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LINEAR PROGRAMMING 

Principal components of decision problem – Modeling phases – LP Formulation and graphic solution 
–Resource allocation problems – Simplex method – Sensitivity analysis.

1.1 Principal components of decision problem 

Assumptions in Linear Programming 

The following four assumptions are made in the linear programming problems. 

Linearity: The amount of resource required for a given activity level is directly proportional to the 
level of that activity. For example, if the number of hours required on a particular machine (for a 
given activity level) is 5 hours per unit of that activity, then the total number of hours required on 
that machine to produce 10 units of that activity is 50 hours. 

Divisibility: This means that fractional values of the decision variables are permitted. 

Non-negativity: This means that the decision variables are permitted to have only the values which 
are greater than or equal to zero. 

Additivity: This means that the total output for a given combination of activity levels is the algebraic 
sum of the output of each individual process. 

Properties of Linear Programming Solution 
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Feasible solution: If all the constraints of the given linear programming model are satisfied by the 
solution of the model, then that solution is known as a feasible solution. Several such solutions are 
possible for a given linear programming model. 

Optimal solution: If there is no other superior solution obtained for a given linear programming 
model, then the solution obtained is treated as the optimal solution. 

Alternate optimum solution: For some linear programming model, there may be more than one 
combination of values of the decision variables yielding the best objective function value. Such 
combinations of the values of the decision variables are known as alternate optimum solutions. 

Unbounded solution: For some linear programming model, the objective function value can be 
increased/decreased infinitely without any limitation. Such solution is known as unbounded 
solution. 

Infeasible solution: If there is no combination of the values of the decision variables satisfying all 
the constraints of the linear programming model, then that model is said to have infeasible 
solution. This means that there is no solution for the given model which can be implemented. 

Degenerate solution: In linear programming problems, intersection of two constraints will define a 
corner point of the feasible region. But if more than two constraints pass through any one of the 
corner points of the feasible region, excess constraints will not serve any purpose, and therefore 
they act as redundant constraints. Under such situation,degeneracy will occur. This means that 
some iterations will be carried out in simplex method without any improvement in the objective 
function. 

1.2 Modeling phases 

CONCEPT OF LINEAR PROGRAMMING MODEL 

A model, which is used for optimum allocation of scarce or limited resources to competing products 
or activities under such assumptions as certainty, linearity, fixed technology, and constant profit per 
unit, is linear programming. 

Linear programming is a most versatile, powerful and useful techniques for making managerial 
decisions. Linear programming technique may be used for solving broad range of problems arising 
in business, government, hospitals, Industry Libraries and etc . Whenever we want to allocate the 
available limited resources for various competing activities for achieving our desired objective, it 
has technique that helps us is LINEAR PROGRAMMING. As a decision making tool, it has 
demonstrated its value in various fields such as production, finance, marketing, research and 
demonstrated its value in various fields such as production, finance, marketing, research and 
development and personnel management. Determination of optimal product mix, transportation 
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schedules, assignment problem and many more. In this chapter let us discuss about various types of 
linear programming models. 

Properties of Linear programming model 

Any linear programming model must have the following properties: 

- The model must have an objective function. 

- The relationship between variables and constraints must be linear 

- The model must have structural constraints. 

- The model must have non-negativity constraint.  

The model of any linear programming problem will contain: objective function, set of constraints 
and non-negativity restrictions. Each of the components may consists of one or more of the 
following: 

• Decision variables 

• Objective function coefficients 

• Technological coefficients 

• Availability of resources. 

The components and other terminologies of the linear programming model are explained with the 
help of a product-mix problem as described here. 

Modelling is an art. One can develop this expertise only by seeing more and more models. 

Problems: 

A company manufactures two types of products, P1 and P2.Each product uses lathe and milling 
machine. The processing time per unit of P1 on the lathe is 5 hours and on the milling machine is 
4 hours. The processing time per unit of P2 on the lathe is 10 hours and on the milling machine, 4 
hours. The maximum number of hours available per week on the lathe and the milling machine 
are 60 hours and 40 hours, respectively. Also the profit per unit of selling P1, and P2 are Rs. 6.00 
and Rs. 8.00, respectively. Let us formulate a linear programming model to determine the 
production volume of each of the products such that the total profit is maximized. 

Solution: 
Given: 
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P1,P2. 

Profit per unit:Rs. 6.00, Rs. 8.00. 

Processing time per unit: 

5 hours and on the milling machine is 4 hours. 

10 hours and on the milling machine, 4 hours. 

The data of the problem are summarized in Table 1. 

Table 1 Details of Products(in hour) 

Machine Machine hours/unit Limit on machine hours 

 Product P1 Product P2  

Lathe 5 10 60 

Milling machine 4 4 40 

Profit/unit (Rs.) 6 8  

Let X1 and X2 be the production volumes of the products P1 and P2respectively. The corresponding 
linear programming model to determine the production volume of each of the products, such that 
the total profit is maximized, is presented below. 

Maximize Z = 6X1 + 8X2 

subject to 

5X1 + 10X2 ≤ 60 

4X1, + 4X2 ≤ 40 

X1 and X2 ≥ 0 

This is Cargo loading problem. Let us consider the cargo loading problem, where five items are to 
be loaded on a vessel. The weight (wi,) and volume (vi) of each unit of the different items as well 
as their corresponding returns per unit (ri) are tabulated in Table. 
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Table : 

Item-i wi vi ri 

1 5 1 4 

2 8 8 1 

3 3 6 6 

4 2 5 5 

5 7 4 4 

The maximum cargo weight (W) and volume (V) are given as 112 and 109 respectively. It is 
required to determine the optimal cargo load in discrete units of each item such that the total 
return is maximized. Formulate the problem as an integer programming model. 

Solution: 
Let, Xi be the number of units of the ith item to be loaded in the cargo, where i varies from 1 to 5. A 
model to maximize the return is as follows: 

Maximize Z = 4X1, + 7X2 + 6X3 + 5X4 + 4X5 

subject to 

5X1 + 8X2 + 3X3 + 2X4 + 7X5 ≤ 112 

X1 + 8X2 + 6X3 + 5X4 + 4X5 ≤ 112 

X1 + X2 + X3 + X4 and X5 ≥ 0 and integers 

A company wants to engage casual labours to assemble its product daily. The company works for 
only one shift which consists of 8hours and 6 days a week. The casual labours consist of two 
categories, viz. skilled and semi-skilled. The daily production per skilled labour is 80 assemblies 
and that of the semi-skilled labour is 60 assemblies. The rejection rate of the assemblies produced 
by the skilled labours is 5% and that of the semi-skilled labours is 10%. The loss to the company 
for rejecting an assembly is Rs. 25. The daily wage per labour of the skilled and semi-skilled 
labours are Rs. 240 and Rs. 160 respectively. The required weekly production is 1,86,000 
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assemblies. The company wants to limit the number of semi-skilled labours per day to utmost 
400. Let us Develop a linear programming model to determine the optimal mix of the casual 
labours to be employed so that the total cost (total wage + total cost of rejections) is minimized. 

Solution: 
Daily wage per skilled labour = Rs. 240 

Daily wage per semi-skilled labour = Rs. 160 

Weekly required production = 1,86,000 assemblies 

Number of working days per week = 6 days 

Therefore, daily required production = 31,000 assemblies 

Number of assemblies produced per skilled labour in a day is 80. Rejection rate of assemblies 
produced by skilled labours is 5% and hence, his number of rejected assemblies in a day is 4. 
Therefore, the acceptable number of assemblies produced per skilled labour in a day is 76. 

Number of assemblies produced per semi-skilled labour in a day is 60. Rejection rate of assemblies 
produced by a semi-skilled labour is 10% and hence, his number of rejected assemblies in a day is 6. 
Therefore, the acceptable number of assemblies produced per semi-skilled labour in a day is 54. 

The loss per rejected assembly= Rs. 25 

The loss due to rejections per skilled labour in a day= 4 × Rs. 25 = Rs. 100 

The loss due to rejections per semi-skilled labour in a day= 6 × Rs. 25 = Rs. 150 

Let, X1 be the number of skilled labours to be employed per day. X2 be the number of semiskilled 
labours to be employed per day. 

A linear programming model to determine the number of labours to be employed per day under 
each category of casual labours to minimize the sum of the total wages and penalty of rejections in 
a day is presented below. 

Minimize Z = 240X1, + 160X2 + (100X1, + 150X2) 

340X1, + 310X2 

subject to 

76X1 + 54X2 ≥ 31000 

X2, ≤ 400 
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X1, and X2 ≥ 0. 

 

1.3 LP Formulation and graphic solution 

Methods for the solution of a linear programming problem 

This is a method of solving the Various types of problems in which two or more candidates or 
activities are competing to utilize the available limited resources, with a view to optimize the 
objective function of the problem. The objective may be maximize the returns or to minimize the 
costs.  

The various methods are: 

- The Systematic trial and error method, where we go on giving various values to variables untile we 
get optimal solution. This method takes too much of time and laborious, hence this method is not 
discussed here. 

- The Graphical method when we have two decision variables in the problem. To deal with more 
decision variables by graphical method will become complicated, because we have to deal with 
planes instead of straight lines. Hence in graphical method let us limit ourselves to two variable 
problems. 

- The vector method. In this method each decision variable is considered as a vector & principles of 
vector algebra is used to get the optimal solution. This method is also time consuming. 

- This simplex method. When the problem is having more then two decision variables, simplex 
method is the most powerful method to solve the problem. 

One problem with two variable is solved by using both graphical & simplex method, so as to enable 
the reader to understand the relationship between the two. 

Graphical Method 

In graphical method, the inequalities are considered to be equations. This is because; one cannot 
draw straight lines in two-dimensional plane. Moreover as we have non-negativity constraint in the 
problem that is all the decision variables must have positive values always the solution to the 
problem lies in first quadrant of the graph. Sometimes the value of variables may fall in quadrants 
other then the first quadrant. In such cases, the line joining the values of the variables must be 
extended into the first quadrant. The procedure of the method will be explained in details while 
solving a numerical problem. 

The characteries of graphical method are, 

- Generally the method is used to solve the problem, when it involves two decision variables. 
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- For three or more decision variable, the graph deals with planes and requires high imagination to 
identify the solution area. 

- This method provides a basis for understanding the other method of solution 

LP Model Formulation 

Decision variables : Mathematical symbols represents the levels of activity of an operation. 

Objective function : 

• A linear relationship reflecting the objective of an operation. 

•Most frequent objective of business firms is to maximize profit. 

•Most frequent objective of individual operational units (such as a production or packaging 
department) is to minimize cost. 

Constraint : 

•A linear relationship representing a restriction on decision making. 

Max/min Z=c1x1+c2x2+....+cn xn 

Subject to: 

a11x1+a12x2+.....+a1nxn(≤,=,≥)b1 

a21+x1+a22x2+.....+a2nxn(≤,=,≥)b2 

Am1x1+am2x2+....+amn xn(≤,=,≥)bm 

Xj = Decision variables 

bi = Constraint levels 

Cj = Objective function coefficients 

Aij = Constraint coefficients 

LP Terminology : 

Solution (decision, point): 

Any specification of values for all decision variables, regardless of whether it is a desirable or even 
allowable choice. 

Feasible solution: 
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Its a solution for which all the constraints are satisfied. 

Feasible region (constraint set, feasible set): The collection of all feasible solution. 

Optimal solution (optimum): A feasible solution that has the most favorable value of the objective 
function. 

Optimal (objective) value: The value of the objective function evaluated at an optimal solution. 

Unbounded or Infeasible Case 

On the left, the objective function is unbounded. 

On the right, the feasible set is empty. 

 

LP Formulation Example: 

RESOURCE REQUIREMENTS  

PRODUCT Labor (hr/unit) Clay (lb/unit) Revenue($/unit) 

Bowl 1 4 40 

Mug 2 3 50 

There are 40 hours of labor and 120 pounds of clay available each day  

Decision variables  

X1 = Number of bowls to produce 

x2 = Number of mugs to produce  

Maximize Z=$40 x1 + 50 x2  

Subject to  
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x1 + 2x2 < 40 hr (labor constraint)  

4x1+3x2 < 120 lb (clay constraint)  

X1, x2≥0  

Solution is x1 = 24 bowls x2 = 8 mugs  

Revenue = $1,360  

Graphical Solution Method: 

1.Plot model constraint on a set of coordinates in a plane. 

2.Identify the feasible solution space on the graph where all constraints are satisfied 
simultaneously. 

3.Plot objective function to find the point on boundary of this space that maximizes (or minimizes) 
value of objective function. 

Graphical Method 

As stated earlier, if the number of variables in any linear programming problem is only two, one can 
use graphical method to solve it. In this section, the graphical method is demonstrated with three 
example problems. 
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Problems: 

Solve the following LP problem using graphical method. 

Maximize Z = 6X1, + 8X2 

subject to 

5X1 + 10X2 ≤ 60 

4X1 + 4X2 ≤ 40 

X1 and X2 ≥ 0 

Solution: 
In graphical method, the introduction of the non-negative constraints (X1≥ 0 and X2 ≥ 0) will 
eliminate the second, third and fourth quadrants of the X1,X2 plane, as shown in Figure. 

Now, we compute the coordinates on the X1,X2 plane. From the first constraint 

5X1, + 10X2 = 60 

we get X2 = 6, when X1, = 0; and X1, = 12, when X2 = 0. Now, plot the first constraint as shown in 
Figure . 

From the second constraint 

4X1, + 4X2 = 40 

we get X2 = 10, when X1 = 0; and X1, = 10, when X2 = 0. Now, plot the second constraint as shown in 
Figure. 

The closed polygon A-B-C-D is the feasible region. The objective function value at each of the corner 
points of the closed polygon is computed by substituting its coordinates in the objective function as: 

Z(A) = 6 × 0 × 8 × 0 = 0 

Z(B) = 6 × 10 × 8 × 0 = 60 

Z(C) = 6 × 8 + 8 × 2 = 48 × 16 = 64 

Z(D) = 6 × 0 + 8 × 6 = 48 
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Feasible region of Example. 

Since the type of the objective function here is maximization, the solution corresponding to the 
maximum Z value is to be selected as the optimum solution. The Z value is maximum for the corner 
point C. Hence, the corresponding solution is presented below. 

X1*=8,  

X2*=2 Z(optimum) = 64 

Let us solve the following LP problem using graphical method: 

Minimize Z = 2Xl + 3X2 

subject to 

X1 +X2 ≥ 6 

7X1 + X2 ≥ 14 

X1 and X2 ≥ 0 

Solution: 
The introduction of the non-negative constraints (X1 ≥ 0 and X2 ≥ 0) will eliminate the second, third 
and fourth quadrants of the X1, X2 plane as shown in Figure. 

Now, we compute the coordinates to plot on the X1X2 plane relating to different constraints. From 
the first constraint 

X1 + X2 = 6 

we get X2 = 6, when X1 = 0; and X1 = 6, when X2 = 0. Now, plot the constraint 1 as shown in Figure. 

Second constraint is given as 

7X1 +X2 = 14 
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Feasible region of Example. 

we get X2 = 14, when X1 = 0; and X1 = 2, when X2 = 0. Now, plot the constraint 2 as shown in Figure. 

In Figure, A-B-C-D-E is the feasible region. The optimum solution will be in any one of the comer 
points, B, C and D. The objective function value at each of these corner points is computed as 
follows by substituting its coordinates in the objective function. 

Z(B) = 2 × 0 ÷ 3 × 14 = 42 

 

Since the type of the objective function is minimization, the solution corresponding to the minimum 
Z value is to be selected as the optimum solution. The Z value is minimum for the comer point D. 
Hence, the corresponding optimum solution is: 

X1*=6,  

X2*=0, Z(optimum) = 12 

1.4 Resource allocation problems 

This type of problems are often identified with the application of linear program. It is the problem 
of distributing scarce resources among alternative activities. Here the Product Mix problem is a 
special case. 

In this example, let us consider a manufacturing facility, that produces five different products using 
four machines. The scarce resources are the times available on the machines and the alternative 
activities are the individual production volumes. 
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The machine requirements in one hour per unit are shown for every product in the table. With the 
exception of product 4 that does not require machine 1, each product must pass through all four 
machines. The unit profits are also shown in the table. 

The facility has 4 machines of type 1, 5 of type 2, 3 of type 3 and 7 of type 4. Each machine operates 
40 hours per week. The problem is to determine the optimum weekly production quantities for the 
products. 

The objective is to increase the total profit. In constructing a model, the initial step is to define the 
decision variables, the next is to write the constraints and objective function in terms of these 
variables of the problem data. 

In the problem of sentence phrases like "at least," "no greater than," "equal to," and "less than or 
equal to" imply one or more constraints. 

 

Machine data and processing requirements (hrs/unit) 

Machine Quantity Product 1 Product 2 Product 3 Product 4 Product 5 

M1 4 1.2 1.3 0.7 0.0 0.5 

M2 5 0.7 2.2 1.6 0.5 1.0 

M3 3 0.9 0.7 1.3 1.0 0.8 

M4 7 1.4 2.8 0.5 1.2 0.6 

Unit profit, $ -- 1.8 25 10 12 15 

Variable Definitions 

Pj : Quantity of product j produced, j = 1,...,5 

Machine Availability Constraints 

The number of hours available on each machine type is 40 times the number of machines. All the 
constraints are dimensioned in hours. For machine 1, for example, we have 40 hrs/machine ∞ 4 
machines = 160 hrs. 
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M1 1.2P1+1.3P2+0.7P3+0.0P4+0.5P5<160 

M2 0.7P1+2.2P2+1.6P3+0.5P4+1.0P5<200 

M3 0.9P1+0.7P2+1.3P3+1.0P4+0.8P5<120 

M4 1.4P1+2.8P2+0.5P3+1.2P4+0.6P5<280 

Non negativity 

Pj > 0 for j = 1,...,5 

Objective Function 

The unit profit coefficients are given in below the table. We can assuming proportionality, the profit 
maximization criterion can be written as: 

Maximize Z = 18P1+ 25P2 + 10P3 + 12P4 + 15P5 

Solution: 
The model constructed with the Math Programming add-in is shown below. The model has been 
solved with the Jensen LP add-in. The following observations were made. 

The solution is not an integer. Although the experimental considerations may demand that only 
integer quantities of the products be manufactured, the solution to a linear programming model is 
not, in general, integer. To get an optimum integer solution, one should specify in the model that 
the variables are to be integer. 

The output model is called an integer programming model and is highly complicated to solve for 
larger models. The analyst should report the optimal solution as shown and then if necessary, round 
the solution to integer values. 

For this problem, rounding down the solution to: P1 = 59, P2 = 62, P3 = 0, P4 = 10 and P5 = 15 will 
result in a feasible solution, but the solution may not be optimal. 

The solution is basic one. The simplex solution procedure used by the Jensen LP add-in will always 
return a basic solution. It will have as more basic variables as there are constraints. As described 
elsewhere in this site, basic variables are allowed to assume the values that are not at their upper 
or lower bounds. 
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There are four constraints in this problem, and four basic variables, P1, P2, P4 and P5. Variable P3 
and the slack variables for the constraints are the nonbasic variables. 

All the machine resources are bottlenecks for the optimum solution with the hours used exactly 
equal to the hours available. This is implied by the fact that the slack variables for the constraints 
are all zero. 

This model does not have lower or upper bounds specified for the variables. This is an option 
allowed with the Math Programming add-in. When not specified, lower bounds on variables are 
zero and upper bounds are unlimited. 

 

Sensitivity analysis 

The sensitivity analysis amplifies the solution. The analysis shows the results of changing one 
parameter at a time. While a single parameter is changing, all other problem parameters are held 
constant. For changes in the limits of tight constraints, the values of the basic variables must also 
change so that the equations defining the solution remains satisfied. 

Variable Analysis 

The "reduced cost" column indicates the increase in the objective function per unit change in the 
value of the associated variable. The reduced costs for the basic variables are all zero because the 
values of these variables are uniquely determined by the problem parameters and cannot be 
changed. 

The decreased cost of P3 notifies that if this variable were increased from 0 to 1 the objective value 
(or profit) will decrease by $13.53. It is not good that the decreased cost is negative since the 
optimum value of P3 is 0. 

When a nonbasic variable changes, the basic variables change so that the equations defining the 
solution remain satisfied. There is no information from the sensitivity analysis on how the basic 
variables change or P3 can change before the current basis becomes infeasible. 

Note that the reduced costs are really derivatives that indicate the rate of change. For degenerate 
solutions in the amount a nonbasic variable may change before a basis change is required may 
actually be is zero. 
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The ranges at the right of the display indicate how far the associated objective coefficient may 
change before the resent solution values P1 through P5 must change to maintain optimality. For 
example, the unit profit on P1 may assume any value between 13.26 and 24.81. lower limit of P3 

indicates an lower bound. Since P3 is zero at the optimum, reducing its unit profit by any amount 
will make it even less appropriate to produce this product. 

Constraint Analysis 

The shadow price indicates the increase in the objective value per unit increase of the associated 
constraint limit. The status of all the constraints are "Upper" and indicating that the upper limits are 
tight. From given the table An increase in the hour limit of 120 for M3 increases the objective value 
by the more then ($8.96), while increasing the limit for M4 increases the objective value by the 
least ($0.36). Then again, these quantities are rates of change. When the solution is degenerate, no 
change may actually be possible. 

The ranges at the right of the display indicate how far the limiting value may change while keeping 
the same optimum basis. The shadow prices remain valid within this range. As an example consider 
M1. For the solution, there are 160 hours of capacity for this machine. 

A capacity may range from 99.35 hours to 173 hours while keeping the same basis optimal. The 
Changes above 120 cause an increase in profit of $4.82 per unit, while changes below 120 cause a 
reduction in profit by $4.82 per unit. As the value of one parameter changes, the other parameters 
remain constant and the basic variables change to keep the equations defining the solution 
satisfied. 

 

Sensitivity analysis worksheet solution 

General Resource Allocation Model 

It is common to describe a problem class with a general algebraic model where numeric values are 
represented by lower case letters usually drawn from the early part of the alphabet. Variables are 
given alphabetical representations commonly drawn from the later in the alphabet. Terms are 
combined with summation signs. 

The general resource allocation model is given below. When the parameters are given specific 
numerical values the result is an instance of the general model. 
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Parameters 

n: Number of activities. Activities are indexed by j=1...n. 

n: Number of resources. Resources are indexed by j=1...n. 

Pj: Profit for activity j. 

bi: Amount available for resource i. 

aij: Amount of resource i used by a unit of activity j. 

Variables 

xj: amount of activity i is selected. 

Model 

Maximize profit =  

Subject to: 

 for i=1.....m 

xj≥0 for j=1...n 
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1.5 Simplex method 

Simplex method is the basic building block for all other methods. This method is devised based on 
the concept of solving simultaneous equations. It is demonstrated using a suitable numerical 
problem. 

Let us consider the linear programming model of Example (as reproduced below) and solve it 
using the simplex method. 

Maximize Z = 6X1 + 8X2 

subject to 

5X1 + 10X2 ≤ 60 

4X1 + 4X2 ≤ 40 

X1 and X2 ≤ 0 

Solution: 
The standard form of the above LP problem is shown below: 

Maximize Z = 6X1 + 8X2 + 0S1 + 0S2 

subject to 

5X1 + 10X1 + S1 = 60 

4X1 + 4X2 + S2 = 40 

X1, X2 S1 and S2 ≥ 0 

where S1 and S2 are slack variables, which are introduced to balance the constraints. 

Canonical form is the form in which each constraint has a basic variable. 

Definition of basic variable: A variable is said to be a basic variable if it has unit coefficient in one of 
the constraints and zero coefficient in the remaining constraints. If all the constraints are ‘≤’ type, 
then the standard form is to be treated as the canonical form. The canonical form is generally used 
to prepare the initial simplex table. The initial simplex table of the above problem is shown in 
Table1. 

Table 1: Initial Simplex Table (Example ) 
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 Cj 6 8 0 0   

CBi 
Basic 
variable X1 X2 S1 S2 Solution Ratio 

0 S1 5 10 1 0 60 60/10 = 6** 

0 S2 4 4 0 1 40 40/4 = 10 

 Zj 0 0 0 0 0  

 Cj-Zj 6 
8 

* 
0 0   

*Key column. **Key row. 

Here, Cj is the coefficient of the yth term of the objective function and CBi is the coefficient of the ith 
basic variable. The value at the intersection of the key row and the key column is called the key 
element. The value of Z j;is computed using the following formula. 

Zj =  

where aij is the technological coefficient for the jth row and yth column of the table. Cj - Zj is the 
relative contribution. In this term, Cj is the objective function coefficient for the jth variable. The 
value of Zj against the solution column is the value of the objective function and in this iteration, it 
is zero. 

Optimality condition: For maximization problem, if all Cj - Zj are less than or equal to zero, then 
optimality is reached; otherwise select the variable with the maximum Cj - Zj value as the entering 
variable. (For minimization problem, if all Cj - Zj are greater than or equal to zero, the optimality is 
reached; otherwise select the variable with the most negative value as the entering variable.) 

In Table, all the values for C j - Zj are either equal to or greater than zero. Hence, the solution can be 
improved further. Cj - Zj is the maximum for the variable X2. So, X2 enters the basis. This is known 
as entering variable, and the corresponding column is called key column. 
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Feasibility condition: To maintain the feasibility of the solution in each iteration, the following steps 
need to be followed: 

1. In each row, find the ratio between the solution column value and the value in the key column. 

2. Then, select the variable from the present set of basic variables with respect to the minimum 
ratio (break tie randomly). Such variable is the leaving variable and the corresponding row is called 
the key row. The value at the intersection of the key row and key column is called key element or 
pivot element. 

In Table1, the leaving variable is S1 and the row 1 is the key row. Key element is 10. The next 
iteration is shown in Table 2. In this table, the basic variable S1 of the previous table is replaced by 
X2. The formula to compute the new values of Table 2 is as shown below: 

Table 2: Iteration 1 

 Cj 6 8 0 0   

CBi 
Basic 
variable X1 X2 S1 S2 Solution Ratio 

8 X2 1/2 1 1/10 0 6 6/(l/2) = 12 

0 S2 2 0 -2/5 1 16 16/2 = 8** 

 Zj 4 8 4/5 0 48  

 Cj - Zj 
2 

* 
0 -4/5 0   

Here 

 

As a sample calculation, the computation of the new value of row 2 and column X1 is shown below: 
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Computation of the cell values of different tables using this formula is a cumbersome process. So, a 
different procedure can be used as explained below.  

Let the first and second rows in Table 1. be L1 and L2, respectively; and the first and second rows in 
Table 2. be L3 and L4, respectively. The coefficient of the first row of Table 2. can now be obtained 
by using the following formula. 

 

This operation makes the value of the cell with respect to the first row and the second column in 
Table 2 as unity. Since the new basic variable is becoming X2, the cell value with respect to the 
second row and the second column in Table 2 should be made equal to 0. 

This can be achieved by multiplying/dividing the value of the first row and the second column in 
Table 2 by a suitable constant and then by adding/subtracting the resultant value to/ from the value 
of the second row and second column in Table 1 such that the net value is zero. 

The necessary formula to achieve this result is shown below. 

L4 = L2- 4L3 

The entries of the second row in Table 2 are obtained by using the above formula. 

The solution in Table 2 is not optimal. The criterion row value for the variable X1 is the maximum 
positive value. Hence, the variable X1 is selected as the entering variable and after computing the 
ratios, S2 is selected as the leaving variable. The next iteration is shown in Table 3. 

Table 3: Iteration 2 

CBi Cj 6 8 0 0 Solution 

 Basic variable X1 X2 S1 S2  

8 X2 0 1 1/5 -1/4 2 

6 X1 1 0 -1/5 1/2 8 

 Zj 6 8 2/5 1 64 
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 Cj-Zj 0 0 -2/5 -1  

In Table 3, all the values for Cj - Zj are either 0 or negative. Hence, the optimality is reached. The 
corresponding optimal solution is as follows: 

X1 (production volume of P1)= 8 units 

X2 (production volume of P2)= 2 units 

and the optimal objective function value, Z (total profit) is Rs. 64. 

Let us solve the following LP problem using simplex method. 

Maximize Z = 10X1, + 15X2 + 20X3 

subject to 

2X1, + 4X2 + 6X3 ≤ 24 

3X1, + 9X2 + 6X3 ≤ 30 

X1, X2 and X3 ≥ 0 

Solution: 
The standard form of this problem is 

Maximize Z= 10X1, + 15X2 + 20X3 

subject to 

2X1 + 4X2 + 6X3 + S1 = 24 

3X1 + 9X2 + 6X3 + S2 = 30 

X1, X2,X3,+ S1, and S2 ≥ 0 

where S1 and S2 are slack variables. Here, all the constraints are ‘≤’ type, so the canonical form of 
the given LP problem is same as the standard form represented below: 

Maximize Z = 10X1, + 15X2 + 20X3 + 0S1 + 0S2 

subject to 

2X1 + 4X2 + 6X3 + S1 = 24 
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3X1 + 9X2 + 6X3 + S2 = 30 

X1, X2,X3,+ S1, and S2 ≥ 0 

The initial simplex table of the above problem is shown in Table 4. 

In Table 4, all the values of Cj - Zj are not less than or equal to zero. Hence, the initial solution is not 
optimum. 

Table 4: Iteration 2 

CBi Cj 10 15 20 0 0 Solution Ratio 

 Basic variable X1 X2 X3 S1 S2   

0 S1 2 4 0 1 0 24 4** 

0 S2 3 9 6 0 1 30 5 

 Zj 0 0 0 0 0 0  

 Cj-Zj 10 15 20X 0 0   

The variable X3 is the entering variable because the column with respect to this variable has the 
highest Cj - Zj value. The variable S1 is the leaving variable since the ratio with respect to this row is 
the least ratio. Hence, the key column is the column corresponding to the variable X3 and the key 
row is row 1. The corresponding key element is 6. 

The next iteration is shown in Table 5. In this table, the basic variable S1 is replaced by X3. In Table 
5, the solution is not optimal. The variable X1 is selected as the entering variable since the column 
with respect to this variable has the highest Cj - Zj value. Row 2 is selected as the key row and the 
corresponding variable S2 is treated as the leaving variable, because it has the least ratio. The next 
iteration is shown in Table 6. 

Table 5: Iteration 1 

 Cj 10 15 20 0 0   
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CBi Basic 
variable X1 X2 X3 S1 S2 Solution Ratio 

20 X3 1/3 2/3 1 1/6 0 4 12 

10 X1 1 5 0 -1 1 6 6** 

 Zj 20/3 40/3 20 10/3 0 80  

 C - Zj 10/3* 5/3 0 -10/3 0   

Table 6: Iteration 2 

 Cj 10 15 20 0 0   

CBi 
Basic 
variable X1 X2 X3 S1 S2 Solution  

20 X3 0 -1 1 1/2 -1/3 2  

0 X1 1 5 0 -1 1 6  

 Zj 10 30 20 0 10/3 100  

 C - Zj 0 -15 0 0 -10/3   

In Table 6, since all the values of Cj - Z j are less than or equal to zero, the optimality is reached and 
the corresponding optimal solution is presented as: 

X1 = 6, X2 = 0, X3 = 2 and Z(optimum) = 100. 

 

1.6 Sensitivity analysis 
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In many situations, the parameters and characteristics of a linear programming model may change 
over a period of time. Also, the analyst may be interested to know the effect of changing the 
parameters and characteristics of the model on the optimality. This kind of sensitivity analysis can 
be carried out in the following ways: 

1.Making changes in the right-hand side constants of the constraints 

2.Making changes in the objective function coefficients 

3.Adding a new constraint 

4.Adding a new variable. 

These are discussed in the following sections. 

1. Changes in the Right-hand Side Constants of Constraints 

The right-hand side constant (resource availability) of one or more constraints of a linear 
programming model may change over a period of time. So, the analyst may be interested in 
knowing the revised optimum solution based on the optimum table of the original problem after 
incorporating the new changes in the right-hand side constants. The changes bring in the following 
results. 

(a) Same set of basic variables with modified right-hand side constants in the optimal table. 

(b) Different set of basic variables in the optimal table. 

The following example is considered to demonstrate the above two cases. 
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Problems: 

Let us Maximize Z = 6X1 + 8X2 

subject to 

5X1 + 10X2 ≤ 60 

4X1 + 4X2 ≤ 40 

X1 + X2 ≥ 0 

The optimum solution of this problem is shown in Table1.  

Table 1: Optimal Table of Example. 

CBi Cj 6 8 0 0  

 Basic variable X1 X2 S1 S2 Solution 

8 X2 0 1 1/5 -1/4 2 

6 X1 1 0 -1/5 1/2 8 

 Zj 6 8 2/5 1 64 

 Cj-Zj 0 0 -2/5 -1  

(a)if the right-hand side constants of constraint 1 and constraint 2 are changed from 60 and 40 to 
40 and 20, respectively. 

(b)if the right-hand side constants of the constraints are changed from 60 and 40 to 20 and 40 
respectively. 

Solution: 
(a) The revised right-hand side constants after incorporating the changes in the constraints are 
obtained by using the following formula. 
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Applying the formula, we have 

 

Solving them, we get X1 is 2 and that of X2 is 3. Since, these values are non-negative, the revised 
solution is feasible and optimal. The corresponding optimal objective function value is 36. 

(b)The revised solution of the basic variables in Table 1 after incorporating the changes in the right-
hand side values of the constraints are obtained as shown below. 

 

which gives the values of X1 and X2 as 16 and -6, respectively. Since, the value of the basic 
variable X2 is negative, the solution is infeasible. This infeasibility can be removed using the dual 
simplex method. Based on Table 1, the table for the dual simplex method is shown in Table 2. 

Table 2: Table for Dual Simplex Method 

CBi Cj 6 8 0 0  

 Basic variable X1 X2 S1 S2 Solution 

8 X2 0 1 1/5 -1/4 -6 

6 X1 1 0 -1/5 1/2 16 

 Zj 6 8 2/5 1 48 

 Cj-Zj 0 0 -2/5 -1  

Application of the dual simplex method to Table 2. yields the following optimum result in the next 
iteration itself: 
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X1 = 4, X2 = 0, 5, S1 =0, S2 = 24, Z(optimum) = 24 

2. Changes in the Objective Function Coefficients 

In reality, the profit coefficients or the cost coefficients of the objective function undergo changes 
over a period of time. Under such a situation, one can obtain the revised optimum solution from 
the optimal table of the original problem by following certain steps. 

Also, one will be interested to know the range of the coefficient of a variable in the objective 
function over which the optimality is unaffected. These are illustrated using the following example. 

Let us Maximize Z = 10X1 + 15X2 + 20X3 

subject to 

2X1 + 4X2 + 6X3 ≤ 24 

3X1 + 9X2 + 6X3 ≤ 30 

X1, X2 and X3 ≥ 0 

The optimum table of the above problem is given as in Table 3. 

Table 3: Optimal Table for Example. 

CBi Cj 10 15 20 0 0 Solution 

 
Basic 
variable X1 X2 X3 S1 S2  

20 X3 0 -1 1 1/2 -1/3 2 

10 X1 1 5 0 -1 1 6 

 zj 10 30 20 0 10/3 100 

 Cj-Zj 0 -15 0 0 -10/3  

(a)Find the range of the objective function coefficient C1 of the variableX1 such that the 
optimality is unaffected. 
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(b)Find the range of the objective function coefficient C2 of the variableX2 such that the 
optimality is unaffected. 

(c)Check whether the optimality is affected, if the profit coefficients are changed from (10, 15, 20) 
to (7, 14, 15). If so, find the revised optimum solution. 

Solution: 
(a) Determination of the range of C1 of the basic variable X1. After making some changes in the 
objective function coefficients, if the optimality is not affected, then the present set of basic 
variables will continue, and in that case the Cj - Zj values of the basic variables will be equal to 0; but 
the Cj - Zj values of the non-basic variables will change. Hence, care should be taken in establishing 
the range for each of Cj values such that the corresponding Cj - Zj value of that non-basic variable is 
limited to at most 0. 

Since, the variable X1 with respect to the coefficient C1 is a basic variable in the optimal table of the 
original problem, the Cj - Zj value will change for the non-basic variables: X2, S1, and S2. The values 
can be computed in terms of C1. Then, these expressions can be restricted to at most 0 to maintain 
optimality. By solving the above inequalities for C1 its range can be determined. 

The expressions of C2 - Z2, C4 - Z4 and C5 - Z5 for the non-basic variables,X2, S1 and S2, respectively 
are: 

 

The above relative contributions are restricted to at most 0 to maintain the optimality as shown 
below. 

35 - 5C1 ≤ 0 or C1 ≥ 7 

-10 + C1 ≤ 0 or C1 ≤ 10 

 

Here the value of C1 ranges from 7 to 10 (i.e. 7 ≤ C1 ≤ 10). In this interval of C1 the optimality is 
unaffected. 
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(b) Determination of the range of C2 of the non-basic variable X2. Since,C2 corresponds to one of 
the non-basic variables X2, the range of C2 can be obtained by just restricting the C2 - Z2 to at most 
0. Therefore, 

 

This relative contribution is restricted to at most 0 to maintain the optimality as shown below. 

C2 - 30 ≤ 0 or C2 ≤ 30 

Hence, it is clear that the optimality will remain the same as long as the value of C2 is less than or 
equal to 30. 

(c) Checking the optimality. The new values of the objective function coefficients, C1, C2 and C3 of 
the variables, X1 X2 and X3 are 7, 14 and 15, respectively. The corresponding modified relative 
contributions of all the variables are computed as follows: 

 

 

Since all the Cj - Zj values are less than or equal to 0, the optimality is unaffected. The solution in 
the optimal table of the original problem, which is shown in Table 3, is the optimal solution for the 
problem with the modified objective function coefficients of this section. 

3. Adding a New Constraint 

Sometimes, a new constraint may be added to an existing linear programming model as per 
changing realities. 

Under such situation, each of the basic variables in the new constraint is substituted with the 
corresponding expression based on the current optimal table. This will yield a modified version of 
the new constraint in terms of only the current non-basic variables. 
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If the new constraint is satisfied by the values of the current basic variables, the constraint is said to 
be a redundant one. So, the optimality of the original problem will not be affected even after 
including the new constraint into the existing model. 

If the new constraint is not satisfied by the values of the current basic variables, the optimality of 
the original problem will be affected. So, the modified version of the new constraint is to be 
augmented to the optimal table of the original problem and iterated till the optimality is reached. 

Consider an example to demonstrate the impact of adding a new constraint into an existing 
model: 

Maximize Z = 6X1 + 8X2 

subject to 

5X1 + 10X2 ≤ 60 

4X1 + 4X2 ≤ 40 

X1 + X2 ≥ 0 

The optimal table of the aforementioned example is reproduced as Table 4. 

(a) Let us Check whether the addition of the constraint 7X1 + 2X2 ≤ 65 affects the optimality. If it 
does, find the new optimum solution. 

(b) Let us also Check whether the addition of the constraint 6X1 + 3X2 ≤ 48 affects the optimality. 
If it does, find the new optimum solution. 

Solution 
(a) The new constraint is: 

7X1 + 2X2 ≤ 65 

Table 4: Optimal Table for Example. 

CBi Cj 6 8 0 0 Solution 

 Basic variable X1 X2 S1 S2  

8 X2 0 1 1/5 —1/4 2 
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6 X1 1 0 -1/5 1/2 8 

 Zj 6 8 2/5 1 64 

 Cj-Zj 0 0 -2/5 -1  

This is satisfied by the values of the current basic variables (X1 = 8 and X2= 2). Hence, the new 
constraint is said to be a redundant constraint and the optimality will not be affected even after 
including the new constraint into the existing model. 

(b) The new constraint is: 

6X1 + 3X2 ≤ 48 

This is not satisfied by the values of the current basic variables (X1 = 8 and X2 = 2). So, the modified 
form of the new constraint in terms of only non-basic variables is obtained. 

The standard form of the new constraint after including a slack variable S3is as follows: 

6X1, + 3X2 + S3 = 48 

From Table 4, the expressions with respect to X1 and X2 rows can be written as: 

 

Substitution of the expressions for X1 and X2 in the standard form of the new constraint, yields the 
following. 

 

Now, the above constraint is included in the optimal Table 4 and the result is shown in Table 5. 

In Table 5, S3 row contains a negative right-hand side constant. Hence, the solution is infeasible. 
This infeasibility can be removed by using dual simplex method. Application of the dual simplex 
method to Table 5 yields the following results: 
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Table 5: Augmented Version of Table 4. 

CBj Cj 6 8 0 0 0 Solution 

 
Basic 
variable X1 X2 S1 S2 S3  

8 X2 0 1 1/5 -1/4 0 2 

6 X1 1 0 -1/5 1/2 0 8 

0 S3 0 0 3/5 -9/4 1 -6 

 Zj 6 8 2/5 1 0 64 

 Cj - Zj 0 0 -2/5 -1 0  

4. Adding a New Variable 

In a problem like the product mix problem, over a period of time, a new product may be added to 
the existing product mix. Under such a situation, one will be interested in finding the revised 
optimal solution from the optimal table of the original problem. 

In this analysis, the following items are to be determined after incorporating the data of the new 
variable (new product). 

The Cj - Zj value 

 

where, m is the number of constraints in the problem. If the Cj - Zj value of the new variable 
indicates the optimality as per the nature of optimization (maximization or minimization), the 
optimality of the problem after including the new variable is not affected. Otherwise, the constraint 
coefficients (technological coefficients) of the new variable are to be computed. 
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The constraint coefficients (technological coefficients) of the column corresponding to the new 
variable 

 

where, m is the number of constraints in the problem. These coefficients are incorporated in the 
current optimal table and the necessary number of iterations is to be carried out from the current 
table till the optimality is reached. 

Example : Let us Maximize Z = 6X1 + 8X2 

subject to 

5X1 + 10X2 ≤ 60 

X1 + 4X2 ≤ 40 

X1 + X2 ≥ 0 

The optimal table of Example is reproduced in Table 6. 

Table 6: Optimal Table of Example. 

CBi Cj 6 8 0 0 Solution 

 Basic variable X1 X2 S1 S2  

8 X2 0 1 1/5 -1/4 2 

6 X1 1 0 -1/5 1/2 8 

 Zj 6 8 2/5 1 64 

 Cj - Zj 0 0 -2/5 -1  

A new product P3 is included in the existing product mix. The profit per unit of the new product is 
Rs. 20. The processing requirements of the new product on lathe and milling machines are 6 
hours per unit and 5 hours per unit, respectively. 

Business Optimization: A Mathematical Optimization Approach 35



(a) Let us Check whether die inclusion of the product P3 changes the optimality. 

(b)If it changes the optimality, Let us find the revised optimal solution. 

Solution 
The LP problem after incorporating the data of the new product P3 is shown below. 

Maximize Z = 6X1 + 8X2 + 20X3 

subject to 

5X1 + 10X2 + 8X2 ≤ 60 

4X1 + 4X2 + 5X3 ≤ 40 

X1, X2, ≥ 0 

(a)Determination of C3 - Z3. The relative contribution of the new product, P3 is computed using the 
following formula. 

 

Since, the C3 - Z3 value is greater than zero, the solution of the modified problem is not optimal. 
This means that the inclusion of the new product (new variable) in the original problem changes the 
optimality. 

(b)Optimization of the modified problem. The constraint coefficients of the new variable X3 are 
determined using the following formula: 

 

Table 6 of the original problem is modified as per the above details and shown in Table 7. 
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Table 7: Modified Table for Table 6. 

CBi Cj 6 8 20 0 0 Solution 

 Basic variable X1 X2 X3 S1 S2  

8 X2 0 1 -1/20 1/5 -1/4 2 

6 X1 1 0 13/10 -1/5 1/2 8 

 Zj 6 8 37/5 2/5 1 64 

 Cj - Zj 0 0 63/5 -2/5 -1  

The following optimal result is obtained after carrying out two more iterations from Table 7. 

X1 =0, X2 = 0, X3 = 8, S1 = 12, S2 = 0, Z(optimum) = 160 . 

Business Optimization: A Mathematical Optimization Approach 37



DUALITY AND NETWORKS 
Definition of dual problem – Primal – Dual relation ships – Dual simplex methods – Post optimality 
analysis – Transportation and assignment model - Shortest route problem. 

2.1 Definition of dual problem 

Dual problem refers to the Lagrangian dual problem but other dual problems are used, for example, 
the Wolfe dual problem and the Fenagle dual problem. 

The Lagrangian dual problem is obtained by forming the Lagrangian, using nonnegative Lagrange 
multipliers to add the constraints to the objective function, and then solving for some primal 
variable values that minimize the Lagrangian. 

This solution gives the primal variables as functions of the Lagrange multipliers, which are called 
dual variables, so that the new problem is to maximize the objective function with respect to the 
dual variables under the derived constraints on the dual variables (including at least the non 
negativity). 

In general given two dual pairs of separated locally convex spaces (X,X*)and (Y,Y*)and the function 
,f:X  we can define the primal problem as finding  such that . In 

other words,  is the infimum (greatest lower bound) of the function . 

If there are constraint conditions, these can be built into the function  by letting  where  is 
the indicator function. Then let  be a perturbation function such that 
. 

The duality gap is the difference of the right and left hand sides of the inequality. 

2



where  is the convex conjugate in both variables and Sup denotes the supremium (least upper 
bound). 

 

2.2 Primal Dual relationships 

A generalized format of the linear programming problem is represented here. 

Maximize or minimize Z = C1X1 + C2X2 + ... + Cn Xn 

subject to 

 

where, X1 X2, X3,..., Xn ≥ 0. 

Let this problem be called as a primal linear programming  problem. If the constraints in the primal 
problem are too many, then the time taken to solve the problem is expected to be higher Under 
such situation, the primal linear programming problem can be converted into its dual linear 
programming problem which requires relatively lesser time to solve. 

Then the solution of the primal problem can be obtained from the optimal table of its dual problem 
by following certain rules. 

Formulation of Dual Problem 

The primal problem is again reproduced below: 

Maximize or Minimize Z = C1X1 + C2X2 + ...+ Cn Xn 

subject to 
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In the above model, the variable Yi is called as the dual variable associated with the constraint i. 

Objective function: The number of variables in the dual problem is equal to the number of 
constraints in the primal problem. The objective function of the dual problem is constructed by 
adding the multiples of the right-hand side constants of the constraints of the primal problem with 
the respective dual variables. 

Constraints: The number of constraints in the dual problem is equal to the number of variables in 
the primal problem. Each dual constraint corresponds to each primal variable. 

The left-hand side of the dual constraint corresponding to the jth primal variable is the sum of the 
multiples of the left- hand side constraint coefficients of the jth primal variable with the 
corresponding dual variables. 

The right-hand side constant of the dual constraint corresponding to the jth primal variable is the 
objective function coefficient of the jth primal variable. 

Some more guidelines for forming the dual problem are presented in Table 1. 

Table 1. Guidelines for Dual Formation 

Type of problem Objective function Constraints type Nature of variables 

Primal Maximize ≤ Restricted in sign 

Dual Minimize ≥ Restricted in sign 

Primal Minimize ≥ Restricted in sign 

Dual Maximize ≤ Restricted in sign 

Primal Maximize = Restricted in sign 
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Dual Minimize ≥ Unrestricted in sign 

Primal Minimize = Restricted in sign 

Dual Maximize ≤ Unrestricted in sign 

Primal Maximize ≤ Unrestricted in sign 

Dual Minimize = Restricted in sign 

Primal Minimize ≥ Unrestricted in sign 

Dual Maximize = Restricted in sign 

Problems: 

Let us form the dual of the following primal problem. 

Maximize Z = 4X1 + 10X2 + 25X3 

subject to 

2X1 + 4X2 + 8X3 ≤ 25 

4X1 + 9X2 + 8X3 ≤ 30 

6X1 + 8X2 + 2X3 ≤ 40 

X1 + X2 + X3 ≥ 0 

Solution: 
The given problem is termed as a primal problem which is as shown below. Let Yi be the dual 
variable associated with the ith constraint of the primal problem as shown on next page. 
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The corresponding dual problem may be presented as: 

Minimize Y= 25Y1 + 30Y2 + 40Y3 

subject to 

2Y1 + 4Y2 + 6Y3 ≥ 4 

4Y1 + 9Y2 + 8Y3 ≥ 10 

8Y1 + 8Y2 + 2Y3 ≥ 25 

Y1 + Y2 + Y3 ≥ 0 

Form the dual of the following primal problem. 

Minimize Z = 20X1 + 40X2 

subject to 

2X1 + 20X2 ≥ 40 

20X1 + 3X2 ≥ 20 

4X1 + 15X2 ≥ 30 

X1 and X2 ≥ 0 

Solution 
Let, Yi be the dual variable associated with the ith constraint of the given primal problem. The dual 
of the given above primal problem is: 

Maximize y = 40Y1 + 20Y2 + 30Y3 

subject to 

2Y1 + 20Y2 + 4Y3 ≤ 20 

20Y1 + 3Y2 + 15Y3 ≤ 40 

Y1,Y2 and Y3 ≥ 0 
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2.3 Dual simplex methods 

Dual simplex method is a specialized form of simplex method in which optimality is maintained in all 
the iterations. Initially, the solution may not be feasible. Successive iterations will remove the 
infeasibility. 

If the problem is feasible in an iteration, then the procedure will be stopped, because the solution 
obtained is feasible and optimal at that stage. 

This method is an essential subroutine for integer programming method in which it is repeatedly 
used to remove the infeasibility due to additional constraints known as Gomory’s cuts. In this 
section, the dual simplex method is demonstrated through a numerical problem. 

Table 1. Initial Table and Different Iterations of Example. 

CB, C j 20 10 15 0 0 0 -M Solution Ratio 

 Basic variable X1 X2 X3 S1 S2 S3 R1   

0 S1 8 6 2 1 0 0 0 60 30 

-M R1 5 1 6 0 -1 0 1 40 20/3 

0 S3 2 6 3 0 0 1 0 30 10 

 Z j -5M -M -6M 0 M 0 -M -40 M  

 C j-Z j 20 + 5M 10 + M 15 + 6M 0 -M 0 0   

0 S1 19/3 17/3 0 1 1/3 0 -1/3 140/3 140/19 

15 X3 5/6 1/6 1 0 -1/6 0 1/6 20/3 8 

0  -1/2 11/2 0 0 1/2 1 -1/2 10 - 
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 Z j 25/2 5/2 15 0 -5/2 0 5/2 100  

 C j-Z j 15/2 15/2 0 0 5/2 0 -M-5/2   

20 X1 1 17/19 0 3/19 1/19 0 -1/19 140/19 140 

15 X3 0 -11/19 1 -5/38 -4/19 0 4/19 10/19 - 

0 S3 0 113/19 0 3/38 10/19 1 -10/19 260/19 26 

 Z j 20 175/19 15 45/38 -40/19 0 40/19 2950/19  

 Cj - Z j 0 15/19 0 -45/38 40/19 0 -M-40/19   

20 X1 1 3/10 0 3/20 0 -1/10 0 6  

15 X3 0 9/5 1 -1/10 0 2/5 0 6  

0 S2 0 113/10 0 3/20 1 19/10 -1 26  

 Z j 20 33 15 3/2 0 4 0 210  

 C j-Zj 0 -23 0 -3/2 0 -4 -M   

Problems: 

Let us solve the following linear programming problem using dual simplex method. 

Minimize Z = 2X1 + 4X2 

subject to 

2X1 +X2 ≥ 4 

X1 + 2X2 ≥ 3 
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2X1 + 2X2 ≤ 12 

X1 and X2 ≥ 0 

Solution 
Convert the constraints of the given linear programming problem into ‘≤’ type, wherever necessary, 
as shown below: 

Minimize Z = 2X1 + 4X2 

Subject to 

-2X1 - X2 ≤ - 4 

-X1 - 2X2 ≤ -3 

2X1 + 2X2 ≤ 12 

X1 and X2 ≥ 0 

The canonical form of the above model is shown below in which S1 S2 andS3 are slack variables. 

Minimize Z = 2X1 + 4X2 

subject to 

-2X1 -X2 + S1=-4 

-X1 - 2X2 + S2 = - 3 

2X1 + 2X2 + S3 = 12 

X1 X2, S1 S2 and S3 ≥ 0 

The initial table based on the canonical form of the given problem is shown in Table 2. For 
minimization problem, if all C j - Z j are greater than or equal to 0, then optimality is reached. 

 Table 2. Iteration 1. 

CB i Cj 2 0 0 0 0  

CBi Basic      Solution 
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 variable X1 X2 S1 S2 S3  

0 S1 -2 -1 1 0 0 -4** 

0 S2 -1 -2 0 1 0 -3 

0 S3 2 2 0 0 1 12 

 Z j 0 0 0 0 0 0 

 Cj - Z j 2* 4 0 0 0  

In Table 2, Cj - Zj row clearly shows that the problem is optimal. But some of the values under the 
solution column are negative. These negative values will retain infeasibility in the solution. The 
guidelines for removing the infeasibility are presented below. 

Feasibility condition: The leaving variable is the variable which is having the most negative value 
(break ties arbitrarily). If all the basic variables are non-negative, then the feasible (optimal) solution 
is reached. Hence, the procedure ends here. 

Optimality condition: The entering variable is selected from among the non-basic variables as 
follows: 

1.Find the ratios of the negative coefficients of the criterion row (C j - Z j) equation to the 
corresponding left-hand side coefficients of the equation associated with the leaving variable. 
Ignore the ratios associated with positive or zero denominators. 

2.The entering variable is the one with the smallest ratio if the problem is minimization, or the 
smallest absolute value of the ratios if the problem pertains to maximization (break tie arbitrarily). 
If all the denominators are zero or positive, then the problem has no feasible solution. 

In Table 2, the leaving variable is S1 which has the most negative right-hand side value. The entering 
variable is determined as shown in Table 3. 

Table 3: Determination of Entering Variable 

Variable X1 X2 S1 S2 S3 
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-(C j - Z j) -2 -4 0 0 0 

S1 equation -2 -1 1 0 0 

Ratio 1 4 - - - 

Since the problem is of the minimization type, entering variable is the one which has the smallest 
ratio, and the smallest ratio is 1 which is corresponding to the variable X1. Therefore, the entering 
variable is X1.The next iteration is shown in Table 4. 

Table 4: Iteration 2 

 Cj 2 4 0 0 0  

CBi Basic 
variable X1 X2 S1 S2 S3 Solution 

2 X1 1 1/2 -1/2 0 0 2 

0 S2 0 -3/2 -1/2 1 0 -1** 

0 S3 0 1 1 0 1 8 

 Z j 2 1 -1 0 0 4 

 Cj-Zj 0 3 1* 0 0  

In Table 4, the solution is optimal but it is not feasible, as the solution value of the row S2 is 
negative. So, the leaving variable is S2 which has negative right-hand side value. The entering 
variable is determined as in Table 5. 

Table 5: Determination of Entering Variable 

Variable X1 X2 S1 S2 S3 
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-(Cj - Z j) 0 -3 -1 0 0 

S2 equation 0 -3/2 -1/2 1 0 

Ratio - 2 2 - - 

Since the problem is concerned with minimization, the entering variable is the one which has the 
smallest ratio. The smallest ratio is 2 corresponding to the variable X2 and S1. By breaking the tie 
randomly, S1 is selected as the entering variable. The next iteration is shown in Table 6. 

In Table 6, the solution values (right-hand side values) are feasible and at the same time, the 
solution is optimal. The corresponding results are: 

X1 = 3, X2 = 0, S1 = 2, S3 = 6 and Z (optimum) = 6 

where all other variables are zero. 

CB; Cj 2 4 0 0 0 Solution 

 
Basic 
variable X1 X2 S1 S2 S3  

2 X1 1 2 0 -1 0 3 

0 S1 0 3 1 -2 0 2 

0 S3 0 -2 0 2 1 6 

 Z j 2 4 0 -2 0 6 

 C j-Z j 0 0 0 2 0  
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2.4 Post optimality analysis 

Post-optimality analysis of LP model 

After the optimal solution has been computed for a given model, it is important to know how the 
solution behaves under different variations in problem parameters. Sensitivity analysis and stability 
analysis are used to evaluate the effects of variations on the optimal solution or basis of the LP 
problem. Consider a LP problem in form: 

 ______(1) 

Sensitivity analysis is usually associated with the determination of the values of the Lagrange 
multipliers, λ, that describe the change in the optimal solution with respect to the variations in RHS 
coefficients. The sensitivity relations are important and useful for the decision maker, but the major 
challenge is to determine when they are valid. 

For example, the Lagrange multiplier, λ i , presents the increase in the optimal value for a 
maximization problem when the associated RHS coefficient, i.e., bi , is increased by one unit; 
however, we do not know by how much the coefficient can be increased under simultaneous 
variations in vector b before the optimal basis changes and the value of the Lagrange multiplier 
becomes invalid. 

This shows the importance of computing stability limits for each coefficient under simultaneous 
variations and within which the optimal basis remains unchanged. 

 

Obtained stability limits inside the stability cone. 

During the last few decades, many stability approaches have been proposed, for variation in 
parameters of LP. To date there is no single approach that dominates. 

In contrast to other approaches, the tolerance approach leads to easy-to-use results and considers 
simultaneous and independent variation in the problem parameters. 
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It basically depends on optimality conditions and uses the concept of basic and non-basic variables 
to modify matrix A at each iteration. 

In this study, the modified tolerance approach proposed by Al-Shammari is used to determine the 
stability ranges. The proposed method provides a new perspective on the problem and has two 
steps for computing the stability region or limits. 

First, it defines the entire stability region as a cone and studies the relation between the sensitivity 
information, Lagrange multipliers, and model parameters. 

Second, it determines maximum stability limits presented by the maximum rectangular 
parallelepiped or hyper box that can be built inside the cone. 

This hyper box offers flexible and easy-to-use allowable variation limits as shown later on for 
variation in objective coefficients, i.e. prices or raw materials and products. 

To demonstrate the approach, consider problem that has a unique optimal solution. To define the 
entire stability region or stability cone for variations in the coefficients of the objective function, 
duality information or Lagrange multipliers are used: 

 ..(2) 

where AA is the matrix of active constraints. By introducing the perturbations vector,  

 ..(3) 

by using the non-negativity condition on the optimal solution, there is no change in optimal solution 
if λ’ ≥ 0. By substituting and rearranging: 

 ..(4) 

This inequality relation represents the stability region. This stability region can be defined as a 
stability cone because it satisfies the definition of a cone. In other words, the optimal solution and 
basis (not objective value) remain optimal under any scalar positive multiplication in the objective 
function. The solution remains optimal for any variations that satisfy equation (4). 

The stability cone is shown in Figure for a maximization problem with two variables. Next step is 
defining the largest possible stability ranges starting with computing ordinary (individual) stability 
limits for ∆c i as follows: 

 ...(5) 

where h and g are indices of objective coefficients and constraints, respectively. In Figure 2, the 
ordinary stability limits of the coefficient ci are the intersections between the cone's constraints and 
∆ci axis. 
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The main challenge in LP stability analysis is the presentation of this cone to the decision maker in a 
simple and useful way, especially for simultaneous variations. The most useful approach is to 
construct the largest possible hyper box inside the cone. 

For variations in the RHS coefficients, a similar stability analysis is employed for the dual problem: 

 ____(6) 

to determine the variation limits before the optimal basis changes. In this analysis the optimal 
solution and slack variables are used in the same manner as the Lagrange multipliers were used in 
the variations analysis of vector c. 

 

2.5 Transportation and assignment model 

1. Transportation Problem (TP) 

It involves distribution of any commodity from any group of supply centers, called sources, to any 
group of receiving centers, called destinations, in such a way as to minimize the total distribution 
cost (shipping cost). 

Total supply must equal total demand. If total supply exceeds total demand, a dummy destination, 
whose demand equals the difference between the total supply and total demand is created. 
similarly if total supply is less than total demand, a dummy source is created, whose supply equals 
the difference. 

All units shipping costs of a dummy destination or out of a dummy source are 0. 

 

Example 1: 

 

Example 2: 
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  Destination   Supply 

 D1 D2 D3 D4  

 S1 50 75 35 75 12 

Source S2 65 80 60 65 17 

 S3 40 70 45 55 11 

 (D) 0 0 0 0 10 

Demand 15 10 15 10  

Transportation  Table: 

 

Solving TP – Transportation Simplex Method 

1. To find the current Cij–Zij values for both nonbasic variable and select the one with the most 
negative Cij–Zij value as the entering variable; if all Cij–Zij values are nonnegative, the current 
solution is optimal. 

2. Determine which basic variable reaches 0 first when the entering variable is increased. 

3. Determine a new basic solution and repeat the steps. 

Step 1: Calculate the Cij–Zij values for the nonbasic variables. 
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1.If Ui is the dual variable associated with the ith supply constraint, and Vj is the dual variable 
associated with the jth demand constraint, then for shipments from node i to node j, one can find 
the corresponding Zij value by Zij = Ui - Vj. Thus the Cij–Zij value for variable Xij is found by 

Cij - Zij = Cij - (Ui - Vj) = Cij - Ui + Vj 

2.Given that there is a redundant equation among the mn constraints (and any of the mn 
constraints can be considered the redundant one), one can show that the Ui or Vj associated with 
the redundant equation is 0. Thus one Ui or Vj can arbitrarily be selected and set to 0. Arbitrarily 
choose U1 = 0. 

Since the Cij–Zij values for basic variables are 0 (i.e., Cij - Ui + Vj = 0 for basic variables), we can easily 
solve for the remaining values of the Ui’s and V j’s from the m + n - 1 equations for the basic 
variables. 

3.Once the Ui’s and V j’s have been determined, the Cij–Zij values for the nonbasic variables can be 
calculated by 

Cij - Zij = Cij - Ui + Vj 

Transportation of simplex method 

Find an initial basic feasible solution by some starting procedure. Then, 

1. A set U1= 0. Solve for the other Ui’s and Vj’s by: 

Cij – Ui + Vj = 0 for normal variables. 

Then calculate the Cij–Zij values for nonbasic variables by: 

Cij – Zij = Cij – Ui + Vj 

Choose the nonbasic variable with the most negative Cij–Zij value as the entering variable. If all Cij–
Zij values are nonnegative, and STOP; the current solution is optimal. 

2.Find the cycle that includes the entering variable and some of the basic variables. Alternating 
positive and negative changes on this cycle, determine the “change amount” as the smallest 
allocation on the cycle at which a subtraction will be made. 

3.Modify the allocations to the variables of the cycle found in step 2 by the “change amount” and 
return to the step 1. 

Note: There must be m + n - 1 basic variables for the transportation simplex method to work. 

• Add dummy source or dummy destination, if necessary 

(m=# of sources and n=# of destinations) 
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2. The Assignment Problem (AP) 

A special case of TP with m=n and si=dj for all i and j. 

The Hungarian Algorithm 

solving the assignment problem of a least cost assignment of m workers to m jobs. 

Assumptions: 

 There is a cost assignment matrix for the m “people” to be assigned to m “tasks.” 

2. Total costs are nonnegative. 

3. The problem is a minimization problem. 

Iterative Steps 

1. Make as many 0 cost assignments as possible. If all workers are assigned, STOP; this is the 
minimum cost assignment. Otherwise draw the minimum number of horizontal and vertical lines 
necessary to cover all 0’s in the matrix. 

2. Find the smallest value not covered by the lines; this number is the reduction value. 

3.Subtract the reduction value from all numbers not covered by any lines. Add the reduction value 
to any number covered by both a horizontal and vertical line. 

GO TO STEP 1. 

Example: 
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Minimum uncovered number 

 

 

Assignment Problem Example 
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Find the opportunity cost table by:  

a) Subtracting the smallest number in each row of the original cost table or matrix from every 
number in that row.  

b) Then subtracting the smallest number in each column of the table obtained in part, a) from every 
number in that column.2.6 Shortest route problem 

Stage-coach Problem (Shortest-path Problem): 

Stage-coach problem is a shortest-path problem in which the objective is to find the shortest 
distance and the corresponding path from a given source node to a given destination node in a 
given distance network. Application of dynamic programming technique to this problem is 
illustrated using Example. 

Problems: 

A distance network consists of eleven nodes which are distributed as shown in Figure. Let us Find 
the shortest path from node 1 to node 11 and also the corresponding distances. 

 

Distance network. 

Solution 
Each pair of adjacent vertical columns of nodes is treated as a stage. As show in Figure 2, there are 
four stages in this problem. Since the stages are defined from right to left, backward recursive 
function is to be used. 
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Figure 2: Distance network with stages. 

In stage 1, the possible alternative is only one, i.e. node 11. In the same stage (stage 1), the possible 
state variables are nodes 9 and 10. 

The recursive function f1(x1)for a given combination of the state variable,x1 and alternative, m l in 
the first stage is: 

f1(x l) = d(x1 m1) 

where d(x1 m1) is the distance between node x1 and node m1, 

The recursive function for a given combination of the state variable, xi, and alternative, mi the 
stage i for i more than 1 is presented below: 

fi(xi) = d(xi mi) +fi -1(xi -1 = mi) 

where d(xi, mi) be the distance between the nodes xi, and mi fi(xi) be the shortest distance from 
node xi in the current stage i to die destination node in stage 1 (node 11 in this example). 

Stage 1: The recursive function f1(x1) for stage 1 is: 

f1i(x1) = d(x1, m1) 

The corresponding distances are shown in Table 1. For each value of the state variable, the best 
distance and the corresponding alternative are presented in the one and the last columns, 
respectively of Table 1. 

Table 1: Calculations for Stage 1 

 Alternative m1   

State variable    

x1 11 f1(x1)* m1* 
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9 5 5 11 

10 8 8 11 

Stage 2: The recursive function f2(x2) for a given combination of the variable, x2 and alternative, m2 
in the second stage is 

f2(x2) = d(x2, m2) + f1(x1 = m2) 

The corresponding distances are summarized in Table 2. For each value of the state variable, the 
best distance and the corresponding alternative are presented in the last two columns of Table 2, 
respectively. 

Table 2: Calculations for Stage 2. 

 Alternative m2  

State variable 9 10   

x2   f2(x2)* m2* 

6 3 + 5 = 8 5 + 8 = 13 8 9 

7 5 + 5 = 10 1 + 8 = 9 9 10 

8 - 5 + 8 = 13 13 10 

Stage 3: The recursive function f3(x3) for a given combination of the state variable, x3 and alter-
native, m3 is: 

f3(x3) = d(x3, m3) + f2(x2 = m3) 

The corresponding distances are summarized in Table 3. For each value of the state variable, the 
best distance and the corresponding alternative are presented in the last but one and the last 
columns of Table 3, respectively. 

Table 3: Calculations for Stage 3. 

58 Business Optimization: A Mathematical Optimization Approach



State variable x3 Alternative m3   

 6 7 8 f3(x3)* m3* 

2 4 + 8= 12 - - 12 6 

3 8 + 8 = 16 4 + 9=13 - 13 7 

4 - 6 + 9 = 15 - 15 7 

5 - 8 + 9 = 17 1 + 13 = 14 14 8 

Stage 4: The recursive function f4(x4) for a given combination of the state variable, x4 and 
alternative, m4 in the fourth stage is: 

f4(x4) = d(x4, m4) + f3(x3 = m4) 

The corresponding distances are summarized in Table 4. For each value of the state variable, the 
best distance and the corresponding alternative are presented in the last two columns of Table 4, 
respectively. 

Table 4: Calculations for Stage 4. 

 Alternative m4   

State 
variable x 4 1 2 3 4 5 f4(x4)* m4* 

1 8 + 12 = 20 7 + 13 = 20 4 + 15 = 
19 

2 + 4 = 
16 2 + 14 = 16 16 5 

The final result of the original problem are traced in Table 4 to Table 1 backwards. Therefore, the 
shortest path is 1-5-8-10-11. Hence, the corresponding shortest distance = 16 units. 
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INTEGER PROGRAMMING 

Cutting plan algorithm – Branch and bound methods, Multistage (Dynamic) programming. 

3.1 Cutting plan algorithm 

An algorithm for solving fractional (pure integer) and mixed integer programming problems has 
been developed by Ralph E. Gomory. 

Fractional (pure integer) algorithm 

Step 1:First, relax the integer requirements. 

Step 2:Solve the resulting LP problem using simplex method. 

Step 3:If all the basic variables (or the required variables) have integer values, optimality of the 
integer programming problem is reached. So, go to step 7; otherwise go to step 4. 

Step 4:Examine the constraints corresponding to the current optimal solution. Also, let m be the 
number of constraints, n be the number of variables (including slack, surplus and artificial 
variables), b i be the right-hand side value of the ith constraint, and aij be the technological 
coefficients (matrix of left-hand side constants of the constraints). Then, the constraint equations 
are summarized as follows: 

 i=1,2,3,....,m 

For each basic variable with non-integer solution in the current optimal table, find the fractional 
part, fi Therefore, bi = [bi] + fi where [bi] is the integer part of bi and fi is the fractional part of bi. 

Step 5:Choose the largest fraction among various fi's; i.e. Max (fi). Treat the constraint 
corresponding to the maximum fraction as the source row. Let the corresponding source row be as 
follows: 

3



bi= Xi +  or Xi= bi -  

where variables Xi (i = 1, 2, 3,..., m) represent basic variables and variables Wj (j = 1, 2, 3..., n) are 
the non-basic variables. This kind of assumption is for convenience only. 

Some examples of bi and aij into integer and fractional parts are shown as in Table 1. 

Table 1: Examples of Integer and Fractional Parts. 

bi or aij [bi] or [aij] (Truncated integer) 
fi = bi- [bi] 

fij = aij - [aij] 

 
2 

 

 
-4 

 

 -5 -5  0 

 
-1 

 

Based on the source equation, develop an additional constraint (Gomory’s constraint or fractional 
cut) as shown below: 

Si=  or -fi= si  

where Si is non-negative slack variable and also an integer. 
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Step 6:Append the fractional cut as the last row in the latest optimal table and proceed further 
using dual simplex method, and find the new optimum solution. If this new optimum solution is 
integer then go to step 7; otherwise go to step 4. 

Step 7:Print the integer solution [Xi's and Z values]. 

Problems: 

Let us find the optimum integer solution to the following linear programming problem. 

Maximize Z = 5X1 + 8X2 

subject to 

X1 + 2X2 ≤ 8 

4X1 + X2 ≤ 10 

X1, X2 ≥ 0 and integers 

Solution 
The canonical form of the above problem is as follows: 

Maximize Z = 5X1 + 8X2 

subject to 

X1 + 2X2 + S1 = 8 

4X1 + X2 + S2 = 10 

X1 X2, S1 and S2 ≥ 0 and integers 

The initial table is shown in Table 2. 

Table 2: Initial Table 

CBi Cj 5 8 0 0 Solution Ratio 

 
Basic 
variable X1 X2 S1 S2   
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0 S1 1 2 1 0 8 8/2 = 4* 

0 S2 4 1 0 1 10 10/1 = 10 

 Zj 0 0 0 0 0  

 Cj - Zj 5 8* 0 0   

From the above table, the entering variable is X2, since its Cj - Zj value is the maximum positive 
value. The minimum ratio is 4 and the corresponding variable is S1. Therefore, S1 leaves the basis. 
The resulting table is shown as in Table 3. 

Table 3: Iteration 1 

CBi Cj 5 8 0 0 Solution Ratio 

 
Basic 
variable X1 X2 S1 S2   

8 X2 1/2 1 1/2 0 4 8 

0 S2 7/2 0 -1/2 1 6 12/7* 

 Zj 4 8 4 0 32  

 Cj - Zj 1* 0 -4 0   

In Table 3, the maximum positive value for Cj - Zj is 1. The corresponding variable is X1. 
Therefore, X1 enters the basis. The minimum ratio is for theS2 row. Therefore, S2 leaves the basis. 
The resulting table is shown as in Table 4. 

Table 4: Iteration 2 (Optimal Table) 

CBi Cj 5 8 0 0 Solution 
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 Basic variable X1 X2 S1 S2  

8 X2 0 1 4/7 -1/7 22/7 

5 X1 1 0 -1/7 2/7 12/7 

 Zj 5 8 27/7 2/7 236/7 

 Cj - Zj 0 0 -27/7 -2/7  

In Table 4, all the values in the criterion row (Cj - Zj row) are 0 or negative. Hence, optimality for 
linear programming is reached. The results are as follows: 

 

Since the values of the decision variables X1 and X2 are not integers, the solution is not optimal. So, 
to obtain integer solution for the given problem further steps are carried out. 

The integer and fractional parts of the basic variables are summarized in Table 5. 

Table 5: Summary of Integer and Fractional Parts 

Basic variable in the optimal table bi [bi] +fi 

X1 12/7 1 + (5/7) 

X2 22/7 3 + (1/7) 

The fractional part, f1 is the maximum. So, select the row X1 as the source row for developing the 
first cut. 
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The corresponding fractional cut is 

 

This cut is appended to Table 4 as reproduced in Table 6 and further solved using dual simplex 
method. 

Table 6: Table after Appending Cut 1. 

CBi Cj 5 8 0 0 0 Solution 

 Basic variable X1 X2 S1 S2 S3  

8 X2 0 1 4/7 -1/7 0 22/7 

5 X1 1 0 -1/7 2/7 0 12/7 

0 S3 0 0 -6/7 -2/7 1 -5/7* 

 Zj 5 8 27/7 2/7 0 236/7 

 Cj - Zj 0 0 -27/7 -2/7* 0  

Only the third row (containing S3) has a negative solution value. Therefore, S3 leaves the basis. The 
entering variable is determined in Table 7. 

Table 7: Determination of Entering Variable 

Variable X1 X2 S1 S2 S3 

- (Cj - Zj) 0 0 27/7 2/7 0 

Row S3 0 0 -6/7 -2/7 1 
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Ratio (absolute value) - - 9/2 1 - 

The smallest absolute ratio is 1 and the corresponding variable is S2. So, the variable S2 enters the 
basis. The resultant values are shown in Table 8. 

Table 8: Table after Pivot Operation 

CBi Cj 5 8 0 0 0  

 
Basic 

variable 
X1 X2 S1 S2 S3 Solution 

8 X2 

0 

1 

0 

1 

0 

0 

1 

-1 

3 

0 

0 

1 

-1/2 7/2 

5 

0 

X1 

S2 
    

1 

-7/2 

1 

5/2 

Zj 

Cj - Zj 
5 8 3 0 1 33 

 0 0 -3 0 -1  

The solution is still non-integer. So, develop a fractional cut. The basic variables, X2 and S2 are not 
integers. The fractional parts of both of them are 1/2. The constraint X2 is selected randomly as the 
source row for developing the next cut. Therefore, 
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Therefore, the corresponding fractional cut is 

 

Append this constraint at the end of Table 8 as shown in Table 9. 

CBi Cj 5 8 0 0 0 0 Solution 

 
Basic 
variable X1 X2 S1 S2 S3 S4  

8 

5 

0 

0 

X2 

X1 

S2 

S4 

0 

1 

0 

0 

1 

0 

0 

0 

1 

-1 

3 

0 

0 

0 

1 

0 

-1/2 

1 

-7/2 

-1/2 

0 

0 

0 

1 

7/2 

1 

5/2 

-1/2* 

Zj 

Cj - Zj 
5 8 3 0 1 0 33 

 0 0 -3 0 -1* 0  

Table 9: Table after Pivot Operation 

Only row S4 has a negative value under the solution column. Therefore, S4leaves the basis. The 
entering variable is determined based on Table 10. 

Table 10: Determination of Entering Variable 

Variable X1 X2 S1 S2 S3 S4 

- (Cj - Zj) 0 0 3 0 1 0 

Row S4 0 0 0 0 -1/2 1 
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Ratio (absolute value) - - - - 2 - 

The smallest absolute ratio (only ratio) is 2 and the corresponding variable is S3. So, the variable S3 
enters the basis. The resultant values are shown as in Table 11. 

Table 11: Table after Pivot Operation 

CBi Cj 5 8 0 0 0 0 Solution 

 
Basic 
variable X1 X2 S1 S2 S3 S4  

8 

5 

0 

0 

X2 

X1 

S2 

S3 

0 

1 

0 

0 

1 

0 

0 

0 

1 

-1 

3 

0 

0 

0 

1 

0 

0 

0 

0 

1 

-1 

2 

-7 

-2 

4 

0 

6 

1 

Zj 

Cj - Zj 
5 8 3 0 0 2 32 

 0 0 -3 0 0 -2  

In Table 11, the values of all the basic variables are integers. So, the optimality is reached and the 
corresponding results are summarized as follows: 

X1 = 0, X2 = 4 Z( optimum) = 32. 

Directions to solve mixed integer programming problems 

In reality, all the decision variables of an integer programming problem need not be integers. In 
such problem, if the solution values to the linear programming problem are integers, the steps of 
adding Gomory’s cut are not required. 

Otherwise, necessary number of iterations is to be carried out by adding different cuts until the 
values of the required decision variables are made integers. 
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In each of these iterations, the source row is selected from among the rows corresponding to the 
decision variables whose values are restricted to integer in the given problem. 

Research direction to design superior cut 

The effectiveness of the integer programming procedure is determined in terms of number of cuts 
required to solve a given problem. Instead of simply selecting the source row based on the 
maximum value of fi one can use different approaches which will result in a reduced number of cuts 
required to solve a problem. 

This is called the strength/effectiveness of the cut. Researches have come out with superior cuts 
which will result in reduced number of cuts to solve a problem. 

Let us consider the following integer linear programming problem and solve it. 

Maximize Z = 5X1 + 10X2 + 8X3 

subject to 

2X1 + 5X2 + X3 ≤ 10 

X1 + 4X2 + 2X3 ≤ 12 

X1 + X2 + X3 ≥ 0 

Solution: 
The canonical form of the given problem is shown below. 

Maximize Z = 5X1 + 10X2 + 8X3 + OS1 + 0S2 

subject to 

2X1 + 5X2 + X3 + S1 = 10 

X1 + 4X2 + 2X3 + S2 = 12 

X1, X2, X3, S1 and S2 ≥ 0 

The different iterations of the simplex method applied to this problem till the optimality is reached 
are shown in Table 12. The optimal results of the linear programming problem from the last 
iteration of the Table 12 are: 

X1 =8/3=2 + 2/3, X3 = 14/3 =4 + 2/3 and Z(optimum) = 152/3. 
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The value of the decision variables, X1 and X3 are not integers. Further, the fractional part of X1 as 
well as X3 is 2/3. So, the maximum fractional part is 2/3 and the row X1 is selected for developing a 
Gomory’s cut. 

8/3 = X1 + 2X2 + 2/3S1-2/3S1 - 1/3S2 

2 + 2/3 = (1 + 0)X1 + (2 + 0)X2 + (0 + 2/3)S1 + (-1 + 2/3 )S2 

The corresponding fractional cut is shown below and it is appended to the final iteration of the 
Table 12 as shown in Table 13. 

-2/3 = S3 - 2/3S1 - 2/3S2 → Cut 1 

In Table 13, the leaving variable is S3. The entering variable is determined as shown in Table 14 and 
it is S1. The corresponding next iteration is presented in Table 15. Since, the results in Table 15 are 
integers, the optimal integer solution is reached. The optimal solution is: 

X1 = 2, X3 = 5, S1 = 1 and Z(optimum) = 50 

Table 12: Iterations of Simplex Method Applied to Example 

CBi Cj 5 10 8 0 0 Solution Ratio 

 
Basic 
variable X1 X2 X3 S1 S2   

0 

0 

S1 

S2 

2 

1 

5 

4 

1 

2 

1 

0 

0 

1 

10 

12 

2* 

3 

 Zj 0 0 0 0 0 0  

 Cj - Zj 5 10* 8 0 0   

10 X2 2/5 1 1/5 1/5 0 2 10 

0 S2 -3/5 0 6/5 -4/5 1 4 10/3* 

 Zj 4 10 2 2 0 20  
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 Cj - Zj 1 0 6* -2 0   

10 

8 

X2 

X3 

1/2 

-1/2 

1 

0 

0 

1 

1/3 

-2/3 

-1/6 

5/6 

4/3 

10/3 

8/3* 

- 

 Zj 1 10 8 -2 5 40  

 Cj - Zj 4* 0 0 2 -5   

5 

8 

X1 

X3 

1 

0 

2 

1 

0 

1 

2/3 

-1/3 

-1/3 

2/3 

8/3 = 2 + 2/3 

14/3 = 4 + 2/3 
 

         

 Zj 5 18 8 2/3 11/3 152/3  

 Cj - Zj 0 -8 0 -2/3 -11/3   

Table 13: Table after Appending Cut 1 

CBi Cj 5 10 8 0 0 0 Solution 

 
Basic 
variable X1 X2 X3 S1 S2 S3  

5 

8 

0 

X1 

X3 

S3 

1 

0 

0 

2 

1 

0 

0 

1 

0 

2/3 

-1/3. 

1-2/3 

-1/3 

2/3 

-2/3 

0 

0 

1 

8/3 

14/3 

-2/3* 

 Zj 5 18 8 2/3 11/3 0 152/3 
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 Cj - Zj 0 -8 0 -2/3 -11/3 0  

Table 14: Determination of Entering Variable 

 X1 X2 X3 S1 S2 S3 

-(Cj - Zj) 0 8 0 2/3 11/3 0 

Row S3 0 0 0 -2/3 -2/3 1 

Ratio (absolute value) - - - 1* 11/2 - 

Table 15: Table after Pivot Operation 

CBi Cj 5 10 8 0 0 0 Solution 

 
Basic 
variable X1 X2 X3 S1 S2 S3  

5 X1 1 2 0 0 -1 1 2 

8 X3 0 1 1 0 1 -1/2 5 

0 S1 0 0 0 1 1 -3/2 1 

  5 18 8 0 3 1 50 

Zj 

Cj - Zj 
0 -8 0 0 -3 -1  

 

3.2 Branch and bound methods 
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It means that huge majority of the cases are dropped based on consequences obtained from the 
analysis of the particular numerical problem. The three most important enumerative methods are 

(i) implicit enumeration 

(ii) dynamic programming 

(iii) branch and bound method. 

Implicit enumeration and dynamic programming can be applied within the family of optimization 
problems mainly if all variables have discrete nature. Branch and bound method can easily handle 
problems having both discrete and continuous variables. Further the techniques of implicit 
enumeration can be incorporated easily in the branch and bound frame.  

Branch and bound method can be applied even in some cases of nonlinear programming. 

The Branch and Bound (abbreviated further on as B&B) method is just a frame of a large family of 
methods. Its sub-steps can be carried out in different ways depending on the particular problem, 
the available software tools and the skill of the designer of the algorithm. 

Boldface letters denote vectors and matrices; calligraphic letters are used for sets. Components of 
vectors are denoted by the same but non-boldface letter. Capital letters are used for matrices and 
the same but lower case letters denote their elements. The columns of a matrix are denoted by the 
same boldface but lower case letters. 

Some formulas with their numbers are repeated several times in this chapter. The reason is that 
always a complete description of optimization problems is provided. Thus the fact that the number 
of a formula is repeated means that the formula is identical to the previous one. 

If the number of decision variables in an integer programming problem is only two, a branch-and-
bound technique can be used to find its solution graphically. Various terminologies of branch-and-
bound technique are explained as under: 

Branching: If the solution to the linear programming problem contains non-integer values for some 
or all decision variables, then the solution space is reduced by introducing constraints with respect 
to any one of those decision variables. 

If the value of a decision variable X1 is 2.5, then two more problems will be created by using each of 
the following constraints. 

X1 ≤ 2 and X1 ≥ 3 

Lower bound: This is a limit to define a lower value for the objective function at each and every 
node. The lower bound at a node is the value of the objective function corresponding to the 
truncated values (integer parts) of the decision variables of the problem in that node. 
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Upper bound: This is a limit to define an upper value for the objective function at each and every 
node. The upper bound at a node is the value of the objective function corresponding to the linear 
programming solution in that node. 

Fathomed subproblem/node: A problem is said to be fathomed if any one of the following three 
conditions is true: 

1. The values of the decision variables of the problem are integer. 

2. The upper bound of the problem which has non-integer values for its decision variables is not 
greater than the current best lower bound. 

3. The problem has infeasible solution. 

This means that further branching from this type of fathomed nodes is not necessary. 

Current best lower bound: This is the best lower bound (highest in the case of maximization 
problem and lowest in the case of minimization problem) among the lower bounds of all the 
fathomed nodes. Initially, it is assumed as infinity for the root node. 

Branch-and-bound algorithm applied to maximization problem 

Step 1: Solve the given linear programming problem graphically. Set the current best lower 
bound, ZB as ∞. 

Step 2: Check, whether the problem has integer solution. If yes, print the current solution as the 
optimal solution and stop; otherwise go to step 3. 

Step 3: Identify the variable Xk which has the maximum fractional part as the branching variable. (In 
case of tie, select the variable which has the highest objective function coefficient.) 

Step 4: Create two more problems by including each of the following constraints to the current 
problem and solve them. 

Xk ≤ Integer part of Xk 

Xk ≥ Next integer of Xk 

Step 5: If any one of the new subproblems has infeasible solution or fully integer values for the 
decision variables, the corresponding node is fathomed. If a new node has integer values for the 
decision variables, update the current best lower bound as the lower bound of that node. 

Step 6: Are all terminal nodes fathomed? If the answer is yes, go to step 7; otherwise, identify the 
node with the highest lower bound and go to step 3. 

Step 7: Select the solution of the problem with respect to the fathomed node whose lower bound is 
equal to the current best lower bound as the optimal solution. 
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Problems: 

Let us solve the following integer programming problem using branch-and-bound technique. 

Maximize Z = 10X1 + 20X2 

subject to 

6X1 + 8X2 ≤ 48 

X1 + 3X2 ≤ 12 

X1’ X2 ≥ 0 and integers 

Solution 
The introduction of the non-negative constraints X1 ≥ 0 and X2 ≥ 0 will eliminate the second, third 
and fourth quadrants of the X1X2 plane as shown in Figure. 

Now, from the first constraint in equation form 

6X1 + 8X2 = 48 

we get X2 = 6, when X1 = 0; and X1 = 8, when X2 = 0. Similarly from the second constraint in 
equation form 

X1 + 3X2 = 12 

we have X2 = 4, when X1 = 0; and X1 = 12, when X2 = 0. 

Now, plot the constraints 1 and 2 as shown in Figure. 

 

: Graphical representation for feasible region Example. 
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The closed polygon ABCD is the feasible region. The objective function value at each of the corner 
points of the closed polygon is computed as follows by substituting its coordinates in the objective 
function: 

Z(A) = 10 × 0 + 20 × 0 = 0 

Z(B) = 10 × 8 + 20 × 0 = 80 

 

Since, the type of the objective function is maximization, the solution corresponding to the 
maximum Z value is to be selected as the optimum solution. The Z value is maximum for the comer 
point C. Hence, the corresponding solution of the continuous linear programming problem is 
presented below. 

 

These are jointly shown as problem P1 in Figure. The notations for different types of lower bound 
are defined as follows: 

ZU = Upper bound = Z(optimum) of LP problem 

ZL = Lower bound w.r.t. the truncated values of the decision variables 

ZB = Current best lower bound 

 

Solution of given linear programming problem. 

Since both the values of X1 and X2 are not integers, the solution is not optimum from the view point 
of the given problem. So, the problem is to be modified into two problems by including integer 
constraints one by one. 

The lower bound of the solution of P1 is 80. This is nothing but the value of the objective function 
for the truncated values of the decision variables. 
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The rule for selecting the variable for branching is explained as follows: 

1.Select the variable which has the highest fractional part. 

2.If there is a tie, then break the tie by choosing the variable which has the highest objective 
function coefficient. 

In the continuous solution of the given linear programming problem P1
'the variable X1 has the 

highest fractional part (4/5). Hence, this variable is selected for further branching as shown in 
figure. 

 

Branching form P1. 

In Figure , the problems, P2 and P3 are generated by adding an additional constraint. The 
subproblem, P2 is created by introducing ‘X1 ≥ 5’ in problem P1

' and the problem P3 is created by 
introducing ‘X1 ≤ 4’ in problem P1. The corresponding effects in slicing the non-integer feasible 
region are shown in Figures respectively. 

 

Feasible region of P2 after introducing X1 ≥ 5 to P1. 

The solution for each of the subproblems, P2 and P3 is obtained from Figures , respectively. These 
are summarized in Figure . The problem P2 has the highest lower bound of 90 among the 
unfathomed terminal nodes. So, the further branching is done from this node as shown in Figure. 

In Figure, the problems, P4 and P5 are generated by adding an additional constraint to P2. The 
problem, P4 is created by including ‘X2 ≥ 3’ in problem P2, and problem P5 is created by 
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including ‘X2 ≤ 2’ in problem P2. The corresponding effects in slicing the non-integer feasible region 
are shown in Figures respectively. 

The solution for each of the problems P4 and P5 is obtained from Figures respectively. The 
problem P4 has infeasible solution. So, this node is fathomed. The lower bound of the node P5 is 90. 
But, the solution of the node P5 is still non-integer. 

 

Feasible region of P3 after introducing X1 ≤ 4 to P 1. 

 

Branching from P2. 

 

In feasible region of P4 after introducing X2 ≥ 3 to P 2. 
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Feasible region of P5 after introducing X2 ≤ 2 to P 2 

Now, the lower bound of the node P5 is the maximum when compared to that of all other 
unfathomed terminal nodes (only P3) at this stage. So, the further branching should be done from 
the node, P5 as shown in Figure. 

 

Branching from P5. 

 

Feasible region of P6 after introducing X1 ≥ 6 to P 5. 
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Feasible region of P7 after introducing X1 ≤ 5 to P 5. 

[Feasible region is the vertical line from M(5, 2) to F(5, 0) indicated by *s.] 

In Figure, the problems, P6 and P7 are generated by adding an additional constraint to P5. The 
problem P6 is created by including ‘X1 ≥ 6’ in the problem P5 and problem P7 is created by including 
‘X1 ≤ 5’ in problem P5. The corresponding effects in slicing the non-integer feasible region are 
shown in Figure. 

The solution for each of the problems P6 and P7 are also obtained from these figures, respectively. 
The problem P7 has integer solution. So, it is a fathomed node. Hence, the current best lower bound 
(ZB) is updated to its objective function value, 90. 

The solution of the node P6 is non-integer and its lower bound and upper bound are 80 and 90, 
respectively. Since, the upper bound of the node P6is not greater than the current best lower bound 
of 90, the node P6 is also fathomed and it has infeasible solution in terms of not fulfilling integer 
constraints for the decision variables. 

Now, the only unfathomed terminal node is P3. The further branching from this node is shown in 
Figure. 

In Figure, the problems P8 and P9 are generated by adding an additional constraint to P3. The 
problem P8 is created by including ‘X2 ≥ 3’ in problem P3 and problem P9 is created by including ‘X2 
≤ 2’ in problemP3. 

 

Branching from P3. 
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The corresponding effects in slicing the non-integer infeasible region are shown in Figures, 
respectively. The solution for each of the problems P8 and P9 are obtained from the Figures, 
respectively. The problems P8 and P9 have integer solution. So, these two nodes are fathomed. 

But the objective function value of these nodes are not greater than the current best lower bound 
of 90. Hence, the current best lower bound is not updated. 

 

Feasible region of P8 after introducing X2 ≥ 3 to P 3. 

 

Feasible region of P9 after introducing X2x ≤ 2 to P 3. 

Now, all the terminal nodes are fathomed. The feasible fathomed node with the current best lower 
bound is P7. Hence, its solution is treated as the optimal solution as listed below. A complete 
branching tree is shown in Figure. 

X1 = 5, X2 = 2, Z(optimum) = 90 

Note: This problem has alternate optimum solution at P8 with X1 = 3, X2 = 3, Z(optimum) = 90. 
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3.3 Multistage (Dynamic) programming 

Dynamic programming is a special kind of optimization technique which subdivides an original 
problem into as many number of subproblems as the variables, solves each subproblem individually 
and then obtains the solution of the original problem by integrating the solutions of the 
subproblems. It is a systematic, complete enumeration technique. 

The terminologies used in the dynamic programming problem are presented below: 

Stage i: Each subproblem of the original problem is known as a stage i. 

Alternative, mi: In a given stage i, there may be more than one choice of carrying out a task. Each 
choice is known as an alternative, m i. 

State variable, xi: A possible value of a resource within its permitted range at a given stage i is 
known as state variable,x i. 

Recursive function, f i(xi) A function which links the measure of performance of interest of the 
current stage with the cumulative measure of performance of the previous stages/succeeding 
stages as a function of the state variable of the current stage is known as the recursive function of 
the current stage. Let 

f1(x1) = max [R(m1)] 

f i(x i) = max {R(mi) +f i-1[xi - c(mi)]}, i = 2, 3,..., n 

for possible mi where, n is the total number of stages, R(mi) is the measure of performance (like, 
return) due to alternative mi of the stage i, c(mi) is the cost/resource required for the alternative mi 
of the stage i and fi(xi) is the value of the measure of performance up to the current stage i from 
the stage 1, if the amount of resource allocated up to the current stage is xi when forward recursion 
is used. 

Best recursive function value: In a given stage i, the lowest (minimization problems)/highest 
(maximization problems) value of the recursive function for a given value of xi is known as the best 
recursive function value. 

Best alternative in a given stage i:  

In a given stage i, the alternative corresponding to the best recursive function value for a given 
value of x i is known as the best alternative for that value of xi. 

Backward recursive function:  
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Here computation begins from the last stage or subproblem, and this stage will be numbered as 
stage 1, while the first subproblem will be numbered as the last stage. Since the recursion proceeds 
in a backward direction, this type of recursive function is known as backward recursive function. 

Forward recursive function:  

While defining the stages of the original problem, the first sub-problem will be numbered as stage 1 
and last subproblem will be numbered as the last stage. Then, the recursive function will be defined 
as per this assumption. This type of recursive function is known as forward recursive function. 

APPLICATION OF DYNAMIC PROGRAMMING 

The dynamic programming can be applied to many real-life situations. A sample list of applications 
of the dynamic programming is given below. The details of these problems are explained while 
solving them. 

1.Capital budgeting problem 

2.Reliability improvement problem 

3.Stage-coach problem (shortest-path problem) 

4.Cargo loading problem 

5.Minimizing total tardiness in single machine scheduling problem 

6.Optimal subdividing problem 

7.Linear programming problem 

They are discussed in the following sections: 

1. Capital Budgeting Problem 

A capital budgeting problem is a problem in which a given amount of capital is allocated to a set of 
plants by selecting the most promising alternative for each selected plant such that the total 
revenue of the organization is maximized. This is demonstrated using a numerical problem. 

1.Example: An organization is planning to diversify its business with a maximum outlay of Rs. 5 
crores. It has identified three different locations to install plants. The organization can invest in one 
or more of these plants subject to the availability of the fund. 

The different possible alternatives and their investment (in crores of rupees) and present worth of 
returns during the useful life (in crores of rupees) of each of these plants are summarized in Table 1. 
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The first row of Table1 has zero cost and zero return for all the plants. Hence, it is known as do-
nothing alternative. Find the optimal allocation of the capital to different plants which will 
maximize the corresponding sum of the present worth of returns. 

Table 1: Example 

Alternative Plant 1 Plant 2 Plant 3 

 Cost Return Cost Return Cost Return 

1 0 0 0 0 0 0 

2 1 15 2 14 1 3 

3 2 18 3 18 2 7 

4 4 28 4 21 - - 

Solution: 
Maximum capital amount, C = Rs. 5 crores. Each plant is treated as a stage. So, the number of stages 
is equal to 3. The plants 1, 2 and 3 are defined as stage 1, stage 2 and stage 3, respectively. So, the 
forward recursive function is used for this problem. 

Stage 1: The recursive function for a given combination of the state variable, x1 and alternative, m1 
in the first stage is presented below. The corresponding returns are summarized in Table 2. For each 
value of the state variable, the best return and the corresponding alternative are presented in the 
last two columns, respectively. 

f1(x1) = R(m1) 

Table 2: Calculations for Stage 1 (Plant 1) 

State variable Alternative m1 f1
*(x1) m1

* 

 1 2 3 4   
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 C R C R C R C R   

 0 0 1 15 2 18 4 28   

0 0 - - - 0 1 

1 0 15 - - 15 2 

2 0 15 18 - 18 3 

3 0 15 18 - 18 3 

4 0 15 18 28 28 4 

5 0 15 18 28 28 4 

C = cost, R = return. 

Stage 2: The recursive function f2(x2) for a given combination of the state variable, x2 and 
alternative, m2 in the second stage is given by 

f2(x2) = R(m2) + f1 [x2 - C(m2)] 

The corresponding returns are summarized in Table 3. For each value of the state variable, the best 
return and the corresponding alternative(s) are presented in the last two columns, respectively. 

Table 3: Calculations for Stage 2 (Plant 2) 

 Alternative m2   

State 
variable 1 2 3 4   

 C R C R C R C R   
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x2 0 0 2 14 3 18 4 21 f2(x2)* m2
* 

0 
0 

0 
- - - 0 1 

1 0 + 15 = 15 - - - 15 1 

2 0 + 18 = 18 14 + 0 =14 - - 18 1 

3 0 + 18= 18 14 + 15 = 29 18 + 0=18 - 29 2 

4 0 + 28 = 28 14 + 18 = 32 18 + 15 = 33 21 + 0 = 21 33 3 

5 0 + 28 = 28 14 + 18 = 32 18 + 18 = 36 21 + 15 = 36 36 3 and 4 

Stage 3: The recursive function f3(x3) for different combinations of the state variable, x3 and 
alternative, m3 in the third stage is: 

f3(x3) = R(m3) + f2[x3 - C(m3)] 

The corresponding returns are summarized in Table 4. For each value of the state variable, the best 
return and the corresponding alternative(s) are presented in the last two columns, respectively. 

Table 4: Calculations for Stage 3 (Plant 3) 

 Alternative m3 

State variable 1 2 3  

 C R C R C R  

x3 0 0 1 3 2 7 f3 (x3)*
 m3

* 

5 0 + 36 = 36 3 + 33 = 36 7 + 29 = 36 36 1,2 and 3 
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The final results of the original problem is traced as in Table 5. From this table, one can visualize the 
fact that the original problem has four alternate optimal solutions. 

Table 5: Final Results 

Stage 3 Stage 2 Stage 1 Optimal alternatives stage 

C* m3
* C * m2

* C* m1
* 1 2 3 

5 1 5 - 0 =  5 - 3 = 2 3 3 - 3 - 1 

   5 – 4 = 1 2 2 - 4 - 1 

5 2 5 - 1= 4 3 4 - 3 = 1 2 2 - 3 - 2 

5 3 5 - 2= 3 2 3 - 2 = 1 2 2 - 2 - 3 

2. Reliability Improvement Problem 

Generally, electronic equipments are made up of several components in series or parallel. Assuming 
that the components are connected in series, if there is a failure of a component in the series, it will 
make the equipment inoperative. 

The reliability of the equipment can be increased by providing optimal number of standby units to 
each of the components in the series such that the total reliability of the equipment is maximized 
subject to a cost constraint. Application of dynamic programming technique to this problem is 
illustrated in Example below. 

2.Example : An electronic item has three components in series. (The reliability of the system is 
equal to the product of the reliabilities of the three components, i.e. R = r1r2r3. It is a known fact 
that the reliability of the system can be improved by providing standby units at extra cost.) The 
details of costs and reliabilities for different number of standby units for each of the components of 
the system are summarized in Table 6. 

Table 6: Example 

No. of standby 
units Component 1 Component 2 Component 3 
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 Cost (Rs.) Reliability Cost (Rs.) Reliability Cost (Rs.) Reliability 

1 1 0.75 3 0.84 2 0.80 

2 2 0.88 4 0.94 3 0.91 

3 4 0.94 6 0.97 5 0.96 

The total capital budgeted for this purpose is Rs. 9. Let us Determine the optimal number of 
standby units for each of the components of the system such that the total reliability of the system 
is maximized. 

Solution 
Maximum capital budgeted/unit, K = Rs. 9. Each component is treated as a stage. 

So, the number of stages is equal to 3. The components 3, 2 and 1 are defined as stage 1, stage 2 
and stage 3, respectively. Hence, the backward recursive function is used for this problem. 

Range for state variable x1 at Stage 1:  

The minimum amount of money required to have at least one standby unit for Component 3 is Rs. 
2. Therefore, the lower limit of the state variable x1 = Rs. 2. Similarly, a sum of Rs. 4 (Rs. 3 + Re. 1) is 
required to have at least one standby unit in Stage 2 and Stage 3 (i.e. the sum of the cost of one 
standby unit for each of the Component 2 and Component 1).Therefore, the upper limit of the state 
variable x1 9 - 4 = Rs. 5. 

Based on these guidelines, the effective range of the state variable x1 is: 2 ≤ x1 ≤ 5 

Range for state variable x2 at Stage 2:  

The minimum amount of money required to have at least one standby unit in each of the stages up 
to the current stage is Rs. 5 (the sum of the cost of one standby unit for each of the Component 3 
and Component 2). Therefore, the lower limit of the state variable x2 = Rs. 5. Similarly, the amount 
required to have at least one standby unit in stage 3 is Re. 1 (i.e. the cost of one standby unit for 
Component 1). Therefore, the upper limit of the state variable x2 = 9 - 1 = Rs. 8. 

Based on these guidelines, the effective range of the state variable x2 is: 5 ≤ x2 ≤ 8 

Range for state variable x3 at Stage 3:  
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The minimum amount of money required to have at least one standby unit in each of the stages up 
to the current stage is Rs. 6 (the sum of the cost of one standby unit for each of the Component 3, 
Component 2 and Component 1). Therefore, the lower limit of the state variable x3 = Rs. 6. Also, the 
upper limit of the state variable x3 = Rs. 9. The effective range of the state variable x3 is: 

6≤ x3 ≤ 9 

Stage 1: The recursive function f1(x1) for a given combination of the state variable, x1 and 
alternative, m1 in the first stage is: 

f1(x1) = r(m1) 

The corresponding reliabilities are shown in Table 7. For each value of the state variable x1, the best 
reliability and the corresponding alternative are presented in the last two columns respectively. 

Table 7: Calculations for Stage 1 (Component 3) 

State 
Variable x1 Alternative m1 f1(x1)*m1* 

 1 2 3  

 C R C R C R  

 2 0.8 3 0.91 5 0.96  

2 0.8 - - 0.8 1 

3 0.8 0.91 - 0.91 2 

4 0.8 0.91 - 0.91 2 

5 0.8 0.91 0.96 0.96 3 

C = cost, R = reliability. 

Stage 2: The recursive function f2(x2) for a given combination of the state variable, x2 and 
alternative, m2 in the second stage is: 
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f2(x2) = r(m2) × f1[x2 - C(m2)] 

The corresponding reliabilities are summarized in Table 8. For each value of the state variable, the 
best reliability and the corresponding alternative are presented in the last two columns 
respectively. 

Alternative m2 

State 
variablex2 1 2 3 f2(x2)* m2* 

 C R C R C R   

 3 0.84 4 0.94 6 0.97   

5 0.84 ×0.8 = 
0.672  - -  0.672 1 

6 0.84 × 0.91 
= 0.764  0.94 × 0.8 = 0.752 -  0.764 1 

7 0.84 × 0.91 
= 0.764  0.94 × 0.91 = 0.855 -  0.855 2 

8 0.84 × 0.96 
= 0.806  0.94 × 0.91 = 0.855 0.97 × 0.8 

= 0.776  0.855 2 

Table 8: Calculations for Stage 2 (Component 2) 

Stage 3: The recursive function for a given combination of the state variable, x3 and alternative, m3 
in the third stage is presented below: 

f3(x3) = r(m3) × f2[x3 - C(m3)] 

The corresponding reliabilities are summarized in Table 9. For each value of the state variable, the 
best reliability and the corresponding alternative are presented in the last two columns, 
respectively. 

Table 9: Calculations for Stage 3 (Component 1) 
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Alternative m3 

State 
variablex3 1 2 3 f3(x3)* m3* 

 C R C R C R   

 1 0.75 2 0.88 4 0.94   

6 0.75 × 0.672 = 0.504 - - 0.504 1 

7 0.75 × 0.764 = 0.573 0.88 × 0.672 = 0.591 - 0.591 2 

8 0.75 × 0.855 = 0.641 0.88 × 0.764 = 0.672 - 0.672 2 

9 0.75 × 0.855 = 0.641 0.88 × 0.855 = 0.752 0.94 × 0.672 = 0.632 0.752 2 

The final result of the original problem is traced as shown in Table 10. From the table it is clear that 
each of the three components requires two standby units to have a maximum reliability of 0.752 
with an additional total cost of Rs. 9. 

Table 10: Final Results 

Stage 

3 2 1 Stage  

C*  C*    1 2 3 

9 2 9 – 2 = 7 2 7 - 4 = 3 2    

3. Cargo Loading Problem 
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Cargo loading problem is an optimization problem in which a logistic company is left with the option 
of loading a desirable combination of items in a cargo subject to its weight or volume or both 
constraints. In this process, the return to the company is to be maximized. The application of 
dynamic programming to the cargo loading problem which has only the weight constraint is 
illustrated. 
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Problems: 

Alpha logistic company has to load a cargo out of four items whose details are shown in Table 15. 
The maximum weight of the cargo is 7 tons. Let us Find the optimal cargo loading using dynamic 
programming method such that the total return is maximized. 

 

Table 15: Data of Example 

Item i 1 2 3 4 

Weight, wi/unit (in tons) 2 1 4 3 

Return, ri/unit (in rupees) 1000 400 2100 1400 

Solution: 
In this problem, each item is treated as a stage starting from stage 1 to stage 4 for the item 1 to 
item 4 respectively. The maximum weight of the cargo is 7 tons. So, the weights allocated to the 
alternatives in each of the stages are zero and the multiples of the unit weight (less than or equal to 
7) of the item corresponding to that stage. In stage 1, there are four alternatives and the weights 
allocated to those alternatives are 0, 2, 4 and 6.  

In stage 2, there are ten alternatives and the weights allocated to those alternatives are 0, 1, 2, 3, 4, 
5, 6, 7, 8 and 9.The stage 3 has two alternatives and the weights allocated to them are 0 and 4.The 
stage 4 has three alternatives and the weights allocated to those alternatives are 0, 3 and 6. The 
range of values of the state variable in each stage is from 0 to 7 with an increment of 1. 

Stage 1: The recursive function of this stage is shown below and the calculations are presented in 
Table 16. 

f1(xi) = (Allocated weight/2) × 1000 

Table 16: Calculations for Stage 1 

 Alternative m1    
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State variable 1 2 3 4   

 Allocated weight    

x1 0 2 4 6 f1* m1* 

0 0 - - - 0 1 

1 0 - - - 0 1 

2 0 1000 - - 1000 2 

3 0 1000 - - 1000 2 

4 0 1000 2000 - 2000 3 

5 0 1000 2000 - 2000 3 

6 0 1000 2000 3000 3000 4 

7 0 1000 2000 3000 3000 4 

Stage 2: The recursive function of the stage is shown below and the calculations are presented in 
Table 17. 

f2(x2) = Allocated weight 400 + f1(x2 - Allocated weight) 

 Alternative m2   

State variable 

x2 

1 2 3 4 5 6 7 8   

94 Business Optimization: A Mathematical Optimization Approach



 Allocated weight   

 0 1 2 3 4 5 6 7 f2* m2 

0 0 - - - - - - - 0 1 

1 0+0=0 400 - - - - - - 400 2 

2 0+1000= 1000 400 + 0 =400 - - - - - - 1000 1 

3 0+1000 = 1000 400+1000 = 1400 800 + 0 =800 - - - - - 1400 2 

4 

0+2000 

=2000 

400+1000 = 1400 
800+1000 = 

1800 

1200+0= 

1200 
1600 - - - 2000 1 

5 

0+2000 

=2000 

400+2000 

=2400 

800+1000 = 

1800 

1200+1000 

=2200 

1600+0 = 1600 2000 - - 2400 2 

6 

0+3000 

=3000 

400+2000 

=2400 

800+2000 

=2800 

1200+1000 

=2200 

1600+1000 

=2600 

2000+0 

=2000 

2400 - 3000 1 

7 

0+3000 

=3000 

400+3000 

=3400 

800+2000 

=2800 

1200+2000 

=3200 

1600+1000 

=2600 

2000+1000 

=3000 

2400+0 

=2400 

2800 3400 2 

Table 17: Calculations for Stage 2 

Stage 3: The recursive function of this stage is shown below and the calculations are presented in 
Table 18. 

f3(x3) = (Allocated weight/4) × 2100 +f2(x3 - Allocated weight) 

Table 18: Calculations for Stage 3 
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 Alternative m3 f3* m3* 

State variable x3 1 2   

 Allocated weight   

 0 4   

0 0 - 0 1 

1 0+ 400 = 400 - 400 1 

2 0+ 1000 = 1000 - 1000 1 

3 0+1400 = 1400 - 1400 1 

4 0 + 2000 = 2000 2100 2100 2 

5 0 + 2400 = 2400 2100+ 400 = 2500 2500 2 

6 0 + 3000 = 3000 2100+ 1000 = 3100 3100 2 

7 0 + 3400 = 3400 2100+ 1400 = 3500 3500 2 

Stage 4: The recursive function of this stage is shown below and the calculations are presented in 
Table 19. 

f4(x4) = (Allocated weight/3) × 1400 +f3(x4 - Allocated weight) 

Table 19: Calculations for Stage 4 

State 
variablex4 Alternative m4   
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 1 2 3   

 Allocated weight   

 0 3 6 f4* m4* 

0 0 - - 0 1 

1 0 + 400 = 400 - - 400 1 

2 0+ 1000= 1000 - - 1000 1 

3 0+ 1400= 1400 1400 - 1400 1,2 

4 0 + 2100 = 2100 1400+ 400= 1800 - 2100 1 

5 0 + 2500 = 2500 1400+ 1000 = 2400 - 2500 1 

6 0 + 3100 = 3100 1400+ 1400 = 2800 2800 3100 1 

7 0 + 3500 = 3500 1400 + 2100 = 3500 2800 + 400 = 3200 3500 1,2 

Tracing the solution from the stage 4 gives two solutions as shown below and each of them gives 
the optimal return of Rs. 3500. 

 

The details of the weights of different items in the cargo are summarized in Table 20. 

Table 20: Summary of Weights of Items in the Cargo (Two Solutions) 
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 Weight (tons)  

Solution number Item 1 Item 2 Item 3 Item 4 Total return (Rs.) 

1 2 4 4 0 3500 

2 0 0 4 3 3500 

Solution of Linear Programming Problem through Dynamic Programming 

Let us take the generalized linear programming problem for the product-mix problem in which Xj is 
the volume of production of the product j. 

Maximize Z = c1X1 + C2X2 + ... + CjXj + ... + cnXn 

subject to 

a11X1 +a12X2+....+a1jXj+.....+a1nXn≤ b1 

a21X1 +a22X2+....+a2jXj+.....+a2nXn≤ b2 

. . . . . 

. . . . . 

. . . . . 

ai1X1 +ai2X2+....+aijXj+.....+ainXn≤ b i 

. . . . . 

. . . . . 

. . . . . 

am1X1 +am2X2+....+amjXj+.....+amnXn≤ bm 

Xj ≥ 0, j = 1, 2, 3,..., n 

In this linear programming problem, the product j is treated as stage j, where j varies from 1 to n. 
So, the total number of stages of the problem is equal to n. At stage j, a value (production volume) 
of the decision variable Xj is known as an alternative. 
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Since, in the LPP, Xj is a continuous variable, for j varying from 1 to n, there will be infinite number 
of alternatives in each of the stages. 

The method of backward recursion is used to solve this problem. Product 1 is treated as Stage 1, 
Product 2 is treated as stage 2 and so on. Since the backward recursion is to be used, the working of 
the problem will commence from stage n. 

Let us suppose that bij be the state of the system with respect to Constraint i in Stage j. (i.e. the 
amount of resource i allocated to the activities of the current stage and its succeeding stages). 
So, b1 j, b2 j, b3 j,..., bij, and bmj are the states of the system at stage j with respect to the resources 1, 
2, 3,..., i, and m respectively. fj(b1 j, b2 j, b3 j,..., bij,..., bmj)be the optimum objective function value at 
stage j. 

Now, the objective function for stage n is, 

 

and the objective function for stage j is, 

 

with 

0 ≤ bij ≤ bi, i=l,2,..., m and j = 1, 2,..., n 

In the above function, the quantity (bij - aijXj) is the sum of the resource i allocated to all the 
succeeding stages (i.e. from stage j + 1 through stage n) with respect to the current stage. 

Let us solve the following LPP using dynamic programming technique: 

Maximize Z = 10X1 + 30X2 

subject to 

3X1 + 6X2 ≤ 168 

12X2 ≤ 240 

X1 and X2 ≥ 0 

Solution 
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The number of decision variables in the given problem is equal to 2. So, there will be two stages (i.e. 
stage 1 is assigned to the decision variable X1and stage 2 is assigned to the decision variable X2). 
Since backward recursion is used to solve the problem, stage 2 is to be considered first. The sets of 
states of different stages are summarized in Table 21. 

Table 21: Sets of States of Different Stages 

Stage j Decision variable Set of states 

2 X2 {b12, b22} 

1 X1 {b11 b21} 

Recursive function for stage 2 with respect to X2 is based on the backward recursion. Therefore, 

 

To maintain feasibility, X2 should be the minimum of b12/6 and b22/12, the above objective function 
is modified as follows: 

 

Recursive function for stage 1 with respect to X1 is as follows, 

 

The stage 1 is the last in the series of backward recursion. Therefore, b11= 168, and b21 = 240. 

To determine the upper limit for X*1, we have 

100 Business Optimization: A Mathematical Optimization Approach



 

Now, to which the ranges of X1 is defined, (168 - 3X1)/6 can be as high as 20 or as low as 0. So, 
equate it to 20 as well as to 0 and solve for X1 as explained below: 

 

The ranges for X1 are follows: 

0≤ X1 ≤ 16 and 16 ≤ X1 ≤ 56 

Now, f1(X1/b11, b21) is rewritten as: 

 

To maximize each of the above cases, substitute 16 for X1. Now, we get 

 

Therefore, 

 

For tracing the value of X2* we have, 
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b12 = b11 - 3X1 = 168 - 3 × 16 = 120 

b22 = b21 - 0 = 240 - 0 = 240 

Therefore, 

 

The optimal results are: 

X1*=16, X2*=20,Z(OPTIMUM)=760 
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CLASSICAL OPTIMISATION THEORY
Unconstrained external problems, Newton – Ralphson method – Equality constraints – Jacobean 
methods – Lagrangian method – Kuhn – Tucker conditions – Simple problems. 

4.1 Unconstrained external problems 

The optimization problem facing a decision-making unit is further classified into unconstrained and 
constrained problems. In the former, the decision-maker optimizes subject to no constraints, 
internal or external. In the latter, it has one or more constraints (also called side conditions), 
imposed either, by itself (internal) or by outside agencies (external) such as government and or 
market conditions. An example of unconstrained optimization would be one where the firm aims at 
the maximum possible profit subject to no constraints of any kind. In contrast, under constrained 
optimization, the firm aims at maximum possible profit subject to one or more constraints such as a 
fixed production cost budget, a fixed quantity of output to be produced availability of scarce raw-
materials in fixed quantity, employment of minimum number of unskilled labour, etc.  

The constrained optimization problems are further classified into equality and inequality 
constrained problems. For example, a profit-maximizing firm might be required to produce a 
specific quantity of output of all of its multiple products, or if it is a single product firm, it might he 
faced with a fixed production cost budget or a fixed quantity of a particular scarce raw-material. 
Under these- conditions, the optimizing firm must strictly adhere to the given number of the 
constrained variable. An example of optimization subject to inequality constraints would be the one 
where the firm is seeking maximum possible profits but there is a fixed quantity of skilled labour 
available in the market; the firm can employ all the skilled labour, any quantity less than it but no 
more. The various types of optimization problems can, thus, be represented as follows:  

4



 

• Unconstrained optimization problem: 

minx F (x) or maxx F(x) 

• Constrained optimization problem : 

F (x) or  F(x) 

Subjected to g(x) =0 

And h(x) <0 or h(x) >0 

Example: Minimize the outer area of a cylinder subject to a fixed volume. 

Objective function 

F(x) = 2πr2 +2πrh,  

Constraint: 2πr2h =V 

 

Part I: One-dimensional unconstrained optimization consists of 
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•Analytical method 

•Newton’s method 

•Golden-section search method 

Part II: Multidimensional unconstrained optimization consists of 

•Analytical method 

•Gradient method  

•Steepest ascent (descent) method 

•Newton’s method 

1. One-dimensional unconstrained optimization 

(i) Analytical approach (1-D) 

minx F (x) or maxx F(x) 

Let F’ (x)=0 and find x =x* 

If F’’ (x)>0,F(x*)= minx F(x),x* is local minimum of F(x); 

If F’’ (x*)<0,F(x*)= maxx F(x),x* is local maximum of F(x); 

If F’’(x*) = 0,x* is a critical point of F(x) 

Example1: F(x) = x2,F’(x) =2x=0,x* =0. F’’(x*)=2>0. 

 Therefore, 

Example 2: F(x) = x3,F’(x) =3x2=0,x* =0. F’’(x*)=0.x* 

is not a local minimum nor a local maximum. 

Example 3: F(x) = x4,F’(x) =4x3=0,x* =0. F’’(x*)=0. 

In example 2,F’(x)> 0 when x<x* and F’(x)>0 when x>x*. 

In example 3,x* is a local minimum of F (x). 

F’(x)<0when x< x* and F’(x) > 0 when x>x*. 
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Example of constrained Optimization problem 

2. Multidimensional Unconstrained Optimization 

(i) Analytical Method 

Definitions: 

If f(x,y)< f(a,b) for all (x,y) near (a,b),f(a,b) is a local maximum. 

If f(x,y)> f(a,b) for all (x,y) near by (a,b),f(a,b) is a local minimum. 

If f(x,y) has a local maximum or minimum at (a,b) and the first order partial derivative of f(x,y) exist 
at (a,b), then,  

 

And the second order partial derivatives of f(x,y) are continuous then 

When  < 0, f(a,b) is a local maximum of f(x,y) 

When  > 0, f(a,b) is a local minimum of f(x,y) 

When  is a saddle point  

Hessian of f(x,y): 
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Therefore ,(0,0) is a critical point  

 

Therefore ,(x*,y*) = (0,0) is a saddle maximum 

 

4.2 Newton – Raphson method 

The Newton-Raphson method, or Newton Method, is a powerful technique for solving equations 
numerically. Like so much of the dierential calculus, it is based on the simple idea of linear 
approximation 

The Newton-Raphson technique requires only one inital value x0, which we will refer to as the initial 
guess for the root. To see how the Newton-Raphson  method works, we can be rewrite the function 
f(x) using a Taylor series expansion in (x-x0): 

 

f(x) = f(x0) + f'(x0)(x-x0) + 1/2 f''(x0)(x-x0)2 + ... = 0 (1) 

 

Here f'(x) denotes the first derivative of f(x) with respect to x, f''(x) is the second derivative, and so 
4th . Suppose the initial guess is pretty close to the real root. Then (x-x0) is small, & only the first few 
terms in the series are important to get an accurate estimate of true root, given x0. By truncating 
the series at the 2nd term , we obtain the Newton Raphson iteration formula for getting a better 
estimate of the true root: 

 

 

Thus the Newton-Raphson method finds the tangent to the function f(x) at x=x0 & extrapolates it to 
intersect the x axis to get x1. This point of intersection is taken as the new approximation to the 
root and the procedure is repeated until convergence is obtained whenever possible. 
Mathematically, given the value of x = xi at the end of the ith iteration, we obtain xi+1 as 
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Assume that the derivative does not vanish for any of the x \k, k=0,1,......, i+1. The result obtained from 
this method with x0 = 0.1 for the equation of Example 1, x*sin(pi x)-exp(-x)=0, is graphically shown 
in Fig 1. 

 

FIG 1. Newton Raphson method 

Here also, when multiple roots are present, the root evenutally identified by the algorithm depends 
on the starting conditions supplied by the user. Example: if we had started with x0 = 0.0, 
the Newton- Raphson method will converge to the larger root, as shown in Fig 2. 

 

FIG 2. Newton Raphson method 

So, before using any of the methods. An approximate idea of the roots may be developed from the 
physics the equation represents, preliminary mathematical analysis & using plotting routines.  

Newton’s Method: 

Extend the Newton’s method for 1-D case to multidimensional case. 

Given , approximate  by a second order Taylor series at  
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where Hi is the Hessian matrix . 

 

At the maximum (or minimum) point,  for all j = 1, 2, . . . , n, or  

Then if Hi is non-singular, 

 

Iteration: 

 

Example: 

 

 

Comments: Newton’s method 

• Converges quadratically near the optimum . 
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• Sensitive to initial point . 

• Requires matrix inversion. 

• Requires first and second order derivatives . 
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4.3 Equality constraints 

Two variables and One Equality Constraint  

Theorem 1 Suppose x∗ = (x ∗1 , x∗
2 ) is a solution of the problem:  

maximize f(x1, x2) subject to h(x1, x2) = c.  

Suppose further that (x ∗1 , x∗
2 ) is not a critical point of h:  

 

∇h(x ∗
1 , x∗

2 ) =  

 

(this condition is called constraint qualification at the point (x ∗
1 , x∗

2 )). Then, there is a real number 
µ∗ such that (x ∗ 

1 , x∗ 2 , µ∗ ) is a critical point of the Lagrangian function 

L(x1, x2, µ) = f(x1, x2) − µ[h((x1, x2) − c].  

In other words, at (x∗ 1 , x∗ 2 , µ∗ ) we have  

 

Proof. The solution (x ∗ , y∗ ) lies highest-valued level curve of f which meets the constraint set  

C = {(x1, x2), h(x1, x2) = c}.  

In other words at the point (x ∗ 1 , x∗ 2 ) the level set of f and C have common tangent, that is their 
tangents have equal slopes, or equivalently, parallel gradient vectors:  
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These slopes are 

 

The fact that these two slopes equal at (x ∗ 1 , x∗ 2 ) means 

 

Let us rewrite this equality as  

 

Let us denote by µ ∗ the common value of these two quotients: 

 

 

Rewrite this as the two equations 

 

This two equations together with the third one  

 

h(x1, x2) − c = 0 

are exactly the conditions 
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This proof was based on the fact that the level curves of f and of h at (x ∗ 1 , x∗ 2 ) and have equal 
slopes. We now present another version of the proof using the gradient vectors ∇f(x ∗ 1 , x∗

 2 ) and 
∇h(x ∗ 1 , x∗ 2 ). Since gradient is orthogonal to level curve, then the level curves of f and h at (x ∗ 1 , x∗ 
2 ) are tangent if and only if the gradients ∇f(x ∗ 1 , x∗ 2 ) and ∇h(x ∗

 1 , x∗ 2 ) line up at (x ∗ 1 , x∗ 2 ), that 
is the gradients are scalar multiplies of each other  

 

∇f(x ∗
1 , x∗

2 ) = µ ∗ · ∇h(x ∗
1 , x∗

2 ), 

 

(note that ∇f(x ∗
 1 , x∗

 2 ) and ∇h(x ∗
 1 , x∗ 2 ) can point in the same direction, in this case µ ∗ > 0, or point 

in opposite directions, in this case µ ∗ < 0). This equality immediately implies the above condition 

 

 

Equality Constraints (Lagrangians) 

5-(x1-2)2-2(x2-1)2 

Maximize  

subject to 

x1 + 4x2 = 3 

If we ignore the constraint, we get the solution x1 =2 , x2 =1 ,which is too large for the constraint. 
Let us penalize ourselves λ for making the constraint too big. We end up with a function, 

L(x1,x2,λ)=5 - (x1 -2)2 -2 (x2-1)2+λ(3-x1-4x2) 

This function is called the Lagrangian of the problem. The main idea is to adjust λ so that we use 
exactly the right amount of the resource. 

 λ=0 leads to (2,1). 

λ=1 leads to (3/2,0) which uses to minimum of the resource. 
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 gives (5/3, 1/3) and the constraint is satisfied exactly. 

We now explore this idea more formally. Given a nonlinear program (P) with equality constraints: 

Minimize (or maximize) f(x) 

subject to 

g1(x)=b1 

g2(x)= b2 

gm(x)= bm 

A solution can be found using the Lagrangian as follows: 

 

(Note: this can also be written as . 

Each λ i gives the price associated with constraint i. 

The reason L is of interest is due to the following: 

Assume  maximizes or minimizes f(x) subject to the constraint gi(x)=bi, 
for i=1,2,...,m.Then either  

(i) The vectors  are linearly dependent, 

(ii) There exists a vector such that  

 

and  

Case (i) Above cannot occur when there is only one constraint. The following example shows how it 
might occur. 

Problems: 

1.Minimize x1+x2+x3
2 
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Subject to 

X1=1 

X1
2+x2

2=1. 

It is easy to check directly that the minimum is achieved at (x1,x2,x3) = (1,0,0). The associated 
Lagrangian is given by, 

L(x1,x2,x3,λ1,λ2)=x1+x2+x3
2+λ1(1-x1)+λ2(1-x1

2-x2
2) 

Observe that 

 

and consequently  does not vanish at the optimal solution. 

The reason for this is the following. Let g1(x1,x2,x3) =x1 and g1(x1,x2,x3) =x1
2

+x2
2denote the left hand 

sides of the constraints. Then and are linearly 
dependent vectors. So Case (i) occurs here. 

When solving optimization problems with equality constraints, we will only look for solutions x* 
that satisfy Case (ii). 

Note that the equation, 

 

is nothing more than 

 or  

In other words, taking the partials with respect to λ does nothing more than returning the original 
constraints. 

Once we have found candidate solutions x*, it is not always easy to figure out whether they 
correspond to a minimum, a maximum or neither. If f(x) is concave and all of the gi(x) are linear, 
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then any feasible x*with a corresponding λ* making maximizes f(x) subject to the 
constraints. Similarly, if f(x) is convex and each gi(x) is linear, then any x*with a λ*making 
minimizes f(x) subject to the constraints. 

Minimize 2x1
2 + x2

2 

Subject to X1 + X2=1 

L(x1,x2,λ)=(2x1
2+x2

2+λ1(1-x1-x2) 

 

 

 

Now, the first two equations imply 2x1*=x2*.Substituting into the final equation gives the solution 
x1*=1/3 ,x2*=2/3 and λ* =4/3with function value 2/3. 

Since f(x1,x2)is convex (its Hessian matrix is positive definite) and 
g(x1,x2)=x1+x2 is a linear function, the above solution minimizes f(x1,x2)subject to the constraint. 

 

4.4 Jacobean methods 

Two assumptions made on Jacobi Method:  

1. The system given by  

 

Has a unique solution.  

2. The co-efficient matrix has non zeros on its main diagonal, namely, a11,a22......ann  are non zeros. 

Main idea of Jacobi  
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To , solve the first equation for ,x1 the second equation for x2 & so on to obtain the rewritten 
equations, 

 

Then make an initial guess of the solution  Substitute these values into the 

right hand side the of the rewritten equations to obtain the first approximation,  

This accomplishes one iteration. 

The second approximation  is computed by substituting the first approximation’s 
vales into the right hand side of rewritten equations.  

By repeated iterations, form a sequence of approximations  

 

The Jacobi Method.  

For each k ≥1 generate the components  by 

 

Optimization problem 

One of the well known method to solve this system of equations is a Newton – Raphson method, 
which is one of so called Householder’s methods in numerical analysis. 

For the function of one variable it is based on the fact that for a differentiable function f(x) we have 
the following approximation: 
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Similarly, for the system of n functions of n variables: 

 

,often called Jacobean matrix, is a matrix of first order partial derivatives of all the functions. 

The possible ways to implement this algorithm: 

(i) Define a function that calculates values at a given location. 

(ii) Define a function that evaluates a Jacobean matrix. 

(iii) Select a “best guess” starting value. 

(iv) Evaluate the function and Jacobean at the current location. 

(v) Find inverse Jacobean matrix. 

(vi) Calculate the next position. 

(vii) Iterate through steps 4 – 6 until the root is found with desired precision. 

Optimization c : 

void get F () {…} 

void find Jacobean() {…} 

void matrix Inverse () {…} 

void matrix Vector Mult () {…} 

int is Converge() {…} 

main () {…} 
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4.5 Lagrangian method 

Let P(b) denote the optimization problem, minimize f(x) subject to h(x) = b, x ∈ X . Let x ∈ X(     

X : h(x) = b}. We say that x is feasible if x ∈ X(b). 

Define the Lagrangian as L(x, λ) = f(x) − λ⊤(h(x) − b). 

Typically, X ⊆ Rn, h : Rn → Rm, with b, λ ∈ Rm. Here λ is called a Lagrangian multiplier. 

Theorem: (Lagrangian Sufficiency Theorem) 

If x¯ is feasible for P(b) and there exists λ¯ such that L(x, λ¯) = L(¯x, λ¯) then x¯ is optimal for 
P(b). 

Proof of the LST: For all x ∈ X(b) and λ we have , 

f(x) = f(x) − λ⊤(h(x) − b) = L(x, λ). 

Now ¯x ∈ X(b) ⊆ X and so by assumption, 

f(¯x) = L(¯x, λ ¯) ≤ L(x          

Thus ¯x is optimal for the optimization problem P(b). 

Example: Minimize x2
1 + x2

2 subject to a1x1 + a2x2 = b, x1, x2 ≥ 0. Here L = x2
1 + x2

2 − λ(a1x1 + a2x2 − 
b). We consider the problem. 

 [x2
1 + x2

2 − λ(a1x1 + a2x2 − b)] . This has a stationary point where (x1, x2) = (λa1/2, λa2/2). 
Now we choose λ such that a1x1 + a2x2 = b. 

This happens for λ = 2b/(a2
1 + a2

2). We have a minimum since ∂2L/∂x2i > 0, ∂2L/∂x1∂x2 = 0. Thus 
with this value of λ, the conditions of the LST are satisfied and the optimal value is b2/(a2

1 + a2
2) at 

(x1, x2) = (a1b, a2b)/(a2
1+ a2

2). 

 

4.6 Kuhn – Tucker conditions 

The Kuhn-Tucker conditions discussed with examples for a point to be a local optimum in case of a 
function subject to inequality constraints.  
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The Kuhn Tucker conditions are each necessary & sufficient if the objective function is concave and 
each constraint is linear or each constraint function is concave, i.e.., the problems belong to a class 
called as the convex programming problems.  

Consider the following problem, 

Minimize f(X) subject to gj (X) ≤ 0 for j = 1,2,.…, p ; here X = (x1 x2 .... Xn) 

Then the Kuhn-Tucker conditions for X* = (x1 * x2 * . .. . xn * ) to be a local minimum are , 

 

Optimization Methods: 

Optimization using Calculus – Kuhn-Tucker Conditions 

If the constraints are of the form gj(X) ≥ 0 then λ  j have to be non positive in 1. On the other hand, if 
the problem is one of maximization with the constraints in the form gj (X) ≥ 0, then λ j have to be 
non negative. It will be noted that sign convention has to be strictly followed for the Kuhn-Tucker 
conditions to be applicable. 

Karush – Kuhn – Tucker (KKT) conditions: 

Consider the problem , 

Maximize z = f(X) = f(x1, x2,…, xn) subject to g(X) ≤ 0 [g1(X)≤0 

g2(X)≤0 

gm(X)≤0] 

(the non-negativity restrictions, if any, are included in the above). 

We define the Lagrangian function as, 

L(X, S, ) = f(X) – λ[g(X) + s2] 

(where s1
2, s2

2,..,sm
2 are the non negative slack variables added to g1(X)≤0 ,…. gm(X)≤0 to make 

them into equalities) = f(X) – [λ1{g1(X) + s1 2} + λ2{g2(X) +s2 2}+..+λm {gm(x) + sm
2}] 
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KKT necessary conditions for optimality are given by ≥0, 

 

These are equivalent to the following conditions: ≥0 

 

In scalar notation this is given by, 

λ i ≥0 i=1,2,….m 

 

Economical Interpretation of Lagrange Multipliers 

As with LPs, there is actually a whole area of duality theory that corresponds to NLPs. 

we can view Lagrangians as shadow prices for the constraints in NLP (corresponding to the y vector 
in LP). 

KKT Conditions 

KKT conditions may not lead directly to a very efficient algorithm for solving NLPs. However, they do 
have a number of benefits: 

1. They give insight into what optimal solutions to NLPs look like. 

2. They provide a way to set up and solve small problems. 
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3. They provide a method to check solutions to large problems. 

4. The Lagrangian values can be seen as shadow prices of the constraints. 

 

4.7 Simple problems 

Let us use the KKT conditions to derive an optimal solution for the following problem: 

Maximize f(x1,x2) = x1+2x2-x2
3 

Subject to x1+x2≤ 1 

X1 ≥ 0 

X2 ≥ 0 

Solution: 
Here there are three constraints namely, 

g1(x1,x2)=x1+x2-1 ≤0 

g2(x1,x2)= -x1 ≤ 0 

g3(x1,x2)= -x2≤ 0 

Hence the KKT conditions become, 

 

λ1g1(x1,x2)=0 

λ1g2(x1,x2)=0 

λ1g3(x1,x2)=0 

g1(x1,x2)≤0 

g2(x1,x2)≤0 

g3(x1,x2)≤0 
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(note: f is concave ,gi are convex,maximization problem  

⇒these KKT conditions are sufficient at the optimum point and λ1≥0,λ2≥0,λ3≥0 

i.e.  

1 —λ1+λ2 = 0 (1)  

2 - 3x2
2 -λ1 +λ3 = 0 (2)  

λ1(x1 + x2 -1) = 0 (3)  

λ2 x1= 0 (4)  

λ3 x2= 0 (5) 

X1 + x2- 1 ≤ 0 (6)  

X1≥ 0 (7) 

X2 ≥ 0 (8)  

λ1 ≥0 (9) 

λ2 ≥0 (10)  

λ3 > 0 (11)  

(1)gives λ1 = 1 + λ2 ≥ 1 >0 (using 10)  

Hence (3) gives x1 + x2= 1 (12)  

Thus both x1, x2 cannot be zero.  

So let x1>0 (4) gives λ2 = 0. therefore λ1= 1 

if now x2 = 0, then (2) gives 2 -0 -1 +λ3 = 0 or λ3 < 0 not possible  

Therefore x2> 0 

hence (5) gives λ3 = 0 and then (2) gives x2
2 = 1/3 so x2 =1/  And so x1 = 1- 1/   

Max f = 1 - 1/  + 2/  -1/3  = 1 + 2 / 3  

Maximize f(x) = 20 x1 + 10 x2 
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Subject to x1
2 + x2

2 ≤ 1 

x1
 + 2x2

 ≤ 2 

x1
 ≥ 0 , x2

 ≥ 0 

KKT conditions become 

20 - 2λ1x1 - λ2 + λ3 = 0 

10 - 2λ1x2 - 2λ2 + λ4 = 0 

λ1(x1
2+ x2

2-1)=0 

 

λ1(x1+2x2-2)=0 

λ3x1=0 

λ4x2=0 

x1
2 + x2

2 ≤1 

X1 + 2X2 ≤2 

X1≥0 

X2≥0 

λ1≥0 

λ2≥0 

λ3≥0 

λ4≥0 
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From the figure it is clear that max f occurs at (x1, x2) where x1, x2 >0. 

λ3 = 0, λ4 = 0  

suppose x1 + 2x2 — 2 ≠ 0  

λ2 = 0 , therefore we get 20 - 2λ1 x1 = 0  

10- 2λ1, x2 = 0 . 

λ1x1 = 10 and λ1x2 = 5, squaring and adding we get  

λ l
2 = 125 λ1 = 5√5  

therefore x1 = 2/√5, x2 = 1/√5, f= 50/√5 >22  

λ2≠0 ⇒ x1 +X2-2=0 

Therefore x1=0,x2=1,f=10 

Or x1=4/5,x2=3/5,f=22 

Therefore max f occurs at x1 =2 / ,x2=1/  

Let us use the KKT conditions to derive an optimal solution for the following problem: 

minimize f(x1,x2) = x1
2 +x2 

Subject to x1
2 +x2

2 ≤ 9 

x1+x2 ≤ 1 

Solution: 
Here there are two constraints namely, 

g1 (x1,x2)=x12+x22-9≤0 

g2(x1,x2)=x1+x2-1≤0 

1: λ1≤0,λ2≤0 as it is a minimization problem 

2: 2x1-2λ1x1-λ2=0 

1-2λ1x2-λ2=0 
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Thus the KKT condition are: 

3:λ1(x1
2+x2

2-9)=0 

λ2(x1+x2-1)=0 

4:x1
2+x2

2 ≤9 

x1+x2≤ 1 

Now λ1 = 0 (from 2) gives λ2 = 1 Not possible.  

Hence λ1 ≠  0 and so xl
2 +x2

2 =9 (5)  

Assume λ2 = 0 So (1st equation of ) (2) gives  

2x1(1-λ1) = 0 Since λ1 ≤ 0 we get x1 = 0  

From (5), we get x2 = ±3  

2nd equation of (2) says (with λ l <0, λ2 =0 ) x2 = -3  

Thus the optimal solution is:  

x1 = 0, x2 = -3, λ1 = -1/6, λ2 = 0  

The optimal value is : 

Z = - 3  
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OBJECT SCHEDULING 

Network diagram representation – Critical path method – Time charts and resource leveling – PERT. 

5.1 Network diagram representation 

Your browser does not support the video tag. 

GUIDELINES FOR NETWORK CONSTRUCTION 

The terminologies which are used in network construction are explained as follows: 

Node:  

Generally, a node represents the starting or ending of an activity. 

Branch/arc:  

A branch represents the actual activity which consumes some kind of resource. 

Precedence relations of activities:  

For any activity, the precedence relations provide the information about the activities that precede 
it, the activities that follow it and the activities that may be concurrent with it. 

The network construction requires a detailed list of individual activities of a project, estimates of 
activity duration and specifications of precedence relationships among different activities of the 
project. 

Rules for network construction: 

The following are the primary rules for constructing AOA diagram. 

1. Dummy activity is an imaginary activity indicating precedence relationship only. Duration of a
dummy activity is zero. 

2. The network should have a unique starting node (tail event).

5



3. The network should have a unique completion node (head event). 

4.No activity should be represented by higher than one arc in the network. 

5. No two activities should have the same starting node to ending node. 

 

5.2 Critical path method 

CRITICAL PATH METHOD (CPM) 

In 1957, DuPont developed a project management method designed to address the challenge of 
shutting down chemical plants for maintenance and then restarting the plants once the 
maintenance had been completed. Given a complexity of the process, they developed the Critical 
Path Method (CPM) for managing such projects.  

CPM provides the following benefits:  

• It provides a graphical view of the project.  

• Shows which activities are critical to maintaining the schedule and which are not.  

• Predicts the time required to complete the project.  

CPM models the activities and events of a project as a network. Activities are depicted as nodes on 
the network and events that signify the beginning or ending of activities are depicted as arcs or 
lines between the nodes.  

The following is an example of a CPM network diagram:  

 

CPM network diagram 

Problems: 

Consider Table summarizing the details of a project involving 14 activities. 

Table : Project Details 
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Activity Immediate predecessor(s) Duration (months) 

A - 2 

B - 6 

C - 4 

D B 3 

E A 6 

F A 8 

G B 3 

H C, D 7 

I C, D 2 

J E 5 

K F, G, H 4 

L F, G, H 3 

M I 13 

N J, K 7 

Let us 

(a) Construct the CPM network. 
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(b) Determine the critical path and project completion time. 

(c) Compute total floats and free floats for non-critical activities. 

Solution 
(a) The CPM network is shown in figure(a) below. 

 

(a): CPM network for Example. 

(b) The critical path of a project network is the longest path in the network. This can be identified 
by simply listing out all the possible paths from the starting node of the project (node 1) to the end 
node of the project (node 9) and select the path with the maximum sum of activity times on that 
path. 

Hence, a different approach is to be used to identify the critical path. This consists of two phases: 
Phase 1 determines earliest start times (ES) of all the nodes. This is called forward pass; Phase 2 
determines latest completion times (LC) of various nodes. This is called backward pass. 

Let Dij be the duration of the activity (i,j). ESj be the earliest start times of all the activities which are 
emanating from node j (this is shown in the lower square which is by side of node j). LCj be the 
latest completion times of all the activities which are ending at node j (this is shown in the upper 
square which is by the side of node j). 

Determination of earliest start times (ESj). During forwards pass use the following formula to 
compute earliest start times for all nodes. 

ESj =  (ESi+Dij) 

The calculations of ESj are summarized below: 

Node 1: For node 1, ES1 = 0 
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Node 2: ES2 = ES1 + D1,2 = 0 + 2 = 2 

Node 3: ES3 = ES1 + D1.3 = 0 + 6 = 6 

Node 4: ES4 = (ESi+Di4) 

= max (ES1 + D1.4, ES3 + D3,4) 

= max (0 + 4, 6 + 3) = 9 

Node 5: ES5 = ES2 + D2,5 = 2 + 6 = 8 

Node 6: ES4 = (ESi+Di4) 

= max (ES2 + D2 6, ES3 + D3.6, ES4 + D4,6) 

= max (2 + 8, 6 + 3, 9 + 7) 

= max (10, 9, 16) 

= 16 

Similarly, the ESj values for all other nodes are computed and summarized in below figure. 

 

(b) Network with critical path calculations 

Determination of latest completion times (LCi). During backward pass, the following formula is 
used to compute latest completion times (LCi): 
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LCi= (LCj-Dij) 

Node 9: For the last node 9, LC9 = ES9 = 27 

Node 8: LC8 = LC9 - D8,9 = 27 - 7 = 20 

Node 7: LC7 = LC9 - D7,9 = 27 - 13 = 14 

Node 6: LC6= (LSi+D6,j) 

= min (LC8 - D6,8, LC9 - D6,9) 

= min (20 - 4, 27 - 3) 

= 16. 

Node 5: LC5 = LC8 - D5 8 = 20 - 5 = 15 

Node 4: LC4= (LSj+D4,j) 

= min (LC6 - D4,6, LC7 - D4,7) 

= min (16-7, 14-2) 

= 9. 

Similarly, the LCi values for all other nodes are summarized in figure (b). 

An activity (i,j) is said to be critical if all the following conditions are satisfied. 

ES = LCi, ESj = LCj, ESj - ESi = LCj - LCi = Dij 

By applying the above conditions to the activities in figure(b), the critical activities are identified and 
are shown in the same figure with thick lines on them. The corresponding critical path is 1-3-4-6-8-9 
(B-D-H-K-N). The project completion time is 27 months. 

(c) Total floats:  

It is the amount of time that the completion time of an activity can be delayed without affecting the 
project completion time. Therefore, 

TFij = LCj - ESi - Dij = LCj - (ESi + Dij) = LCj - ECij 

where, ECij, the earliest completion of the activity (i,j). Also, 
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TFij = LSij - ESi 

Where LSij, the latest start of the activity (ij) is given by, 

LSij = LC j - Dij 

(d) Free floats:  

It is the amount of time that the activity completion time can be delayed without affecting the 
earliest start time of immediate successor activities in the network. 

FFij = ESj - ESi - Dij = ESj - (ESi + Dij) = ESj - ECij 

The calculation of total floats and free floats of the activities are summarized in Table. 

Table : Summary of Total Floats and Free Floats 

Activity (i, j) Duration (Dij) Total float (TFij) Free float (FFij) 

1-2 2 6 0 

1-3 6 0 0 

1-4 4 5 5 

2-5 6 7 0 

2-6 8 6 6 

3-4 3 0 0 

3-6 3 7 7 

4-6 7 0 0 

4-7 2 3 0 
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5-8 5 7 7 

6-8 4 0 0 

6-9 3 8 8 

7-9 13 3 3 

8-9 7 0 0 

Any critical activity will have zero total float and zero free float. Based on this property one can 
determine the critical activities. 

From Table one can check that the total floats and free floats for the activities (1,3), (3, 4), (4, 6), (6, 
8) and (8, 9) are zero. Hence they are critical activities. The corresponding critical path is 1-3-4-6-8-9 
(B-D-H-K-N). 

Let us consider the details of a project are as shown in Table. And try to determine the critical 
path and the corresponding project completion time. 

Table : Data of Example 

Activity Immediate predecessor(s) Duration (weeks) 

A - 4 

B - 3 

C - 2 

D A, B, C 5 

E A, B, C 6 

F D 7 
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G D, E 6 

H D, E 9 

I F 4 

J G 6 

K H 8 

Solution 
The network for this example is shown in figure(a). The critical path calculations are also 
summarized in the same figure. From Figure(a), the critical path is A-E-H-K and the corresponding 
project completion time is 27 weeks. 

 

(a) Project network and critical path calculations 

A project consists of activities from A to J as shown in Table . The immediate predecessor(s) and 
the duration in weeks of each of the activities are given in the same table.  Let us Draw the 
project network and find the critical path and the corresponding project completion time. Also 
find the total float as well as free float for each of the non-critical activities. 

Table : Data of Example 

Activity Immediate predecessor(s) Duration (weeks) 

A - 4 
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B - 3 

C A, B 2 

D A, B 5 

E B 6 

F C 4 

G D 3 

H F, G 7 

I F, G 4 

J E, H 2 

Solution 
The project network for the given problem is constructed as in figure. The critical path calculations 
are shown in the same figure. The critical path is A-D-G-H-J and the corresponding project 
completion time is 21 weeks. The total float and the free float of each of the non-critical activities 
are shown in Table. 

 

Project network and CPM calculations 

Table : Details of Floats of Non-Critical Activities 
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Non-critical activity Total float (weeks) Free float (weeks) 

B 1 0 

C 2 0 

E 10 10 

F 2 2 

I 5 5 
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5.3 Time charts and resource leveling 

Your browser does not support the video tag. 

GANTT CHART (TIME CHART) 

The network calculations is to draw Gantt chart (time chart). The start time and completion time of 
both and every activity will be represented in this chart. This chart gives clear calendar schedule for 
the whole project. 

This chart is also used for resource levelling purpose. When there are limitations on the available 
resource (manpower, money, equipment, etc.), using this chart, one can adjust the schedule of non-
critical activities depending upon their total floats to minimize the peak requirement of resource. 

This helps to level the resource requirements smoothly throughout the project execution. Even if 
there is no restriction on any resource, it is usual practice to smooth out the resource requirements 
by resource levelling technique. 

The time chart for Example is shown in Figure. 

In Figure, the top-most horizontal line represents the schedule for various critical activities: (1, 3), 
(3, 4), (4, 6), (6, 8) and (8,9). The horizontal dotted lines represent the total time span over which a 
non-critical activity can be performed by, 

 

Gantt chart (time chart) 

A non-critical activity will have float in excess of its time duration. So, it is possible to adjust the 
start and completion time of any non-critical activity over its entire range shown by the dotted line 
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without delaying the project completion time. Infinite number of schedules are possible for the 
non-critical activities. 

But to give a finite number of schedules, we consider only two types of schedules: earliest start 
schedule and latest start schedule. These are shown by continuous horizontal lines over and below 
the dotted lines respectively. The time range for execution of a given non-critical activity is 
represented by the dotted line. 

Problems: 

A project consists of activities from A to H as shown in Table . The immediate predecessor(s) and 
the duration in months of each of the activities are given in the same table. 

Let us 

(a) Draw the project network and find the critical path and the corresponding project completion 
time. 

(b) Also draw a Gantt-chart/Time chart for this project. 

Table : Data of Example 

Activity Immediate predecessor(s) Duration (months) 

A - 5 

B - 2 

C A 3 

D C 4 

E C 2 

F B 4 

G D 7 
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H E, F 6 

Solution 
(a) The project network for the given problem is as shown in Figure (a) . The critical path 
calculations are shown in the same figure. The critical path is A-C-D-G and the corresponding 
project completion time is 19 months. 

 

(a): Project network with CPM calculations of Example 

(b) The Gantt-chart for the project shown in Figure(a) is given in Figure(b). The critical activities (A, 
C, D and G) are represented at the top. One can notice the fact that there is no time gap between 
the completion of one critical activity and the start of another critical activity. The total span during 
which each non-critical activity can be executed is shown by a dotted line. 

A continuous line on the left hand side just above each dotted line shows the earliest start schedule 
of that non-critical activity. Another continuous line on the right hand side just below each dotted 
line shows the latest start schedule of that non-critical activity. 

 

(b): Gantt-chart 

 

5.4 PERT 

PROJECT EVALUATION AND REVIEW TECHNIQUE (PERT) 
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CPM uses a fixed time estimate for each project activity. While easy to understand and use, it does 
not take account of the time variations that can impact on the completion time of a complex 
project. The Program Evaluation and Review Technique (PERT) is a network model that allows for 
variations in activity completion times. In a PERT network model, each activity is represented by a 
line (or arc), and each milestone (i.e. The completion of an activity) is represented by a node. A 
simple example is shown below. 

 

A Simple PERT network 

Milestones are numbered so that the end node of an activity has a higher number than the start 
node. Incrementing the numbers by 10 allows for additional nodes to be inserted without modifying 
the numbering of the entire network. The activities are labelled alphabetically, and the expected 
time required for each activity is also indicated. The critical path is the pathway through the project 
network that takes the longest to complete, and will determine the overall time required to 
complete the project. Bear in mind that for a complex project with many activities and task 
dependencies, there can be more than one critical path through the network, and that the critical 
path can change. 

 

 

PERT planning involves the following steps: 

 

▪ Step:1 Identify activities and milestones - the tasks required to complete the project, and the 
events that mark the beginning and end of each activity, are listed in a table. 

▪ Step 2: Determine the proper sequence of the activities - this step may be combined with step 1, 
if the order in which activities must be performed is relatively easy to determine. 

▪ Step 3: Construct a network diagram - using the results of steps 1 and 2, a network diagram is 
drawn which shows activities as arrowed lines, and milestones as circles. Software packages are 
available that can automatically produce a network diagram from tabular information. 

▪ Step 4: Estimate the time required for each activity - any consistent unit of time can be used, 
although days and weeks are a common. 
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▪ Step 5: Determine the critical path - the critical path is determined by adding the activity times for 
each sequence and determining the longest path in the project. If the activity time for activities in 
other paths is significantly extended, the critical path may change. The amount of time that a non-
critical path activity can be extended without delaying the project is referred to as its slack time. 

▪ Update the PERT chart as the project progresses - as the project progresses, estimated times can 
be replaced with actual times. 

Because the critical path determines the completion date of the project, the project can be 
completed earlier by allocating additional resources to the activities on the critical path. PERT also 
identifies activities that have slack time, and which can therefore lend resources to critical path 
activities. One drawback of the model is that if there is little experience in performing an activity, 
the activity time estimate may simply be a guess. Another more serious problem is that, because 
another path may become the critical path if one or more of its associated activities are delayed, 
PERT often tends to underestimate the to time required to complete the project. 

PERT incorporates uncertainty by making it possible to schedule a project while not knowing precise 
details and durations of all activities. The time shown for each project activity when creating the 
network diagram is the time that the task is expected to take based on a range of possibilities that 
can be defined as: 

▪ The optimistic time - the minimum time required to complete a task 

▪ The most likely time - an estimate of how long the task will actually take 

▪ The pessimistic time - the maximum time required to complete a task 

The expected time (the time that will appear on the network diagram) is defined as the average 
time the task would require if it were repeated a number of times over a period of time, and can be 
calculated using the following formula: 

The information included on the network diagram for each activity may include: 

▪ The activity name 

▪ The earliest start - ES 

▪ The latest start - LS 

▪ The expected duration 

▪ The latest finish - LF 

▪ The slack 

▪ The earliest finish - EF 
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In order to determine these parameters, the project activities must have been identified and the 
expected duration of each calculated. The earliest start (ES) for any activity will depend on the 
maximum earliest finish(EF) of all predecessor activities (unless the activity is the first activity, in 
which case the ES is zero). The earliest finish for the activity is the earliest start plus the expected 
duration. The latest start (LS) for an activity will be equal to the maximum earliest finish of all 
predecessor activities. The latest finish (LF) is the latest start plus the expected duration. The slack 
in any activity is defined as the difference between the earliest finish and the latest finish, and 
represents the amount of time that a task could be delayed without causing a delay in subsequent 
tasks or the project completion date. Activities on the critical path by definition have zero slack. 

A PERT chart provides a realistic estimate of the time required to complete a project, identifies the 
activities on the critical path, and makes dependencies (precedence relationships) visible. It can also 
identify the earliest and latest start and finish dates for a task, and any slack available. Resources 
can thus be diverted from non-critical activities to those that lie on the critical path should the need 
arise, in order to prevent project slippage. Variance in the project completion time can be 
calculated by summing the variances in the completion times of the activities in the critical path, 
allowing the probability of the project being completed by a certain date to be determined (this will 
depend on the number of activities in the critical path being great enough to allow a meaningful 
normal distribution to be derived).PERT charts can become unwieldy, however, if the number of 
tasks is too great. The accuracy of the task duration estimates will also depend on the experience 
and judgment of the individual or group that make them. 

Time durations of various activities in a project Is assumed to be deterministic estimates. But, in 
reality, activity durations may be probabilistic.Therefore probabilistic considerations are 
incorporated while obtaining time durations of the activities in a project. 

The following three estimates are used: a optimistic time, b pessimistic time and m most likely 
time. 

The optimistic time is a time estimate if the execution goes extremely good. The pessimistic time is 
a time estimate if the execution goes very badly. The most likely a time estimate if execution is 
normal. 

The probabilistic data for project activities commonly follow beta distribution.  

The formula for mean (µ) and variance (σ2) of the beta distribution are given below: 

 

The range for the time estimates is from a to b. The most likely time will be everywhere in the range 
from a to b. The expected project completion time is ∑ µi, where µi is the expected duration of 

the ith critical activity. The variance of the project completion time is  is the 
variance of the ith critical activity in the critical path. 
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As a part of statistical analysis, it may be interested in knowing the probability of completing the 
project on or before a given due date (C) or we may be interested in knowing the expected project 
completion time if the probability of completing the project is given. 

For this, the beta distribution is approximated to standard normal distribution whose statistic is 
given below: 

 

Where, X is the actual project completion time, µ is the expected project completion time (sum of 
the expected durations of the critical activities) and σ is the standard deviation of the expected 
project completion time . 

Therefore P (x ≤ C) represents the probability that the project will be completed on or before the C 
time units. This can be converted into the standard normal statistic z as: 

 

Problems: 

Consider the Table summarizing the details of a project involving 11 activities. 

Table : Details of Project with 11 Activities 

Activity Predecessor(s) Duration (weeks) 

  a m b 

A - 6 7 8 

B - 1 2 9 

C - 1 4 7 

D A 1 2 3 
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E A, B 1 2 9 

F C 1 5 9 

G C 2 2 8 

H E, F 4 4 4 

I E, F 4 4 10 

J D, H 2 5 14 

K I, G 2 2 8 

Let us 

(a) Construct the project network. 

(b) Find the expected duration and variance of each activity. 

(c) Find the critical path and the expected project completion time. 

(d) What is the probability of completing the project on or before 25 weeks? 

(e) If the probability of completing the project is 0.84, find the expected project completion time. 

Solution 
(a) The project network is shown in Figure . 
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Network for Example . 

(b) The expected duration and variance of each activity are shown in Table . 

Table : Computations of Expected Duration and Variance 

Activity Duration (weeks) Mean duration Variance 

 a m b   

A 6 7 8 7 0.11 

B 1 2 9 3 1.78 

C 1 4 7 4 1.00 

D 1 2 3 2 0.11 

E 1 2 9 3 1.78 

F 1 5 9 5 1.78 

G 2 2 8 3 1.00 

H 4 4 4 4 0.00 

I 4 4 10 5 1.00 
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J 2 5 14 6 4.00 

K 2 2 8 3 1.00 

 

(c) The calculations of critical path based on expected durations are summarized in Figure. The 
critical path is A-D1-E-H-J and the corresponding project completion time is 20 weeks. 

 

Network for Example. 

(d) The sum of the variances of all the activities on the critical path is: 

0.11 + 1.78 + 0.00 + 4.00 = 5.89 weeks. 

Therefore  = 2.43 weeks. 

Also 

 

= P(z ≤ 2.06) = 0.9803 

This value is obtained from standard normal table. Therefore, the probability of completing the 
project on or before 25 weeks is 0.9803. 

(e) We also have P(x ≤ C) = 0.84. Therefore, 
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From the standard normal table, the value of z is 0.99, when the cumulative probability is 0.84. 
Therefore, 

 

The project will be completed in 22.41 weeks (approximately 23 weeks) if the probability of 
completing the project is 0.84. 

Consider the data of a project summarized in Table . 

Table : Data of Example 

Activity Immediate Predecessor(s) Duration (weeks) 

  a m b 

A _ 4 4 10 

B - 1 2 9 

C - 2 5 14 

D A 1 4 7 

E A 1 2 3 

F A 1 5 9 

G B, C 1 2 9 
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H C 4 4 4 

I D 2 2 8 

J E, G 6 7 8 

Let us 

(a) Construct the project network. 

(b) Find the expected duration and the variance of each activity. 

(c) Find the critical path and the expected project completion time. 

(d) Find probability of completing the project on or before 35 weeks 

Solution 
(a)The project network for the given problem is shown in Figure. 

 

Project network of Example . 

(b) The mean and variance of each activity in the project are shown in Table . 

Table : Data of Example 

Activity Immediate predecessor(s) Duration (weeks) a m b Mean 
(Weeks) 

Variance 
(Weeks) 
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 a m  

A — 4 4 10 5 1.00 

B - 1 2 9 3 1.78 

C - 2 5 14 6 4.00 

D A 1 4 7 4 1.00 

E A 1 2 3 2 0.11 

F A 1 5 9 5 1.78 

G B, C 1 2 9 3 1.78 

H C 4 4 4 4 0.00 

I D 2 2 8 3 1.00 

J E, G 6 7 8 7 0.11 

 

(c) The critical path calculations are shown in figure . 

From figure, the critical path is C-D1-G-J and the corresponding expected project completion time is 
16 weeks. 
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Project network with critical path calculations. 

(d) The probability of completing the project on or before 35 weeks is computed as shown below: 

The sum of the variance of the critical activities = 4 + 1.78 + 0.11 = 5.89 weeks. Hence the standard 
deviation, σ = (5.89)0.5 = 2.427 weeks. 

P(X ≤ 35) = P[(X -µ)/σ≤ (35 - 16)/2.427] 

= P(Z ≤ 7.82) = 0.9999. 
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