. On the other hand, it is not the proper distance
between the marking events if the marks are not made simultaneously in K .”

Proper Distance between two Events in Flat Space

In special relativity, the proper distance between two spacelike-separated events is the distance
between the two events, as measured in an inertial frame of reference in which the events are si-
multaneous. In such a specific frame, the distance is given by:

Ac = A + Ay + A2,
where:

+ Ax, Ay, and Az are differences in the linear, orthogonal, spatial coordinates of the two
events.

The definition can be given equivalently with respect to any inertial frame of reference (without
requiring the events to be simultaneous in that frame) by:

A = AP + A + A2 — AP
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where:
« Atis the difference in the temporal coordinates of the two events,
« cisthe speed of light.

The two formulae are equivalent because of the invariance of spacetime intervals, and since At = 0
exactly when the events are simultaneous in the given frame.

Two events are spacelike-separated if and only if the above formula gives a real, non-zero value for Ao.

Proper Distance along a Path

The above formula for the proper distance between two events assumes that the spacetime in which
the two events occur is flat. Hence, the above formula cannot in general be used in general relativity,
in which curved spacetimes are considered. It is, however, possible to define the proper distance
along a path in any spacetime, curved or flat. In a flat spacetime, the proper distance between two
events is the proper distance along a straight path between the two events. In a curved spacetime,
there may be more than one straight path (geodesic) between two events, so the proper distance
along a straight path between two events would not uniquely define the proper distance between the
two events.

Along an arbitrary spacelike path P, the proper distance is given in tensor syntax by the line integral:
L= CJ.P —g,,dx"dx",

where:
* g, 1s the metric tensor for the current spacetime and coordinate mapping,
« dx*is the coordinate separation between neighboring events along the path P.

In the equation above, the metric tensor is assumed to use the +——— metric signature, and is as-
sumed to be normalized to return a time instead of a distance. The — sign in the equation should
be dropped with a metric tensor that instead uses the —+++ metric signature. Also, the ¢ should
be dropped with a metric tensor that is normalized to use a distance, or that uses geometrized
units.

C Proper Time ))

In relativity, proper time along a timelike world line is defined as the time as measured by a clock
following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time
interval between two events on a world line is the change in proper time. This interval is the quan-
tity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely
the setting of the clock at some event along the world line. The proper time interval between two
events depends not only on the events but also the world line connecting them, and hence on the
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motion of the clock between the events. It is expressed as an integral over the world line. An ac-
celerated clock will measure a smaller elapsed time between two events than that measured by a
non-accelerated (inertial) clock between the same two events. The twin paradox is an example of
this effect.

Xy _ s

_ B
distance

The dark blue vertical line represents an inertial observer measuring a coordinate time interval
t between events E, and E,. The red curve represents a clock measuring its proper time
interval T between the same two events.

In terms of four-dimensional spacetime, proper time is analogous to arc length in three-dimen-
sional (Euclidean) space. By convention, proper time is usually represented by the Greek letter 7
(tau) to distinguish it from coordinate time represented by t.

By contrast, coordinate time is the time between two events as measured by an observer using that
observer’s own method of assigning a time to an event. In the special case of an inertial observer
in special relativity, the time is measured using the observer’s clock and the observer’s definition
of simultaneity.

The concept of proper time was introduced by Hermann Minkowski in 1908, and is a feature of
Minkowski diagrams.

Mathematical Formalism

The formal definition of proper time involves describing the path through spacetime that rep-
resents a clock, observer, or test particle, and the metric structure of that spacetime. Proper time is
the pseudo-Riemannian arc length of world lines in four-dimensional spacetime. From the math-
ematical point of view, coordinate time is assumed to be predefined and we require an expression
for proper time as a function of coordinate time. From the experimental point of view, proper time
is what is measured experimentally and then coordinate time is calculated from the proper time of
some inertial clocks.

Proper time can only be defined for timelike paths through spacetime which allow for the
construction of an accompanying set of physical rulers and clocks. The same formalism for
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spacelike paths leads to a measurement of proper distance rather than proper time. For light-
like paths, there exists no concept of proper time and it is undefined as the spacetime interval
is identically zero. Instead an arbitrary and physically irrelevant affine parameter unrelated to
time must be introduced.

In Special Relativity
Let the Minkowski metric be defined by:

1 0 0 O
B 0O -1 0 O
Tw=lo 0 -1 o
0O 0 0 -1
and define:

(xo,xl,xz,x3) =(ct,x,y,2)

for arbitrary Lorentz frames.

Consider an infinitesimal interval:
2 242 2 2 2 u v
ds* =c'dt” —dx" —dy" —dz" =n,,dx"dx",

expressed in any Lorentz frame and here assumed timelike, separating points on a trajectory of
a particle (think clock). The same interval can be expressed in coordinates such that at each mo-
ment, the particle is at rest. Such a frame is called an instantaneous rest frame, denoted here by
the coordinates (c7,x,,y,,z,) for each instants. Due to the invariance of the interval (instanta-
neous rest frames taken at different times are related by Lorentz transformations) one may write:

ds* =cdt’ —dx? —dy! —dz} =c*dr’,

sinceintheinstantaneousrest frame, the particle orthe frameitselfisatrest,i.e., dx, =dy, =dz, =0
Since the interval is assumed timelike, one may take the square root of the above expression:

ds=cdr,
Or
dr :é.
c

Given this differential expression for 1, the proper time interval is defined as:

ds
Arz}[dr: —
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Here P is the worldline from some initial event to some final event with the ordering of the events
fixed by the requirement that the final event occurs later according to the clock than the initial event.

Using ds® = c*dt’ —dx* —dy* —dz° = n,,dx"dx" and again the invariance of the interval, one may

write:
At = J-PL [n,,dx"dx"
c

_I \/dtz ax* & dz’
=, - _ _

2 2 2
C C C

[T &)
-

where v(t) is the coordinate speed at coordinate time t, and x(t), y(t), and z(t) are space coordi-
nates. The first expression is manifestly Lorentz invariant. They are all Lorentz invariant, since
proper time and proper time intervals are coordinate-independent by definition.

Ift, x, y, z, are parameterised by a parameter A, this can be written as:

so=f (] -2 (&) (4] ] |

If the motion of the particle is constant, the expression simplifies to:

2 2 2 ’
C c C

where A means the change in coordinates between the initial and final events. The definition in
special relativity generalizes straightforwardly to general relativity as follows below.

In General Relativity

Proper time is defined in general relativity as follows: Given a pseudo-Riemannian manifold with
a local coordinates xp and equipped with a metric tensor guv, the proper time interval At between
two events along a timelike path P is given by the line integral:

At = IP dr = IP%1/gyv dx" dx".

This expression is, as it should be, invariant under coordinate changes. It reduces (in appropriate
coordinates) to the expression of special relativity in flat spacetime.
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In the same way that coordinates can be chosen such that x?, x2, x3 = const in special relativity, this
can be done in general relativity too. Then, in these coordinates,

At = IPdr = J.P% oo dx’.

Examples of Special Relativity
The Twin “Paradox”

For a twin paradox scenario, let there be an observer A who moves between the A-coordinates
(0,0,0,0) and (10 years, 0, 0, 0) inertially. This means that A staysat x=y=z=0x=y=2z=0
for 10 years of A-coordinate time. The proper time interval for A between the two events is then:

At =4/(10 years)® =10 years.

So being “at rest” in a special relativity coordinate system means that proper time and coordinate
time are the same.

Let there now be another observer B who travels in the x direction from (0,0,0,0) for 5 years of
A-coordinate time at 0.866c¢ to (5 years, 4.33 light-years, 0, 0). Once there, B accelerates, and trav-
els in the other spatial direction for another 5 years of A-coordinate time to (10 years, 0, 0, 0). For
each leg of the trip, the proper time interval can be calculated using A-coordinates, and is given by:

At = \/(5 years)® —(4.33 years)’ = \/6.25 years” =,/6.25 years = 2.5 years.

So the total proper time for observer B to go from (0,0,0,0) to (5 years, 4.33 light-years, 0, 0) and
then to (10 years, 0, 0, 0) is 5 years. Thus it is shown that the proper time equation incorporates
the time dilation effect. In fact, for an object in a SR spacetime traveling with a velocity of v for a
time AT, the proper time interval experienced is:

AT =\|AT? = (v, AT /¢) = (v, AT/ ¢)* =(vn,AT / )} = ATN1-v*/ ¢,

which is the SR time dilation formula.
The Rotating Disk

An observer rotating around another inertial observer is in an accelerated frame of reference. For
such an observer, the incremental (d7) form of the proper time equation is needed, along with a
parameterized description of the path being taken, as shown below.

Let there be an observer C on a disk rotating in the xy plane at a coordinate angular rate of @
and who is at a distance of r from the center of the disk with the center of the disk at x=y=z=o0.
The path of observer C is given by (T, rcos(wT), rsin(wT), 0) where T is the current coordinate
time. Whenr and @ are constant, dx = —r@sin(wl') dT and dy = rwcos(wT’) dT . The incremental
proper time formula then becomes:

2
dr =\JdT* ~(ro/ )’ sin* (@) dT" - (ra c)’ cos* (@) dT” = dT 1 —(ﬂj .
C
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So for an observer rotating at a constant distance of r from a given point in spacetime at a constant
angular rate of o between coordinate times 7, and 7, , the proper time experienced will be:

T, 2

| dr=(1,-1)) /1—(@j = ATV1-V2 /&2,
C

T

as v = ro for a rotating observer. This result is the same as for the linear motion example, and
shows the general application of the integral form of the proper time formula.

Examples of General Relativity

The difference between SR and general relativity (GR) is that in GR one can use any metric which
is a solution of the Einstein field equations, not just the Minkowski metric. Because inertial motion
in curved spacetimes lacks the simple expression it has in SR, the line integral form of the proper
time equation must always be used.

The Rotating Disk

An appropriate coordinate conversion done against the Minkowski metric creates coordinates where
an object on a rotating disk stays in the same spatial coordinate position. The new coordinates are:

r:«/x2+y2

and

@ = arctan (Zj — ot.
X

The t and z coordinates remain unchanged. In this new coordinate system, the incremental proper
time equation is:

2 2 2 g2 2 2
e {1_(@j }dﬁ_dr _rd0_dZ_ redido

C C2 6’2 02 C2

With r, 0, and z being constant over time, this simplifies to:

2
dr = dt 1—(@j ,
C

Now let there be an object off of the rotating disk and at inertial rest with respect to the center of
the disk and at a distance of R from it. This object has a coordinate motion described by d6 = - dt,
which describes the inertially at-rest object of counter-rotating in the view of the rotating observer.
Now the proper time equation becomes:

2 2 2
dr = {1—[@j }dﬁ—(@j dt2+2(@j di* = dr.
C C C
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So for the inertial at-rest observer, coordinate time and proper time are once again found to pass at
the same rate, as expected and required for the internal self-consistency of relativity theory.

The Schwarzschild Solution — Time on the Earth
The Schwarzschild solution has an incremental proper time equation of:

2m 1 om\” P o
T

r C

where,
+ tistime as calibrated with a clock distant from and at inertial rest with respect to the Earth.
« risaradial coordinate (which is effectively the distance from the Earth’s center).
« ¢ isa co-latitudinal coordinate, the angular separation from the north pole in radians.

« 0is alongitudinal coordinate, analogous to the longitude on the Earth’s surface but inde-
pendent of the Earth’s rotation. This is also given in radians.

« 1=m is the geometrized mass of the Earth, m = GM/c>:
o Mis the mass of the Earth.

o Gis the gravitational constant.

To demonstrate the use of the proper time relationship, several sub-examples involving the Earth
will be used here.

For the Earth, M = 5.9742 x 1024 kg, meaning that m = 4.4354 x 1072 m. When standing on the
north pole, we can assume dr =d6@ =d¢@=0 (meaning that we are neither moving up or down
or along the surface of the Earth). In this case, the Schwarzschild solution proper time equation
becomes dz =dt~/1-2m/r Then using the polar radius of the Earth as the radial coordinate (or
r=6,356,752 meters), we find that:

dr = \/(1 ~1.3908x10” ) dr* = (1-6.9540x10"° ) dr.

At the equator, the radius of the Earth is r = 6,378,137 meters. In addition, the rotation of the Earth
needs to be taken into account. This imparts on an observer an angular velocity of d@/dt of 2n
divided by the sidereal period of the Earth’s rotation, 86162.4 seconds. So df =7.2923x107 dt
The proper time equation then produces:

dr = \/(1 ~1.3908 x 10-9)arr2 —2.4069x1072 df* = (1 —6.9660 x 10"°)dt.

From a non-relativistic point of view this should have been the same as the previous result. This
example demonstrates how the proper time equation is used, even though the Earth rotates and
hence is not spherically symmetric as assumed by the Schwarzschild solution. To describe the ef-
fects of rotation more accurately the Kerr metric may be used.
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(C Relativistic Mass ))

The concept of mass has always been fundamental to physics. It was present in the earliest days
of the subject, and its importance has only grown as physics has diversified over the centuries.
Its definition goes back to Galileo and Newton, for whom mass was that property of a body that
enables it to resist externally imposed changes to its motion. Newton used mass to define momen-
tum and force vectors: he defined a body’s momentum as p = mv (where v is its velocity), and he
defined force to be the rate of increase of the body’s momentum: F = dp/dt. When a body’s mass is
constant (as it usually is, except when we are analysing the motion of e.g. a rocket), the force law
becomes F = m dv/dt = ma, where a is the body’s acceleration.

This definition of mass was applied in a straightforward way for almost two centuries. Then Ein-
stein arrived on the scene and, in his theory of motion known as special relativity, the situation
became more complicated. The above definition of mass still holds for a body at rest, and so has
come to be called the body’s rest mass, denoted m_ if we wish to stress that we're dealing with rest
mass. But when the body is moving we find that its force—acceleration relationship now depends
on two quantities: the body’s speed, and the angle between its direction of motion and the applied
force. When we relate the force to the resulting acceleration along each of three mutually perpen-
dicular spatial axes, we find that in each of the three expressions a factor of ym_appears, where the
gamma factor y = (1—v*/c*)~/? oceurs frequently in special relativity.

The idea of a speed-dependent mass actually dates back to Lorentz’s work. His 1904 paper
Electromagnetic Phenomena in a System Moving With Any Velocity Less Than That of Light
introduced the “longitudinal” and “transverse” electromagnetic masses of the electron. With
these he could write the equations of motion for an electron in an electromagnetic field in
the newtonian form, provided the electron’s mass was allowed to increase with its speed. Be-
tween 1905 and 1909, the relativistic theory of force, momentum, and energy was developed
by Planck, Lewis, and Tolman. It turned out that a single mass dependence could be used for
any acceleration, thus enabling mass to retain its independence of the body’s direction of ac-
celeration, if a speed-dependent “relativistic mass” m was understood as present in Newton’s
original expression p = mv.

So a body moving with speed v and whose momentum has magnitude p has a relativistic mass giv-
en by m = p/v, and (it turns out) a total energy of mc®. A body with rest mass m_ turns out to have
relativistic mass ym . But the definition m = p/v now also neatly defines a relativistic mass for a
photon: this moves with speed c and has energy E, and electromagnetic theory gives it a momen-
tum of magnitude p = E/c, so it has relativistic mass p/v = E/c*. The expression m = ym_ doesn’t
apply to a photon, for which y is infinite. But on the other hand, writing m = ym_won’t lead to any
contradictions for a photon if we define the photon’s rest mass to be zero.

It seems to have been Lewis who introduced the appropriate speed dependence of mass in 1908,
but the term “relativistic mass” appeared later. Relativistic mass came into common usage in the
relativity texts of the early 1920s written by Pauli, Eddington, and Born. But whereas rest mass is
routinely used in many areas of physics, relativistic mass is mostly restricted to the dynamics of
special relativity. Because of this, a body’s rest mass tends to be called simply its “mass”.
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The quantities that a moving observer measures as scaled by y in special relativity are not confined
to mass. Two others commonly encountered in the subject are a body’s length in the direction of
motion and its ageing rate, both of which get reduced by a factor of y when measured by a passing
observer. So, a ruler has a rest length, being the length it was given on the production line, and a
relativistic or contracted length in the direction of its motion, which is the length we measure it
to have as it moves past us. Likewise, a stationary clock ages normally, but when it moves it ages
slowly by the gamma factor so that its “factory tick rate” is reduced by y. Lastly, an object has a
rest mass, being the mass it “came off the production line with”, and a relativistic mass, being de-
fined as above. When at rest, the object’s rest mass equals its relativistic mass. When it moves, its
acceleration is determined by both its relativistic mass (or its rest mass, of course) and its velocity.

The use of these y-scaled quantities is governed only by the extent to which they are useful.
While contracted length and time intervals are used—or not—insofar as they simplify special
relativity analyses, relativistic mass has found itself at the centre of much debate in recent
years about whether it is necessary in a physics curriculum. All physicists use rest mass, but
not all physicists would have relativistic mass appear in textbooks, preferring instead always
to write it in terms of rest mass when it is used (although this can’t be done for photons). So,
if all physicists agree that rest mass is a very fundamental concept, then why use relativistic
mass at all?

When particles are moving, relativistic mass provides a very economical description that ab-
sorbs the particles’ motion naturally. For example, suppose we put an object on a set of scales
that are capable of measuring incredibly small increases in weight. Now heat the object. As its
temperature rises causing its constituents’ thermal motion to increase, the reading on the scales
will increase. If we prefer to maintain the usual idea that mass is proportional to weight—as-
suming we don’t step onto an elevator or change our home planet midway through the experi-
ment—then it follows that the object’s mass has increased. If we define mass in such a way that
the object’s mass does not increase as it heats up, then we will have to give up the idea that mass
is proportional to weight.

Another many-particle example occurs in pre-relativistic physics, in which the centre of mass of
an object is calculated by “weighting” the position vector r; of each of its particles by their mass
m.;:

1

> mpr
> m

The same expression will hold relativistically if each of the above masses is now a particle’s rela-
tivistic mass. If we prefer to use only rest mass then we must replace the m_ in the above expres-
sion by y, m, where m, is rest mass, but now the expression has lost a certain economy. Similarly,
if two objects with relativistic masses m, and m,, collide and stick together in such a way that the
resulting object is at rest, then its (relativistic = rest) mass will be m, + m,. This accords with our
intuition, and intuition is mostly what good conventions are about. In contrast, a rest-mass-only
analysis describes the interaction by saying that the objects have (rest) masses of M, and M,, with
a combined (rest) mass of y M, + y,M,. Whether our intuition has anything to gain from this new
expression is not clear.

Centre of mass =
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Another place where the idea of relativistic mass surfaces is when describing the cyclotron, a de-
vice that accelerates charged particles in circles within a constant magnetic field. The cyclotron
works by applying a varying electric field to the particles, and the frequency of this variation must
be tuned to the natural orbital frequency that the particles acquire as they move in the magnetic
field. But in practice we find that as the particles accelerate, they begin to get out of step with the
applied electric field and can no longer be accelerated further. This can be described as a conse-
quence of their masses increasing, which changes their orbital frequency in the magnetic field.

Lastly, the energy E of an object, whether moving or at rest, is given by Einstein’s famous relation
E = mc?, where m is its relativistic mass. Because, for example, the photon has no rest mass but
does have relativistic mass, the use of relativistic mass makes it much easier to describe the mass
changes that happen when light interacts with matter.

While relativistic mass is useful in the context of special relativity, it is rest mass that appears
most often in the modern language of relativity, which centres on “invariant quantities” to build
a geometrical description of relativity. Geometrical objects are useful for unifying scenarios that
can be described in different coordinate systems. Because there are multiple ways of describing
scenarios in relativity depending on which frame we are in, it is useful to focus on whatever in-
variances we can find. This is, for example, one reason why vectors (i.e. arrows) are so useful in
maths and physics; everyone can use the same arrow to express e.g. a velocity, even though they
might each quantify the arrow using different components because each observer is using different
coordinates. So the reason rest mass, rest length, and proper time find their way into the tensor
language of relativity is that all observers agree on their values. (These invariants then join with
other quantities in relativity: thus, for example, the four-force acting on a body equals its rest mass
times its four-acceleration.) Some physicists cite this view to maintain that rest mass is the only
way in which mass should be understood.

As with many things, the use of relativistic mass can be a matter of taste, but it seems that at
least some physicists who vehemently oppose the use of relativistic mass believe, mistakenly,
that pro-relativistic mass physicists are against the idea of rest mass. It’s not clear just why there
should be this perennial confusion about preferences, and why some of those who dislike the idea
of relativistic mass show such fundamentalist opposition to a choice of formalism that can never
produce wrong results. The world of physics and its language is full of useful alternative notations
and ways of approaching things, and different choices of notation and language can shed light on
the physics involved. Selecting one of the other of relativistic versus rest mass will never lead to
problems for practitioners of the subject.

A commonly heard argument against the use of relativistic mass runs as follows: “The equation E =
mc? says that a body’s relativistic mass is proportional to its total energy, so why should we use two
terms for what is essentially the same quantity? We should just stay with energy, and use the word
‘mass’ to refer only to rest mass.” The first difficulty with this line of reasoning is that it is quite
selective; after all, it should surely rule out the use of rest mass as well, since within special relativ-
ity, rest mass is proportional to a body’s rest energy. On that note, a second difficulty of the line of
reasoning is more technical: equating energy and relativistic mass cannot be done more generally.
In general relativity, it’s natural to consider quantities that are conserved for a system moving on
a geodesic. But y m is not generally conserved along geodesics. (Actually, y m is called p' in the
language of general relativity. It turns out that a closely related quantity, p,, will be conserved along
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a geodesic if the metric is time independent.) Note, though, that while relativistic mass y m is not
a body’s total energy in general relativity, it’s also not simply the source of gravity within the same
theory. Finally, a third difficulty with the above commonly heard argument is that, in the interests
of consistency, it should surely be applied to rule out either the “momentum density” or the “ener-
gy flux density” of light, since these also are simply related by a factor of c¢2. Yet, and quite rightly,
these last two terms co-exist in modern literature; no one ever suggests that either of these terms
should be dropped in favour of the other, because they both have their uses and are fundamentally
different quantities: a volume density and an areal density. The fact that they can be equated is the
interesting thing physically, but one must not thereafter trivialise the physics by insisting that one
of the two concepts be dropped.

So likewise can the concepts of mass and energy coexist. The above argument that E = mc? de-
motes mass in favour of energy—or rather, that it selectively demotes relativistic mass, but not
rest mass—also neglects the very definitions of mass and energy. Mass is a property of a body that
we have an intuitive feel for; its definition as a resistance to acceleration is very fundamental. En-
ergy, on the other hand, is defined in physics in a technical way that involves the concept of a sys-
tem’s time evolution; this is not something that bears any obvious similarity to the concept of an
object’s resistance to being accelerated. If the concept of mass exists in some sense “prior” to that
of energy, and if energy itself is defined in a different way to mass, then it does not seem reasonable
to drop the idea of mass in favour of energy. Rather, E = mc? becomes an expression that tells us
how much energy a given mass has; it also tells us how much a body will resist being accelerated
depending on its energy content. And, perhaps best of all, it reminds us that Einstein’s equation is
a triumph of relating two disparate quantities—and this is one of the great aims of physics.

Another argument sometimes put forward for dropping the use of relativistic mass is that since e.g.
all electrons have the same rest mass (whereas their relativistic masses depend on their speeds),
then their rest mass is the only quantity able to be tabulated, and so we should discard the very
idea of relativistic mass. But when we say without qualification that “the height of the Eiffel Tower
is 324 metres”, we clearly mean its rest length; but that doesn’t mean the idea of contracted length
should be discarded. Similarly, it’s okay to say that the mass of an electron is about 1073° kg without
having to specify that we are referring to the rest mass; everyone knows we mean rest mass when
we tabulate a particle’s mass. That’s purely a useful linguistic convention, and it does not imply
that we have discarded the idea of relativistic mass, or that it should be discarded at all.

Everyone agrees that a moving train’s rest mass is a fixed property inherent to it, just as its rest
length is a fixed property inherent to it. And yet, strangely, many of the same physicists who insist
that a moving train’s mass does not scale by y are quite happy to say that its length does scale by y.
There is no argument in the literature about the uses of rest length versus moving length, so why
should there be any argument about the uses of rest mass versus moving mass?

Another mass concept that everyone agrees on is the idea of reduced mass in non-relativistic me-
chanics. When the mechanics of e.g. a sun—satellite system or a mass oscillating on a spring is
analysed, a mass term appears that combines the two masses in a particular way. As far as the
maths goes, it’s as if we are replacing the two original bodies by two new ones: the first new body
has infinite mass, and the second new body has a mass equal to the system’s reduced mass, which
has this name because it’s smaller than either of the two original masses that gave rise to it. This is
a fruitful way to view the original system, and it’s completely standard. No one gets confused into
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thinking that we actually have an infinite mass and a reduced mass in our system. No one worries
that the new, infinite, mass is somehow going to become a black hole, or that the reduced mass lost
some of its atoms somewhere. Everyone knows the realm of applicability of the concept of reduced
mass and how useful it is. Why then, do so many physicists criticise relativistic mass by squeezing
it into realms where it was never intended to be used? They presumably don’t do the same thing
with reduced mass.

An optimistic view would hold that it’s a measure of the richness of physics that focussing on differ-
ent aspects of concepts like mass produces different insights: intuition in the case of relativistic mass
in special relativity, and the also-intuitive notion of invariance and geometrical quantities in the
case of rest mass within the tensor language of special and general relativity. The two aspects do not
contradict each other, and there is room enough in the world of physics to accommodate them both.

Abandoning the use of relativistic mass is sometimes validated by quoting select physicists who
are or were against the term, or by exhaustively tabulating which textbooks use the term. But real
science isn’t done this way. In the final analysis, the history of relativity, with its quotations from
those in favour of relativistic mass and those against, has no real bearing on whether the idea itself
has value. The question to ask is not whether relativistic mass is fashionable or not, or who likes the
idea and who doesn’t; rather, as in any area of physics notation and language, we should always ask
“Is it useful?”. And relativistic mass is certainly a useful concept. There can be little doubt that some
of its vocal opponents even use it to gain intuition when analysing a scenario in special relativity.

Relativistic Version of F = ma

The concept of relativistic mass is neatly encapsulated in the expression F = d(mv)/dt, where m is
relativistic mass. This says that an impulse F dt causes an infinitesimal increase in a body’s rela-
tivistic momentum mv.

Besides this definition and use of relativistic mass, we wish here to write down the relativistic ver-
sion of Newton’s second law, F = ma. In Newton’s mechanics, this equation relates vectors F and
a via the mass m of the object being accelerated, which is invariant in Newton’s theory. Because
m is just a number, in Newton’s theory the force on an object is always parallel to the resulting
acceleration.

The corresponding equation in special relativity is a little more complicated. It turns out that the
force F is not always parallel to the acceleration a. We can express this fact using matrix notation.
Let m be the rest mass, and v be the velocity as a column vector, whose entries are expressed as
fractions of ¢ and whose magnitude v is the speed as a fraction of c. Let v’ be the velocity as a row
vector, and let 1 be the 3 x 3 identity matrix. As usual, set y = (1 — v?) /2. The relativistic version
of F = ma turns out to be:

F = (1 + yzvv‘);/ma

and

(1 —VV‘)F

Yy m

a =
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So defining mass via force and acceleration isn’t as simple as it was for Newton (although it is sim-
ple, in principle, to define the mass as relating impulse and momentum increase, as mentioned a
few lines up). Nevertheless, the three components of the two expressions above share a factor of
y m, and the rest mass m only ever appears in both expressions accompanied by y. The accelera-
tion is not necessarily parallel to the force that produced it, and it’s not hard to see from the above
equations that it’s easier to accelerate a mass sideways to its motion than it is to accelerate it in the
direction of its motion. This is how relativity reproduces Lorentz’s original concepts of longitudi-
nal and transverse masses; they are actually contained in these equations. The directional depen-
dence that the newtonian meaning of mass has now taken on is neatly contained in the matrices 1
+y?vvtand 1 — v v, and the remaining factor y m is the relativistic mass. Taking our cue from the
equations like this, to isolate quantities that might prove useful, is a powerful tool in mathematical
physics.
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Phenomena of Special
Relativity

Mass—energy Equivalence
Time Dilation
Length Contraction

Relativity of Simultaneity

Relativistic Doppler Effect

Thomas Precession
Ladder Paradox

Twin Paradox

Some of the phenomena and concepts that are studied within special relativity are mass—energy
equivalence, time dilation, length contraction, relativity of simultaneity, relativistic Doppler effect,
Thomas precession, ladder paradox, twin paradox, etc. This chapter discusses in detail these phe-
nomena and concepts related to special relativity.

C Mass—energy Equivalence ))

Mass-energy equivalence is the famous concept in physics represented mathematically by E=mc?,
which states that mass and energy are one and the same. This idea was not actually put forth by
Einstein, but he was the first to describe an accurate relationship for it in his theory of special
relativity, where he first wrote down this famous equation. The c? term is a tremendously large
quantity, so this means that a small amount of mass corresponds to a large amount of energy.
This equation is only representative of an object at rest, so this energy is called the “rest energy” of
an object. The full equation Einstein wrote down includes the energy of a moving object, but the
simplified version is still profound.

The implications of such an idea are overwhelming. Mass can be created out of energy, it just takes
a lot of energy to do this. In fact, the entire universe was born in the Big Bang when a whole lot of
energy was turned into mass.
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For example, burning a gallon of gasoline (3.78 liters) releases about 132 million joules of energy,
which is enough energy to make 14 ng of mass. This is roughly the mass of a single particle of very
finely ground flour. No scale in the world can detect a difference of 14 ng out of the 3 kg of mass of
the gasoline.

This naturally leads to the conclusion that ‘if the technology existed to just turn that gasoline into
pure energy’, the world’s energy problems would go away. Unfortunately, this is forbidden by a
deep physical law that says the total number of protons and neutrons must remain the same. Pro-
tons can become neutrons, and neutrons can become protons (and both happen with beta decay).
This law is known as baryon conservation and is discussed at hyperphysics (both protons and
neutrons are baryons).

In the gasoline case, a gallon of gasoline weighs about 3 kilograms (~6 pounds). The loss of a nano-
gram is impossible to detect with any scale, so that’s all theoretical.

The strong force, weak force and electromagnetic force work together inside of a nucleus to create
stable configurations of protons and neutrons. These nuclear processes make for much stronger
forces than the electron recombination in the combustion of fossil fuels does. This means that
the release of energy from a nuclear reaction creates enough of a mass difference to be measured.
Specifically, small amounts of mass are turned into energy from the breaking up (fission) or com-
bination (fusion) of the nuclei of atoms. Even spontaneous radioactive decay converts a bit of mass
into incredible amounts of energy.

By doing so, the energy from these processes can be used to generate electricity in nuclear power
plants, or as nuclear weapons, which were first deployed in World War II and have only been test-
ed since then (nuclear weapons have since not been used as a direct attack, just very big threats).
Although these reactions cannot convert the entire mass to energy, they still release tremendous
amounts of energy.

The sun uses fusion of hydrogen into helium to create sunlight at an astonishing rate. The sun
gives off 3.86 x 102®* W of power. That means the sun is losing 4.2 million tonnes of mass every
second due to nuclear fusion.

C Time Dilation )

Time dilation is a difference in the elapsed time measured by two clocks, either due to them hav-
ing a velocity relative to each other, or by there being a gravitational potential difference between
their locations. After compensating for varying signal delays due to the changing distance between
an observer and a moving clock (i.e. Doppler effect), the observer will measure the moving clock
as ticking slower than a clock that is at rest in the observer’s own reference frame. A clock that is
close to a massive body (and which therefore is at lower gravitational potential) will record less
elapsed time than a clock situated further from the said massive body (and which is at a higher
gravitational potential).

These predictions of the theory of relativity have been repeatedly confirmed by experiment, and
they are of practical concern, for instance in the operation of satellite navigation systems such as
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GPS and Galileo. Time dilation has also been the subject of science fiction works, as it technically
provides the means for forward time travel.

Time dilation explains why two working clocks will report different times after different accelerations. For example,
at the ISS time goes slower, lagging 0.007 seconds behind for every six months. For GPS satellites to work,
they must adjust for similar bending of spacetime to coordinate with systems on Earth.

Time dilation by the Lorentz factor was predicted by several authors at the turn of the 20th century.
Joseph Larmor, at least for electrons orbiting a nucleus, wrote “ individual electrons describe corre-

2
sponding parts of their orbits in times shorter for the [rest] system in the ratio : /1 - V—2 Emil Cohn
c
specifically related this formula to the rate of clocks. In the context of special relativity it was shown

by Albert Einstein that this effect concerns the nature of time itself, and he was also the first to point
out its reciprocity or symmetry. Subsequently, Hermann Minkowski introduced the concept of prop-
er time which further clarified the meaning of time dilation.

Velocity Time Dilation

o

From the local frame of reference of the blue clock, the red clock, being in motion,
is perceived as ticking slower.

Special relativity indicates that, for an observer in an inertial frame of reference, a clock that is
moving relative to him will be measured to tick slower than a clock that is at rest in his frame of
reference. This case is sometimes called special relativistic time dilation. The faster the relative
velocity, the greater the time dilation between one another, with the rate of time reaching zero as
one approaches the speed of light (299,792,458 m/s). This causes massless particles that travel at
the speed of light to be unaffected by the passage of time.

Theoretically, time dilation would make it possible for passengers in a fast-moving vehicle to ad-
vance further into the future in a short period of their own time. For sufficiently high speeds, the
effect is dramatic. For example, one year of travel might correspond to ten years on Earth. Indeed,
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a constant 1 g acceleration would permit humans to travel through the entire known Universe in
one human lifetime.

With current technology severely limiting the velocity of space travel, however, the differences
experienced in practice are minuscule: after 6 months on the International Space Station (ISS)
(which orbits Earth at a speed of about 7,700 m/s) an astronaut would have aged about 0.005
seconds less than those on Earth. The cosmonauts Sergei Krikalev and Sergei Avdeyev both expe-
rienced time dilation of about 20 milliseconds compared to time that passed on Earth.

Simple Inference of Velocity Time Dilation

BI

B I } = 1 B

At =2Dic
At=2Lfc L

1/2 v At

1A

Left: Observer at rest measures time 2L/c between co-local events of light signal generation at A and arrival at A.
Right: Events according to an observer moving to the left of the setup: bottom mirror A when signal is generated at
time t’=0, top mirror B when signal gets reflected at time t'=D/c, bottom mirror A when signal returns at time t'=2D/c.

Time dilation can be inferred from the observed constancy of the speed of light in all reference
frames dictated by the second postulate of special relativity.

This constancy of the speed of light means that, counter to intuition, speeds of material objects
and light are not additive. It is not possible to make the speed of light appear greater by moving
towards or away from the light source.

Consider then, a simple clock consisting of two mirrors A and B, between which a light pulse is
bouncing. The separation of the mirrors is L and the clock ticks once each time the light pulse hits
either of the mirrors.

In the frame in which the clock is at rest, the light pulse traces out a path of length 2L and the pe-
riod of the clock is 2L divided by the speed of light:
2L

o

At

From the frame of reference of a moving observer traveling at the speed v relative to the resting
frame of the clock, the light pulse is seen as tracing out a longer, angled path. Keeping the speed
of light constant for all inertial observers, requires a lengthening of the period of this clock from
the moving observer’s perspective. That is to say, in a frame moving relative to the local clock, this
clock will appear to be running more slowly. Straightforward application of the Pythagorean theo-
rem leads to the well-known prediction of special relativity.

The total time for the light pulse to trace its path is given by:
2D
-

At
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The length of the half path can be calculated as a function of known quantities as:
1 2
D= (—vAt'j +L.
2

Elimination of the variables D and L from these three equations results in:

A
At' = ! ,

2
1-

2
C

which expresses the fact that the moving observer’s period of the clock A¢' is longer than the peri-
od At in the frame of the clock itself.

Reciprocity

ct

U

Time UV of a clock in S is shorter compared to Ux’ in S’, and time UW of a clock in S’
is shorter compared to Ux in S.

Transversal time dilation.

The blue dots represent a pulse of light. Each pair of dots with light “bouncing” between them is a clock.
For each group of clocks, the other group appears to be ticking more slowly, because the moving clock’s
light pulse has to travel a larger distance than the stationary clock’s light pulse. That is so, even though
the clocks are identical and their relative motion is perfectly reciprocal.
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Given a certain frame of reference, and the “stationary” observer described earlier, if a second ob-
server accompanied the “moving” clock, each of the observers would perceive the other’s clock as
ticking at a slower rate than their own local clock, due to them both perceiving the other to be the
one that’s in motion relative to their own stationary frame of reference.

Common sense would dictate that, if the passage of time has slowed for a moving object, said ob-
ject would observe the external world’s time to be correspondingly sped up. Counterintuitively,
special relativity predicts the opposite. When two observers are in motion relative to each other,
each will measure the other’s clock slowing down, in concordance with them being moving relative
to the observer’s frame of reference.

While this seems self-contradictory, a similar oddity occurs in everyday life. If two persons A and
B observe each other from a distance, B will appear small to A, but at the same time A will appear
small to B. Being familiar with the effects of perspective, there is no contradiction or paradox in
this situation.

The reciprocity of the phenomenon also leads to the so-called twin paradox where the aging of
twins, one staying on Earth and the other embarking on a space travel, is compared, and where
the reciprocity suggests that both persons should have the same age when they reunite. On the
contrary, at the end of the round-trip, the traveling twin will be younger than his brother on
Earth. The dilemma posed by the paradox, however, can be explained by the fact that the trav-
eling twin must markedly accelerate in at least three phases of the trip (beginning, direction
change, and end), while the other will only experience negligible acceleration, due to rotation
and revolution of Earth. During the acceleration phases of the space travel, time dilation is not
symmetric.

Experimental Testing
Doppler Effect

« The stated purpose by Ives and Stilwell (1938, 1941) of these experiments was to verify the
time dilation effect, predicted by Larmor—Lorentz ether theory, due to motion through the
ether using Einstein’s suggestion that Doppler effect in canal rays would provide a suitable
experiment. These experiments measured the Doppler shift of the radiation emitted from
cathode rays, when viewed from directly in front and from directly behind. The high and
low frequencies detected were not the classically predicted values:

Jo and Jo

1-v/c 1+v/c
The high and low frequencies of the radiation from the moving sources were measured as:

1-v/c

fozy/(1+v/c)f0 and —f():;/(l—v/c)fo,

1+v/c

1+v/c

1-v/e

as deduced by Einstein from the Lorentz transformation, when the source is running slow by the
Lorentz factor.
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Hasselkamp, Mondry, and Scharmann measured the Doppler shift from a source moving at
right angles to the line of sight. The most general relationship between frequencies of the
radiation from the moving sources is given by:

f;letected = f;est (1 - KCOS ¢j / m
C

as deduced by Einstein. For ¢ = 90° (cos ¢ = 0) this reduces to f, ., = f....y- This lower frequency
from the moving source can be attributed to the time dilation effect and is often called the trans-
verse Doppler effect and was predicted by relativity.

In 2010 time dilation was observed at speeds of less than 10 meters per second using opti-
cal atomic clocks connected by 75 meters of optical fiber.

Moving Particles

A comparison of muon lifetimes at different speeds is possible. In the laboratory, slow mu-
ons are produced; and in the atmosphere, very fast moving muons are introduced by cos-
mic rays. Taking the muon lifetime at rest as the laboratory value of 2.197 s, the lifetime
of a cosmic ray produced muon traveling at 98% of the speed of light is about five times
longer, in agreement with observations. An example is Rossi and Hall, who compared the
population of cosmic-ray-produced muons at the top of a mountain to that observed at sea
level.

The lifetime of particles produced in particle accelerators appears longer due to time
dilation. In such experiments the “clock” is the time taken by processes leading to muon
decay, and these processes take place in the moving muon at its own “clock rate”, which
is much slower than the laboratory clock. This is routinely taken into account in parti-
cle physics, and many dedicated measurements have been performed. For instance, in
the muon storage ring at CERN the lifetime of muons circulating with y = 29.327 was
found to be dilated to 64.378 ps, confirming time dilation to an accuracy of 0.9 + 0.4
parts per thousand.

Proper Time and Minkowski Diagram

Clock C in relative motion between two synchronized clocks A and B. C meets A at d, and B at f.
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Twin paradox. One twin has to change frames, leading to different proper times in the twin’s world lines.

In the Minkowski diagram from the first image on the right, clock C resting in inertial frame S’
meets clock A at d and clock B at f (both resting in S). All three clocks simultaneously start to tick
in S. The worldline of A is the ct-axis, the worldline of B intersecting fis parallel to the ct-axis, and
the worldline of C is the ct’-axis. All events simultaneous with d in S are on the x-axis, in S’ on the
x'-axis.

The proper time between two events is indicated by a clock present at both events. It is invariant,
i.e., in all inertial frames it is agreed that this time is indicated by that clock. Interval dfis therefore
the proper time of clock C, and is shorter with respect to the coordinate times ef=dg of clocks B and
A'in S. Conversely, also proper time ef of B is shorter with respect to time if in S’, because event e
was measured in S’ already at time i due to relativity of simultaneity, long before C started to tick.

From that it can be seen, that the proper time between two events indicated by an unaccelerated
clock present at both events, compared with the synchronized coordinate time measured in all oth-
er inertial frames, is always the minimal time interval between those events. However, the interval
between two events can also correspond to the proper time of accelerated clocks present at both
events. Under all possible proper times between two events, the proper time of the unaccelerated
clock is maximal, which is the solution to the twin paradox.

Derivation and Formulation

ATTAL
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¥=
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Speed

Lorentz factor as a function of speed (in natural units where ¢ = 1).
Notice that for small speeds (less than 0.1), y is approximately 1.
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In addition to the light clock used above, the formula for time dilation can be more generally de-
rived from the temporal part of the Lorentz transformation. Let there be two events at which the
moving clock indicates ¢, and ¢,, thus:

Since the clock remains at rest in its inertial frame, it follows x, = x, thus the interval Af =¢, —¢,
is given by:

At
Al =y At =———

»
I==
C

where At is the time interval between two co-local events (i.e. happening at the same place) for an ob-
server in some inertial frame (e.g. ticks on his clock), known as the proper time, At’ is the time interval
between those same events, as measured by another observer, inertially moving with velocity v with
respect to the former observer, v is the relative velocity between the observer and the moving clock, c is
the speed of light, and the Lorentz factor (conventionally denoted by gamma or y ) is:

Thus the duration of the clock cycle of a moving clock is found to be increased: it is measured
to be “running slow”. The range of such variances in ordinary life, where v « ¢, even consid-
ering space travel, are not great enough to produce easily detectable time dilation effects and
such vanishingly small effects can be safely ignored for most purposes. It is only when an object
approaches speeds on the order of 30,000 km/s (1/10 the speed of light) that time dilation be-
comes important.

Hyperbolic Motion

In special relativity, time dilation is most simply described in circumstances where relative ve-
locity is unchanging. Nevertheless, the Lorentz equations allow one to calculate proper time and
movement in space for the simple case of a spaceship which is applied with a force per unit mass,
relative to some reference object in uniform (i.e. constant velocity) motion, equal to g throughout
the period of measurement.

Let t be the time in an inertial frame subsequently called the rest frame. Let x be a spatial coordi-
nate, and let the direction of the constant acceleration as well as the spaceship’s velocity (relative

to the rest frame) be parallel to the x-axis. Assuming the spaceship’s position at time t = 0 being x

1
= 0 and the velocity being v_ and defining the following abbreviation y, = ﬁ

9
2 2
1-v,/c
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The following formulas hold:

Position:
2 t+vr )
(=5 \/1+—(g 2070) ~% |-
g c
Velocity:
t+v
V(t) — g 0}/0 - .
1+
\/1 Lgt4nn)
c

Proper time as function of coordinate time:
2
t v(t'
() =1,+ j 1—((—)) dt'
0 c

In the case where v(0) = v, = 0 and 1(0) = 10 = 0 the integral can be expressed as a logarithmic
function or, equivalently, as an inverse hyperbolic function:

2
7(t) = ‘n & + 1+ (g_tj = L arsinh (g_tj
g c c g c

As functions of the proper time 7 of the ship, the following formulae hold:

Position:
c’ gr
x(r)= —[cosh—— lj.
g C

Velocity:

v(r)=c tanh &%,
¢

Coordinate time as function of proper time:

t(r) = <sinh &2
g C

Clock Hypothesis

The clock hypothesis is the assumption that the rate at which a clock is affected by time dilation
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does not depend on its acceleration but only on its instantaneous velocity. This is equivalent to
stating that a clock moving along a path P measures the proper time, defined by:

dr=[ \di —dx’ | —dy* | —dz* | .

The clock hypothesis was implicitly (but not explicitly) included in Einstein’s original 1905 formu-
lation of special relativity. Since then, it has become a standard assumption and is usually included
in the axioms of special relativity, especially in the light of experimental verification up to very high
accelerations in particle accelerators.

Gravitational Time Dilation

Time passes more quickly further from a center of gravity, as is witnessed
with massive objects (like the Earth).

Gravitational time dilation is experienced by an observer that, at a certain altitude within a grav-
itational potential well, finds that his local clocks measure less elapsed time than identical clocks
situated at higher altitude (and which are therefore at higher gravitational potential).

Gravitational time dilation is at play e.g. for ISS astronauts. While the astronauts’ relative ve-
locity slows down their time, the reduced gravitational influence at their location speeds it up,
although at a lesser degree. Also, a climber’s time is theoretically passing slightly faster at the top
of a mountain compared to people at sea level. It has also been calculated that due to time dila-
tion, the core of the Earth is 2.5 years younger than the crust. “A clock used to time a full rotation
of the earth will measure the day to be approximately an extra 10 ns/day longer for every km of
altitude above the reference geoid.” Travel to regions of space where extreme gravitational time
dilation is taking place, such as near a black hole, could yield time-shifting results analogous to
those of near-lightspeed space travel.

Contrarily to velocity time dilation, in which both observers measure the other as aging slower (a
reciprocal effect), gravitational time dilation is not reciprocal. This means that with gravitational
time dilation both observers agree that the clock nearer the center of the gravitational field is slow-
er in rate, and they agree on the ratio of the difference.
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Experimental Testing

« In 1959 Robert Pound and Glen A. Rebka measured the very slight gravitational red shift
in the frequency of light emitted at a lower height, where Earth’s gravitational field is rela-
tively more intense. The results were within 10% of the predictions of general relativity. In
1964, Pound and J. L. Snider measured a result within 1% of the value predicted by gravi-
tational time dilation.

« In 2010 gravitational time dilation was measured at the earth’s surface with a height differ-
ence of only one meter, using optical atomic clocks.

Combined Effect of Velocity and Gravitational Time Dilation
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Daily time dilation (gain or loss if negative) in microseconds as a function of (circular) orbit radius r = rs/re,
where rs is satellite orbit radius and re is the equatorial Earth radius, calculated using the Schwarzschild
metric. At r = 1.497 there is no time dilation. Here the effects of motion and reduced gravity cancel.
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Daily time dilation over circular orbit height split into its components.

High accuracy timekeeping, low earth orbit satellite tracking, and pulsar timing are applications
that require the consideration of the combined effects of mass and motion in producing time dila-
tion. Practical examples include the International Atomic Time standard and its relationship with
the Barycentric Coordinate Time standard used for interplanetary objects.

Relativistic time dilation effects for the solar system and the earth can be modeled very precisely
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by the Schwarzschild solution to the Einstein field equations. In the Schwarzschild metric, the
interval dt; is given by:

a2 2 2
dtf::[l—ZGMijdz—[ 2GMij dx’ +dy’ +dz

2
C

where,

 dt; isasmall increment of proper time ¢, (an interval that could be recorded on an atomic
clock),

« dt, is asmall increment in the coordinate ¢, (coordinate time),
« dx,dy,dz are small increments in the three coordinates x, y,z of the clock’s position,

. M, represents the sum of the Newtonian gravitational potentials due to the masses in
r.

l

the neighborhood, based on their distances 7, from the clock. This sum includes any tidal
potentials.

The coordinate velocity of the clock is given by:

S dx* +dy” +dz°
dt’ '

C

The coordinate time ¢, is the time that would be read on a hypothetical “coordinate clock” situated
infinitely far from all gravitational masses (U = O) , and stationary in the system of coordinates
(v = O). The exact relation between the rate of proper time and the rate of coordinate time for a
clock with a radial component of velocity is:

-1
dt, 20 v (¢ v? ., BB
b — 1_____ __1 R — 1_ + + e
& J & (zv J SRy

where,

v, is the radial velocity,

s v, = /ZGMi is the escape velocity,
I’}

.« pB=vie,B =v,/cB =v,/c and B =v, /c are velocities as a percentage of speed of
light c,

M.
- U= oM, is the Newtonian potential, equivalent to half of the escape velocity squared.
r

« The above equation is exact under the assumptions of the Schwarzschild solution. It re-
duces to velocity time dilation equation in the presence of motion and absence of gravity,
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i.e. B, =0 It reduces to gravitational time dilation equation in the absence of motion and
presence of gravity,i.e. f=0=4.

Experimental Testing

- Hafele and Keating, in 1971, flew caesium atomic clocks east and west around the earth in
commercial airliners, to compare the elapsed time against that of a clock that remained at
the U.S. Naval Observatory. Two opposite effects came into play. The clocks were expect-
ed to age more quickly (show a larger elapsed time) than the reference clock, since they
were in a higher (weaker) gravitational potential for most of the trip (c.f. Pound—Rebka
experiment). But also, contrastingly, the moving clocks were expected to age more slowly
because of the speed of their travel. From the actual flight paths of each trip, the theory
predicted that the flying clocks, compared with reference clocks at the U.S. Naval Obser-
vatory, should have lost 40+23 nanoseconds during the eastward trip and should have
gained 275+21 nanoseconds during the westward trip. Relative to the atomic time scale of
the U.S. Naval Observatory, the flying clocks lost 59+10 nanoseconds during the eastward
trip and gained 273+7 nanoseconds during the westward trip (where the error bars repre-
sent standard deviation). In 2005, the National Physical Laboratory in the United Kingdom
reported their limited replication of this experiment. The NPL experiment differed from
the original in that the caesium clocks were sent on a shorter trip (London—Washington,
D.C. return), but the clocks were more accurate. The reported results are within 4% of the
predictions of relativity, within the uncertainty of the measurements.

« The Global Positioning System can be considered a continuously operating experiment in
both special and general relativity. The in-orbit clocks are corrected for both special and
general relativistic time dilation effects as described above, so that (as observed from the
earth’s surface) they run at the same rate as clocks on the surface of the Earth.

(C Length Contraction )

Length contraction is the phenomenon that a moving object’s length is measured to be short-
er than its proper length, which is the length as measured in the object’s own rest frame. It is
also known as Lorentz contraction or Lorentz—FitzGerald contraction (after Hendrik Lorentz and
George Francis FitzGerald) and is usually only noticeable at a substantial fraction of the speed of
light. Length contraction is only in the direction in which the body is travelling. For standard ob-
jects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only
becoming significant as the object approaches the speed of light relative to the observer.

Basis in Relativity

First it is necessary to carefully consider the methods for measuring the lengths of resting and
moving objects. Here, “object” simply means a distance with endpoints that are always mutually at
rest, i.e., that are at rest in the same inertial frame of reference. If the relative velocity between an
observer (or his measuring instruments) and the observed object is zero, then the proper length L,
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of the object can simply be determined by directly superposing a measuring rod. However, if the
relative velocity > 0, then one can proceed as follows:

2228893
00000
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2OQeO9Y
J§oooo.

In special relativity, the observer measures events against an infinite
latticework of synchronized clocks.

Length contraction: Three blue rods are at rest in S, and three red rods in S’. At the instant when
the left ends of A and D attain the same position on the axis of x, the lengths of the rods shall be
compared. In S the simultaneous positions of the left side of A and the right side of C are more
distant than those of D and F. While in S’ the simultaneous positions of the left side of D and the
right side of F are more distant than those of A and C.

The observer installs a row of clocks that either are synchronized a) by exchanging light signals
according to the Poincaré—Einstein synchronization, or b) by “slow clock transport”, that is, one
clock is transported along the row of clocks in the limit of vanishing transport velocity. Now, when
the synchronization process is finished, the object is moved along the clock row and every clock
stores the exact time when the left or the right end of the object passes by. After that, the observer
only has to look at the position of a clock A that stored the time when the left end of the object was
passing by, and a clock B at which the right end of the object was passing by at the same time. It’s
clear that distance AB is equal to length L of the moving object. Using this method, the definition
of simultaneity is crucial for measuring the length of moving objects.

Another method is to use a clock indicating its proper time T, which is traveling from one endpoint
of the rod to the other in time T as measured by clocks in the rod’s rest frame. The length of the rod
can be computed by multiplying its travel time by its velocity, thus L, =7 -v in the rod’s rest frame
or L =T,v in the clock’s rest frame.
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In Newtonian mechanics, simultaneity and time duration are absolute and therefore both methods
lead to the equality of L and L. Yet in relativity theory the constancy of light velocity in all inertial
frames in connection with relativity of simultaneity and time dilation destroys this equality. In the
first method an observer in one frame claims to have measured the object’s endpoints simultane-
ously, but the observers in all other inertial frames will argue that the object’s endpoints were not
measured simultaneously. In the second method, times T and 7|, are not equal due to time dila-
tion, resulting in different lengths too.

The deviation between the measurements in all inertial frames is given by the formulas for Lo-
rentz transformation and time dilation. It turns out that the proper length remains unchanged
and always denotes the greatest length of an object, and the length of the same object measured
in another inertial reference frame is shorter than the proper length. This contraction only occurs
along the line of motion, and can be represented by the relation:

L=1,/7(v)

where,
« Lis the length observed by an observer in motion relative to the object.
« L, is the proper length (the length of the object in its rest frame).
« y(v) is the Lorentz factor, defined as:
1
y(v)= W
where,
« vis the relative velocity between the observer and the moving object.
« cis the speed of light.

Replacing the Lorentz factor in the original formula leads to the relation:
L=L~N1-Vv*/c?

In this equation both L and L are measured parallel to the object’s line of movement. For the observer
in relative movement, the length of the object is measured by subtracting the simultaneously measured
distances of both ends of the object. An observer at rest observing an object travelling very close to the
speed of light would observe the length of the object in the direction of motion as very near zero.

Then, at a speed of 13,400,000 m/s (30 million mph, 0.0447c) contracted length is 99.9% of the
length at rest; at a speed of 42,300,000 m/s (95 million mph, 0.141c), the length is still 99%. As the
magnitude of the velocity approaches the speed of light, the effect becomes prominent.

Symmetry

The principle of relativity (according to which the laws of nature must assume the same form in all
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inertial reference frames) requires that length contraction is symmetrical: If a rod rests in inertial
frame S, it has its proper length in S and its length is contracted in S’. However, if a rod rests in S’,
it has its proper length in S’ and its length is contracted in S. This can be vividly illustrated using
symmetric Minkowski diagrams (or Loedel diagrams), because the Lorentz transformation geo-
metrically corresponds to a rotation in four-dimensional spacetime.

Magnetic Forces

Magnetic forces are caused by relativistic contraction when electrons are moving relative to atomic
nuclei. The magnetic force on a moving charge next to a current-carrying wire is a result of relativ-
istic motion between electrons and protons.

In 1820, André-Marie Ampere showed that parallel wires having currents in the same direction
attract one another. To the electrons, the wire contracts slightly, causing the protons of the oppo-
site wire to be locally denser. As the electrons in the opposite wire are moving as well, they do not
contract (as much). This results in an apparent local imbalance between electrons and protons; the
moving electrons in one wire are attracted to the extra protons in the other. The reverse can also
be considered. To the static proton’s frame of reference, the electrons are moving and contracted,
resulting in the same imbalance. The electron drift velocity is relatively very slow, on the order of a
meter an hour but the force between an electron and proton is so enormous that even at this very
slow speed the relativistic contraction causes significant effects.

This effect also applies to magnetic particles without current, with current being replaced with
electron spin.

Experimental Verifications

Any observer co-moving with the observed object cannot measure the object’s contraction, be-
cause he can judge himself and the object as at rest in the same inertial frame in accordance with
the principle of relativity (as it was demonstrated by the Trouton—Rankine experiment). So length
contraction cannot be measured in the object’s rest frame, but only in a frame in which the ob-
served object is in motion. In addition, even in such a non-co-moving frame, direct experimental
confirmations of length contraction are hard to achieve, because at the current state of technology,
objects of considerable extension cannot be accelerated to relativistic speeds. And the only objects
traveling with the speed required are atomic particles, yet whose spatial extensions are too small
to allow a direct measurement of contraction.

However, there are indirect confirmations of this effect in a non-co-moving frame:

« It was the negative result of a famous experiment, that required the introduction of length
contraction: the Michelson—Morley experiment (and later also the Kennedy—Thorndike
experiment). In special relativity its explanation is as follows: In its rest frame the interfer-
ometer can be regarded as at rest in accordance with the relativity principle, so the prop-
agation time of light is the same in all directions. Although in a frame in which the inter-
ferometer is in motion, the transverse beam must traverse a longer, diagonal path with
respect to the non-moving frame thus making its travel time longer, the factor by which
the longitudinal beam would be delayed by taking times L/(c-v) & L/(c+v) for the forward
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and reverse trips respectively is even longer. Therefore, in the longitudinal direction the
interferometer is supposed to be contracted, in order to restore the equality of both travel
times in accordance with the negative experimental result(s). Thus the two-way speed of
light remains constant and the round trip propagation time along perpendicular arms of
the interferometer is independent of its motion & orientation.

+ Given the thickness of the atmosphere as measured in Earth’s reference frame, muons’
extremely short lifespan shouldn’t allow them to make the trip to the surface, even at the
speed of light, but they do nonetheless. From the Earth reference frame, however, this is
made possible only by the muon’s time being slowed down by time dilation. However, in
the muon’s frame, the effect is explained by the atmosphere being contracted, shortening
the trip.

« Heavy ions that are spherical when at rest should assume the form of “pancakes” or flat
disks when traveling nearly at the speed of light. And in fact, the results obtained from
particle collisions can only be explained when the increased nucleon density due to length
contraction is considered.

- Theionization ability of electrically charged particles with large relative velocities is higher
than expected. In pre-relativistic physics the ability should decrease at high velocities, be-
cause the time in which ionizing particles in motion can interact with the electrons of other
atoms or molecules is diminished. Though in relativity, the higher-than-expected ioniza-
tion ability can be explained by length contraction of the Coulomb field in frames in which
the ionizing particles are moving, which increases their electrical field strength normal to
the line of motion.

« In synchrotrons and free-electron lasers, relativistic electrons were injected into an undu-
lator, so that synchrotron radiation is generated. In the proper frame of the electrons, the
undulator is contracted which leads to an increased radiation frequency. Additionally, to
find out the frequency as measured in the laboratory frame, one has to apply the relativistic
Doppler effect. So, only with the aid of length contraction and the relativistic Doppler ef-
fect, the extremely small wavelength of undulator radiation can be explained.

Reality of Length Contraction

ct*

B

Minkowski diagram of Einstein’s 1911 thought experiment on length contraction. Two ri)ds* of rest length
A'B'= A"B" = L,, are moving with 0.6¢ in opposite directions, resultingin 4" B~ < L.
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In 1911 Vladimir Variéak asserted that one sees the length contraction in an objective way, accord-
ing to Lorentz, while it is “only an apparent, subjective phenomenon, caused by the manner of our
clock-regulation and length-measurement”, according to Einstein. Einstein published a rebuttal:

“The author unjustifiably stated a difference of Lorentz’s view and that of mine concerning
the physical facts. The question as to whether length contraction really exists or not is mis-
leading. It doesn’t “really” exist, in so far as it doesn’t exist for a comoving observer; though
it “really” exists, i.e. in such a way that it could be demonstrated in principle by physical
means by a non-comoving observer.”

— Albert Einstein

Einstein also argued in that paper, that length contraction is not simply the product of arbitrary
definitions concerning the way clock regulations and length measurements are performed. He
presented the following thought experiment: Let A’B’ and A”B” be the endpoints of two rods of the
same proper length L , as measured on x’ and x” respectively. Let them move in opposite directions
along the x* axis, considered at rest, at the same speed with respect to it. Endpoints A’A” then meet
at point A*, and B’B” meet at point B*. Einstein pointed out that length A*B* is shorter than A’B’ or
A”B”, which can also be demonstrated by bringing one of the rods to rest with respect to that axis.

Paradoxes

Due to superficial application of the contraction formula some paradoxes can occur. Examples are
the ladder paradox and Bell’s spaceship paradox. However, those paradoxes can simply be solved
by a correct application of relativity of simultaneity. Another famous paradox is the Ehrenfest par-
adox, which proves that the concept of rigid bodies is not compatible with relativity, reducing the
applicability of Born rigidity, and showing that for a co-rotating observer the geometry is in fact
non-Euclidean.

Visual Effects

Formula on a wall in Leiden.

Length contraction refers to measurements of position made at simultaneous times according to a
coordinate system. This could suggest that if one could take a picture of a fast moving object, that
the image would show the object contracted in the direction of motion. However, such visual ef-
fects are completely different measurements, as such a photograph is taken from a distance, while
length contraction can only directly be measured at the exact location of the object’s endpoints.
It was shown by several authors such as Roger Penrose and James Terrell that moving objects
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generally do not appear length contracted on a photograph. This result was popularized by Victor
Weisskopf in a Physics Today article. For instance, for a small angular diameter, a moving sphere
remains circular and is rotated. This kind of visual rotation effect is called Penrose-Terrell rotation.

Derivation
Using the Lorentz Transformation
Length contraction can be derived from the Lorentz transformation in several ways:

x =y (x—vt)
t'=}/(t—vx/cz)

Known Moving Length

In an inertial reference frame S, x, and x, shall denote the endpoints of an object in motion in
this frame. There, its length L was measured according to the above convention by determining
the simultaneous positions of its endpoints at ¢, =¢,. Now, the proper length of this object in S’
shall be calculated by using the Lorentz transformation. Transforming the time coordinates from
S into S’ results in different times, but this is not problematic, as the object is at rest in S’ where
it does not matter when the endpoints are measured. Therefore, the transformation of the spatial
coordinates suffices, which gives:

x=y(x-vt;) and x,=y(x,~vt,)

Since #, =t, and by setting L=x, —x, and L, = x, — x,. the proper length in S’ is given by:
L,=L-y.

with respect to which the measured length in S is contracted by:
L=L,/y.

According to the relativity principle, objects that are at rest in S have to be contracted in S’ as well.
By exchanging the above signs and primes symmetrically, it follows:

Ly=L -y.
Thus the contracted length as measured in S’ is given by:

L=Ly.
Known Proper Length

Conversely, if the object rests in S and its proper length is known, the simultaneity of the
measurements at the object’s endpoints has to be considered in another frame S’, as the object
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constantly changes its position there. Therefore, both spatial and temporal coordinates must
be transformed:

x=y(x,—vt) and x;,=y(x,—vt,)
tl':y(t]—vxl/cz) and tézy(tz—vxz/cz)

With ¢, =¢, and L, = x, — x, this results in non-simultaneous differences:
Ax'=x,—-x/ =yL,
At =t —t]=—pvL,/c’
In order to obtain the simultaneous positions of both endpoints, the second endpoint must be ad-

vanced by —At¢ with the speed -v of S relative to S’. To obtain the length ', the quantity (—v):(—At)
must therefore be added to Ax':

L' = AX"+vAr'
=yL,—yvL,/c’
=Ly

So the moving length in S’ is contracted. Likewise, the preceding calculation gives a symmetric
result for an object at restin S’:

L=L)/y

Using Time Dilation

Length contraction can also be derived from time dilation, according to which the rate of a single
“moving” clock (indicating its proper time 7, ) is lower with respect to two synchronized “resting”
clocks (indicating T). Time dilation was experimentally confirmed multiple times, and is repre-
sented by the relation:

=1,y
Suppose a rod of proper length L, atrestin S and a clock at restin S’ are moving along each other
with speed v. Since, according to the principle of relativity, the magnitude of relative velocity is the
same in either reference frame, the respective travel times of the clock between the rod’s endpoints

aregivenby 7=L,/v inSand 7y =L'/v in §', thus L, =Tv and L'=T;v. By inserting the time
dilation formula, the ratio between those lengths is:

Therefore, the length measured in S’ is given by:

L'=L/y
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So since the clock’s travel time across the rod is longer in S than in S’ (time dilation in §'), the
rod’s length is also longer in §’ than in S’ (length contraction in S"). Likewise, if the clock were
atrestin S’ and the rod in §’, the above procedure would give:

L=L;/y

Geometrical Considerations

Cuboids in Euclidean and Minkowski spacetime.

A rotated cuboid in three-dimensional euclidean space E3. The cross section is longer in the di-
rection of the rotation than it was before the rotation. The world slab of a moving thin plate in
Minkowski spacetime (with one spatial dimension suppressed) E*?, which is a boosted cuboid. The
cross section is thinner in the direction of the boost than it was before the boost. In both cases, the
transverse directions are unaffected and the three planes meeting at each corner of the cuboids are
mutually orthogonal.

Additional geometrical considerations show, that length contraction can be regarded as a trigono-
metric phenomenon, with analogy to parallel slices through a cuboid before and after a rotation
in E3 . This is the Euclidean analog of boosting a cuboid in E*2. In the latter case, however, we can
interpret the boosted cuboid as the world slab of a moving plate.

In special relativity, Poincaré transformations are a class of affine transformations which can be
characterized as the transformations between alternative Cartesian coordinate charts on Minkow-
ski spacetime corresponding to alternative states of inertial motion (and different choices of an
origin). Lorentz transformations are Poincaré transformations which are linear transformations
(preserve the origin). Lorentz transformations play the same role in Minkowski geometry (the Lo-
rentz group forms the isotropy group of the self-isometries of the spacetime) which are played by
rotations in euclidean geometry. Indeed, special relativity largely comes down to studying a kind of
noneuclidean trigonometry in Minkowski spacetime, as suggested by the following table:

Three Plane Trigonometries

Trigonometry Circular Parabolic Hyperbolic

Kleinian Geometry Euclidean plane Galilean plane Minkowski plane

Symbol E2 E°t Ev

Quadratic form positive definite degenerate non-degenerate but indefinite
Isometry group E(2) E(0,1) E(1,1)
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Isotropy group SO(2) SO(o,1) SO(1,1)

type of isotropy rotations shears boosts

Algebra over R complex numbers dual numbers split-complex numbers
e? -1 o 1

Spacetime interpretation none Newtonian spacetime | Minkowski spacetime
slope tan @ =m tanpgp=u tanh @ =v

“cosine” cos ¢ = (1+m?)"/2 cospp =1 cosh @ = (1-v?)~/2
“sine” sin @ =m (1+m?)/2 |sinpp=u sinh @ = v (1-v*)™/2
“secant” sec @ = (1+m?)"? secpp =1 sech ¢ = (1-v?)"/2
“cosecant” csc @ =m™ (1+m2)¥2 |cscp @ =u csch @ = v (1-v?)V2

C Relativity of Simultaneity )

Time intervals depend on who observes them Intuitively, it seems that the time for a process, such
as the elapsed time for a foot race, should be the same for all observers. In everyday experiences,
disagreements over elapsed time have to do with the accuracy of measuring time. No one would
be likely to argue that the actual time interval was different for the moving runner and for the
stationary clock displayed. Carefully considering just how time is measured, however, shows that
elapsed time does depends on the relative motion of an observer with respect to the process being
measured.

Figure : Elapsed time for a foot race is the same for all observers, but at relativistic speeds, elapsed time depends
on the motion of the observer relative to the location where the process being timed occurs.

Consider how we measure elapsed time. If we use a stopwatch, for example, how do we know when
to start and stop the watch? One method is to use the arrival of light from the event. For example, if
you're in a moving car and observe the light arriving from a traffic signal change from green to red,
you know it’s time to step on the brake pedal. The timing is more accurate if some sort of electronic
detection is used, avoiding human reaction times and other complications.

Now suppose two observers use this method to measure the time interval between two flashes of
light from flash lamps that are a distance apart. An observer A is seated midway on a rail car with
two flash lamps at opposite sides equidistant from her. A pulse of light is emitted from each flash
lamp and moves toward observer A, shown in frame (a) of the figure. The rail car is moving rapidly
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in the direction indicated by the velocity vector in the diagram. An observer B standing on the plat-
form is facing the rail car as it passes and observes both flashes of light reach him simultaneously,
as shown in frame (c). He measures the distances from where he saw the pulses originate, finds
them equal, and concludes that the pulses were emitted simultaneously.

(a) Two pulses of light are emitted simultaneously relative to observer B. (¢) The pulses reach observer B’s position
simultaneously. (b) Because of A’s motion, she sees the pulse from the right first and concludes the
bulbs did not flash simultaneously. Both conclusions are correct.

However, because of Observer A’s motion, the pulse from the right of the railcar, from the direc-
tion the car is moving, reaches her before the pulse from the left, as shown in frame (b). She also
measures the distances from within her frame of reference, finds them equal, and concludes that
the pulses were not emitted simultaneously.

The two observers reach conflicting conclusions about whether the two events at well-separated
locations were simultaneous. Both frames of reference are valid, and both conclusions are valid.
Whether two events at separate locations are simultaneous depends on the motion of the observer
relative to the locations of the events.

Here, the relative velocity between observers affects whether two events a distance apart are ob-
served to be simultaneous. Simultaneity is not absolute. We might have guessed (incorrectly) that
if light is emitted simultaneously, then two observers halfway between the sources would see the
flashes simultaneously. But careful analysis shows this cannot be the case if the speed of light is
the same in all inertial frames.

This type of thought experiment shows that seemingly obvious conclusions must be changed to
agree with the postulates of relativity. The validity of thought experiments can only be determined
by actual observation, and careful experiments have repeatedly confirmed Einstein’s theory of
relativity.

C Relativistic Doppler Effect )

The relativistic Doppler effect is the change in frequency (and wavelength) of light, caused by the
relative motion of the source and the observer (as in the classical Doppler effect), when taking into
account effects described by the special theory of relativity.
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The relativistic Doppler effect is different from the non-relativistic Doppler effect as the equations
include the time dilation effect of special relativity and do not involve the medium of propagation
as a reference point. They describe the total difference in observed frequencies and possess the
required Lorentz symmetry.

Astronomers know of three sources of redshift/blueshift: Doppler shifts; gravitational redshifts
(due to light exiting a gravitational field); and cosmological expansion (where space itself stretches).

Scenario Formula Notes
Relativistic longitudinal
A_L_ 4B
Doppler effect ) f 1-
s r
Transverse Doppler effect, f=vf Blueshift
r s
geometric closest approach
Transverse Doppler effect, f Blueshift
_Js
visual closest approach g y
TDE, receiver in circular f =y f Blueshift
r N
motion around source
TDE, source in circular f Blueshift
=Js
motion around receiver f’ y
TDE, source and receiver , 1= R0 172 No Doppler shift
14 — N w
in circular motion around 7 = [1_ R0 J when R =R'
common center
Motion in arbitrary direction a
J— S
measured in receiver frame fr 14 (1 + /3 cos ¢9r )
Motion in arbitrary direction
f.=y(1-Bcosh,) f.
measured in source frame

Derivation
Relativistic Longitudinal Doppler Effect

Relativistic Doppler shift for the longitudinal case, with source and receiver moving directly to-
wards or away from each other, is often derived as if it were the classical phenomenon, but modi-
fied by the addition of a time dilation term. This is the approach employed in first-year physics or
mechanics textbooks such as those by Feynman or Morin.

Following this approach towards deriving the relativistic longitudinal Doppler effect, assume the
receiver and the source are moving away from each other with a relative speed v as measured by
an observer on the receiver or the source (The sign convention adopted here is that v is negative if
the receiver and the source are moving towards each other).
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Suppose one wavefront arrives at the receiver. The next wavefront is then at a distance 4 =c/ f,
away from the receiver (where 4, is the wavelength, f; is the frequency of the waves that the
source emits, and c, is the speed of light).

The wavefront moves with speed ¢, but at the same time the receiver moves away with speed v
during a time ¢, =1/ f, = A /¢, s0,

1
/Lc + Vtr,s = Ctr,s g /1S = Ctr,x (1 -V / C) < tr,s =

[A=5)

where B =v/c is the speed of the receiver in terms of the speed of light, and where ¢, is the
period of light waves impinging on the receiver, as observed in the frame of the source. The corre-
sponding frequency /., is:

f;,s :l/tr,s :fv(l_ﬁ)

Thus far, the equations have been identical to those of the classical Doppler effect with a stationary
source and a moving receiver.

However, due to relativistic effects, clocks on the receiver are time dilated relative to clocks at

the source: ¢, =¢_ /y where y =1/4/1= 8 is the Lorentz factor. In order to know which time is

dilated, we recall that 7,  is the time in the frame in which the source is at rest. The receiver will
measure the received frequency to be:

= B,

J=1.r N 1+ﬂfs
The ratio:

So_ |I+B

S \N1-p

is called the Doppler factor of the source relative to the receiver.

The corresponding wavelengths are related by:

A f.  N+pB
A f N1=8

Identical expressions for relativistic Doppler shift are obtained when performing the analysis in
the reference frame of the receiver with a moving source. This matches up with the expectations
of the principle of relativity, which dictates that the result can not depend on which object is con-
sidered to be the one at rest. In contrast, the classic nonrelativistic Doppler effect is dependent on
whether it is the source or the receiver that is stationary with respect to the medium.
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Transverse Doppler Effect

Suppose that a source and a receiver are both approaching each other in uniform inertial motion
along paths that do not collide. The transverse Doppler effect (TDE) may refer to (a) the nomi-
nal blueshift predicted by special relativity that occurs when the emitter and receiver are at their
points of closest approach; or (b) the nominal redshift predicted by special relativity when the re-
ceiver sees the emitter as being at its closest approach. The transverse Doppler effect is one of the
main novel predictions of the special theory of relativity.

Whether a scientific report describes TDE as being a redshift or blueshift depends on the particu-
lars of the experimental arrangement being related. For example, Einstein’s original description of
the TDE in 1907 described an experimenter looking at the center (nearest point) of a beam of “ca-
nal rays” (a beam of positive ions that is created by certain types of gas-discharge tubes). According
to special relativity, the moving ions’ emitted frequency would be reduced by the Lorentz factor, so
that the received frequency would be reduced (redshifted) by the same factor.

On the other hand, Kiindig described an experiment where a Mdssbauer absorber was spun in a
rapid circular path around a central Mossbauer emitter. As explained below, this experimental
arrangement resulted in Kiindig’s measurement of a blueshift.

Source and Receiver are at their Points of Closest Approach

%ZE—V*%‘%

y

(@) (b) ‘

X
Source and receiver are at their points of closest approach. (a) Analysis in the
frame of the receiver. (b) Analysis in the frame of the source.

X

In this scenario, the point of closest approach is frame-independent and represents the moment
where there is no change in distance versus time. Figure demonstrates that the ease of analyzing
this scenario depends on the frame in which it is analyzed.

« If we analyze the scenario in the frame of the receiver, we find that the analysis is more
complicated than it should be. The apparent position of a celestial object is displaced from
its true position (or geometric position) because of the object’s motion during the time it
takes its light to reach an observer. The source would be time-dilated relative to the re-
ceiver, but the redshift implied by this time dilation would be offset by a blueshift due to
the longitudinal component of the relative motion between the receiver and the apparent
position of the source.

« It is much easier if, instead, we analyze the scenario from the frame of the source. An ob-
server situated at the source knows, from the problem statement, that the receiver is at its
closest point to him. That means that the receiver has no longitudinal component of
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motion to complicate the analysis. (i.e. dr/dt = 0 where r is the distance between receiver
and source) Since the receiver’s clocks are time-dilated relative to the source, the light
that the receiver receives is blue-shifted by a factor of gamma. In other words,

1 =7/

Receiver Sees the Source as Being at its Closest Point

— i3

*e

Transverse Doppler shift for the scenario where the receiver sees the source as being at its closest point.

This scenario is equivalent to the receiver looking at a direct right angle to the path of the source.
The analysis of this scenario is best conducted from the frame of the receiver. Figure shows the
receiver being illuminated by light from when the source was closest to the receiver, even though
the source has moved on. Because the source’s clock is time dilated as measured in the frame of the
receiver, and because there is no longitudinal component of its motion, the light from the source,
emitted from this closest point, is redshifted with frequency:

P
4

In the literature, most reports of transverse Doppler shift analyze the effect in terms of the receiver
pointed at direct right angles to the path of the source, thus seeing the source as being at its closest
point and observing a redshift.

Point of Null Frequency Shift

BTisSion closest absorption
approach

ey
.'\._'.'.'.'_
-3
H
-

{
L}

il
Atk

Null frequency shift occurs for a pulse that travels the shortest distance from source to receiver.

Given that, in the case where the inertially moving source and receiver are geometrically at their
nearest approach to each other, the receiver observes a blueshift, whereas in the case where the re-
ceiver sees the source as being at its closest point, the receiver observes a redshift, there obviously
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must exist a point where blueshift changes to a redshift. In figure, the signal travels perpendicular-
ly to the receiver path and is blueshifted. In figure, the signal travels perpendicularly to the source
path and is redshifted.

As seen in figure, null frequency shift occurs for a pulse that travels the shortest distance from source
to receiver. When viewed in the frame where source and receiver have the same speed, this pulse is
emitted perpendicularly to the source’s path and is received perpendicularly to the receiver’s path. The
pulse is emitted slightly before the point of closest approach, and it is received slightly after.

One Object in Circular Motion around the other

Transverse Doppler effect for two scenarios: (a) receiver moving in a circle around the source;
(b) source moving in a circle around the receiver.

Figure illustrates two variants of this scenario. Both variants can be analyzed using simple time
dilation arguments. Figure is essentially equivalent to the scenario described in figure, and the
receiver observes light from the source as being blueshifted by a factor of y . Figure is essentially
equivalent to the scenario described in figure, and the light is redshifted.

The only seeming complication is that the orbiting objects are in accelerated motion. An accelerat-
ed particle does not have an inertial frame in which it is always at rest. However, an inertial frame
can always be found which is momentarily comoving with the particle. This frame, the momentar-
ily comoving reference frame (MCRF), enables application of special relativity to the analysis of
accelerated particles. If an inertial observer looks at an accelerating clock, only the clock’s instan-
taneous speed is important when computing time dilation.

The converse, however, is not true. The analysis of scenarios where both objects are in accelerated
motion requires a somewhat more sophisticated analysis. Not understanding this point has led to
confusion and misunderstanding.

Source and Receiver Both in Circular Motion around a Common Center

Source and receiver are placed on opposite ends of a rotor, equidistant from the center.
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Suppose source and receiver are located on opposite ends of a spinning rotor, as illustrated in fig-
ure. Kinematic arguments (special relativity) and arguments based on noting that there is no dif-
ference in potential between source and receiver in the pseudogravitational field of the rotor (gen-
eral relativity) both lead to the conclusion that there should be no Doppler shift between source
and receiver.

In 1961, Champeney and Moon conducted a Mossbauer rotor experiment testing exactly this sce-
nario, and found that the Mossbauer absorption process was unaffected by rotation. They conclud-
ed that their findings supported special relativity.

This conclusion generated some controversy. A certain persistent critic of relativity maintained
that, although the experiment was consistent with general relativity, it refuted special relativity,
his point being that since the emitter and absorber were in uniform relative motion, special rela-
tivity demanded that a Doppler shift be observed. The fallacy with this critic’s argument was, as
demonstrated in section Point of null frequency shift, that it is simply not true that a Doppler shift
must always be observed between two frames in uniform relative motion. Furthermore, as demon-
strated in section Source and receiver are at their points of closest approach, the difficulty of ana-
lyzing a relativistic scenario often depends on the choice of reference frame. Attempting to analyze
the scenario in the frame of the receiver involves much tedious algebra. It is much easier, almost
trivial, to establish the lack of Doppler shift between emitter and absorber in the laboratory frame.

As a matter of fact, however, Champeney and Moon’s experiment said nothing either pro or con
about special relativity. Because of the symmetry of the setup, it turns out that virtually any con-
ceivable theory of the Doppler shift between frames in uniform inertial motion must yield a null
result in this experiment.

Rather than being equidistant from the center, suppose the emitter and absorber were at differing
distances from the rotor’s center. For an emitter at radius R' and the absorber at radius R any-
where on the rotor, the ratio of the emitter frequency, v' and the absorber frequency, v is given by:

1/2
v (1-R*&’
v \1-R*e’
where o is the angular velocity of the rotor. The source and emitter do not have to be 180° apart,
but can be at any angle with respect to the center.

Motion in an Arbitrary Direction

¥

: 2

Doppler shift with source moving at an arbitrary angle with respect to the line between source and receiver.
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The analysis can be extended in a straightforward fashion to calculate the Doppler shift for the case
where the inertial motions of the source and receiver are at any specified angle. Figure presents the
scenario from the frame of the receiver, with the source moving at speed v at an angle . measured
in the frame of the receiver. The radial component of the source’s motion along the line of sight is
equal to vcosé..

The equation below can be interpreted as the classical Doppler shift for a stationary and moving
source modified by the Lorentz factor y :

I S
S _7(1+ﬂcos¢9r)'

In the case when 8, =90" and cos @, =0, one obtains the transverse Doppler effect:

fo==
4
In his 1905 paper on special relativity, Einstein obtained a somewhat different looking equation

for the Doppler shift equation. After changing the variable names in Einstein’s equation to be con-
sistent with those used here, his equation reads:

f.=y(1-Bcosh,) f..

The differences stem from the fact that Einstein evaluated the angle ¢ with respect to the source
rest frame rather than the receiver rest frame. 6. is not equal to 6, because of the effect of relativ-
istic aberration. The relativistic aberration equation is:

cosg =080 =P
1-/fcosb,
_— e . . 0 — ‘o
Substituting the relativistic aberration equation cosé. = c0sO =P = #
1-Bcosb, y(1+ Bcosb))

yields f = 7(1 — fcosb, ) f.» demonstrating the consistency of these alternate equations for the

Doppler shift.

S
Setting 6, =0 in /. :W~ or §,=0in f, =y(1-pfcosf,) f, yields:

1- 1-
o=y = \/7 f.= / fs, the expression for relativistic longitudinal Doppler shift.
1

A four-vector approach to der1v1ng these results may be found in Landau and Lifshitz.

Visualization

Figure helps us understand, in a rough qualitative sense, how the relativistic Doppler effect and
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relativistic aberration differ from the non-relativistic Doppler effect and non-relativistic aberra-
tion of light. Assume that the observer is uniformly surrounded in all directions by yellow stars
emitting monochromatic light of 570 nm. The arrows in each diagram represent the observer’s
velocity vector relative to its surroundings, with a magnitude of 0.89 c.

N
S R
locity o = 0.BYc

Comparison of the relativistic Doppler effect (top) with the
non-relativistic effect (bottom).

« In the non-relativistic case, the light ahead of the observer is blueshifted to a wavelength
of 300 nm in the medium ultraviolet, while light behind the observer is redshifted to 5200
nm in the intermediate infrared. Because of the aberration of light, objects formerly at right
angles to the observer appear shifted forwards by 42°.

« Inthe relativistic case, the light ahead of the observer is blueshifted to a wavelength of 137
nm in the far ultraviolet, while light behind the observer is redshifted to 2400 nm in the
short wavelength infrared. Because of the relativistic aberration of light, objects formerly
at right angles to the observer appear shifted forwards by 63°.

+ Inboth cases, the monochromatic stars ahead of and behind the observer are Doppler-shift-
ed towards invisible wavelengths. If, however, the observer had eyes that could see into the
ultraviolet and infrared, he would see the stars ahead of him as brighter and more closely
clustered together than the stars behind, but the stars would be far brighter and far more
concentrated in the relativistic case.

Real stars are not monochromatic, but emit a range of wavelengths approximating a black body
distribution. It is not necessarily true that stars ahead of the observer would show a bluer color.
This is because the whole spectral energy distribution is shifted. At the same time that visible light
is blueshifted into invisible ultraviolet wavelengths, infrared light is blueshifted into the visible
range. Precisely what changes in the colors one sees depends on the physiology of the human eye
and on the spectral characteristics of the light sources being observed.

Doppler Effect on Intensity

The Doppler effect (with arbitrary direction) also modifies the perceived source intensity: this can
be expressed concisely by the fact that source strength divided by the cube of the frequency is a
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Lorentz invariant. This implies that the total radiant intensity (summing over all frequencies) is
multiplied by the fourth power of the Doppler factor for frequency.

As a consequence, since Planck’s law describes the black-body radiation as having a spectral in-
tensity in frequency proportional to v° / (th/kT - 1) (where T is the source temperature and v the

frequency), we can draw the conclusion that a black body spectrum seen through a Doppler shift
(with arbitrary direction) is still a black body spectrum with a temperature multiplied by the same
Doppler factor as frequency.

This result provides one of the pieces of evidence that serves to distinguish the Big Bang theory
from alternative theories proposed to explain the cosmological redshift.

Experimental Verification

Since the transverse Doppler effect is one of the main novel predictions of the special theory of
relativity, the detection and precise quantification of this effect has been an important goal of ex-
periments attempting to validate special relativity.

Ives and Stilwell-type Measurements

wavelength = 48614 v = 0.005 ¢

r 4 Perpendicular I eg-Stilveall
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45E0.64 avg shifted 486106

Why it is difficult to measure the transverse Doppler effect accurately using a transverse beam.

Einstein had initially suggested that the TDE might be measured by observing a beam of “canal
rays” at right angles to the beam. Attempts to measure TDE following this scheme proved it to be
impractical, since the maximum speed of particle beam available at the time was only a few thou-
sandths of the speed of light.

Figure shows the results of attempting to measure the 4861 Angstrom line emitted by a beam of
canal rays (a mixture of Hi+, H2+, and H3+ ions) as they recombine with electrons stripped from
the dilute hydrogen gas used to fill the Canal ray tube. Here, the predicted result of the TDE is a
4861.06 Angstrom line. On the left, longitudinal Doppler shift results in broadening the emission
line to such an extent that the TDE cannot be observed. The middle figures illustrate that even if
one narrows one’s view to the exact center of the beam, very small deviations of the beam from an
exact right angle introduce shifts comparable to the predicted effect.

Rather than attempt direct measurement of the TDE, Ives and Stilwell used a concave mirror that
allowed them to simultaneously observe a nearly longitudinal direct beam (blue) and its reflected im-
age (red). Spectroscopically, three lines would be observed: An undisplaced emission line, and blue-
shifted and redshifted lines. The average of the redshifted and blueshifted lines would be compared
with the wavelength of the undisplaced emission line. The difference that Ives and Stilwell measured
corresponded, within experimental limits, to the effect predicted by special relativity.
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Various of the subsequent repetitions of the Ives and Stilwell experiment have adopted other strat-
egies for measuring the mean of blueshifted and redshifted particle beam emissions. In some re-
cent repetitions of the experiment, modern accelerator technology has been used to arrange for the
observation of two counter-rotating particle beams. In other repetitions, the energies of gamma
rays emitted by a rapidly moving particle beam have been measured at opposite angles relative to
the direction of the particle beam. Since these experiments do not actually measure the wavelength
of the particle beam at right angles to the beam, some authors have preferred to refer to the effect
they are measuring as the “quadratic Doppler shift” rather than TDE.

Direct Measurement of Transverse Doppler Effect

The advent of particle accelerator technology has made possible the production of particle
beams of considerably higher energy than was available to Ives and Stilwell. This has enabled
the design of tests of the transverse Doppler effect directly along the lines of how Einstein
originally envisioned them, i.e. by directly viewing a particle beam at a 90° angle. For example,
Hasselkamp et al. observed the Ha line emitted by hydrogen atoms moving at speeds ranging
from 2.53%108 cm/s to 9.28x10® cm/s, finding the coefficient of the second order term in the
relativistic approximation to be 0.52+0.03, in excellent agreement with the theoretical value
of 1/2.

Other direct tests of the TDE on rotating platforms were made possible by the discovery of
the Mossbauer effect, which enables the production of exceedingly narrow resonance lines
for nuclear gamma ray emission and absorption. Mossbauer effect experiments have proven
themselves easily capable of detecting TDE using emitter-absorber relative velocities on the
order of 2x104 cm/s. These experiments include ones performed by Hay et al., Champeney et
al.,and Kiindig.

Time Dilation Measurements

The transverse Doppler effect and the kinematic time dilation of special relativity are closely relat-
ed. All validations of TDE represent validations of kinematic time dilation, and most validations of
kinematic time dilation have also represented validations of TDE. An online resource, “What is the
experimental basis of Special Relativity?” has documented, with brief commentary, many of the
tests that, over the years, have been used to validate various aspects of special relativity. Kaivola
et al. and McGowan et al. are examples of experiments classified in this resource as time dilation
experiments. These two also represent tests of TDE. These experiments compared the frequency of
two lasers, one locked to the frequency of a neon atom transition in a fast beam, the other locked
to the same transition in thermal neon. The 1993 version of the experiment verified time dilation,
and hence TDE, to an accuracy of 2.3x107°.

Relativistic Doppler Effect for Sound and Light

First-year physics textbooks almost invariably analyze Doppler shift for sound in terms of Newto-
nian kinematics, while analyzing Doppler shift for light and electromagnetic phenomena in terms
of relativistic kinematics. This gives the false impression that acoustic phenomena requires a dif-
ferent analysis than light and radio waves.
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The relativistic Doppler shift formula is applicable to both sound and light.

The traditional analysis of the Doppler effect for sound represents a low speed approximation to
the exact, relativistic analysis. The fully relativistic analysis for sound is, in fact, equally applicable
to both sound and electromagnetic phenomena.

Consider the spacetime diagram in figure. Worldlines for a tuning fork (the source) and a receiver
are both illustrated on this diagram. Events O and A represent two vibrations of the tuning fork.
The period of the fork is the magnitude of OA, and the inverse slope of AB represents the speed of
signal propagation (i.e. the speed of sound) to event B. We can therefore write:

Xp =Xy

¢, =—2—4 (speed of sound)
tB A
v, = M v, = 3 (speeds of source and receiver):
tA tB

|04l E~(x, /ey
|OB |= «/tf; —(x, /c)2

v, and v, are assumed to be less than ¢, since otherwise their passage through the medium will set
up shock waves, invalidating the calculation. Some routine algebra gives the ratio of frequencies:

S _104] _1=v, /¢, [1=(v, /ey’

f. |OB| 1+v, /c, \N1=(v,/c)
If v and v, are small compared with c, the above equation reduces to the classical Doppler for-
mula for sound.

If the speed of signal propagation ¢, approaches c, it can be shown that the absolute speeds v, and
v of the source and receiver merge into a single relative speed independent of any reference to a
fixed medium.

. 1-5 -5 - o
Indeed, we obtain f, = f, .y = f,=.|—= /., the formula for relativistic longitudinal
Doppler shift. V-4 1+p
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Analysis of the spacetime diagram in figure. gave a general formula for source and receiver moving
directly along their line of sight, i.e. in collinear motion.

¥
Ver

wVr
2

A source and receiver are moving in different directions and speeds in a frame
where the speed of sound is independent of direction.

Figure illustrates a scenario in two dimensions. The source moves with velocity v, (at the time of
emission). It emits a signal which travels at velocity C towards the receiver, which is traveling at
velocity v at the time of reception. The analysis is performed in a coordinate system in which the
signal’s speed |C | is independent of direction.

The ratio between the proper frequencies for the source and receiver is:

|v, |
1= Vel oos@
7 e ) -G, /oy
2 1—(v. /c)?
J; 1—| |cos(HC,vs) v, /¢)

|C]

The leading ratio has the form of the classical Doppler effect, while the square root term represents
the relativistic correction. If we consider the angles relative to the frame of the source, then v, =0
and the equation reduces to f, = (1—Bcos6,) f,, Einstein’s 1905 formula for the Doppler effect.
If we consider the angles relative to the frame of the receiver, then v. =0 and the equation reduces

to f = /s

——=s ___the alternative form of the Doppler shift equation.
y(1+ Bcosb,)

(C Thomas Precession ))

In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that
applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates
the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of
the orbital motion.

For a given inertial frame, if a second frame is Lorentz-boosted relative to it, and a third boosted
relative to the second, but non-colinear with the first boost, then the Lorentz transformation be-
tween the first and third frames involves a combined boost and rotation, known as the “Wigner ro-
tation” or “Thomas rotation”. For accelerated motion, the accelerated frame has an inertial frame
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at every instant. Two boosts a small time interval (as measured in the lab frame) apart leads to a
Wigner rotation after the second boost. In the limit the time interval tends to zero, the accelerated
frame will rotate at every instant, so the accelerated frame rotates with an angular velocity.

The precession can be understood geometrically as a consequence of the fact that the space of
velocities in relativity is hyperbolic, and so parallel transport of a vector (the gyroscope’s angular
velocity) around a circle (its linear velocity) leaves it pointing in a different direction, or under-
stood algebraically as being a result of the non-commutativity of Lorentz transformations. Thomas
precession gives a correction to the spin—orbit interaction in quantum mechanics, which takes into
account the relativistic time dilation between the electron and the nucleus of an atom.

Thomas precession is a kinematic effect in the flat spacetime of special relativity. In the curved
spacetime of general relativity, Thomas precession combines with a geometric effect to produce
de Sitter precession. Although Thomas precession (net rotation after a trajectory that returns to
its initial velocity) is a purely kinematic effect, it only occurs in curvilinear motion and therefore
cannot be observed independently of some external force causing the curvilinear motion such as
that caused by an electromagnetic field, a gravitational field or a mechanical force, so Thomas pre-
cession is usually accompanied by dynamical effects.

If the system experiences no external torque, e.g., in external scalar fields, its spin dynamics is
determined only by the Thomas precession. A single discrete Thomas rotation (as opposed to the
series of infinitesimal rotations that add up to the Thomas precession) is present in situations any-
time there are three or more inertial frames in non-collinear motion, as can be seen using Lorentz
transformations.

Consider a physical system moving through Minkowski spacetime. Assume that there is at any
moment an inertial system such that in it, the system is at rest. This assumption is sometimes
called the third postulate of relativity. This means that at any instant, the coordinates and state of
the system can be Lorentz transformed to the lab system through some Lorentz transformation.

Let the system be subject to external forces that produce no torque with respect to its center of
mass in its (instantaneous) rest frame. The condition of “no torque” is necessary to isolate the phe-
nomenon of Thomas precession. As a simplifying assumption one assumes that the external forces
bring the system back to its initial velocity after some finite time. Fix a Lorentz frame O such that
the initial and final velocities are zero.

The Pauli—Lubanski spin vector Sy is defined to be (0, S) in the system’s rest frame, with S, the
angular-momentum three-vector about the center of mass. In the motion from initial to final po-
sition, S, undergoes a rotation, as recorded in O, from its initial to its final value. This continuous
change is the Thomas precession.

Statement

Consider the motion of a particle. Introduce a lab frame X in which an observer can measure the
relative motion of the particle. At each instant of time the particle has an inertial frame in which it
is at rest. Relative to this lab frame, the instantaneous velocity of the particle is v(t) with magnitude
|v| = v bounded by the speed of light ¢, so that 0 < v < c. Here the time t is the coordinate time as
measured in the lab frame, not the proper time of the particle.
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Value of y2/(y + 1) as f = v/c increases, with v the instantaneous magnitude of the particle’s veloc-
ity. The Thomas rotation is negligible for § < 0.5, increases steadily for 0.5 < f < 0.8, then rapidly
shoots to infinity as f§ tends to 1. The “Thomas half” is evident in the low-speed limit, and the rota-
tion is only very clear for speeds approaching that of light.

Apart from the upper limit on magnitude, the velocity of the particle is arbitrary and not neces-
sarily constant, its corresponding vector of acceleration is a = dv(t)/dt. As a result of the Wigner
rotation at every instant, the particle’s frame precesses with an angular velocity given by the:

Thomas Precession:

2
NETEAN
c\y+1

where x is the cross product and:

1

A
YO
C

is the instantaneous Lorentz factor, a function of the particle’s instantaneous velocity. Like any
angular velocity, w_ is a pseudovector; its magnitude is the angular speed the particle’s frame pre-
cesses (in radians per second), and the direction points along the rotation axis. As is usual, the
right-hand convention of the cross product is used.

The precession depends on accelerated motion, and the non-collinearity of the particle’s instanta-
neous velocity and acceleration. No precession occurs if the particle moves with uniform velocity
(constant v so a = 0), or accelerates in a straight line (in which case v and a are parallel or antipar-
allel so their cross product is zero). The particle has to move in a curve, say an arc, spiral, helix, or
a circular orbit or elliptical orbit, for its frame to precess. The angular velocity of the precession
is a maximum if the velocity and acceleration vectors are perpendicular throughout the motion (a
circular orbit), and is large if their magnitudes are large (the magnitude of v is almost c).
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In the non-relativistic limit, v - 0 so y — 1, and the angular velocity is approximately:

0. x——aXxV
T
2¢2

The factor of 1/2 turns out to be the critical factor to agree with experimental results. It is informal-
ly known as the “Thomas half”.

Lorentz Transformations

The description of relative motion involves Lorentz transformations, and it is convenient to use
them in matrix form; symbolic matrix expressions summarize the transformations and are easy to
manipulate, and when required the full matrices can be written explicitly. Also, to prevent extra
factors of c cluttering the equations, it is convenient to use the definition (t) = v(t)/c with magni-
tude |B| = fsuchthato << 1.

The spacetime coordinates of the lab frame are collected into a 4x1 column vector, and the boost
is represented as a 4x4 symmetric matrix, respectively,

/4 ~7B. -1B, /i

B B.B, B.B
- 1+ (-1 L= i Nt B WWat TS

cxt B 1+(-1) 5 (-1 5 (-1 5

X=| |, B(B)= B.B B B.B
- D2 (-2 B A

i W, (-1 7 +(r-1 7 (-1 5
B.B B.p, B

- B N Wa-Ti 3 -1 1+(y -1z

i w. (-1 5 (-1 5 +(r-1 e
and turn:
1

yo———
VI=| BT

is the Lorentz factor of . In other frames, the corresponding coordinates are also arranged into
column vectors. The inverse matrix of the boost corresponds to a boost in the opposite direction,
and is given by B(B)* = B(-p).

At an instant of lab-recorded time ¢t measured in the lab frame, the transformation of spacetime
coordinates from the lab frame X to the particle’s frame ¥’ is:

X'=B(p)X

and at later lab-recorded time t + At we can define a new frame X'’ for the particle, which moves
with velocity  + AP relative to X, and the corresponding boost is:

X"=B(B+AB)X
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The vectors  and AP are two separate vectors. The latter is a small increment, and can be conve-
niently split into components parallel ( || ) and perpendicular (L) to B:

AB=AB +AB,

Combining X' =B(f)X and X"=B(f+AL)X obtains the Lorentz transformation between X’
and X"/,

X"=B(B+AB)B(-S)X,

and this composition contains all the required information about the motion between these two
lab times. Notice B(p + AB)B(-B) and B(p + AB) are infinitesimal transformations because they
involve a small increment in the relative velocity, while B(—[) is not.

The composition of two boosts equates to a single boost combined with a Wigner rotation about an
axis perpendicular to the relative velocities;

A= B(B+AB)B(~) = R(AO)B(AD)

The rotation is given by is a 4x4 rotation matrix R in the axis—angle representation, and coordi-
nate systems are taken to be right-handed. This matrix rotates 3d vectors anticlockwise about an
axis (active transformation), or equivalently rotates coordinate frames clockwise about the same
axis (passive transformation). The axis-angle vector AO parametrizes the rotation, its magnitude
AQ is the angle X'’ has rotated, and direction is parallel to the rotation axis, in this case the axis is
parallel to the cross product (=) x (B + AB) = —P x AP. If the angles are negative, then the sense
of rotation is reversed. The inverse matrix is given by R(A0)™! = R(-AB0).

Corresponding to the boost is the (small change in the) boost vector Ab, with magnitude and di-
rection of the relative velocity of the boost (divided by c). The boost B(Ab) and rotation R(A8) here
are infinitesimal transformations because Ab and rotation A6 are small.

The rotation gives rise to the Thomas precession, but there is a subtlety. To interpret the particle’s
frame as a co-moving inertial frame relative to the lab frame, and agree with the non-relativistic
limit, we expect the transformation between the particle’s instantaneous frames at times t and ¢t
+ At to be related by a boost without rotation. Combining above equations and rearranging gives:

B(Ab)X' =R(-AO)X"= X",

where another instantaneous frame X’’’ is introduced with coordinates X’”’, to prevent conflation
with ¥”’. To summarize the frames of reference: in the lab frame ¥ an observer measures the motion
of the particle, and three instantaneous inertial frames in which the particle is at rest are ¥’ (at time
1), Y (at time t + At), and X’’’ (at time t + Af). The frames ¥’’ and ¥’’’ are at the same location and
time, they differ only by a rotation. By contrast ¥’ and X£’”” differ by a boost and lab time interval At.

Relating the coordinates X"’’ to the lab coordinates X:

X" =R(-AO)X"=R(-AO)B(B+AP)X,
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The frame X’’’ is rotated in the negative sense.

The rotation is between two instants of lab time. As At — 0, the particle’s frame rotates at every
instant, and the continuous motion of the particle amounts to a continuous rotation with an
angular velocity at every instant. Dividing —AO by At, and taking the limit At —» o, the angular
velocity is by definition:

It remains to find what A0 precisely is.

Extracting the Formula

The composition can be obtained by explicitly calculating the matrix product. The boost matrix
of B + AP will require the magnitude and Lorentz factor of this vector. Since Af is small, terms of

2
AB[ (AB, )2 ,(Aﬂy) ,AB.AB, and higher are negligible. Taking advantage of this
fact, the magnitude squared of the vector is:

“second order”

| B+ABL= B +28AB
and expanding the Lorentz factor of f + AP as a power series gives to first order in AB:

1

JI-1 B+ABP
[ IBE L3 e 3igp4.. 05,
_[1+ rlBr Huzw Y jﬂ AB

~y+7 B AB

~1 | B ABE 42 AA 4

using the Lorentz factor y of  as above.

Composition of Boosts in the XY Plane

To simplify the calculation without loss of generality, take the direction of 3 to be entirely in the
x direction, and A in the xy plane, so the parallel component is along the x direction while the
perpendicular component is along the ydirection. The axis of the Wigner rotation is along the z
direction. In the Cartesian basis e , e,e,aset of mutually perpendicular unit vectors in their indi-
cated directions, we have:

B=pe., AG=ABe., AP =APe, ., [xAS=pASe.
This simplified setup allows the boost matrices to be given explicitly with the minimum number of

matrix entries. In general, of course, § and AP can be in any plane, the final result given later will
not be different.
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Explicitly, at time ¢ the boost is in the negative x direction:

y W 0 0
Wy 0
BEA=10 0 1 o
0 0 0 1

and the boost at the time ¢ + At is:

L+ BAB. —(B+YAB) B, 0]
~(B+7’AB)  y+7 PAB, (%j AB, 0
B(B+Ap)= |
—A Y= |A | 0
5 (ﬁJ&
I 0 0 0 1

where y is the Lorentz factor of (3, not B + AP. The composite transformation is then the matrix
product:

1 ~7’AB, -3, 0]
—7*AB, 1 (%1} AB, 0
A=B(B+Ap)B(=p) = |
—/\B, —(77} AB, 1 0
0 0 0 1]
Introducing the boost generators:
0100 0 010 0 0 01
1 0 0O 0 00O 0 0 0O
K = , K = , K =
0 0 0O 110 00 0 0 0O
0 0 0O 0 00O 1 0 00
and rotation generators:
0 00 O 0 0 00 0 0 0 O
0 00 O 0 0 01 0 0 -1 0
J. = , J. = , J.=
0 0 0 -1 10 0 0 0 01 0 O
0 01 O 0 -1 0 0 0 0 0 O
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along with the dot product - facilitates the coordinate independent expression:

A =1—[y ﬂ‘zlj(ﬂxAm-J—y(yAﬂ” +AB,)K

which holds if B and AP lie in any plane. This is an infinitesimal Lorentz transformation in the form
of a combined boost and rotation:

A=1-A0 -J-Ab-K
where,
2

= y-1 X :L 4 X
AG—( 7 ]ﬂ Ap cz[}/_l_JV Av

Ab =y (yAB, +AB))

After dividing AO by At, one obtains the instantaneous angular velocity:

2
a)T=L2(7 jaxv
c\y+l1

where a is the acceleration of the particle as observed in the lab frame. No forces were specified
or used in the derivation so the precession is a kinematical effect - it arises from the geometric as-
pects of motion. However, forces cause accelerations, so the Thomas precession is observed if the
particle is subject to forces.

Thomas precession can also be derived using the Fermi-Walker transport equation. One assumes
uniform circular motion in flat Minkowski spacetime. The spin 4-vector is orthogonal to the ve-
locity 4-vector. Fermi-Walker transport preserves this relation. One finds that the dot product
of the acceleration 4-vector with the spin 4-vector varies sinusoidally with time with an angular
frequency 'Y w, where w is the angular frequency of the circular motion and 'Y=1/V(1-v*2/c"2).
This is easily shown by taking the second time derivative of that dot product. Because this angular
frequency exceeds w, the spin precesses in the retrograde direction. The difference ( y— 1) w is the
Thomas precession angular frequency already given, as is simply shown by realizing that that the
magnitude of the 3-acceleration is w v.

Applications
In Electron Orbitals

In quantum mechanics Thomas precession is a correction to the spin-orbit interaction, which
takes into account the relativistic time dilation between the electron and the nucleus in hydrogenic
atoms.

Basically, it states that spinning objects precess when they accelerate in special relativity because
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Lorentz boosts do not commute with each other.

To calculate the spin of a particle in a magnetic field, one must also take into account Larmor pre-
cession.

In a Foucault Pendulum

The rotation of the swing plane of Foucault pendulum can be treated as a result of parallel trans-
port of the pendulum in a 2-dimensional sphere of Euclidean space. The hyperbolic space of veloc-
ities in Minkowski spacetime represents a 3-dimensional (pseudo-) sphere with imaginary radius
and imaginary timelike coordinate. Parallel transport of a spinning particle in relativistic velocity
space leads to Thomas precession, which is similar to the rotation of the swing plane of a Foucault
pendulum. The angle of rotation in both cases is determined by the area integral of curvature in
agreement with the Gauss—Bonnet theorem.

Thomas precession gives a correction to the precession of a Foucault pendulum. For a Foucault
pendulum located in the city of Nijmegen in the Netherlands the correction is:

@ ~9.5107 arcseconds / day.

Note that it is more than two orders of magnitude smaller than the precession due to the gener-
al-relativistic correction arising from frame-dragging, the Lense—Thirring precession.

(C Ladder Paradox ))

The ladder paradox (or barn-pole paradox) is a thought experiment in special relativity. It in-
volves a ladder, parallel to the ground, travelling horizontally at relativistic speed (near the speed
of light) and therefore undergoing a Lorentz length contraction. The ladder is imagined passing
through the open front and rear doors of a garage or barn which is shorter than its rest length, so
if the ladder was not moving it would not be able to fit inside. To a stationary observer, due to the
contraction, the moving ladder is able to fit entirely inside the building as it passes through. On
the other hand, from the point of view of an observer moving with the ladder, the ladder will not
be contracted, and it is the building which will be Lorentz contracted to an even smaller length.
Therefore the ladder will not be able to fit inside the building as it passes through. This poses an
apparent discrepancy between the realities of both observers.

This apparent paradox results from the mistaken assumption of absolute simultaneity. The lad-
der is said to fit into the garage if both of its ends can be made to be simultaneously inside the
garage. The paradox is resolved when it is considered that in relativity, simultaneity is relative
to each observer, making the answer to whether the ladder fits inside the garage also relative to
each of them.

Paradox

The simplest version of the problem involves a garage, with a front and back door which are open,
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and a ladder which, when at rest with respect to the garage, is too long to fit inside. We now move
the ladder at a high horizontal velocity through the stationary garage. Because of its high velocity, the
ladder undergoes the relativistic effect of length contraction, and becomes significantly shorter. As
a result, as the ladder passes through the garage, it is, for a time, completely contained inside it. We
could, if we liked, simultaneously close both doors for a brief time, to demonstrate that the ladder fits.

So far, this is consistent. The apparent paradox comes when we consider the symmetry of the
situation. As an observer moving with the ladder is travelling at constant velocity in the inertial
reference frame of the garage, this observer also occupies an inertial frame, where, by the principle
of relativity, the same laws of physics apply. From this perspective, it is the ladder which is now
stationary, and the garage which is moving with high velocity. It is therefore the garage which is
length contracted, and we now conclude that it is far too small to have ever fully contained the
ladder as it passed through: the ladder does not fit, and we cannot close both doors on either side
of the ladder without hitting it. This apparent contradiction is the paradox.

Garage
Ladder
Front door I I I I I I I I Back door
L |

An overview of the garage and the ladder at rest.

Mowing Ladder

In the garage frame, the ladder undergoes length contraction and
will therefore fit into the garage.

In the ladder frame, the garage undergoes length contraction and is
too small to contain the ladder.
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Scenario in the garage frame: a | Scenario in the ladder frame:
length contracted ladder pass- a length contracted garage
ing through the garage. passing over the ladder.

The solution to the apparent paradox lies in the relativity of simultaneity: what one observer (e.g.
with the garage) considers to be two simultaneous events may not in fact be simultaneous to an-
other observer (e.g. with the ladder). When we say the ladder “fits” inside the garage, what we
mean precisely is that, at some specific time, the position of the back of the ladder and the position
of the front of the ladder were both inside the garage; in other words, the front and back of the
ladder were inside the garage simultaneously. As simultaneity is relative, then, two observers dis-
agree on whether the ladder fits. To the observer with the garage, the back end of the ladder was
in the garage at the same time that the front end of the ladder was, and so the ladder fit; but to the
observer with the ladder, these two events were not simultaneous, and the ladder did not fit.

A clear way of seeing this is to consider the doors, which, in the frame of the garage, close for the
brief period that the ladder is fully inside. We now look at these events in the frame of the ladder.
The first event is the front of the ladder approaching the exit door of the garage. The door closes,
and then opens again to let the front of the ladder pass through. At a later time, the back of the lad-
der passes through the entrance door, which closes and then opens. We see that, as simultaneity
is relative, the two doors did not need to be shut at the same time, and the ladder did not need to
fit inside the garage.

A Minkowski diagram of ladder paradox.
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The situation can be further illustrated by the Minkowski diagram. The diagram is in the rest
frame of the garage. The vertical light-blue band shows the garage in space-time, and the light-red
band shows the ladder in space-time. The x and t axes are the garage space and time axes, respec-
tively, and x” and t” are the ladder space and time axes, respectively.

The garage is shown in light blue, the ladder in light red. The diagram is in the rest frame of the ga-
rage, with x and t being the garage space and time axes, respectively. The ladder frame is for a person
sitting on the front of the ladder, with x” and t’ being the ladder space and time axes respectively. The
blue and red lines, AB and AC, depict the ladder at the time when its front end meets the garage’s exit
door, in the frame of reference of the garage and the ladder, respectively. Event D is the rear end of
the ladder reaching the garage’s entrance.

In the frame of the garage, the ladder at any specific time is represented by a horizontal set of
points, parallel to the x axis, in the red band. One example is the bold blue line segment, which lies
inside the blue band representing the garage, and which represents the ladder at a time when it is
fully inside the garage. In the frame of the ladder, however, sets of simultaneous events lie on lines
parallel to the x’ axis; the ladder at any specific time is therefore represented by a cross section of
such a line with the red band. One such example is the bold red line segment. We see that such line
segments never lie fully inside the blue band; that is, the ladder never lies fully inside the garage.

Shutting the Ladder in the Garage

—

A ladder contracting under acceleration to fit into a length contracted garage.

In a more complicated version of the paradox, we can physically trap the ladder once it is fully in-
side the garage. This could be done, for instance, by not opening the exit door again after we close
it. In the frame of the garage, we assume the exit door is immovable, and so when the ladder hits
it, we say that it instantaneously stops. By this time, the entrance door has also closed, and so the
ladder is stuck inside the garage. As its relative velocity is now zero, it is not length contracted, and
is now longer than the garage; it will have to bend, snap, or explode.

Again, the puzzle comes from considering the situation from the frame of the ladder. In the above
analysis, in its own frame, the ladder was always longer than the garage. So how did we ever close
the doors and trap it inside?

It is worth noting here a general feature of relativity: we have deduced, by considering the frame
of the garage, that we do indeed trap the ladder inside the garage. This must therefore be true in
any frame - it cannot be the case that the ladder snaps in one frame but not in another. From the
ladder’s frame, then, we know that there must be some explanation for how the ladder came to be
trapped; we must simply find the explanation.

WORLD TECHNOLOGIES




138 | Introduction to Relativity

The explanation is that, although all parts of the ladder simultaneously decelerate to zero in the ga-
rage’s frame, because simultaneity is relative, the corresponding decelerations in the frame of the
ladder are not simultaneous. Instead, each part of the ladder decelerates sequentially, from front to
back, until finally the back of the ladder decelerates, by which time it is already within the garage.

As length contraction and time dilation are both controlled by the Lorentz transformations, the
ladder paradox can be seen as a physical correlate of the twin paradox, in which instance one of a
set of twins leaves earth, travels at speed for a period, and returns to earth a bit younger than the
earthbound twin. As in the case of the ladder trapped inside the barn, if neither frame of reference
is privileged — each is moving only relative to the other — how can it be that it’s the traveling twin
and not the stationary one who is younger (just as it’s the ladder rather than the barn which is
shorter)? In both instances it is the acceleration-deceleration that differentiates the phenomena:
it’s the twin, not the earth (or the ladder, not the barn) that undergoes the force of deceleration in
returning to the temporal (or physical, in the case of the ladder-barn) inertial frame.

A Minkowski diagram of the case where the ladder is stopped all along its length, simultaneously
in the garage frame. When this occurs, the garage frame sees the ladder as AB, but the ladder frame
sees the ladder as AC. When the back of the ladder enters the garage at point D, it has not yet felt
the effects of the acceleration of its front end. At this time, according to someone at rest with re-
spect to the back of the ladder, the front of the ladder will be at point E and will see the ladder as
DE. It is seen that this length in the ladder frame is not the same as CA, the rest length of the ladder
before the deceleration.

Ladder Paradox and Transmission of Force

A Minkowski diagram of the case where the ladder is stopped by impact with the back wall of the
garage. The impact is event A. At impact, the garage frame sees the ladder as AB, but the ladder
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frame sees the ladder as AC. The ladder does not move out of the garage, so its front end now goes
directly upward, through point E. The back of the ladder will not change its trajectory in space-
time until it feels the effects of the impact. The effect of the impact can propagate outward from A
no faster than the speed of light, so the back of the ladder will never feel the effects of the impact
until point F or later, at which time the ladder is well within the garage in both frames. Note that
when the diagram is drawn in the frame of the ladder, the speed of light is the same, but the ladder
is longer, so it takes more time for the force to reach the back end; this gives enough time for the
back of the ladder to move inside the garage.

What if the back door (the door the ladder exits out of) is closed permanently and does not open?
Suppose that the door is so solid that the ladder will not penetrate it when it collides, so it must
stop. Then, as in the scenario described above, in the frame of reference of the garage, there is a
moment when the ladder is completely within the garage (i.e., the back of the ladder is inside the
front door), before it collides with the back door and stops. However, from the frame of reference
of the ladder, the ladder is too big to fit in the garage, so by the time it collides with the back door
and stops, the back of the ladder still has not reached the front door. This seems to be a paradox.
The question is, does the back of the ladder cross the front door or not?

The difficulty arises mostly from the assumption that the ladder is rigid (i.e., maintains the same
shape). Ladders seem rigid in everyday life. But being completely rigid requires that it can transfer
force at infinite speed (i.e., when you push one end the other end must react immediately, other-
wise the ladder will deform). This contradicts special relativity, which states that information can
travel no faster than the speed of light (which is too fast for us to notice in real life, but is significant
in the ladder scenario). So objects cannot be perfectly rigid under special relativity.

In this case, by the time the front of the ladder collides with the back door, the back of the ladder
does not know it yet, so it keeps moving forwards (and the ladder “compresses”). In both the frame
of the garage and the inertial frame of the ladder, the back end keeps moving at the time of the col-
lision, until at least the point where the back of the ladder comes into the light cone of the collision
(i.e., a point where force moving backwards at the speed of light from the point of the collision will
reach it). At this point the ladder is actually shorter than the original contracted length, so the back
end is well inside the garage. Calculations in both frames of reference will show this to be the case.

What happens after the force reaches the back of the ladder is not specified. Depending on the
physics, the ladder could break; or, if it were sufficiently elastic, it could bend and re-expand to
its original length. At sufficiently high speeds, any realistic material would violently explode into
a plasma.

Man Falling into Grate Variation

This paradox was originally proposed and solved by Wolfgang Rindler and involved a fast walking
man, represented by a rod, falling into a grate. It is assumed that the rod is entirely over the grate in
the grate frame of reference before the downward acceleration begins simultaneously and equally
applied to each point in the rod.

From the perspective of the grate, the rod undergoes a length contraction and fits into the grate.
However, from the perspective of the rod, it is the grate undergoing a length contraction, through
which it seems the rod is then too long to fall.
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A man (represented by a segmented rod) falling into a grate.

The downward acceleration of the rod, which is simultaneous in the grate’s frame of reference, is
not simultaneous in the rod’s frame of reference. In the rod’s frame of reference, the front of the
rod is first accelerated downward, and as time goes by, more and more of the rod is subjected to the
downward acceleration, until finally the back of the rod is accelerated downward. This results in a
bending of the rod in the rod’s frame of reference. Since this bending occurs in the rod’s rest frame,
it is a true physical distortion of the rod which will cause stresses to occur in the rod.

For this non-rigid behaviour of the rod to become apparent, both the rod itself and the grate must
be of such a scale that the traversal time is measurable.

Bar and Ring Paradox

The diagram on the left illustrates a bar and a ring in the rest frame of the ring at the instant that their
centers coincide. The bar is Lorentz-contracted and moving upward and to the right while the ring is
stationary and uncontracted. The diagram on the right illustrates the situation at the same instant,
but in the rest frame of the bar. The ring is now Lorentz-contracted and rotated with respect to the
bar, and the bar is uncontracted. Again, the ring passes over the bar without touching it.

A problem very similar but simpler than the rod and grate paradox, involving only inertial frames,
is the “bar and ring” paradox. The rod and grate paradox is complicated: it involves non-inertial
frames of reference since at one moment the man is walking horizontally, and a moment later
he is falling downward; and it involves a physical deformation of the man (or segmented
rod), since the rod is bent in one frame of reference and straight in another. These aspects of the

WORLD TECHNOLOGIES




CHAPTER 3 Phenomena of Special Relativity | 141

problem introduce complications involving the stiffness of the rod which tends to obscure
the real nature of the “paradox”. The “bar and ring” paradox is free of these complications: a
bar, which is slightly larger in length than the diameter of a ring, is moving upward and to
the right with its long axis horizontal, while the ring is stationary and the plane of the ring is
also horizontal. If the motion of the bar is such that the center of the bar coincides with the
center of the ring at some point in time, then the bar will be Lorentz-contracted due to the
forward component of its motion, and it will pass through the ring. The paradox occurs when
the problem is considered in the rest frame of the bar. The ring is now moving downward and
to the left, and will be Lorentz-contracted along its horizontal length, while the bar will not be
contracted at all. How can the bar pass through the ring?

The resolution of the paradox again lies in the relativity of simultaneity. The length of a physical
object is defined as the distance between two simultaneous events occurring at each end of the
body, and since simultaneity is relative, so is this length. This variability in length is just the Lo-
rentz contraction. Similarly, a physical angle is defined as the angle formed by three simultaneous
events, and this angle will also be a relative quantity. In the above paradox, although the rod and
the plane of the ring are parallel in the rest frame of the ring, they are not parallel in the rest frame
of the rod. The uncontracted rod passes through the Lorentz-contracted ring because the plane of
the ring is rotated relative to the rod by an amount sufficient to let the rod pass through.

In mathematical terms, a Lorentz transformation can be separated into the product of a spatial
rotation and a “proper” Lorentz transformation which involves no spatial rotation. The mathe-
matical resolution of the bar and ring paradox is based on the fact that the product of two proper
Lorentz transformations (horizontal and vertical) may produce a Lorentz transformation which is
not proper (diagonal) but rather includes a spatial rotation component.

C Twin Paradox )

The twin paradox is a thought experiment that demonstrates the curious manifestation of time
dilation in modern physics, as it was introduced by Albert Einstein through the theory of relativity.

Consider two twins, named Biff and Cliff. On their 20th birthday, Biff decides to get in a spaceship
and take off into outer space, traveling at nearly the speed of light. He journeys around the cosmos
at this speed for about 5 years, returning to the Earth when he is 25 years old.

Cliff, on the other hand, remains on the Earth. When Biff returns, it turns out that Cliff is 95 years old.

According to relativity, two frames of reference that move differently from each other experience
time differently, a process known as time dilation. Because Biff was moving so rapidly, time was
in effect moving slower for him. This can be calculated precisely using Lorentz transformations,
which are a standard part of relativity.

Twin Paradox One

The first twin paradox isn’t really a scientific paradox, but a logical one: How old is Biff?
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Biff has experienced 25 years of life, but he was also born the same moment as Cliff, which was 9o
years ago. So is he 25 years old or 9o years old?

In this case, the answer is “both” depending on which way you’re measuring age. According to his
driver’s license, which measures Earth time (and is no doubt expired), he’s 90. According to his
body, he’s 25. Neither age is “right” or “wrong,” although the social security administration might
take exception if he tries to claim benetfits.

Twin Paradox Two

The second paradox is a bit more technical, and really comes to the heart of what physicists mean
when they talk about relativity. The entire scenario is based on the idea that Biff was traveling very
fast, so time slowed down for him.

The problem is that in relativity, only the relative motion is involved. So what if you considered
things from Biff’s point of view, then he stayed stationary the whole time, and it was Cliff who was
moving away at rapid speeds. Shouldn’t calculations performed in this way mean that Cliff is the
one who ages more slowly? Doesn’t relativity imply that these situations are symmetrical?

Now, if Biff and Cliff were on spaceships traveling at constant speeds in opposite directions, this
argument would be perfectly true. The rules of special relativity, which govern constant speed (in-
ertial) frames of reference, indicate that only the relative motion between the two is what matters.
In fact, if you're moving at a constant speed, there’s not even an experiment that you can perform
within your frame of reference which would distinguish you from being at rest. (Even if you looked
outside the ship and compared yourself to some other constant frame of reference, you could only
determine that one of you is moving, but not which one.)

But there’s one very important distinction here: Biff is accelerating during this process. Cliff is
on the Earth, which for the purposes of this is basically “at rest” (even though in reality the Earth
moves, rotates, and accelerates in various ways). Biff is on a spaceship which undergoes intensive
acceleration to read near lightspeed. This means, according to general relativity, that there are
actually physical experiments that could be performed by Biff which would reveal to him that he’s
accelerating and the same experiments would show Cliff that he’s not accelerating (or at least ac-
celerating much less than Biff is).

The key feature is that while Cliff is in one frame of reference the entire time, Biff is actually in
two frames of reference - the one where he’s traveling away from the Earth and the one where he’s
coming back to the Earth.

So Biff’s situation and Cliff’s situation are not actually symmetrical in our scenario. Biff is absolute-
ly the one undergoing the more significant acceleration, and therefore he’s the one who undergoes
the least amount of time passage.
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Hamilton—Jacobi—Einstein Equation

Einstein Field Equations

The theory of general relativity states that the observed gravitational effect between masses re-
sults from their warping of spacetime. Some of the areas which are studied in general relativity
include equivalence principle, Penrose diagram, geodesics in general relativity, Mach's principle,
linearized gravity, Raychaudhuri equation, etc. The diverse areas of general relativity have been
thoroughly discussed in this chapter.

C General Theory of Relativity )

Matter does not simply pull on other matter across empty space, as Newton had imagined. Rath-
er matter distorts space-time and it is this distorted space-time that in turn affects other matter.
Objects (including planets, like the Earth, for instance) fly freely under their own inertia through
warped space-time, following curved paths because this is the shortest possible path (or geodesic)
in warped space-time.

This is the General Theory of Relativity, and its central premise is that the curvature of
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space-time is directly determined by the distribution of matter and energy contained within
it. What complicates things, however, is that the distribution of matter and energy is in turn
governed by the curvature of space, leading to a feedback loop and a lot of very complex
mathematics. Thus, the presence of mass/energy determines the geometry of space, and the
geometry of space determines the motion of mass/energy.

In practice, in our everyday world, Newton’s Law of Universal Gravitation is a perfectly good approxi-
mation. The curving of light was never actually predicted by Newton but, in combination with the idea
from special relativity that all forms of energy (including light) have an effective mass, then it seems
logical that, as light passes a massive body like the Sun, it too will feel the tug of gravity and be bent
slightly from its course. Curiously, however, Einstein’s theory predicts that the path of light will be bent
by twice as much as does Newton’s theory, due to a kind of positive feedback. The English astronomer
Arthur Eddington confirmed Einstein’s predictions of the deflection of light from other stars by the
Sun’s gravity using measurements taken in West Africa during an eclipse of the Sun in 1919, after which
the General Theory of Relativity was generally accepted in the scientific community.

General relativity predicts the gravitational bending of light by massive bodies.

The theory has been proven remarkably accurate and robust in many different tests over the last
century. The slightly elliptical orbit of planets is also explained by the theory but, even more re-
markably, it also explains with great accuracy the fact that the elliptical orbits of planets are not
exact repetitions but actually shift slightly with each revolution, tracing out a kind of rosette-like
pattern. For instance, it correctly predicts the so-called precession of the perihelion of Mercury
(that the planet Mercury traces out a complete rosette only once every 3 million years), something
which Newton’s Law of Universal Gravitation is not sophisticated enough to cope with.

Gravity Probe B was launched into Earth orbit in 2004, specifically to test the space-time-bending ef-
fects predicted by General Relativity using ultra-sensitive gyroscopes. The final analysis of the results in
2011 confirms the predicted effects quite closely, with a tiny 0.28% margin of error for geodetic effects
and a larger 19% margin of error for the much less pronounced frame-dragging effect.

The General Theory of Relativity can actually be described using a very simple equation: R = GE (al-
though Einstein’s own formulation of his field equations are much more complex). Unfortunately, the
variables in this simple equation are far from simple: R is a complicated mathematical object made
up of 16 separate numbers in a matrix or “tensor” that describes the distortion of space-time; G is
the gravitational constant; and E is another complicated number, also represented by a tensor, repre-
senting the energy of the object (or more accurately the 4-dimensional “energy momentum density”).
Given that, though, what the equation says is simple enough: that what gravity really is is not a force
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but a distortion of space and time, and that the geometry of space and time depends not just on velocity
but on the energy of an object. This makes sense when we consider that Newton had already shown
that gravity depends on mass, and that Einstein’s Special Theory of Relativity had shown that mass is
equivalent to energy.

Stephen Hawking and Roger Penrose’s singularity theorem of 1970 used the General Theory of
Relativity to show that, just as any collapsing star must end in a singularity, the universe itself must
have begun in a singularity like the Big Bang (providing that the universe does in fact contain at
least as much matter as it appears to). The theorem also showed, though, that general relativity is
an incomplete theory in that it cannot tell us exactly how the universe started off because it predicts
that all physical theories (including itself) necessarily break down at a singularity like the Big Bang.

The theory has also provided endless fodder for the science fiction industry, predicting the exis-
tence of sci-fi staples like black holes, wormholes, time travel, parallel universes, etc. Just as an
example, the notionally faster-than-light “warp” speeds of Star Trek are based firmly on relativity:
if the space-time behind a starship were in some way greatly expanded, and the space-time in
front of it simultaneously contracted, the starship would find itself suddenly much closer to its
destination, without the local space-time around the starship being affected in any relativistic way.
Unfortunately, however, such a trick would require the harvesting of vast amounts of energy, way
in excess of anything imaginable today.

(C Equivalence Principle )

In the theory of general relativity, the equivalence principle is the equivalence of gravitational
and inertial mass, and Albert Einstein’s observation that the gravitational “force” as experienced
locally while standing on a massive body (such as the Earth) is the same as the pseudo-force expe-
rienced by an observer in a non-inertial (accelerated) frame of reference.

Einstein’s Statement of the Equality of Inertial and Gravitational Mass

A little reflection will show that the law of the equality of the inertial and gravitational mass is equiva-
lent to the assertion that the acceleration imparted to a body by a gravitational field is independent of
the nature of the body. For Newton’s equation of motion in a gravitational field, written out in full, it is:

(Inertial mass) . (Acceleration) . (Intensity of the gravitational field) = (Gravitational mass).

It is only when there is numerical equality between the inertial and gravitational mass that the
acceleration is independent of the nature of the body.

Development of Gravitational Theory

Something like the equivalence principle emerged in the early 177th century, when Galileo expressed
experimentally that the acceleration of a test mass due to gravitation is independent of the amount
of mass being accelerated.

Kepler, using Galileo’s discoveries, showed knowledge of the equivalence principle by accurately
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describing what would occur if the moon were stopped in its orbit and dropped towards Earth.
This can be deduced without knowing if or in what manner gravity decreases with distance, but
requires assuming the equivalency between gravity and inertia.

“If two stones were placed in any part of the world near each other, and beyond the sphere of
influence of a third cognate body, these stones, like two magnetic needles, would come together
in the intermediate point, each approaching the other by a space proportional to the compar-
ative mass of the other. If the moon and earth were not retained in their orbits by their animal
force or some other equivalent, the earth would mount to the moon by a fifty-fourth part of
their distance, and the moon fall towards the earth through the other fifty-three parts, and they
would there meet, assuming, however, that the substance of both is of the same density.”

— Kepler

The 1/54 ratio is Kepler’s estimate of the Moon—Earth mass ratio, based on their diameters. The

accuracy of his statement can be deduced by using Newton’s inertia law F=ma and Galileo’s grav-
itational observation that distance D = (1 / z)az2 Setting these accelerations equal for a mass is
the equivalence principle. Noting the time to collision for each mass is the same gives Kepler’s
statement that D /D M, ./M__, without knowing the time to collision or how or if the

moon Earth ™

acceleration force from gravity is a function of distance.

Newton’s gravitational theory simplified and formalized Galileo’s and Kepler’s ideas by recogniz-
ing Kepler’s “animal force or some other equivalent” beyond gravity and inertia were not needed,
deducing from Kepler’s planetary laws how gravity reduces with distance.

The equivalence principle was properly introduced by Albert Einstein in 1907, when he observed
that the acceleration of bodies towards the center of the Earth at a rate of 1g (g = 9.81 m/s? be-
ing a standard reference of gravitational acceleration at the Earth’s surface) is equivalent to the
acceleration of an inertially moving body that would be observed on a rocket in free space being
accelerated at a rate of 1g. Einstein stated it thus:

“We assume the complete physical equivalence of a gravitational field and a corresponding
acceleration of the reference system.”

— Einstein

That is, being on the surface of the Earth is equivalent to being inside a spaceship (far from any sources
of gravity) that is being accelerated by its engines. The direction or vector of acceleration equivalence
on the surface of the earth is “up” or directly opposite the center of the planet while the vector of accel-
eration in a spaceship is directly opposite from the mass ejected by its thrusters. From this principle,
Einstein deduced that free-fall is inertial motion. Objects in free-fall do not experience being accelerat-
ed downward (e.g. toward the earth or other massive body) but rather weightlessness and no acceler-
ation. In an inertial frame of reference bodies (and photons, or light) obey Newton’s first law, moving
at constant velocity in straight lines. Analogously, in a curved spacetime the world line of an inertial
particle or pulse of light is as straight as possible (in space and time). Such a world line is called a geo-
desic and from the point of view of the inertial frame is a straight line. This is why an accelerometer in
free-fall doesn’t register any acceleration; there isn’t any.

As an example: an inertial body moving along a geodesic through space can be trapped into an
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orbit around a large gravitational mass without ever experiencing acceleration. This is possible
because spacetime is radically curved in close vicinity to a large gravitational mass. In such a situ-
ation the geodesic lines bend inward around the center of the mass and a free-floating (weightless)
inertial body will simply follow those curved geodesics into an elliptical orbit. An accelerometer
on-board would never record any acceleration.

By contrast, in Newtonian mechanics, gravity is assumed to be a force. This force draws objects
having mass towards the center of any massive body. At the Earth’s surface, the force of gravity
is counteracted by the mechanical (physical) resistance of the Earth’s surface. So in Newtonian
physics, a person at rest on the surface of a (non-rotating) massive object is in an inertial frame of
reference. These considerations suggest the following corollary to the equivalence principle, which
Einstein formulated precisely in 1911:

“Whenever an observer detects the local presence of a force that acts on all objects in direct
proportion to the inertial mass of each object, that observer is in an accelerated frame of
reference.”

Einstein also referred to two reference frames, K and K’. K is a uniform gravitational field, whereas
K’ has no gravitational field but is uniformly accelerated such that objects in the two frames expe-
rience identical forces:

“We arrive at a very satisfactory interpretation of this law of experience, if we assume that
the systems K and K’ are physically exactly equivalent, that is, if we assume that we may
just as well regard the system K as being in a space free from gravitational fields, if we then
regard K as uniformly accelerated. This assumption of exact physical equivalence makes it
impossible for us to speak of the absolute acceleration of the system of reference, just as the
usual theory of relativity forbids us to talk of the absolute velocity of a system; and it makes
the equal falling of all bodies in a gravitational field seem a matter of course.”

— Einstein

This observation was the start of a process that culminated in general relativity. Einstein suggest-
ed that it should be elevated to the status of a general principle, which he called the “principle of
equivalence” when constructing his theory of relativity:

“As long as we restrict ourselves to purely mechanical processes in the realm where New-
ton’s mechanics holds sway, we are certain of the equivalence of the systems K and K.
But this view of ours will not have any deeper significance unless the systems K and K’ are
equivalent with respect to all physical processes, that is, unless the laws of nature with
respect to K are in entire agreement with those with respect to K’. By assuming this to be
so, we arrive at a principle which, if it is really true, has great heuristic importance. For by
theoretical consideration of processes which take place relatively to a system of reference
with uniform acceleration, we obtain information as to the career of processes in a homo-
geneous gravitational field.”

— Einstein

Einstein combined (postulated) the equivalence principle with special relativity to predict that
clocks run at different rates in a gravitational potential, and light rays bend in a gravitational field,
even before he developed the concept of curved spacetime.
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So the original equivalence principle, as described by Einstein, concluded that free-fall and inertial
motion were physically equivalent. This form of the equivalence principle can be stated as follows.
An observer in a windowless room cannot distinguish between being on the surface of the Earth,
and being in a spaceship in deep space accelerating at 1g. This is not strictly true, because massive
bodies give rise to tidal effects (caused by variations in the strength and direction of the gravita-
tional field) which are absent from an accelerating spaceship in deep space. The room, therefore,
should be small enough that tidal effects can be neglected.

Although the equivalence principle guided the development of general relativity, it is not a found-
ing principle of relativity but rather a simple consequence of the geometrical nature of the theory.
In general relativity, objects in free-fall follow geodesics of spacetime, and what we perceive as
the force of gravity is instead a result of our being unable to follow those geodesics of spacetime,
because the mechanical resistance of matter prevents us from doing so.

Since Einstein developed general relativity, there was a need to develop a framework to test the
theory against other possible theories of gravity compatible with special relativity. This was de-
veloped by Robert Dicke as part of his program to test general relativity. Two new principles were
suggested, the so-called Einstein equivalence principle and the strong equivalence principle, each
of which assumes the weak equivalence principle as a starting point. They only differ in whether or
not they apply to gravitational experiments.

Another clarification needed is that the equivalence principle assumes a constant acceleration of 1g
without considering the mechanics of generating 1g. If we do consider the mechanics of it, then we
must assume the aforementioned windowless room has a fixed mass. Accelerating it at 1g means
there is a constant force being applied, which = m*g where m is the mass of the windowless room
along with its contents (including the observer). Now, if the observer jumps inside the room, an
object lying freely on the floor will decrease in weight momentarily because the acceleration is go-
ing to decrease momentarily due to the observer pushing back against the floor in order to jump.
The object will then gain weight while the observer is in the air and the resulting decreased mass of
the windowless room allows greater acceleration; it will lose weight again when the observer lands
and pushes once more against the floor; and it will finally return to its initial weight afterwards.
To make all these effects equal those we would measure on a planet producing 1g, the windowless
room must be assumed to have the same mass as that planet. Additionally, the windowless room
must not cause its own gravity, otherwise the scenario changes even further. These are technicali-
ties, clearly, but practical ones if we wish the experiment to demonstrate more or less precisely the
equivalence of 1g gravity and 1g acceleration.

Modern Usage

Three forms of the equivalence principle are in current use: weak (Galilean), Einsteinian, and
strong.

The Weak Equivalence Principle

The weak equivalence principle, also known as the universality of free fall or the Galilean equiva-
lence principle can be stated in many ways. The strong EP includes (astronomic) bodies with grav-
itational binding energy (e.g., 1.74 solar-mass pulsar PSR J1903+0327, 15.3% of whose separated
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mass is absent as gravitational binding energy). The weak EP assumes falling bodies are bound by
non-gravitational forces only. Either way:

« The trajectory of a point mass in a gravitational field depends only on its initial position
and velocity, and is independent of its composition and structure.

« All test particles at the alike spacetime point, in a given gravitational field, will undergo the
same acceleration, independent of their properties, including their rest mass.

« All local centers of mass free-fall (in vacuum) along identical (parallel-displaced, same
speed) minimum action trajectories independent of all observable properties.

« The vacuum world-line of a body immersed in a gravitational field is independent of all
observable properties.

« The local effects of motion in a curved spacetime (gravitation) are indistinguishable from
those of an accelerated observer in flat spacetime, without exception.

« Mass (measured with a balance) and weight (measured with a scale) are locally in identical
ratio for all bodies.

Locality eliminates measurable tidal forces originating from a radial divergent gravitational field
(e.g., the Earth) upon finite sized physical bodies. The “falling” equivalence principle embraces
Galileo’s, Newton’s, and Einstein’s conceptualization. The equivalence principle does not deny the
existence of measurable effects caused by a rotating gravitating mass (frame dragging), or bear on
the measurements of light deflection and gravitational time delay made by non-local observers.

Active, Passive and Inertial Masses

By definition of active and passive gravitational mass, the force on M, due to the gravitational field
of M, is:

3 M(E)lCtMlpaSS

2
7
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Likewise the force on a second object of arbitrary mass, due to the gravitational field of
mass,_ is:

act pass
_ MM}

2
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By definition of inertial mass:
F — minerta

If m, and m, are the same distance » from m, then, by the weak equivalence principle, they fall
at the same rate (i.e. their accelerations are the same):
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Hence:
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Therefore:
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In other words, passive gravitational mass must be proportional to inertial mass for all objects.
Furthermore, by Newton’s third law of motion:
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must be equal and opposite to:
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In other words, passive gravitational mass must be proportional to active gravitational mass for
all objects.

The dimensionless E6tvos-parameter 77(4, B)is the difference of the ratios of gravitational and
inertial masses divided by their average for the two sets of test masses “A” and “B.”
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Tests of the Weak Equivalence Principle

Tests of the weak equivalence principle are those that verify the equivalence of gravitational mass
and inertial mass. An obvious test is dropping different objects, ideally in a vacuum environment,
e.g., inside the Fallturm Bremen drop tower.

Experiments are still being performed at the University of Washington which have placed limits on
the differential acceleration of objects towards the Earth, the Sun and towards dark matter in the
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galactic center. Future satellite experiments — STEP (Satellite Test of the Equivalence Principle),
Galileo Galilei, and MICROSCOPE (MICROSatellite a trainée Compensée pour ’'Observation du
Principe d’Equivalence) — will test the weak equivalence principle in space, to much higher accuracy.

With the first successful production of antimatter, in particular anti-hydrogen, a new approach to
test the weak equivalence principle has been proposed. Experiments to compare the gravitational
behavior of matter and antimatter are currently being developed.

Proposals that may lead to a quantum theory of gravity such as string theory and loop quantum
gravity predict violations of the weak equivalence principle because they contain many light scalar
fields with long Compton wavelengths, which should generate fifth forces and variation of the fun-
damental constants. Heuristic arguments suggest that the magnitude of these equivalence princi-
ple violations could be in the 1072 to 10 *®range. Currently envisioned tests of the weak equivalence
principle are approaching a degree of sensitivity such that non-discovery of a violation would be
just as profound a result as discovery of a violation. Non-discovery of equivalence principle viola-
tion in this range would suggest that gravity is so fundamentally different from other forces as to
require a major reevaluation of current attempts to unify gravity with the other forces of nature. A
positive detection, on the other hand, would provide a major guidepost towards unification.

The Einstein Equivalence Principle

What is now called the “Einstein equivalence principle” states that the weak equivalence principle
holds, and that:

“The outcome of any local non-gravitational experiment in a freely falling laboratory is
independent of the velocity of the laboratory and its location in spacetime.”

Here “local” has a very special meaning: not only must the experiment not look outside the labo-
ratory, but it must also be small compared to variations in the gravitational field, tidal forces, so
that the entire laboratory is freely falling. It also implies the absence of interactions with “external”
fields other than the gravitational field.

The principle of relativity implies that the outcome of local experiments must be independent of
the velocity of the apparatus, so the most important consequence of this principle is the Copernican
idea that dimensionlessphysical values such as the fine-structure constant and electron-to-proton
mass ratio must not depend on where in space or time we measure them. Many physicists believe
that any Lorentz invariant theory that satisfies the weak equivalence principle also satisfies the
Einstein equivalence principle.

Schiff’s conjecture suggests that the weak equivalence principle implies the Einstein equivalence
principle, but it has not been proven. Nonetheless, the two principles are tested with very different
kinds of experiments. The Einstein equivalence principle has been criticized as imprecise, because
there is no universally accepted way to distinguish gravitational from non-gravitational experiments.

Tests of the Einstein Equivalence Principle

In addition to the tests of the weak equivalence principle, the Einstein equivalence principle can
be tested by searching for variation of dimensionless constants and mass ratios. The present best
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limits on the variation of the fundamental constants have mainly been set by studying the naturally
occurring Oklo natural nuclear fission reactor, where nuclear reactions similar to ones we observe
today have been shown to have occurred underground approximately two billion years ago. These
reactions are extremely sensitive to the values of the fundamental constants.

Constant Year Method Limit on fractional change
Proton gyromagnetic factor 1976 astrophysical 107!
Weak interaction constant 1976 Oklo 1072
Fine structure constant 1976 Oklo 1077
Electron—proton mass ratio 2002 quasars 1074

There have been a number of controversial attempts to constrain the variation of the strong in-
teraction constant. There have been several suggestions that “constants” do vary on cosmological
scales. The best known is the reported detection of variation (at the 10-5 level) of the fine-struc-
ture constant from measurements of distant quasars, Other researchers[who?] dispute these find-
ings. Other tests of the Einstein equivalence principle are gravitational redshift experiments, such
as the Pound—Rebka experiment which test the position independence of experiments.

The Strong Equivalence Principle

The strong equivalence principle suggests the laws of gravitation are independent of velocity and
location. In particular,

“The gravitational motion of a small test body depends only on its initial position in space-
time and velocity, and not on its constitution.”

and

“The outcome of any local experiment (gravitational or not) in a freely falling laboratory is
independent of the velocity of the laboratory and its location in spacetime.”

The first part is a version of the weak equivalence principle that applies to objects that exert a
gravitational force on themselves, such as stars, planets, black holes or Cavendish experiments.
The second part is the Einstein equivalence principle (with the same definition of “local”), re-
stated to allow gravitational experiments and self-gravitating bodies. The freely-falling object
or laboratory, however, must still be small, so that tidal forces may be neglected (hence “local
experiment”).

This is the only form of the equivalence principle that applies to self-gravitating objects (such as
stars), which have substantial internal gravitational interactions. It requires that the gravitational
constant be the same everywhere in the universe and is incompatible with a fifth force. It is much
more restrictive than the Einstein equivalence principle.

The strong equivalence principle suggests that gravity is entirely geometrical by nature (that is, the
metric alone determines the effect of gravity) and does not have any extra fields associated with it.
If an observer measures a patch of space to be flat, then the strong equivalence principle suggests
that it is absolutely equivalent to any other patch of flat space elsewhere in the universe. Einstein’s
theory of general relativity (including the cosmological constant) is thought to be the only theory
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of gravity that satisfies the strong equivalence principle. A number of alternative theories, such as
Brans—Dicke theory, satisfy only the Einstein equivalence principle.

Tests of the Strong Equivalence Principle

The strong equivalence principle can be tested by searching for a variation of Newton’s gravita-
tional constant G over the life of the universe, or equivalently, variation in the masses of the funda-
mental particles. A number of independent constraints, from orbits in the solar system and studies
of Big Bang nucleosynthesis have shown that G cannot have varied by more than 10%.

Thus, the strong equivalence principle can be tested by searching for fifth forces (deviations from
the gravitational force-law predicted by general relativity). These experiments typically look for
failures of the inverse-square law (specifically Yukawa forces or failures of Birkhoff’s theorem)
behavior of gravity in the laboratory. The most accurate tests over short distances have been per-
formed by the Eot—Wash group. A future satellite experiment, SEE (Satellite Energy Exchange),
will search for fifth forces in space and should be able to further constrain violations of the strong
equivalence principle. Other limits, looking for much longer-range forces, have been placed by
searching for the Nordtvedt effect, a “polarization” of solar system orbits that would be caused by
gravitational self-energy accelerating at a different rate from normal matter. This effect has been
sensitively tested by the Lunar Laser Ranging Experiment. Other tests include studying the deflec-
tion of radiation from distant radio sources by the sun, which can be accurately measured by very
long baseline interferometry. Another sensitive test comes from measurements of the frequency
shift of signals to and from the Cassini spacecraft. Together, these measurements have put tight
limits on Brans—Dicke theory and other alternative theories of gravity.

In 2014, astronomers discovered a stellar triple system including a millisecond pulsar PSR
J0337+1715 and two white dwarfs orbiting it. The system provided them a chance to test the strong
equivalence principle in a strong gravitational field with high accuracy.

Challenges

One challenge to the equivalence principle is the Brans—Dicke theory. Self-creation cosmology is
a modification of the Brans—Dicke theory. The Fredkin Finite Nature Hypothesis is an even more
radical challenge to the equivalence principle and has even fewer supporters.

In August 2010, researchers from the University of New South Wales, Swinburne University of
Technology, and Cambridge University published a paper titled “Evidence for spatial variation of
the fine structure constant”, whose tentative conclusion is that, “qualitatively, the results suggest
a violation of the Einstein Equivalence Principle, and could infer a very large or infinite universe,
within which our ‘local’ Hubble volume represents a tiny fraction.”

Dutch physicist and string theorist Erik Verlinde has generated a self-contained, logical derivation
of the equivalence principle based on the starting assumption of a holographic universe. Given
this situation, gravity would not be a true fundamental force as is currently thought but instead
an “emergent property” related to entropy. Verlinde’s entropic gravity theory apparently leads
naturally to the correct observed strength of dark energy; previous failures to explain its incredibly
small magnitude have been called by such people as cosmologist Michael Turner (who is credited
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as having coined the term “dark energy”) as “the greatest embarrassment in the history of theoret-
ical physics”. These ideas are far from settled and still very controversial.

(C Penrose Diagram ))

We can’t directly visualize a four-dimensional manifold. When a spacetime has a symmetry, how-
ever, we may be able to visualize the relevant properties the whole thing by considering a lower-di-
mensional part of it. By analogy, if we wanted to visualize the structure of the earth’s interior, we
might draw a diagram showing a two-dimensional section through its center. In fact, we could get
rid of two dimensions and simply draw a diagram of a single radial line running from the earth’s
core to its surface; each point on this line would then represent a sphere. If we do this in general
relativity, for a spacetime that is spherically symmetric, then we can reduce the four-dimensional
to a two-dimensional one, with each point representing a two-sphere. By applying some further
tricks, we will see that we can end up with a very convenient and useful visualization called a
Penrose diagram, also known as a Penrose-Carter diagram or causal diagram.

Flat Spacetime

As a warmup, figure shows a Penrose diagram for flat (Minkowski) spacetime. The diagram looks
1 + 1-dimensional, but the convention is that spherical symmetry is assumed, so two more dimen-
sions are hidden, and we're really portraying 3 + 1 dimensions. A typical point on the interior of
the diamond region represents a 2-sphere. On this type of diagram, light cones look just like they
would on a normal spacetime diagram of Minkowski space, but distance scales are highly distort-
ed. The diamond represents the entire spacetime, with the distortion fitting this entire infinite re-
gion into that finite area. Despite the distortion, the diagram shows lightlike surfaces as 45-degree
diagonals. Spacelike and timelike geodesics, however, are distorted, as shown by the curves in the
diagram.

"+

".

Penrose diagram for flat spacetime.

The distortion becomes greater as we move away from the center of the diagram, and becomes
infinite near the edges. Because of this infinite distortion, the points i~ and i* actually represent
3-spheres. All timelike curves start at i~ and end at i*, which are idealized points at infinity, like the
vanishing points in perspective drawings. We can think of i* as the “Elephants’ graveyard,” where
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massive particles go when they die. Similarly, lightlike curves end on 4*, referred to as null infin-
ity. The point at i° is an infinitely distant endpoint for spacelike curves. Because of the spherical
symmetry, the left and right halves of the diagram are redundant.

It is possible to make up explicit formulae that translate back and forth between Minkowski coor-
dinates and points on the diamond, but in general this is not necessary. In fact, the utility of the
diagrams is that they let us think about causal relationships in coordinate-independent ways. A
light cone on the diagram looks exactly like a normal light cone.

Since this particular spacetime is homogeneous, it makes no difference what spatial location on
the diagram we pick as our axis of symmetry. For example, we could arbitrarily pick the left-hand
corner, the central timelike geodesic (drawn straight) or one of the other timelike geodesics (rep-
resented as if it were curved).

Schwarzschild Spacetime

Figure is a Penrose diagram for the Schwarzschild spacetime, i.e., a spacetime that looks like Min-
kowski space, except that it has one eternal black hole in it. This is a black hole that did not form
by gravitational collapse. This spacetime isn’t homogeneous; it has a specific location that is its
center of spherical symmetry, and this is the vertical line on the left marked r = 0. The triangle is
the spacetime inside the event horizon; we could have copied it across the r = 0 line if we had so
desired, but the copies would have been redundant.

singularity  j*

I'.

Penrose diagram for Schwarzschild spacetime: a black hole that didn’t form by gravitational collapse.

The Penrose diagram makes it easy to reason about causal relationships. For example, we can see
that if a particle reaches a point inside the event horizon, its entire causal future lies inside the
horizon, and all of its possible future world-lines intersect the singularity. The horizon is a lightlike
surface, which makes sense, because it’s defined as the boundary of the set of points from which a
light ray could reach J*.

Astrophysical Black Hole

Figure is a Penrose diagram for a black hole that has formed by gravitational collapse. Using this
type of diagram, we can succinctly address one of the most vexing FAQs about black holes. If a
distant observer watches the collapsing cloud of matter from which the black hole forms, her op-
tical observations will show that the light from the matter becomes more and more gravitationally
redshifted, and if she wishes, she can interpret this as an example of gravitational time dilation.
As she waits longer and longer, the light signals from the infalling matter take longer and longer
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to arrive. The redshift approaches infinity as the matter approaches the horizon, so the light waves
ultimately become too low in energy to be detectable by any given instrument. Furthermore, her
patience (or her lifetime) will run out, because the time on her clock approaches infinity as she
waits to get signals from matter that is approaching the horizon. This is all exactly as it should be,
since the horizon is by definition the boundary of her observable universe. (A light ray emitted
from the horizon will end up at i+, which is an end-point of timelike world-lines reached only by
observers who have experienced an infinite amount of proper time).

singularity  j*

matter

F

Penrose diagram for a black hole formed by gravitational collapse.

People who are bothered by these issues often acknowledge the external unobservability of matter
passing through the horizon, and then want to pass from this to questions like, “Does that mean
the black hole never really forms?” This presupposes that our distant observer has a uniquely de-
fined notion of simultaneity that applies to a region of space stretching from her own position to
the interior of the black hole, so that she can say what’s going on inside the black hole “now.” But
the notion of simultaneity in general relativity is even more limited than its counterpart in special
relativity. Not only is simultaneity in general relativity observer-dependent, as in special relativity,
but it is also local rather than global.

In figure, E is an event on the world-line of an observer. The spacelike surface S, is one possible
“now” for this observer. According to this surface, no particle has ever fallen in and reached the
horizon; every such particle has a world-line that intersects S , and therefore it’s still on its way in.

S, is another possible “now” for the same observer at the same time. According to this definition of
“now,” all the particles have passed the event horizon, but none have hit the singularity yet. Final-
ly, S, is a “now” according to which all the particles have hit the singularity.

If this was special relativity, then we could decide which surface was the correct notion of simulta-
neity for the observer, based on the observer’s state of motion. But in general relativity, this only
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works locally. There is no well-defined way of deciding which is the correct way of globally extend-
ing this notion of simultaneity.

Although it may seem strange that we can’t say whether the singularity has “already” formed ac-
cording to a distant observer, this is really just an inevitable result of the fact that the singularity
is spacelike. The same thing happens in the case of a Schwarzschild spacetime, which we think of
as a description of an eternal black hole, i.e., one that has always existed and always will. On the
similar Penrose diagram for an eternal black hole, we can still draw a spacelike surfacelike S or S,
representing a definition of “now” such that the singularity doesn’t exist yet.

Penrose Diagrams in General

Ideally we would like to generalize the procedure for drawing Penrose diagrams so that we would
be able to uniquely determine one for any spacetime. This turns out to be not so clear-cut. The
procedure would go something like this:

1. Make an n-dimensional section or projection, where usually, but not always, n = 2.
2. Do a transformation to reduce the resulting manifold to a flat one of finite size.

3. Adjoin idealized surfaces and points at infinity.

At step 1, we want to take advantage of any symmetries, such as rotational symmetry, so that the
final result will be informative, be representative of the whole spacetime, and accurately depict
causal relationships in the original spacetime. If the original spacetime has a low degree of symme-
try (e.g., a spacetime containing three black holes arranged in a triangle), then this might require
n > 2. At this step we also need to make sure that lightlike geodesics in the original space corre-
spond properly to lightlike geodesics in the submanifold.

For step 2, we have already given a geometrical characterization of the type of transformation we
have in mind, which is called a conformal transformation. It turns out to be possible to encap-
sulate this idea in a simple analytic way. Given a spacetime with a metric g, we define a fictitious

metric g =Q’g,, where Q is a nonzero real number that varies from point to point. The idea here
isthat gand g agree on where the light cone is, but they disagree on the measurement of distances

and times. The same manifold equipped with the fictitious metric & is the one being drawn when
we make a Penrose diagram. We let () — (0 as we approach the idealized boundary regions like i°
and J*, and this is what causes the Penrose diagram to take up finite space.

It is not possible in general to do what is required in step 2 by making a conformal transformation
to change a manifold into a flat one. A manifold that can be flattened in this way is called confor-
mally flat. All two-dimensional manifolds are conformally flat, so in the n = 2 case this is guaran-
teed. For n > 3 we will usually not have conformal flatness if there are gravitational waves or tidal
forces present.

Global Hyperbolicity

Causality refers to our vaguely defined feeling that the world should have an orderly progression
of cause and effect. Making this notion more precise is surprisingly difficult. Penrose diagrams,
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and their associated concepts, are essentially representations of the causal structure of spacetime,
and these turn out to be helpful in putting together one of the more satisfying attempts to define
causality. This definition is called global hyperbolicity.

C Geodesics in General Relativity )

In general relativity, a geodesic generalizes the notion of a “straight line” to curved spacetime.
Importantly, the world line of a particle free from all external, non-gravitational force is a par-
ticular type of geodesic. In other words, a freely moving or falling particle always moves along
a geodesic.

In general relativity, gravity can be regarded as not a force but a consequence of a curved space-
time geometry where the source of curvature is the stress—energy tensor (representing matter, for
instance). Thus, for example, the path of a planet orbiting a star is the projection of a geodesic of
the curved 4-D spacetime geometry around the star onto 3-D space.

Mathematical Expression

The full geodesic equation is:

2 u a s
d x2 o T ﬂaﬂ dx” dx 0
ds ds ds

where s is a scalar parameter of motion (e.g. the proper time), and I'“ ; are Christoffel symbols
(sometimes called the affine connection coefficients or Levi-Civita connection coefficients) which
is symmetric in the two lower indices. Indices may take the values: o, 1, 2, 3 and the summation
convention is used for repeated indices & and . The quantity on the left-hand-side of this equa-
tion is the acceleration of a particle, and so this equation is analogous to Newton'’s laws of motion
which likewise provide formulae for the acceleration of a particle. This equation of motion employs
the Einstein notation, meaning that repeated indices are summed (i.e. from zero to three). The
Christoffel symbols are functions of the four space-time coordinates, and so are independent of
the velocity or acceleration or other characteristics of a test particlewhose motion is described by
the geodesic equation.

Equivalent Mathematical Expression using Coordinate Time as Parameter

So far the geodesic equation of motion has been written in terms of a scalar parameter s. It can
alternatively be written in terms of the time coordinate, ¢ = x° (here we have used the triple bar to
signify a definition). The geodesic equation of motion then becomes:

Ty Ny
dt? P dt dt P dt dt dt

This formulation of the geodesic equation of motion can be useful for computer calculations and
to compare General Relativity with Newtonian Gravity. It is straightforward to derive this form of
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the geodesic equation of motion from the form which uses proper time as a parameter, using the
chain rule. Notice that both sides of this last equation vanish when the mu index is set to zero. If
the particle’s velocity is small enough, then the geodesic equation reduces to this:

d2xn B
ar’

n
I -

Here the index n takes the values (1,2,3). This equation simply means that all test particles at a par-
ticular place and time will have the same acceleration, which is a well-known feature of Newtonian
gravity. For example, everything floating around in the international space station will undergo
roughly the same acceleration due to gravity.

Derivation Directly from the Equivalence Principle

Physicist Steven Weinberg has presented a derivation of the geodesic equation of motion directly
from the equivalence principle. The first step in such a derivation is to suppose that no particles
are accelerating in the neighborhood of a point-event with respect to a freely falling coordinate
system ( X* ) Setting 7 = x°, we have the following equation that is locally applicable in free
fall:

The next step is to employ the multi-dimensional chain rule. We have:

dX*  dx" ox*
dT  dT ox"

Differentiating once more with respect to the time, we have:

d* X" B d*x’ oX* +dxv dx® 0°X*
dT? dT* ox" dT dT ox'ox”

Therefore:
d*x" oX* __dxv dx* 0*X*
dT* ox" dT dT ox"ox“

Multiply both sides of this last equation by the following quantity:

ox*

ox*

Consequently, we have this:
d’x* Ay dx” { X" o }

dT?> 4T dT | ox'ox” ox*

WORLD TECHNOLOGIES




CHAPTER 4  General Relativity | 161

Using:

- o*x* ox”
o oxVox® oX*

it becomes:
d*x* _ o dxldx”
ar’ “dT dT
Applying the one-dimensional chain rule gives:
d*x* ( dt jz dx* d*t L dx” dx® ( dt jz
—l ==+ =-T — .
dt© \dT dT

dt dT? e dt

d*x* dx* d*t (dT)z L dx” dx®
. | = | =17 .
dt*  dt dT*\ dt dt dt

As before, we can set ¢ = x". Then the first derivative of x° with respect to ¢ is one and the second
derivative is zero. Replacing A with zero gives:

d’t (dez_ o dx dxf

dr*\dr ) " dr dr

Subtracting d x* / d t times this from the previous equation gives:

d*x* Lodx dx®  _, dx” dx® dx”

e dr dt " dr dr dt

which is a form of the geodesic equation of motion (using the coordinate time as parameter).

The geodesic equation of motion can alternatively be derived using the concept of parallel
transport.

Deriving the Geodesic Equation via an Action

We can (and this is the most common technique) derive the geodesic equation via the action prin-
ciple. Consider the case of trying to find a geodesic between two timelike-separated events.

Let the action be:

Szjds

where ds = \/ ~g,,(x)dx" dx" is the line element. There is a negative sign inside the square root

because the curve must be timelike. To get the geodesic equation we must vary this action. To do
this let us parameterize this action with respect to a parameter A . Doing this we get:

dax” dx
S=[-8 A0 dA
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We can now go ahead and vary this action with respect to the curve x
action we get:

#. By the principle of least

dx” dx”’

Using the product rule we get:

H H v
0o I(dx dx” dsx" dx”

N ﬁdé‘x J- dx" dx" Sy 42 dox" dx” di
a7 a7 O e e a7 az CeEm Ew™ad dr

Integrating by-parts the last term and dropping the total derivative (which equals to zero at the

boundaries) we get that:

dx* dx” d dx” dx" dx"
0= J-{ 4 a7 0,8,,0x% —20x" d—(gﬂv Dd‘r I(

dx® dx" . dx
e gy —0,8,,0x" =20x"0,g,, — ox* Jdr

Simplifying a bit we see that:

d*x” a’x“ dx” dx® dx"
0= 0 2 ox‘dr
I( S U ar ar 8T T dr “g‘”}

S0,

d*x"  dx* dx” dx® dx"’ dx” dx®
0=1{]| -2 + 0 - - ox“dr
j( v dr®>  dr dr uBav dr dr a8 dr dr Vg”aj

1
multiplying this equation by —— we get

d*x"  1dx® dx" )
O:J.(gﬂv dr’ +E Ir dz (aggyv +8Vg,m—8ygw)j5x dr

So by Hamilton’s principle we find that the Euler—Lagrange equation is
d’x" 1 dx® dx"
+— 0 +0 -0 =0
drt 2 dr dr(“g’” e ”go’v)

Multiplying by the inverse metric tensor g we get that

dZXﬂ + lgﬂﬂ
dr* 2

dx® dx"
(aag,uv +6vg,ua _6,ugav)ﬁ dr
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Thus we get the geodesic equation:

2.8 a v
d x2 +Fﬂav dx® dx _0
dr dr drt

with the Christoffel symbol defined in terms of the metric tensor as:

1

s _ up
I av _Eg (aag,uv +avg,ua _a,ugav)

Similar derivations, with minor amendments, can be used to produce analogous results for geode-

sics between light-like or space-like separated pairs of points.

Equation of Motion

Albert Einstein believed that the geodesic equation of motion can be derived from the field equa-
tions for empty space, i.e. from the fact that the Ricci curvature vanishes. He wrote:

“It has been shown that this law of motion — generalized to the case of arbitrarily large
gravitating masses — can be derived from the field equations of empty space alone. Accord-
ing to this derivation the law of motion is implied by the condition that the field be singular
nowhere outside its generating mass points.”

and

“One of the imperfections of the original relativistic theory of gravitation was that as a field
theory it was not complete; it introduced the independent postulate that the law of motion
of a particle is given by the equation of the geodesic.”

A complete field theory knows only fields and not the concepts of particle and motion. For these
must not exist independently from the field but are to be treated as part of it.

On the basis of the description of a particle without singularity, one has the possibility of a logical-
ly more satisfactory treatment of the combined problem: The problem of the field and that of the
motion coincide.

Both physicists and philosophers have often repeated the assertion that the geodesic equation can
be obtained from the field equations to describe the motion of a gravitational singularity, but this
claim remains disputed. Less controversial is the notion that the field equations determine the
motion of a fluid or dust, as distinguished from the motion of a point-singularity.

Extension to the Case of a Charged Particle

In deriving the geodesic equation from the equivalence principle, it was assumed that particles in
a local inertial coordinate system are not accelerating. However, in real life, the particles may be
charged, and therefore may be accelerating locally in accordance with the Lorentz force. That is:

’X" _q o AX°
ds* m ds

naﬂ .
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With:
dx* dx*
Nop—— =—1.
ds ds

The Minkowski tensor 77, is given by:

100 0
0 100
T5=1 0 0 1 0
000 1

These last three equations can be used as the starting point for the derivation of an equation of
motion in General Relativity, instead of assuming that acceleration is zero in free fall. Because the
Minkowski tensor is involved here, it becomes necessary to introduce something called the metric
tensor in General Relativity. The metric tensor g is symmetric, and locally reduces to the Minkow-
ski tensor in free fall. The resulting equation of motion is as follows:

d’x" L dx* A’ g dx“
- - __+_F,uﬁ_ .
ds® P ds ds  m ds Eap
with:
e at |
Eap ds ds \

This last equation signifies that the particle is moving along a timelike geodesic; massless particles
like the photon instead follow null geodesics (replace —1 with zero on the right-hand side of the
last equation). It is important that the last two equations are consistent with each other, when the
latter is differentiated with respect to proper time, and the following formula for the Christoffel
symbols ensures that consistency:

r _1 it agm_i_agrﬂ_agaﬂ
P ox* ox'

af zg

This last equation does not involve the electromagnetic fields, and it is applicable even in the limit
as the electromagnetic fields vanish. The letter g with superscripts refers to the inverse of the met-
ric tensor. In General Relativity, indices of tensors are lowered and raised by contraction with the
metric tensor or its inverse, respectively.

Geodesics as Curves of Stationary Interval

A geodesic between two events can also be described as the curve joining those two events which
has a stationary interval (4-dimensional “length”). Stationary here is used in the sense in which
that term is used in the calculus of variations, namely, that the interval along the curve varies min-
imally among curves that are nearby to the geodesic.
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In Minkowski space there is only one time-like geodesic that connects any given pair of time-like
separated events, and that geodesic is the curve with the longest proper time between the two
events. But in curved spacetime, it’s possible for a pair of widely separated events to have more
than one time-like geodesic that connects them. In such instances, the proper times along the var-
ious geodesics will not in general be the same. And for some geodesics in such instances, it’s pos-
sible for a curve that connects the two events and is nearby to the geodesic to have either a longer
or a shorter proper time than the geodesic.

For a space-like geodesic through two events, there are always nearby curves which go through
the two events that have either a longer or a shorter proper length than the geodesic, even in Min-
kowski space. In Minkowski space, in an inertial frame of reference in which the two events are
simultaneous, the geodesic will be the straight line between the two events at the time at which
the events occur. Any curve that differs from the geodesic purely spatially (i.e. does not change the
time coordinate) in that frame of reference will have a longer proper length than the geodesic, but
a curve that differs from the geodesic purely temporally (i.e. does not change the space coordinate)
in that frame of reference will have a shorter proper length.

The interval of a curve in spacetime is:

[= J.1/|gﬂv)'c”5cv ds .

Then, the Euler—Lagrange equation,

becomes, after some calculation,

2(r* 3" +i%) =U" diln \UU" |,
S

where U* = x*.
Proof:

If the parameter s is chosen to be affine, then the right side of the above equation vanishes
(because U U" is constant). Finally, we have the geodesic equation:

2 A% A
", x"x"+x"=0.

C Mach’s Principle )

In theoretical physics, particularly in discussions of gravitation theories, Mach’s principle (or
Mach’s conjecture ) is the name given by Einstein to an imprecise hypothesis often credited to
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the physicist and philosopher Ernst Mach. The idea is that the existence of absolute rotation (the
distinction of local inertial frames vs. rotating reference frames) is determined by the large-scale
distribution of matter, as exemplified by this anecdote:

“You are standing in a field looking at the stars. Your arms are resting freely at your
side, and you see that the distant stars are not moving. Now start spinning. The stars
are whirling around you and your arms are pulled away from your body. Why should
your arms be pulled away when the stars are whirling? Why should they be dangling
freely when the stars don’t move?”

Mach’s principle says that this is not a coincidence—that there is a physical law that relates the
motion of the distant stars to the local inertial frame. If you see all the stars whirling around you,
Mach suggests that there is some physical law which would make it so you would feel a centrifugal
force. There are a number of rival formulations of the principle. It is often stated in vague ways,
like “mass out there influences inertia here”. A very general statement of Mach’s principle is “local
physical laws are determined by the large-scale structure of the universe”.

This concept was a guiding factor in Einstein’s development of the general theory of relativity.
Einstein realized that the overall distribution of matter would determine the metric tensor,
which tells you which frame is rotationally stationary. Frame-dragging and conservation of
gravitational angular momentum makes this into a true statement in the general theory in
certain solutions. But because the principle is so vague, many distinct statements can be (and
have been) made that would qualify as a Mach principle, and some of these are false. The
Godel rotating universe is a solution of the field equations that is designed to disobey Mach’s
principle in the worst possible way. In this example, the distant stars seem to be revolving fast-
er and faster as one moves further away. This example doesn’t completely settle the question,
because it has closed timelike curves.

Einstein’s use of the Principle

There is a fundamental issue in relativity theory. If all motion is relative, how can we measure
the inertia of a body? We must measure the inertia with respect to something else. But what if we
imagine a particle completely on its own in the universe? We might hope to still have some notion
of its state of motion. Mach’s principle is sometimes interpreted as the statement that such a par-
ticle’s state of motion has no meaning in that case.

In Mach’s words, the principle is embodied as follows:

“[The] investigator must feel the need of knowledge of the immediate connections, say, of the
masses of the universe. There will hover before him as an ideal insight into the principles of
the whole matter, from which accelerated and inertial motions will result in the same way. ”

Albert Einstein seemed to view Mach’s principle as something along the lines of:
“inertia originates in a kind of interaction between bodies”

In this sense, at least some of Mach’s principles are related to philosophical holism. Mach’s sugges-
tion can be taken as the injunction that gravitation theories should be relational theories. Einstein
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brought the principle into mainstream physics while working on general relativity. Indeed, it was
Einstein who first coined the phrase Mach’s principle. There is much debate as to whether Mach
really intended to suggest a new physical law since he never states it explicitly.

The writing in which Einstein found inspiration from Mach was “The Science of Mechanics”, where
the philosopher criticized Newton’s idea of absolute space, in particular the argument that Newton
gave sustaining the existence of an advantaged reference system: what is commonly called “New-
ton’s bucket argument”.

In his Philosophiae Naturalis Principia Mathematica, Newton tried to demonstrate that:

“one can always decide if one is rotating with respect to the absolute space, measuring the
apparent forces that arise only when an absolute rotation is performed. If a bucket is filled
with water, and made to rotate, initially the water remains still, but then, gradually, the
walls of the vessel communicate their motion to the water, making it curve and climb up
the borders of the bucket, because of the centrifugal forces produced by the rotation.This
thought experiment demonstrates that the centrifugal forces arise only when the water is
in rotation with respect to the absolute space (represented here by the earth’s reference
frame, or better, the distant stars) instead, when the bucket was rotating with respect to
the water no centrifugal forces were produced, this indicating that the latter was still with
respect to the absolute space.”

Mach, in his book, says that:

“the bucket experiment only demonstrates that when the water is in rotation with re-
spect to the bucket no centrifugal forces are produced, and that we cannot know
how the water would behave if in the experiment the bucket’s walls were increased
in depth and width until they became leagues big. In Mach’s idea this concept of abso-
lute motion should be substituted with a total relativism in which every motion, uni-
form or accelerated, has sense only in reference to other bodies (i.e., one cannot sim-
ply say that the water is rotating, but must specify if it’s rotating with respect to the
vessel or to the earth). In this view, the apparent forces that seem to permit discrimina-
tion between relative and “absolute” motions should only be considered as an effect of the
particular asymmetry that there is in our reference system between the bodies which we
consider in motion, that are small (like buckets), and the bodies that we believe are still
(the earth and distant stars), that are overwhelmingly bigger and heavier than the former.”

This same thought had been expressed by the philosopher George Berkeley in his De Motu.
It is then not clear, in the passages from Mach just mentioned, if the philosopher intended
to formulate a new kind of physical action between heavy bodies. This physical mechanism
should determine the inertia of bodies, in a way that the heavy and distant bodies of our uni-
verse should contribute the most to the inertial forces. More likely, Mach only suggested a mere
“redescription of motion in space as experiences that do not invoke the term space”. What is
certain is that Einstein interpreted Mach’s passage in the former way, originating a long-lasting
debate.

Most physicists believe Mach’s principle was never developed into a quantitative physical theory
that would explain a mechanism by which the stars can have such an effect. It was never made

WORLD TECHNOLOGIES




168 | Introduction to Relativity

clear by Mach himself exactly what his principle was. Although Einstein was intrigued and inspired
by Mach’s principle, Einstein’s formulation of the principle is not a fundamental assumption of
general relativity.

Mach’s Principle in General Relativity

Because intuitive notions of distance and time no longer apply, what exactly is meant by “Mach’s
principle” in general relativity is even less clear than in Newtonian physics and at least 21 formula-
tions of Mach’s principle are possible, some being considered more strongly Machian than others.
A relatively weak formulation is the assertion that the motion of matter in one place should affect
which frames are inertial in another.

Einstein, before completing his development of the general theory of relativity, found an effect
which he interpreted as being evidence of Mach’s principle. We assume a fixed background for con-
ceptual simplicity, construct a large spherical shell of mass, and set it spinning in that background.
The reference frame in the interior of this shell will precess with respect to the fixed background.
This effect is known as the Lense—Thirring effect. Einstein was so satisfied with this manifestation
of Mach’s principle that he wrote a letter to Mach expressing this:

“it turns out that inertia originates in a kind of interaction between bodies, quite in the
sense of your considerations on Newton’s pail experiment If one rotates [a heavy shell of
matter] relative to the fixed stars about an axis going through its center, a Coriolis force
arises in the interior of the shell; that is, the plane of a Foucault pendulum is dragged
around (with a practically unmeasurably small angular velocity).”

The Lense—Thirring effect certainly satisfies the very basic and broad notion that “matter there
influences inertia here”. The plane of the pendulum would not be dragged around if the shell of
matter were not present, or if it were not spinning. As for the statement that “inertia originates in
a kind of interaction between bodies”, this too could be interpreted as true in the context of the
effect.

More fundamental to the problem, however, is the very existence of a fixed background, which
Einstein describes as “the fixed stars”. Modern relativists see the imprints of Mach’s principle in
the initial-value problem. Essentially, we humans seem to wish to separate spacetime into slices of
constant time. When we do this, Einstein’s equations can be decomposed into one set of equations,
which must be satisfied on each slice, and another set, which describe how to move between slic-
es. The equations for an individual slice are elliptic partial differential equations. In general, this
means that only part of the geometry of the slice can be given by the scientist, while the geometry
everywhere else will then be dictated by Einstein’s equations on the slice.

In the context of an asymptotically flat spacetime, the boundary conditions are given at infinity.
Heuristically, the boundary conditions for an asymptotically flat universe define a frame with re-
spect to which inertia has meaning. By performing a Lorentz transformation on the distant uni-
verse, of course, this inertia can also be transformed.

A stronger form of Mach’s principle applies in Wheeler—Mach—Einstein spacetimes, which require
spacetime to be spatially compact and globally hyperbolic. In such universes Mach’s principle
can be stated as the distribution of matter and field energy-momentum (and possibly other
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information) at a particular moment in the universe determines the inertial frame at each point
in the universe (where “a particular moment in the universe” refers to a chosen Cauchy surface).

There have been other attempts to formulate a theory that is more fully Machian, such as the
Brans—Dicke theory and the Hoyle—Narlikar theory of gravity, but most physicists argue that none
have been fully successful. At an exit poll of experts, held in Tiibingen in 1993, when asked the
question “Is general relativity perfectly Machian?”, 3 respondents replied “yes”, and 22 replied
“no”. To the question “Is general relativity with appropriate boundary conditions of closure of
some kind very Machian?” the result was 14 “yes” and 7 “no”.

However, Einstein was convinced that a valid theory of gravity would necessarily have to include
the relativity of inertia:

“So strongly did Einstein believe at that time in the relativity of inertia that in 1918 he

stated as being on an equal footing three principles on which a satisfactory theory of grav-

itation should rest:

« The principle of relativity as expressed by general covariance.

« The principle of equivalence.

* Mach’s principle (the first time this term entered the literature): that the g, are com-
pletely determined by the mass of bodies, more generally by T,

In 1922, Einstein noted that others were satisfied to proceed without this [third] criterion
and added, “This contentedness will appear incomprehensible to a later generation how-
ever.”

It must be said that, as far as I can see, to this day, Mach’s principle has not brought phys-
ics decisively farther. It must also be said that the origin of inertia is and remains the most
obscure subject in the theory of particles and fields. Mach’s principle may therefore have a
future — but not without the quantum theory.”

— Abraham Pais

Variations in the Statement of the Principle

The broad notion that “mass there influences inertia here” has been expressed in several forms.
Hermann Bondi and Joseph Samuel have listed eleven distinct statements that can be called Mach
principles, labelled by Macho through Machio.Though their list is not necessarily exhaustive, it
does give a flavor for the variety possible.

« Macho: The universe, as represented by the average motion of distant galaxies, does not
appear to rotate relative to local inertial frames.

« Machi: Newton’s gravitational constant G is a dynamical field.
« Mach2: An isolated body in otherwise empty space has no inertia.
« Machg: Local inertial frames are affected by the cosmic motion and distribution of matter.

« Machg4: The universe is spatially closed.

WORLD TECHNOLOGIES




170 | Introduction to Relativity

« Machs: The total energy, angular and linear momentum of the universe are zero.
« Mach6: Inertial mass is affected by the global distribution of matter.
«  Machy: If you take away all matter, there is no more space.

def
«  Mach8: Q = 4zpGT?is a definite number, of order unity, where p is the mean density of

matter in the universe, and T is the Hubble time.
«  Machg: The theory contains no absolute elements.

« Machio: Overall rigid rotations and translations of a system are unobservable.

(C ADM Formalism ))

The ADM formalism (named for its authors Richard Arnowitt, Stanley Deser and Charles W. Mis-
ner) is a Hamiltonian formulation of general relativity that plays an important role in canonical
quantum gravity and numerical relativity. It was first published in 1959.

The formalism supposes that spacetime is foliated into a family of spacelike surfaces ¥ , labeled by
their time coordinate t, and with coordinates on each slice given by x'. The dynamic variables of
this theory are taken to be the metric tensor of three dimensional spatial slices 7; (t, xk) and their
conjugate momenta 77 (z,x*). Using these variables it is possible to define a Hamiltonian, and
thereby write the equations of motion for general relativity in the form of Hamilton’s equations.

In addition to the twelve variables 7; and 7", there are four Lagrange multipliers: the lapse func-
tion, N, and components of shift vector field, ;. These describe how each of the “leaves” ¥ of
the foliation of spacetime are welded together. The equations of motion for these variables can be
freely specified; this freedom corresponds to the freedom to specify how to lay out the coordinate
system in space and time.

Most references adopt notation in which four dimensional tensors are written in abstract index
notation, and that Greek indices are spacetime indices taking values (0, 1, 2, 3) and Latin indices
are spatial indices taking values (1, 2, 3). In the derivation here, a superscript (4) is prepended to
quantities that typically have both a three-dimensional and a four-dimensional version, such as
the metric tensor for three-dimensional slices g;and the metric tensor for the full four-dimen-
sional spacetime ‘' g -

The text here uses Einstein notation in which summation over repeated indices is assumed.

Two types of derivatives are used: Partial derivatives are denoted either by the operator 9, or by
subscripts preceded by a comma. Covariant derivatives are denoted either by the operator v _or by
subscripts preceded by a semicolon.

The absolute value of the determinant of the matrix of metric tensor coefficients is represented by
g (with no indices). Other tensor symbols written without indices represent the trace of the corre-
sponding tensor such as 7 = g”;z'i/. .
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Derivation
Lagrangian Formulation

The starting point for the ADM formulation is the Lagrangian:

£=“ RJ@e.

which is a product of the square root of the determinant of the four-dimensional metric tensor for
the full spacetime and its Ricci scalar. This is the Lagrangian from the Einstein—Hilbert action.

The desired outcome of the derivation is to define an embedding of three-dimensional spatial slic-
es in the four-dimensional spacetime. The metric of the three-dimensional slices:

_4

&jj 8

will be the generalized coordinates for a Hamiltonian formulation. The conjugate momenta can
then be computed as:

i = [(4)g ((4)1'*([))4 _ gpq(4)rgsgrs )gipgjq,

using standard techniques and definitions. The symbols ‘T are Christoffel symbols associated
with the metric of the full four-dimensional spacetime. The lapse:

-1/2
N = (_(4) goo)
and the shift vector:
N, =" g,

are the remaining elements of the four-metric tensor.

Having identified the quantities for the formulation, the next step is to rewrite the Lagrangian in
terms of these variables. The new expression for the Lagrangian:

L£=-g,07" ~NH = NP =20, [”UNJ —5 7N +V’N\/§j

is conveniently written in terms of the two new quantities:
3) a1 5 if
H:—\/g R+g 572' -’y

and

P =27,

)

which are known as the Hamiltonian constraint and the momentum constraint respectively. Note
also that the lapse and the shift appear in the Hamiltonian as Lagrange multipliers.
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Equations of Motion

Although the variables in the Lagrangian represent the metric tensor on three-dimensional spaces
embedded in the four-dimensional spacetime, it is possible and desirable to use the usual proce-
dures from Lagrangian mechanics to derive “equations of motion” that describe the time evolution
of both the metric g;and its conjugate momentum 7”.

2N
0.8y = E(”{i ~17g, )+ N+ N,
and
o’ = —N\/E(R"j —%Rg”)+%g’j (ﬂ'mnﬂmn —%7[2)—@ x"r
~Jg(V'V'N-¢g'V'V N)+V, (z'N")-N' z" =N’ 7"

is a non-linear set of partial differential equations.
Taking variations with respect to the lapse and shift provide constraint equations:
H=0
and
P =0,
and the lapse and shift themselves can be freely specified, reflecting the fact that coordinate sys-
tems can be freely specified in both space and time.
Applications
Application to Quantum Gravity

Using the ADM formulation, it is possible to attempt to construct a quantum theory of gravity in
the same way that one constructs the Schrodinger equation corresponding to a given Hamiltonian
in quantum mechanics. That is, replace the canonical momenta 77(¢,x*)and the spatial metric
functions by linear functional differential operators:

~ k k
g,;(t,x") > g, (t,x"),

ﬁ”(t,xk) = _l—k
og;(t,x")

More precisely, the replacing of classical variables by operators is restricted by commutation
relations. The hats represents operators in quantum theory. This leads to the Wheeler—DeWitt
equation.
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Application to Numerical Solutions of the Einstein Equations

There are relatively few known exact solutions to the Einstein field equations. In order to find
other solutions, there is an active field of study known as numerical relativity in which supercom-
puters are used to find approximate solutions to the equations. In order to construct such solutions
numerically, most researchers start with a formulation of the Einstein equations closely related to
the ADM formulation. The most common approaches start with an initial value problem based on
the ADM formalism.

In Hamiltonian formulations, the basic point is replacement of set of second order equations
by another first order set of equations. We may get this second set of equations by Hamiltoni-
an formulation in an easy way. Of course this is very useful for numerical physics, because the
reduction of order of differential equations must be done, if we want to prepare equations for a
computer.

ADM Energy and Mass

ADM energy is a special way to define the energy in general relativity, which is only applicable to
some special geometries of spacetime that asymptotically approach a well-defined metric tensor at
infinity — for example a spacetime that asymptotically approaches Minkowski space. The ADM en-
ergy in these cases is defined as a function of the deviation of the metric tensor from its prescribed
asymptotic form. In other words, the ADM energy is computed as the strength of the gravitational
field at infinity.

If the required asymptotic form is time-independent (such as the Minkowski space itself), then it
respects the time-translational symmetry. Noether’s theorem then implies that the ADM energy is
conserved. According to general relativity, the conservation law for the total energy does not hold
in more general, time-dependent backgrounds — for example, it is completely violated in physical
cosmology. Cosmic inflation in particular is able to produce energy (and mass) from “nothing”
because the vacuum energy density is roughly constant, but the volume of the Universe grows
exponentially.

Application to Modified Gravity

By using the ADM decomposition and introducing extra auxiliary fields, in 2009 Deruelle et al.
found a method to find the Gibbons—Hawking—York boundary term for modified gravity theories
“whose Lagrangian is an arbitrary function of the Riemann tensor”.

C Linearized Gravity ))

In the theory of general relativity, linearized gravity is the application of perturbation theory to the
metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an
effective method for modeling the effects of gravity when the gravitational field is weak. The usage
of linearized gravity is integral to the study of gravitational waves and weak-field gravitational
lensing.
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Weak-field Approximation

The Einstein field equation (EFE) describing the geometry of spacetime is given as (using Natural
units):

1
Rﬂv —ERg”V = 87Z'GTﬂV

where R, is the Ricci tensor, R is the Ricci scalar, T, is the energy-momentum tensor, and g, is
the spacetime metric tensor that represent the solutions of the equation.

Although succinct when written out using Einstein notation, hidden within the Ricci tensor and
Ricci scalar are exceptionally nonlinear dependencies on the metric which render the prospect of
finding exact solutions impractical in most systems. However, when describing particular systems
for which the curvature of spacetime is small (meaning that terms in the EFE that are quadratic
in g,, do not significantly contribute to the equations of motion), one can model the solution of
the field equations as being the Minkowski metric Moy plus a small perturbation term h,,-1In other
words:

o =M Thyys | b, [< 1.

In this regime, substituting the general metric &, for this perturbative approximation results in a
simplified expression for the Ricci tensor:

1 (e o
R, :5(5 o,h] +0,0,h; —0,0,h—0h,,),

o uv

where h=7r""h,, is the trace of the perturbation, 0, denotes the partial derivative with respect to
the x* coordinate of spacetime, ando=7*"0 0, is the d’ Alembert operator.

Together with the Ricci scalar,
R= U#VR'UV = aﬂﬁvh’” —Dh,
the left side of the field equation reduces to:

leﬂV = %(6 o,h; +0,0,h; —0,0,h-0h,, —nﬂvﬁpﬁﬁhm +1,,0h).

v o v
H 2 H

R

and thus the EFE is reduced to a linear, second order partial differential equation in terms of h,, -

Gauge Invariance

The process of decomposing the general spacetime g, into the Minkowski metric plus a pertur-
bation term is not unique. This is due to the fact that different choices for coordinates may give
dlff?reélt forms for . In order to capture this phenomena, the application of gauge symmetry is
applied.

Gauge symmetries are a mathematical device for describing a system that does not change when
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the underlying coordinate system is “shifted” by an infinitesimal amount. So although the pertur-
bation metric h,, is not consistently defined between different coordinate systems, the overall

system which it describes is.

To capture this formally, the non-uniqueness of the perturbation #,, is represented as being a con-
sequence of the diverse collection of diffeomorphisms on spacetime that leave 4, sufficiently small.
Therefore to continue, it is required that h, be defined in terms of a general set of diffeomorphisms
then select the subset of these that preserve > the small scale that is required by the weak-field approxi-
mation. One may thus define ¢ to denote an arbitrary diffeomorphism that maps the flat Minkowski
spacetime to the more general spacetime represented by the metric &, . With this, the perturbation
metric may be defined as the difference between the pullback of &,, and the Minkowski metric:

h,uv :(¢ g),uv _77;11/'

The diffeomorphisms ¢ may thus be chosen such that | 4, [<1.

Given then a vector field £ defined on the flat, background spacetime, an additional family of
diffeomorphisms /. may be defined as those generated by &“ and parameterized by € > (0. These
new diffeomorphisms will be used to represent the coordinate transformations for “infinitesimal
shifts” as discussed above. Together with ¢, a family of perturbations is given by:

hy) =18°w.) gl — 1.,
=y (3~
=y (h+1),, ~ 1,

i, +{(wen)w N }

€

Therefore, in the limite — 0,
() _
hyv = hw +e£§77ﬂv
where L, is the Lie derivative along the vector field &,

The Lie derivative works out to yield the final gauge transformation of the perturbation metric 4,

RO =h, +€0,, +0,E,),

which precisely define the set of perturbation metrics that describe the same physical system. In
other words, it characterizes the gauge symmetry of the linearized field equations.

Choice of Gauge

By exploiting gauge invariance, certain properties of the perturbation metric can be guaranteed by
choosing a suitable vector field &* .
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Transverse Gauge

To study how the perturbation h,, distorts measurements of length, it is useful to define the fol-
lowing spatial tensor:

S; = hy _ééklhklé;/

The indices span only spatial components: i, j € {1,2,3}) Thus, by using s, the spatial components
of the perturbation can be decomposed as:

hy =s; =¥,
where Wy = _15"1 h,.
3

The tensor s is, by construction, traceless and is referred to as the strain since it represents the
amount by which the perturbation stretches and contracts measurements of space. In the context
of studying gravitational radiation, the strain is particularly useful when utilized with the trans-
verse gauge. This gauge is defined by choosing the spatial components of &* to satisfy the relation:

V3E 4 %aja,g" =05,

then choosing the time component £° to satisfy:

V2E =0l +0,0,E.

After performing the gauge transformation using the formula, the strain becomes spatially trans-
verse:

i
0.5, =0,

with the additional property:

8,1 =0.

Synchronous Gauge

The synchronous gauge simplifies the perturbation metric by requiring that the metric not distort
measurements of time. More precisely, the synchronous gauge is chosen such that the non-spatial
components of 4, are zero, namely:

19 =0.

This can be achieved by requiring the time component of £* to satisfy:

60{5’0 = _hoo
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and requiring the spatial components to satisfy:

0,& =0,E —h,.

Harmonic Gauge

The harmonic gauge (also referred to as the Lorenz gauge) is selected whenever it is nec-
essary to reduce the linearized field equations as much as possible. This can be done if the
condition:

o h =Lo
2

U

is true. To achieve this, &, is required to satisfy the relation:

L1
0, =0, +-0,h

Consequently, by using the harmonic gauge, the Einstein tensor G, =R, —% S
1 (€) 1 (¢)
G;w :—ED(}Z#V —Eh 77/“, .

Therefore, by writing it in terms of a “trace-reversed” metric, }7}5}5’) = h/(;) _l h(f)ﬂ,,v the linearized
2

field equations reduce to:
oh\s) =—-16xGT,,.

Which can be solved exactly using the wave solutions that define gravitational radiation.

(C Raychaudhuri Equation )

In general relativity, the Raychaudhuri equation, or Landau—Raychaudhuri equation, is a funda-
mental result describing the motion of nearby bits of matter.

The equation is important as a fundamental lemma for the Penrose-Hawking singularity theorems
and for the study of exact solutions in general relativity, but has independent interest, since it
offers a simple and general validation of our intuitive expectation that gravitation should be a uni-
versal attractive force between any two bits of mass-energy in general relativity, as it is in Newton’s
theory of gravitation.

The equation was discovered independently by the Indian physicist Amal Kumar Raychaudhuri
and the Soviet physicist Lev Landau.

Given a timelike unit vector field X (which can be interpreted as a family or congruence of
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nonintersecting world lines via the integral curve, not necessarily geodesics), Raychaudhuri’s
equation can be written:

2
6= _% -20° +20° —E[X]", + X",
where:

2 _ mn 2 mn
20°=0,,0", 20" =0,, ®
are (non-negative) quadratic invariants of the shear tensor:

O-ab = eab _éghab

and the vorticity tensor:

_gm n
a)ab =h a h hX[m;n]

respectively. Here,

eab = hma han(m;n)

is the expansion tensor, @ is its trace, called the expansion scalar, and:

hab :gab +Xa Xb

is the projection tensor onto the hyperplanes orthogonal to X Also, dot denotes differentiation
with respect to proper time counted along the world lines in the congruence. Finally, the trace of
the tidal tensor E[.X ],, can also be written:

E[X), =R, X" X"+1
This quantity is sometimes called the Raychaudhuri scalar.

Intuitive Significance

The expansion scalar measures the fractional rate at which the volume of a small ball of matter
changes with respect to time as measured by a central comoving observer (and so it may take neg-
ative values). In other words, the above equation gives us the evolution equation for the expansion
of the timelike congruence. If the derivative (with respect to proper time) of this quantity turns out
to be negative along some world line (after a certain event), then any expansion of a small ball of
matter (whose center of mass follows the world line in question) must be followed by recollapse. If
not, continued expansion is possible.

The shear tensor measures any tendency of an initially spherical ball of matter to become distorted
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into an ellipsoidal shape. The vorticity tensor measures any tendency of nearby world lines to
twist about one another (if this happens, our small blob of matter is rotating, as happens to fluid
elements in an ordinary fluid flow which exhibits nonzero vorticity).

The right hand side of Raychaudhuri’s equation consists of two types of terms:
« Terms which promote (re)-collapse.
o Initially nonzero expansion scalar.
o Nonzero shearing.

> Positive trace of the tidal tensor; this is precisely the condition guaranteed by assuming
the strong energy condition, which holds for the most important types of solutions,
such as physically reasonable fluid solutions).

« Terms which oppose (re)-collapse:

> Nonzero vorticity, corresponding to Newtonian centrifugal forces.

> Positive divergence of the acceleration vector (e.g., outward pointing acceleration due
to a spherically symmetric explosion, or more prosaically, due to body forces on fluid
elements in a ball of fluid held together by its own self-gravitation).

Usually one term will win out. However, there are situations in which a balance can be achieved.
This balance may be:

+ Stable: In the case of hydrostatic equilibrium of a ball of perfect fluid (e.g. in a model of a
stellar interior), the expansion, shear, and vorticity all vanish, and a radial divergence in
the acceleration vector (the necessary body force on each blob of fluid being provided by
the pressure of surrounding fluid) counteracts the Raychaudhuri scalar, which for a perfect

fluid is 7z, . In Newtonian gravitation, the trace of the tidal tensor is E[.X 1, =4n(u+3p);

in general relativity, the tendency of pressure to oppose gravity is partially offset by this
term, which under certain circumstances can become important.

- Unstable: For example, the world lines of the dust particles in the Godel solution have van-
ishing shear, expansion, and acceleration, but constant vorticity just balancing a constant
Raychuadhuri scalar due to nonzero vacuum energy (“cosmological constant”).

Focusing Theorem

Suppose the strong energy condition holds in some region of our spacetime, and let X be a timelike
geodesic unit vector field with vanishing vorticity, or equivalently, which is hypersurface orthogonal.
For example, this situation can arise in studying the world lines of the dust particles in cosmological
models which are exact dust solutions of the Einstein field equation (provided that these world lines
are not twisting about one another, in which case the congruence would have nonzero vorticity).

Then Raychaudhuri’s equation becomes:

2

0= -5 207 —E[X]",
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Now the right hand side is always negative, so even if the expansion scalar is initially positive
(if our small ball of dust is initially increasing in volume), eventually it must become negative (our
ball of dust must recollapse).

Indeed, in this situation we have:

. 2
0<——
3
Integrating this inequality with respect to proper time 7 gives:

T

1_1
>4
e 6, 3
If the initial value g, of the expansion scalar is negative, this means that our geodesics must con-
verge in a caustic (@ goes to minus infinity) within a proper time of at most —3/ 6, after the mea-
surement of the initial value 6, of the expansion scalar. This need not signal an encounter with

a curvature singularity, but it does signal a breakdown in our mathematical description of the
motion of the dust.

Optical Equations

There is also an optical (or null) version of Raychaudhuri’s equation for null geodesic congruences.
A 1 A . . )
0= _502 -26°+2&° -T,U"U".

Here, the hats indicate that the expansion, shear and vorticity are only with respect to the trans-
verse directions. When the vorticity is zero, then assuming the null energy condition, caustics will
form before the affine parameter reaches 2/6,.

Applications

The event horizon is defined as the boundary of the causal past of null infinity. Such bound-
aries are generated by null geodesics. The affine parameter goes to infinity as we approach
null infinity, and no caustics form until then. So, the expansion of the event horizon has to be
nonnegative. As the expansion gives the rate of change of the logarithm of the area density,
this means the event horizon area can never go down, at least classically, assuming the null
energy condition.

(C Hamilton—Jacobi—Einstein Equation )

In general relativity, the Hamilton—Jacobi—Einstein equation (HJEE) or Einstein—Hamilton—
Jacobi equation (EHJE) is an equation in the Hamiltonian formulation of geometrodynamics in
superspace, cast in the “geometrodynamics era” around the 1960s, by Asher Peres in 1962 and
others. It is an attempt to reformulate general relativity in such a way that it resembles quantum
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theory within a semiclassical approximation, much like the correspondence between quantum me-
chanics and classical mechanics.

It is named for Albert Einstein, Carl Gustav Jacob Jacobi, and William Rowan Hamilton. The
EHJE contains as much information as all ten Einstein field equations (EFEs). It is a modification
of the Hamilton—Jacobi equation (HJE) from classical mechanics, and can be derived from the
Einstein—Hilbert action using the principle of least action in the ADM formalism.

Correspondence between Classical and Quantum Physics

In classical analytical mechanics, the dynamics of the system is summarized by the action S.
In quantum theory, namely non-relativistic quantum mechanics (QM), relativistic quantum
mechanics (RQM), as well as quantum field theory (QFT), with varying interpretations and
mathematical formalisms in these theories, the behavior of a system is completely contained
in a complex-valued probability amplitude W (more formally as a quantum state ket |¥) - an
element of a Hilbert space). Using the polar form of the wave function, so making a Madelung
transformation:

W - \/;eiS/h

the phase of W is interpreted as the action, and the modulus Vp = V¥*W = |¥| is interpreted ac-
cording to the Copenhagen interpretation as the probability density function. The reduced Planck
constant # is the quantum of angular momentum. Substitution of this into the quantum general
Schrodinger equation (SE):

which is one aspect of the correspondence principle.

Shortcomings of Four-dimensional Spacetime

On the other hand, the transition between quantum theory and general relativity (GR) is dif-
ficult to make; one reason is the treatment of space and time in these theories. In non-rel-
ativistic QM, space and time are not on equal footing; time is a parameter while position is
an operator. In RQM and QFT, position returns to the usual spatial coordinates alongside
the time coordinate, although these theories are consistent only with SR in four-dimension-
al flat Minkowski space, and not curved space nor GR. It is possible to formulate quantum
field theory in curved spacetime, yet even this still cannot incorporate GR because gravity
is not renormalizable in QFT. Additionally, in GR particles move through curved spacetime
with a deterministically known position and momentum at every instant, while in quantum
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theory, the position and momentum of a particle cannot be exactly known simultaneously;
space x and momentum p, and energy E and time t, are pairwise subject to the uncertainty
principles.

actp> . aBArs D
2 2

which imply that small intervals in space and time mean large fluctuations in energy and momentum
are possible. Since in GR mass—energy and momentum-—energy is the source of spacetime curvature,
large fluctuations in energy and momentum mean the spacetime “fabric” could potentially become
so distorted that it breaks up at sufficiently small scales. There is theoretical and experimental evi-
dence from QFT that vacuum does have energy since the motion of electrons in atoms is fluctuated,
this is related to the Lamb shift. For these reasons and others, at increasingly small scales, space and
time are thought to be dynamical up to the Planck length and Planck time scales.

In any case, a four-dimensional curved spacetime continuum is a well-defined and central feature
of general relativity, but not in quantum mechanics.

One attempt to find an equation governing the dynamics of a system, in as close a way as possible
to QM and GR, is to reformulate the HJE in three-dimensional curved space understood to be “dy-
namic” (changing with time), and not four-dimensional spacetime dynamic in all four dimensions,
as the EFEs are. The space has a metric.

The metric tensor in general relativity is an essential object, since proper time, arc length, geodesic
motion in curved spacetime, and other things, all depend on the metric. The HJE above is modi-
fied to include the metric, although it’s only a function of the 3d spatial coordinates r, (for example
r = (x, y, z) in Cartesian coordinates) without the coordinate time t:

= g;(r).

In this context g;is referred to as the “metric field” or simply “field”.

General Equation (Free Curved Space)

For a free particle in curved “empty space” or “free space”, i.e. in the absence of matter other than
the particle itself, the equation can be written:

1 (1 S5S 55
—| = 22 2 4 JgR=0

rq

where g is the determinant of the metric tensor and R the Ricci scalar curvature of the 3d geometry
(not including time), and the “6” instead of “d” denotes the variational derivative rather than the or-
dinary derivative. These derivatives correspond to the field momenta “conjugate to the metric field”:
) 58
P =a =,

og

i
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the rate of change of action with respect to the field coordinates g (r). The g and 7 here are analo-
gous to g and p = 9S/dq, respectively, in classical Hamiltonian mechanics.

The equation describes how wavefronts of constant action propagate in superspace - as the
dynamics of matter waves of a free particle unfolds in curved space. Additional source terms
are needed to account for the presence of extra influences on the particle, which include the
presence of other particles or distributions of matter (which contribute to space curvature),
and sources of electromagnetic fields affecting particles with electric charge or spin. Like the
Einstein field equations, it is non-linear in the metric because of the products of the metric
components, and like the HJE it is non-linear in the action due to the product of variational
derivatives in the action.

The quantum mechanical concept, that action is the phase of the wavefunction, can be interpret-
ed from this equation as follows. The phase has to satisfy the principle of least action; it must
be stationary for a small change in the configuration of the system, in other words for a slight
change in the position of the particle, which corresponds to a slight change in the metric com-
ponents;

g & t0g;,

the slight change in phase is zero:

58 = j ié‘gl“(r)d% =0,
og.(r) 7

y

(where d3r is the volume element of the volume integral). So the constructive interference of
the matter waves is a maximum. This can be expressed by the superposition principle; applied
to many non-localized wavefunctions spread throughout the curved space to form a localized
wavefunction:

V= chwn )

for some coefficients ¢ , and additionally the action (phase) S for each y must satisfy:
0S=S8_,-S5, =0,
for all n, or equivalently,

S =8 =-=8§ =

n

Regions where W is maximal or minimal occur at points where there is a probability of finding the
particle there, and where the action (phase) change is zero. So in the EHJE above, each wavefront
of constant action is where the particle could be found.

This equation still does not “unify” quantum mechanics and general relativity, because the semi-
classical Eikonal approximation in the context of quantum theory and general relativity has been
applied, to provide a transition between these theories.
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Applications
The equation takes various complicated forms in:
+  Quantum gravity

« Quantum cosmology

(C Einstein Field Equations )

The Einstein Field Equation (EFE) is also known as Einstein’s equation. There are a set of ten
equations extracted from Albert Einstein’s General Theory of Relativity. The EFE describes the
basic interaction of gravitation. The equations were first published in 1915 by Albert Einstein as a
tensor equation.

Following is the Einstein Field Equation:

87G
G#U+gﬂuA= o Tw

where,
G, is the Einstein tensor which is given as Ruv-2 Rgpw
« R is the Ricci curvature tensor
« Ris the scalar curvature
* g, is the metric tensor
« Ais acosmological constant
« Gis Newton’s gravitational constant
+ cis the speed of light

. T}m is the stress-energy tensor

Einstein Field Equations Derivation

Following is the derivation of Einstein Field Equations. Einstein wanted to explain that measure
of curvature = source of gravity.

The source of gravity is the stress-energy tensor. The stress-energy tensor is given as:

p 000] [poO0o0oO

Taﬂ_opooﬁoooo
oo P o 0000
000 P 0000
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In the above matrix we see that the P is tending to zero because, for Newton’s gravity, the mass
density is the source of gravity.

The equation of motion is given as:

dl+1"iauvu“20
dr
d—ui+1“?°:0
dr

aw 108w _
dr 2 ox'
di+a—¢:0
dr ox'
goo:_(1+2¢)

But we know that v*¢ = 47Gp
Therefore,
R =-8xGT*"

Where -8 7 G T*" is the constant.

Einstein Tensor

Einstein tensor is also known as trace-reversed Ricci tensor. In Einstein Field Equation, it is used
for describing spacetime curvature such that it is in alignment with the conservation of energy and
momentum. It is defined as:

G =R-%gR
Where,
« Ris the Ricci tensor
+ gisthe metric tensor

« Risthe scalar curvature

Stress-energy Tensor

Stress-energy tensor is defined as the tensor T is a symmetrical tensor which is used for describ-
ing the energy and momentum density of the gravitational field. It is given as:

Taﬁ' — Tﬂa
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Gravitational Singularity
Gravitational Time Dilation
Gravitational Redshift
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Gravitational Wave

Gravitational Lensing

Some of the common phenomena which are studied within general relativity are black hole, event
horizon, frame-dragging, gravitational singularity, gravitational time dilation, gravitational red-
shift, Shapiro time delay, gravitational wave and gravitational lensing. This chapter has been care-
fully written to provide an easy understanding of these phenomena of general relativity.

C Black Hole )

Black holes are volumes of space where gravity is extreme enough to prevent the escape of even the
fastest moving particles. Not even light can break free, hence the name ‘black’ hole.

A German physicist and astronomer named Karl Schwarzschild proposed the modern version of a black
hole in 1915 after coming up with an exact solution to Einstein’s approximations of general relativity.

Schwarzschild realised it was possible for mass to be squeezed into an infinitely small point. This
would make spacetime around it bend so that nothing — not even massless photons of light — could
escape its curvature.
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The cusp of the black hole’s slide into oblivion is today referred to as its event horizon, and the
distance between this boundary and the infinitely dense core — or singularity — is named after
Schwarzschild.

Theoretically, all masses have a Schwarzschild radius that can be calculated. If the Sun’s mass was
squeezed into an infinitely small point, it would form a black hole with a radius of just under 3
kilometres (about 2 miles).

Similarly, Earth’s mass would have a Schwarzschild radius of just a few millimetres, making a
black hole no bigger than a marble.

For decades, black holes were exotic peculiarities of general relativity. Physicists have became
increasingly confident in their existence as other extreme astronomical objects, such as neutron
stars, were discovered. Today it’s believed most galaxies have monstrous black holes at their core.

Black Holes Formation

It’s generally accepted that stars with a mass at least three times greater than that of our Sun’s can
undergo extreme gravitational collapse once their fuel depletes.

With so much mass in a confined volume, the collective force of gravity overcomes the rule that
usually keeps the building blocks of atoms from occupying the same space. All this density creates
a black hole.

A second type of miniature black hole has been hypothesised, though never observed. They’re
thought to have formed when the rippling vacuum of the early Universe rapidly expanded in an
event known as inflation, causing highly dense regions to collapse.

C Event Horizon ))

In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer
on the opposite side of it. An event horizon is most commonly associated with black holes, where
gravitational forces are so strong that light cannot escape.

Any object approaching the horizon from the observer’s side appears to slow down and never
quite pass through the horizon, with its image becoming more and more redshifted as time
elapses. This means that the wavelength of the light emitted from the object is getting longer
as the object moves away from the observer. The notion of an event horizon was originally
restricted to black holes; light originating inside an event horizon could cross it temporarily
but would return. Later, 1958, a strict definition was introduced by David Finkelstein as a
boundary beyond which events cannot affect any outside observer at all, encompassing other
scenarios than black holes. This strict definition of EH has caused information and firewall
paradoxes; therefore Stephen Hawking has supposed an apparent horizon to be used, saying
“gravitational collapse produces apparent horizons but no event horizons” and “The absence
of event horizons mean that there are no black holes - in the sense of regimes from which light
can’t escape to infinity”
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The black hole event horizon is teleological in nature, meaning that we need to know the entire
future space-time of the universe to determine the current location of the horizon, which is es-
sentially impossible. Because of the purely theoretical nature of the event horizon boundary, the
traveling object does not necessarily experience strange effects and does, in fact, pass through the
calculatory boundary in a finite amount of proper time.

More specific types of horizon include the related but distinct absolute and apparent horizons
found around a black hole. Still other distinct notions include the Cauchy and Killing horizons; the
photon spheres and ergospheres of the Kerr solution; particle and cosmological horizons relevant
to cosmology; and isolated and dynamical horizons important in current black hole research.

Event Horizon of a Black Hole

Time—
Event Horizon

Black Hole

Time—
Event Horizon

=+—Space—=

Closer to the black hole spacetime starts to deform. In some convenient coordinate systems, there are
more paths going towards the black hole than paths moving away.

Time—
Event Horizon

Black Hole

~—Space—=

Inside the event horizon all paths bring the particle closer to the center of the black hole. It is no
longer possible for the particle to escape.

One of the best-known examples of an event horizon derives from general relativity’s description
of a black hole, a celestial object so massive that no nearby matter or radiation can escape its gravi-
tational field. Often, this is described as the boundary within which the black hole’s escape velocity
is greater than the speed of light. However, a more accurate description is that within this horizon,
all lightlike paths (paths that light could take) and hence all paths in the forward light cones of
particles within the horizon, are warped so as to fall farther into the hole. Once a particle is inside
the horizon, moving into the hole is as inevitable as moving forward in time, and can actually be
thought of as equivalent to doing so, depending on the spacetime coordinate system used.

The surface at the Schwarzschild radius acts as an event horizon in a non-rotating body that fits
inside this radius (although a rotating black hole operates slightly differently). The Schwarzschild
radius of an object is proportional to its mass. Theoretically, any amount of matter will become a
black hole if compressed into a space that fits within its corresponding Schwarzschild radius. For
the mass of the Sun this radius is approximately 3 kilometers and for the Earth it is about 9 milli-
meters. In practice, however, neither the Earth nor the Sun has the necessary mass and therefore
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the necessary gravitational force, to overcome electron and neutron degeneracy pressure. The
minimal mass required for a star to be able to collapse beyond these pressures is the Tolman—Op-
penheimer—Volkoff limit, which is approximately three solar masses.

Black hole event horizons are widely misunderstood. Common, although erroneous, is the notion
that black holes “vacuum up” material in their neighborhood, where in fact they are no more capa-
ble of seeking out material to consume than any other gravitational attractor. As with any mass in
the universe, matter must come within its gravitational scope for the possibility to exist of capture
or consolidation with any other mass. Equally common is the idea that matter can be observed fall-
ing into a black hole. This is not possible. Astronomers can detect only accretion disks around black
holes, where material moves with such speed that friction creates high-energy radiation which can
be detected (similarly, some matter from these accretion disks is forced out along the axis of spin
of the black hole, creating visible jets when these streams interact with matter such as interstellar
gas or when they happen to be aimed directly at Earth). Furthermore, a distant observer will never
actually see something reach the horizon. Instead, while approaching the hole, the object will seem
to go ever more slowly, while any light it emits will be further and further redshifted.

Cosmic Event Horizon

In cosmology, the event horizon of the observable universe is the largest comoving distance from
which light emitted now can ever reach the observer in the future. This differs from the concept of
particle horizon, which represents the largest comoving distance from which light emitted in the
past could have reached the observer at a given time. For events beyond that distance, light has
not had time to reach our location, even if it were emitted at the time the universe began. How the
particle horizon changes with time depends on the nature of the expansion of the universe. If the
expansion has certain characteristics, there are parts of the universe that will never be observable,
no matter how long the observer waits for light from those regions to arrive. The boundary past
which events cannot ever be observed is an event horizon, and it represents the maximum extent
of the particle horizon.

The criterion for determining whether a particle horizon for the universe exists is as follows. De-
fine a comoving distance d as:

I
d,=[——a.
0 a(t)

In this equation, a is the scale factor, c is the speed of light, and ¢_ is the age of the Universe. If
d, - « (i.e., points arbitrarily as far away as can be observed), then no event horizon exists.
If dp # o, a horizon is present.

Examples of cosmological models without an event horizon are universes dominated by matter or
by radiation. An example of a cosmological model with an event horizon is a universe dominated
by the cosmological constant.

A calculation of the speeds of the cosmological event and particle horizons was given in a paper
on the FLRW cosmological model, approximating the Universe as composed of non-interacting
constituents, each one being a perfect fluid.
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Apparent Horizon of an Accelerated Particle

t

Spacetime diagram showing a uniformly accelerated particle, P, and an event E that is outside
the particle’s apparent horizon. The event’s forward light cone never intersects the particle’s world line.

If a particle is moving at a constant velocity in a non-expanding universe free of gravitational
fields, any event that occurs in that Universe will eventually be observable by the particle, because
the forward light cones from these events intersect the particle’s world line. On the other hand,
if the particle is accelerating, in some situations light cones from some events never intersect the
particle’s world line. Under these conditions, an apparent horizon is present in the particle’s (ac-
celerating) reference frame, representing a boundary beyond which events are unobservable.

For example, this occurs with a uniformly accelerated particle. A spacetime diagram of this situa-
tion is shown in the figure. As the particle accelerates, it approaches, but never reaches, the speed
of light with respect to its original reference frame. On the spacetime diagram, its path is a hyper-
bola, which asymptotically approaches a 45-degree line (the path of a light ray). An event whose
light cone’s edge is this asymptote or is farther away than this asymptote can never be observed
by the accelerating particle. In the particle’s reference frame, there is a boundary behind it from
which no signals can escape (an apparent horizon). The distance to this boundary is given by ¢’ / a
where a is the constant proper acceleration of the particle.

While approximations of this type of situation can occur in the real world (in particle accelerators,
for example), a true event horizon is never present, as this requires the particle to be accelerated
indefinitely (requiring arbitrarily large amounts of energy and an arbitrarily large apparatus).

Interacting with an Event Horizon

A misconception concerning event horizons, especially black hole event horizons, is that they
represent an immutable surface that destroys objects that approach them. In practice, all event
horizons appear to be some distance away from any observer, and objects sent towards an event
horizon never appear to cross it from the sending observer’s point of view (as the horizon-crossing
event’s light cone never intersects the observer’s world line). Attempting to make an object near
the horizon remain stationary with respect to an observer requires applying a force whose magni-
tude increases unboundedly (becoming infinite) the closer it gets.

In the case of a horizon perceived by a uniformly accelerating observer in empty space, the horizon
seems to remain a fixed distance from the observer no matter how its surroundings move. Varying
the observer’s acceleration may cause the horizon to appear to move over time, or may prevent an
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event horizon from existing, depending on the acceleration function chosen. The observer never
touches the horizon and never passes a location where it appeared to be.

In the case of a horizon perceived by an occupant of a de Sitter universe, the horizon always ap-
pears to be a fixed distance away for a non-accelerating observer. It is never contacted, even by an
accelerating observer.

In the case of the horizon around a black hole, observers stationary with respect to a distant object
will all agree on where the horizon is. While this seems to allow an observer lowered towards the
hole on a rope (or rod) to contact the horizon, in practice this cannot be done. The proper distance
to the horizon is finite, so the length of rope needed would be finite as well, but if the rope were
lowered slowly (so that each point on the rope was approximately at rest in Schwarzschild coor-
dinates), the proper acceleration (G-force) experienced by points on the rope closer and closer to
the horizon would approach infinity, so the rope would be torn apart. If the rope is lowered quickly
(perhaps even in freefall), then indeed the observer at the bottom of the rope can touch and even
cross the event horizon. But once this happens it is impossible to pull the bottom of rope back out
of the event horizon, since if the rope is pulled taut, the forces along the rope increase without
bound as they approach the event horizon and at some point the rope must break. Furthermore,
the break must occur not at the event horizon, but at a point where the second observer can ob-
serve it.

Observers crossing a black hole event horizon can calculate the moment they have crossed it, but
will not actually see or feel anything special happen at that moment. In terms of visual appearance,
observers who fall into the hole perceive the black region constituting the horizon as lying at some
apparent distance below them, and never experience crossing this visual horizon. Other objects
that had entered the horizon along the same radial path but at an earlier time would appear below
the observer but still above the visual position of the horizon, and if they had fallen in recently
enough the observer could exchange messages with them before either one was destroyed by the
gravitational singularity. Increasing tidal forces (and eventual impact with the hole’s singularity)
are the only locally noticeable effects. Tidal forces are a function of the mass of the black hole. In
realistic stellar black holes, spaghettification occurs early: tidal forces tear materials apart well
before the event horizon. However, in supermassive black holes, which are found in centers of gal-
axies, spaghettification occurs inside the event horizon. A human astronaut would survive the fall
through an event horizon only in a black hole with a mass of approximately 10,000 solar masses
or greater.

Beyond General Relativity

The description of event horizons given by general relativity is thought to be incomplete. When the
conditions under which event horizons occur are modeled using a more comprehensive picture of
the way the Universe works, that includes both relativity and quantum mechanics, event horizons
are expected to have properties that are different from those predicted using general relativity
alone.

At present, it is expected that the primary impact of quantum effects is for event horizons to pos-
sess a temperature and so emit radiation. For black holes, this manifests as Hawking radiation,
and the larger question of how the black hole possesses a temperature is part of the topic of black
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hole thermodynamics. For accelerating particles, this manifests as the Unruh effect, which causes
space around the particle to appear to be filled with matter and radiation.

According to the controversial black hole firewall hypothesis, matter falling into a black hole would
be burned to a crisp by a high energy “firewall” at the event horizon.

An alternative is provided by the complementarity principle, according to which, in the chart of the
far observer, infalling matter is thermalized at the horizon and reemitted as Hawking radiation,
while in the chart of an infalling observer matter continues undisturbed through the inner region
and is destroyed at the singularity. This hypothesis does not violate the no-cloning theorem as
there is a single copy of the information according to any given observer. Black hole complemen-
tarity is actually suggested by the scaling laws of strings approaching the event horizon, suggesting
that in the Schwarzschild chart they stretch to cover the horizon and thermalize into a Planck
length-thick membrane.

A complete description of event horizons is expected to, at minimum, require a theory of quantum
gravity. One such candidate theory is M-theory. Another such candidate theory is loop quantum
gravity.

C Two-body Problem in General Relativity ))

The two-body problem in general relativity is the determination of the motion and gravitational field
of two bodies as described by the field equations of general relativity. Solving the Kepler problem
is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.
Solutions are also used to describe the motion of binary stars around each other, and estimate their
gradual loss of energy through gravitational radiation. It is customary to assume that both bodies are
point-like, so that tidal forces and the specifics of their material composition can be neglected.

General relativity describes the gravitational field by curved space-time; the field equations govern-
ing this curvature are nonlinear and therefore difficult to solve in a closed form. No exact solutions of
the Kepler problem have been found, but an approximate solution has: the Schwarzschild solution.
This solution pertains when the mass M of one body is overwhelmingly greater than the mass m of
the other. If so, the larger mass may be taken as stationary and the sole contributor to the gravita-
tional field. This is a good approximation for a photon passing a star and for a planet orbiting its sun.
The motion of the lighter body (called the “particle”) can then be determined from the Schwarzschild
solution; the motion is a geodesic (“shortest path between two points”) in the curved space-time.
Such geodesic solutions account for the anomalous precession of the planet Mercury, which is a key
piece of evidence supporting the theory of general relativity. They also describe the bending of light
in a gravitational field, another prediction famously used as evidence for general relativity.

If both masses are considered to contribute to the gravitational field, as in binary stars, the Kepler
problem can be solved only approximately. The earliest approximation method to be developed
was the post-Newtonian expansion, an iterative method in which an initial solution is gradually
corrected. More recently, it has become possible to solve Einstein’s field equation using a computer
instead of mathematical formulae. As the two bodies orbit each other, they will emit gravitational
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radiation; this causes them to lose energy and angular momentum gradually, as illustrated by the
binary pulsar PSR B1913+16.

For binary black holes numerical solution of the two body problem was achieved after four decades
of research, in 2005, when three groups devised the breakthrough techniques.

Classical Kepler Problem

Typical elliptical path of a smaller mass m orbiting a much larger mass M. The larger mass is also
moving on an elliptical orbit, but it is too small to be seen because M is much greater than m. The ends
of the diameter indicate the apsides, the points of closest and farthest distance.

The Kepler problem derives its name from Johannes Kepler, who worked as an assistant to the
Danish astronomer Tycho Brahe. Brahe took extraordinarily accurate measurements of the mo-
tion of the planets of the Solar System. From these measurements, Kepler was able to formulate
Kepler’s laws, the first modern description of planetary motion:

1. The orbit of every planet is an ellipse with the Sun at one of the two foci.
2. Aline joining a planet and the Sun sweeps out equal areas during equal intervals of time.

3. The square of the orbital period of a planet is directly proportional to the cube of the
semi-major axis of its orbit.

Kepler published the first two laws in 1609 and the third law in 1619. They supplanted earlier mod-
els of the Solar System, such as those of Ptolemy and Copernicus. Kepler’s laws apply only in the
limited case of the two-body problem. Voltaire and Emilie du Chatelet were the first to call them
“Kepler’s laws”.

Nearly a century later, Isaac Newton had formulated his three laws of motion. In particular, New-
ton’s second law states that a force F applied to a mass m produces an acceleration a given by the
equation F=ma. Newton then posed the question: what must the force be that produces the ellip-
tical orbits seen by Kepler? His answer came in his law of universal gravitation, which states that
the force between a mass M and another mass m is given by the formula:

Mm

7.
7

F=G

where, r is the distance between the masses and G is the gravitational constant. Given this force
law and his equations of motion, Newton was able to show that two point masses attracting each
other would each follow perfectly elliptical orbits. The ratio of sizes of these ellipses is m/M, with
the larger mass moving on a smaller ellipse. If M is much larger than m, then the larger mass will
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appear to be stationary at the focus of the elliptical orbit of the lighter mass m. This model can be
applied approximately to the Solar System. Since the mass of the Sun is much larger than those of
the planets, the force acting on each planet is principally due to the Sun; the gravity of the planets
for each other can be neglected to first approximation.

Apsidal Precession

In the absence of any other forces, a particle orbiting another under the influence of Newtonian
gravity follows the same perfect ellipse eternally. The presence of other forces (such as the grav-
itation of other planets), causes this ellipse to rotate gradually. The rate of this rotation (called
orbital precession) can be measured very accurately. The rate can also be predicted knowing the
magnitudes and directions of the other forces. However, the predictions of Newtonian gravity do
not match the observations, as discovered in 1859 from observations of Mercury.

If the potential energy between the two bodies is not exactly the 1/r potential of Newton’s gravitational
law but differs only slightly, then the ellipse of the orbit gradually rotates (among other possible ef-
fects). This apsidal precession is observed for all the planets orbiting the Sun, primarily due to the ob-
lateness of the Sun (it is not perfectly spherical) and the attractions of the other planets to one another.
The apsides are the two points of closest and furthest distance of the orbit (the periapsis and apoapsis,
respectively); apsidal precession corresponds to the rotation of the line joining the apsides. It also
corresponds to the rotation of the Laplace—Runge—Lenz vector, which points along the line of apsides.

Newton’s law of gravitation soon became accepted because it gave very accurate predictions of the
motion of all the planets. These calculations were carried out initially by Pierre-Simon Laplace in
the late 18th century, and refined by Félix Tisserand in the later 19th century. Conversely, if New-
ton’s law of gravitation did not predict the apsidal precessions of the planets accurately, it would
have to be discarded as a theory of gravitation. Such an anomalous precession was observed in the
second half of the 19th century.

Anomalous Precession of Mercury

In 1859, Urbain Le Verrier discovered that the orbital precession of the planet Mercury was not
quite what it should be; the ellipse of its orbit was rotating (precessing) slightly faster than predict-
ed by the traditional theory of Newtonian gravity, even after all the effects of the other planets had
been accounted for. The effect is small (roughly 43 arcseconds of rotation per century), but well
above the measurement error (roughly 0.1 arcseconds per century). Le Verrier realized the impor-
tance of his discovery immediately, and challenged astronomers and physicists alike to account
for it. Several classical explanations were proposed, such as interplanetary dust, unobserved

WORLD TECHNOLOGIES




196 | Introduction to Relativity

oblateness of the Sun, an undetected moon of Mercury, or a new planet named Vulcan. After these
explanations were discounted, some physicists were driven to the more radical hypothesis that
Newton’s inverse-square law of gravitation was incorrect. For example, some physicists proposed
a power law with an exponent that was slightly different from 2.

Others argued that Newton’s law should be supplemented with a velocity-dependent potential.
However, this implied a conflict with Newtonian celestial dynamics. In his treatise on celestial me-
chanics, Laplace had shown that if the gravitational influence does not act instantaneously, then
the motions of the planets themselves will not exactly conserve momentum (and consequently
some of the momentum would have to be ascribed to the mediator of the gravitational interaction,
analogous to ascribing momentum to the mediator of the electromagnetic interaction.) As seen
from a Newtonian point of view, if gravitational influence does propagate at a finite speed, then
at all points in time a planet is attracted to a point where the Sun was some time before, and not
towards the instantaneous position of the Sun. On the assumption of the classical fundamentals,
Laplace had shown that if gravity would propagate at a velocity on the order of the speed of light
then the solar system would be unstable, and would not exist for a long time. The observation that
the solar system is old enough allowed him to put a lower limit on the speed of gravity that turned
out to be many orders of magnitude faster than the speed of light.

Laplace’s estimate for the velocity of gravity is not correct in a field theory which respects the principle
of relativity. Since electric and magnetic fields combine, the attraction of a point charge which is moving
at a constant velocity is towards the extrapolated instantaneous position, not to the apparent position
it seems to occupy when looked at. To avoid those problems, between 1870 and 1900 many scientists
used the electrodynamic laws of Wilhelm Eduard Weber, Carl Friedrich Gauss, Bernhard Riemann to
produce stable orbits and to explain the perihelion shift of Mercury’s orbit. In 1890 Lévy succeeded in
doing so by combining the laws of Weber and Riemann, whereby the speed of gravity is equal to the
speed of light in his theory. And in another attempt Paul Gerber even succeeded in deriving the correct
formula for the perihelion shift (which was identical to that formula later used by Einstein). However,
because the basic laws of Weber and others were wrong (for example, Weber’s law was superseded by
Maxwell’s theory), those hypotheses were rejected. Another attempt by Hendrik Lorentz, who already
used Maxwell’s theory, produced a perihelion shift which was too low.

Einstein’s Theory of General Relativity

Eddington’s 1919 measurements of the bending of star-light by the Sun’s gravity led to
the acceptance of general relativity worldwide.

Around 1904-1905, the works of Hendrik Lorentz, Henri Poincaré and finally Albert Einstein’s
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special theory of relativity, exclude the possibility of propagation of any effects faster than the
speed of light. It followed that Newton’s law of gravitation would have to be replaced with another
law, compatible with the principle of relativity, while still obtaining the newtonian limit for cir-
cumstances where relativistic effects are negligible. Such attempts were made by Henri Poincaré,
Hermann Minkowski and Arnold Sommerfeld. In 1907 Einstein came to the conclusion that to
achieve this a successor to special relativity was needed. From 1907 to 1915, Einstein worked to-
wards a new theory, using his equivalence principle as a key concept to guide his way. According
to this principle, a uniform gravitational field acts equally on everything within it and, therefore,
cannot be detected by a free-falling observer. Conversely, all local gravitational effects should be
reproducible in a linearly accelerating reference frame, and vice versa. Thus, gravity acts like a
fictitious force such as the centrifugal force or the Coriolis force, which result from being in an ac-
celerated reference frame; all fictitious forces are proportional to the inertial mass, just as gravity
is. To effect the reconciliation of gravity and special relativity and to incorporate the equivalence
principle, something had to be sacrificed; that something was the long-held classical assumption
that our space obeys the laws of Euclidean geometry, e.g., that the Pythagorean theorem is true
experimentally. Einstein used a more general geometry, pseudo-Riemannian geometry, to allow
for the curvature of space and time that was necessary for the reconciliation; after eight years of
work, he succeeded in discovering the precise way in which space-time should be curved in order
to reproduce the physical laws observed in Nature, particularly gravitation. Gravity is distinct from
the fictitious forces centrifugal force and coriolis force in the sense that the curvature of spacetime
is regarded as physically real, whereas the fictitious forces are not regarded as forces. The very first
solutions of his field equations explained the anomalous precession of Mercury and predicted an
unusual bending of light, which was confirmed after his theory was published. These solutions are
explained.

General Relativity, Special Relativity and Geometry

In the normal Euclidean geometry, triangles obey the Pythagorean theorem, which states that the
square distance ds2 between two points in space is the sum of the squares of its perpendicular
components:

ds’ =dx’ +dy* +dz’

where dx, dy and dz represent the infinitesimal differences between the x, y and z coordinates of
two points in a Cartesian coordinate system . Now imagine a world in which this is not quite true;
a world where the distance is instead given by:

ds* = F(x,y, Z)dx2 + G(x,y,z)dy2 +H(x,y, Z)a'z2

where F, G and H are arbitrary functions of position. It is not hard to imagine such a world; we live
on one. The surface of the earth is curved, which is why it’s impossible to make a perfectly accurate
flat map of the earth. Non-Cartesian coordinate systems illustrate this well; for example, in the
spherical coordinates (r, 0, @), the Euclidean distance can be written:

ds> =dr* +r’d6’ +r*sin® 0d o’
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Another illustration would be a world in which the rulers used to measure length were untrust-
worthy, rulers that changed their length with their position and even their orientation. In the most
general case, one must allow for cross-terms when calculating the distance ds:

ds’ =g _dx’ + g dxdy+g dxdz+---+g_dzdy+ g.dz’

where the nine functions g, g, ..., g,, constitute the metric tensor, which defines the geometry
of the space in Riemannian geometry. In the spherical-coordinates example above, there are no
cross-terms; the only nonzero metric tensor components are g, = 1, g, =r*and g, = r*sin* 0.

In his special theory of relativity, Albert Einstein showed that the distance ds between two
spatial points is not constant, but depends on the motion of the observer. However, there is a
measure of separation between two points in space-time — called “proper time” and denoted
with the symbol dt — that is invariant; in other words, it doesn’t depend on the motion of the
observer.

cdr’ =c’dt’ —dx’ —dy’ —dz’

which may be written in spherical coordinates as:
cdr® =c’dt’ —dr’ —r*d@* — r*sin® 0d o’

This formula is the natural extension of the Pythagorean theorem and similarly holds only when
there is no curvature in space-time. In general relativity, however, space and time may have curva-
ture, so this distance formula must be modified to a more general form:

c’dr® =g, dx"dx"

just as we generalized the formula to measure distance on the surface of the Earth. The exact form
of the metric guv depends on the gravitating mass, momentum and energy, as described by the
Einstein field equations. Einstein developed those field equations to match the then known laws
of Nature; however, they predicted never-before-seen phenomena (such as the bending of light by
gravity) that were confirmed later.

Geodesic Equation

According to Einstein’s theory of general relativity, particles of negligible mass travel along geo-
desics in the space-time. In uncurved space-time, far from a source of gravity, these geodesics
correspond to straight lines; however, they may deviate from straight lines when the space-time is
curved. The equation for the geodesic lines is:
d’x* o dx’ dx’
—+1, =
dgq dq dgq

where T represents the Christoffel symbol and the variable g parametrizes the particle’s path
through space-time, its so-called world line. The Christoffel symbol depends only on the met-
ric tensor g, or rather on how it changes with position. The variable g is a constant multiple
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of the proper time 7 for timelike orbits (which are traveled by massive particles), and is usually
taken to be equal to it. For lightlike (or null) orbits (which are traveled by massless particles
such as the photon), the proper time is zero and, strictly speaking, cannot be used as the vari-
able g. Nevertheless, lightlike orbits can be derived as the ultrarelativistic limit of timelike
orbits, that is, the limit as the particle mass m goes to zero while holding its total energy fixed.

Schwarzschild Solution

An exact solution to the Einstein field equations is the Schwarzschild metric, which corresponds
to the external gravitational field of a stationary, uncharged, non-rotating, spherically symmetric
body of mass M. It is characterized by a length scale r , known as the Schwarzschild radius, which
is defined by the formula:

_2GM

T,
s 2
C

where G is the gravitational constant. The classical Newtonian theory of gravity is recovered in
the limit as the ratio r /r goes to zero. In that limit, the metric returns to that defined by special
relativity.

In practice, this ratio is almost always extremely small. For example, the Schwarzschild radius 7,
of the Earth is roughly 9 mm (%, inch); at the surface of the Earth, the corrections to Newtonian
gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly
2953 meters, but at its surface, the ratio r/r is roughly 4 parts in a million. A white dwarf star is
much denser, but even here the ratio at its surface is roughly 250 parts in a million. The ratio only
becomes large close to ultra-dense objects such as neutron stars (where the ratio is roughly 50%)
and black holes.

Orbits about the Central Mass

100 a0 0 a0 ) 100 50 o 50 100

Comparison between the orbit of a testparticle in Newtonian (left) and Schwarzschild (right) spacetime.

The orbits of a test particle of infinitesimal mass m about the central mass M is given by the equa-
tion of motion:
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Where h is the specific relative angular momentum, } = xy = L and u is the reduced mass. This
can be converted into an equation for the orbit: H

2 4 4
R iy e
do b r)\a
where, for brevity, two length-scales, a=h/c and b=Lc/E, have been introduced. They are constants

of the motion and depend on the initial conditions (position and velocity) of the test particle.
Hence, the solution of the orbit equation is:

Sl -2E]

Effective Radial Potential Energy
The equation of motion for the particle derived above:

drY E , net hE ok’

mzcz r r r

can be rewritten using the definition of the Schwarzschild radius r_as:

1 (ﬂjz_[ E’ lmcz}rGMm_ I G(M+m)L2

m 2 5 7t
2 \dr 2me” 2 r 2ur c’ur’

which is equivalent to a particle moving in a one-dimensional effective potential:

GMm L G(M+mL

2

V(r)=-
*) 2ur cur’

The first two terms are well-known classical energies, the first being the attractive Newtonian
gravitational potential energy and the second corresponding to the repulsive “centrifugal” po-
tential energy; however, the third term is an attractive energy unique to general relativity. As
shown, this inverse-cubic energy causes elliptical orbits to precess gradually by an angle &¢
per revolution:

_62G(M +m)
- CZA(I—eZ)

where A is the semi-major axis and e is the eccentricity. Here ¢ is NOT the change in the
¢-coordinate in ( t, , 0, ¢ ) coordinates but the change in the argument of periapsis of the classical
closed orbit.

The third term is attractive and dominates at small r values, giving a critical inner radius r.

mner
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at which a particle is drawn inexorably inwards to r=0; this inner radius is a function of the
particle’s angular momentum per unit mass or, equivalently, the a length-scale defined above.

Circular Orbits and their Stability

2

LA N I I I O I I
6] — ah, =L/ma;=0

— ah =Lima;=-+3 -

Q Unique circular radius

ah, =L/mag=4 _

O Unstable circular radius

H
I

=)
I
|

,_.
I
|

Dimensionless potential energy V/(mc72)

-2

[ T Y T NV )
o 1 2 3 4 5 6 7 8
Dimensionless radius r/r

Effective radial potential for various angular momenta. At small radii, the energy drops precipi-
tously, causing the particle to be pulled inexorably inwards to r=0. However, when the normal-
ized angular momentum a/r, = L/mcr_ equals the square root of three, a metastable circular orbit
is possible at the radius highlighted with a green circle. At higher angular momenta, there is a
significant centrifugal barrier (orange curve) and an unstable inner radius, highlighted in red.

The effective potential V'can be re-written in terms of the length a = h/c:

2 2 2
mc r, a ra
Vr)= > |:_7+_2_ 3 }

Circular orbits are possible when the effective force is zero:

_dV B mc’

E_ 27t

F = [Qr2—2a2r+3i;a2]20;

i.e., when the two attractive forces—Newtonian gravity (first term) and the attraction unique
to general relativity (third term)—are exactly balanced by the repulsive centrifugal force

(second term). There are two radii at which this balancing can occur, denoted here as r,
and r

outer”

2 2
Lo P
Fouter = + T2
7. a
s
2 2 2
_al_ 3r; | 3a
rinner - - T - s
v a r

K outer

which are obtained using the quadratic formula. The inner radius rinner is unstable, because the
attractive third force strengthens much faster than the other two forces when r becomes small; if
the particle slips slightly inwards from rinner (where all three forces are in balance), the third force
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dominates the other two and draws the particle inexorably inwards to r = 0. At the outer radius,
however, the circular orbits are stable; the third term is less important and the system behaves
more like the non-relativistic Kepler problem.

When a is much greater than r_(the classical case), these formulae become approximately:
24’

Fouter ©
S

Finer & s

Schwarzschild Circular Radii

w
=}
I

— Clasical rndins

— Stable auter radius

— Unstable inner radins
Unique circular orbi

)

=
T T
[=]

Dimensonle s radius ¥r

—
=
I

| | |
1 2 3 4
Dimensionless angular momentimL/mcr, = a/f;

0

The stable and unstable radii are plotted versus the normalized angular momentum a/r, = L/
mcr_ in blue and red, respectively. These curves meet at a unique circular orbit (green circle) when
the normalized angular momentum equals the square root of three. For comparison, the classical
radius predicted from the centripetal acceleration and Newton’s law of gravity is plotted in black.

Substituting the definitions of a and r_into r__ yields the classical formula for a particle of mass
m orbiting a body of mass M.

The following equation:

s GM +m)

outer 2

@,

where w,_ is the orbital angular speed of the particle, is obtained in non-relativistic mechanics by
setting the centrifugal force equal to the Newtonian gravitational force:

GMm

2
r

2
= [, r
where u is the reduced mass.

In our notation, the classical orbital angular speed equals:

wZNGM_ rscz B I’SCZ 7_53 _027;4
O 273 2 )\ 8a° ) 164a°

outer outer
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At the other extreme, when a* approaches 3r 2 from above, the two radii converge to a single value:

router ~ rinner ~ 3’/?5‘
The quadratic solutions above ensure that r_ _ is always greater than 3r, whereas r, _ lies be-
tween ¥, r_and 3r_. Circular orbits smaller than ¥, r_are not possible. For massless particles, a goes
to infinity, implying that there is a circular orbit for photons atr, =9, r . The sphere of this radius
is sometimes known as the photon sphere.

Precession of Elliptical Orbits

In the non-relativistic Kepler problem, a particle follows the same perfect ellipse (red orbit)
eternally. General relativity introduces a third force that attracts the particle slightly more strongly
than Newtonian gravity, especially at small radii. This third force causes the particle’s elliptical orbit
to precess (cyan orbit) in the direction of its rotation; this effect has been measured in Mercury, Ve-
nus and Earth. The yellow dot within the orbits represents the center of attraction, such as the Sun.

The orbital precession rate may be derived using this radial effective potential V. A small radial devi-
ation from a circular orbit of radius  _ will oscillate in a stable manner with an angular frequency:

, 1|dV
w, =—
m| dr’ .

outer

which equals:

c’r 3r?
2 s _ _ 2 _ s
a)r - 27"4 (routcr Ilinncr) - a)qa 1 2

outer a

Taking the square root of both sides and expanding using the binomial theorem yields the
formula:

_ 3
0, =0, 1_4a2 4.

Multiplying by the period T of one revolution gives the precession of the orbit per revolution:

37\ 3zm’c’
Sp :T(a)w —a),,) ~ 27[[46;2 j == r?

WORLD TECHNOLOGIES




204 | Introduction to Relativity

where we have used w T = 2n and the definition of the length-scale a. Substituting the definition
of the Schwarzschild radius r_ gives:

3rmic? (4GZMZJ 671G M*m®
op = =

217 ¢ Voud b

This may be simplified using the elliptical orbit’s semi-major axis A and eccentricity e related by
the formula:

h2
—— =4 (1 —e )
G(M +m)
to give the precession angle:
671G(M +m)
opx ———
Y=o

Since the closed classical orbit is an ellipse in general, the quantity A( 1 - e?) is the semi-latus rec-
tum [ of the ellipse.

Hence, the final formula of angular apsidal precession for a unit complete revolution is:

_62G(M +m)
c’l

op

Beyond the Schwarzschild Solution
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Diagram of the parameter space of compact binaries with the various
approximation schemes and their regions of validity.

Post-Newtonian Expansion

In the Schwarzschild solution, it is assumed that the larger mass M is stationary and it alone de-
termines the gravitational field (i.e., the geometry of space-time) and, hence, the lesser mass m
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follows a geodesic path through that fixed space-time. This is a reasonable approximation for pho-
tons and the orbit of Mercury, which is roughly 6 million times lighter than the Sun. However, it is
inadequate for binary stars, in which the masses may be of similar magnitude.

The metric for the case of two comparable masses cannot be solved in closed form and therefore
one has to resort to approximation techniques such as the post-Newtonian approximation or nu-
merical approximations. In passing, we mention one particular exception in lower dimensions. In
(1 + 1) dimensions, i.e. a space made of one spatial dimension and one time dimension, the metric
for two bodies of equal masses can be solved analytically in terms of the Lambert W function.
However, the gravitational energy between the two bodies is exchanged via dilatons rather than
gravitons which require three-space in which to propagate.

The post-Newtonian expansion is a calculational method that provides a series of ever more accu-
rate solutions to a given problem. The method is iterative; an initial solution for particle motions
is used to calculate the gravitational fields; from these derived fields, new particle motions can be
calculated, from which even more accurate estimates of the fields can be computed, and so on. This
approach is called “post-Newtonian” because the Newtonian solution for the particle orbits is often
used as the initial solution.

When this method is applied to the two-body problem without restriction on their masses, the re-
sult is remarkably simple. To the lowest order, the relative motion of the two particles is equivalent
to the motion of an infinitesimal particle in the field of their combined masses. In other words, the
Schwarzschild solution can be applied, provided that the M + m is used in place of M in the formu-
lae for the Schwarzschild radius r, and the precession angle per revolution &¢.

Modern Computational Approaches

Einstein’s equations can also be solved on a computer using sophisticated numerical methods.
Given sufficient computer power, such solutions can be more accurate than post-Newtonian solu-
tions. However, such calculations are demanding because the equations must generally be solved
in a four-dimensional space. Nevertheless, beginning in the late 1990s, it became possible to solve
difficult problems such as the merger of two black holes, which is a very difficult version of the
Kepler problem in general relativity.

. \
\
%

1970 1980 1990 2000
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Zeitverschiebungin s

Experimentally observed decreases of the orbital period of the binary pulsar PSR
B1913+16(blue dots) match the predictions of general relativity (black curve) almost exactly.
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Gravitational Radiation

If there is no incoming gravitational radiation, according to general relativity, two bodies orbiting
one another will emit gravitational radiation, causing the orbits to gradually lose energy.

Two neutron stars rotating rapidly around one another gradually lose energy by emitting gravita-
tional radiation. As they lose energy, they orbit each other more quickly and more closely to one
another.

The formulae describing the loss of energy and angular momentum due to gravitational radiation
from the two bodies of the Kepler problem have been calculated. The rate of losing energy (aver-
aged over a complete orbit) is given by:

4
< 32G my (m1 ':/Tz)(l+ﬁez+£e4j
5c’a (l—ez)

24 96

where e is the orbital eccentricity and a is the semimajor axis of the elliptical orbit. The angular
brackets on the left-hand side of the equation represent the averaging over a single orbit. Similarly,
the average rate of losing angular momentum equals:

_<dL >_ 32G " mim; Jm, +m, (H_;ezj

505472 (1 & )2

The rate of period decrease is given by:

_< i > = 1927G* mym, (m, +m) (1 REENCIE L J (i)m
5¢8(1-¢? )7/2 24 96 27

where P, is orbital period.

The losses in energy and angular momentum increase significantly as the eccentricity approaches
one, i.e., as the ellipse of the orbit becomes ever more elongated. The radiation losses also increase
significantly with a decreasing size a of the orbit.
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(C Frame-dragging )

Frame-dragging is an effect on spacetime, predicted by Einstein’s general theory of relativity, that
is due to non-static stationary distributions of mass—energy. A stationary field is one that is in
a steady state, but the masses causing that field may be non-static, rotating for instance. More
generally, the subject of effects caused by mass—energy currents is known as gravitomagnetism, in
analogy with classical electromagnetism.

The first frame-dragging effect was derived in 1918, in the framework of general relativity, by the
Austrian physicists Josef Lense and Hans Thirring, and is also known as the Lense—Thirring effect.
They predicted that the rotation of a massive object would distort the spacetime metric, making
the orbit of a nearby test particle precess. This does not happen in Newtonian mechanics for which
the gravitational field of a body depends only on its mass, not on its rotation. The Lense—Thirring
effect is very small—about one part in a few trillion. To detect it, it is necessary to examine a very
massive object, or build an instrument that is very sensitive.

In 2015, new general-relativistic extensions of Newtonian rotation laws were formulated to de-
scribe geometric dragging of frames which incorporates a newly discovered antidragging effect.

Effects

Rotational frame-dragging (the Lense—Thirring effect) appears in the general principle of relativi-
ty and similar theories in the vicinity of rotating massive objects. Under the Lense—Thirring effect,
the frame of reference in which a clock ticks the fastest is one which is revolving around the object
as viewed by a distant observer. This also means that light traveling in the direction of rotation of
the object will move past the massive object faster than light moving against the rotation, as seen
by a distant observer. It is now the best known frame-dragging effect, partly thanks to the Gravity
Probe B experiment. Qualitatively, frame-dragging can be viewed as the gravitational analog of
electromagnetic induction.

Also, an inner region is dragged more than an outer region. This produces interesting locally rotat-
ing frames. For example, imagine that a north-south—oriented ice skater, in orbit over the equator
of a black hole and rotationally at rest with respect to the stars, extends her arms. The arm extend-
ed toward the black hole will be “torqued” spinward due to gravitomagnetic induction (“torqued”
is in quotes because gravitational effects are not considered “forces” under GR). Likewise the arm
extended away from the black hole will be torqued anti-spinward. She will therefore be rotation-
ally sped up, in a counter-rotating sense to the black hole. This is the opposite of what happens in
everyday experience. There exists a particular rotation rate that, should she be initially rotating
at that rate when she extends her arms, inertial effects and frame-dragging effects will balance
and her rate of rotation will not change. Due to the equivalence principle, gravitational effects are
locally indistinguishable from inertial effects, so this rotation rate, at which when she extends her
arms nothing happens, is her local reference for non-rotation. This frame is rotating with respect
to the fixed stars and counter-rotating with respect to the black hole. This effect is analogous to the
hyperfine structure in atomic spectra due to nuclear spin. A useful metaphor is a planetary gear
system with the black hole being the sun gear, the ice skater being a planetary gear and the outside
universe being the ring gear.
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Another interesting consequence is that, for an object constrained in an equatorial orbit, but not
in freefall, it weighs more if orbiting anti-spinward, and less if orbiting spinward. For example, in
a suspended equatorial bowling alley, a bowling ball rolled anti-spinward would weigh more than
the same ball rolled in a spinward direction. Note, frame dragging will neither accelerate nor slow
down the bowling ball in either direction. It is not a “viscosity”. Similarly, a stationary plumb-bob
suspended over the rotating object will not list. It will hang vertically. If it starts to fall, induction
will push it in the spinward direction.

Linear frame dragging is the similarly inevitable result of the general principle of relativity, ap-
plied to linear momentum. Although it arguably has equal theoretical legitimacy to the “rotational”
effect, the difficulty of obtaining an experimental verification of the effect means that it receives
much less discussion and is often omitted from articles on frame-dragging.

Static mass increase is a third effect noted by Einstein in the same paper. The effect is an increase in
inertia of a body when other masses are placed nearby. While not strictly a frame dragging effect (the
term frame dragging is not used by Einstein), it is demonstrated by Einstein that it derives from the
same equation of general relativity. It is also a tiny effect that is difficult to confirm experimentally.

Experimental Tests

In 1976 Van Patten and Everitt proposed to implement a dedicated mission aimed to measure the
Lense—Thirring node precession of a pair of counter-orbiting spacecraft to be placed in terrestrial
polar orbits with drag-free apparatus. A somewhat equivalent, cheaper version of such an idea
was put forth in 1986 by Ciufolini who proposed to launch a passive, geodetic satellite in an orbit
identical to that of the LAGEOS satellite, launched in 1976, apart from the orbital planes which
should have been displaced by 180 deg apart: the so-called butterfly configuration. The measur-
able quantity was, in this case, the sum of the nodes of LAGEOS and of the new spacecraft, later
named LAGEOS III, LARES, WEBER-SAT.

Limiting the scope to the scenarios involving existing orbiting bodies, the first proposal to use the
LAGEOS satellite and the Satellite Laser Ranging (SLR) technique to measure the Lense—Thir-
ring effect dates back to 1977-1978. Tests have started to be effectively performed by using the
LAGEOS and LAGEOS II satellites in 1996, according to a strategy involving the use of a suitable
combination of the nodes of both satellites and the perigee of LAGEOS II. The latest tests with the
LAGEOS satellites have been performed in 2004—2006 by discarding the perigee of LAGEOS II
and using a linear combination. Recently, a comprehensive overview of the attempts to measure
the Lense-Thirring effect with artificial satellites was published in the literature. The overall accu-
racy reached in the tests with the LAGEOS satellites is subject to some controversy.

The Gravity Probe B experiment was a satellite-based mission by a Stanford group and NASA, used
to experimentally measure another gravitomagnetic effect, the Schiff precession of a gyroscope,
to an expected 1% accuracy or better. Unfortunately such accuracy was not achieved. The first
preliminary results released in April 2007 pointed towards an accuracy of 256—128%, with the
hope of reaching about 13% in December 2007. In 2008 the Senior Review Report of the NASA
Astrophysics Division Operating Missions stated that it was unlikely that Gravity Probe B team will
be able to reduce the errors to the level necessary to produce a convincing test of currently untest-
ed aspects of General Relativity (including frame-dragging). On May 4, 2011, the Stanford-based

WORLD TECHNOLOGIES




CHAPTER 5 Phenomena of General Relativity | 209

analysis group and NASA announced the final report, and in it the data from GP-B demonstrated
the frame-dragging effect with an error of about 19 percent, and Einstein’s predicted value was at
the center of the confidence interval.

In the case of stars orbiting close to a spinning, supermassive black hole, frame dragging should
cause the star’s orbital plane to precess about the black hole spin axis. This effect should be detectable
within the next few years via astrometric monitoring of stars at the center of the Milky Way galaxy.
By comparing the rate of orbital precession of two stars on different orbits, it is possible in principle
to test the no-hair theorems of general relativity, in addition to measuring the spin of the black hole.

Astronomical Evidence

Inner Structure of an Ac

0.1 figt -

Relativistic jet. The environment around the AGN where the relativistic plasma
is collimated into jets which escape along the pole of the supermassive black hole.

Relativistic jets may provide evidence for the reality of frame-dragging. Gravitomagnetic forces
produced by the Lense—Thirring effect (frame dragging) within the ergosphere of rotating black
holes combined with the energy extraction mechanism by Penrose have been used to explain the
observed properties of relativistic jets. The gravitomagnetic model developed by Reva Kay Wil-
liams predicts the observed high energy particles (~GeV) emitted by quasars and active galactic
nuclei; the extraction of X-rays, y-rays, and relativistic e-—e* pairs; the collimated jets about the
polar axis; and the asymmetrical formation of jets (relative to the orbital plane).

Mathematical Derivation

Frame-dragging may be illustrated most readily using the Kerr metric, which describes the geometry
of spacetime in the vicinity of a mass M rotating with angular momentum J, and Boyer—Lindquist
coordinates, where an unphysical, but mathematically more elegant radial coordinate r is used:

2

2
Adr? = 1-50 | 2dr — P ar? — prde?
P A?
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where r_is the Schwarzschild radius:

_2GM

v,
s 2
c

and where the following shorthand variables have been introduced for brevity:

oa=—
Mc

p =r’+a’cos’ 6
A? :rz—rsr+a2

In the non-relativistic limit where M (or, equivalently, rs) goes to zero, the Kerr metric becomes
the orthogonal metric for the oblate spheroidal coordinates:

2

cdr® =ctdr’ —%a’r2 - p’d&® —(r2 +0¢2)sin2 0d ¢’
P +a

We may rewrite the Kerr metric in the following form:

2 2
86 \d + g, dr + g,,d0 +g,,| dp+>Ldi
Egp Sy

2 2
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This metric is equivalent to a co-rotating reference frame that is rotating with angular speed Q that
depends on both the radius r and the colatitude 6:

0= gy r.arc
- T[22 2 2 2
84 P (r +a )+rsa rsin” @
In the plane of the equator this simplifies to:
r.ac
Q=——"2——
P ra’r+ra’

Thus, an inertial reference frame is entrained by the rotating central mass to participate in the
latter’s rotation; this is frame-dragging.

inner event horizon stationary limit surface

outer event horizon

ergosphere
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The two surfaces on which the Kerr metricappears to have singularities; the inner surface is the ob-
late spheroid-shaped event horizon, whereas the outer surface is pumpkin-shaped. The ergosphere
lies between these two surfaces; within this volume, the purely temporal component g,, is negative,
i.e., acts like a purely spatial metric component. Consequently, particles within this ergosphere
must co-rotate with the inner mass, if they are to retain their time-like character.

An extreme version of frame dragging occurs within the ergosphere of a rotating black hole. The
Kerr metric has two surfaces on which it appears to be singular. The inner surface corresponds to
a spherical event horizon similar to that observed in the Schwarzschild metric; this occurs at:

ro+\r —4a’

rinner - 2

where the purely radial component grr of the metric goes to infinity. The outer surface can be ap-
proximated by an oblate spheroid with lower spin parameters, and resembles a pumpkin-shape
with higher spin parameters. It touches the inner surface at the poles of the rotation axis, where
the colatitude 6 equals 0 or ; its radius in Boyer-Lindquist coordinates is defined by the formula:

r 412 —4a’ cos’ 0
router = 2

where the purely temporal component gtt of the metric changes sign from positive to negative. The
space between these two surfaces is called the ergosphere. A moving particle experiences a positive
proper time along its worldline, its path through spacetime. However, this is impossible within the
ergosphere, where gtt is negative, unless the particle is co-rotating with the interior mass M with
an angular speed at least of Q. However, as seen above, frame-dragging occurs about every rotat-
ing mass and at every radius r and colatitude 0, not only within the ergosphere.

Lense—Thirring Effect inside a Rotating Shell

The Lense—Thirring effect inside a rotating shell was taken by Albert Einstein as not just support
for, but a vindication of Mach’s principle, in a letter he wrote to Ernst Mach in 1913 (five years
before Lense and Thirring’s work, and two years before he had attained the final form of general
relativity). A reproduction of the letter can be found in Misner, Thorne, Wheeler. The general ef-
fect scaled up to cosmological distances, is still used as a support for Mach’s principle.

Inside a rotating spherical shell the acceleration due to the Lense—Thirring effect would be:

a=-2d,(oxv)-d,[ ox(@x7)+2(or)a |

where the coefficients are:

AMG
3Rc?

AMG

d, = -
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1

for MG « Rc? or more precisely,
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_ 4al-a) o= MG
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The spacetime inside the rotating spherical shell will not be flat. A flat spacetime inside a rotating
mass shell is possible if the shell is allowed to deviate from a precisely spherical shape and the
mass density inside the shell is allowed to vary.

Lense—Thirring Precession

In general relativity, Lense—Thirring precession or the Lense—Thirring effect (named after Josef
Lense and Hans Thirring) is a relativistic correction to the precession of a gyroscope near a large
rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction
of general relativity consisting of secular precessions of the longitude of the ascending node and
the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with
angular momentum S.

The difference between de Sitter precession and the Lense—Thirring effect is that the de Sitter
effect is due simply to the presence of a central mass, whereas the Lense—Thirring effect is due to
the rotation of the central mass. The total precession is calculated by combining the de Sitter pre-
cession with the Lense—Thirring precession.

According to a recent historical analysis by Pfister, the effect should be renamed as Einstein—Thir-
ring—Lense effect.
The Lense—Thirring Metric

The gravitational field of a spinning spherical body of constant density was studied by Lense and
Thirring in 1918, in the weak-field approximation. They obtained the metric:

I"C2 I"C2 6’37"3

ds* = (1— oM jcz dr* —(1+ oM jdaz +4Ge, S* S cdrdy,

where the symbols are:
+ ds? the metric,

e dot=dx’+dy’ +dz’ =dr’ +r’d@” +r’sin’ 0dp’ the flat-space line element in three
dimensions,

«  r=4/x"+y*+z* the “radial” position of the observer,
« cthe speed of light,

« G the gravitational constant,

€, the completely antisymmetric Levi-Civita symbol,

. M= J. T d°x the mass of the rotating body,
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. S, = jek,mx’T " d°x the angular momentum of the rotating body,
«  T*the energy-momentum tensor.

The above is the weak-field approximation of the full solution of the Einstein equations for a ro-
tating body, known as the Kerr metric, which, due to the difficulty of its solution, was not obtained
until 1965.

The Coriolis Term

The frame-dragging effect can be demonstrated in several ways. One way is to solve for geo-
desics; these will then exhibit a Coriolis force-like term, except that, in this case (unlike the
standard Coriolis force), the force is not fictional, but is due to frame dragging induced by the
rotating body. So, for example, an (instantaneously) radially infalling geodesic at the equator
will satisfy the equation:

d’e 5 GJ dr

O=r + —_,
dt* At odt

where:
ot isthe time,
+ @ isthe azimuthal angle (longitudinal angle),
« J =S| is the magnitude of the angular momentum of the spinning massive body.

The above can be compared to the standard equation for motion subject to the Coriolis force:

2
d ¢+2a)£

0=r—3 ,
dt dt

where @ is the angular velocity of the rotating coordinate system. Note that, in either case, if the
observer is not in radial motion, i.e. if dr/dt =0, there is no effect on the observer.

Precession

The frame-dragging effect will cause a gyroscope to precess. The rate of precession is given by:

oF :i{Sk _3(S'x)xk:|,

where:
«  Qis the angular velocity of the precession, a vector, and €2, one of its components,
. S, the angular momentum of the spinning body, as before,

«  S-xthe ordinary flat-metric inner product of the position and the angular momentum.
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That is, if the gyroscope’s angular momentum relative to the fixed stars is L then it precesses
as:

dr
— =€

y WL
.

The rate of precession is given by:

€. QF =T

ijk ij0°

where T’ jo 18 the Christoffel symbol for the above metric. “Gravitation” by Misner, Thorne, and
Wheeler provides hints on how to most easily calculate this.

Gravitomagnetic Analysis

It is popular in some circles to use the gravitomagnetic approach to the linearized field equations.
The reason for this popularity should be immediately evident below, by contrasting it to the dif-
ficulties of working with the equations above. The linearized metric 4, =g, —7,, can be read
off from the Lense—Thirring metric given above, where ds* = g o A" dx'ds’ = g L dx" dx”, and
N, dx" dx" = ¢’ dt* —dx’ —dy’ —dz’ In this approach, one writes the linearized metric, given in

terms of the gravitomagneitc potentials ¢ and 4 is:

-2
ho=
00 cZ
and
2A.
h, =—=,,
0i Cz
where:
-GM
¢ =
r

is the gravito-electric potential, and:

A=Y §x7
r

is the gravitomagnetic potential. Here 7 is the 3D spatial coordinate of the observer, and S is the
angular momentum of the rotating body, exactly as defined above. The corresponding fields are:

E:—w—ia—A
2c Ot
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for the gravito-electric field, and:

B=

as the gravitomagnetic field. Note that it is half the Lense—Thirring precession frequency. In this
context, Lense—Thirring precession can essentially be viewed as a form of Larmor precession. The
factor of 1/2 suggests that the correct gravitomagnetic analog of the gyromagnetic ratio is two.

The gravitomagnetic analog of the Lorentz force is given by:
F =mE +4mv x B,

where m is the mass of a test particle moving with velocity v. This can be used in a straightfor-
ward way to compute the classical motion of bodies in the gravitomagnetic field. For example, a ra-
dially infalling body will have a velocity v = — dr / dt ; direct substitution yields the Coriolis term.

Foucault’s Pendulum

To get a sense of the magnitude of the effect, the above can be used to compute the rate of preces-
sion of Foucault’s pendulum, located at the surface of the Earth.

For a solid ball of uniform density, such as the Earth, of radius R the moment of inertia is given by

2MR? / 5, so that the absolute value of the angular momentum S is \S & 2MR’w/5,with @ the
angular speed of the spinning ball.

The direction of the spin of the Earth may be taken as the z axis, whereas the axis of the pendulum
is perpendicular to the Earth’s surface, in the radial direction. Thus, we may take z-7 = cos @ where

0 is the latitude. Similarly, the location of the observer r is at the Earth’s surface R. This leaves
rate of precession is as:

_2GMo

= > cosd.
5 ¢°R

LT

As an example the latitude of the city of Nijmegen in the Netherlands is used for reference. This
latitude gives a value for the Lense—Thirring precession:

Q,; =2.210™" arcseconds/ day.

At this rate a Foucault pendulum would have to oscillate for more than 16000 years to precess 1
degree. Despite being quite small, it is still two orders of magnitude larger than Thomas precession
for such a pendulum.
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The above does not include the de Sitter precession; it would need to be added to get the total rel-
ativistic precessions on Earth.

Experimental Verification

The Lense—Thirring effect, and the effect of frame dragging in general, continues to be studied
experimentally. A rapidly changing orientation of a jet emitting from the black hole X-ray binary
in V404 Cygni was observed. This jet has been modelled by “the Lense—Thirring precession of a
vertically extended slim disk that arises from the super-Eddington accretion rate”.

The Juno spacecraft’s suite of science instruments will primarily characterize and explore the
three-dimensional structure of Jupiter’s polar magnetosphere, auroras and mass composition. As
Juno is a polar-orbit mission, it will be possible to measure the orbital frame-dragging, known also
as Lense—Thirring precession, caused by the angular momentum of Jupiter.

Astrophysical Setting

A star orbiting a spinning supermassive black hole experiences Lense—Thirring precession, caus-
ing its orbital line of nodes to precess at a rate:

dQ 2GS 2G°M’y

dt

3 3
ca’ (1 —e )2 ca’ (1 —e )2
where:
« aand e are the semimajor axis and eccentricity of the orbit,
o Mis the mass of the black hole,
+ ¥ is the dimensionless spin parameter (0 < ¥ < 1).

Lense—Thirring precession of stars near the Milky Way supermassive black hole is expected to be
measurable within the next few years.

The precessing stars also exert a torque back on the black hole, causing its spin axis to precess, at a rate:

ds_ﬁ L].xS

dt ¢ J aj(l—ef);’

where:
+ L is the angular momentum of the j-th star,
< q and e, are its semimajor axis and eccentricity.

A gaseous accretion disk that is tilted with respect to a spinning black hole will experience Lense—
Thirring precession, at a rate given by the above equation, after setting e = 0 and identifying a with
the disk radius. Because the precession rate varies with distance from the black hole, the disk will
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“wrap up”, until viscosity forces the gas into a new plane, aligned with the black hole’s spin axis
(the “Bardeen—Petterson effect”).

Geodetic Effect

A representation of the geodetic effect.

The geodetic effect (also known as geodetic precession, de Sitter precession or de Sitter effect)
represents the effect of the curvature of spacetime, predicted by general relativity, on a vector
carried along with an orbiting body. For example, the vector could be the angular momentum of
a gyroscope orbiting the Earth, as carried out by the Gravity Probe B experiment. The geodetic
effect was first predicted by Willem de Sitter in 1916, who provided relativistic corrections to the
Earth—Moon system’s motion. De Sitter’s work was extended in 1918 by Jan Schouten and in 1920
by Adriaan Fokker. It can also be applied to a particular secular precession of astronomical orbits,
equivalent to the rotation of the Laplace—Runge—Lenz vector.

The term geodetic effect has two slightly different meanings as the moving body may be spinning
or non-spinning. Non-spinning bodies move in geodesics, whereas spinning bodies move in slight-
ly different orbits.

The difference between de Sitter precession and Lense—Thirring precession (frame dragging) is
that the de Sitter effect is due simply to the presence of a central mass, whereas Lense—Thirring
precession is due to the rotation of the central mass. The total precession is calculated by combin-
ing the de Sitter precession with the Lense—Thirring precession.

Experimental Confirmation

The geodetic effect was verified to a precision of better than 0.5% percent by Gravity Probe
B, an experiment which measures the tilting of the spin axis of gyroscopes in orbit about the
Earth. The first results were announced on April 14, 2007 at the meeting of the American
Physical Society.

To derive the precession, assume the system is in a rotating Schwarzschild metric. The nonrotating
metric is:

-1
ds? = dr* (1—2—’")—&2 (1—2—”1] — 12 (d0® +sin’ 0d¢"),

r r

wherec=G =1.
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We introduce a rotating coordinate system, with an angular velocity @, such that a satellite in a
circular orbit in the 0 = /2 plane remains at rest. This gives us:

dp=d¢'—wdt.
In this coordinate system, an observer at radial position r sees a vector positioned at r as rotating

with angular frequency w. This observer, however, sees a vector positioned at some other value of
r as rotating at a different rate, due to relativistic time dilation. Transforming the Schwarzschild

metric into the rotating frame, and assuming that & is a constant, we find:

ds® :(l—z—m—rzﬂa)zj[dt— r'pe d¢] _

r 1-2m/r—r’ o’

-1 2 _
_d},.z (1_2_’”) — r ﬂ 2m’;ﬁ - d¢2,
r 1-2m/r—r"fo

with S =sin’(#). For a body orbiting in the 8 = n/2 plane, we will have B = 1, and the body’s
world-line will maintain constant spatial coordinates for all time. Now, the metric is in the
canonical form:

ds® =e*® (dt —w, dx' )2 — ky; dx' dx’.

From this canonical form, we can easily determine the rotational rate of a gyroscope in proper time:

NG

Q= Te(b [kikkjl(a)i’j _a)j’i)(a)k,l _ a)l’k)]l/Z —

_ \/Ea)(r—3m) Z\/Ea)-

r—2m— Pao’r’
where the last equality is true only for free falling observers for which there is no acceleration, and
thus @,, = 0. This leads to:

B 2m/ 1 =2r P’ B
2(0-2m/r—r*Bw’*)

>

Solving this equation for w yields:

, m
(] =7

r'p
This is essentially Kepler’s law of periods, which happens to be relativistically exact when ex-
pressed in terms of the time coordinate t of this particular rotating coordinate system. In the ro-
tating frame, the satellite remains at rest, but an observer aboard the satellite sees the gyroscope’s
angular momentum vector precessing at the rate w. This observer also sees the distant stars as
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rotating, but they rotate at a slightly different rate due to time dilation. Let T be the gyroscope’s
proper time. Then:

2m 1/2 3m 1/2
Ar=(1———r2ﬂa)2j dtz(l——j dt.

r r

The —2m/r term is interpreted as the gravitational time dilation, while the additional —m/r is due to
the rotation of this frame of reference. Let o’ be the accumulated precession in the rotating frame.
Since o' = QA7 , the precession over the course of one orbit, relative to the distant stars, is given by:

3Im 1/2
a=a'+2r==2np I— —1 |
r

with a first-order Taylor series we find:

o~ [ = Gin(0).
r r

C Gravitational Singularity ))

A gravitational singularity (or space-time singularity) is a location where the quantities that are
used to measure the gravitational field become infinite in a way that does not depend on the co-
ordinate system. In other words, it is a point in which all physical laws are indistinguishable from
one another, where space and time are no longer interrelated realities, but merge indistinguish-
ably and cease to have any independent meaning.

This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc.

Singularities were first predicated as a result of Einstein’s Theory of General Relativity, which
resulted in the theoretical existence of black holes. In essence, the theory predicted that any star
reaching beyond a certain point in its mass (aka. the Schwarzschild Radius) would exert a gravita-
tional force so intense that it would collapse.

At this point, nothing would be capable of escaping its surface, including light. This is due to the
fact the gravitational force would exceed the speed of light in vacuum — 299,792,458 meters per
second (1,079,252,848.8 km/h; 670,616,629 mph).
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This phenomena is known as the Chandrasekhar Limit, named after the Indian astrophysicist Sub-
rahmanyan Chandrasekhar, who proposed it in 1930. At present, the accepted value of this limit is
believed to be 1.39 Solar Masses (i.e. 1.39 times the mass of our Sun), which works out to a whop-
ping 2.765 x 10%° kg (or 2,765 trillion trillion metric tons).

Another aspect of modern General Relativity is that at the time of the Big Bang (i.e. the initial state
of the Universe) was a singularity. Roger Penrose and Stephen Hawking both developed theories
that attempted to answer how gravitation could produce singularities, which eventually merged
together to be known as the Penrose—Hawking Singularity Theorems.

The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since.

According to the Penrose Singularity Theorem, which he proposed in 1965, a time-like singularity
will occur within a black hole whenever matter reaches certain energy conditions. At this point,
the curvature of space-time within the black hole becomes infinite, thus turning it into a trapped
surface where time ceases to function.

The Hawking Singularity Theorem added to this by stating that a space-like singularity can occur
when matter is forcibly compressed to a point, causing the rules that govern matter to break down.
Hawking traced this back in time to the Big Bang, which he claimed was a point of infinite density.
However, Hawking later revised this to claim that general relativity breaks down at times prior to
the Big Bang, and hence no singularity could be predicted by it.

Some more recent proposals also suggest that the Universe did not begin as a singularity. These
includes theories like Loop Quantum Gravity, which attempts to unify the laws of quantum physics
with gravity. This theory states that, due to quantum gravity effects, there is a minimum distance
beyond which gravity no longer continues to increase, or that interpenetrating particle waves mask
gravitational effects that would be felt at a distance.

Types of Singularities

The two most important types of space-time singularities are known as Curvature Singularities
and Conical Singularities. Singularities can also be divided according to whether they are covered
by an event horizon or not. In the case of the former, you have the Curvature and Conical; whereas
in the latter, you have what are known as Naked Singularities.

A Curvature Singularity is best exemplified by a black hole. At the center of a black hole, space-
time becomes a one-dimensional point which contains a huge mass. As a result, gravity become in-
finite and space-time curves infinitely, and the laws of physics as we know them cease to function.
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Conical singularities occur when there is a point where the limit of every general covariance quan-
tity is finite. In this case, space-time looks like a cone around this point, where the singularity is
located at the tip of the cone. An example of such a conical singularity is a cosmic string, a type
of hypothetical one-dimensional point that is believed to have formed during the early Universe.

And, as mentioned, there is the Naked Singularity, a type of singularity which is not hidden behind
an event horizon. These were first discovered in 1991 by Shapiro and Teukolsky using computer
simulations of a rotating plane of dust that indicated that General Relativity might allow for “na-
ked” singularities.

In this case, what actually transpires within a black hole (i.e. its singularity) would be visible. Such
a singularity would theoretically be what existed prior to the Big Bang. The key word here is theo-
retical, as it remains a mystery what these objects would look like.

For the moment, singularities and what actually lies beneath the veil of a black hole remains a
mystery. As time goes on, it is hoped that astronomers will be able to study black holes in greater
detail. It is also hoped that in the coming decades, scientists will find a way to merge the principles
of quantum mechanics with gravity, and that this will shed further light on how this mysterious
force operates.

(C Gravitational Time Dilation )

Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between
two events as measured by observers situated at varying distances from a gravitating mass. The
higher the gravitational potential (the farther the clock is from the source of gravitation), the fast-
er time passes. Albert Einstein originally predicted this effect in his theory of relativity and it has
since been confirmed by tests of general relativity.

This has been demonstrated by noting that atomic clocks at differing altitudes (and thus different
gravitational potential) will eventually show different times. The effects detected in such Earth-
bound experiments are extremely small, with differences being measured in nanoseconds. Rela-
tive to Earth’s age in billions of years, Earth’s core is effectively 2.5 years younger than its surface.
Demonstrating larger effects would require greater distances from the Earth or a larger gravita-
tional source.

Gravitational time dilation was first described by Albert Einstein in 1907 as a consequence of spe-
cial relativity in accelerated frames of reference. In general relativity, it is considered to be a differ-
ence in the passage of proper time at different positions as described by a metric tensor of space-
time. The existence of gravitational time dilation was first confirmed directly by the Pound—Rebka
experiment in 1959.

Clocks that are far from massive bodies (or at higher gravitational potentials) run more quickly, and
clocks close to massive bodies (or at lower gravitational potentials) run more slowly. For example,
considered over the total time-span of Earth (4.6 billion years), a clock set at the peak of Mount
Everest would be about 39 hours ahead of a clock set at sea level. This is because gravitational time

WORLD TECHNOLOGIES




222 | Introduction to Relativity

dilation is manifested in accelerated frames of reference or, by virtue of the equivalence principle,
in the gravitational field of massive objects.

According to general relativity, inertial mass and gravitational mass are the same, and all acceler-
ated reference frames (such as a uniformly rotating reference frame with its proper time dilation)
are physically equivalent to a gravitational field of the same strength.

Consider a family of observers along a straight “vertical” line, each of whom experiences a distinct
constant g-force directed along this line (e.g., a long accelerating spacecraft, a skyscraper, a shaft
on a planet). Let g(h) be the dependence of g-force on “height”, a coordinate along the aforemen-
tioned line. The equation with respect to a base observer at h = 0 is:

1,0 =exp) & [ gt |

=
where T, ()is the total time dilation at a distant position /4, g(/)is the dependence of g-force on
“height” c is the speed of light, and exp denotes exponentiation by e.
For simplicity, in a Rindler’s family of observers in a flat space-time, the dependence would be:
g(h)y=c*/(H+h)

with constant H, which yields:

H+h

T h :eln(HJrh)—lnH —
a(h) 7

On the other hand, when g is nearly constant and gh is much smaller than c?, the linear “weak field”
approximation T, =1+ gh/c’ can also be used.
Outside a Non-rotating Sphere

A common equation used to determine gravitational time dilation is derived from the Schwarzschild
metric, which describes space-time in the vicinity of a non-rotating massive spherically symmetric
object. The equation is:

2GM r,
b=ty l=—= =ty 1=

where:

« 1, is the proper time between events A and B for a slow-ticking observer within the gravi-
tational field,

1, isthe coordinate time between events A and B for a fast-ticking observer at an arbitrari-

ly large distance from the massive object (this assumes the fast-ticking observer is using
Schwarzschild coordinates, a coordinate system where a clock at infinite distance from the
massive sphere would tick at one second per second of coordinate time, while closer clocks
would tick at less than that rate),
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« G s the gravitational constant,
« M s the mass of the object creating the gravitational field,

« ris the radial coordinate of the observer (which is analogous to the classical distance from
the center of the object, but is actually a Schwarzschild coordinate),

« cisthe speed of light,
e r 2GM /c isthe Schwarzschild radius of M.

To illustrate then, without accounting for the effects of rotation, proximity to Earth’s gravitational
well will cause a clock on the planet’s surface to accumulate around 0.0219 fewer seconds over a
period of one year than would a distant observer’s clock. In comparison, a clock on the surface of
the sun will accumulate around 66.4 fewer seconds in one year.

Circular Orbits

In the Schwarzschild metric, free-falling objects can be in circular orbits if the orbital radius is
larger than 3 r, (the radius of the photon sphere). The formula for a clock at rest is given above;

the formula below gives the gravitational time dilation for a clock in a circular orbit but it does not
include the opposing time dilation caused by the clock’s motion:

3n
to :tf 1—5'7

Important Features of Gravitational Time Dilation

« According to the general theory of relativity, gravitational time dilation is copresent with
the existence of an accelerated reference frame. Additionally, all physical phenomena in
similar circumstances undergo time dilation equally according to the equivalence principle
used in the general theory of relativity.

« The speed of light in a locale is always equal to ¢ according to the observer who is there.
That is, every infinitesimal region of space time may be assigned its own proper time and
the speed of light according to the proper time at that region is always c. This is the case
whether or not a given region is occupied by an observer. A time delay can be measured for
photons which are emitted from Earth, bend near the Sun, travel to Venus, and then return
to Earth along a similar path. There is no violation of the constancy of the speed of light
here, as any observer observing the speed of photons in their region will find the speed of
those photons to be ¢, while the speed at which we observe light travel finite distances in
the vicinity of the Sun will differ from c.

- Ifan observeris able to track the light in a remote, distant locale which intercepts a remote,
time dilated observer nearer to a more massive body, that first observer tracks that both
the remote light and that remote time dilated observer have a slower time clock than other
light which is coming to the first observer at c, like all other light the first observer really
can observe (at their own location). If the other, remote light eventually intercepts the first
observer, it too will be measured at ¢ by the first observer.
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Time dilation in a gravitational field is equal to time dilation in far space, due to a speed
that is needed to escape that gravitational field. Here is the proof:

2GM

5 -

o Time dilation inside a gravitational field g is #, =¢,,/1—

o Escape velocity from g is \/2GM /r -
o Time dilation formula per special relativity is t =¢ V1-v*/c>.

rc

2GM

2
rc

o Substituting escape velocity for v in the above 7, =7, /1 -

This should be true for any gravitational fields considering simple scenarios like non-rotation etc.

Below are some evident examples when substituting 2GM / ¢ by the Schwarzschild radius, giving

ly=t,\1-r/r:

where:

Time stops at surface of a black hole since r =r, gives 7, =¢, \/1 —-r/r=t, Vi—r/r=0.

Escape velocity from surface of a black hole is c, since replacing Schwarzschild radius gives
v=2GMc* 12GM =~ =e,

Time stops at speed ¢, since replacing v gives 7, =7 v1— ¢t lc’ =0.

t, is the proper time between events A and B for a slow-ticking observer within the gravi-
tational field.

¢, is the coordinate time between events A and B for a fast-ticking observer at an arbitrari-
ly large distance from the massive object.

G is the Gravitational constant.
M is the mass of the object creating the gravitational field.

r is the radial coordinate of the observer which is analogous to the classical distance from
the center of the object.

c is the speed of light.
v is the velocity.

g is gravitational acceleration/field = GM / »>.

Experimental Confirmation

Gravitational time dilation has been experimentally measured using atomic clocks on airplanes.
The clocks aboard the airplanes were slightly faster than clocks on the ground. The effect is sig-
nificant enough that the Global Positioning System’s artificial satellites need to have their clocks
corrected.
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Time Dilation Effects on Earth
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Satellite clocks are slowed by their orbital speed, but accelerated
by their distance out of Earth’s gravitational well.

Additionally, time dilations due to height differences of less than one metre have been experimen-
tally verified in the laboratory.

Gravitational time dilation has also been confirmed by the Pound—Rebka experiment, observa-
tions of the spectra of the white dwarf Sirius B, and experiments with time signals sent to and from
Viking 1 Mars lander.

(C Gravitational Redshift )

In Einstein’s general theory of relativity, the gravitational redshift is the phenomenon that clocks
in a gravitational field tick slower when observed by a distant observer. More specifically the term
refers to the shift of wavelength of a photon to longer wavelength (the red side in an optical spec-
trum) when observed from a point in a lower gravitational field. In the latter case the ‘clock’ is the
frequency of the photon and a lower frequency is the same as a longer (“redder”) wavelength.

The gravitational redshift of a light wave as it moves upwards against a gravitational field (produced by
the yellow star below). The effect is greatly exaggerated in this diagram.
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The gravitational redshift is a simple consequence of Einstein’s equivalence principle (“all bodies
fall with the same acceleration, independent of their composition”) and was found by Einstein
eight years before the full theory of relativity.

Observing the gravitational redshift in the solar system is one of the classical tests of general relativ-
ity. Gravitational redshifts are an important effect in satellite-based navigation systems such as GPS.
If the effects of general relativity were not taken into account, such systems would not work at all.

Prediction by the Equivalence Principle and General Relativity

Einstein’s theory of general relativity incorporates the equivalence principle, which can be stated
in various different ways. One such statement is that gravitational effects are locally undetectable
for a free-falling observer. Therefore, in a laboratory experiment at the surface of the earth, all
gravitational effects should be equivalent to the effects that would have been observed if the labo-
ratory had been accelerating through outer space at g. One consequence is a gravitational Doppler
effect. If a light pulse is emitted at the floor of the laboratory, then a free-falling observer says that
by the time it reaches the ceiling, the ceiling has accelerated away from it, and therefore when ob-
served by a detector fixed to the ceiling, it will be observed to have been Doppler shifted toward the
red end of the spectrum. This shift, which the free-falling observer considers to be a kinematical
Doppler shift, is thought of by the laboratory observer as a gravitational redshift. Such an effect
was verified in the 1959 Pound—Rebka experiment. In a case such as this, where the gravitational
field is uniform, the change in wavelength is given by:

AL 8hy
A c’

3

Where Ay is the change in height. Since this prediction arises directly from the equivalence princi-
ple, it does not require any of the mathematical apparatus of general relativity, and its verification
does not specifically support general relativity over any other theory that incorporates the equiv-
alence principle.

When the field is not uniform, the simplest and most useful case to consider is that of a spheri-
cally symmetric field. By Birkhoff’s theorem, such a field is described in general relativity by the
Schwarzschild metric,

dr’ =(1-r,/ R)dt’ +...wheredr is the clock time of an observer at distance R from the center, dt

is the time measured by an observer at infinity, 7, is the Schwarzschild radius 2GM / ¢*, represents
terms that vanish if the observer is at rest, G is Newton’s gravitational constant, M the mass of the
gravitating body, and c the speed of light. The result is that frequencies and wavelengths are shift-
ed according to the ratio:

A
Z= —(1-r/R) ™",
n (1-r./R,)

e

Where 4, is the wavelength of the light as measured by the observer at infinity, 4, is the wave-
length measured at the source of emission, and R radius at which the photon is emitted. This
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can be related to the redshift parameter conventionally defined as z =4, / 4, —1In the case where
neither the emitter nor the observer is at infinity, the transitivity of Doppler shifts allows us to
generalize the result to 4 /A, =[(1-7,/R))/(1-r,/R,)]"* The redshift formula for the frequen-

cyv=c/Ais v, /v,=4,/4,. When R —R,R —R,is small, these results are consistent with the
equation given above based on the equivalence principle.

For an object compact enough to have an event horizon, the redshift is not defined for photons
emitted inside the Schwarzschild radius, both because signals cannot escape from inside the hori-
zon and because an object such as the emitter cannot be stationary inside the horizon, as was
assumed above. Therefore, this formula only applies when R is larger than », When the photon is
emitted at a distance equal to the Schwarzschild radius, the redshift will be infinitely large, and it
will not escape to any finite distance from the Schwarzschild sphere. When the photon is emitted
at an infinitely large distance, there is no redshift.

In the Newtonian limit, i.e. when R, is sufficiently large compared to the Schwarzschild radius 7,
the redshift can be approximated as:

lr, GM

2R ¢’R

e e

Experimental Verification
Initial Observations of Gravitational Redshift of White Dwarf Stars

A number of experimenters initially claimed to have identified the effect using astronomical mea-
surements, and the effect was considered to have been finally identified in the spectral lines of the
star Sirius B by W.S. Adams in 1925. However, measurements by Adams have been criticized as
being too low and these observations are now considered to be measurements of spectra that are
unusable because of scattered light from the primary, Sirius A. The first accurate measurement
of the gravitational redshift of a white dwarf was done by Popper in 1954, measuring a 21 km/sec
gravitational redshift of 40 Eridani B.

The redshift of Sirius B was finally measured by Greenstein et al. in 1971, obtaining the value
for the gravitational redshift of 89+19 km/sec, with more accurate measurements by the Hubble
Space Telescope, showing 80.4+4.8 km/sec.

Terrestrial Tests

The effect is now considered to have been definitively verified by the experiments of Pound, Rebka
and Snider between 1959 and 1965. The Pound—Rebka experiment of 1959 measured the gravita-
tional redshift in spectral lines using a terrestrial Fe gamma source over a vertical height of 22.5
metres. using measurements of the change in wavelength of gamma-ray photons generated with
the Mossbauer effect, which generates radiation with a very narrow line width. The accuracy of the
gamma-ray measurements was typically 1%.

An improved experiment was done by Pound and Snider in 1965, with an accuracy better than the
1% level.
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A very accurate gravitational redshift experiment was performed in 1976, where a hydrogen maser
clock on a rocket was launched to a height of 10,000 km, and its rate compared with an identical
clock on the ground. It tested the gravitational redshift to 0.007%.

Later tests can be done with the Global Positioning System (GPS), which must account for the
gravitational redshift in its timing system, and physicists have analyzed timing data from the GPS
to confirm other tests. When the first satellite was launched, it showed the predicted shift of 38 mi-
croseconds per day. This rate of the discrepancy is sufficient to substantially impair the function of
GPS within hours if not accounted for. An excellent account of the role played by general relativity
in the design of GPS can be found in Ashby 2003 .

Later Astronomical Measurements

James W. Brault, a graduate student of Robert Dicke at Princeton University, measured the grav-
itational redshift of the sun using optical methods in 1962.

In 2011 the group of Radek Wojtak of the Niels Bohr Institute at the University of Copenhagen
collected data from 8000 galaxy clusters and found that the light coming from the cluster centers
tended to be red-shifted compared to the cluster edges, confirming the energy loss due to gravity.

Other precision tests of general relativity, not discussed here, are the Gravity Probe A satellite,
launched in 1976, which showed gravity and velocity affect the ability to synchronize the rates of
clocks orbiting a central mass; the Hafele—Keating experiment, which used atomic clocks in cir-
cumnavigating aircraft to test general relativity and special relativity together; and the forthcom-
ing Satellite Test of the Equivalence Principle.

In 2018, the VLT had successfully observed the gravitational redshift and the first successful test
has been performed by the Galactic Centre team at the Max Planck Institute for Extraterrestrial
Physics (MPE).

Development of the Theory

The gravitational weakening of light from high-gravity stars was predicted by John Michell in
1783 and Pierre-Simon Laplace in 1796, using Isaac Newton’s concept of light corpuscles and who
predicted that some stars would have a gravity so strong that light would not be able to escape.
The effect of gravity on light was then explored by Johann Georg von Soldner, who calculated the
amount of deflection of a light ray by the sun, arriving at the Newtonian answer which is half the
value predicted by general relativity. All of this early work assumed that light could slow down and
fall, which was inconsistent with the modern understanding of light waves.

Once it became accepted that light was an electromagnetic wave, it was clear that the frequency
of light should not change from place to place, since waves from a source with a fixed frequency
keep the same frequency everywhere. One way around this conclusion would be if time itself were
altered—if clocks at different points had different rates.

This was precisely Einstein’s conclusion in 1911. He considered an accelerating box, and noted
that according to the special theory of relativity, the clock rate at the “bottom” of the box (the side
away from the direction of acceleration) was slower than the clock rate at the “top” (the side toward
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the direction of acceleration). Nowadays, this can be easily shown in accelerated coordinates. The
metric tensor in units where the speed of light is one is:

ds® = —r*dt* + dr?

and for an observer at a constant value of r, the rate at which a clock ticks, R(r), is the square root of
the time coefficient, R(r)=r. The acceleration at position r is equal to the curvature of the hyperbola
at fixed r, and like the curvature of the nested circles in polar coordinates, it is equal to 1/r.

So at a fixed value of g, the fractional rate of change of the clock-rate, the percentage change in the
ticking at the top of an accelerating box vs at the bottom, is:

R(r+dr)—R(r) _ dr

= gdr
R rg

The rate is faster at larger values of R, away from the apparent direction of acceleration. The rate
is zero at r=0, which is the location of the acceleration horizon.

Using the equivalence principle, Einstein concluded that the same thing holds in any gravitational
field, that the rate of clocks R at different heights was altered according to the gravitational field
g. When g is slowly varying, it gives the fractional rate of change of the ticking rate. If the ticking
rate is everywhere almost this same, the fractional rate of change is the same as the absolute rate
of change, so that:

ar _ __dv
dx & dx

Since the rate of clocks and the gravitational potential have the same derivative, they are the same
up to a constant. The constant is chosen to make the clock rate at infinity equal to 1. Since the grav-
itational potential is zero at infinity:

where the speed of light has been restored to make the gravitational potential dimensionless.

The coefficient of the d¢” in the metric tensor is the square of the clock rate, which for small values
of the potential is given by keeping only the linear term:

R*=1-2V

and the full metric tensor is:

ds” (1—21/(”} 208 + dx* +dy? + dz
C

where again the C’s have been restored. This expression is correct in the full theory of general rel-
ativity, to lowest order in the gravitational field, and ignoring the variation of the space-space and
space-time components of the metric tensor, which only affect fast moving objects.
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Using this approximation, Einstein reproduced the incorrect Newtonian value for the deflec-
tion of light in 1909. But since a light beam is a fast moving object, the space-space compo-
nents contribute too. After constructing the full theory of general relativity in 1916, Einstein
solved for the space-space components in a post-Newtonian approximation and calculated the
correct amount of light deflection — double the Newtonian value. Einstein’s prediction was
confirmed by many experiments, starting with Arthur Eddington’s 1919 solar eclipse expedi-
tion.

The changing rates of clocks allowed Einstein to conclude that light waves change frequency
as they move, and the frequency/energy relationship for photons allowed him to see that this
was best interpreted as the effect of the gravitational field on the mass—energy of the pho-
ton. To calculate the changes in frequency in a nearly static gravitational field, only the time
component of the metric tensor is important, and the lowest order approximation is
accurate enough for ordinary stars and planets, which are much bigger than their Schwarzschild
radius.

(C Shapiro Time Delay ))

The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic solar-sys-
tem tests of general relativity. Radar signals passing near a massive object take slightly longer to
travel to a target and longer to return than they would if the mass of the object were not present.
The time delay is caused by spacetime dilation, which increases the path length. In an article enti-
tled Fourth Test of General Relativity, astrophysicist Irwin Shapiro wrote:

“Because, according to the general theory, the speed of a light wave depends on the strength
of the gravitational potential along its path, these time delays should thereby be increased
by almost 2x10—-4 sec when the radar pulses pass near the sun. Such a change, equivalent
to 60 km in distance, could now be measured over the required path length to within about
5 to 10% with presently obtainable equipment.”

Shapiro uses c as the speed of light and calculated the time delay of the passage of light waves or
rays over finite coordinate distance according to a Schwarzschild solution to the Einstein field
equations.

The time delay effect was first predicted in 1964, by Irwin Shapiro. Shapiro proposed an observa-
tional test of his prediction: bounce radar beams off the surface of Venus and Mercury and mea-
sure the round-trip travel time. When the Earth, Sun, and Venus are most favorably aligned, Shap-
iro showed that the expected time delay, due to the presence of the Sun, of a radar signal traveling
from the Earth to Venus and back, would be about 200 microseconds, well within the limitations
of 1960s-era technology.

The first tests, performed in 1966 and 1967 using the MIT Haystack radar antenna, were suc-
cessful, matching the predicted amount of time delay. The experiments have been repeated many
times since then, with increasing accuracy.
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Calculating Time Delay

e~y

Left: unperturbed lightrays in a flat spacetime, right: shapiro-delayed and
deflected lightrays in the vicinity of a gravitating mass.

In a nearly static gravitational field of moderate strength (say, of stars and planets, but not one of
a black hole or close binary system of neutron stars) the effect may be considered as a special case
of gravitational time dilation. The measured elapsed time of a light signal in a gravitational field is
longer than it would be without the field, and for moderate-strength nearly static fields the differ-
ence is directly proportional to the classical gravitational potential, precisely as given by standard
gravitational time dilation formulas.

Time Delay due to Light Traveling around a Single Mass

Shapiro’s original formulation was derived from the Schwarzschild solution and included terms
to the first order in solar mass (M) for a proposed Earth-based radar pulse bouncing off an inner
planet and returning passing close to the Sun:

(2 4+ d2)? 24 42
At ~ 4Gf\4 ln xp (xp2 2) 1/2 —l 2 xp 25\1/2 + 2 xe 25\1/2 + O G ]y >
c —x,+(x; +d") 20 (x,+d") (x; +d7) c

where d is the distance of closest approach of the radar wave to the center of the Sun, x, is the dis-
tance along the line of flight from the Earth-based antenna to the point of closest approach to the
Sun, and x, represents the distance along the path from this point to the planet. The right-hand
side of this equation is primarily due to the variable speed of the light ray; the contribution from
the change in path, being of second order in M, is negligible. In the limit when the distance of
closest approach is much larger than the Schwarzschild radius, relativistic Newtonian dynamics
predicts:

dx x
zZGMln e

At
c’ d?

b

which agrees with the known formula for the Shapiro time delay quoted in the literature derived
using general relativity.

For a signal going around a massive object, the time delay can be calculated as the following;:

2GM

3
C

At=-

In(1- R-x).
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Here R is the unit vector pointing from the observer to the source, and x is the unit vector pointing
from the observer to the gravitating mass M. The dot denotes the usual Euclidean dot product.

Using Ax = cAt, this formula can also be written as:

Ax=-R In(1-Rx),

which is the extra distance the light has to travel. Here R is the Schwarzschild radius.
In PPN parameters,

R

At =—(1+y)—=In(1-R-x),
2c

which is twice the Newtonian prediction (with ¥ =0).

Interplanetary Probes

Shapiro delay must be considered along with ranging data when trying to accurately determine the
distance to interplanetary probes such as the Voyager and Pioneer spacecraft.

Shapiro Delay of Neutrinos and Gravitational Waves

From the nearly simultaneous observations of neutrinos and photons from SN 1987A, the Shapiro
delay for high-energy neutrinos must be the same as that for photons to within 10%, consistent
with recent estimates of the neutrino mass, which imply that those neutrinos were moving at very
close to the speed of light. After the direct detection of gravitational waves in 2016, the one-way
Shapiro delay was calculated by two groups and is about 1800 days. In general relativity and other
metric theories of gravity, though, the Shapiro delay for gravitational waves is expected to be the
same as that for light and neutrinos. However, in theories such as tensor-vector-scalar gravity and
other modified GR theories, which reproduce Milgrom’s law and avoid the need for dark matter,
the Shapiro delay for gravitational waves is much smaller than that for neutrinos or photons. The
observed 1.7-second difference in arrival times seen between gravitational wave and gamma ray
arrivals from neutron star merger GW170817 was far less than the estimated Shapiro delay of
about 1000 days. This rules out a class of modified models of gravity that dispense with the need
for dark matter.

(C Gravitational Wave ))

Gravitational waves are distortions in the fabric of space and time caused by the movement of
massive objects, like sound waves in air or the ripples made on a pond’s surface when someone
throws a rock in the water. But unlike sound waves pond ripples, which spread out through a medi-
um like watter, gravitational waves are vibrations in spacetime itself, which means they move just
fine through the vacuum of space. And unlike the gentle drop of a stone in a pond, the events that
trigger gravitational waves are among the most powerful in the universe.

WORLD TECHNOLOGIES




CHAPTER 5 Phenomena of General Relativity | 233

We can hear gravitational waves, in the same sense that sound waves travel through water, or
seismic waves move through the earth. The difference is that sound waves vibrate through a me-
dium, like water or soil. For gravitational waves, spacetime is the medium. It just takes the right
instrument to hear them.

Detecting gravitational waves on Earth was a challenge that took roughly a century to complete,
since the ones that wash through the planet are incredibly tiny.

Detecting Gravitational Waves

Einstein’s general theory of relativity first predicted the existence of gravitational waves, which
the famous scientist himself noted in 1916. Though Einstein later doubted the waves’ existence, we
have had indirect evidence of them since the 1970s.

In 1974, astronomers Joe Taylor and Russell Hulse tracked a pair of spinning stellar corpses called
pulsars. As the pair of pulsars spun around each other, they grew closer together, which indicated
that they were giving off energy. Calculations made clear that this energy loss came in the form of
gravitational waves—a discovery that won Taylor and Hulse a Nobel Prize in 1993.

The first direct detection of gravitational waves took place on September 14, 2015, when the U.S. La-
ser Interferometry Gravitational-Wave Observatory—aka LIGO—detected the rumble that two col-
liding black holes gave off 1.3 billion years ago. Scientists formally announced the success in Febru-
ary 2016. In 2017, three of LIGO’s founding scientists were honored with the Nobel Prize in physics.

Starting in the 1970s, physicists including Rainer Weiss, Kip Thorne, and Barry Barish sketched
out the idea that later became LIGO. The observatory consists of two facilities: one in Louisiana,
the other in Washington State. Each L-shaped facility consists of two arms more than two miles
long that meet at a right angle.

By bouncing lasers back and forth within each arm, physicists can measure their lengths with an
accuracy so astonishing, it would be like measuring the distance between us and Alpha Centau-
ri—the closest star outside our solar system—to within a hair’s width. When a gravitational wave
passes through Earth, it slightly stretches one of the arms and compresses the other. Those length
changes alter the time it takes the laser beams to bounce back and forth, which in turn changes
the pattern the beams make where they meet. By tracking the shifting patterns through time, re-
searchers can watch a gravitational wave ripple through the facility.

LIGO has two facilities so that both detectors can try and spot the same event, in effect checking
each other’s work. In addition, the difference in time between each detection reveals which direc-
tion the gravitational waves came from, helping astronomers hoping to pinpoint the source in the
sky.

Information from Gravitational Waves

The analogy that some physicists use is that gravitational waves let us “hear the universe.” To be
clear, sound and gravitational waves are very different things. But by watching events play out in
the universe at different wavelengths of light, while also watching out for the vibrations of gravita-
tional waves, we can embark on what’s known as multi-messenger astronomy.
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Today’s gravitational wave detectors can spot waves created by the mergers of neutron stars and
black holes. As of the end of 2018, we’ve seen 10 mergers of black hole pairs and one merger of two
neutron stars. As more sightings build up, astronomers will be able to see patterns in the numbers
and masses of known black holes, which helps inform theories of how they form and change over
time.

But we stand to learn even more from events that emit both gravitational waves and light. On Au-
gust 17, 2017, astronomers got their first chance to see one of these events, when signals reached
Earth from two merging neutron stars—ultra-dense leftovers from dead stars—that spiraled
around each other and collided. The union not only released gravitational waves, it also triggered
a visible explosion called a kilonova.

White dwarf stars that orbit each other, as in this artist’s depiction, provide a realiable
source of gravitational waves for scientists to study.

The new object that formed—most likely a black hole—fired a jet of high-speed particles through
the surrounding haze, creating an afterglow that was visible for days to weeks afterward. This sin-
gle event provided powerful evidence that colliding neutron stars probably make much of the uni-
verse’s heavy elements, such as gold and silver. Like electronics and jewelry? Thank neutron stars.

Physicists were also able to use the detection to test Einstein’s theory of relativity as never before.
Relativity predicts that light and gravitational waves from the same event should travel through
space the same way. Other theories of gravity, however, predict that the two should arrive at Earth
at markedly different times. In the actual event, the light and gravitational waves arrived within
seconds of each other—which means that gravitational waves and light react to obstacles in almost
exactly the same way, within one part in a million billion.

Gravitational waves also help clarify other aspects of our universe’s foundation. For instance, the
Hubble Constant, a measure of how quickly the universe is expanding, has been tricky to pin down.
Measurements of the early universe’s afterglow yield one number, but estimates made using much
younger stars yield another number. Is the discrepancy just a sampling issue or error? Or has the
Hubble constant changed over time—suggesting the presence of new, bizarre particles and forces?

By acting as “standard sirens,” gravitational wave detections provide an independent way to calcu-
late the Hubble constant, making them the ultimate referee in this cosmic debate.

Feeling Gravitational Waves

The effect that gravitational waves have on Earth is thousands of times smaller than the width
of a proton, one of the particles that makes up an atom’s nucleus. That said, gravitational waves
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weaken the farther they travel, much like ripples on a pond. The closer you are to two merging
black holes, the more you’d be stretched and strained.

But as trippy as it sounds, a gravitational wave stretches and compresses a given object as a per-
centage of the object’s size. If Earth were as far from the black-hole merger that yielded LIGO’s
first detection as it is from the sun, gravitational waves would have stretched the planet by more
than three feet. But peoples’ bodies would be strained by just a millionth of a meter, far less than
the compression you feel when you jump up and land on the ground.

Gravitational waves’ proportional nature is why LIGO and other observatories have such large
arms. The bigger the observatory, the bigger—and more detectable—the changes from a wave be-
come.

Gravitational-wave Observatories

In 2017, the European observatory Virgo opened outside of Pisa, Italy, joining LIGO and Ger-
many’s GEO600 detector. And more such facilities are coming online: Japan’s KAGRA detector,
the first built underground, should be opening soon, and India is making plans to build its own
detector.

This artist’s concept shows ESA’s LISA Pathfinder spacecraft, which
launched on a mission to detect gravitational waves.

In addition, there are plans to launch large, space-based observatories. The European Space Agen-
cy plans to put a detector called LISA into orbit around the sun in the 2030s. In 2015, the ESA
launched the LISA Pathfinder spacecraft to test the necessary technology. Chinese researchers
have proposed a similar space-based detector called TianQin.

Meanwhile, astronomers keep monitoring arrays of pulsars to track very low-frequency gravita-
tional waves. The thinking is that as a wave sweeps through, it would temporarily alter the timing
of each pulsar’s rotation.

(C Gravitational Lensing ))

Most people are familiar with the tools of astronomy: telescopes, specialized instruments, and
databases. Astronomers use those, plus some special techniques to observe distant objects. One of
those techniques is called “gravitational lensing.”
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This method relies simply on the peculiar behavior of light as it passes near massive objects. The
gravity of those regions, usually containing giant galaxies or galaxy clusters, magnifies light from
very distant stars, galaxies, and quasars. Observations using gravitational lensing help astrono-
mers explore objects that existed in the very earliest epochs of the universe. They also reveal the
existence of planets around distant stars. In an uncanny way, they also unveil the distribution of
dark matter that permeates the universe.

Gravitational lensing and how it works. Light from a distant object passes by a closer
object with a strong gravitational pull. The light is bent and distorted and that creates
“images” of the more distant object.

The Mechanics of a Gravitational Lens

The concept behind gravitational lensing is simple: everything in the universe has mass and that
mass has a gravitational pull. If an object is massive enough, its strong gravitational pull will bend
light as it passes by. A gravitational field of a very massive object, such as a planet, star, or galaxy,
or galaxy cluster, or even a black hole, pulls more strongly at objects in nearby space. For example,
when light rays from a more distant object pass by, they are caught up in the gravitational field,
bent, and refocused. The refocused “image” is usually a distorted view of the more distant objects.
In some extreme cases, entire background galaxies (for example) may end up distorted into long,
skinny, banana-like shapes via the action of the gravitational lens.

The Prediction of Lensing

The idea of gravitational lensing was first suggested in Einstein’s Theory of General Relativity.
Around 1912, Einstein himself derived the math for how light is deflected as it passes through
the Sun’s gravitational field. His idea was subsequently tested during a total eclipse of the Sun
in May 1919 by astronomers Arthur Eddington, Frank Dyson, and a team of observers sta-
tioned in cities across South America and Brazil. Their observations proved that gravitational
lensing existed. While gravitational lensing has existed throughout history, it’s fairly safe to
say that it was first discovered in the early 1900s. Today, it is used to study many phenomena
and objects in the distant universe. Stars and planets can cause gravitational lensing effects,
although those are hard to detect. The gravitational fields of galaxies and galaxy clusters can
produce more noticeable lensing effects. And, it now turns out that dark matter (which has a
gravitational effect) also causes lensing.
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Types of Gravitational Lensing

Now that astronomers can observe lensing across the universe, they’'ve divided such phenomena into
two types: strong lensing and weak lensing. Strong lensing is fairly easy to understand — if it can be
seen with the human eye in an image, then it’s strong. Weak lensing, on the other hand, is not detectable
with the naked eye. Astronomers have to use special techniques to observe and analyze the process.

Due to the existence of dark matter, all distant galaxies are a tiny bit weak-lensed. Weak lensing is
used to detect the amount of dark matter in a given direction in space. It’s an incredibly useful tool
for astronomers, helping them understand the distribution of dark matter in the cosmos. Strong
lensing also allows them to see distant galaxies as they were in the distant past, which gives them
a good idea of what conditions were like billions of years ago. It also magnifies the light from very
distant objects, such as the earliest galaxies, and often gives astronomers an idea of the galaxies’
activity back in their youth.

Another type of lensing called “microlensing” is usually caused by a star passing in front of another
one, or against a more distant object. The shape of the object may not be distorted, as it is with
stronger lensing, but the intensity of the light wavers. That tells astronomers that microlensing
was likely involved. Interestingly, planets can also be involved in microlensing as they pass be-
tween us and their stars.

Gravitational lensing occurs to all wavelengths of light, from radio and infrared to visible and ul-
traviolet, which makes sense, since they're all part of the spectrum of electromagnetic radiation
that bathes the universe.

The First Gravitational Lens

The pair of bright objects in the center of this image were once thought to be twin quasars.
They are actually two images of a very distant quasar being gravitationally lensed.

The first gravitational lens (other than the 1919 eclipse lensing experiment) was discovered in 1979
when astronomers looked at something dubbed the “Twin QSO”. QSO is shorthand for “quasi-stel-
lar object” or quasar. Originally, these astronomers thought this object might be a pair of quasar
twins. After careful observations using the Kitt Peak National Observatory in Arizona, astrono-
mers were able to figure out that there weren’t two identical quasars (distant very active galaxies)
near each other in space. Instead, they were actually two images of a more distant quasar that were
produced as the quasar’s light passed near a very massive gravity along the light’s path of travel.
That observation was made in optical light (visible light) and was later confirmed with radio obser-
vations using the Very Large Array in New Mexico.
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Einstein Rings

A partial Einstein Ring known as the Horseshoe. It shows the light from a distant galaxy
being warped by the gravitational pull of a closer galaxy.

Since that time, many gravitationally lensed objects have been discovered. The most famous are
Einstein rings, which are lensed objects whose light makes a “ring” around the lensing object. On
the chance occasion when the distant source, the lensing object, and telescopes on Earth all line
up, astronomers are able to see a ring of light. These are called “Einstein rings,” named, of course,
for the scientist whose work predicted the phenomenon of gravitational lensing.

Einstein’s Famous Cross

The Einstein Cross is actually four images of a single quasar (the image in the center is not visible to
the unaided eye). This image was taken with the Hubble Space Telescope’s Faint Object Camera.
The object doing the lensing is called “Huchra’s Lens” after the late astronomer John Huchra.

Another famous lensed object is a quasar called Q2237+030, or the Einstein Cross. When the light
of a quasar some 8 billion light-years from Earth passed through an oblong-shaped galaxy, it creat-
ed this odd shape. The lensing galaxy is much closer to Earth than the quasar, at a distance of about
400 million light-years. This object has been observed several times by the Hubble Space Telescope.

Strong Lensing of Distant Objects in the Cosmos

On a cosmic distance scale, Hubble Space Telescope regularly captures other images of gravita-
tional lensing. In many of its views, distant galaxies are smeared into arcs. Astronomers use those
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shapes to determine the distribution of mass in the galaxy clusters doing the lensing or to figure
out their distribution of dark matter. While those galaxies are generally too faint to be easily seen,
gravitational lensing makes them visible, transmitting information across billions of light-years
for astronomers to study.

pon \ _
This is Abell 370, and shows a collection of more distant objects being lensed

by the combined gravitational pull of a foreground cluster of galaxies. The distant

lensed galaxies are seen distorted, while the cluster galaxies appear fairly normal.

Astronomers continue to study the effects of lensing, particularly when black holes are involved.
Their intense gravity also lenses light, as shown in this simulation using an HST image of the sky
to demonstrate.

This computer-simulated image shows a supermassive black hole at the core of a galaxy. The
black region in the center represents the black hole’s event horizon, where no light can escape the
massive object’s gravitational grip. The black hole’s powerful gravity distorts space around it like
a funhouse mirror, in a process known as gravitational lensing. Light from background stars is
stretched and smeared as the stars skim by the black hole.
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