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Preface 

The sources of statistical data are the experiments-controlled or uncontrolled-in any 

field of inquiry. The sample survey is the ~ource of data fro~ uncontrolled experiment; 

and design of experiment i~ the source of data from controlled experiment. The experimental 

results are analysed and interpreted using statistical tools. The analytical procedure for the 

data of design of experiments is of one type and it is different from that of the data collected 

through sample survey. Both the ana,ytical procedures are discussed in the book with 

examples. 

Out of 21 chapters of the book the first 10 chapters are dedicated to the topics of design 

of experiments while last 11 chapters cover the aspects of sampling methods. The book 

is meant for the students of BSc. [Hons.] and MSc. in Statistics. However, the applied 

research workers in any field may use the book for analysing the experimental data. All 

theoretical discussions are amply supported by examples. 

In writing this book I have used the books and papers of several well known authors and 
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My sincere thanks go to Mr. Amitabha Sen, Director, New Central Book Agency (P) Ltd 

and the entire production team of the publisher for ~uccessfully completing the work in 
time. 
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Chapter 1 

Design of Experiments and Analysis of Variance 

1.1 Introduction 
The objective of experiments in agriculture, industry, life science, physical science, engineer

ing sciences and in social science~ is to test the significance regarding the impacts of levels of 
factors involv~ in the experiment. The input of any factor is assumed to be absent or 
insignificant and the researcher needs to test the significance of the hypothesis based on the 
assumption. The test of hypothesis is performed using the data collected through experiment. 
The method of experimentation or the method of collection of responses for certain factor level 
is known as design of experiment. 

The experiments conducted in different fields mentioned above are classified into three. 
These are (i) varietal trial experiment, (ii) factorial experiment, and (iii) experiment on bio
assay. 

Varietal trial experiment : Let us consider that a rice research institute discovers 5 
varieties of rice and the researcher needs to identify a variety which is best in terms of economy 
of cultivation. The investigator, in practice, needs to perform some experiments that is he needs 
to cultivate the rice varieties in homogeneous agricultural conditions so that data on production 
of rice varieties are collected. The collected data will be used to verify the assumption of the 
investigator related to one or more varieties of rice. Here the cultivation of rice varieties is 
known as varietal trial experiment. • 

Factorial experiment : It is mentioned that rice varieties are cultivated under homo
geneous agro-climatic conditions. In practice, a particular variety of rice may have more yielding 
capacity under a particular level of irrigation in presence of a particular dose of fertilizer. 
'this involves three factors in cultivation. These are rice variety, fertilizer and irrigation. The 
experiment may be conducted using different varieties of rice, different levels of a fertilizer and 
different doses of irrigation. Such experiment where different factor levels are used to get the 
required responses is known as factorial experiment. 

Experiment on bio-assay : In medical science, experiments are performed to identify the 
dose(s) of a particular medicine against a disease. The response of a medicine may vary from 
individual to individual depending on the stage(s) of disease. The investigator conducts the 
experiment to identify the doses of a medicine for patients of different ages, of different body 
condition scores, etc. Such experiment is usually known as experiment on bio-assay. 

Whatever be the experiment, it is conducted to collect information. The method of collection 
of data may vary from situation to situation. This means that the design of experiments are of 
different types and each type depends on agro-climatic condition or on experimental situation. 
With the variation in the factors or factor levels or in the experimental conditions the responses 
usually vary. The sources of variation in the responses are more. The investigator needs to 
~timate the variance in the data and also needs to estimate the variances ac.cording to pre-
1Clentified sources of variation. The technique of partition of total variation in the-cJ.ata set into 

3 
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different component variations according to pre-identified sources of variation is known as 
analysis of variance. • 

According to R.A. Fisher, "The analysis of variance is a technique to partition the total 
variance of a particular data set into component variances according to pre-identified sources 
of variation." This technique has been developed first by R.A. Fisher. Later on F. Yates and 
others contributed a lot in the field of design and analysis of experiments. 

1.2 Technique of Analysis of Variance 
Let us consider that k varieties of rice are cultivated in n plots, where i-th variety 

(i = 1, 2,, ... , k) is repeatedly cultivated in ni plots such that n = L ni and all the plots are 
homogeneous in respect of size, shape and agro-climatic conditions. Let Yij be the production 
of i-th variety of rice in j-th plot (j = 1, 2, ... , ni)· The values of Yij can be shown as below : 

Variety of Rice Production of rice (Yii) Total Yi· Mean 'fh 

R1 Y11,Y12, ... ,y1j,. ··Yln1 Yi· Yi. 

R2 Y21,Y22,. ·· ,Y2j,. · ·Y2n2 Y2· 'fh. 
........................ 

R; Yi1, Y;2, · ·., Yij, ···Yin; Yi· 'fh 
........................ 

Rk Yk1,Yk2,. · .,yk}•· ··Yknk Yk· Yk· 

Total y .. =G y,, 

Since rice varieties are cultivated in plots of homogeneous size, shape and agro-climatic 
conditions, the productions of a particular rice variety are assumed to be similar and each 
production of i-th variety is supposed to be Yi·. However, due to some uncontrolled sources of 
variation (in agricultural experiment soil fertility variation, insect bite, excessive sun light, etc. 
are some of the causes of uncontrolled sources of variation), the values of Yij(j = 1, 2, ... , n;) 
may vary and within the observations of a particular variety of rice there is a variation. Such 
variation of observations can be measured by an amount L :L;(Yij - Yi) 2 . Again, if it is known 
that the rice varieties are similar, there is no need of conducting the experiment. The usual 
assumption with new varieties of rice is that these are not homogeneous. Under this assumption, 
the means y1., y2., ... , Yk· are not same. There may be dispersion in these means which can be 
measured taking the deviations of the means about grand mean 'jj ... The a~1ount of dispersion 
can be measured by a quantity proportional to L(Y;. -'jj .. )2 . 

The total variation of all the YiJ observations can be measured by an amount proportional 
to L L(Yij -y..)2 and this variation is mainly due to the sources of variation within i-th set of 
observations and due to the vafiation between k sets of observation. Now, the total variation 
(total su'm of squares) of Yij (i = 1, 2, ... , k,j = 1, 2, ... , ni) observations can be partitioned as 
follows : 

= sum of squares within + sum of squares between 

SS (total) =SS (within)+ SS (between). 

The above technique of partitioning the total sum of squares into components sum of squares 
according to. pre-identified sources of variation is known as analy~is of variance technique. 
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1.3 Linear Model for Analysis of Variance 
It has already been mentioned in the previous section that Yi.i (i = 1, 2, ... , k; j = 

1, 2, ... , n;) observations are collected on j-th occasion for i-th variety of rice. These 
observations are, usually, sample observations. Let us assume that i-th set of observations 
are drawn randomly from a normal population with mean µ; and variance cr2 [Yi.i ""'N(µ;, cr2 )]. 

It is also mentioned that the i-th set of observations are not same. These are deviated by a 
certain amount, say ei.i• from the population mean. Here e;j (i = 1,2, ... ,k; j = 1,2,.'..,n;) 
is the random component (error) or the amount due to uncontrolled source in Yi.i observations. 
Therefore, the YiJ observations can be expressed by a linear mathematical function : 

YiJ = µ; + e;1 ; i = 1, 2, ... , k; j = 1, 2, ... , n; 

(1) 

where µ is the general mean of all observations under the assumption that all populations are 
similar, a; is the amount of deviation of i-th population mean about the grand mean( usually 
called effect of i-th variety), where a;= µi - g. The representation of YiJ observations as in (1) 
is a linear model. This model is essential for analysis of variance. 

In section 1.2, it is mentioned that, except uncontrolled source of variation, the main 
variation in the set of observations is due to the variation in the variety. If in such agricultural 
experiment, the rice varieties are cultivated under fertilizer trial, say, using q levels of a 
particular fertilizer, then the total variation in the data set will be mainly due to two sources 
of variation, namely variety of rice and level of fertilizer. In such a case, the YiJ observations 
can be expressed by a linear model. 

YiJI =µ+fr;+ f31 + (fr(3);1 + e;11 · · · (2) 

i = 1,2, ... ,k; j = 1,2, ... ,q; ·l = 1,2, ... ,n; (or n;1), where the new term (3.i is the effect of 
j-th level of fertilizer. 

Model : It is a mathematical equation formed with random variable, mathematical variable 
and parameter(s). Thus, in (1) e;1 is introduced as a source of random component and its 
distribution may be assumed as the distribution of a random variable, the term µ; and hence, 
a; is arisen from the population parameter and, therefore, µ and a; are parameters. The 
equation as shown in (1) is a model. 

Linear Model : The equation which is comprised of random variable, mathematical 
variable and parameter and which is linear in observations and parameter(s) is known as linear 
model. Thus, equations (1) and (2) are linear models. 

The general linear model is expressed as 

y = f3o + f31x1 + f32x2 + · · · + f3kxk + ~· 
where f3o, f31, f32, ... , (3k ar~ parameters; X1, x2, ... , Xk are mathematical variables; e is a 
random variable. Here due to functional form y is also a random variable, the observations 
of which can b~ collected through experimental design. The values of random variable e are 
not observed. However, these may be estimated through analysis. It is assumed that, for the 
purpose of analysis, e is distributed with mean zero. 

So far we have discussed linear model. The model may be non-linear such as quadratic, 
exponential, etc. But for analysis of variance purpose we shall confine our discussion within 
linear model only. 

In the models (1) and (2), fr;, f31, (a(3);j, µ\are assumed as parameters, where fr; is termed as 
the effect of i-th variety and (31 is the effect of j-th level of fertilizer and (fr(3);1 is the interaction 
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of i-th variety with j-th level of fertilizer. If the selected varieties for any experiment are not 
the population (only available) varieties, ai is not a parameter. Let us consider that k varieties 
are randomly selected from a group of varieties for an experiment. In such a case the effect of 
varieties will be random variable. Thus, depending on the charact<'ristic of th<' effects the model 
is of three types. These arc (a) fixed effect model, (b) random effect model, and (c) mixed dfcct 
model. • 

Fixed effect model : The linear model in which the effects arc fixed is called fixed effect 
model. In the following model, 

(3) 

i = 1, 2, ... , p; j = 1, 2, ... , q; 1 = 1, 2, ... , r if the effects l¥i, f3J and ( af3)ij are fixed effects of 
i-th level of A, j-th level of Band intei:action of i-th level of A with j-th level of B, respectively, 
then the model(3) is a fixed effect model. 

Random effect model : The linear model in which the effects except the additive constant 
(general mean) are random variables is called a random effect model. 

Thus, in model (3), if ai,/3i and (af3)ij are randon variables, the model .s called random 
effect model. The analysis of data a.<;suming random dfect model is known as variance 
component analysis. · 

Mixed effect model : If some of the effects are fixed except additive constant and some 
are random variables in a model, it is called mixed effect model. 

Let us consider that the effects ni are fixed, the effects f3J are random variable and so (af3)i.i 
are random variable in mod~·~ (3). Then the model is known as mixed effect models. 

Unless otherwise assumed, the analysis of variance technique can be used to analyze the 
fixed effect, mixed effect and random effect models. 

1.4 Regression Analysis and Analysis of Variance 
The general linear model is assumed as 

YJ = /30 + /31x11 + /32x21 + · · · + /3kXkJ + eJ, (4) 

j = 1, 2, ... , n, where Yi is the j-th value of a dependent variable which depends on the values 
of k explanatory variables x1, x2, ... , Xk; /30, /31, ... , f3k are parameters; eJ is the j-th value of 
random component corresponding to YJ; {3;'s (i = 1, 2, ... , k) are parameters indicating the rate 
of change of y for unit change in the value of Xi, when Xi's are or.thogonal. The general linear 
model ( 4) is known as a regression model, if Xi's are continuous variable taking values in the 
limit -oo to oo. 

In matrix notation, the model is written as 

Y = XB+U, (5) 

X12 X22' ' ' Xk2 f31 
e2 

Xu X21 · · · Xk11 f3o [eil 
,B= !32 U= • 

X X: X: f3 , e'.n nx l 
ln 2n''' kn nx(k+l) k (k+l)xl 

where Y = 

The problem in regression analysis is to estimate the parameter vector ·B and. is to test the 
significance of this parameter vector .. Finally, the analysis leads to predict the value of y for a 
certain set of values of Xi's. 
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In some instances, the values of Xi's are either zero or 1 indicating the presence (x; = 1) or 
absence (xi = 0) of a variable. For example, let us consider that all values of xi in model ( 4) 
are 1 an.cl the values of other x's are zero. Then the model transforms to 

Y.i = f3o + f31 + e1. · (6) 

This model (6) is similar to the model (1) of section (1.3). Again, let us consider that x1.i = 1, 
x 21 = 1, x31 = 1 for all j and X4j = 0, ... , Xkj = 0. Then, we can write : 

Y1 = f3o + f31 + f32 + {33 + e1 

or, Yij = f3o + !3i + eJ; i = 1, 2, 3; j = 1, 2, ... , n. (7) 

This model (7) is a linear model exactly same as model (1). This latter model is known 
as analysis of variance model or experimental design model, where the explanatory variables 
are indicator variables indicating the presence or absence of the levels of a factor. Here f3i 
is the impact of i-th level of a factor (variable). In that sense, both regression parameters 
and parameters involved in analysis of variance model are similar. However, in respect of 
analysis, the regression analysis and analysis of variance are not exactly similar. In regression 
analysis emphasis is put on the estimate of the parameters and on the prediction of the value 
of dependent variable. But in analysis of variance emphasis is given not on the estimation of 
the parameter rather on the significance of the impacts and on the differences in impacts of 
different levels of a factor. In that sense, analysis of variance is a special type of regression 
analy~i!l where there is difference in the structure of the models of two analysis. 

1.5 Assumptions in Analysis of Variance 
It has already been mentioned that analysis of variance involves the test of significance of the 

effects of factor or factor levels. The test is performed using the concept of sampling distribution, 
where the basis of the sampling distribution is that the samples are drawn indepemlently from 
normal population. Thus, the main assumption for analysis of variance is that the random 
component is normally and independently distributed with mean zero and common variance cr2 

[Thus, the random component in model (1) is eij ,.., NID (0, cr2 )]. This assumption implies that 
the observations are also normally and independently distributed with common variaT!-::e cr2 . 

The assumption mentioned above is needed to apply the usual analysis of variance F
test. However, the normality and common variance. of observations are not ensured in all 
experimental situation. Of course, the violation of the assumption does not invalidate the 
analysis. The problem of non-normality and/or heteroscedasticity may be avoided by usiQg 

~data transformation technique. The important transformations are (a) sin- 1 transformation, 
(b) arc sin transformation, (c) square root transformation. Besides the application of data 
transformation technique, nonparametric methods are also used as a mode of analysis. For 
details of data transformation technique Das and Giri (1986) and for nonparametric analysis of 
data Connover (1999) may be consulted. 

1.6 Consequences of Violation of Assumptions 
The estimation of parameters in the model is done using method of least squares. For this the 

errors need to be distributed independently and with common variance. However, the correlated 
or heterogeneous errors do not create any problem in obtaining unbiased estimators. Normality 
of data also is not needed to obtain unbiased estimators of parameters. But heterogeneous 
and correlated errors provide inefficient. estimators which effect the test of significance. Non
normality of data creates the problem in using analysis of variance F-test. 
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1. 7 Terms Related to Experiment 

In the introductory section, it is mentioned that the experiment is conducted to investigate 
the characteristic of certain phenomenon (variety), where data on phenomenon are collected 
from some experimental units after the experiment. The important terms related to experiment 
are (a) treatment, (b) experimental plot, (c) block, (d) yields and (e) experimental error. 

(a) Treatment : The phenomenon which is under investigation for possible comparison of 
the effects of its different levels or which are under investigation to test the significance of its 
effects is known as treatment. For example, if different rice varieties are used in any experiment 
to select the best variety, then variety of rice treated as treatment. If different doses of urea 
are used in any agricultural experiment to identify the best dose, then nitrogen fertilizer is a 
treatment. In a production process in any industry, if the process is needed to be identified as 
the best one, the process is considered as treatment. 

The treatment ha.c;; different levels. In rice varietal trial experiment, the different varieties 
of rice are the levels of treatment; in fertilizer trial experiment, the does of urea are the levels 
of treatments; different production processes of the same industry are the levels of treatment. 

(b) Experimental Plot : The experimental materials on which a particular level of a 
treatment is applied once, constitute the experimental plot. In agricultural experiment, a plot 
of land is considered as an experimental plot. In dairy science of feeding trial, a cow or a group 
of cows of same age or same height or same weight kept in a shed may be considered as a plot. 
In selecting proteins for a baby, the baby may be considered as an experimental plot. 

( c) Block : A group of homogeneous plots constitute a block. For example, in a dairy 
feeding-trial a group of cows of same age or of same origin or of same lactation period may 
constitute a block. In agricultural experiment, a group of agricultural plots of same soil fertility 
level will constitute a block. Since all the plots in a block are homogeneous, the experimental 
results (yields) of different treatments are expected to be similar if the treatments are of 
homogeneous impacts. 

(d) Yields : The outcome of an experiment is known as yield. If the I.Q. of boys of 
different sociocultural group of people is under investigation, the I.Q. of each boy is the yield. 
In varietal trial experiment with agricultural crop, the per acre production of the crop or per 
plot production of the plot is known as yield. In medical science, if doses of medicine are used to 
reduce systolic blood pressure of patients, then blood pressure of~ patient after using medicine 
is the yield. The observations collected from all experimental plots (units) are the yields to be 
analysed. 

( e) Experimental Error : The yield of an ongoing experiment is not affected only by 
treatment or factors used in the experiment. There are some sources of variation which are 
beyond the control of the researcher. This uncontrolled source of variation affects the outcome 
of the experiment. The error crept in the experimental output due to uncontrolled source of 
variation is known as experimental error. In agricultural·experiment, the production of a crop 
may be affected by insects or by drought or flood. These sources of insect bites, drought or 
flood cannot be controlled by design of experiment and these sources affect the outcome of the 
treatment. The error arisen due to these uncontrolled sources of variation is known as experi
mental error. However, certain sources of variation are controlled by the design of experiment. 

1.8 Design of Experiment 

The mode of collection of data in any controlled experiment is known as design of experiment. 
The objective of the controlled experiment is to collect information as an outcome of treatment, 



0F:SJCN OF EXPERJMF:NTS AND ANALYSIS OF VARIANCE 9 

where collected information arc analysPd to infer about the significance of the effects of 
treatments. The inference will be efficiPnt if collected data and analysis of data are accurate. 

Therefore, the accuracy in data collection is an important aspect of controlled experiment. 
The method of accurate data collection for analysis according to pre-determined objective is 
known as design of experiment. 

The accuracy in data collection increases if the treatments are allocated to the plots by a 
random process and each treatment is repeated in several plots so that at least one yield per 
treatment is ensured. The treatments are also allocated to the plots of a block where plots of a 
block are homogeneous in character(s). The grouping of homogeneous plots, random allocation 
of treatment to the plots or to the plots of block and repetition of allocation of a treatmeht 
are the main aspects of design of experiment. Thus, it is understood that the method of data 
collection depends on allocation of treatment to the experimental plot. However, the following 
points are to be considered in conducting an experiment : 

(i) the treatments or factors to be used in the experiment, 

(ii) the effects of treatments or factors are to be estimated, 

(iii) the experimental plots to be used and the number of plots (units) to be used in the 
experiment, 

(iv) the method of allocation of treatment to the plots, 

( v) the mode of analysis. 

The basic principles of experimental design when experiment is conducted considering all 
the above P?ints are (a) randomization, (b) replication, and (c) local control. 

Randomization : The treatments in experimental plots are allocated in such a way that 
no treatment is favoured or disfavoured during allocation. This is possible if treatments are 
allocated to the plots by any random process. The random allocation of treatments to the plots 
is known as randomization. 

The analysis of the data becomes efficient if the error variance in the data is estimated 
efficiently. Randomization helps in estimation of error variance efficiently. Randomization also 
helps in avoiding the correlated observations. For example, let ·us consider that the effects of 
two varieties of rice are to be investigated. If the two rice varieties are allocated to the two 
neighbouring plots, the two yields will be probably correlated. However, only randomization is 
not sufficient to avoid the correlated observations and hence, correlated errors. If the treatments 
are allocated in many plots, there is less chance that the two treatments will always b~ allocated 
to the neighbouring plots. Therefore, along with randomization the replication will also be done 
as a mode of experiment. 

Replication : By replication we mean the allocation of a treatment in several plots. The 
number of replication of a treatment is usually denoted by r if the treatment is allocated in r 
plots. The value of r is determined depending on the resources available for the experiment. 

It has already been mentioned that the replication of the treatment helps in estimating 
the error variance efficiently. The efficiency of the experiment increases with the decrease in 
the error variance and replication helps in reducing the error variance. The value of r can be 
determined depending on the value of error variance. 

Let us consider that the 'ii; and y1 are the means of i-th and j-th treatment respectively; s2 

is the error variance of the experiment in which these two treatments are randomly allocated 
to the plots. The objective of the researcher is to test the significance that there is an amount 
of difference d in the above treatments. Assume that each treatment is replicated in r plots. 
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Then the test statistic is 
t = lili-YJI 

/¥-" 
If d has a given value for which the difference in the treatments is significant at a% level of 
significance, then the value oft is, say to, where 

!di 
to=--

/¥ 
_ 2s2 t~ 

or, r-~· 

In large experiment or with known value of ~2 , to transforms to the value of z (normal variate, 
where z = 1.96 at 53 level of significance). Here the difference -d is considered significant at 
a% level of significance. 

The above method of estimation of r is used to estimate the value of r for a future experiment 
depending on the information of some existing results. For example, let us consider that in 
a varietal trial experiment 20 treatments are allocated to 100 plots, where each treatment 
is replicated 5 times. The error variance of this experiment is s2 = 30.26. The means of 
treatment-! and ·treatments 2 are 81.26 and 92.54, respectively. If the difference in the mean 
of these treatments is considered significant for a value of d = 5, then the value of r for any 
future experiment will be 

- 2 x 30.26 x {l.96)2 
- 9 

r - 25 - · 

Here to = 1.96 is considered assuming a large experiment of 20 treatments each replicated 
5 times. However, this rule is not followed in estimating the replication per treatment in all 
experimental situations. To take the value of t0 , the error d.f. should be considered, since 
smaller d.f. ~< 10) does not provide stable F-test. 

Local control : The act of making group of homogeneous plots for allocating a group 
treatm1mts to those plots is known as local control. In dairy science experiment, selection of a 
group of cows or animals of same age or same size or same type is known as local control. In 
a!ficultural experiment, selection of a group of plots of the same soil fertility is known as local 
control. In irrigated experiment, the plots under different levels of irrigation must be of same 
height so that water is distributed uniformly in all plots. The local control is also called the 
control of external source of variation, since it controls, to some extent, the sources of errors in 
the experiment. Due to local control the error variance is reduced and hence, efficiency of the 
experiment is increased. 

1.9 Conditions for Efficient Experiment 
To conduct efficient experiment the following points are to be considered : 
(i) The experiment should be free of error : It is possible if all the plots used in an 

experiment are homogeneous. The effect of treatment is entangled with the variation in the 
plots and hence heterogeneity in the plots will not reflect the real treatment effect. 

(ii) The error variance must be estimated : The test of significance of treatment effect 
and any inference related to effect depend on the estimate of error variance. Ifyi and y1 are the 

means of i-th and j-th treatment depending on n observations each, then V ("yi -y1) = 2~
2

, where 
a 2 is the error ·variance. To study the efficiency of the difference in treatment mean, V (Yi - y1) · 
must be estimated, where estimate depends on the estimate of a2 . Both randomization and 
replication help in obtaining estimate of a 2 efficiently. 
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(iii) Treatment effect sM.ould be estimated with precision : The prec1s10n of 
treatment effect is estimated by the reciprocal of the variance of treatment effect. Hence, 
minimum error varianc~ provides maximum precision of the treatmC'nt effect. The preciRion 
of the estimate increased with the increases in replication of treatment. The precision is also 
increased if precise design is used for the experiment. 

(iv) Scope of experiment should be well mentioned : The experimental result is 
considered as the result of a sample experiment and it is predicted for the population. For 
example, let us consider that a varietal trial is performed in the field of agriculture using 5 
doses of nitrogen as urea. These doses are used in an experiment in a particular area with an 
objective of predicting the suitability. of those doses for all the areas.· If the doses are suitable 
only for a particular area, the feasibility of experiment will not be beyond question. Therefore, 
the experiment is to be conducted in such a way that its result is acceptable to every situation. 

(v) The experiment should be simple : The experimental technique should be 
simple and easy. The complexity in the experiment may create problem in the analysis and 
hence, create problem in estimating the error variance. However, the complex experiment 
is not prohibited completely. The simplest experimental techniques (designs) are completely 
randomized design, randomized block design and latin square design. 

1.10 Estimation and Test of Hypothesis 
The model considered for analysis of variance is Y = X B + U, where the elements of X 

are either 0 or 1 according to the absence or presence of a treatment in a plot. Let us consider 
that r(X) < (k + 1) = p. The problem is to estimate the parameter vector Band is to test the 
significance of this parameter vector. For this, the assumptions are : 

(i) U,...., NID(O, a 2 I), (ii) E(UU') = a 2 I, E(U) = 0. 

The problem is to estimate {30, {31, /32 , ... , f3k and a 2 . The estimation of parameters is done. 
using method of least squares, where 

8U'U 
{;'{; = (Y - X B)'(Y - X B) and -,- = 0 gives the normal equation 

8B 
X'XB = X'Y or, B = (X'X)- 1X'Y. 

Since r(X) < k + 1, (X' X)- 1 does not exist and the estimate of B is not available. However, 
if the r(X' X) and r(X' XIX'Y) are same, the normal equations are consistent and solution of 
the normal equation, though not unique, is available. Here the estimator of B will be a linear 
function of Y. The problem is to investigate a linear function of Y as an estimator of B. For 
this, let us consider a C matrix of order "(k + 1) x n, where the elements of C matrix are fixed 
and independent of B. We need to verify whether E(CY) = B or not. If CY is the unbiased 
estimate of B, then E(CY) = E[C(X B + U'j = CX B. Thi~ implies that CX =I. But it is 
not possible, since the rank of C will be at best p whereas t •e rank of I is greater than k -t- 1. 
Therefore, there will be no linear function of Y as an estimator of B. At this stage, the problem 
is to investigate an estimator of any linear function of Bi's. Let us now define some functions 
of the elements of B vector. 

Parameter : The elements in the B vector are parameters since these are unknown 
constants for the population observations : .. 

Parametric function : A. linear combination of the parameters is known as parametric 
f1mction. Thus, f31 - f32, f31 + f32 - 2{33, f31 + f32 + {33 - 3{34 are parametric functions. In general, 
>.' f3 is a parametric function, where >.' = ( >.1, >.2, ... , >.k+ 1). 
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Estimable function : A parametric function is linearly estimable if it has an unbiased 
estimate and if the estimator is linear combination of observations. 

k+l 

Contrast : L e;if3i is called a contrast if I: e;i = 0. Thus, {31 - /32 is a contrast, where 
i=l 

2 

a1=1, a2 = -1 and Lai= 0. Similarly, /31 + /32 - 2(33, f31 + f32 + (33 - 3(34, %(!31 -f32) are 
i=l 

all examples of contrast,. 

Let C1 = I: lif3i and C2 = I: d;(3; are two contrasts. Then C1 and C2 are called orthogonal 
contrasts if I: l;di = 0. For example, f31 + f32 - 2(33 and f31 + f32 + (33 - 3(34 are two orthogonai 
contrasts, since li = 1, l2 = 1, l3 = '-2, l4 = O; d1 = 1, d2 = 1,. d3 = 1 and d4 = -3 and 
I: lid; = 1 x 1 + 1 x 1 - 2 x 1 + 0(-3) = 0. 

T~eorem : If {31 , {32 , ... , f3k are parameters, then there will be (k -1) orthogonal contrasts 
of these parameters. 

k k k 

Proof: Let C1 = L l1d3i, C2 = L l2if3i, ... , Cm = L lmif3i be m orthogonal contrasts 
k 

of the parameters. Consider another contrast C = L lif3i, such that I: li = 0 but l; 's are 
unknown. The contrast C will be orthogonal to other contrasts C1 , C2 , ... , Cm, if at least one 
of the following equations has non-zero solution : 

There are k unknowns in these equations. The non-zero solution of one of these unknowns is 
available if the number of equations does not exceed (k - 1). Therefore, the value of m will be 
at best (k - 2). This implies that the number of orthogonal contrasts cannot exceed k - 1. 

Theorem : The parametric function >.' (3 defined on the model Y = X (3 + U under 
assumption E(U) = 0 and E(UU') = a 2 I is estimable, if and only if there is only one solution 
in the equation X' X r = >., where >. is a vector of known constants. 

·-· 
Proof: We n~ed to prove that there is only one solution of r in the equation X' X r = >. and 

in that case E(b'Y) = X' f3, where b is a vector. If >.' (3 estimable, E(b'Y) = b' X (3 = >.' (3. 
This implies that b' X = >.' or, X'b = >.. This is possible if r(X') = r(X' / >.). Hence, 
r(X' X) = r(X' X/ >.)and r has a solution in the equation X' Xr = >.. Now, in case of X' X r = >. 
has a solution for r, it can be written as X'(Xr) =>.or, X'b =>.,where b = Xr. 

Theorem : The best linear unbiased estimator (BLUE) of the estimable function >.' (3 in 
case of the model Y = X (3 + U with E(U) = 0 and E(UU') = a 2 I is r' X'Y, where r is a 
solution of the equation X' Xr = >.. 

Proof: Consider the best linear unbiased estimator of >.' (3 is b'Y, where b = r' X' + a' and 
a has any value. Thus, b is a general vector. The value of a will be such that (i) E(b'Y) = >.' (3 
and (ii) V(b'Y) will be minimum among the variances of other functions of Y under (i). 

If b'Y is unbiased, E(b'Y) = b' X f3 = (r' X' X +a' X)f3 = >.' (3. This is true if a' X = 0, since 
X'Xr =>.has a solution. 

Again, V(b'Y) = E[b'Y - >.'(3] 2 = E[b'Y - >.'(3][b'Y - >.'(3]' 

= E[b' X (3 + b'U - >.' (3][b' X (3 + b'U - >.' (3]' 

= E[r' X' X (3 +a' X f3 + b'U - >.' (3][r' X' X (3 +a' X (3 + b'U - >.' (3]' 
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= E[X,B + b'U - X,B][.>.',B + b'U - >.',B]' = E[b'UU'b] 

= u2bb' = a 2[r'X' + a'][Xr +a] 

= u2r' X' Xr + a2a'a. 
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Here V(b'Y) will be minimum if a'a is minimum. This value a'a will be lowest if a= 0. Then 
a' X = 0. Therefore, b' = r' X' and the best linear unbiased estimator of>.' .B is r' X'Y. 

The above th~orem is well known as Gauss-Markov Theorem of linear estimator. 

Corollary : If>.' .B is an estimable function and if b is available in case of>..' = b' X' X, then 
the unbiased estimator of>.' .B is b' X'Y. · 

Theorem : If X' X r = >. has a solution and >.' .B is an estimable function, then for any value 
· of r, >.' .B is the same estimate. 

Proof: The model considered is Y = X .B + U and E(U) = 0, E(UU') = u2 I. Consider that 
r1 and r2 are two solutions of X' Xr = >.. We need to prove that r'i X'Y = r2X'Y = >.L/!J. 

Let us consider that fl is the. solqtion of X'X/!J = X'Y. Then we have r'iX'X/!J = r'iX'Y 

and r2X1X/3 = r2X'Y. But riX'X = r2X'X = >.'.Therefore, 5..,B = >.'fl = ~X'Y and 

5..,B = r2X'Y = >.' /3. i-Ience, the estimate of estimable function >.' .B is >.' /3. 

Theorem : For the model Y = X .B + U with E(U) = 0, E(UU') = a 2 I, if the rank of X 
matrix is p, then there are exactly p independent linear estimable functions. 

Proof : We need to show tha;t there are exactly p linear independent vector A such that 
A is the solution of X'Xr =A. Here pis the rank of X. If X'Xr =A has q vectors >.1 , A2, 
... , Aq (q > p), then these q vectors are available such that X' Xr1 = Ai, X'Xr2 = A2, ... , 
X'Xrq = Aq· 

It can be written as 

X' X(r1, r-2,. .. , rq) = (A1, A2, .. ., Aq) 

or, X'XR=I\, where R=(r1,r2,. . .,rq) and /\=(Ai,A2,.-.:,Aq) 

Here R is of order,( k + 1) x q. However, the rank of X 'X is p. Therefore, the rank of I\ will be 
at best p. Thus, there will be p linear independent estimable functions. 

Now, let us consider that Xi is the i-th row of X. For any value of i, XI.B will be estimable. 
We need to show that X' X r =· Xi has .a solution which is r. This solution is available if 
r(X'X) = r((X'XIX;) and in that case XJ/3 is estimable. "'Again:Xi's form p independent 
vectors and hence, there will be p independent linear estimable functions. 

Theorem : If A'i/3, A2/3, ... , >.~{3 are estimable functions, the linear combination of those 
is also estimable. 

Proof: Let us consider that A = I: a;A;, where a 1 , a 2 , ... , aq are known values. We need 
to prove that >.' .B = f3 I: aiAi will be estimable, if >. = I: aiAi. 

Cons_ider that r; Is the solution of X' Xri = A; and r = I: air;. Then r is the solution 
of X'Xr = A. Therefore, >.'{3_ is estimable, where >.'{3 is the linear combination of Ai/3, A2/3, 
.. ., A~/3. 

Theorem : If A1 f3 is the· estimable function, >.' is the linear combination of row of X. 

Proof: Let us consider that 1/J = a'Y is the unbiased estimator of >.'(3. Then E('l/J) 
E( a'Y) = a' X f3 = >.' f3. Then A1 = a' X and it is the linear combination of the rows of X -
matrix. 



14 DESIGN OF EXPERIMENTS AND SAMPLING METHODS 

. . 
Definition : If riX'Y is the best linear unbiased estimatm; of estimable funetion >.i/3, then 

Z:::: a;riX'Y is the best linear unbiased estimator of Z:::: ai>.i/3. 

Definition : The best linear unbiased estimator of each estimable function is the linear 
combination X'Y = >.., where X'Y is the right .side of the normal equation X' X /3 = X'Y. 

Definition : The linear function of the observations will be in the error space, if and only 
if its expected value is zero for any value of /3. 

If b'Y is in the error space, then E(b'Y) = b'X /3 = ti. This implies that b' X = 0 or, X'b = 0. 
Thus, b is orthogonal to the coluffi:ns of X. 
~ Theorem : If the best linear unbiased estimator is expressed through ·observation vector, 
thrn the coeffir.ient of this best linear unbiased estimator and the coeffir.ient of the lint<ar function 
of observations will be orthogonal. · 

Proof: if b'Y is in the error space, then b is orthogonal to the columns of X. Again, if>..' /3 
is the estimable function, >..' is the linear combination of rows of X. Therefore., the coeffir.ient 
of error space is orthogonal to the coefficient of the best linear unbiased estimator. 

Theorem : The covariance of any"linear function of error space and the best linear unbiased 
estimator is zero. 

Proof: Let b'Y is in the error space and >..'fl is the best linear unbiased estimator. Then. 

Cov(b'Y,X'fl) = Cov[b'Y,N(X'X)- 1X'Y] 

= b'>.!(X'X)- 1X'a2 , ·: V(Y) = a 2/ 

= b'X(X'X)-1a 2 = 0, ·: b'X = 0. 

Theorem : If >..1/3 and >..~/3 are two estimable functions, then the variances of their best 
linear unbiased estimators are a 2riX'Xr1 and a2r~X'Xr2, respectively. 

Proof: Let us consider the model Y = X f3 + U. Assumptions for U vector are E(U) = 0, 
E[UU'] = a 2/. Consider that r 1 and r 2 are the solutions of the equations X'Xr1 = >..1 and 
X'Xr2 = >.. 2 , respectively. Then 

Cov [>.!fl, >.~fl] ~. E[>..ifl - >..1/3][>..~fl - >..2/3]' 

= E[r!X'Y - >.!/3][r~X'Y - >..~/3]'. 

= E(r!X'U][U'Xr2] = a 2r1X'Xr2. 

To find the variance of the estimators, let us consider >..1 = >..2. Then r1 = r2 and then 

~v [>.!fl, >.~fl] = a 2r1 X' X r1 = a2r~X' X r2. 

Example 1.1 : For the following models : 

Y1 = /31 + /32 + u1, Y2 =: f31 + {33 + u2, Y3 = /31 + /32 + u3, >..1/31 + >..2/32 + >..3{33 is an estimable 
function, if >..1 = >..2 + >..3. 

Solutio~: Let us consider a linear function a1Y1 + a2Y2 + a3Y3. 
Its expected value is assumed to be >..1/31 + >..2/32 + >.3{33. Then 

E(a1Y1 + a2Y2'+ a3Y3) = a1(/31 + /32) + a2(/31 + {33) + a3(/31 + /32), ·· E(Ui) = 0 

= /31(a1 + a2 + a3) + /32(a1 + a3) + f33(a2) . . 
Since E(a1 Y1 + a2Y2 + a3Y3) = >..1/31 -t >..2/32 + >..3{33, 

we have a1 + a2 + a3 = >..1, a,i + a3 = >..2 and a2 = A3 :::} >..1 = >..; + >.3: 



DESIGN OF EXPERIMRNTS AND ANALYSIS OF VARIANCE 15 

Thus, iD1 = A2 + Aa '. E .(ta; Y;) =· t A;#;. 

3 3 

Hence, L >..i/Ji is an•estimable function, where the estimator is L aiY;. 
1 

Reparameterizatio.n of the model : It has already been mentioned that the experimental 
design model Y·=- X B + U is not of full rank model. The rank of X matrix is p < k + 1. The 
normal equations to estimate B vector are : 

X' X fJ = X'Y or, fJ; (X' X)- 1 X'Y. 

But (X'X)- 1 does not exist and there is no unique solution fJ. Therefor~, to estimate B the 
parameter vector must be reparameterized so that X matrix is of full rank. 

Definition : By reparameteriza~ion of the model Y = X B + U we mean the transformation 
of B vector into a = VB vector so ~hat the elements of a = VB are estimable functions. 

The matrix X' X is positive semi-definite with rank p. Therefore, we can have a non-singular 
matrix W*(k x k) so that • 

w•' (X' X)W* =·( ~ ~) , 
where A is a p x p matrix, the rank of which is p. The w• matrix can be partitioned into W 
and W1 such that w• = (W, Wi), where Wis of order k x p. We can write: 

( ~; ) X' .f (W, Wi) = ( ~ ~ ) . 

Thus, we have W'X'XW =A, W{X'XW1 =0. 

Therefore, r(W' X') = p and W{ X' = 0. 

Now, we can write: Y .= xw•(w•)- 1 B + U. 

Let (W•)- 1 = (~). 

Then Y = X(W, W1) (~) B + U = XW(VB) + (XW1)(ViB) + U 

= XW(VB) + U, ·: XW1 = 0 

= Za+ U, where XW = z, a= VB. 

Here Z is a matrix of order n x p and r(Z) = p. Thus, the X matrix is transformed to a Z 
matrix of full rank and B vector is reparameterized to a vector of parameters a. 

The normal equations of the new model are Z' Za = Z'Y and a= (Z' z)-1 Z'Y. 
Since Z is of full rank, a is available. 

If Z' Z is a diagonal matrix, the reparameterization of Y = X B + U is known as orthogonal 
reparameterization. If >..' B is estimable, the same linear estimate of >..' B is available from the 
reparameterized model. 

Example 1.2 : Estimate the parametric function after reperameterization of the model : 

Yil = µ + /3i + eil, i = 1, 2 where E(eil) = 0. 

Solution : Since E(eii) = 0, 

E(yu) = µ + /31 and E(y2i) = µ + /32. 
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Therefore, µ + !3i and µ + !32 are estimable functions, we can write, 

µ +fi, ~ (!, 1,0) [ £: ] d\P and µ +P2~(1,0,1) [ f: ] ~ >.~p. 
Here, Ai and >.2 are independent and hence, >.'if3 and >.~{3 are also indepengent. Let us write : 

Now, to write Y = Za + U, let us write : 

W* = (W, Wi) = (V*)-i, where V* = ( ~:) . v (1 1 0) smce = 
1 0 1 

. 

We need to find Vi so that v• is non-singular. If Vi = (0, 1, 1), then V* is non-singular. 

Therefore, V* = 
[ 0

11 o11 o~ l and WT'~ W' ~ l 
1 0 

Z=XW= 

1 0 
1 0 
0 1 
0 1 

Hence, W= [ ~ -~ l 2 2 ' 

i i 
-2 2 

0 1 

and Z' Z& = Z'Y. gives ( ~ ~) ( :: ) = ( r~:) 
, Yi. , Y2. 

•• ai = 3' C¥2 = 3· 

Thus, ai and a2 are estimable. We have ai - a2 = f3i - !32 =~(Yi. - Y2.). 
' 3 

Theorem : If Y = Za + U is the orthogonal reparameterized form of the model : 
Y = X B + U, then the elements in a are uncorrelated. 

Proof: For the model: Y = Za + U, the estimates of a arc a= (Z'z)-iziy = D~Z'Y, 
• ·: Y = Za + U is the orthogonal reparameterized form of Y = X f3.+ U. Here, Di is diagonal. 
·we have 

. Cov (&) = E(& - a)(& - a)' = E[(Z' z)-i Z'Y - a][(Z' Z)-i Z'Y - a]' 

= E[(Z' 7)- 1 Z'(Za + U) - a][(Z' z)-i Z'(Za + U) - a]' 

= E[(Z' z)- 1 Z'U][U' Z(Z' z)-i] 

=·o-2(z' z)-i = 0-2 D!1 · 

Cov(oi,61)=0, for if.:j. 

Example 1.3 : Estimate the parameters µ and ai in the model : 

YiJ = µ + ai + eiJ; i = 1, 2; j = 1, 2. 
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Solution : We can write Y = X (3 + U. 

where Y = [ ~~~ ] X = [ l i ~ l · # ~ [ £:] U ~ [ ::: ] · 
Y22 1 0 1 e22 

The normal equations are : X' Xe = X'Y 

0 1 1 

D (l 
1 

!) (£) 0 1 1 I) ("") 1 0 
1 

1 0 O Y12 

0 1 
0 

0 1 l Y21 
0 Y22 

2 2 2 2 0 2 D (0 GJ where y .. = LLYiJ· YI· =LYi.i• 
0 

This gives y .. = 4{1. + 20-1 + 26'2; YI· = 2{1. + 20-1; Y2· = 2{1. + 20-2. 

We can write : y .. = 4{1. + 2 L &i; Yi = 2{1. + 20-i, i = 1, 2. 

j 
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2 

Y2· = LY2J· 
j 

These normal equations are not independent since r(X) = 2, where Xis a matrix of order.4 x 3. 

To get the solution of the above equations, the model Y = X B + U can be reparameterized. 
Alternatively, since the rank of the X matrix is less by one than the number of columns, one 
restriction can be put to get the unique solution of the normal equations. The restriction is 
L n; = 0. Under this restriction the estimates are 

fl. = '[i. and Di = Y;. - '[i .. 

Definition : The experimental design model is : Y = X B + U. 

Assumption : (i) E(U) = 0, (ii) E(UU') = a 2 J. Also U is normally distributed. 

Under this assumption Y is also normally distributed. Hence, linear function of Y follows 
joint multivariate normal distribution, where the parameters of this distribution are the mean, 
the variance and the covariance of the linear functions of Y. 

Let b~Y(i = 1, 2, ... , n - k) are the (n - k) linear functions of Y and these are normally 
distributed with mean zero and variance a 2 , where b~Y are considered in the error space. Then 

SS(error) = ~ (b~Y)2 

a2 L...,, a2 
i=l 

follows x2-distribution with (n - k) d.f. 

Theorem : The sum of squares of error is independently distributed of the best linear 
unbiased estimator of any estimable function. 

Proof : We know that >..' e is the best linear unbiased estimator of the estimable function 
>..'(3. Again, b~Y(i = 1,2, ... ,(n - k)) is in error space. These two quantities >.'e and b~Y 
follow multivariate distribution. We also know that Cov (A' e, b~Y) = 0. Thus,>.' e and b~Y are 
independently distributed. We bave 

11-k (b'Y) 2 

SS(error) = L _i _
2
-. 

a 
i=l 

Therefore, >.' e and SS( error) is independently distributed. 

D.E.S.M.-2 
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Definition : The distribution of best linear unbiased estimators of any m linear estimable 
functions /\(3 is multivariate normal distribution with mean /\(3 and variance-covariance matrix 
/\( X' X )- 1 /\

1 a 2
, where /\ is a matrix of order m x p with rank m. This distribution is independent 

of the distribution of error sum of squares. 

Theorem : The distribution of (A/J - 1\(3)' [ A(X' X)- 1 /\ 1 a 2 J- 1 (A/J - /\(3) is chi-square with 
m d.f. 

Proof: We know that /\(X' X)- 1 /\ 1 matrix is non-singular symmetric matrix of order m x m. 
Its eigenvalues are positive. Let the eigenvalues be Li, 12 , ... , lm. Then an orthogonal matrix A 
is available such that 

/\(X'X)- 1/\' =A diag (l1,l2,. .. Jm)A'. 

Also, we have 

[A(X'X)- 1
/\

1]! =A diag (zt,zt, ... ,zi) A' 

and [ (x'X)-1 ']_1 Ad. ( l l 1) A' /\ /\ 2 = iag ~ ' ]"' ... ' ]" . 
11 ll 1J, 

The unbiased estimates of /\(3 is A/3, where A/3 is the linear combination of m normal variables. 
The joint distribution of this linear combination is also normal with mean zero. Let us write : 

z = [A(X' xr- 1 A'i- ~ (A/3 - /\(3). 

Then E(Z) = 0, ·: E(A/J) = /\(3. 

v(Z) = [A(X'x)- 1A']-! v (A/J)[A(X'x)- 1/\']-! 

= [A(X'X)- 1A'J-![A(X'x)- 1 /\ 1 a 2][/\(X'X)- 1A']-! 

= a2[. 

1 ' ' 
Therefore, Z"' NID (O,a2

) and 2 z1z = (/\(3- /\(3)'[/\(X'XT 1 
/\

1 a 2]-
1 /\ ((3- /\(3) 

a 

is distributed as chi-square with m d.f. 

When m = 1, /\(3 transforms to one parametric function >..' (3. In that case, 
, I z = (>..'(3- >..'(3) {>..'(X'x)-1>..}- 2 "'N(O,a2 ) 

and (>..'/3- >..'(3) 2 /[>..'(X'X)- 1>..a2 ] is distributed as chi-square with 1 degree of freedom. 

Theorem : For the model Y = X (3 + U, when U "' NID(O, a 2 I), 

F = (A/J- /\(3) 1[/\(X'X)- 1!\']-1(A/J- 1\(3)/m 
SS(error)/(n - k) 

has variance ratio distribution with m and (n - k) d.f. 

Proof : We have already proved that the numerator of F is distributed as x2 with m d.f. 
Also we showed that SS (error) is distributed as x2 with (n - k) d.f. Both numerator and 
denominator are independent. Therefore, F has variance ratio distribution with m and (n - k) 
d.f. 

When m = 1, (>..'/3- >..'(3)/[SS(error){>..'(X'X)- 1>..}/(n - k)]! is distributed as Student's t 
with (n - k) d.f. 

Let us consider that /\(3 has a specific value, say d. Then, we can define : 

W = (A/J - d)'{A(X'X)- 1 /\ 1 a 2}-1(/\,8- d). 
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Here dis am x 1 vector of fixed quantity. Let us consider v = [A(X'X)-iA']-!(f\~ - d), 
where v indicates the m linear functions off\~. The joint distribution of v is m-variate normal 
and 

E(v) =µ(say), whereµ= [A(X'X)-iA']-!(A,B- d). 

V(v) = [A(X 1x)- 1A1]-! v (f\~ - d)[A(X' x)-if\1]-t 

= [A(X 1X)-if\ 1]-t[A(X'X)-i f\ 1 a2][A(X'X)- 1 A1]-~ 

= a2I. 

Let us consider that the elements in v are vi, v2, ... , l'm, where each one is independently 
distributed with 11i, µ 2, ... , µm, respectively and with common variance a 2. Therefore, 

v 1v 1 2 2 2 
- =-(Vi+ V2 + · · · + V ) a2 a2 m 

is distributed as non-central Chi-square with m d.f. The non-centrality parameter is 

i-2 µIµ 1 ( 2 2 2 ) 
u = -2 = 2 µi + µ2 + ... + µm . 

a a 

Therefore, W is distributed as non-central chi-square with m d.f. But, if f\,B - d = 0, 82 = 0, 
then W is distributed as central chi-square. 

Definition : Let Y = X ,B + U, where E(U) = 0, E(UU') = a 2 I and U is normally 
distributed. Then the distribution of SS(~)/a2 is distributed as non-central chi-square with p 
d.f. and with noncentrality parameter ,B1(X'X),B/pa 2 , where pis the rank of X matrix. Again, 
SS(~) and SS(error) are independently distributed. 

Cochran's Theorem : Let Xi' X2, ... 'Xn be n standard normal variates. Then, I: xr = 
X' IX, where X 1 = (xi, x2, ... , Xn) can be decomposed into k quadratic forms Qi = X' AiX, i = 
1, 2, ... , k. Thus, 

k k 

X' IX= L Qi= L X 1 AiX, where Ai has rank ni. 
i=i i=i 

In such a case (i) each of Qi is distributed as chi-square with ni d.f., and (ii) all Qi's are 
independently distributed, if and only if ni + n2 + · · · + nk = n. Here n is the rank of In matrix. 

Proof: The first part of the theorem implies second part, since Q = I: Qi and each Q; is 
distributed as chi-square with ni d.f. Hence, Q is distributed as chi-square with ni +n2 + · · ·+nk 
d.f. Again, L.Qi = X' IX is distributed as x2 with n d.f. Hence, n = "Ekni· 

Second part implies first part. We have Qi = X 1 AiX. Let us consider an orthogonal 
transformation X = BY, which transforms Ai to diagonal form. Also, consider that 

X'B 1AiBX + X 1B 1(I -Ai)BX = X 1IX. 

The right side and the first component of the left side of the equation is diagonal. Hence, the 
second component of the left side is also diagonal. Since Ai has rank ni, the n - ni principal 
diagonal elements of B 1 AiB are zero and the corresponding diagonal elements of B'(I - Ai)B 
are 1. From the given condition, the rank of B 1(I - Ai)B is n - ni· Hence, then - n; principal 
diagonal elements of B 1(I - Ai)B are 1 and the corresponding diagonal elements of B' AiB are 
zero. The remaining diagonal elements of B'(I - Ai)B are zero and the corresponding diagonal 
elements of B' AiB are' 1. Therefore, Ai is an idempotent matrix which has ni eigenvalues 1 
and the remainings are 0. Hence, Qi is distributed as x2 with ni d.f. 
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In analysis of variance, we partitioned the total sum of squares into component sum of 
squares according to pre-identified sources of variations. The d.f. of total sum of squares is 
cqnal to the d.f. of the different components' sum of squares. By Cochran's theorem all the 
component sum of squares are independently distributed as chi-square. Except error sum of 
squares all the sum of squares follow non-central chi-square distribution. Hence, to test the 
significance of the parametric function mean sum of squares due to the estimate of parametric 
function is compared with the mean sum of squares due to error. 

1.11 l\Aultiple Comparison 
The general line~r model for analysis of variance is 

YiJ = /30 + /3iXij + e;.i; i = 1, 2, ... , k; j = 1, 2, ... , n;, 

where Xij = 0 or 1. The assumption is that eij ,...., NIDIO, a-2 ). The objective of the analysis is 
to test the signific;ance of the hypothesis 

Ho : /31 = /32 = · · · = /3k, against 

HA : at least one of the equalities does not hold good. 

The test statistic for this hypothesis or any hypothesis related to the estimable function is F. 
If the hypothesis is rejected by F-test, we need to test the significance of the hypothesis 

Ho : /3i = /31, against 

HA: /3i # /31, i # l = 1,2, ... ,k 

This pairwise comparison of the impacts of factors is known as multiple comparison. 

The methods of multiple comparison are (i) Student's t test, (ii) Student-Newman-Keuls 
test, (iii) Duncan's Multiple Range test, (iv) Dunnett's test. 

, , 2 

Student's t-test : Let /3; be the estimates of /3; and V(/3i) = ~., where s2 is the error 
mean square. The null hypothesis Ho : /3; = /31 or Ho : /3; - /31 = 0. Under this hypothesis the 
estimate of /3; - /31 is /J; - /31. The estimated variance of this estimate is 

v(/3i - /3t) = s - + - . , , 2(1 1) 
ni n1 

Therefore, under Ho the test statistic is 

This t follows student's t distribution with error d.f. Hence any pair of impacts /3i and 
/31(i -=I l = 1, 2, ... , k) can be compared using 't'-test. 

Let us consider that the hypothesis is to be tested at a% level of significance, where the 
t-value at a% level of significance with error d.f. is, say, t0 . Also,consider that all n; 's are same 
(n1 = n2 = · · · = nk = n). Then, using t0, we get 

fii2 , , toy -;- = l/3i - /3tl. 

Here toj'ii{. is known as critical difference (C.D.) or Least Significant Difference (L.S.D.). 



DESIGN OF EXPERIMENTS AND ANALYSIS OF VARIANCE 21 

Thus, 

f2;2 
C.D. =toy-:;:;-· 

Now, if any of the l/3i - ~d 2". G.D., the null hypothesis is rejected. Ifni's are not equal, the 
value of n is to be replaced by the harmonic mean of n1, nz, ... , nk. 

The basic assumption for student's t test is that the observations of i-th factor must be 
independent of the obs~;vations of l-th factor. Therefore, if {Ji and fJ1 are to be compared in 
any experiment, the i-th and l-th factor (treatment) are to be allocated in the plots so that 
the yields of these two treatments are independent. Otherwise the t-test will be affected. The 
comparison of the highest and the lowest yielding treatments can also be compared using C.D. 
Pearson a,~d Hartley (1942, 1943) showed that the first kind of error in such a test becomes 
more than 53. 

The problem that arises in comparing the treatment means which are not independent 
is avoided by comparing the range. Such range tests are Student-Newman-Keuls test and 
Duncan's multiple range test. 

Student-Newman-Keuls test : Let x1• < x2 < · · · < Xk be k means related to k 
~reatments. The estimated variance of i-th mean is s2 /ni, where s2 is the error mean square. 

The Studentized range based on k means is defined by 

(xk - xi)yln 
Qk,f = 2 , 

s 

where f is the d.f. related to s2 . The value of Qk,f for different values of a are available in 
different books [Federer (1955), Winner (1971)]. If Xi is based on ni observations, then n is 
to be replaced by the harmonic mean of n 1 , n 2 , ... , nk. The value of Qk,f is given for different 
values of k. 

The Studentized critical values -is given by ,-1 

wi = Qo:,i.J~, i = 2,3, ... ,k, 

where Qo:,i,f is the value of Studentized range at a% level of significance for range of i means 
with f d.f. 

Test procedure : Let the range of k means be Xk -- x1. This range is to be compared 
with Wk. If Xk - x1 2". Wki significant difference in the meam; is noted. At this stage we need 
to ·calculate Wk-1 and it is to be compared with Xk - X2 and Xk-1 - X-1. If Xk - X2 ? Wk-1 

and Xk-l - x1 2". Wk-l, the ranges of (k - 1) means arc significaqtly different. The process is 
continued until an observed range of k means is found smaller than Wk. Finally, the means 
which arc not found sign~ficantly different arc shown in one group. 

Duncan's multiple range test : This test is similar to that of Student-Newman-Keuls 
test except that the tabulated value Qa,i,f is replaced by its modified value as suggested by 
Duncan (1945). Herc the ranges of means for different values of k are compared with 

The test procedure remains same as it is followed in Student-Newman-Keuls test. 
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Example 1.4 : The systolic blood pressure (in mm of Hg) of some patients admitted in 4 
diffC'rent hospitals are as follows 

Hospital Systolic blood pressure of patients (YiJ) Total Yi Means fh 
1 80. 85, 86, 90, 95, 98, 82, 80, 87, 95, 100 978 88.91 
2 85, 88, 90, 90, 92, 96, 101, 103, 115, 100, 100 1060 96.36 
3 75, 80, 82, 86, 85, 85, 85, 85, 85, 80, 90 918 83.45 
4 90, 96,80, 98, 90, 95, 96, 95, 100, 98, 110 1048 95.27 

Identify the hospitals where patients are experienced of lower blood pressure. 

Solution : Here k = 4, ni = n 2 = n3 = n4 = 11. According to technique of analysis of 
variance, we have 

y .. = G = 4004, C.T. = Gk
2 

= (
4

00
4

)
2 

= 364364. 
n· llx4 

SS (total)= L L(YiJ - y . .)2 = L LYlJ - C.T. = 368337 - 3643G4 = 3'173. 

2 

SS (between) = n L)h - y.)2 == L Y~. - C.T. = 365555.64 - 364364 = 1191.64. 

SS (error) =SS (total) - SS (between) = 3973 - 1191.64 == 2781.36. 

ANOVA Table 

Sources of variatio!~ d.f. SS SS MS= IT F Fo.os ?-value 

Hospital (between) 3 1191.64 397.21 5.71 2.84 0.00 

Error (within) 40 2781.36 69.534 

Total 43 

The null hypothesis to be tested is 

Ho : /Ji = /32 = fh = /34 , against HA : At least one of the equality does not hold good. 
Here /Ji is the impact of i-th hospital (i = 1, 2, 3, 4). Since F is greater than F0 05 , H0 is 

rejected. 'The recorded blood pressure of patients in different hospitals are significantly different. 

Here ?-value = loo f (F)dF. If ?-value ~ 0.05, Ho is rejected. · 

Now the hospitals can be grouped according to the average blood pressure of patients. The 
mean blood pressure of patients per hospitals in ascending order are as follows : 

y3 . = 83.45, Yi = 88.91, y4 . = 95.27, 'Y2. = 96.36. 

We have 

i da,i,f D -d 1/iI i - a11, n 

2 2.86 
3 3.01 
4 3.10 

Now, 'fh. - 'fh. = 96.36 .,-- 83.45 = 12.91 > D4 

'ih - Yi = 96.36 - 88.91 = 7.45 < D3 

7.19 
7.57 
7.79 
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'ih - ?h. = 95.27 - 83.45 = 11.82 > D3 

Y,4 . - y1. = 95.27 - 88.91 ~ 6.36 < Dz 

y1. - y3 . = 88.91 - 83.45 = 5.46 < D2. 

23 

The hospitals which are not different in respect of mean blood pressure are shown below by 
putting underline 

For multiple comparison we use Student's t test, Student-Newman-Keuls test and Duncan's 
multiple range test. The last one is the modified one and it is improved test over Student
Newman-Keuls test. However, Montgomery (1984) has mentioned that t test is still better 
them other tests. 

Dunnett's test : The objective of the control experiment is to investigate the treatment 
effects to identify the best one. To identify the best one, sometimes a treatment with known 
result is also used in the experiment. Such a treatment is known as control treatment. The 
objective is to identify the superiority of new treatments over the old one. This comparison of 
treatment means with the mean of old one (or one with known result) is also under multiple 
comparison. It is usually known as comparison of treatments with a control treatment. 

The comparison is done by Dunnett's (1984) test, where tabulated value for multiple 
comparison is used from Dunnett's table. The test statistic is : 

D = da,k-1.f 8 2 (~ + _!___) 
n, nc 

where d0:,k-l,f is the tabulated value at a% level of significance from Dunnett's table for 
(k - 1) means with error d.f. (!); nc is the number of replications for control treatment and 
n; is the number of replications of i-th treatment (i = 1, 2, ... , k) except control tre:1tment. If 
n; = nc = n, then the test statistic is : 

(2-;2 
D = do:,k-1.Jy--;-· 

Here s2 is the mean square error. 

Example 1.5 : In a dairy farm 4 new varieties of dry food are introduced for the milking 
_cows. The objective of introduction of these food is to get increased amount of milk. These 
varieties of food are given to cows of same age and of same lactation period. During experiment 
of feeding trial, a group of cows are kept with the experimental cows. The milk productions 
of one day during experiment are recorded for all the cows. The milk productions are shown 
below: · 

Food Milk production (in kg) of cows Total Yi· Mean Yi· 

No 18.5, 18.6, 22. 7, 25.2, 26.0, 20.4 131.4 21.90 

1 17.2, 19.7, 23.4, 22.6, 24.0, 25.2 132.l 22.02 

2 20.2, 21.4, 24.6, 26.7, 28.2, 26.0 147.1 24.52 

3 24.2, 28.6, 27.3, 30.2, 30.0, 30.1 170.4 28.40 

4 25.0, 18.6, 24.7, 28.9, 29.0, 24.2 150.4 25.07 

Do you think that the new varieties of food arc effective in increasing the milk production? 
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Solution: We have_k = 5, n 1 = n2 = n 3 = 1!4 = ns = n = 6. 

G = '°' '°' YiJ = .731.4, C.T. = G
2 

= (73
1.

4
)
2 

= 17831.532. 
~~ nk 6x5 

SS(food) = '°' yl, - C.T. = 108
0ll.l -17831.532 = 170.318. 

~ n 6 

SS (total) =LL Yl1 - C.T. = 18249.12 - 17831.532 = 417.588. 

SS (error) =SS (total) - SS (food) = 417.588 - 170.318 = 247.27. 

ANOVA Table 

Sources of variation d.f. SS SS MS= IT F Fo.os ·?-value 

Food 4 . 170.318 42.5795 4.30 2.76 < 0.01 

Error 25 247.27 9.8908 

Total 29 

The null hypothesis is : 

Ho : The varieties of food are similar, against HA : The varictiC's of food arc different. 

Since F = 4.70 > F0 .05 , Ho is rejected. The varieties of food arc different. [?-value< 0.01, Ho 
is rejected] 

The new varieties of food will be considered effective if the mean prodnction of milk due to 
introduction of any new variety of food is more than that of no dry food. Considering no dry 
food as control treatment we need to compare it with new varieties of food. This can be done 
l.y Dunnett's test, where the test statistic is : 

Ho: ao = ai, against HA: ao /:. ai, i = 1,2,3,4. 

The test statistic is : 

k = 5, f = 25 

/2 x 9.8908 
= 2.654y 6 = 4.82. 

The differences bet.ween the means of control treatment (no dry food) and other treatments are: 

IFo - Fil= 121.90- 22.021=0.12, IFo - F21=121.90 - 24.521=2.62, 

IFo - F3I = 121.90- 28.401=6.50, IFo - F41=121.90 - 25.071=3.17. 

It is observed that the new variety F3 is better than no dry food. 

1.12 Estimation of Missing Observation 
The yield of some of the experimental plots, specially in agricultural experiment, are lost due 

to some uncontrolled causes. In laboratory experiment also, some of the results of experimental 
plots may be damaged or lost during compilation. This loss of experimental result during 
experiment is termed as missing observation. 

Due to missing observation the orthogonality of data of diffC'rent treatments is lost and 
it creates problem in the application of usual analysis of variance technique as a mode of 
analysis of data. Howcwr, the analysis is not affected if there is only one pre-identified source 
of variation except the error in the data set (if completely randomized design is used). The 
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missing observation(s) creates problem i11 data analysis i_f the experirneut is conducted through 
randomized block design or other complex designs. 

The usual analysis of variaQce technique is not suitable in analysing the data having missing 
observation. The analysis is done after estimating the value of missing observation. Allan and 
Wishart (1930) have first developed the formula to estimate one missing observation in case 
of data of randomized block design. Yates (1933) has showed that the error sum of squares 
becomes minimum if the missing value is estimated by Allan and Wishart's formula. The 
iterative method has been developed by Yates to estimate several missing observations. The 
analysis is less affected if Yates method is nsed to estimate the missing value. However, if there 
are several missing observations in a small scale experiment, the error d.f. is reduced and the 
expected value of sum of squares due to treatment is increased affecting the F-test, specially 
in case of variance component analysis. 

Let us consider that the observations of an experiment be y1 , y2 ; ... , Yn. Also consider that 
the observations of k plots of this experiment i.;, lost and let these observation be x 1 , x 2 , ... , Xk· 

Assume that the experimental results are linear function of parame\,ers fh, fh, ... , ()111 • Then 

where i = 1, 2, ... , n. Assume that E(ei) = 0 and V(e;) = a 2 . 

In matrix notation, the equation (8) is written as 

Y= 
[ 

~~ ] ' [ :n~~l ... ~~.:.:.:.:.~~; 
Yn an2· · ·anm 

Y =AO+ U 

The estimated sum of squares due to error for the model (9) is 

(Y - AO)'(Y - AO) = Y'Y - 20' A'Y + iJ' A' AO. 

(8) 

(9) 

The normal equations to estimate the parameter vector () using method of least squares is : 

A'AO = A'Y. (10) 

0 = (A' A)- 1 A'Y, if A is a matrix of full rank. 

The sum of squares due to estimate is B' A'Y and the sum of squares due to error is Y'Y -0' A'Y. 

Consider that the objective of the anaJysis of data is to test the null hypothesis : 

Ho : 01+1 = 01+2 = · · · = 0.,. = 0. 

The model under H0 is written as 

[ 
a

11 

a
12 

· · · a
11 l [ ()1 l [ :~ l 

y = ~:.1 ... ~:~ "·" "~~'. 02 + 
anl an2· · ·ant Oi en 

The sum of squares due to error from this model is 

Y'Y-,,P'A'Y. 
The sum of squares due to error under H0 is 

B' A'Y - ,,P' A'Y. 

(11) 
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Now, let us replace X1, x2, ... , Xk for missing observations. Then 

E(Y) = AO, E(X) = E .[ ~: l = [ ~;; ... ~.~~.: .: .:-~~~~ l [ :: l 
Xk bkl bk2' · · bkm Om 

=BO. 

The sum of squares due to error for both y and x observations is given by 

(Y - AB)'(Y - AB)+ (X - BO)'(X - BB)'. 

The normal equation to estimate B is : 

A'Y + B'X = (A'A + BrB)B or, Y'A + X'B = B'(A'A + B'B). (12) 

The sum of squares due to error is : 

s; = Y'Y + X'X - B'(A'Y + B'X). (13) 

The problem is to estimate X vector so that S~ is minimum. 

dB' -
The method of least square gives 2X - dX (A'Y + B' X) - BO = 0. 

dB' 
Also, we have B = dX (A' A+ B' B). 

Putting the value of B in normal equations, we get X = BB. 
If we put the value of X in (12), we get normal equation similar to (10). Again, replacing 

X in ( 13), we get error sum of squares similar to ( 11). 

To analyse the data in presence of missing values, x1 , x2 , ... , Xk are to be replaced by some 
assumed value so that the sum of squares due to error is minimum. The values of xi, x2 , ... , Xk 

are to be estimated from this sum of squares due to error. Let us consider the sum of squares 
:iue to error to estimate the X vector is 

(Y - A1<P) 1(Y - A1<P) + (X - B1<P)'(X - B1<P). (14) 

To get thl· value of <P, the normal equations are : 

A~Y + B~X) = (A~A1 + B~B1)<P, 
' wp 

where Bi= dX (A~A1 + B~Bi). 

(15) 

The sum of squares due to error S~2 is 

Y'Y + X'X -<P'(A~Y + B~X). (16) 

Differentiating (16) w.r.t. X, we get 

2X - :t [(A~ Y + B~X) - Bi<P] = 0. 

. . X = Bi<P. 

Replacing tht; value of X in (15), we shall get the normal equations similar to previous one. 
If the value of_X is placed in (16), the sum of squares similar to (11) will be obtained. 

The theoretical aspect to the estimation of missing value is described above. The estimation 
of missing observation of a particular design will be discussed in explaining the analysis of data 
of that design. 



Chapter 2 

Multi-Way Classification 

2.1 One-Way Classification 
Let there be n observations Yij (i = 1, 2, ... , k : j = 1, 2, ... ni). These observations are 

classified into k classes according to the source of data. Consider that the observations of each 
class are the yield of each treatment, where k treatments are under investigation. The i-th 
treatment has n; yields Yil, Yiz, y;3 , ... , Yin;. Except the uncontrolled source of variation these 
n; observations (i = 1, 2, ... , k) are assumed to be homogeneous. The means of k treatment 
has fh ( i = 1, 2, ... , k) are expected to be heterogeneous since these are the means of k different 
treatments. Therefore, the total variation of all Yi.i observations is mainly due to the variation 
of treatments. The total sum of squares of these observations can be partitioned into sum 
of squares due to treatment except the sum of squares due to error (uncontrolled source 
of variation). Hence, analysis of variance of such data set which arise from an experiment 
conducted to investigate the behaviour of a set of treatments is known as one-way ciass1t1cation. 
Here it is assumed that k treatments are allocated ton homogeneous plots, where i-th treatment 

k 

is replicated into ni plots such that n = L n;-. 

Model for One-Way Classification 
1, 2, ... , k; j = 1, 2, ... , ni) is 

The linear model for Yij observations ( i 

where y;1 = yield of i-th treatment in j-th plot, µ is the general mean, ex; = µi - µ is the effect 
of i-th treatment and e;j is the random error associated with j-th yield of ·i-th treatment. 

Assumption : E(e;1) = 0, E(eij, ei'J') = a 2 , if i = i', j = j' 
= 0, otherwise 

Moreover, ei.i is normally distributed. 

27 
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In matrix notation, the model is Y = X /3 + U, where 

1 1 0 0 
1 1 0 ' 0 

Yn en 
Y12 

1 1 ff 0 e12 

1 0 1 0 

[ :Jk+lJ-' 
1 0 1 0 

. \ 

Y1n1 ein1 

Y= ,X= '/3 = ,U.= 

YkI 
1 0 1 0 

ek1 
Yk2 ek2 

1 0 0 1 
1 0 0 1 

Yknk nxl 
eknk nxl 

1 0 0 1 
nx(k+l) 

Here, X is called design matrix. The sum of last k columns of X matrix is equal to the first 
column indicating the linear dependence of first column on other columns. The last k columns 
are independent. Hence, the rank of the design matrix is (k + 1 - 1) = k. 

The normal equations to estimate the parameters in the model are 

It gives 
X'X~ = X'Y. 

nP, + L ni&i = y .. 

nip, + ni&i = Yi· 

(17) 

(18) 

Since the rank of the design matrix is k, k of the normal equations are independent. To 
get the unique solution of these normal equations we need to put one restriction which is 
L: ni&i ·= 0. We have 

k-1 
' 1 " ' ak = --~ ni'ai'· 

nk i'=l 

From equation (18) we get 

, ' Yi· . 1 2 k µ + Q; = - , i = , , ... , . 
ni 

The k-th equation is 

, , Yk· 
µ+ak = -. 

nk 

Also, we have nP, = y .. 

(19) 

(20) 
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The equations in (19) aud (20) can be written as 

n 0 0 0 µ y .. 

0 1 + .!!..I. !!<!. ~ lt1 
nk nk nk 

1lL - 1L.!<.;. 
n1 nA: 

0 .!!..I. 1 + .!!..I. ... ~ &2 
nk nk nk 

11.L - JiS.:.. 
n2 nk 

0 .!!..I. !!a. 1+~ °'k-1 nk nk nk 

Y(k-IJ· _ 'JiL 
nk-1 nk 

The above equations are called reduced normal equations and k of these are independent. 
Hence, unique solution of these equations are available. The solutions are : 

µ = 'iJ .. , &; = Y;. - y .. 

These two groups of estimates are independent since the coefficient matrix of the reduced 
normal equations can be partitioned into two. Also, it is observed that 

Cov(µ, &; ) = Cov(y .. , 'i};. - y .. ) = Cov('[i .. , y;.) - V (y .. ) 

n;a2 a 2 
=---=0. 

nn; n 

Hence, µ and &; are independent. 

The sum of squares due to estimates is : 

~I X'Y = (fl,&1&2 ... &k) I E I 
Yk· 

-2 + " - (- - ) =3 + "rt - (- - )2 = ny.. L.J n;Y;. Y; - Y.. = ny.. L.J ;Y;. Y;. - Y .. 

Total sum of square is Y'Y = LL YTJ. 

Hence, we have error sum of squares as 

S3 =SS( error) = LLYl1 -ny2
. - L ni(Yi· - y..)2 

= LLYij - ny~ - L n;(Y; -y .. )2 

= LL(Yij -yi.)2
· 

The objective of the analysis is to test the null hypothesis. 

Ho: µ1 = µ2 = · · · = µk =µ(say) 

=} Ho : µi - µ = ai = 0, i = 1, 2, ... , k against HA : ai I- 0. 

We have EL n;(Y;. - y..)2 =EL ni(ai - ei. - e .. )2 

= EL n;a; +EL n;(e;. + e~ - 2e;.e .. ) 

+ 2E L niai(ei. - e .. ). 



30 DESIGN OF EXPERIMENTS AND SAMPLING METHODS 

Under the assumption mentioned earlier, 

EL nio:i(e;. - e .. ) = o 

Under Ho : o:i = 0, 

E"" (- - )2 
L, ni Yi· - Y.. = k - 1 

a2 

Hence, L n;(fh - YJ..) 2 ~; x2a 2 with (k - 1) d.f. 

But if Ho is not true the distribution of E ni (Yi· - ~ .. )2 is noncentral x2 with noncentrality 
parameter >. = 2

1
" E niO:T. Also, we l;iave 

ELL(Yi.i -y;.)2 
= LL(eij -ei.)2 

= ELLe~1 +EL Le~. -2ELLei1ei 

a2 k n·a2 
= na

2 + """ """ - - 2 """ -• -~~ni ~ ni 

= na2 + ka2 
- 2ka2 = (n - k)a2 . 

EE l::(YiJ ~ 'ih) 2 
= n _ k. 

a2 

Thus, L L(Yii -1h)2
,..., x2a 2 with (n - k) d.f. 

1 
We have a2 

= n - k L L(Yij -yi,) 2 = M.S. (error). 

We have E Ms (t t t) 
.· E E ni (Yi· - Y .. ) 2 

2 1 L 2 
rea men = k = a + -- n ·o: 

-1 k-l '• 

EMS (error)= EEni(y\-y .. )
2 

= a 2 . 
n-

and 

Thus, E MS ( tr~atment) ?: E MS (error). 

The equality sign will hold good if O'i = 0. Therefore, to test the null hypothesis Ho : o:i = 0, 
the test statistic is 

F _ MS (treatment) 
- MS (error) · 

Thus, F has variance ratio distribution with (k - 1) and (n - k) d.f. If Ho is not true, the 
distribution of the test statistic is noncentral F with noncentrality parameter >. = ~ E niO'T. 
The null hypothesis will be rejected if F ?: Fo:; k-l,n-k or if P-value J;' f (F)dF ~ 0.05, Ho is 
rejected. 
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ANOVA Table 

Sources d.f. SS MS= SS 
d.f. 

F E(MS) P-value 

Treatment k-l S2 
S2 s2 2 i I: 2 loo f(F)dF s2 .= k - 1 - C1 + k - 1 niai S3 

Error n-k S3 
Sa (12 S3=--

n-k 

Total n-1 

If Ho : O'i = 0 is rejected, we need multiple comparison or test of significance of any contrasts, 
say ai - ai' , i f. i'. The null hypothesis to be tested is : 

Ho : ai = O'i', i f. i' = 1, 2, ... , k against HA : a; =I- ai' 

=> Ho : ai - ai' = 0. 

The estimate of this contrast ui - a;' is &i - &;'. The variance of the estimate is : 

where.C12 is estimated by MS (error)= s3. 

'Ji;. -yi'· Therefore, the test statistic is: t = -;===== 

S3 (..1.. + .....L) 
ni ni' 

This t follows Student's t distribution with (n - k) d.f. 

The calculated value oft ~ t~,n-k leads us to reject the null hypothesis. 

If n; = m (say), then to compare all the pairs of treatments, the CD is given by 

CD= t~,n-k.ffi.· 
It is also needed to test the significance of the contrast L c;l!t:i, where L c; = 0. The null 

hypothesis is Ho : L c;o:; = 0, against HA : L: c;o:i =f. 0. 

The estimate of L cio:i is L ci&i = L CiY;· 
2 . 

The variance of this estimate is V (L C;Y;.) = L c~V(y;.) = C1
2 L ~ii. 

L: C;Y;. 

This t follows Student's t distribution with (n - k) d.f. The conclusion is to be drawn in a 
similar way as it is done in the previous case. 

Example 2.1 : Four varieties of maize are cultivated in different. plots of similar soil 
fertility. The plot size is 1 cm x 1 cm. The number of cobs produced in different plots for 
different varieties are shown below : 
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Varieties Number of cobs per plot (:IJi.i) Total Yi· Meany,. 
of Maize 

M1 96.102,97, 105,90 490 98.00 

M2 102. 112. 108.115,109.100,106 752 107.43 

M3 90,95,92.95 372 93.43 

M4 98,99.105,107.108,101 618 103.00 

Analyse the data and group the maize varieties, if possible. 

The variety M 3 is cultivated previously. Do you think that M 1, M 2 and M 4 are better than 
MJ? Test the significance of a1 + a2 - 2a4. 

Solution: We have ni = 5, n2 = 7, n3 = 4, n4 = 6, n = l:n; = 22, G = LLY·i.i = 2232, 
a 2 (22321 2 

C.T. = n- = 22 = 226446.545. 

SS (total)= L LYtJ - C.T. = 227466 - 226446.545 = 1019.455 

SS (maize) = ~ y'f. - C.T. = (490)
2 

+ (752)
2 

+ (372}
2 

+ (618)
2 

- 226446.545 
L...-n; 5 7 4 6 
i=l 

SS (error)= SS (total) - SS (maize)= 1019.455- 609.741 = 409.714. 

ANOVA Table 

Sources of d.f. SS MS= SS 
d.f. 

F Fo.05 Fo.01 ?-value 

Variatio11 

Maize 3 609.741 203.247 8.93 3.16 5.09 < 0.01 

Error 18 409.714 22.762 

Total 21 

Ho : The maize varieties are similar, HA : The maize varieties differ significantly. 

Since F = 8. 93 is greater than both F0 .05 and F0 .01 , the maize varieties differ highly 
significantly. 

All the maize varieties are not similar. However, some varieties may be similar and they 
can be grouped accordingly by Duncan's multiple range test. The test is 

where n H is the harmonic mean of n; 's, and s2 is the error mean square. 

We have nH = 5. 

D = 2 J22.762 D· = 3 2J22.762 
2 .97 5 , 3 .1 5 , 

= 6.34. = 6.66. 

The means in ascending order are : 

D4 = 3.21J22.:62 

= 6.85. 

M 3 = 93.00, M 1 = 98.00, M4 = 103.00, M2 = 107.43. 
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M 2- - M 3 = 107.43 - 93.00 = 14.43 > D4 , •• the maize vari<'tieR ar0 <lilfcrC'nt. 

M 4 - M 3 = 103.00 - 93.00 = 10.00 > D3, .. M 3 and M 4 arc difforcnt. 

M 2 - Mi= 107.43 - 98.00 = 9.43 > D3 , •• /111 and .'12 ar0 <liffr·~0nt. 

Mi~ M3 = 98.00 - 93.00 = 5.00 < D2, .. Mi and M3 are similar. 

M 4 - Mi= 103.00-98.00 = 5.00 < D2, .. M1 ~nd M4. are similar. 

M 2 - M 4 = 107.43- 103.00 = 4.43 < D 2 , .. M2 and M4 are similar. 

Similar varieties are grouped giving underline below the varieties, 

M3. Mi, M4. M2 

Since M 3 is cultivated previously also, it is considered as control treatment. Other varieties 
are compared with M 3 by Dunnett's test, where the test statistic is : 

fii2 J2 x 22.762 
D = dn,k-i.ty-;;-;; ,= 2.59 

5 
= 7.82. 

Mi - M3 = 98.00- 93.00 = 5.00 < D, .. Mi and M 3 are similar. 

M2 - M 3 = 107.43- 93.00 = 14.43 > D, .. M 2 is better than M 3. 

M 4 - M3 = 103.43 - 93.00 = 10.00 > D, .. M 4 is better than M 3 . 

We need to test the significance of Ho : ll'i + 0'2 -- 20'3 = 0, I: ciCl'i = 0, Ci = 1, C2 = 1, 
C3 = -2 against HA : ll'i + 0'2 - 20'3 "I 0. 

The estimate of the contrast is 'fh. + 'fh. - 2'fh = -0.57. 

The test statistic is : t = I L ci&i I 
Js2L:~ 

0.57 
--;::====== = 0.12. 
J22.762 (! + t - ~.) 

Since to.os, is = 2.101 > t, Ho is accepted. The contrast is insignificant. 

2.2 Two-Way Classification 
Let there be pq observations Yi.i (i = 1, 2, ... ,p; j = l, 2, ... , q) which can be classified into 

two broad classes according to factors A and B, where A has p levels and B has q levels. The 
classified observations can be shown as follows : 

~ Bi B2 ... Bi . .. Bq Total Mean 

Yi· '!};. 

Ai Y11 Yi2 ... YiJ ' .. Yiq Yi· '!h 
A2 Y21 Y22 ... Y21 . .. Y2q Y2· '!h 

. '. . . . '' . ' .. . . . . . . . .. . .. 
A; Y;i Yi2 . . . Yi1 ... Yiq Yi· Th 

. . . . . . . . . . . . . . . . .. . . . . .. 
AP Ypi Yp2 ... YpJ . .. Ypq Yp· Yp· 

Total Y-J y i Y·2 . . . Y-J ... Y·q 

Mean y'l '!J. i '!J.2 ... '!J.1 . .. '!J.q G=y .. '!J .. 

D.E.S.M.-3 
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If the levels of A are similar, the means y1., y2 ., ... , Yp· are expected to be homogeneous. 
Similarly, if levels of B are similar, the means y. 1 , y. 2 , ... , Y.q are expected to be homogeneous. 
The differentials in levels of A and in levels of B lead in variations of means of Yh and 
Y·:i (i = 1, 2, ... , p; j = 1. 2, ... , q). Therefore, the total variation in YiJ observations is expected 
to be due to two identified sources A and B except the variations within the observations of A; 
and within the observations of B1 for all values of i and j. Hence, the analysis of variance of 
the aforesaid pq observations is known as two-way classification. 

Model for Two-Way Classification : The linear model for Yi.i observations is assumed 
to be 

YiJ = µ;,; + e;1 = µ + (µ;. - µ) + (µ.J - µ) + (µ;J - µ;. - µ.J + µ) + e;1 

=µ+a;+.81+(a,B);j+e;1; i=l,2, ... ,p; j=l,2,. .. ,q. 

Hereµ= general mean, a; = effect of ith level of A, ,81 = effect of jth level of B, (a,B);,; = 
interaction of ith level of A in presence of jth level of B and eij = random error. 

Interaction : The term (µ;,; - µi. - µ.1 + µ) is known as interaction. 

Here µij - µi. is the difference in the mean yield of ith level of A in presence of jth level 
of B and the mean yield of ith level of A. Again, µ'1 - µ is the difference in the mean yield 
of jth level of B and overall mean. The former difference measures the amount of mean yield 
over mean yield of ith level of A and the latter difference measures the mean yield of jth level 
of B over grand mean. Therefore, the interaction (P,;1 - µ;. - µ.1 + µ) measures the mean yield 
of ith level of A in presence of jth level of B over the influence of jth level of B. 

Since we have only one observation corresponding to ith level of A; corresponding to jth level 
of B1, we cannot estimate the parameter (a.B)iJ from these pq observations. Thus, the model 

YiJ =µ+a, + .81 + (a,8);1 + eiJ 

is not additive. That is YiJ observation is not obtained by adding all the impacts and eij· 
The model is called non-additive. Here the estimate of (a.B)iJ and e;j are same. Therefore, to 
analyse the data we need an additive model which is as follows : 

YiJ = µ + ai + .Bi + e;j; i = 1, 2, ... ,p; j = 1, 2, ... , q. 

In matrix notation the model is 

Y=X,B+U, 
1 1 0 0 1 0 0 0 
1 1 0 0 0 1 0 0 

Yll 

Y12 1 1 0 0 0 0 0 1 
1 0 1 0 1 0 0 0 

Y1q 1 0 1 ... ' 0 0 1 0 0 

where, Y = ,X= 

Ypl 1 0 1 0 0 0 0 1 

Yp2 
1 0 0 1 1 0 0 0 
1 0 0 1 0 1 0 0 

Ypq pqxl 

1 0 0 1 0 0 0 1 pqxp+q+l 
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µ en 

CX1 
e12 

cx2 

e1q 

f3 = CXp u-' -
!31 ep1 
!32 ep2 

{3q (p+q+l)xl epq pqX·l 

The first column of X matrix is the sum of last q columns or the sum of the p columns after 
first column. So first column depends on other columns. Second column is the sum of last q 
columns minus the sum of the (p - 1) columns preceding the last q columns. Therefore, two 
columns of X matrix are dependent. Hence the rank of X matrix is (p + q + 1 - 2) = p + q - 1. 

Assumptions : e;1 ,....., NI D(O, a 2 ) 

Restriction : L: CXi = 0, L: !3i = 0 
The normal equations to estimate the parameter vector are : 

It gives pqji, + q L Q; + p L /Ji = y .. 

qfi, + QQ; + L:f31 =Yi· 

pfl, + L Qi+ Pfi1 = Y·J· 

X'X/J = X'Y. 

(21) 

(22) 

(23) 

Since the rank of X matrix is (p + q - 1), (p + q - 1) equations out of (p + q + 1) equations are 
independent. Thus, to get the unique solution of these equations we need to put two restrictions. 
The restrictions are L: Qi = 0, L: /31 = 0. Under the restrictions the estimates are 

µ = 'fi.., Qi= 'fh - 'fi.., f31 = 'fi.1 -'fi .. 

These three groups of estimates are independent. It can be shown by partitioning the 
coefficient matrix of the reduced normal equations as follows : We have 

p-1 q-1 

L Q; = 0 => O:p = - L Qi' and L:/31 = o => fiq = - I: f31'· 
i'=l j'=l . 

We have qji, + QQp = Yp.. pfl, + pf3q = Y·q• y .. = pqfl,. (24) 
p-1 

Also qfl,-qLQ;1 =Yp· (25) 
i'=l 

q-1 

pµ - p L f3j' = Y·q· (26) 
j'=l 

p-1 

· (22)-(25) gives qQ; + q L Q;• = y;. - Yp·. (27) 

q-1 

(23)-(26) gives pf31 + p L /311 = Y-J - Y·q· (28) 
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The coefficient matrix of equations (24), (27} and (28} is written as under : 

pq 0 0 0 0 0 0 

0 2 1 1 0 0 0 
0 1 2 1 0 0 0 

0 0 0 0 2 1 1 
0 0 0 0 1 2 1 

0 0 0 0 1 1 2 

Since the coefficient matrix of the reduced normal equations (24), (27) and (28) can be 
partitioned into 3 parts, the three groups of estimates fl,, &; and Si are orthogonal. The sum 
of squares due to these estimates are also independent. The sum of squares due to estimates is 

S 1 X'Y = [fl,&1&2 ... &pS1S2 ... Sq] Yp· = fl,y .. + L &;y;. + L S1Y·j 

Y·l 
Y-2 

Y·q 

-2 "'"""(- - )2 "'"""(- - )2 = pqy . + q ~ Y; - Y.. + P ~ Y-.i - Y .. 

= S1 + S2 + S3. 

This sum of squares has (p + q - 1) d.f. The sum of squares due to error is : 

S4 =SS (error) = Y'Y - S' X'Y = L LYT1 - pqf/ - q L(Y;. -'fj .. )2 
- p L(Y.J - 'fl )2 

= L L(Yi.i -Tk -'Il.7 + JJ . .)2. 

This S 4 has (pq - p - q + 1) = (p - 1) ( q - 1 ) d. f. 

Under assumption the SS(&i) = q'f:.(yi· -y.)2 is distributed as x2a 2 with (p-1) d.f. This 
can be shown as follows : 

Eq "£('fl;. - 'fl .. )2 = Eq L(ai - a+ e;. - e .. )2 

= q L -E[a? - e?. + e~ - 2e;.e .. + 2ai(ei. - e .. )] [·: La;= O] 
i 

a 2 a 2 2pqa2 
= qLa2 +q2.:-+q2.:- - --

' iq pq pq 

= q La; + pa2 + a 2 - 2a2 = (p - 1 )a2 + q La;. 

If o:; = 0, Eq 'L,(yi· - 'fl . .)2 = (p - 1 ). 
a2 

Therefore, q"£(yi· -'fl .. )2 is x2a 2 with (p-1) d.f., if a,= 0. 
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Similarly, p L:Oh - y.,)2 is x2u 2 with (q - 1) d.f., if (3; = 0. 

Also I: L(Yi.i -Ti,. - fj,.i + Y. )2 is x2u 2 with (p ~ l)(q - 1) d.f. , 
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By Cochran's theorem all these sum of squares are independently distributed as x2
. 

Therefore, to test the null hypothesis Ho : Qi = 0, against HA : Q; i= 0, the test statistic is : 

"F _ S2/P - 1 
i - S4/(p - l)(q - 1) 

This F is distributed as variance ratio under null hypothesis with (p - 1) and (p - 1 )( q - 1) 
d.f. The non-null distribution of F is noncentral F, where the non-centrality parameter is : 

Therefore, if Fi ~Fa; (p-i),(p-i)(q-iJ, Ho is rejected. The test statistic for the null hypothesis 
Ho : f3.1 = 0, against HA : (31 i= 0 is : 

· S3/q-l 
Fz = -...,.---...,..----

S4/ (p - l)(q - 1). 

Under H 0 this F is distributed as central variance ratio distribution with (q - 1) and 
(p - l)(q - 1) d.f. The non-null distribution of F2 is non-central with noncentrality parameter 

Az = 2:2 L f3.T· 

The null hypothesis is rejected if F2 ~Fa; (q-i),(p-i)(q-i) or P-value for F2 :::; 0.05. 

ANOVA Table 

Sources of d.f. SS MS= SS 
d.f. 

F E(MS) P-value 

Variation 

A p-1 S2 
8z 0"2 + _q_L:a2 l~ f(F)dF 82 Fi= -
84 p-1 ' 

B q-l S3 
83 

0"
2 
+ q ~ 1 L: f3J 100 

J(F)dF 83 Fz = -
S4 F2 

Error (p-l)(q-1) S4 84 0"2 

Total pq- 1 

The rejection of Ho : Q; = 0 leads us to compare any two leyels of A. For this, the null 
hypothesis is 

Ho: Qi= Qi', against HA: Q; i= Q;', ii= i' = 1, 2, ... ,p. 

Here Ho implies that Qi -·Qi' = 0. It is a contrast and its estimate is Yi· -y,,_. The variance 
of this estimate is : 

u2 u2 20"2 
=-+-=-

q q q ' 

where 84 is the estimate of u 2. 
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Therefore, all pairs of Ai can be compared with 

{2Si 
C.D. = tt.(p-1)(q-1Jy q' 

where t'i,(p-l)(q-l) is the tabulated value oft at a% level of significance with (p- l)(q - 1) d.f. 
Similarly, CD to compare all pairs of f3J is : 

{2Si 
C.D. = tt.<v-l)(q-lJ y -:p· 

The significance of the contrasts E ciai and E d1{31 , where E Ci= 0, E d.i = 0 can also be 
tested. The test statistics for these two contrasts are : 

l:d/ii.j 
and t = respectively. 

I !ti ""'d2 v p ~ .7 

Here E ci'fh is the estimate of E Cic:Yi. and E d/fj-J is the estimate of E dif3J. The variances 
·of these two estimates are : 

V (Lci'fh) = :
2 

I:c~ and V (LdiY .. i) = :
2 

LdJ. 

Example 2.2 : To identify a quality car in respect of minimum petrol consumption 20 cars 
of 5 companies are kept under hvestigation. Each company has 4 cars each of which runs for 
different. time period. The ciistance [kilometre per litre] covered by car are shown below 

1 Time period The distances covered by cars, YiJ (kilometre per litre) 

of running Company 

(in year) A B c D E Total Yi· Mean 'fh 

4 10.5 9.2 9.0 9.2 11.6 49.5 9.9 
3 10.0 8.0 8.5 8.5 11.6 46.6 9.32 
2 8.0 7.5 6.0 8.0 10.0 39.5 7.9 
1 8.2 7.0 6.5 7.0 9.0 37.7 7.54 

Total Y·J 36.7 31.7 30.0 32.7 42.2 173.3 8.665 

Mean y.1 9.175 7.925 7.5 8.175 10.55 

(i) Analyse the data and identify the best company in respect of distance covered per litre. 

(ii} Does the mean distance increase with the increase in running time compared to the 
running time of four years? 

' • • - - _ _ _ G 2 _ (173.3) 2 
_ Solution. (1) Here p - 4, q - 5, G - y .. - 173.3, C.T. - -;q - 4x 5 - 1501.6445. 

SS (Total) = LL Y?1 - C.T. = 1546.89 - 1501.6445 = 45.2455. 

SS (T. . d) I: y'f. c 7603.35 nne per10 = - - .T. = - 1501.6445 = 19.0255. 
q 5 

( ) 
~ y~ 6101.91 

SS Company = ~ P - C.T. = 
4 

- 1501.6445 = 23.833. 
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SS (Error) =SS (Total) - SS (Time period) - SS (Company). 

= 45.2455 - 19.0255 - 23.833 = 2.387. 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F 

Time period 3 19.0255 6.34183 31.88 

Company 4 23.833 5.95825 29.96 

Error 12 2.387 0.1989 

Total 19 

39 

Fo.05 Fo.01 

3.44 5.95 

3.26 5.41 

Since F1 = 31.88 is greater than both Fo.05 and Fo.01, the differences in petrol consumption 
in respect of time period are highly significant. Again, F2 = 29.96 is greater than F0 .05 and 
Fo.Ol · The cars of different companies arc highly significantly different in respect of distance 
covered per litre. 

To identify the best company, we can use Duncan's multiple range test, where the test 
statistic is 

D ~ 3 08 J0.1989 
2 . 4 , 

= 0.687 

Di = da if fFI., i = 2, 3, 4, 5; f = 12. " v p 

D3 = 3.23J0.1:89, D4 = 3.33J0.1:89, 

= 0.720 = 0.742 
The means related to different companies in ascending order are : 

D5 = 3.36J0.1:89 

= 0.749 

C = 7.5, B = 7.925, D = 8.175, A= 9.175, E = 10.55. 

E - C = 10.55 - 7.50. = 3.05 > D5, 

A - C = 9.175 - 7.50 = 1.675 > D4, 

E - B = 10.55 - 7.925 = 2.625 > D4, 

A- B = 9.175- 7.925 = 1.25 > D3, 

D - C = 8.175 - 7.50 = 0.675 < D3, 

E - D = 10.55 - 8.175 = 2.375 > D3, 

A - D = 9.175 - 8.175 = 1.00 > D2, 

E - A= 10.55 - 9.175 = 1.375 > D2 , 

.. 

.. 

.. 

.. 

.. 
. 
.. 
.. 

the means arc different . 

A and C are different . 

B and E are different . 

A and B are different . 

D and C are not different . 

D and E are different . 

A and D are different . 

A and E arc different . 

The underlined means are not significantly different. 

C,B,75,A,E 

It is observed that the company E is best in preparing car which needs minimum petrol. 

(ii) We need to compare A2, A3 and A4 with A 1 • This -is done by Dunnett's test, where the 
test statistic is 

D = da,k-1.f~• where k - 1 = 3, f = 12 

= 2.12J2 x 0/989 = 0.767. 
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IA4 - A31 = 19.9 - 9.321 = 0.58 < D, Ai and A2 arc not different. 

IA4 - A2I = 19.9 - 7.001 = 2.00 > D, Ai and A3 are different. 

·IA4 - Ail= 19.9 - 7.541=2.36 > D, Ai and A4 are different. 

There is an increasing trend in petrol consumption with the increase in time period except 
the time period of three years. 

2.3 Two-Way Classification with Several (Equal) Observations Per 
Cell 

We have considered two-way classification with one observation corresponding to ith level 
of A and jth level of B. Now, let us consider that there are r observations of ith level of A 
corresponding to jth level of B. Let Yijl (i = 1, 2, ... ,p; j = 1, 2, ... , q; l = 1, 2, ... , r) be the 
yield of lth replication of jth level of B corresponding to ith level of A. The model for this Yi.ii 
observation is : 

Yijl = µ + O:; + {3j + ( a{3)ij + Eijl, 

·where µ = general mean, a:; = effect of ith level of A, {3.i = effect of jth level of B, (af3)i.i = 
interaction of ·ith level of A with jth level of B and e;11 = random error. 

Restriction for the model : La; = L f31 = L(a{3);1 = L(a{3),J = 0 . 
.i 

Assumption : Eij! rv NI D(O, a.2 ). 

The estimated error sum of squares in analysing the data can be written as 

The normal equations to find the values ofµ, &;, eJ and (ae);1 are : 

8¢ . """'"' . """'"' . "" "" . aµ = 0 => y ... = pqrµ +qr~ Q:; +pr~ {3.i + T' ~ ~(a{3)ij (29) 

8cf> • • "" • "" • a& = 0 => y; .. =qrµ+ qrn; + r ~ !31 + r ~(af3)ij 
' j 

(30) 

8cf> • "" • ' "" • -. = 0 => Y·j· =prµ+ r ~a;+ pr{31 + r ~(a{3);1 
8f31 i 

(31) 

8¢ . . . . 
----..,..- = 0 => Yii· = rµ + rn; + r{3.i + r(a{3)iJ· 
8(a{3) 0 . 

(32) 

There are pq equations shown by (32). Adding both sides of these equations over suffix j, 
we get the equations shown in (30). If equations in (32) are added over suffix i, we get the 
equations shown in (31) and adding both sides of the equations shown in (32) over suffix i and 
j, we get the equation as shown in (29). There are (pq+p+q+ 1) equations. But except last pq 
equations all other equations are dependent on pq equations shown in {32). Hence, to get the 
unique solution of these equations we need to put (p + q + 1) restrictions. The restrictions are : 

j 

Under the restrictions, the estimates are : 

P. = fi ... , &; = fi; .. - fi ... , e1 = fi.1. -fi .. ,, (a:~);j = Yij - fi; .. - fi.1. + fi .. 
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These estimates are orthogonal as shown below : 

Cov(&i,~J) = Cov(11; .. -11 ... ,11-1- -11 ... ) 

= Cov(11i .. , 11f) - Cov(11 ... , 11.1.) - Cov(11; .. , 11 ... ) + V(y ... ) 

nr2 prcr2 qrcr2 cr2 

= -- - -- - -- + - = o. 
qr pr pqr pr qr pqr pqr 

Similarly, all other estimates can be shown orthogonal. 

The total sum of squares of the observations Yi.ii can be partitioned as follows : 

LLL(Yijl -11 ... )
2 

= LLL[(yi .. -11 ... ) + (Yj· -11 ... ) 

+ (11ij· -11; .. - YI+ 11 ... ) + (Yiil -11ij·)]2 

=qr L(11i .. -11 ... )2 +pr L(Y-J· -11 ... )2 

+ r L L(11ij· - 111 .. - 11-J- + 11 .. f· +LL L(Yijl - Yij.)2 · 

The other cross-product terms are zero, thus, we have 

SS (total) =SS(&;)+ SS(~j) + SS(&/3);j +SS (error) 

= SS(A) + SS(B) + SS(AB) +SS (error)= S1 + S2 + S3 + S4. 

Under assumption on error variance all these sum of squares are distributed as x2u2 with 
. different d.f. The d.f. of sum of squares are found as follows : 

E(Si) = Eqr L(11; .. - 11 .. .)2 = Eqr L(ai + e; .. - e ... )2
' 

... L:: a;= L:: /31 = o, L:<af3)ij = o 

=qr L:: a;+ qr L:: ee;.2 ~qr L:: ee~. - 2qr L:: ee; .. e ... + 2qr L:: ai(e; .. - e ... ) 
(12 (12 (12 

= qr La? + qr L - + qr L - - 2pqr-
i qr i pqr pqr 

= qr L a? + pcr2 + cr2 
- 2cr2 = (p - 1 )cr2 + qr L a?. 

If O:i = 0, E(Si) = Eqr 2J11i .. 
2 

- 11 ... )
2 

= p - 1. 
(1 

Therefore, qr EOh. - 11 ... )2 is central x2.cr2 with (p - 1) d.f., if a; = 0, otherwise S1 is non
central x2. Similarly, we can show that S2 and S3 are distributed as noncentral x2 with (q-1) 
and (p - 1 )( q - 1) d.f., respectively. The sum of squares S2 follows central x2 , if /31 = 0 and 
S3 follows central x2 , if (a/3)iJ = 0. The error sum of squa~es (S4) is distributed as x2u2 with 
pq(r - 1) d.f. 

The objectives of the analysis are to test the hypothesis 

(i) Ho : ai = 0, against HA : a; i= 0 

(ii) Ho : /31 = 0, against HA : /31 f= 0 

(iii) Ho : (a/3)ij = 0, against HA: (a/3)ij i= 0. 

The test statistic for Ho (i) is F 1 = ///(~ - l)). 
4 pq r- l 
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Undei; Ho, Fi follows central variance ratio distribution with (p - 1) and pq(r - 1) d.f. 
Under alternative hypothesis F1 follows noncentral F-distribution with noncentrality parameter 
>.1 =~Ea{. If F1 ;:::: Fa;(p-I),pq(r-l)' Ho is rejected. The test statistics for Ho (ii) and Ho 
(iii) are : 

d 
F S3/(p - l)(q - 1) 

an 3 = S
4
/pq(r _ l) , respectively. 

The conclusion will ~e drawn similarly as it is drawn for Ho (i). 

~ere also F2 and F3 are noncentrai F-distribution with noncentrality parameter 

>.2 = ;;2 L /3] and >.3 = 
2
: 2 L L ( a/3)ri, respectively 

under alternative hypothesis. 

ANOVA Table 

Sources of d.f. SS MS= SS 
d.f. 

F E(MS) 

variation 

A p-1 S1 
S1 S1 a2 + _!!!_ L a2 S1=-- Fi=-

p-1 84 p - 1 i 

B q - 1 S2 
S2 F2 = 82 a2 + __.!!!:___ L 132 82=--

q-1 84 q - 1 J 

AB (p-l)(q-1) S3 
S3 83 2 r . LL 2 S3 = FJ=- a + (p - l)(q - 1) (a/3)ij (p-l)(q-1) 84 

Error pq(r - 1) S4 
S4 a2 84 = -

pq(r - 1) 

Total pqr -1 

If necessary, the pairwise comparison of the levels of Ai, B1 and (AB)iJ are performed using 
Duncan's r.mltiple range test, where the test statistics ar ~ : 

where i = 2, 3, ... ,p; j = 2, 3, ... , q; k = 2, 3, ... ,pq, f = pq(r - 1). 

The significance of the contrast E Ciai, wher~ EC; = 0 is tested by the test statistic 

t = l::C;1/; ... 

J84L~ 
This t follows Student's t distribution with pq(r - 1) d.f. If ltl ;:::: t~.pq(r-I)> Ho : E Cio:i = 0 is 
rejected. The test statistic for Ho : E dj/3j = 0, where Edi = 0 is 

t _ E d/g-j· 

- J84L~· 

This t also is distributed as Student's t distribution with pq(r - 1) d.f. The inference will be 
drawn in similar way as it is done in the previous case. 
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Example 2.3 : The following data represent the birth-weight (in lb) of some new born 
· babies of different mothers. The babies arc classified according to gestation period· (in days) 

and according to pre-natal care of mothers. 

Birth-weight (Yijl) 

Gestation period B : pre-natal care of mothers Total Yi·· Mean 'fit.. 
of mothers A : 

(in days) 
Not at All Irregular Regular 

< 240 5.8,6.0,5.7 . 5.9,5.9, 6.0 6.0,6.1, 6.4 53.8 5.98 

240-250 6.0,6.2,5.8 6.4,6.3,5.9 6.8,6.2, 6.0 55.6 6.18 

250-260 6.4,5.9,6.0 6.6,5.8,6.2 6.8,6.8,7.0 57.5 6.39 

260+ 6.0,6.0,6.2 6.8,6.2,6.6 7.2,7.5,7.4 59.9 6.66 

Total Y·J· 72.0 74.6 80.2 226.8 6.30 
mean y-1- 6.0 6.22 6.68 

(i) Analyse the data and comment on the significance of the gestation period and pre-natal 
care of mothers. 

(ii) Is there any difference in the mean birth-weight of babies due to the variation in pre-natal 
care of mothers? 

(iii) Is there any difference in the mean birth weights of babies born after gestation period of 
260 days compared to those who have been born within 250-260 days? 

Solution : (i) Here p = 4, q = 3, r = 3, G = 226.8. 

C.T. = a2 = (226.8)2 = l428.84 
pqr 4.x3x3 

SS(Total) = LLLYl11 - C.T. = 1436.56-1428.84 = 7.72 

The Yi]· observations are :. 

I;\ Bi B2 83 

Ai 17.5 17.8 18.5 
Az 18.0 18.6 19.0 
A3 18.3• 18.6 20.6 
A4 18.2 19.6 22.1 

SS(A) = LY?. - C.T. = 
12

:
80

·
06 

-- 1428.84 = 2.2778. 
qr x 3 

SS(B) = L Y2i. - C.T. = 
1718

1.2 - 1428.84 = 2.9267. 
pr 4 x 3 

SS(AB) = L LY?j. - C.T. - SS(A) - SS(B). 
r 

430
:·

32 
- 1428.84 - 2.2778 - 2.9267 = 1.0622 
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SS (Error) = SS (Total) - SS(A) - SS(B) - SS(AB) 

= 7.72 - 2.2778 - 2.9267 - 1.0622 = 1.4533. 

ANOVA Table 

Sources of d.f. ·SS MS= SS 
. d.f. 

F F'.o5 
variation 

.A 3 2.2778 0.7593 12.54 3.01 
B 2 2.9267 1.46335 24.17 3.40 

AB 6 1.0622 0.1770 2.92 2.51 
Error 24 1.45J3 0.06055 - -

Total 35 

F'.01 

4.72 
5.61 
3.67 
--

It is observed that the mean birth-weights of babies vary highly significantly due to the 
variation in gestation period, since F1 = 12.54 is greater than Fo.05(Ho : O:'i = 0) and Fo.oI· 
Highly significant variation in mean birth-weights is also observed due to the variation in 
mothers' pre-natal care (Ho: B1 = 0), since F2 = 24.17 is greater than both Fo.05 and Fo.01. 
With the increase in gestation period and simultaneously increase in the level of pre-natal care 
significant increase in mean birth-weight is also observed, since F3 = 2.92 > Foo5(Ho: (a/3)i1 

= 0). 
(ii) We need to compare the mean birth-weights due to pre-natal care of mothers. This can 

be done by Duncan's multiple range test, where the J;est statistic is : 

. !TI 
D; = da,j.J y ]J'r, j = 2,3; O:' = 0.05, f = 24 

D2 = 2.95 0.06055 = 0.209 D3 = 3.10 
4x3 ' 

0.06055 = 0.220. 
4 x 3 

The me~ns in ascending order are B1 = 6.0, B2 = 6.22, B3 = 6.68. 

B3 - B 1 = 6.68 - 6.00 = 0.68 > D3, :. the means B1 and B3 are different. 

B2 - B 1 = 6.22 - 6.00 = 0.22 2'. D2, •. B1 and B2 are different. 

B$ - B 1 = 6.68 - 6.22 = 0.46 > D2 , •• B 1 and B3 are different. 

All the three means are significantly different. 

(iii) We need to test Ho : 0:'3 = 0:'4, against-HA : 0:'3 -1- a4. 

The test statistic is t = 'ih~4 
.. = 6

·
39 

-
6

·
66 

= -2.33. 
~ . /2x0.00055 
qr V 3x3 

Since !ti > to.025,24 = 2.064, Ho is rejected . 

. 2.4 Two-Way Classification with Several (Unequal) Observations Per 
Cell 

The linear model for this analysis is 

Yijl = µ :'- a; + /31 + ( a/3)ij + e;11, 

i = 1,2, ... ,p; j = 1,2, ... ,q; l = 1,2, ... ,nij, 
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whereµ= general mean, <l'i = effect of i-th level of A, f3J = effect of j-th level of B, (af3)iJ = 
interaction of j-th level of B with i-th level of A, eijl = random error. The model in matrix 
notation ignoring the interaction term (0:{3);1 is : 

where 

Y=XB+U, 

Y= 

Y111 

¥112 

Y11n11 

Y121 

Y122. 

Y12n12 

Ypql 

Ypq2 

,x~[ 
1100 ... 0100 ... 0 
1010 ... 0010 ... 0 
1001 ... 0001 ... 0 
..................... 
1000 .. · 100 .. · 1 

B = [µ a1 a2 · · · o:P f31, f32 · · · {3q]', 

U = [e111 e112 · · · e11n 11 • • • Cpq1 epq," · · epqn,,q]' 

Here 1=[11···1]', i=l,2, ... ,p; j=l,2, ... ,q 

L.+o+JJ 

There are niJ elements in I corresponding to i-th level of A and j-th level of B. The elements 
are 1. The model is also written : 

YiJl =µ+et:;+ f31 + eiJI· (33) 

The assumption for analysis of the data is ei.il "' NID (0, a 2 ). The model with interaction will 
be analysed separately. Here 

n = LL>iJ = LN;. = LN.1. 
J 

Theorem: Rank of Xis p + q - 1. 

Proof : The first column of X matrix is equal to the sum of last q columns and second 
column is the sum of last q corumns minus the sum of (p - 1) columns preceding the last q 
columns. T-herefore, 

r(X) :::; p + q - 1. (34) 
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Let us construct a matrix X 1 taking first element of each of I in different rows, where X 1 
matrix is 

1 1 O· · ·O 1 0 O· .. 0 
1 1 O· · ·O 0 1 O· .. 

............ 
1 1 O· · ·O 0 0 ... 1 
1 0 l· .. 0 1 0 ... 0 
1 0 1· .. 0 0 1 ... 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 

X1 = 1 0 1· .. 0 0 0 1 ... 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 
1 0 ... 1 1 0 ... 0 
1 0 ... 1 0 1 ... 0 

1 0 1 0 0 ... 1 
pqx(p+q+l) 

This X1 matrix is similar to X matrix in section (1.14). Hence, its rank is (p + q - 1). Since 
X 1 matrix is formed with rows of X matrix, 

r(X) "2 p + q - l. (35) 

l<rom (34) and (35), it can be concluded that r(X) = p + q - l. 

Since ~he rank of X is p + q - 1, there will be p + q - 1 linear independent estimable functions. 
·The estimable functions are defined under an assumption on observations. 

Assumption : The nij values are such that for all i =/= i' = 1, 2, ... , p; j =/= j' = 1, 2, ... , q 
o:; - o:;' and (31 - (31' are estimable. 

The estimates, of parameters or parametric functions are obtained by minimizing the 
estimated error sum of squares, 

The normal equations are : 

Yi .. = N;.P, + N;.ii; + L n;1f31 
j 

Y·J· = N..iP, + L nijiii + Nj3j 

(36) 

(37) 

(38) 

Since rank of X is (p + q - 1), all the normal equations are not independent. Two of them 
are dependent. Hence, to get the estimates of the parameters we need to put two restrictions. 
However, the restrictions is also not sufficient to estimate the parameters. 

The estimate of o:; is to be found out eliminating the effect of (31 and the estimate of f3J is 
to be found out eliminating the effect of o:;. Due to unequal observations the treatment effect, 
say f31 is entangled with block effect, say O:i· To estimate the adjusted block effect or adjusted 
treatment effect we need to discuss some. theorems : 
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Theorem : If the nij values for the 1~odel(33) · ar~ such that for all i "I- ·i' = 1, 2, , .. , p and 
for all j "I- j' = 1, 2, .. ., q, (ai - ai') and (,81 - ,BJ') are estimable functions, then there are 
(i) exactly (p + q - 1) estimable functions, and (ii) if ECi = 0 and Ed1 = 0, then ECiai and 
Ed1,B1 are estimable functions. . 

Proof: (i) There are (p + q + D normal equations as shown in equations (36), (37) and 
(38). The estimates of the estimable functions are to be found out from the normal equations. 
Since rank of X matrix is (p + q - 1), there are exactly (p + q - 1) independent equations and 
therefore, (p + q - 1) estimable functions .. The estimable functions are ~l - a2, a1 - a 3, , . , , 
a1 - ap; .81 - ,82, .81 - ,83, , . , , f31 - {3q and nµ +I: Ni.ai +I: Nj,Bj. 

(ii) Under assumption mentioned above, ai ~ ai' is estimable and its any linear function is 
also estimable. Thus, 

is also estimable. We have 

1 p 1 p 1 p -1 1 p 1 
- L (ai-ai 1 )=- La;-.:.. L ai1 =-P-ai--Lai+-a;='=ai-a, 
p i'#i=l p i'#i=l p i'#i=l p p i=l p . 

Hence, (ai - a) is estimable. Therefore, I: Ci(ai - a) = I: C;ai is also estimable, since 
,Eci = o. 

In a similar way, it is possible to show that I: d1,Bj is also estimable, 
Let us now discuss the procedure to estimate the contrasts of ,81. We have fr~ni equation (37) • \ 

.. 

(39) 

where Q '""' niJYi,, d 
j = Y·1· - ~ ~ = a justed total of j-th treatment, 

i 

The equation (39) is written as 
C/3 = Q. (40) 

Th,e problem of the analysis is to test the null hypothesis : 
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To test the significance of this null hypothesis we need to find the solution of reduced normal · 
equations as shown in (40). The solution of the equations is available if C matrix is of full 'rank. 
Let us investigate the rank of C matrix. 

Theorem : Rank of C matrix is ( q - 1). 
Proof: The estimable function is {31 - {31' and there are (q - 1) such estimable functions. 

These estimable functions are estimated from the reduced normal equations. ThereforP, the 
rank of C matrix must not be less than q - 1. That is 

r(c) 2: q - 1 

Again, adding the columns of C matrix, we get 

~ ~ "' n~j "' "' nij nis 
":1J + L.J Cjs = N.j - L.J N + L.J L.J ~ 

s#j i •· i s#j " 

q 

"' "' nijnis = NJ - L.J ~ ~ = N.1 - Ni = 0. 
i s=.i=l i· 

( 41) 

This means that at least one column of the C matrix is dependent on other columns. Therefore, 

r(C) -:::; q - 1. ( 42) 

From (41) and (42), we can say that r(c) = q - 1. 

Since rank of C is (q- 1), where C is a q x q matrix, the unique solution of equation (40) is 
not available. To get the unique solution we need to put one restriction, where the restriction 
is L ~j = 0 or I'~ ~ 0, when I is a vector with all elements unity. Also, we can write : 

(~ ~)(~)=(~) 
or, C*{3* = Q*, (43) 

where c• matrix is of order (q + 1) x (q + 1) and the rank of C* is (q + 1). Therefore, 

13• = c·-1q· 

Let c•-1 = [Bu 
B21 

B12] 
B22 

. (~) = [ Bi1 B12] [~]. 0 B21 B22 

.. ~ = BuQ . 

Here the elements of c•- 1 are such that 

(i) B21 .and B22 have all elements ~' (ii) B22 = 0, (iii) BuCBn =Bu. 

(iv) CB11 is an idempotent matrix with rank q - 1. The diagonal elements of CBu are 
(q - l)/q and off-diagonal elements are -~. · 

Theorem: (i) E(Q) =CB, (ii) V(O) = Ca2 • 

Proof: (i) Since CS= Q is the reduced normal equations and Sis u'ubiased estimates of {3, 

E(Q) = E(C~) = C{3. 
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.. ~ n,.iYi·· 
(u) QJ = Y.i - ~ -N· ,. 

' 
We have V (y; .. ) = N;.a2

, Cov (Yi·· Yi' .. ) = 0, i -=J i' 

Cov(Yi··, y.,j-) = n;ja2 

( 
~n;7Yi··) 2 2 Cov(y; .. , Q.i) = Cov Yi , Y·.i - ~ N;- = ni.ia - n;ja = 0. 

Similarly, it can be shown that 

Cov (Qj, Qs) = a 2Cj 8 , j -=J s, V(Q) =Ca2 . 

Theorem : V (~) = a 2 B11 , where ~ = B11 e. 
Proof: V(~) = E[~ - E(~)][~ - E(~)]' 

= E[B11Q - B11E(Q)][B11Q- B11E(Q)]' 

= B11E[Q - E(Q)][Q - E(Q)]' B11 

= B11 V(Q)B11 = BuCBua2 = Bua2
. 

The sum of squares due to estimates is given by 

SS (estimates) =fly ... + L O:;y; .. + L ~JY.i-
= LYi .. (fl + &;) + L~JY-J-

- ~ .. (Yi .. - L;n;1~1) + ~(3, . . 
- ~y, .. N· N· ~ 1Y·.1· 

t· l· 

= L ~· + L~J (Y .. i· - L n~~·) 
l· .i i l 

2 

= ~Y..i:.:..+ ~~Q .. 
~Ni. ~ I .1 

' .7 

'This sum of squares has (p + q - 1) d.f. and it is distributed as x2 . 

The objective of the analysis is to test the significance of the null hypothesis 

Ho : f31 = f32 = · · · = (3q. 

which is equivalent to Ho : (31 = 0. Under this hypothesis the model is : 

Y;11=µ+a;+e;.i1; i=l,2, ... ,p; j=l,2, ... ,q; l=l,2, ... ,n;j. 

D.E.S.M.-4 

49 

( 44) 

( 45) 
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The normal equations to estimate the parameters µ and lY; are 

y .. = nf;, + L N;.O:; (46) 

y; .. = N;.{1, + N,.a; (47) 

The equation (46} is equal to the sum of equations in (47) and hence, pout of p + 1 normal 
equations are independent. To get unique solution of these equations we need to put one 
restriction. The restriction is I:: N;.O:; = 0. Under this restriction the estimates are : 

µ = !i., a; = Y; .. - 'iJ ... 

The sum of squ.ares due to estimates of the model under Ho (45) is 

2 

SS (cstimat<'s) = fl,y .. + L O:;y;. = ny~. + L N;.('iJ; .. -TJ ... )!h. = L NY;... (48) ,. 

This sum of squares hasp d.f. and it follows x2 distribution. Therefore, the sum of squares due 
to /3; under H 0 is 

S2 = S8(/3j) = (44) - (48) = L /31Q1. 

This sum of squares has (p + q - 1) - p = (q - 1) d.f. 

The sum of squares due to error is given by 
2 

S3 = SS(error) = LLLYfit - L ~,: - L/3;Q1. 

This S3 is distributed as x2 with (n - p - q + 1) d.f., where E(S3 ) = (n - p - q + l)a2 . 

We have 
2 

S2 = LLLYF11 - L ~:: - S3 

E(S2) = LL LE(µ+ a;+ f31 + e;7i)2 

- LE ~i (N;.µ + N;.a, + L n;.1/31 + e; .)2 - (n - p- q·+ l)a2
. 

' J 

~ na' + I; I; n,, (I' + a, C P;l' - [ ~ (µ + &, + ~ ~ "'//1 ) ' + pa'] 
-(n-p-q+l)a2 

= (q - l)a2 + L N;f3} - L (I:;; ~:f31)2 
' 

= (q - l)a2 , if (3_1 = 0. 

Therefore, SS((37 ) is distributed as central x2 with (q - 1) d.f. if Ho : (31 = 0. Under 
alternative hypothesis, this sum of squares is distributed non-central x2 . The test statistic to 
test the significance of this hypothesis is 

..§:;,__ 
F2 = __ q_-_1 __ 

Sa 
(n-p-q+l) 
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This F is non-central F-variate with ( q - 1) and ( n - p - q + 1) e.f. under alternative hypothesis 
with non-centra.lity parameter, 

Therefore, F2 ~ Fa;(q-lJ.(n-p-q+lJ leads to reject the null hypothesis. 
The adjusted sum of squares of ii:; will also be found out in a similar way as it is found for 

~j. The sum of squares is : 
p '"°' , '"°' niJ y J S1 = L,,aiQi, where Q; = y; .. - L,, ~· 

i=l j J 

This S1 is found out under Ho : ai = 0 and E(S1) = (p - l)o-2, if Ho is true. Therefore, the 
test statistic to test the significance of Ho : ai = 0 is 

..§.;._ 

F p-1 
1 =-...:.....,--83 

(n-p-q+l) 

The non-null distribution of F 1 is non-central F with (p '- 1) and ( n - p - q + 1) d.f. and with 
non-centrality parameter 

A1 = 2~2 [L Ni.a; - L ~. (L n;1a;) 

2

] 

' .7 J ' 

If F1 ~ Fa;(p-1),(n-p-q+IJ, Ho is rejected. 

ANOVA Table 

Sources d.f. SS 
SS 

MS= d.f. F E(MS) 

of 
Variation 

A p-l S1 
S1 81 

a'+ L N; af -L : ( L n;;a,)' s1=-- Fi=-
p-l 83 

• .I .I ' 

B q-l S2 
S2 F2 = 82 a'+ LNA)-L :, (Ln.,fi)' s2=--

q - 1 83 
.I ' .J 

Error n-p-q+l S3 
S3 

0"2 83 = 
n-p-r+l 

Total n-l 

Let us assume that Ho : f3J = 0 is rejected. Then we need to test the significance of the null 
hypothesis 
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The test statistic for this hypothesis is 

t = L:dj/3j 

~ L:.i didjbij' 

where bi1 is the j-th element of i-th row of B11 matrix. 

If !ti~ t~.,(n-p-q+lJ' Ho is rejected. 

· Example 2.4 : To reduce the systolic blood pressure (in mm of Hg) of patients three 
different types of medicine are given to different patients of different age groups. After thP 
experiment the blood pressure level is measured for each patient. The collected information are 
shown below : 

The blood pressure level (Yiil) 

Age group B,....., Medice Total 
Matrix of observations n;i 

,....., A M1 M2 M3 Yi · 

A1 130, 142, 130, 132, 130, 134, ~ 
B1 B2 

136 126 1060 A1 3 2 
A2 140 150, 145, 138, 140 A2 1 3 

140 853 A3 2 1 
A3 146, 148 141 138, 144 717 A4 3 2 

A4 158, 146. 142, 140 140 
160 • 886 

Total 9 8 
N1 

Total YI 1306 1120 1090 3516 

Which medicine, in your consideration, is better to reduce blood pressure? 

0 2 (3516) 2 

Solution : We know, C.T. = _!____ = = 494490.24 
n 25 

Therefore, the matrix C and the vector Q are as follows : 

[ 

5.41 
c = -2.65 

-2.76 

-2.65 -2.76 l [ 36.53 l 
5.13 -2.48 ' Q = -10.23 

-2.48 5.24 -26.30 

Under the restriction /33 = 0, the normal equations are : 

[ 
5.41 -2.65 ] [ ~l ] [ 36.53 ] . 

-2.65 5.13 /32 -10.23 

[ ~: ] [ 5.41 -2.65 ]-l [ 36.53 '] = [ 7.73815 ] 
-2.65 5.13 -10.23 1.97809 . 

Adjusted SS(/3.1) = S2 = L /3.i Q1 = 262.44. 

SS (Total)= LL LYf11 - C.T. = 496110 - 494190.24 ~ 1619.76. 

H.; Total 
N;. 

3 8 
2 6 

2 5 

1 6 

8 25 
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y2 
SS(&i) = L _Jc:.;_ - C.T. = 495368.63 - 494490.24 = 878.39 

Ni. 

SS (Error)= SS (Total) - SS(&i) - SS(/3J) = 1619.76 - 878.39 - 262.44 = 478.93. 

ANOVA Table 

Sources of variation SS MS= SS 
d.f. 

F Foo5 Foo1 P-value 

Age group (A) 3 292.7967 11.62 3.13 5.01 0.00 

Medicine (B) 2 131.22 5.21 3.52 5.93 < 0.01 

Error 19 25.2068 

I Total 24 

53 

Since F2 = 5.21 > F0 .05 , Ho : f3J = 0 is rejected. This indicates that the average blood 
prcssnre level of patients using different medicines arc not similar. The averages arc M 1 = 
145.11, M 2 = 140.00 and M 3 = 136.25. Since the average blood pressure level of patients using 
M 3 is lower, M 3 can be considered better. 

The estimates /31 and /32 are the estimates of parametric function f31 - (33 and f32 - (33 
respectively, where estimates of V (/31 ), V (/32) and Cov (/31, /32) are respectively. 

v(/31 ) = 0.24746 x 25.2068 = 6.23767, v(/32) = 0.26096 x 25.2068 = 6.57797 

Co~ (/31, /32) = 0.12723 x 25.2068 = 3.20706. 

To test the significance of Ho : (31 = (33, the test statistic is 

t = ~ = 7.73815 = 3.098. 
s.c(f3i) v'6.23767 

Since !ti> too25,19 = 2.093, Ho is rejected. M3 differs significantly from M. 
To test the significance of Ho : (32 = (33, the test statistic is 

t = -k- = 1.97809 = 0.77. 
s.c(f32 ) v'6.57797 

Since !ti < to 025.19, Ho is accepted. Mz and M3 docs not differ significantly. M2 and M3 are 
similar. 

2.5 Two-Way Classification with Several (Unequal) Observations Per 
Cell with Interaction 

The model assumed for this analysis is 

· YiJl = µ + a; + f31 + ( af3)iJ + eijl. ( 49) 

The meanings ofµ, a;, (31 and (af3)iJ are discussed in section (2.4). 

i=l,2, ... ,p; j=l,2, .. .,q; l=l,2, .. .,nij· 

.I 

The assumption to analyse the data is eijl "' NID (0, cr2 ). 



54 DESIGN OF EXPERIMENTS AND SAMPLING METHODS 

The objectives of the analysis are to test the significance of the hypotheses, 

Ho: ai = 0. Ho: /3.i = 0 and Ho: (a/3)i.i = 0. 

The normal equations to estimate the parameters are : 

j j 

Yi.i = niJ(fl, + &; + f3.i + (a/3)i.1)· 

Here the last pq equations are independent. Other equations depend c,n these last·pq equations. 
Thus, the number of independent estimable functions are pq. 

The sum of squares due to estimates is 

SS (estimates) = fl:y ... + L &iY;. + L f3ry.j -r L L(a/3);,7YiJ· 

= LL YiJ· (fl,+&; + /31 + (a/3)i.i) 

p q 2 

= ~ """ Y;1 . 
L..,, L..,, n . 
i=l .i=l tJ 

This sum of squares has pq d.f. The sum of squares due to error is 
2 

S = """ """ """ y 2·1 -- """ """ y ij . L..,, L..,, L..,, i.1 L..,, L..,, n; . 
t j .I 

It has (n - pq) d.f., where E(s) = (n - pq)a2 . 

Under the hypothesis (a/3)i.i = 0, the model stands Yi.ii =µ+a; + /3j + eiJl· 
The sum of squares due to error for this model is 

2 

S1 = LL L Yfit - L ~~: - L f3Jqi [section 2.4] 

This S1 has (n - p - q + 1) d.f. Therefore, the sum of squares under Ho is 
2 

SS(a/3)i.i = S1 - S [S1 = LL L Yf71 - L ~~: - L /3,;y. 1 ., if f3.i is not adjusted] 

This sum of squares has (n - p - q + 1 - n + pq) = (p - l)(q - 1) d.f. Therefore, the test 
statistic to test the significance of Ho · (a/3);,; = 0 is 

F
3 

= (S1 - S)/(p - l)(q - 1). 
S/(n - pq) 

If F3 ;:::: Fa;(p-l)(q-1),n-pq• Ho is rejected. 
If Ho : (a/3)iJ = 0 is true, the interaction term from model (49) can be dropped. Even if it 

is not true, let us assume that (a/3)iJ = 0. Under Ho or under assumption the model stands 

YiJI = µ + ai + /31 + eijl · 

The analysis of this model is presented in section (2.4). 

(50) 
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Our objective is to test the significance of H0 : !3,1 = 0. Under this Ho the model becomes 

Yi.ii = µ + l\'i + ei.JI· 

For this model the sum of squares due to error is 

S2 = LLLYfjl - L ~,.· 
1 

This 5 2 has (n - p) d.f. Now, (52 - 5 1 ) gives the adjusted sum of squares due to}Jj, where 

SS(~i) = S2 - Si. 

It has (q - 1) d.f. Therefore, the test statistic to test the significance of Ho: (3.i = 0 is 

F
2 

= (82 - S1)/(q - 1) 
S/(n - pq) . 

F2 :'.'.: F,.;(q-l).(n-pq) leads us to reject the concerned null hypothesis. 
Under H0 : a; = 0, the model takes the shape 

Yi.ii = µ + (3.i + e;11· 

The sum of squares due to error of this model is 
2 

53 = LLLYfjl - Ly']' . 
. N,1 

J . 

It has (n - q) d.f. Now, (53 - 51 ) gives the sum of squares due to fr; under Ho : a; = 0. This 
sum of squares has (p - 1) d.f. Therefore, the test statistic related to the hypothesis is 

F
1 

= (S3 - S1)/(p - 1) 
S/(n - pq) 

and F1 :'.'.: F,.;(p-l),(n-pq) leads us to reject the null hypothesis. 
Example 2.5 : An experiment is conducted to study the productivity of four 1.arieties of 

cotton seed using fonr different levels of urea. The expC'riment is conducted in 10 x 7 m2 plots. 
The production of cotton (in kg/plot) are recorded for analysis. The data on production are 
given below : 

Production of cotton (YiJI kg/plot) 

Level of Varieties of cotton seed Total The incidence matrix of ni.i elements 
urea B1 B2 B3 B4 y; .. 

A1 7.6, 7.2, 6.4, 6.8 7.0, 7.1 6.8 55.9 
7.0 

A2 8.0, 8.2, 7.6, 7.7, 6.2, 6.6, 7.0, 87.9 ~ B1 B2 B3 B4 Total 
NiO 

8.1, 8.3 7.0 6.0 7.2 A1 ·3 2 2 1 8 

A3 8.5, 8.2 6.6, 6.1 6.5, 6.2 7.5 63.4 A2 4 3 3 2 12 
6.6 7.2 A3 2 2 3 2 9 

A4 6.0, 6.1, 6.2, 6.0 5.8, 5.9 6.01, 53.8 A4 3 2 2 2 9 
5.8 6.01 

Total 12 9 10 7 38 
Total Y .. i· 89.0 60.4 63.9 47.7 261.0 Ni 

Meari y·.i· 7.42 6.71 6.39 6.81 

Are the varieties of·cotton seed similar? 
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c 2 (261) 2 
•• 

Solution : C.T. = - = -- = 1792.6579. 
n 38 

SS(Total) = LL L Yf11 - C.T. = 1816.42 - 1792.6579 = 23. 7621. 

2 

SS(µ+ &i) = L ~ = 1802.691 
N,. 

2 

s =LL LYf;1 - LL~:; = 1816.42 - 1815.232 = 1.188. 

2 
""""' nij """"' ni.i nis """"' n;j Yi .. 

We know C;.; = N.i - L N and C.is = - L -N· , QJ = Y·.i· - L -N. · 
1.· . t· l 

' 
The normal equations to estimate (3.i after adjusting the effect A are given by 

C(3 = Q. 

We have under restriction (34 = 0. 

[ 8.0972 -2.8611 ~3.0833 l [ s, l [ 6 7153 l -2.8611 6.8611 -2.3611 ~2 = -1.5944 . 
-3.0833 -2.3611 7.3056 (33 -5.1389 

[ s, l [ 0 229589 
0.145238 0.143837 l [ 6 7153 l 

/32 = 0.145238 0.255865 0.143990 -1.5944 

/33 0.143837 0.143990 0.244123 -5.1389 [ 

0.5710 l 
-0.1726 . 
-0.5182 

S S(/3,; )adjusted = L /3.iQ.i = 6. 7726. 

' y2 
S1 =LL LY;jl :_ L ;;~: - L /3.iQ.i = 1816.42 - 1802.69 - 6.7726 = 6.9514. 

SS(a(3);1 = S1 - S = 6.9564 - 1.188 = 5.7684. 

F
3 

= (S1 - S)/(p - l)(q - 1) = 5.7684/9 = ll.87. 
S/n - pq 1.188/22 

Since F3 > Fo.o5;9 ,22 = 2.36, Ho(f3)iJ = 0 is rejected indicating the significant impact of 
interaction of seed variety with level of urea. 

F
2 

= SS(/3J)/q - 1 = 6.7726/3 = 41.81. 
S/n - pq 1.188/22 

F2 > F0.o5;3,22 = 3.05, Ho : f3,; = 0 is rejected. The seed varieties arc significantly different. 
2 

S3 = LL L Y711 - L ~JJ = 1816.42 - 1798.8509 = 17.5691. 

SS(&i) = S3 - S1 = 17.5691 - 6.9564 = 10.6127. 

Fi = SS(&i)/p - 1 = 10.6127 /3 = 65 .51. 
S/n - pq 1.188/22 

Since F 1 > F0 05;3,22 = 3.05, Ho : a; = 0 is rejected. The levels of urea arc significantly different. 

Here the estimate /31 is the estimate of contrast (31 - (34 . We can test the significance of the 
null hypothesis, H0 : (31 - (34 = 0, against HA : f31 - (34 'I 0. 
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The test statistic to test the significance of the above hypothesis is t = ~. 
', s.e(/3i) 

- 2 . 2 52 
We have v(/31) =Bus , where Bu = 0.229584, s = -- = 0.054 

n-pq 
= 0.229584 x 0.054 = 0.012397. 

s.e (Si) = ~ = J0.012397 = 0.11134. 

- 0.571 - 1 
t - 0.11134 - 5· 3· 

Since. !ti > t0 025,22 = 2.074, Ho is rejected. Seed-I is better than seed-4. 

The v(S2) = 0.01382 and v(S3) = 0.01318. 

The test statistic to test the significance of Ho : /32 - /34 = 0 is 

IS2I I - 0.11261 !ti=----= = 1.47 <ta 025 22. 
s.e(/32 ) 0.1176 · ' 

The test statistic to test the significance of Ho : /33 - /34 = 0 is 

1S31 o.5182 ltl = ---- = -
0 1 4 

= 4.51 > to.025,22 
s.e(/33 ) . 1 8 

Therefore, seed-3 is also better than seed-4. 

2.6 Three-Way Classification 
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Let there be three factors A, B and C having levels p, q and r respectively. Let us consider 
that the experimental result corresponding to i-th level of A, j-th level of B and l-th level 
of C(i = 1,2, .. .,p;j = 1,2, .. .,q; l = 1,2, .. .,r) be :iJiJI· The total variation in the :iJijl 

observations can be partitioned into three main identified sources of variation namely, due to 
factor A, factor B and factor C and hence, the analysis of variance of these pqr observations is 
known as three-way classification. 

The model for this analysis is 

Yi.ii = µ + O:'i + /3.i +'YI+ (a/3);1 + (a-y)it + (/3-y)Jt + eijt, (51) 

where µ = general mean, ai = effect of i-th level of A, /31 = effect of j-th level of B, -y1 = 
effect of l-th level of C, (a/3)i.i = interaction of i-th level of A with j-th level of B, (a"f)it = 
interaction of i-th level of A with l-th leyel of C, (/3-y)11 = interaction of j-th level of B with 
l-th level of C and eijl = random error. 

The restrictions to analysis the data are : 

L O:'i = L /3.i = L 'Yt = L(a/3)iJ = L(a/3);.i = L(a-y)it = L(a-y)il 
.i I 

= L:(/3-r)J, = L:(/3-r).i, = o. 
j I 

Assumption : e;11 "'NID (0, a-2 ). 

The estimated error sum of squares in analysing the model is : 

cP =LL L[YiJI - fl - &; - S1 - i'1 - (a/3);J - (cry);1 - (/3-r)1t] 2. 
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The normal equations to estimate the parameters are : 

8¢ 0 8¢ 0 8¢ 0 8¢ 0 .... , 8¢ 0 8¢ 8!. = 0. 
8µ = ' 8&i = ' 8{31 ~ ' 8i1 = ' 8(;;J3)~ = ' 8('/h)1t 8(a1)i1 

Thus, we have 

y ... = pqrP, +qr I: &i +pr L f31 + pq Lit+ r L L(;;J3)iJ 

+ P L:L:('/h)1t + q I: I:(<Yr)i! 
Yi·· = qrP, + qr&i + r L f31 + q L i't + r L(a/3)i.i + L L('/h)11 + q L(cry);1 

.i . I 

j 

Yi.i = rP, + &; + rf3.i +Lit+ r(a/3);1 + L(/31)11 + L(lYY)il 
I I 

j j 

There are (pq +pr+ qr+ p + q + r + 1) normal equations. Among these 2(p + q + r) equations 
are dependent on each other. Hence, to get the unique solution of these equations, we need to 
put 2(p + q + r) restrictions. The restrictions are 

I: 0:; =I: f3j =I: i1 = L:(;;J3)ij = L:(;;J3);1 = L(ifY);t = L(ifY);1 
j j I 

= L('/h)11 = L:C8-Y)11 = 0. 
j I 

Under the restrictions the estimates are 

P, = y ., a; = Y; .. - Ti ... , f31 = Y-J· - Ti ... , it = "fi .. 1 - Ti ... 

(a/3);1 = Y;1. -Ti; .. - 'iJ.1 + 'iJ .. ., (cry);1 = 'iJ;.1 - 'iJ; .. - 'iJ .. 1 + 'iJ .. 

(/31)1t = Y-Jt - y-J- - Y .. 1 +Ti .... 

These estimates are independent since 

Cov (&;, f31) = Cov [Ti; .. -Ti ... , Yi.i· -"fJ ... ] , 

= Cov("fi; ..• y;1.)- Cov("fi;. ,y ... )- Cov(y-J.,"fi ... ) + V("fi ... ) 

ra2 qra2 pra2 a 2 

=-------+-=0 
qrpr qrpqr prpqr pqr 

Similarly, other covariances of estimates can be shown zero. 
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The total sum of squares of observations can be partitioned as follows : 
p q T' 

L LL(Yi.il -y, .)2 = LLL[(Y; .. -y ... ) + (Y .. 7. -y,) + (y ·~ -y, ) 

+ (Yii· - Yi·· - Y.1 +'Ii...)+ (Yi·t - Yi .. - Y .1 + 'Y .. ) 
+ (Y.11 - yJ· -Yi.1 +fl ... ) 

+ (Yi.it - Yi.i· - Y..Jt - Y;.1 + Y; .. + fl .. i· + fl .. 1 - Y )]2 

=qr L(Yi .. -y .. .)2 +pr L(Y·.1· -'Y ... )2 + pq L°:Cv .. 1 -y .. .)2 

+ r L L(Yi.i· -yi .. -YJ..i· + 'Y ... )2 + q L L(Yi-1 -yi·· -'Y .. 1 + Y . .)2 

+PLL(Y-:j1-'Yf -v .. ,+"Y .. )2 

+LL L(Yijl -yij· -yi·l -y.,jl + Y; .. + Y·j· + Y .. 1 - fj ... )
2 

+ cross-product terms. 

The cross-product terms are zero. Therefore, we have 

SS (Total) = SS(&i) + SS(~J) + SSe'yt) + SS(o:/3)i,; + SS(cry)il + SS(/3"'1)11 +SS (error). 

= SS(A) + SS(B) + SS(C) + SS(AB) + SS(AC) + SS(BC) +SS( error) 

= S1 + S2 + S3 + 84 + S5 + S6 + S1. 

The objectives of the present analysis are to test the significance of the hypothP<>es : 

(i) Ho : O:i = 0, against HA : o:i /:: 0 

(ii) Ho: /3.i = 0, against HA: /37 f:. o. 
(iii) Ho : 'Y1 = 0, against HA : 'YI f:. 0 

(iv) Ho: (o:/3)ij = 0, against HA: (o:/3)ij f:. 0 

(v) Ho: (o:'Y)il = 0, agains~ HA: (o:'Y)il-=/:- 0 

(vi) Ho: (/3"'1)11 = C, against HA : (/3'Y).t1 f:. 0. 

Under the null hypotheses and under the assumption all the sum of squares due to effects 
and interactions are distributed as central x2a 2 . The d.f. of x2 is shown below : 

Eqr L(ih. -"Y ... )2 = Eqr L°:fo:;,+ei .. -e ... ]2 • ·: L:o:; = 0 

=qr Lo:;+ qr L E(e;.) +qr L E(e~.) 

+ 2qr L a;E(ei·· - e ... ) - 2qr L E(ei. e ... ) 

_ 2 pqra2 pqra2 2pqra2 

- qr""' o:i + -- + -- - ---
L....,, qr pqra2 pqr 

= (p - 1 )a2 + qr L o:;. 

E qr l:('Yi .. - Y. )2 - - 1 ·r . - o 
2 - p ' I O:i - . a 

Therefore, SS(A) is distributed as x2a 2 with (p - 1) d.f., if o:i = 0. 
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Again, 
r"'(,- - )2 

E q L... Yi .. - Y... 2 ·r O =a., i CYi = . 
p -- 1 

E[MS(A)] = a2 + _T:_ """a;_ 
p-l ~ 

Similarly, the d.f. of other sum of squares due to effects and interactions can be shown. Again, 

The sum of squares due to error is distributed as x2a 2 without any restriction. 

ANOVA Table 

Sources d.f. SS MS= SS 
d.f. 

F E(MS) 

A p-l Si 
8i 2 qr L 2 

8i Fi= - a +--
1 

n.; 
87 p-

B q - 1 S2 
s2 

a2 + __.!!!___ L {3~ 82 F2=-
87 q - 1 ] 

c T - 1 S3 
83 2+ pq L 2 83 F3= - a -- 1'1 
87 r-1 

AB (p - l)(q - 1) S4 
F _ 84 2 r LL 2 S4 4 - - a + (p - l)(q - 1) (nf3)i.i 87 

AC (p - 1 )(r - 1) S5 
85 

a2 + (p - l~(r - 1) L L(n1)I1 85 F5= -
87 

BC (q - l)(r -- 1) s6 85 
a2 + (q - l~r - 1) L L(f31),71 85 F5=-

87 

Error. (p - l)(q - l)(r - 1) S1 87 a2 

Total pqr - 1 

To test the significance of H0 : ai = 0, the test statistic is Fi. This Fi is distributed as central 
variance ratio with (p- 1) and (p- l)(q - l)(r - 1) d.f. Therefore, F1 ::'.'. Fa;p-i.(p-i)(q-i)(r-1) 

leads us to reject the null hypothesis. The non-null distribution of F1 is non-central F with 
non-centrality parameter. 

The conclusion regarding other hypotheses will be made in a similar way. 

If the hypotheses (i), (ii) and (iii) are rejected, it needs to compare the different levels of 
Ai, Bj and C1. The Duncan's multiple range statistics for these pairwise comparisons are: 

where f = (p - l)(q - l)(r - 1) and i = 2, 3, ... ,p 

Levels of B 7· : D7· = da 1· f , 
. . '' 

j = 2,3, ... ,q 

rE Levels of C1 : D1 = da,l,f V pq' l = 2, 3, ... , r._ 
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Example 2.6 : A pharmaceutical company produced 4 varieties of proteiu and these wer; 
given to guinea pigs of different ages and different body C( ndition SCOff'S. The guinea pigs 
were classified into 3 classes according to body condition score and 3 dMses according to age 
groups. The body weight of each guinea pig was recorded before and after the experiment. T'ie 
increased body weights of each guinea pig are shown below : 

lncrea.Sed body weights (Yijl iu gm) 

Age group Body condition Protein ( C) Total Mean 
(A) score (B) P1 P2 p3 p4 YiJ Y; .. 

B1 8.0 8.5 4.6 5.0 26.l 
Ai B2 7.0 7.0 6.2 5.2 25.4 

B3 8.5 9.0 7.6 6.0 31.1 

Sub-total, YI-I 23.5 24.5 18.4 16.2 82.6 6.88 

B1 9.0 8.2 6.6 5.6 29.4 
A2 B2 9.5 8.0 7.2 6.2 30.9 

B3 8.5. 7.5 6.0 5.8 27.8 

Sub-total, Y2·l 27.0 23.7 19.8 17.6 88.1 7.34 

B1 6.2 8.2 5.2 4.8 24.4 
A3 B2 6.0 8.0 5.6 4.0 23.6 

B3 7.4 8.0 4.8 4.2 24.4 

Sub-total, Y3·t 19.6 24.2 15.6 13.0 72.4 6.03 

(i) Analyse the data and group the varieties of protein. 

(ii) Is there any difference in the average increased body-weight due to A 1 and A2? 

(iii) Is there any difference in B2 and B3 ? 

Solution : (i) We have p = 3, q = 3, r = 4, G = 243.l. 

a 2 (243.1) 2 

C.T = - = 
3 

= 1641.6003. 
pqr 3 x x 4 

SS (Total) = LL~ Y?11 - C.T. = 1721.29 - 1641.6003 = 79.6897. 

SS(A) = L yf. - C.T. = 19826
"
13 

- 1641.6003 = 10.5772. 
qr 3 x 4 

Observations of B and C [y .id 
B c Total Mean 

P1 P2 P3 P4 Y-J Y·J· 
B~ 23.2 24.9 16.4 15.4 79.9 6.66 
B2 22.5 23.0 19.0 15.4 79.9 6.66 
B3 24.4 24.5 18.4 16.0 83.3 6.94 

Total y .. 1 70.1 72.4 53.8 46.8 243.1 -

Me().n 'i] .. 1 7.79 8.Q4 5.98 5.20 - 6.75 
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SS(B) = .L :
2

~ - C.T. = 
19;~6~91 - 1641.6003 = 0.6422. · 

Y~t 15240.45 · 
SS(C) 0 ~ -

2 
pq - C.T. = - 1641.6003 = 51.783. 

L.. 3x3 
y2 

SS(AB) =LL :.!.L - C.T. - SS(A) - SS(B) 
r 

' 6633.27 
--4- - 1641.6003 - 10.57'72 - 0.6422 = 5.5028. 

y2 
SS(AC) =LL :...iJ. - C.T. - SS(A) - SS(C) , q 

=. 
512

:·
15 

- 1641.6003 - 10.5722 - 51.783 = 5.4278. 

, 2 . 

SS(BC) =LL Y;l - C.T. - SS(B) - SS(C) 

= 508
;·

95 
- 1641.6003 - 0.6422 - 51.783 = 1.9578. 

SS (error) =SS (Total) - SS(A) - SS(B) - SS(C) - SS(AB) - SS(AC) - SS(BC) 

= 79.6897 - 10.5722 - 0.6422 - 51.783 - 5.5028 - 5.4278 - 1.9578 = 3.8039. 

ANOVA Table 

Sources of d.f. SS MS= SS 
d.f. 

F F.o5 F.01 ?-value 

variation 

A 2 10.5722 5.2861 16.68 3.88 6.93 0.00 

B 2 0.6422 0.3211 1.01 " 
,, > 0.05 

c 3 51.783 27.261 86.00 3..49 5.95 < 0.00 
AB 4 5.5028 1.3757 4.34 3.26 5.41 < 0.05 
AC 6 5.4278 0.9046 2.85 3.00 4.82 > 0.05 
BC 6 1.9578 0.3263 1.03 " " > 0.05 

Error. 12 . 3.8039 0.31699 - - - -

Total 35 

Here F1 = 16.68 which is greater than Fo.05 and Fo.01 . Hence, the impact of age group 
on increased body weight is highly significant. F3 = 86.00 is greater than Fo.05 and Fo.Ol · 
Hence, the varieties of protein are highly significantly different. The effect of body condition 
score is insignificant (F2 = 1.01 < F0.05 ), but its interaction with age group is significant 
(F4 = 4.34 > Foo5). 

Since varieties of protein arc significantly different, these can be grouped according to their 
homogeneity by Duncan's· multiple range test, where the test statistic is,: 
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D2 = 3.08 
0

·
31699 

= 0.58 D·, = 3.23 
3 x 3 ' " 

0.31699 = 0.61 D4 = 3.33 
3x3 ' 

The means of protein varieties in ascending order are : 

P 4 = 5.20, P3 = 5.98, Pi = 7. 79, P2 = 8.04 

P2 - P4 = 8.04 - 5.20 = 2.84): D 4 , :. the means arc different. 

P12 - P3 = 8.04 - 5.98 = 2.06 >DJ, P2 and P3 arc different. 

Pi - P4 = 7.79 - 5.20 = 2.59 >DJ, :. Pi and P4 arc different. 

P3 - P4 = 5.98 - 5.20 = 0.78 > D2, 

Pi - P3 = 7.79 - 5.98 = 1.81 > D2. 

P2 - Pi = 8.04 - 7.79 = 0.25 < D2, 

P3 and P4 arc different. 

Pi and P3 ar0 different; 

Pi and P2 are similar. 

63 

0.31699 = 0.62. 
3x3 

Therefore, Pi and P2 arc in one group, other varieties ~f protein arc different and they arc 
also different from this group. · 

(ii) We need to test Ho: o:i = 0:2 against HA: o:i =f 0:2. 

The test statistic is t = 'fh~2 ·· = 
6

·
88 

-
7

·
34 

= -2.00. 
~ 2x0.3i699 
qr 3x4 

Since /ti < to.o5,9 = 2.179, Ho is accepted. The levels Ai and A2 are not significantly 
different. 

(iii) We need to test Ho: /32 = /33, against HA : /32 =f /33. 

The test ~tatistic is t = 'ii ~·3· . 
~ 
pr 

However, since all levels of 8 are qomogeneous as is observed by F-test (F2 = 1.01 < F0 .05 ), 

no need to find the value of 't'. The levels B2 and B3 are similar. 

2. 7 Three-Way Classification with Several (Equal) Observations Per 
Cell 

Let YiJlk be the experimental result observed in an experiment conducted with i-th level of 
A, j-th level of B, l-th level of C in k-tn replication; i = 1, 2, ... , n,; j = 1, 2, ... , q; l = 1, 2, ... , r 
and k = 1, 2, ... , m. The model for these pqrm obse.rvations is 

YiJlk = µ + O:i + /31 +'YI+ (o:/3)ij + (o:'Y)il + (/3'Y)JI + (o:/3'Y)ijl + eiJI~· (52) 

Hereµ= general mean, O:; =effect of i-th level of A, /3j =effect of j-th level of /3, 'YI = effect of 
l-th level of C, (o:/3)iJ = interaction of i-th level of A with j-th level of B, (o:'Y)il = interaction 
of i-th level of A with l-th level of C, (/3'Y)jl = interaction of j-th level of B with l-th level of 
C, (o:/3'Y)iJI = interaction of i-th level of A with j-th level of B and l-th level of C and ei1 lk = 
random error. 

The restrictions in analysing the model (52) are 

L O:i = L /31 = L 'YI= L(o:/3)ij = L(o:/3)ij = L:(o:'Y)il = L(o:'Y)il = L(/3'Y)JI 
' i j I .i 

= ~(/3'Y)j1 = L:(athfo1 = L:(o:~'Y)iji = L:(o:/3'Y)ijl = o. 
I ·; ' j I 
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Assumption : eijlk ,.., NID (0, rr2 ). 

The estimated error sum of squares in analysing the model is 

"""" ' - - - 2 <P = ~ ~ ~ ~[Yiilk - it - &i - f3.i - i'1 - (af3)i.J - (&y);1 - (f31');1 - (af31'h1d · 

The normal equations to estimate different effects and interactions arc given by 

8¢ 8¢ aµ = o, 8&i = o. 

and 
8¢ 

- =0. 
8( af31' )ijl 

On simplification the normal equations are found as below : 

y .... :::: pqrmfi, + qrm L &i + prm L /3; + pqm L i'1 +rm L L(;/3)ij 

+ qm L L(cry);1 +pm L L(,B';).11 + m I; L L(af31')i.Jl 

Yi ... = qrmfi, + qrm&; +rm L f31 + qm L i'1 +rm L(;/3);1 
.i 

+ qm L(&=y)il + m L L(f31').it + m L L(~);;1 
l .i l .i l 

Y-J .. = prmfi, +rm L &i + prm/31 +pm L i'1 +rm L(a(3);; 

+ m L L(ai');1 +pm L(f3i').11 + m L L(af31')i.Jl 
I l 

y .. 1. = pqmfi, + qm L &i +pm L /3; + pqmi'1 + m L L(af3)i.J 

+ qm I;(&=y)il +pm L(f31')Jt + m L L(~)i.Jl 
j 

Yii .. = rmfi, + rm&i + rm/3.i + m L i'1 + rm(a(3);.J + m L(&=y)il 
l 

j 

+ m L(,B';)Jt + m L(~)i.Jl; 
I I 

Yi-I- = qmfi, + qm&i + m L f3.1 + qmi'1 + m L(a(3);J + qm(cry);1 

+ m L(f31')i.J + m L(af31')i.Jl 
j j 

+ pm(,B';)J1 + m L(~)iJl 

Yi JI· = m[P, + iii + f31 + i'1 + ( ;/3)i.i + (cry );j + (,B';) JI + ( ~ )iJt] · 

There are (pqr + pr + qr + pq + r + q + p + 1) normal equations and pqr of these are 
independent. The number of dependent equations are (pq +pr +qr + p + q + r + 1). Therefore, 
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to get the unique solution of these normal equations we need to put (pq +pr+ 11r + p + q + r -I· 1) 
restrictions and the restrictions are 

L Q:i = L sj = L i't = L(;/3)i] = L:C!h)jl c=o Z:Uh•)j/ 
.i l 

= 2:(£YY)il = 2:(£YY)il = Z:(c0h)ijl = Z:(c0h)ijl = I)a,e,,)ijl = o. 
I .i l 

Under the restrictions the estimates are : · 

f1, ='fl . &i = ih. - 'fl ... ~.i = Y..J .. - y .... , i'1 = 'Y .. 1. - 'Y ... 
-(o:,B)i.i = YiJ. - Y; ... -y.i-. + 'Y .... , (&y)il = Y;.1. - 'iJ.;. - 'il .. 1. + 'il ... 

(f3'Y)11 = 'il.11· - 'il..J .. - 'flt·+ 'il .. .. 

(c03;)i.Jt ='ilw -'il;1·· -'il;.1. -'il11· +'il; ... +'il-.i .. +'il.1-'il ... 

These estimates are independent since 

. Gov (jl,, (o:,B);.i) = Cov ('iJ .... , Y;1 .. - 'fj; ... - y-J .. + 'i] ... ) 

=Gov (y., .. ,y;1 .. ) - Gov (y . .. ,'iJ; .. ) -Gov (y .... ,y.1 .. ) + V('il .... ) 

rmu2 qrmu2 prmu2 u2 
----+--=0. 

pqrrn rm pqrm qrm pqrrnprrn pqrrn 

Similarly, other covariances are also zero. 

The total sum of squares of all observations is partitioned as follows : 

LL L L(Yi.ilk - 'jj, . .)2 =LL L L[(Y; ... - y ... ) + (Y.,J .. - Y .... ) 
j l k j I k 

+ ('il .. 1. - 'ii .... )+ ('ii;1 .. - Y; ... - Y-J-· +'ii .... ) 

+ ('il;.1. -yi ... - 'ii .. 1. + 'il .... ) + ('il.11· - yI· -'il .. 1. + 'il .... ) 

+ ('il;11· - YiJ· - 'il;.1. - 'il.;1. + Y; ... +YI· + 'il .. 1. - 'il .... ) 

+LL L L(Yijlk - yijl·)J
2 

= qrrn L(Y; .. -y . . )2 + prrn L(YI· -y .... )2 + pqm L('il .. 1. -y .... )2 

+ "''°'(- - - - )2 "''°'(- - - - )2 rm L__, L__, Y;.i .. - Y; ... - Y-J .. + Y. . + qm L__, L__, YH - Yi··· - Y .. 1. + Y .. .. 

+pm L L(Y-Jt -'il . .i .. -'Y .. 1. + 'il ... )2 

+ m LL L(YiJl· - Y;J .. - Yi·I· - Y.1/· + Y; ... +YI· + Y;.1. - 'il ... .)2 

+LL L L(YiJlk -yi.il·)2 +cross-product terms. 

The cross-product terms are zero. Therefore, 

SS (Total) =SS(&;)+ SS(~J) + SS(i'1) + SS(o:~)iJ + SS(&y)il + SS(,B'Y).i1 

+SS(o:~l')iJI +SS (error) 

= SS(A) + SS(B) + SS(C) + SS(AB) + SS(AC) + SS(BC) + SS(ABC) +SS( error) 

= S1 + S2 + S3 + S4 + S5 + S6 + S1 + Ss. 

D.E.S M.-5 
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The objectives of the analysis are to test the significance of the hypotheses : 

(i) H0 : o:; = 0, against HA : o:; =I 0, 

(ii) Ho : {31 = 0, against HA : !31 =I 0, 

(iii) Ho: "ft= 0, against HA : /'t =I 0, 

(iv) Ho: (o:f3)iJ = 0, against HA: (o:f3)i.i.=10, 

{v) Ho: (o:l')u = 0, against HA : (o:l')it =I 0, 

(vi) Ho: (f3!')Jt = 0, against HA : (!31')71 =I 0, 

(vii) Ho: (o:f3l')iJl = 0, against HA : (o:f3l')iJI =I 0. 

All the sum of squares are independently distributed as central chi-square under null 
hypotheses. The d.f. of each chi-square variate can be shown ~s follows : 

E[SS(A)] = Eqrm L(Yi ... - fJ .... )2 
= Eqrm L(o:i +Yi··· - fJ .... )2 

= qrm L o:7 + qrm L E(fJT ... ) + qrm L E(y~ .. ) 

-2qrmE L (Yi· .. , Y .... ) + 2qrm L o:iE(yi· .. - Y ... ) 

'"" pqrma2 pqrma2 

= qrrn ~o:; + + ---
qrm pqrm 

2pqrma2 

pqrm 

= (p - l)a2 + qrrn Lo:;= (p - l)a2
, ifo:; = 0. 

E [qrmL:(Yi··· -fl ... )2] = -1 "f . = 0 
a2 p ' I O:i . 

Therefore, SS(A)/a2 is distributed as x2 with (p - 1) d.f., if o:; = 0. The d.f. of other sum 
of squares can be found out in a similar way. The d.f. of SS (error) is found out as follows : 

E =LL L L(Yijlk -yij/·)
2 
=ELL L L(e;11k - e;11-)

2 

= LLLLE(eTJtk) + LLLLE(e;11.)- 2LLLLE(e;11kew) 

· a 2 2pqrma2 

= pqrma2 + pqrm- - = a 2 pqr(m - 1). 
rn rn 

SS (error) . d" "b d h" . h ( 1) d f . h . . • • 
2 

1s 1stn ute as c 1-square wit pqr rn - .. wit out any restriction. 
a 

SS (error) 
Therefore, E 2 = pqr(rn - 1) or1 EMS (error) = a 2 . 

a 

The objectives of the analysis are to test the null hypotheses : 

(i) Ho : o:; = 0, against HA : o:; =I 0, 

(ii) Ho : {31 = 0, against HA : {3.i =I 0, 

(iii) Ho : 1'1 = 0, against HA : 1'1 =I 0, 

(iv) Ho: (o:f3)ij = 0, against HA : (o:f3)iJ =I 0, 

(v) Ho: (o:l')i! = 0, against HA: (0:1');1 =I 0, 

(vi) Ho: (!31').it = 0, against HA : (!31').Jt =I 0, 

(vii) Ho: (o:f3l')iJl = 0, against HA : (o:f3l')iJl =I 0. 
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ANOVA Table 

Sources of d.f. SS MS= SS 
d.f. 

F E(MS) 

Variation 

A p-1 Si 
Si Fi=~ 2 qrmL 2 s1=-- CT +-- °'i p-1 Sg p- 1 

B q - 1 S2 
S2 F2 = s2 CT2 + prm L (32 s2= --

q - 1 ss . q - 1 J 

S3 
S3 S3 2+pqmL2 c r - 1 s3=-- F3= - CT -- 'Yt 

· r - 1 ss r - 1 

(p - l)(q - 1) S4 
S4 F4 = s4 2 rm LL 2 AB 84 = CT + (p - l)(q - 1) (af3);3 (p - l)(q - 1) ss 

AC (p - l)(r - 1) Ss 
Ss Fs = 85 2 qm LL 2 s5 = CT + (p - l)(r - 1) (a-y);1 (p - l)(r - 1) 88 

BC (q-l)(r-1) S5 
s6 F6 = ~~ CT

2 + (q _;; _ l) L L<f3-r)~, Sfi = 
(q-l)(r-1) ss 

ABC (p - l)(r - l)(q - 1) S1 
S1 F1 = s1 2 m L: L: 2:(u(3-y);jl 

s7 = CT + 
(p - l)(r - l)(q - 1) 88 (p - l)(r - l)(q - 1) 

Error pqr(m - 1) Ss 
Ss CT2 ss = -

pqr(m - 1) 

Total pqrm-1 

The null hypothesis (i) is rejected if F1 2': F0.o5;(p-l),(p-l)(q-l}(r--lJi where F1 is distributed 
as central variance ratio distribution with (p - 1) and (p - l)(q - l)(r - 1) d.f. The non-null 
distribution of F1 is non-central F with non-centrality parameter, 

)q = qrm '°"' cx2. 
2cr2 ~ • 

The rejection of hypothesis (i) leads to test the significance of null hypothesis, 

Ho: o:; = o:i'• against HA: o:i "I- o:i', i "I- i' = 1, 2, ... ,p. 

The comparison of all pairs of o:; and o:i' is done by Duncan's multiple range test, where the 
test statistic is 

For comparison of any particular pair O:i and O:i', the test statistic is 

t = fi;. .. -yi'··· {!ji; , 
where tis distributed as Student's t with (p- l)(q- l)(r-1) d.f. Hence, It/ 2': t~.(p-l)(q-l)(r-lJ 
leads to reject the corresponding null hypothesis. 

The test statistics for hypotheses (ii) to (vii) are respectively F2 , F3 , ... , F7 . The conclusion 
will be made similarly as it is done for hypothesis (i). The Duncan's multiple range test statistics 
for Ho : f31 = (3.i' (j "I- j' = 1, 2, ... , q) and for Ho : ')'1 = -yl'(l "I- l' = 1, 2, ... , r) are respectively. 

Dj = daj f fI., j = 2,3,. . .,q; f = (p- l)(q- l)(r - 1) .. V l>rm 

and D1 = da,l,f ~' l = 2, 3, ... r. 
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Example 2. 7 : The number of ever born children to mothers of child bearing age below 40 
years are recorded from 72 mothers, where mothers are classified according to their education, 
working condition and socioeconomic status. The recorded data are shown below : 

Number of ever born children (Yijlk) 

Level of Working Socioeconomic condition (C) Total Total 

education condition C1 C2 C3 Yij .. y., .. 
A B Low Medium High 

,.&-~• 

Illiterate B1 housewife 4, 3, 5 4, 3, 3 3, 3, 3 31 

A1 work outside = B2 3, 3, 2 3, 3, 4 2, 3, 2 25 

Total Y11 20 20 16 56 

Primary B1 4, 4, 4 4, 3, 4 4, 3, 2 32 

A2 Bz, 3, 3, 2 3, 2, 2 3, 3, 3 24 

Total Yu 20 18 18 56 

Secondary B1 4, 3, 3 4, 2, 3 4, 1, 2 26 

A3 B2 2, 1, 1 2, 2, 1 1, 2, 1 13 

Total Y31· 14 14 11 39 

Higher B1 2, l, 4 2, 3, 1 1, 1, 3 18 

A4 B2 2, l, 1 2, 2, 2 2, 1, 2 15 

Total YH 11 12 10 33 

Total y .. 1. 65 64 55 184 

Mean fI.1. 2.71 2.67 2.29 2.56 

(i) Analyse the data and compare the averages of ever born children for different levels of 
education. 

(ii) Is there any difference in the averages of ever born children of outside working mothers 
and house-wife m~thers? 

(iii) How does the average children of mothers of medium and high socioeconomic status differ 
from that of mothers of low socioeconomic status? 

Solution : (i) We have p = 4, q = 2, r = 3, m = 3, G = 184. 

C.T. = -.!!..._ = (l 34)
2 

= 470.2222. 
pqrm 72 

·SS (Total)= LL L LYTJlk - C.T. = 546 - 470.2222 = 75.7778. 

SS(A) = LY? .. - C.T. = 
8882 

- 470.2222 = 23.2222. 
qrm 18 

SS(B) =LY; .. - C.T. = 17
4
3
6
78 

- 470.2222 = 12.50. 
prm 

SS(C) = LY~i - C.T. = 
11346 

- 470.2222 = 2.5278. 
pqm ' 24 
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Number of ever born children of three classes of mothers (Yijl·) 

A B 
c 

A B 
c 

C1 C2 C3 C1 C2 C3 

Ai B1 12 10 9 A3 Bi 10 9. 7 

B2 8 10 7 B2 4 5 4 . B1 12 11 9 B1 7 6 5 A2 A4 
B2 8 7 9 B2 4 6 5 

Number of ever born children of mothers according to working 
condition and socioeconomic condition (y.3z.) 

B c Total 
C1 C2 C3 Y·J·· 

B1 41 36 30 107 

B2 24 28 25 77 

SS(AB) = LL Ytj-· - C.T. - S9(A) - SS(B) 
rm 

4580 = -9- - 470.2222 - 23.2222 - 12.50 = 2.9445. 

SS(AC) = LL yf,. - C.T. - SS(A) - SS(C) 
rm 

= 
2~82 - 470.2222 - 23.2222 - 2.5278 = 1.0278. 

SS(BC) = LL y3,. - C.T. - SS(B) - SS(C) 
pm 

5862 
= 12 - 470.2222 - 12.50 - 2.5278 = 3.25. 

SS( ABC) = LL LYtjl· - C.T. - SS(A) - SS(B) - SS(C) -- SS(AB) 
m 
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-SS(AC) - SS(BC) 

= 
1552 

- 470.2222 - 23.2222 - 12.50 - 2.5278 - 2.9445 - 1.0278 - 3.25 . 3 

= 1.6388. 

SS (error) = SS(Total} - SS(A) - SS(B) - SS(C) - SS(AB) - SS(AC) 

-SS(BC) - SS(ABC) 

= 75.7778 - 23.2222 - 12.50 - 2.5278 - 2.9445 - 1.0278 - 3.25 - 1.6388 

= 28.6667. 
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ANOVA Table 

Sources of d.f. SS MS= SS 
d.f. 

p F.05 F.o9 
variation 

A 3 23.2222 7.7407 12.96 .. 2.81 4.24 

B 1 12.50 12.50 20.93** 4.05 7.22 

c 2 2.5278 1.2639 2.12 3.20 5.10 

AB 3 2.9445 1.3148 2.20 2.81 4.24 

AC 6 1.0278 0.1713 0.29 2.30 3.22 
BC 2 3.25 1.625 2.72 3.20 5.10 

ABC 6 1.6388 0.2731 0.46 2.30 3.22 

Error 48 28.6667 0.5972 - - -

Total 71 

·**Indicates highly significant effect. 

It is observed that due to the changes in the level of education of mothers average evn born 
children varies significantly [P1 = 12.96 > Po.os and Po.oil· The difference in the averages of 
house-wife mothers and outside working mothers is also highly significant [P2 = 20.93 > Po 05 
and Po.oil· 

To compare the pairwise weans of ever born children for mothers of different levels of 
education the test statistic is 

Di = do o5,i.f [!£, i = 2, 3, 4; f = 48 

~ J0.5972 
D2 = doo5,2,4sy qr'Tn::::::: 2.77 -is-= o.50 

~ J0.5972 D3 = do.o5.3,4sy qr:m::::::: 2.92 -is-= o.53 

~ J0.5972 
D4 = do 05,4,48 V qr'fr/, ::::::: 3.02 -is- = 0.55. 

The means in ascending order are : 

A4 = 1.83, A3 = 2.17, A1 = 3.11, A2 = 3.11 

A2 - A 4 = 3.11 - 1.83 = 1.28 > D4 , :. means arc different. 

A2 - A3 = 3.11- 2.17 = 0.94 > D3, .. A2 and A3 arc different. 

A1 - A4 = 3.11 - 1.83 = 1.28 > D3, .. A1 and A4 arc different. 

A3 - A4 = 2.17 - 1.83 = 0.34 < D2, .. A3 and A4 are similar. 

A1 - A3 = 3.11 - 2.17 = 0.94 > D 2 , .. A1 and A3 are different. 

The underlined means are similar. 
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(ii) We need to test the significance of Ho: f31 = f32, against HA : f31 i f3z. 

The test statistic is t = Y.i~2··. 
, _!l~ 

prrn 

71 

This t is distributed as Student's t wit.h f = 48 d.f. However, we do not need to calculate 
the value oft, since there are only two levels of B and by F-test these two levels are found 
significantly different. 

(iii) We need to compare C2 and C3 with C1. Considering C1 as control treatment, the 
comparison is made by Durmett's test, where the test statistic is 

D = doo5,k-I,f~, k - 1 = 2, f = 48 

= 2.282 2 x 0.5972 = 0 5 . 0. 
4x2x3 

However, the comparison is not needed, since by F-test the levels of C are found insignificant. 



Chapter 3 

Basic Design 

3.1 Introduction 
The analytical procedures of experimental data have been presented in the previous chapter. 

The data nsed in different analysis arc not of the same type.The sources of variation in data 
arc different. These sources arc related to different factors. For example, in agricnlt.nral 
experiment if the objective is to identify a best variety of crop among a group of crop varieties, 
the experiment with varieties of crop can be performed in homogeneous experimental plots 
or the experiment can be conducted in homogeneous plots nsing different levels of fertilizers 
and different levels of irrigation. In the first case, experiment is conducted allocating the crop 

·varieties completely randomly in the plots. The identified source of variation in the data is due 
to crop·variety. The analysis of data of such experiment is known as one-way classification. In 
the second case a group of plots are selected to use a particular level of fertilizer and in that 
group crop varieties are randomly allocated. Several groups of plots are selected for several 
levels of fertilizer. In each group the crop varieties are randomly allocated. The analysis of 
data collected from such experime11t is known as two-way classification. 

From the above discussion, it is clear that the analysis of data depends on method of data 
collection by conducting experiments. The method of conducting the experiment is known as 
design of experiment. The basic designs are (i) Completely Randomiied Design, (ii) Random
ized Block Design and (iii) Latin Square Design. Whatever be the design used in any experiment, 
the experiment is conducted allocating the treatments to the plots or plots of a block by a 
random process. 

3.2 Completely Randomized Design (CRD) 
The simplest design of experiment is completely randomized design, where the treatments 

are allocated completely randomly in the experimental plots. Let us assume that we have k 
treatments for an experiment. These treatments are to be allocated in n homogeneous plots. 
The homogeneity in plots is considered in size, shape and in soil fertility in case of agricultural 
experiment. For experiment in medical research, the homogeneous plots may be guinea pigs of 
same age, same weight and same body condition score. Let us consider that the ith treatment 
( i = 1, 2, ... , k) is to be replicated in ni plots such that L: n; = n. The method of allocation 
of ith treatment to n; plots at random for all values of i = 1, 2, ... , k is known as completely 
randomized design. 

To allocate the treatment, first select n 1 plots from n plots by any of the random procedure 
and allocate first treatment to these selected n 1 plots. From the remaining (n - ni) plots select 
n2 plots by a random process and allocate second treatment to these n 2 plots. In this way 
the kth treatment is allocated to the last selected nk plots. This procedure of allocation of 
treatment to the plots is known as completely randomized design. 

The treatments may be replicated equally or unequal times. Here ni is the number of 
replication of ith treatment. However, if all treatments are equally replicated, the efficiency in 
estimating treatment effect is increased. 

72 
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Analysis of Data : Since all the experimental plots used in the experiment are homo
geneous, the only identified source of variation in the data obtained from such an experiment is 
due to the variation in the treatment. Let Yij be the result of jth replication of ith treatment 
('i = 1, 2, ... , k; j = L 2, ... n;), The linear model for Yij observation is : 

Yi.i = µ + a; + e;.i, 

where µ = general mean, a; = effect of ith treatment and e;j is random error arises in jth 
replication of ith treatment. It is assumed that e;1 "" NI D(O, a 2 ). The data are analysed under 
the restriction L n;a; = 0. The analysis of data is similar to that of one-way classification. · 

.ANOVA Table 

Sources d.f. SS MS= SS 
df 

F E(MS) P-value 

Treatment k - 1 Si 
Si S1 2 1 I: 2 loo f(F)dF s1=-- - a + k- 1 n;a; k - 1 s2 

Error n-k S2 
S2 

0'2 s2=-- -
n-k 

Total n-1 

The objective of the analysis is to test the significance of the null hypothesis : 

Ho : a;, against HA : a; =I= 0 

The null hypothesis is rejected if F;:::: Fa;k-l,n-k· The rejection of null hypothesis leads to 
compare the treatments in pairs by Duncan's multiple range test, where 

where i = 2, 3, ... , k and nH ·= harmonic mean of n;. 

Example 3.1 : To observe the heart beat/minute of Milux rusticus slug under different 
types of pesticide an experiment is conducted in a laboratory. The slugs are kept in pesticide 
for a week. After a week the heart rates are measured. 

Treatment: Heart beat of slugs per minute (y;j) 
Pesticide, T; 

Control 11, 11, 12, 10, 12, 10 
Supracide 9,9, 9,8, 9,9 
Pomex 10, 10, 8, 9, 8, 9 
Sumicidin 7, 7, 7, 7, 8,6 

(i} Analyse the data and comment on the impacts of pesticide 

(ii) Group the homogeneous pesticides. 

(iii} Do the pesticides differ from control? 

Total Mean 

Yi· 'ii;. 
66 11.00 

53 8.83 
54 9.00 
43 7.17 

c2 (216) 2 

Solution : (i) We haven = 6, k = 4, G = 216, C.T. = - =- -- = 1944.00. 
nk 6 x 4 

SS (Total) = LL Yl1 - C.T. = 2000 - 1944.00 = 56.00. 
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y 2 11930 
SS (Treatment)= L :..1.:.. - C.T. = -- - 1944.00 = 44.33. 

. ni 6 

SS (Error)= (JS (Total) - SS (Treatment)= 56.00 - 44.33 = 11.67. 

ANOVA Table 

Sources of Variation d.f. SS MS= SS 
df 

F Fo.05 F.01 

Treatment 3 44.33 14.7767 25.32 3.10 4.94 

Error 20 11.67 0.5835 

Total 23 

The hypothesis is Ho : 01 = 02 = 03 = 04 or, Ho : Oi = 0, HA : Oi "I- 0. 

Since F = 25.32 > Fo.o5 and Fo 01 , Ho is rejected. The pesticides are highly significantly 
different (P-value < 0.00). 

(ii) The grouping of pesticides is done by Duncan's multiple range test, where the test 
statistic is : 

Di = do.o5,i,f ~· where f = 20; i = 2, 3, 4. 

D {0:5835 D J0.5835 D4 = 3.21J0.568.35 = 1.00. 2 = 2.97y ~ = 0.93, 3 = 3.12 -6- = 0.97, 

This means in ascending order are: T 4 = 7.17, T 2 = 8.83, T 3 = 9.00, T 1 = 11.00. 

Ti - T4 = 11.00 - 7.17 = 3.83 > D4, .. the pesticides are different. 

T1 - T2 = 11.00- 8.83 = 2.17 > D3, .. Ti and T2 are different. 

T3 -:-T4 = 9.00- 7.17 = 1.83 > D3, .. T3 and T4 are different. 

T2 - T4 = 8.83 - 7.17 = 1.66 > D2, .. T2 and T4 are different. 

T3 -T2 = 9.00- 8.83 = 0.17 <Dz, .. T2 and T3 are similar. 

T1 - T3 = 11.00 - 9.00 = 2.00 > D2, .. Ti and T3 are different. 

The underlined means are in one group T4, T2, T 3 , Ti. 

(iii) To test the significance in the difference between control and other pesticides we need 
to use Dunnett's test., where the test statistic.is : 

D = doo5,k-I,f~, n = 6, f = 20, k - l = 3 

= 2.57V2 x 0~5835 = u 3. 

Now, IT1 -T21 = 111.00- 8.831=2.17, .. supracide (T2) is better than control in reducing 
heart beat. 

IT1 - T3f = 111.00 - 9.00I = 2.00, .. pomex is better than control. 

IT1 -T41=111.00- 7.171=3.83, .. sumicidin is better than control in reducing heart 
beat. 
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Advantages and Disadvantages of CRD 

Advantages : 

(i) It is easy to use completely randomized design in practice. 

75 

(ii) The d.f. of error of this design becomes large since total d.f. is divided into only two parts, 
one for treatment and one for error. ' 

(iii) If homogerieous plots are available, the design can be used for any number of treatments. 

(iv) The analysis of data of this design is simple and easy. Even in case of one or more missing 
observations the analysis is not complicated. 

Disadvantages : 

(i) If the plots used in the experiment are not homogeneous, the- design is not suitable. 

(ii) If number of treatment>' are large, large number of homogeneous plots are needed to 
conduct the experiment. As a result, there is chance to loose the homogeneity of the plots. 

(iii) The design is not suitable for agricultural experiment in the fo~ld. 

Uses of CRD: 

(i) The design is very much suitable in conducting experiment in the laboratory. 

(ii) It is suitable in conducting experiment in dairy science research. 

(iii) The design is also used in green-house experiment. 

3.3 Randomized Block Design (RBD) 
The experimental plots used in any experiment may not always be ho111cgeneous. For 

example, in dairy science research on feeding trial the different types of food arc to be given to 
different rows of different lactation periods or different types. If the objective of the experiment 
is to identi(y,the best animal food for increased milk production, the diff<'rcnt types of food must 
be given to cows of same lactation period, since the milk production varies with the variation in 
lactation period. However, in practice varieties of food are given to cows of different lactation 
periods. A group of cows of a particular lactation period constitute a block. Different blocks may 
be used in an experiment. Due to blocks, one-directional external source of variation prevails 
in the experimental plots and the source is block. Here blocks are formed perpendicular to the 
source of variation. Treatments are allocated to the plots of a block by a random process. The 
resultant design is known as randomized block design. In feeding trial experiment varieties of 
food are given randomly to the cows of any one lactation period. 

Let us consider that we have q treatments under investigation. These are to be replicated 
in p blocks of q plots each. The q treatm·ents are to be allocated in q plots of a block. Similar 
allocation procedure is followed in all p blocks if there are p blocks for the experiment. The 
resultant design is known as randomized block design. 

Analysis of Data Collected from RBD : Let YiJ be the experimerital result of jth 
treatment in ith block. The model for Yi1 ( i = 1, 2, ... , p; j = 1, 2, ... , q) observations is 

Yij = µ + O'.i + /3j + Cij' 

where µ = general mean, ai = effect of ith block, (31 = effect of jth treatment, and ei1 

random error. The assumption to analyse the data is eij ,..., NI D(O, a 2). 

The main objective of the ~nalysis is to test the significance of the hypothesis : 

Ho : /31 = /32 =:= · · · = /3q or, Ho : /31 = 0, j = 1, 2, ... , q. 



76 DESIGN OF EXPERIMENTS Al\'D SAMPLING METHODS 

The analytical procedure has been discussed in two-way classification. The analysis of 
variance table is shown below : 

ANOVA Table 

Sources of d.f. SS MS= SS 
d.f. 

F E(MS) P-value 

variation 

Block S1 
s1 . q 100 

f(F)dF p-1 S1 F1 =- 0'2 +--L:a2 
s2 p - 1 i F1 

Treatment q - 1 S2 s2 F2 = s2 (}'2+~ L::!32 100 

J(F)dF 
S3 q - 1 i F2 

Error (p - l)(q - 1) S3 
. 

S3 

Total pq- 1 

If F2 ::'.'. Fa;q-l,(p-l)(q-l)• Ho is rejected at 100a% level of significance. 
The rejection of null hypothesis leads to compare the treatments in pairs. This can be done 

by Duncan's multiple range test, where the test statistic is : 

D.; = da,J.ffFf, j = 2,3, ... ,q- l; J = (p- l)(q- l). 

Example 3.2 : In an agricultural research station an experiment is conducted to identify 
the best variety of wheat. Three varieties of newly discovered wheat along with an old variety 
(W1 ) are used in the experiment. The.wheat varieties are cultivated using 5 doses of nitrogen as 
urea. The design used in the experiment is RBD. The production (kg/hectare) data are given 
below: 

Levels Production of wheat varieties (y;1, kg/hectare) 

of urea W1 W2 W3 W4 

Ni 2620 2840 2625 2600 

N2 2715 2912 2715 2718 

N3 2600 2818 2810 2750 

N4 2735 2950 2615 2610 

N5 2848 3020 2870 2700 

Total Y-J 13618 14540 13635 13078 
Mean y.1 2723.60 2908.00 2727.00 2615.60 

(i) Analyse the data and group the wheat varieties. 

(ii) Is there any difference in N4 and N5? 

Total y;. Mean Yi· 

10785 2696.25 
11060 2765.00 

10978 2744.50 

10910 2727.50 
11438 2859.50 

54871 
2743.55 

(iii) Are the new wheat varieties better than the old variety W1? 

c2 (5487) 2 

Solution : (i) We have p = 5, q = 4, G = 54871, C.T. = - = · = 150541332.05 
pq 5 x 4 

SS (!otal) = LL Yl1 - C.T. = 152475521 - 150541332.05 = 1934188.95. 

SS (Biock) ="""' y?, - C.T. = 609012253 
- 150541332.05 = 1711731.2 

L.., q 4 



BASIC DESIGN 77 

SS (Wheat)= LY~ - C.T. = 
7538~8833 - 1505·11332.05 = 220434.55 . 

p i) 

SS (Error) = SS (Total) - SS (Block) -- SS (Wheat) 

= 1934188.95.- 1711731.20 - 220434.55 = 2023.20. 

ANOVA Table 

Sources of variation d.f. SS 
SS 

MS= d.f. F Fo.05 Fu.01 ?-value 

Block (Urea) 4 1711731.20 427932.8 2538.15 3.26 5.41 0.00 

Treatment 3 220434.55 73478.18 435.81 3.49 5.95 0.00 

Error 12 2023.20 168.6 

Total 19 

Since F2 = 435.81 > F0 05 and F0 01, the wheat varieties arc higltly significantly different 
(P-value < 0.00). The wheat varieties can be grouped as follows : 

[5_ . 
D1 =doo5.j,/V 11 , 1=2,3,4; J = 12. 

(168:6 Jl68.6 /168.6 
D2 = 3.08v---s- = 17.88, D3 = 3.23 -5- = 18.76, D4 = 3.33\ -5- = 19.34. 

The means in ascending order are·: 

w 4 = 2615.60, w l = 2723.60 w 3 = 2727.00 w 2 = 2908.00 

W2 - W4 = 2908.00- 2615.60 = 292.40 > D4 , •• the wheat varieties are different 

W 4 - W l = 2908.00 - 2723.60 = 184.40 > D3, .. W1 and-W4 arc different. 

W 3 - W 4 = 2727.00 - 2615.60 = 111.40 > D3, •. W3 and W4 are different. 

W l - W 4 = 2723.60 - 2615.60 = 108.00 > D2, .. W1 and W4 are different. 

Hl 3 - W l = 2727.00 - 2723.60 = 3.40 < D 2 , .. W1 and W3 are similar. 

W 2 - W 3 = 2908.00 - 2727.00 = 181.00 > D2, .. W2 and W3 are different . 
• 

The underlioed means are in one group: W 4 , W1, W3, W2. 

(ii) We need to test the significance of the hypothesis Ho : a:4 = 0:5, against HA : 0:4 i 0:5. 

The test statistic is : t = Y~5 · = 
2725

·
50 

-
2859

·
50 

= -14.59. 
~ . /2xl68.6 

q ~ 4 . 

Since ltl > to.025,12 = 2.179, Ho is rejected. The levels of urea 4 and 5 are significantly 
different. 

(iii) To compare W1 with other wheat varieties we use Dunnett's test, where the test 
statistic is : 

-~ 
D = do.05,k-1,Jy -:P' k - 1 = 3, 1=12, P = 5 

= 2.72)2 x ~68.6 = 28.19. 
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Now, IW1 - W2I = 12723.60- 2908.00I = 184.4'> D, W2 is better than W1. 

IW 1 - W 31 = 12723.60 - 2727.00I = 3.4 < D, W1 and W3 are similar. 

IW 1 - W 41 = 12723.60 - 2615.601 = 108.0 > D. W1 and W4 are different. 

It is observed that W 2 is significantly better than W1, but W1 is significantly better than 
W4 . The varieties W1 and W3 are similar. 

3.4 Randomized Block Design with More than One (Equal) 
Observations Per Cell 

The randomized block design what we have considered in the previous section contains q 
plots to ai}ocate q treatments. Let us consider that each animal food is fed to several cqws of 
same lactation period and different types of. food are fed to several cows (number of cows are 
equal for each food) of same lactation period. 

Consider that we have cows of p lactation periods and total number of cows are pqr, where 
qr cows are available in each lactation period. Also consider that, we have q different types 
of food. Each food is fed to r cows of any lactation period. The types of food are randomly 
~llocated to the cows of each lactation period. The resultant design is randomized block design 
wit.h r observations per cell. 

Let YiJl be the lth result of jth treatment in ith block (i = 1, 2,. . ., p; j = 1, 2,. . ., q; 
t.z = 1, 2, .... r). The model for Yi.ii observations is: 

YiJl = µ + ai + /31 + (a/3)ij + ei1l 

whereµ = general mean, O'i = effect of ith level of A, {31 = effect jth level of B (treatment), 
(a/3)i1 = interactiorl'of jth treatment with ith block, eijl = random error. · 

The assumption to analyse the data is eijl ,... NI D(O, a). The different steps of analysis arc 
'presented in section (2.3). The analysis of variance table is shown below : 

Sources of d.f. $S MS= SS 
d.f. 

F E(MS) P-value 

variation 

Block (A) p-1 S1 
81 a2 + __!!!___I: Q:2 P1 81 Fi= -

. 84 p - 1 i 

Treatment q-1 S2 
82 

a2 + ....!!!_ I: /3~ P2 82 F2=-
84 q - 1 J 

Block x 

treatment (AB) (p - l)(q - 1) S3 
83 2 r L: L:(a/3)~1 P3 83 F3=- a + 
84 (p-l)(q-1) 

Error pq(r - 1) S4 84 - a2 -

Total pqr -1 

Here Pk = l~ f(F)df!'. If P(Fk) ~a (k;,,, 1, 2, 3), the corresponding hypothesis is rejected 

at 100n% level of significance, or if Fk ~ F0 with corresponding d.f., Ho is rejected at 1000:% 
level of significance. The multiple comparisons are also to be performed in a similar way as 
these are discussed in section (2.3). 
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Example 3.3 : Nair et al. (1993) have conducted a'n experiment through RBD to study 
the heart beat/minute of 4 diffe,rent types of slug, where slugs are kept under 6 varieties of 
pesticide. The heart beat/minute are shown below : 

Slugs Pesticides 

Control Su{>racid Pomex Sumicidin 
(Pi) (P2) (P3) (P4) 

S1 14, 11 9,8 9, 10 9, 9 

S2 13, 13 8, 9 9, 9 9, 9 

S3 12, 14 8, 8 11, 10 10, 10 

S4 12, 13 9,8 11, 11 10, 9 

Total YI 102 67 80 75 

Mean 'iJ.j. 12.75 8.375 10.00 9.375 

(i) Analyse the data and group the pesticides 

(ii) Is there any difference between S1 and S3? 

Glyphosphate Milkrup 

(Ps) (PB) 

7, 8 9, 10 
7, 8 9, 8 

11, 12 13, 13 
12, 12 12, 13 

77 87 

9.625 10.875 

(iii) Do you think that the pesticides are useful in reducing the heart rate? 

Total Mean 

Yi·· 'fh. 

113 9.42 
111 9.25 

132 11.00 
132 11.00 

488 

10.17 

c 2 (488)2 

Solution : (i) We haver= 2, p = 4, q = 6, G = 488, C.T. = - = -- = 4961.3333. 
pqr 48 

SS (Total) ==LL LY?jl - C.T. = 5138 - 4961.3333 = 176.6667 . 

SS (Slugs) = '""y[.. - C.T. = 
59938 

- 4961.3333 = 33.5 
~qr 6x2 

. 2 

SS (p . 'd ) L Y·j· c ,..... 40416 est1c1 e = - - . .1. .. = -- - 4961,3333 = 90.6667 
pr 4 x 2 

The observations of Slugs and Pesticides (Yij·) : 

Slugs Pesticides 

·P1 P2 ?3 ?4 Ps f6 
S1 25 17 19 18 15 19 
S2 26 17 · 18 18 15 17 

S3 26 16 21 20 23 26 

S4 25 17 22 19 24 25 

y2 
SS (Slugs x Pesticides) = LL ....i:.L - C.T. - SS (Slugs) - SS. (Pesticides) 

. r 

10250 . 
= -2- - 4961.3_333 - 33.5 - 90.6667 = 39.5. 

SS (Error) =SS (Total) - SS (Pestici;~"sf - SS (Slugs) - SS (Slugs x Pesticides) 

= 176.6667 - 33.5 - 90.6667 - 39.5 = 13.00. 
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ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F Fo.05 ?-value 

Slugs 3 ~3.50 11.1667 20.61 3.01 0.00 

Pesticides 5 90.6667 18.1333 33.47 2.62 0.00 

Slugs x Pesticides 15 39.50 2.633~ 4.86 2.13 < 0.01 

Error 24 13.00 0.5417 - - -

Total 47 

Since ?(_Fi) < 0.01, the slugs are highly significantly different in respect of heart rate under 
pesticideS'. P(Fz) < 0.01 also indicates highly significant differences in pesticides in rf'ducing 
heart rates of slugs. Different types of slug behave differently in presence of different pesticides. 
This !s concluded from P(FJ) < 0.0L 

The pesticides arc different, but some of these may be of the similar type in behaviour in 
reducing heart rate of slugs. This can be investigated by grouping the mean heart rates recorded 
under different pesticides. The test statistic is : 

Dz= 2.95J
0
4
·
5
x
41

'>
7 

= 0.77, D = 310J
0

·
5417 

= o 81 D4 = 3.18J
0

·
5417 

= 0.83, 
" J · 4x2 · ' 4x2 

D5 = 3.25J
0

·
5417 

= 0.85. 
4x2 

The means in asc~nding order are : 

Pz = 8.37~, ?4 = 9.375, ?5 = 9.625, PJ = 10.00, P6 = 10.875, Pi= 12.75 . 

. Pi - Pz = 12. 75 - 8.375 = 4.375 > D5, .. means arc significantly different. 

Pi - ?4 = 12.75 - 9.375 = 3.375 > D4, .. Pi and ?4 arc different. 

P6 - Pz = 10.875 - 8.375 = 2.50 > D4, .. Pz and P6 arc different. 

Pi - PJ = 12.7~ - 10.00 = 2.75 >DJ, .. Pi and PJ arc difff'rcnt. 

P6 - ?5 = 10.875 - 9.625 = 1.25 > DJ, .. ?5 and P6 arc different. 

PJ - ?4 = 10.00 - 9.375 = 0.625 <DJ, .. PJ, ?4 and ?5 are similar. 

Ps - Pz = 9.625 - 8.375 = 1.25 > DJ, •. Pz and ?5 are different. 

?4 - Pz = 9.375 - 8.375 = 1.00 >Dz, .. Pz and P4 are different. 

Ps - ?4 = 9.625 - 9.375 = 0.25 <Dz, .. P4 and ?5 are similar. 

P6 - PJ = 10.875 - 10.00 = 0.875 > D2, .. PJ and P6 are different. 

Pi - P6 = 12.75 - 10.875 = 1.875 > Dz, .. P 1 and P6 are different. 



BASIC DESIGN 

(ii) We need to test the significance of Ho : ni = n3, against HA : n1 i- O'J. 

The test 'tatistic i< t = "';?;'·· = 
9

.4
2 

- I LOO = -5.26. 
~ 2x0 54i7 
qr 6x2 

81 

Since ltl > to.025,24 = 2.064, Ho is rejected. Slug Si and slug S3 arc significantly different. 
(iii) Pesticides will be useful if heart rates are reduced when it is used. So any pesticide is 

to be compared with control. This can be.done oy Dunnett's test, where the test statistic is : 

D = do.o5,k-i,f.f¥!., k - 1 = 5, f = 24. 

D = 2.36 2 x 0.5417 = 0.87. 
4x2 

IPi - P2I = 112.75 - 8.3751 = 4.375, .. P2 is better than Pi . 

IPi - ?31 = 112.75 - 10.001 = 2.75, .. P3 is better than Pi'· 

IPi - P4I = 112.15 - 9.3751=3.375, .. P4 i:> better than Pi . 

IPi - ?51=112.75 - 9.6251=3.125, .. P5 is better than Pi . 

IPi - P61=112.75 - 10.8751=1.875, .. P6 is better than Pi . 

Therefore, pesticides are useful in reducing heart beat of slug. 

3.5 Efficiency of Randomized Block Design 
It has already been mentioned in section (3.2) that the CRD is simple to apply if all 

experimental units are homogeneous. But the design is less used in field experiment since the 
chance of heterogeneity in field plots is more. To avoid the problem, blocks are formed with the 
plots of homogeneous type, and treatments are easily allocated randomly to the plots of blocks. 
However, if homogeneous plots are available, CRD can also be used in field experiment instead 
of RBD. Therefore, the efficiency of randomized block design needs to be studied compared to 
the·latter design, if the efficiency of the former design is not sufficiently large compared to the 
latter design there is no use of RBD utilising more experimental resources in terms of money 
and time. 

Let us consider that we have pq plots which are grouped into p blocks each of q plots. 
Separate randomisation is done in allocating q treatments in q plots of any block. the analysis 
of variance table of data collected from such an experiment is shown below : 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

Block p-l Si si 

Treatment q-l S2 S2 

Error (p-l)(q-l) S3 S3 

Total pq- l 

D.E.S.M.-6 
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Let us consider that the treatment effect. is insignificant and the treatment variance is, on 
an average, equal to the error variance, then the analysis of variance table takes the following 
shape: 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

Block p-l S1 s1 

Error p(q - 1) p(q-l)s3 S3 

Total pq- l 

In such analysis, if block comparison is not made, the error mean square stands as 

p(q - l)s3 + (p - l)s1 
pq-1 

If block comparison is not made, the variance of treatment effect will be proportional to the 
above variance and if block comparison is made it will be proportional to s3 . The above variance 
is the error variance of CRD if treatment effects are assumed to be insignificant. Therefore, the 
efficiency of RBD compared to CRD is : 

(p - l)s1 + p(q - l)s3 
(pq - l)s3 

If the impact of heterogeneity in plots is removed by blocking, the block variance will be 
more than error variance and efficiency of RBD will be 100 per cent or more compared to that 
of CR.D. The CR.D will be more efficient if plot heterogeneity is not removed by blocking. 

Example 3.4 : In example 3.2', it is observed that p = 5, q = 4, s3 = 168.6, s1 = 427932.8. · 
Find the efficiency of randomized block design compared to completely random design. 

Solution : The efficiency of R.BD compared to CR.D is 

(p - l)s1 + p(q - l)s3 = (5 - 1)427932.8 + 5(4 - 1)168.6 = 
535

.
14

. 
(pq ~ l)s3 {20 - 1)168.6 

Here R.BD is 535143 efficient compared to CR.D. 

3.6 Advantages, Disadvantages and Uses of Randomized Block 
Design 

Advantages : 

(i) Since RBD controls one-directional external source of variation in experimental plots, the 
design is more efficient than completely randomized design. 

(ii) Since block sum of squares is subtracted in calculating error sum of squares, the error 
sum of squares and hence the estimate of error variance are reduced. 

(iii) No restriction is needed in block numbers and treatment numbers. 

(iv) A particular treatment may be· replicatetl more times than other by allocating it in a 
block. However, the analysis of data of such experiment is not complicated much. 

(v) In field experiment the blocks are not needed to be adjacent. 

(vi) Since treatments are randomly allocated to plots of a block, separate randomisation for 
different blocks is not harmful. · 
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(vii) The analysis of data is easy and simple. Even it is not complicated if one or two 
obser~tions are missing. · 

Disadvantages : 

(i) If the n:umber of treatments is too large, homogeneity of plots within a block may be lost 
due to large number of plots of a block. In that case design will not be suitable. 

(ii} The design is not advantages if block heterogeneity is too much. 

· 'use8: 

(i} The design is used profitably in agricultural experiment. 

(ii) The design is also used in many laboratory experiments. 

(iii) It is used in a situation where one directional external source of variation is needed to be 
controlled by design. 

3.7 Randomized Block Design with Missing Observation(s) 
Let us consider that the result of jth treatment in ith block is missing ( i = 1, 2, ... , p; 

j = 1, 2, ... , q). Let this observation be x. In analysing data collected from randomized block 
design ·we need to estimate x so that the estimated error sum of squares is minimum, where the 
usual sum of squares due to error is 

P q P 2 q y2. c2 
</>=SS (error)= LLY?j - LYi· - L -1 + -. 

i=l j=l . i=l q j=l p pq 

Let (Bi+ x) be the total of ith block in which Yij is missing. The total of jth treatment is 
(Tj + x) since it has one missing observation. The grand total of all observations can be written 
as (G + x), where G is the total without Yi.i observation. Now 

P q P 2 (B )2 q 2 (T )2 (G )2 
</> = L L Y?'j' + x2 - L Yi'· - i + x - L Y.p - j + x + + x 

·1-1.. 'l..J.. 'l..J.. q q •1..J.. p p pq 
• .,... 1 .,..3 .• .,... ] .,..3 

We need to find the value of x so that ¢ is minimum. The value of x is found out such that 

8¢= 0 or, 2x_2(Bi+x)_2(Tj+x)+2(G+x)=O or, x=PBi+qTJ-G_ 
8x q p . lN,_;,.~ (p- l)(q-1) ,.,. 

The missing observation is to be replaced by its estimate x and then the analysis is done as 
usual except that 1 is subtracted from total d.f. and hence, from d.f. of error for one missing 
observation. The analysis of variance table takes the following shape : 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F 

Block p-1 S1 . .. . §.1 . • . F1 =~ 
83 

Treatment q-1 S2 s·2t· 82 
F2=-

83 
Error (p - l)(q - I) - 1 Sa 83 -

.. 
Total 

. 
pq-2 .. /. 
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The analytical conclusion is to be drawn in a similar way as it is done in the analysis without 
missing observation. However, the comparison of jth and j'th (j' =/; j = 1, 2, ... , q) treatment 
is done by t-test in modified form, since V(/3j - /3J') =/; 2

;
2

• Here · 

V(/3i -/31') = V(y-i -y.J') = :2 [2 + (p- l:(q- 1)]. 
This is shown below : 

a2 
We have V(y·J') = -. 

p 

1 [pB + qT - G ] 
But VOJ) = p2 V (p ~ l)(:- l) + T1 . 

_ Bi +x 
Here y.1 = --. 

p 

_ 1 [V(pBi+qT1-G) { pBi+qT1-G}] 
Now V(y.1) = p2 (p _ l) 2 (q _ l) 2 + V(T1) + 2Cov T1, (p _ l)(q _ l) . 

Again, V[pBi + qT1 - G] = p2V(Bi) + q2 V(~1) + V(G) + 2pqCov(B1, T1) 

Now 

V(T1) = (p - l)a2 

- 2p Cov(Bi, G) - 2qCov(T1, G)] 

= [p2 (q - 1) + q2 (p - 1) + (pq - 1) - 2p(q - 1) - 2q(p- l)]a2 

= (p- l)(q- l)(p+q- l)a2 . 

[ 
pBi + qT1 - CJ 1 

Cov T1, (p _ l)(q _ l) = (p _ l)(q _ l) [Cov(T1, Bi)+ qV(T1) - Cov(T1, G)J 

a2 
2 

= (p _ l){q _ l) [q(p - 1) - (p - 1)] =a . 

v Oi) = ;: [ (p ~ ~ ~(; ~ 1) + (p - 1) + 2] = ~ [ 1 + (p _ 1 ~( q _ 1)] . 

V(y.1 -y-i') = V(y.1) + V(Ji..1,) - 2Cov(fi-J -y-i,) 

a2 [ q ] a2 a2 [ q ] · 
= p 1 + (p - l)(q - 1) + p = p 2 + (p - l)(q - 1) . 

Here in estimating V (fi-J - fi-i') the variance a 2 is to be replaced by mean square error 
sa (say). 

Therefore, the test statistic to test the significance of Ho : !31 = {3p, against HA : !31 =/; !31 1 , 

j =/; j' = 1, 2, ... , q is : 
Y.1 -fi·J' 

t = --;::======== J ~ [2 + (p-d(q-1)] 

This 't' follows Student's 't' distribution with (p - l)(q - 1) - 1 d.f. The conclusion wiH be 
drawn as usual. 
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Analysis with Two Missing Observations: Let the result of jth treatment in ith block 
be missing. Let us denote this observation by x. Consider also that the result of j'th treatment 
in i'th block (i -:f. i', j -:f. j') is missing and this observation is y. The value of x and y are to be 
estimated in such a way that the estimated error sum of squares is minimum. The estimated 
error sum of squares can be written as under : 

P q 2. y2 (B + )2 (Bi' +y)2 
</>=SS (error)= L L y'f"J" + x2 + y2 - L Yi"· - L ...X.:.. - i x 

q p q q 
i"=l j"=l 

i#i'#i" 

iii' ii" 
_ (T; +x)2 _(Ti' +y)2 + (G+x+y) 2' 

p p pq 

where Bi = total of ith block without x, B;1 = total of i'th block without y, Tj = total jth 
treatmen~ without x, Ti' = total of j'th treatment without y, G = grand total without x and y. 

aq, aq, 
The values of x and y are to be found out from the equations : - = 0 and - = 0. 

ax oy 
Here aq, = 2x- 2(Bi+x) _ 2(T1+x) + 2(G+x+y) =O 

ax q p pq 

aq, = 2y- 2(Bi' +y) _ 2(TJ' +y) + 2(G+x+y) = O. 
ay q P pq 

On the simplificat~qn ... we get 

• (p..::. i)(q - l)[PBi + qTi - G] - (PBi' + qTi' - G) 
x= ---"-------=-------------'------"---..;... (p - 1)2(q - 1)2 - 1 

and y _ (p - l)(q - l)[PBi' + qTi' - G] - (PB;+ qTi - G) 
- (p-1)2(q-1)2-1 . 

The analysis of data will be performed as usual replacing the missing observations by the 
estimated values of x and y. However, 2 is to be subtracted from total d.f. and hence, from d.f. 
of error. .. . 

Due to missing observations orthogonality of effects is lost. · The sum of squares due to 
treatment is no longer orthogonal to block sum of squares. Thus adjusted sum of squares 
(eliminating the effect of block) due to treatment is to be calculated, where 

SS (Treatment) ajdusted =SS (Total) of original data - SS (Error) using x and y 

- SS (Block) of original data 

=SS (Block)+ SS (Treatment) - SS (Block) of original data. 

ANOVA Table . 
Sources of variation d.f. SS MS= SS F 

d.f. 

Block P-:- 1 S1 
s1 

S1 F1 =-
S3 

Treatment (adjusted) q-1 S2 
S2 

Sz F2=-
S3 

Error (p - l)(q - 1) - 2 S3 S3 --

Total pq- 3 
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The comparison of two treatment means without missing oQ.servations is to be done as usual. 
The comparison of a treatment mean with a mean having one missing observation is done by 
t-test as proposed before. The comparison of two treatment means both containing missing 
observations is done by t-test, where 

Y-J -y·i' 
t = -r======= 

Here ri is known as effective number of replicate of jth treatment having one rmssmg 
observation, where Tj value is measured from all blocks and all measured values are added for 
a single Tj value. Here 

a component of r1 = 1, if observation of j'th treatment is present in a block, 

~, if observation of j'th treatment is absent in a block, 

= 0, if jth treatment is missing in a block. 

The value of Tj' is also calculated similarly, where r1, is the effective number of replicate of 
j'th treatment. 

We have discussed the analytical procedure of data collected from randomized block design 
with one or two missing observations. There may be more missing observations of different 
treatments in different blocks. If the experiment is cond\1cted for one observation of one 
treatment per block, the model ca~ be formuiated as 

YiJI = µ + ai + /3i + eijl, i = 1, 2, ... , p, j = 1, 2, ... , q; 

l = nii = 0, if observation of jth treatment in ith block is missing 
= 1, if observation is not missing. 

Again, the missing observation may be experienced in experiment with several replications 
of a particular treatment in any block. Then, replications per treatment are unequal. The 
replications of jth treatment in ith block are nij. 

Due to unequal number of observations per cell, the treatment effect and block effect are 
not independently estimated. However, adjusted treatment effect and adjusted sum of squares 
due to treatment can be found out. The analytical procedure will be similar as it is done for 
two-way classification with unequal number of observations per cell [section 2.4]. 

Example 3.5 : Tu identify the best dose of nitrogen for potato cultivation an experiment 
is conducted using 4 doses of nitrogen as urea. Each dose of nitrogen is replicated 5 times. The 
design used is randomized block design. The production data of potato (kg/plot) are shown 
below: 

Production of potato (Yi; kg/plot) 

Block Dose of nitrogen TQtal Yi· 

Ni N2 Na N4 
Bi 15.6 17.2 14.2 18.2 65.2 

B2 16.0 x 15.6 18.8 50.4 + x 

Ba 14.2 16.8 16.0 17.2 64.2 

B4 15.0 17.0 15.7 18.0 65.7 

Bs 16.0 16.8 16.0 17.5 66.3 

Total Y·j 76.8 67.8 + x 77.5 89.7 311.8 + :t 
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It is observed that the production of second treatment in.second block is missing. 

(i) Analyse the data, (ii) Compare N2 with N4 . . 
Solution : (i) We have, p = 5, q = 4, B2 = 50.4, T2 = 67.8, G = 311.8. 

. • x = P B 2 + qT2 - G = 5 x 50.4 + 4 x 67.8 - 311.8 = 17.6. 
(p- l)(q - 1) (5 - 1)(4 - 1) 

Ni N2 N3 N4 Total Yi· Mean 'fh 

B1 65.2 16.30 

B2 17.6 68.0 17.00 

B3 64.2 16.05 
B4 65.7 16.42 

Bs 66.3 16.57 

Total y.1 76.8 85.4 77.5 89.7 329.4 = G1 16.47 

Mean y.1 15.36 17.08 15.50 17.94 

The analyses from original data are as follows : 

C.T. = G
2 

= (3ll.8)
2 

= 5116.80. 
19 19 

• 4 5 

SS (Total)= L LYi1, - C.T. = 5175.58- 5116.80 = 58.78 
i'=l j'=l 

ifi' #;' 
5 

LY?1. 
i'fi 

SS (Block) = --·- C.T. 
Qi' 

= (65.2) 2 (50.4) 2 (64.2) 2 (65.7) 2 (66.3) 2 
- 5116 80 - 3 . 

4 + 3 + 4 + 4 + 4 . - l.l 5· 

Analysis after estimating missing observation : 

C T - G~ - (329.4)
2 

- 5425 218 
. l · - pq :: 20 - . . 

SS (Total)i = L LY?1 - C.T. = 5485.34 - 5425.218 = 60.122. 

SS (Block)i = I: yf. - C.T. = 
21708

·
86 

- 5425.218 = 1.997.' 
q 4 

SS (
rn... ) I: y;. c 27243.74 
ueatment 1. = -- - .T. = - 5425.218 = 23.53. 

p 5 

SS (Error)i = SS (Total)i - SS (Block)i - SS (Theatment)i 

= 60.122 - 1.997 - 23.53 = 34.595. 

SS (Theatment) adjusted = SS (Total) - SS (Error)i - SS (Block) 

= 58.78 - 34.595 - 1.135 = 23.05. 

87 
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ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F Fo.o5 P-value 

Block 4 1.997 0.499 0.16 3.36 > 0.05 

Treatment (adjusted) 3 23.05 7.683 2.44 3.59 > 0.05 

Error 11 34.595 3.145 - - -

Total 18 

No factor effect is found significant since Fi = 0.16 < Fo.o5 and F2 = 2.56 < Fo.05 . 

(ii) Since treatment effects are not found significant, N2 and N4 are contiidered similar. 

Example 3~6 : An experiment is conducted in a nursery to observe the production of rose 
of one variety in presence of different doses of nitrogen and potash. The production of roses per 
plant within 15 days are recorded for analysis. The land is prepared giving 5 doses of potash 

. in different plots of (1 x 1) m2 . Each dose of potash is given in block of 4 plots. In each block 
4 doses of nitrogen are randomly allocated. The plan of the experiment is randomized block 
design, where nitrogen is used as treatment. 

Production of roses (Yi;) within 15 days 

Levels of potash Levels of nitrogen as Urea Total Yi· 

N1 N2 N3 N4 

P1 12 16 18 19 65 

P2 14 18 17 x 49+x 

P3 14 19 20 23 76 

P4 16 20 y 23 59+ y 

P5 15 22 25 24 86 

Total Y-J 71 95 80+y 89+x 335 + x + y 

It is observed that the result of N4 in P2 and the result of N3 in P4 are missing. 

(i) Analyse the data and comment. 

(ii) Is there any di.fference in the levels of N3 and N4? 

(iii) Is there any difference in the levels of N2 and N3? 

Solution : (i) We have B2 = 49, B4 = 59, T3 = 80, T4 = 89, p = 5, q = 4, G = 335. The 
value of x and y are estimated by 

. , 

(p - l){q - l)[pB2 + qT4 - G] - [pB4 + qT3 - G] x = -'--~-'-'-~---'-..;.._~~~~-=-~--~~~~-'-
( p - 1)2(q - 1)2 - 1 

= 4 x 3[5 x 49 + 4 x 89 - 335] - [5 x 59 + 4 x 80 - 335] = 20.4. 
16 x 9 - 1 

(p - l)(q - l)[pB4 + qT3 - G] - [pB2 + qT4 - G] 
y= (p - 1)2 (q ~ 1)2 - 1 

= 4 x 3[5 x 59 + 4 x 80 - 335] - [5 x 49 + 4 x 89 - 335] = 21.6 . 
16 x 9 - 1 
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The observations after estimating missing values are as follows : 

Levels of Levels of nitrogen as Urea Total Mean 

potash f\f 1 N2 N3 N4 Yi· Jh 
P1 65 16.25 

P2 20.4 69.4 17.35 

P3 76 19.00 

P4 21.6 80.6 20.15 

Ps 86 21.50 

Total y.1 71 95 101.6 109.4 377 = G1 18.85 

Total 'Y.1 14.20 19.00 20.32 21.88 

Analysis from original data : 

C.T. = ~: = (3~~)
2 

= 6234.72. 

4 5 

SS (Total)= LL y'f,,1,, - C.T. = 6475- 6234.72 = 240.28. 

i#i' ;ti" =l 

.i#J'#J"=l 

Ey2., SS (Block) = __ ,_. - C.T. = 75.20. 
Qi 

Analysis after estimating missing observations : 

C.T.1 = G~ = (3
2
77)

2 
= 7106.45. 

pq 0 

SS (Total)i = LLYfj -C.T. = 7357.72- 7106.45 ~ 251.27. 

SS (Block)i = E yf. - C.T. = 
28709

·
72 

- .7106.45 = 70.98. 
q 4 

E Y~· 36356.92 
SS (Treatmenth = --1 

- C.T. = - 7106.45 = 164.934. 
p 5 

SS (Error)i =SS (Total)i - SS (Block)i - SS (Error)i 

= 251.27 - 70.98 - lM.934 = 15.356. 

SS (Treatment) adjusted1 = SS (Total) - SS (Error)i - SS (Block) 

= 240.28 - 15.356 - 75.20 = 149.724. 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F Fo.os 

Block (Potash) 4 70.79 17.6975 11.52 3.48 

Treatment (Urea) adjusted 3 149.724 49.908 32.50 3.71 

Error 10 15.356 1.5356 - -
Total 17 

89 

P-value 

0.00 

0.00 

-
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Since F2 = 32.50 > Fo.os(p{F2). < 0.01], the doses of nitrogen are highly significantly 
different. 

(ii) We need to test the significance of Ho: /3a = {34, against HA : /3a ::/:- {34. 
Both treatments Na and N4 have missing observations. The test statistic is 

t Y-a -'jj.4 =-.:========== 
s. (..!. + ..!.) a ra r4 

The components of ra are as follows : 

ra = 1, since N4 is present in block-1 

= ~'since N4 is absent in°block.,2 

= 1, since N4 is present in block-3 

= 0, since Na is itself absent in block-4 

= 1, since N4 is present in block-5. 
i 

ra = 1 + "2 + 1 + 0 + 1 = 3.5. 

Similarly, r4 = 3.5. 

20.32 - 21.88 
t= =-1.66. 

yf L53S6 Us + a~5 ) 
Since Jtl < to.o25,10 = 2.228, Na and N4 are not significantly d.ifferent. 

(iii) We need to test the significance of Ho : /32 = /3a, against HA : /32 ::/:- /3a. 
Since Na has one missing observation, the test statistic is 

t 'Y.2 -'ii.a 
= --;:========== J ~ [2 + (p-l)~q-:1)] 

19.00 - 20.32 --;:===== = -1.56. 
l.5a56 [2 + _4_] 

5 4xa 

Since itl < to.02s,10 = 2.228, Ho is accepted. N2 does not differ from Na. 

3.8 Latin Square Design (LSD) 
To control two directional external sources of variation in experimental plots Latin square 

design is used as a mode of data collection. For example, let us consider that a company 
produces 4 varieties of protein and it needs to identify the best variety. The company decides 
to do one experiment with 4 varieties of protein where proteins are to be fed to different guinea 
pigs. To do the experiment the company needs guin~a pigs of multiple of 4 so that each variety 
of protein can be fed to several guinea pigs. In practice, it is difficult to select more guinea 
pigs of same age and same body weight. Even if it is possible to select guinea pigs of same age, 
their body condition scores or body weights may not be same. These latter two characters are 
important to study the impact of protein. If the guinea pigs vary in ages and in body weights 
or body condition scores, two external sources of variation prevail in the experimental units. 
Therefore, experimental plan is to be formulated so that two external sources of variation are 
controlled. 

Consider that there are 16 guinea pigs of 4 different ages. The body weights of different 
guinea pigs of each age are also different. Here 4 rows with 4 guinea.pigs in each row are to be 
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formed. Four columns of guinea pigs are also to be formed, where in each column there are 4 
guinea pigs each of same body weight or body condition score. The rows are perpendicular to 
the variation of body condition scores and columns are perpendicular to the variation in ages. 
Now, four varieties of protein are to be given to guinea pigs of rows and columns in such a way 
that a variety of protein is given only once to a guinea pig in each row and in each column. 

Let Pi, P2 , P3 and P4 be the four varieties of protein. The varieties are to be allocated 
according to the following plan to get a 4 x 4 Latin square design. · 

Agefi Body condition scores 

Ci C2 C3 C4 

Ri Pi P2 P3 P4 
R2 P2 Pi P4 P3 
R3 P3 P4 P2 Pi 
R4 P4 P3 Pi P2 

In the above plan, there are three factors, viz., rows, columns and treatments. Each factor 
has 4 levels. But the experiment is conducted in 42 plots instead of 4 x 4 x 4 = 64 plots. ·Thus, 
the design is considered as an incomplete three-way layout. 

Let there be k treatments to be allocated in k2 plots, where the plots are divide<l into 
k rows and k columns so that each row or each column contains k plots. The rows are taken 
perpendicular to one source of variation and columns are taken perpendicular to another source 
of variation. The treatments are allocated to the plots in such a way that each treatmer.t is 
allocated once and only once in a row and in a column. The resultant design is known ask x k 
Latin square design. This design controls two-directional external sources of variation. 

Methods of Construction of Latin. Square Design 

One of the plan of allocation of treatments is shown above. The treatments may be allocated 
differently and accordingly the names of the design are different. The construction of Latin 
square design has been discussed by Fisher (1926), Yates (1933f, Fisher and Yates (1934), 
Wilks (1944), Mann (1949) and Kempthorne {1952). A short description of different types of 
Latin square designs is presented below : 

Standard Square : A Latin square design is said to be standard square if the treatments in 
first row and first column are arranged in alphabetic order or in numerical order. For example, 
let there be 4 treatments A, B, C and D. These 4 treatments can be allocated in 4 standard 
squares as follows : 

. 
A B c D A B c D A B c D A B c D 

B A D c B c D A B D A c B A D c 
c D B A c D A B c A D B c D A B 

D c A B D A B c D c B A D c B A 

1 2 3 4 
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A B c 
For three treatments A, B and C the standard square is B c A 

c A B 

5 

The latter squar~ can be arranged in ot.her squares as follows : 

A c B B c A B A c c B A c A B A B c 
B A c c A B c B A A c B A B c c A B 

c B A A B c A ·a B B A c B c A B c A 

6 7 8 9 10 11 
,.....,. 

A c q B c A B A c c B A c A B 

c B A A B c A c B B A c B c A 

B A c c A B c B A A c B A B c 
12 13 14 15 16 

It is observed that with 3 treatments there are 3!(3-1)! = 12 arrangements of squares. One 
of the 12 squares is standard one and the remaining 11 squares are non-standard. There are 4 
standard squares of four treatments A, B, C and D. These 4 letters of each -standard square 
can be arranged in rows and columns in 4!(4 - l)! ways. Thus, there are in total 144 x 4 = 576 
squares of treatments. However, only 4 of them are standard squares. It is observed that in 
k x k Latin square design each standard square can be arranged in k!(k - l)! squares. 

Conjugate squares : If the arrangement of treatments in rows of one square is same as 
the arrangement of treatments in columns of another square of two standard squares, then the 
squares are called conjugate squares. For example, the square-I and square-2 of four treatments 
A, B, C and D given above are conjugate squares. 

Self-conjugate square : If the arrangement of treatments in rows and columns are similar 
in a square, it is called self-conjugate square. For example, all the standard squares given above 
are self-conjugate squares. Moreover, square numbers 7, 10, 12, 14 and 15 are also self-conjugate 
squares. 

Adjugate-set : If the rows, columns anq treatments are combined with each other, there 
will be 6 combinations. These six squares of combinations are called adjugate-set. 

Self-Adjugate-set : If rows, columns and treatments are combined and the combinations 
give the same set, then the set is called self-adjugate-set. The square 1, 2, 3 and 4 are self
adjugate-set. 

For any practical purpose, the plan of treatment can be selected from the table of Latin 
square arrangement as suggested by Fisher and Yates (1934). In practice, the Latin square 
design is used for maximum 10 treatments. 

Analysis of Data : Let there be k treatments which are allocated in rows and columns 
according to a. given k x k Latin square plan. Let Yiil be the result 0£ lth treatment in jth 
column of ith rows (i = j = l = 1, 2, ... , k). The linear model for 'Yiil observation is : 

Yiil = µ + ai + /3; +'YI+ ei;t, 
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whereµ= general mean, ai = effect of ith row, /31 = effect of jth column, 'YI = effect and lt1 
treatment and eiil =random error. 

Assumption : ei11 ,..., NI D(O, a 2). 

The estimated error sum of squares related to the model is : 

The values of µ, &; , f3; and .:Y1 are to be found out solving the following equations : 

8
<1> 0 8

<1> 0 8~ = 0 and 8
</> 0 

8µ = ' 8&i = ' 8/3
1 

8ft1 = · 
The equations are also written as 

y, .. = kµ + kai + I: .81 + I: .y, 

Y.J· = kfi, + L &i + k.81 + L i1 

y .. , = kµ + I: 0:i + I: .B; + k-y,. 

There are {3k + 1) normal equations, but 3 of them are dependent and (3k - 2) are 
independent. To get the unique solution of these equations we need to put 3 restrictions. 
The restrictions are L: &i = L: .81 = L: i1 = 0. Under the restrictions, the estimates ~re 

µ = Y .. ., & =Yi .. -y ... , ,8 =YI -y ... , i = Y .. 1 -y ... . 

These elements are independent. It can be shown as follo~s : 

Cov(&i, i1) = Cov(ih. -y ... , Y .. 1 -- 'Y ... ) 

= Cov(yi ... Y .. 1) - Cov(yi .. ,y ... ) -Cov(y ... ,'Y .. 1) + V(y ... ) 

a 2 ka2 ka2 a 2 

= k2 - k . k2 - k2 . k + k2 = o. 
Similarly, all other covariances cart be shown as zero. 
The total variation of observations can be partitioned as follows : 

le le le 

SS (Total)= LLL(Yijl -y .. .)2 = LLL[(yi .. -y ... ) + (Y·1· -y ... ) 
j I 

+ (y .. , - Y ... ) + (Yiit ·- Jh. - 'fl-1- - Y .. 1 + 2y ... )] 2 

= k L(Yi .. - 'jj ... )
2 + k L(Y-j· - 'Y ... )2 + k L(Y .. 1 - Y ... )2 

. + LL L (Yijl - Yi .. -· Y-J- - 'Y .. 1 + 2Y ... )2 + cross-product terms 

All cross-product terms are zero. Thus, we have 
/,' 

le le le J 

LL L(Yijl .- y ... )2 = S1 + S2 +Sa+ S4 = SS(O:i) + SS(/31) + SS(i1) +SS (Err9r) 
i j I 

= SS (Row)+ SS (Column) +SS (Treatment)+ SS (Error). 
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Under assumption all sum of squares are iudependently distributed as x2a 2 . The d.f. 0£ 

these x2 are (k - 1), (k - 1), (k - 1) and (k - l)(k - 2), respectively. The d.f. can be shown as 
follows : 

Ek L(y .. 1 - 'iJ ... )2 = kE L:Ce .. 1 - e ... + 1'1)2
, under restrictions Lai= 0 = L /31 = L 'YI· 

I . 

Therefore, kE L (y .. 1 - 'i} ... )2 = k L E(e~I) + k L E(e~ .. ) - 2kE Leh e ... 
I • 

+ k L E'Yf + 2kE L 1'1 (ei .. - e ... ) 
kka2 kka2 2k2

a 2 
2 2 2 

= -k- + --,;2 - k'2 + k L: "11 = (k - 1)a + k L: 1'1 

= ( k - 1 )a2, if /'I = 0 

. kE'f)y .. 1-'iJ ... )2 - k 1 ·r -0 
2 - - , l /'1 - · 

a 

Therefore, SS (Treatment) is distributed as central x2a 2 with (k - 1) d.f. under the 
assumption 'YI = 0. Now, we need to test the significance of the null hypothesis Ho : 'YI = 0, 
against HA : 1'1 =/= 0. . 

The non-null distribution of SS (Treatment) is non-central x2 with non-centrality parameter. 

k ""' 2 ,>.3 = 2a2 L.J 1'1 . 

In a similar way, the d.f. of other sum of squares can be shown. The sum of squares due to 
error is distributed as x2a 2 with (k - l)(k - 2) d.f. without any restriction, since 

ELL L(YiJI ·_Yi .. -y·1· - 'il .. 1 + 2'iJ ... )2 

=LL L E(ei11 - ei .. - ef - e .. 1 + 2e ... )2 = (k - l)(k - 2)a2
. 

The test statistic to test the significance of Ho : 1'1 = 0 is 

\ 

If F3 2:'. Fa:;k-l,(k-t)(k-2), Ho is rejected. 
The test statistics for Ho : O'i = (} and Ho : /31 = 0 are found out similarly and conclusion is 

also made in a similar way . . 
ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F E(MS) P-value 

Row k-1 S1 
St a2 = _k_ L: 0'2 St Fi=-
S4 k - 1 • 

Column k-1 S2 
S2 a2 = _k_ L:/32 S2 F2=-
S4 k - 1 J 

Treatment . k -1 S3 S3 F3 = s3 a2 = _k_ L: l'l 
S4 k-1 

Error (k-l){k-2) S4 S4 - ~2 

Total k2 -1 
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Here Pi-value = f
00 

f (F)dF. If p(Fi) $ 0.05, Ho is rejected. 
jF; 

95 

The rejection of Ho =·'Yi = 0 leads us to compare the treatments in pairs. The comparison 
is done by Duncan's multiple range test, where. the test stat.istic is : 

rs: D1 = da,l.fy k' l = 2, 3, ... , k; f = (k - l){k - 2) .. 
. 

Any particular pair, say, lth and l'th treatment is compared by t-test, where 

t- 'ii .. ,-'ii .. 11 - [ii . 
The null hypothesis to be tested by the above t-test is Ho : 'YI = 'Yl', against HA : 'YI =I 'Y11 , 

l =I l' = 1,2, ... ,k. 
The conclusion will be made in a similar way as it is done in other t-tests. 
Example 3. 7 : An experiment is conducted to study the productivity of cotton varieties in 

presence of doses of nitrogen and irrigation levels. Five varieties of cotton are cultivated using 
5 doses of nitrogen as urea. Five doses of nitrogen are applied in 5 plots of a row, where 5 rows 
are used to use 5 levels of irrigation. The design used is LSD. The plot size is 12 m x 8 m. 
The production of cotton in plots and the plan of treatments in rows and columns are shown 
below: 

Rows Columns 

N1 N2 NJ N4 

Ii C1 -10.2 C2 - 11.0 C3 - 9.0 C4 -12.2 

/2 C2 - 11.2 C1 - 11.6 C4 - 12.5 Cs - 9.2 

/3 C3 - 9.5 Cs - 10.2 C1 - 12.6 C2 - 14.0 

/4 C4 - 13.2 C3 - 12.5 Cs - l_D.5 C1 - 12.6 

ls Cs - 9.2 C4 -14.2 C2 - 11.2 C3 - 11.6 

Total Y-i· 53.3 59.5, 55.8 59.6 

Mean 'ii·j· 10.66 11.90 11.16 11.92 

Total of treatments, y .. 1 : 60.0, 62.4, 52.8, 64.1, 47.9. 

Mean of treatment, y,,1 : 12.00, 12.48, 10.56, 12.82, 9.58. 

{i)' Analyse the data and group the cotton varieties. 

Ns 

Cs - 8.8 
C3 - 10.2 
C4 - 12.0 

·C2 -15.0 
C1 - 13.0 

59.0 
11.80 

{ii) Which level of irrigation would you recommend for better production? 

(iii) Which dose of nitrogen would you recommend for better production? 

Solution : (i) k = 5, G = 287.2, C.T. ~ ;: = (28:~2)
2 

= 3299.3536. 

SS (Total) = LL LYfj1 - C.T. = 3370.08 - 3299.3536 = 70. 7264. 

SS (Rows)'= "£:~· -C.T. = 
165

:
7

·
5 

- 3299.3536 ~ 18.1464. 

SS (Columns) = E :~· - C.T. = 
165~7·94 - 3299.3536 = 6.2344. 

Total Mean 

Yi·· Yi·· 
51.2 10.24 

54.7 10.94 
58.3 11.66 
63.8 12.76 
59.2 11.84 

287.2 -
- 11.488 
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"S ( ) 2.:: Y2
1 16684.82 ::, Treatments = _k_.. - C.T. = 

5 
- 3299.3536 = 37.6104. 

SS (Error) = SS (Total) - SS (Rows) - SS (Columns) - SS (Treatments) 

= 70.7264 - 18.1464 - 6.2344 !... 37.6104 = 8.7352. 

ANOVA Table 
, 

Sources of variation d.f. SS MS= SS 
d.f. 

F Fo.05 P-value 

Rows (irrigation) 4 18.1464 4.5366 6.23 3.26 0.00 

Columns (nitrogen) 4 6.2344 1.5586 2.14 3.26 > 0.05 

Treatments 4 37.6104 9.4026 12.92 3.26 0.00 

Error 12 8.7352 0.7279 - - -

Total 24 

The cotton varieties are significantly different, since p(F3 ) < 0.00 [F1 = 12.92 > Fo.05J. 
The cotton varieties can be grouped by Duncan's multiple range test, where the test statis

tic is 

D1 = d.o5,I,/ [¥, l = 2, 3, 4, 5; f =. 12 

D2 = 3.o8J
0

·
1
:

19 = 1.18, D3 = 3.23J
0

·
7
:

79 
= 0.81, 

D4 = 3.33J
0

·
7
:

79 
= 1.27, D5 = 3.36J

0
·
7
:

79 
= 1.28. 

The means .in ascending order are 

Cs= 9.58, C 3 = 10.56, C1 = 12.00, C2 = 12.48, C4 = 12.82. 
\ 

(J4 - (J5 = 12.82 - 9.58 = 3.24 > Ds, .. Means are signifi~antly different. 

C4 - C3 = 12.82 - 10.56 = 2.26 > D4, 

?J2 - C5 = 12.48 - 9.58 = 2.90 :> D4, 

C1 - Cs = 12.po - 9.58 = 2.42 > D3, 

C2 - C3 = 12.48 - 10.56 = 1.92 > D3, 

C4 - C1 = 12.82 ·- 12'.00 = 0.82 < D3, 

Ca - Cs = 10.56 - 9.58 = 0.98 < D2, 

C1 - Ca = 12.00 - 10.56 = 1.44 > D2, 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

Ca and C4 are difffrent . 

C2 and C5 are di.fferent . 

C1 and C5 are different . 

C2 and C3 are different . 

C1 and C4 are similar. 

Ca and C5 are similar . 

C1 and Ca are similar . 

The underlined means do not differ. C 5, C 3, C 1, C 2, C 4 

(ii) Since the levels of irrigation are significantly different by F-test, these levels can be 
grouped by Duncan's multiple range test, where 

Di = ~.05,i./ [¥, i = 2, 3, 4, 5; f = 12. 
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The D; values are equal as calculated above. The means of levels of irrigation are in ascending 
order as follows : 

7i = 10.24, 72 = 10.94 73 = 11.66 75 = 11.84 74 = 12.76 

74 -Ii =: 12.76 - 10.24 = 2.52 > D 5 , •• levels of irrigation arc significantly different.. 

75 - 7i = 11.84 - 10.24 = 1.60 > D 4 , .. Ii and h arc different. 

74 - 72 = 12.76 - 10.94 = 1.82 > D4 , •• I 2 and I4 are different. 

73 - 7i = 11.66 - 10.24 = 1.42 > D3,' .. Ii and l:i are different. 

75 - 72 = 11.84 - 10.94 = 0.90 < D3. .. I 2 and hare similar. 

/4 - /3 = 12.76 - 11.66 = 1.10 < D3, .. hand I4 are similar. 

72 - Ii = 10.94 - 10.24 = 0.70 < D2, .. Ii and I2 are similar. 

73 - 72 = 11.66 - 10.94 = 0.72 < D2, .. I2 and l:i are similar. 

The underlined means do not differ. 

Ii, I2, I3, I5, I4 

It is observed that the levels of irrigation h, I 4 and h ·are similar but the average production 
of these three levels are higher. Among these 3 levels I 4 is the best. 

(iii) The doses of nitrogen are similar in productivity as is observed by F-test. However, N 2 , 

N3, N4 and N5 are slightly better than Ni. 

3.9 Analysis of Latin Square Design with Missing Observations 
Let us consider the analysis of data with one missing observation. Let the observation of 

lth treatment of jth column in ith row be missing. Let us denote this observation by x. To 
analyse the data x is to be estimated in such a way that the estimated error sum of squares is 
minimum. 

The total of lth treatment is written as T1 + x and other treatment totals are y .. 1' (l' t l = 
1, 2, ... , k). The total of ith row is R; + x and the total of jth column is C7 + x. The totals of 
other rows and columns aer Yi'· and y.p. (i' I= i = 1, 2, ... , k; j' t j = 1, 2, ... , k), respectively. 
Let (G + x) be the grand total of observations. Now, the estimated error sum of squares with 
one missing observation is written as 

,;, _ '°' '°' '°' 2 .2 '°' YT1
•• (R; + x)

2 '°' Y2
j' (C7 + x)

2 
'l'-LLLYi'i'l'+x -LT- k -LT- k 

·'°' y~ 1 , (T1 + x) 2 
(G + x) 2 

- LT- k + k2 

Now~= 0 gives 

2
x_ 2(R;+x) _ 2(C1+x) _ 2(T1+x) 2(G+x) _ 

k k k + k2 . - O. 

k(R,+C1 +1l)-2G 
X= --'---:-~--=-,..,-~'--~-

(k- l)(k-2) 

The analysis is performed in usual way replacing missing observation by the estimated value 
of x. The exception in the analysis is that 1 is to be subtracted from total d.f. and hence, from 
error d.f. for one missing value. 

D.E.S.M.-7 
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ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F 

Rows k-1 Si 81 F _ 81 1 - -
84 

Columns k - 1 S2 
82 

82 F2= -
84 

Treatments k-1 S3 
83 

83 F3=-
84 

Error (k - l)(k - 2) - 1 S4 84 -

Total k2 - 2 

If the null hypothesis Ho : 'Yl = 0 is rejected, it is needed to compare the treatments in 
pairs. The comparison is done as usual by Duncan's multiple range test. But the hypothesis 
of the type H 0 : f'l = 'Yt', against HA : f't =I- f'l' (l =I- l' = 1, 2, ... , k), where f'l is the treatment 
etf£'d having a missing observation. The test statistic is 

t = 'fi .. 1 -y .. ,, 
y'v(Y .. 1 - Y .. t') 

Here v(y. 1 - 'fi. l') is the estimate of V (y .. 1 - Y .. l'). 
Bere V(y. 1 - y .. 1,) = V(y .1) + V(y ·I') - 2Cov(Y,,i. 'fi .. 1, ). 

(]'2 

We have V ('fi .. l') = k 

v(- ) = 2-v [Ii k(R, + cj + r,) - 20] 
Y .. / k2 t+ (k-l)(k-2) 

V(y 1) = : 2 [ V(T1) + (k _ l) 2\k _ 2)2 {k
2
V(Ri) + k

2
V(Ci) + k

2
V(Ti) + 4V(G)} 

. + 2k2Cov(T1, Ri) + 2k2Cov(Ri, C1) + 2k2Cov(Cj, Ti) - 4kCov(G, R;) 

1 
- 4kCov(G, CJ) - 4kCov(G, Ti)+ (k _ l)(k _ 

2
) {kCov(T/, Ri) 

+ kCov(Ti, CJ) + kCov(Tt, T1) - 2Cov(T1, G)}] 
= :2 [(k-1) + (k -1)2\k- 2)2{k

2
(k-1) + k

2
(k -1) + k

2
(k- 1) +4(k

2 
-1) 

+ 2k2 x 0 + 2k2 x 0 + 2k2 x 0 - 4k(k - 1) - 4k(k - 1) - 4k(k - 1) 

+ (k-l)
2
(k- 2){k·O+k·O+k(k-l)-2(k-l)}]u

2 

(]'2 [ 1 
= k2 (k - 1) + (k - 1)2(k - 2)2 +. {3k

2
(k - 1) + 4(k

2 
- 1) - 12k(k - 1)} 

u
2 

[ 3k - 2 ] 2 [ 1 1 ]· 
= k2 k - 1 + (k - l)(k - 2) + 2 = (]' k + (k - l)(k ~ 2) . 

2(k - l)(k - 2)] 
+ (k - l)(k - 2) 
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V(ll .. 1 - y .1') = [V(y .. i) + V(y .. l' )], Cov(y .. 1, y .. 1,) = 0 

= a
2 rn + ( k - 1 )\ k - 2 J. 

Here a 2 is estimated by 8 4 . Therefore, 

t ll.1 -ll .. 1• 
. . = --;:========= J 8 4 [ ~ + (k-d(k-2)] 

This t has (k - l)(k - 2) - 1 d.f. The conclusion will be drawn as usual. 

The treatment so estimated is not orthogonal to the effects of row and column due to missing 
observation. To test the significance of treatment contrast it is necessary to adjust the sum of 
squares due to treatment. The adjusted treatment sum of squares is found out as follows : 

SS (Treatment)adjusted = SS (Total) - SS (Error)i - SS (Row) - SS (Column) 

Here G1 = LLLYi'.J'I' + i:, i: is the estimated value bf x 

i'#i 
J'#j, 1'#1 

C.T.1 = ~!, SS (Total)i = LLLY?11 - C.T.1, SS (Row)i = L yl - C.T.1, 
i j I 

2 

SS (Column)i = L yt -C.T.1, 

Y; .. : Y1 .. , Y2 .. , · ·., R; + i:, · · · Yk·· 

Y.J : y.i., Y 2., ··.,Ci+ i:,. · · Y·k· 

Y·I :y .. 1,y.2, ... ,T1+i:, ... y k 

2 

SS ,(Treatment)i = L Y.,;,1 - C.T. 1 

SS (Error)i =SS (Total)i - SS (Row)i - SS (Column)i - SS (Treatrnent)i 

The above analysis is done after replacing the estimated value of x( :i:). 

Example 3.8 : The following data are related to number of faded signals sent from 4 different 
stations (namely, A, B, C, D) in 4 days of a week. The data are recorded for 4 weeks following 
a 4 x 4 Latin square design. The plan and faded signals of stations recorded in days and weeks 
are shown below : 

Observations of faded signals of stations recorded in days of weeks (YiJI) 

Days Weeks 

W1 W2 W3 W4 

D1 A-10 B-8 C-7 D-18 

D2 B-8 A-12 D-16 C-9 

D3 C-6 D-16 B-x A-10 

/)4 D-15 C-7 A-11 B-10 
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(i) Analyse the data and comment. 

(ii) Is there any difference bctwf'cn station (A) and station (B)? 

(iii) Compau: station B with others assuming that the number of faded signals of B are known 
earlier. · 

(iv) Group the stations. 

· Solution : We have k = 4, G = 163. The observation of third row and third column 
is missing. This missing observation is for second treatment. Let R3, C3 and T2 be the 
total of third row, third column and second treatment, respectively for original data, where 
R3 = 32, C3 = 34, T2 = 26. Therefore, estimate of x is 

, k(R3 + C3 + T2) - 2G 4(32 + 34 + 26) - 2 x 163 
X= (k-l)(k-2) = (4-1)(4-2) = 1· 

Also, we have (after replacing the missing value) 

Yi· : 43, 45, 39, 43, G1 = 170 

Y-.i : 39, 43, 41, 47 

y. l : 43, 33, 29, 65 

'jJ. J : 10.75, 8.25, 7.25, 16.25 

Analysis from original data 

. C.T. = ~ = (163)2 = 1771.27 Gr (170)2 k2 _ 1 15 , C.T.1 =/ii= -u;- = 1806.25 

SS (Total)= LL LYij'l' - C.T. = 1969 - 1771.27 = 197.73 

i' j' l' 

i'#i/#.i l'#l 

y~ 432 452 322 432 
SS (Row)= L k; .. - C.T. = 4 + 4 + '3 + 4 - 1771.27 = 0.81 

. y~, 392 432 342 472 
SS (Column)= L ~i · - C.T. = 4 + 4 + '3 + 4 - 1771.27 = 8.81 

y2 
I 432 262 292 652 

SS (Treatment)= L ;;: - C.T. = 4 + '3 + 4 + 4 - 1771.27 = 182.81 

Analysis after estimating missing observation 

SS (Total)i =LL LYl;t - C.T.1 = 2018 - 1806.25 = 211.75 

SS ( ) "\"'"" y;.. c 7244 
Row i = ~ T - .T.1 = -

4
- - 1806.25 = 4.75 

( 
"\"'""YI 7260 SS Colunm)i = ~ k - C.T.1 = -

4
- -- 1806.25 = 8.75 

SS ( ) · "\"'"" y. I C 8004 Treatment 1 = ~ T - .T.1 = -
4

- - 1806.25 = 194.75 

SS(Error)i = SS (Total)i - SS (Row)i - SS (Column)i - SS (Treatment)! 

= 211.75 - 4.75 - 8.75 - 194.75 = 3.5 
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SS (Treatment)a<ljusted =SS (Total) - SS (Error)i - SS (Row) - SS (Column) 

= 197.73 - 3.5 - 0.81 - 8.81 = 184.61 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F Fo.05 P value 

Row 3 4.75 1.583 2.26 5.41 > 0.05 

Column 3 8.75 2.917 4.17 5.41 > 0.05 

Treatment (adjusted) 3 184.61 61.537 87.91 5.41 < 0.00 

Error 5 3.50 0.7 - - -
., 
Total 14 
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Since F3 = 87.91 > F 0 .05 [P - value < 0:00], the effects of stations arc highly significantly 
different. 

(ii) We need to test the significance of Ho : 'Yi = ')'2, against HA : 'YI -1- ')'2 . Since second 
station has one missing observation, the test statistic is 

10.75 - 8.25 
= 3.66. 

Jo.1 [ ~ + (4-d(4-2J] 

Since !ti 2:: to.025,5 = 2.571, Ho is rejected. Station A and station B are significantly different 
in respect of faded signals. 

(iii) We need to compare station B with others. Here station B can be considered as control 
treatment. It can be compared with others by Dunnett's test, where the test statistic is 

D = do.o5,k, error d.f. s4 rn + (k _ l)l(k _ 
2
)] as B has one missing value. 

do.05,k, error d.f. = 5% value from Dunnett's table for k means including control treatment with 
error d.f. (= 5). 

[
2 . 1 ] 

D = 3.29 0.7 "4 + (4 _ l)(4 _ 2) = 2.247. 

liJ. 2 - i] .. 11 = 2.5 > D, A and B arc different stations. 

117 .. 2 -y .. 3 1 = 1.00 < D, B and C are similar stations. 

117 .. 2 - ii .. 4 1 = 95 > D, Band D arc different stations. 

(iv) For grouping we can use Duncan's multiple range test, where the test statistic is 

[ii 
De= do 05,1,Jy k"; z = 2. 3, 4 

do.05,!,f = 5% tabulated value from D,uncan's table for range of l means with f = error d.f. 
. fQ.7 fQ.7 - fQ.7 

D2 = 3.65v 4 = 1.53, D3 = 3.74v 4 = 1.56, D4 = 3.79v 4 = 1.59 
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The means of stations in ascending order are C = 7.25, B = 8.25, A= 10.75, D = 16.25 

D - C = 9 > D4 ; the means arc significantly different. 

A - C = 3.5 > D 3 ; A and C arc different. 

D - B = 8.00 > D 3 ; Band Dare different. 

D - A = 5.50 > Dz; A and D arc different. 

A - B = 2.50 >Dz; A and D arc different. 

B - C = 1.00 >Dz; Band Care similar. 

The underlined stations are in one group. 

C, B, A, D 

Analysis with Two Missing Observations : Let the observation of lth treatment in 
jth column of ith row be missing. Let us denote this observation by x. Again, consider that 
the observation of l'th treatment of j'th column in i'th row is missing. Let us denote thi•: 
observation by y. Here i -j. i' = 1, 2, ... , k; j -j. j' = 1, 2, .... k; l -j. l' = 1, 2, ... , k. 

To analyse the data of this k x k Latin square design th::: ruissing observations x and y are 
to be estimated in such a way that the estimated error sum of squares is minimum. The error 
sum of squares including the missing values x and y is written as 

,i.. _ '°' '°' '°' 2 ,.z z _ '°' yf,, .. _ (Ri + xf _ iR;1 + y)z 
'+'- ~~~Yi11.1"l" +x +y. ~ k k k 

_ '°' y;,,. _ (C7 + x)'2 _ (Cl' + y) 2 
_ '°' y~ 1 ,, 

~ k k k ~ k 

(11 + x) 2 (Tl' + y) 2 2(G + x + y) 2 

k - k + k2 

Here i -j. i' -j. 'i'' = 1, 2, ... , k; j -j. j' i j" = 1, 2, ... , k; l -j. l' -j. l" = 1, 2, ... , k, Ri = total 
of ith row except x, R;' = total of i'th row except y, Ci = total of jth column except x, CJ' = 
total of j'th column except y, 11 = total of lth treatment except x, T11 = total of l'th treatment 
except y, G =grand total without x and y. 

. . 8</l 8</l 
The va~ue of x and y are to be found out solvmg the equations ax = 0 and ay = 0. 

W 
1 2 

.. __ 2(R;+x)_2(Cj+x)_2(11+x) 4(G+x+y)._
0 e iave x k k k + k2 -

2 
_ 2(R;' +y) _ 2(C7, +y) _ 2(T1, +y) 4(G+x+y) _ 

y k k k + k2 - o. 

Solving these equations, we have 

. = k(R; + C1 + 11) - 2G _ 2 { k(R; 1 +CJ' + Tt') - 2G} 
x k(k-3)(k 2 -3k+4) k(k - 3)(k2 - 3k + 4) 

(k-l)(k-2) 

_ k(R; 1 +CJ' + 111
) - 2G _ { k(R; +Ci+ 11) - 2G} 

y - k(k-3)(k2 -3k+4) 
2 k(k - 3)(k2 - 3k + 4) . 

(k- l)(k-2) 

and 

The missing observations are replaced by the values of x and y calculated according to the 
above formulae. Then the analysis of the data is performed as usual except that 2 is subtracted 
from total d.f. and hence, from d.f. of error. 
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In practice, the values of x and y are also found out by iterative procedure. For this, either 
value of x or y is calculated taking average of the rows in which they are missing. For example, 
let x be tb.e average of ith row. Then, we have one missing value y. This y is to be estimated by 

, k(R;' +Ci' + T1') - 2G1 
y= (k-l)(k-2) ' where G1 = G + R;. 

Replacing y in the missing place, x is estimated by 

, k(Ri +Ci +Tl) - 2G2 
X= (k-l)(k-2) ' where G2 = G + y. 

If this i: is equal to the first value of x(R;), the estimation of missing observations is finished. 
If not, replacing i: in missing place y is estimated second time, where 

" 
, k(Ri' +Ci' + T1') - 2G3 l G G , 
YI - · w iere ., = + x. 

- (k-l)(k-2) ' " 

Replacing y1 in the missing place, where x is estimated second time 

, k(Ri +Ci+ Ti) - 2G4 
Xi= (k-l)(k-2) ' where G4 = G + il1· 

The process of estimation is continued until two consecutive estimates of x are equal or 
approxi~ately equal. 

In this analysis also sum of squares of treatment is adjusted as it is suggested in the previous 
analysis. 

The comparison of two treatments both containing missing observations is done by t-test. 
where 

t 
'ii .. 1 -fi.1, 

= --r===== where s4 =MS (error). 

84 ( * + T~I) 
Here r1 and r1, are the effective number of replicates of lth and l'th treatment, respectively. 

The effective number of replicate is calculated from each row. The component of ri and !'" is 
obtained as follows : 

. Component of r1 = 1, if l'th treatment is present in a row and in a column. 

2 
= 3, if l'th treatment is present either in a row or in a column. 

= ~· if l'th treatment is missing in a row and in a column. 

= 0, if lth treatment is itself missing in a rO\y. 

The value of r1 is the sum of different components calculated from all rows. Similar is the 
case with r1'. 

The comparison of two treatments one having missing observation is performed in a similar 
way as it is proposed before. Pairwise comparison of other treatments are done by usual t-test 
or by Duncan's multiple range test. 

In latin square design if all observations of a row or a column are missing, the design is no 
longer a Latin square design. The design is called Youden Square design and it.is an incomplete 
block design. The analysis has been discussed by Yates (1936), Yates and Hale (1939) and Das 
and Giri (1979). 
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Example 3.9: An experiment is conducted to study the productivity of a rose variety using 
6 doses of nitrogen as urea. The objective is to study the impacts of nitrogen on production 
of rose. The plot is prepared using 6 doses of potash. During experimentation 6 levels of 
irrigation are also applied. The number of roses produced per plant after one month of the 
start of experiment is recorded for analysis. The experiment is conducted through LSD. 

Row Levels of Irrigation Total, Yi·· 

Levels of Potash Ii 12 /3 /4 h h 

Pi F-21 E-17 D-17 C-20 B-17 A-16 108 

P2 E-18 C-19 A-x D-19 F-22 B -19 97+x 

?3 B-16 A-16 F-22 E-19 D-19 C-21 113 

?4 A-15 B-18 E-20 F-y C-20 D-19 92 +y 

?5 D-18 F- 24 C-20 B-18 A-20 E- 20 120 

p6 C- 20 D-18 B-17 A - 19 E-19 F- 25 118 

Total y.1. 108 112 96 +x 95 + y 117 120 648 + x + y 

Here A = 30 kg/ha, B = 60 kg/ha, C = 90 kg/ha, D = 120 kg/ha, E = 150 kg/ha, 
F = 180 kg/ha, Pi = 0 kg/ha, P2 = 20 kg/ha, ?3 = 40 kg/ha, P4 = 60 kg/ha, P5 = 80 kg/ha, 
P6 = 100 kg/ha; Ii = irrigation for 15 minutes in the morning, 12 = irrigation for 25 minutes 
in the morning, I 3 = irrigation for ·35 minutes in the morning, I 4 , h an h are similar to Ii, 
h and /3 but in the afternoon. 

(i) Analyse the data. (ii) Is there any difference between A and F? (iii) Is there any difference 
between E and F? 

Given y. 1 : 86 + x, 105, 120, 110, 113, 114 + y. 

Solution : (i) We have k = 6, R2 = 97, R4 = 92, C3 = 96, C 4 = 95, Ti = 86, T6 = 114, 
G = 648. 

,, _ k(R2 + C3 +Ti) - 2G _ [k(R4 + C4 + T6) - 2G_] 
x - k(k-3)(k2-3k+4) 

2 k(k - 3)(k2 - 3k + 4) 
(k- i)(k-2) 

= 6(97 + 96 + 86) - 2 x 648 - 2 [6(92 + 95 + 114) - 2 x 648] 
6(6-3)(36-i8+4) 6(6 - 3)(36 - 18 + 4) 

(6-i)(6-2) 

= 19.09 - 2.57 = 16.52. 

= k(R4 + C4 + T6) - 2G _ 2 [k(R2 + C3 +Ti) - 2G] 
y k(k-3)(k2-3k+4) (k - l)(k - 2) 

(k-i)(k-2) 

= 6(92 + 95 + 114) - 2 x 648 - [6(97 + 96 + 86) - 2 x 6481 
6(6-3)(36-i8+4) 

2 
6(6 - 3)(36 - 18 + 4) I 

(6-1)(6-2) 

= 25. 76 - 1.91 = 23.85. 

Alternative Method to Estimate x and y 
- 97 

The first estimate of x = R 2 = S = 19.4, Gi = 648 + 19.4 = 667.4. 

, k(R4 + C 4 + T6 ) - 2G1 = 6(92 + 95 + 114) - 2 x 667.4 = 
23 56 

y= (k-l)(k-2) (6-1)(6-2). . . 
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G2 = G + y = 648 + 23.56 = 671.56. 

xi = k(R2 + C3 +Ti) - 2G2 = 6(97 + 96 + 86) - 2 x 671.56 = 16.544. 
(k -- l)(k - 2) (6 - 1)(6 - 2) 

.G3 = G + .i:1 = 648 + 16.544 = 664.544. 

, = k(R4 + C4 + T6 ) - 2G3 = 6(92 + 95 + 114) - 2 x 664.544 = 
23 84 

Yl. (k-l)(k-2) {6-1)(6-2) .. 

G4 :== G +YI = 648 + 23.84 = 671.84. 

, = k(R2 + C3 +Ti) - 2G4 = 6(~7 + 96 + 86) - 2 x 671.84 = 
16

.
52

. 
X

2 (k-l)(k-2) (6-1)(6-2) 

" 6(92 + 95 + 114) - 2 x 664.52 " 
Y2 = (

6 
_ l)(

6
-. 

2
) = 23.85, where Gs= G + x 2 = 664.52. 

G6 = G + 'fJ2 = 648 + 23.85 = 671.85. 

" - 6(97 + 96 + 86) - 2 x 671.85 - 16 2 
X 3 - (6 - 1)(6 - 2) - ·5 . 

Since .i;3 = x2 = 16.52, it is taken as an estimate of x and hence, estimate of y is 23.85. 

Analysis from original data ; 

a2 (648) 2 
C.T. = k 2 _ 

2 
= ~ = 12350.1176. 

SS (Total)= LL~:::>f,,1 ,, 1 ,, -C.T. = 12508-12350.1176 = 157.8824. 
i#i' #i", j#j' #.i", 1#1' #I" 

SS (Row) = L~~[.. - C.T. 

(108)2 (97)2 (113)2 (92)2 (120)2 (118)2 23 11 
= -6- +-5-+-6-+-5-+-6-+-6- -1 50. 76 

= 17.3157. 

SS (Column)= LkY~J· - C.T. 
J 

= (108)2 + (112)2 + (96)2 + (95)2 + (117)2 + (120)2 - 12350 1176 
6 6 5 5 6 6 . 

= 14.249b 

Analysis with Estimated Values : 

G1 = G + x + y = 648 + 16.52 + 23.85 = 688.37. 

C.T. 1 = ~! = (68~:7)
2 

= 13161.5905. 

SS (Total)= LL LYfJt - C.T.1 = 13349.7329- 13162.5905 = 187.1424. 

Yi : 108, 113.52, 113, 115.85, 120, 118; 

y .. 1 : 102.52, 105, 120, 110, 113, 137.85; 

YI : 108, 112, 112.52, 118.85, 117, 120 

Ti .. 1 : 17.09, 17.50, 20.00, 18.33, 18.83, 22.97 

105 
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ss (Row)i = 2= :r -c.T.1 = 
7906~·0129 - 13162.5905 = 14.9119. 

SS (Column)! = L tj· -C.T. 1 = 
7908!·0729 

- 13162.5905 = 17.9216. 

LY~ . 79806.9729 
SS (Treatment)i = -k-1 - C.T. 1 = · - 13162.5905 = 138.5716. 

6 

SS (Error)i = SS (Total)i - SS (Row)i - SS (Column)i - SS (Treatment)i 

= 187.1424- 14.9119- 17.9216- 138.5716 = 15.7373. 

SS (Treatment) adjusted = SS (Total) - SS (Error)i - SS (Ro"'.) - SS (Column) 

= 157.8827 - 15.7373 - 17.3157 - 14.2491 = 110.5806. 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F F'.o5 P-value 

Rows 5 14.9119 2.98238 3.41 2.77 < 0.05 

Column 5 17.9216 3.58432 4.10 2.77 < 0.05 

Treatment (adjusted) 5 110.5806 22.11612 25.29 2.77 0.00 

Error 18 15.7373 0.8743 - - -

Total 33 

. Since Fa = 25.29 > Fo.05 [P-value < 0.01], the treatment effects arc highly significant. The 
doses of nitrogen have significant differential impacts on production of rose . 

. (ii) We need to test the significance of the hypothesis Ho : /'1 = )'6 against HA : ')'1 'f. 1'6· 

Both the treatments have missing observations. The test statistic is 

i = 'fi. 1 -y .. 6 , where s4 =MS (error)i = 0.8743. 

Js4 ul + ,~) 
1 13 

T1 = 1 + 0 + 1 + 3 + 1 + 1 = 3' 
2 2 13 

T6 = 1 + 3 + 3 + 0 + 1 + 1 = 3· 

17.09 - 2'.:'.97 
: . . t = = -9.26 . 

.Jo.8743 (i33 + la) 

!ti > to.025,18 = 2.101, Ho is rejected. A and F are significantly different. 

(iii) The hypothesis is Ho: ')'5 = /'6, against HA: /'5 f 1'6· 

Here E has no missing observation but F has one missing observation. The test statistic is 

18.83 - 22.97 --;:::======= = -7.15. 

Jo.8743 [i + (6 _q1(6 _ 2i) 

!ti > to.025,18 = 2 . .101, Ho is rejected. E and F are significantly different. 
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3.10 Efficiency of Latin Square Design 

It is already mentioned that LSD is used to control two-directional external sources of 
variation, where plots are grmwed in rows and columns. Let us now iHvestigatc the efficiency 
of the experiment due to these two-dirl'ctional groupings. The efficiency of LSD is studied 
compared to RBD and CRD, where in the former case, plots are grouped perpendicular to 
one-directional external source of variation and in the latter case no grouping of plots is used. 

The analysis of variance table of a k x k Latin square design is shown below : 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

Row k-1 S1 R 

Column k-1 S2 c 
Treatment k-1 S3 T 

Error (k - l)(k - 2) S4 E 

Total k 2 - 1 

Let us consider that the treatment effect is insignificant and variance due to treatment is, on 
· an average, equal to the error variance. Then the analysis of variance table takes the following 

shape: 

ANOVA Table 

Sources of variation· d.f. SS MS= SS 
d.f. 

Row k - 1 (k - l)R R 

Column k - 1 (k - l)C c 
Error (k - 1)2 (k-1)2E E 

Total k2 - 1 

In such a stage if the column classification (or row classification) is not made, the analysis 
of variance table takes the shape as follows : 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

Row k-1 (k - l)R R 

Error k(k - 1) (k-l)C+(k-l) 2 E 
C+(k-l)E 

k 

Total k2 -1 

This analysis of variance table is equivalent to the analysis of variance table of a randomized 
block design, where k treatments are used and each one is replicated k times. The treatment 
effects arc assumed insignificant. Therefore, the relative efficiency of LSD compared to RBD is 
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Qr, 

C + (k - l)E 
kE 

R + (k - l)E 
kE 

[if column classification is not made] 

If both row and column classifications are not made, the sum of squares of error is written 
as (k - l)R + (k - l)C + (k - 1)2 E and the mean square due to error is 

R-+ C + (k - l)E 
k+l 

This error sum of squares is equivalent, to the error sum of squares obtained from a completely 
randomized design, where k treatments are randomly allocated to k2 plots. Therefore, the 
efficiency of the LSD compared to CRD is 

R+C+(k-l)E 

(k + l)E 

Cochran (1938, 1940) has shown that the efficiency of LSD compared to CRD is about 
222 per cent and it is about 137 per cent compared to RBD. This is observed in analysing the 
data recorded in Rothamsted Experimental Station. This information indicates that the similar 
efficient information of a treatment is obtained from LSD, RBD and CRD, if the treatment is 
replicated 4 to 5 times in LSD, 6 times in RBD and 10 times in CRD. Similar result is also 
observed by Ma and Harrington (1948). Yates (1935) mentioned that, to obtain similar efficient 
information of a treatment from RBD, it needs 2 and half times more plot compared to the 
plots used in a LSD. 

3.11 Advantages, Disadvantages and Uses of Latin Square Design 
Advantages 

(i) Since Latin square design controls two directional external sources of variation, it controls 
error more than that is done by randomized block design and completely randomized 
design. Hence, the estimate of error variance is expected to be smaller. 

(ii) The analysis of data obtained from this design is simple and easier, even it is easier in 
presence of missing observation. However, the analysis is slightly complicated than that 
of the randomized block design. 

(iii) The analysis is also done if the observations of a row or a column are lost or missing. 

(iv) Latin square design is an incomplete three-way layout but the plots needed are k2 instead 
of k3 , when the experiment is conducted with k treatments. 

(v) The design can also be planned for field experiment, where the shape of the design is 
square one. If the variation in the plots is along with line, the plots are taken along that 
line. 

Disadvantages 

(i) Since number of rows, columns and treatments are same, the design is not suitable for 
large.number of treatments. Latin square design is seldom used with more than 10 
treatments. 

(ii) If number of treatments is Jess than 5, the error d.f. becomes smaller and hence, the 
estimate of error variance is not efficient unless the design is replicated. 
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(iii) 2 x 2 Latin square design is not used unles~ i-t is replicated. 

(iv) If two observations of a 3 x 3 Latin square design are missing, the analysis is not done 
since the estimate of error variance is not available. 

(v) It is assumed that th~re is no interaction b~tween any two factors of the experiment. 

Uses : The design is used in laboratory experiment, in industrial experiment, in green
:10use experiment, even it is used in field experiment. The design is used in any situation where 
two-directional external sources of variation are needed to be controlled by design. 

Example 3.10 : Find the efficiency of LSD compared to RBD and CRD ilsing the data of 
Example 3.7. · 

Solution : Given k = 5, R = 4.5366, C = 1.5586, T = 9.4026, E = 0.7279. The efficiency 
of LSD compared to CRD is 

C+(k-l)E 
kE 

1.5586 + (5 - 1)0.7279 = 122.8'/c 
5 x 0.7279 °' 

when row classification is not made. If column classification is not made, tlw cfl.iciency is 

R + (k - l)E = 4.5366 + (5 - 1)0.7279 = 204 .6%. 
kE 5 x 0.7279 c 

The' efficiency of LSD compared to CRD is given by 

R + C + (k - l)E = 4.5366 + 1.5586 + (5 - 1)(0.7279) = 206 .
2

o/c. 
(k + l)E (5 + 1)0.7279 ° 

3.12 Analysis of Latin Square Design with Several (Equal) 
Observations Per Cell 

Let us consider that a (k x k) latin square design is conducted with k treatment8, 1 re r· 
observations are recorded for lth treatment in jth column of ith row (i = j = l = 1, 2, ... 'k).c 
Let Yijlm be the mth observation of lth treatment in jth column of ith row (m = 1, 2, ... , r). 
The model assumed for the data of such an experiment is 

YiJlm = µ + a; + /31 + 'YI + Jijl + eijlm, (1) 

where µ = general mean, ai = effect of ith row, f3.1 = effect of•jth column, 'YI = effect of lth 
treatment, Jijl = interaction of lth treatment in jth column of ith row. eijlm = random error. 
Here Jijl is the effect of r observations corresponding to any column, row and treatment. 

Assumption : (i) eijlm ,..,, NI D(O, a 2 ). 

Further assumption is made regarding observations of row, column, treatment and cell. 
There are three different possibilities of assumption. These are (ii) the row, rolumn treatment 
and cell are assumed to be separate populations, (iii) the observations of row, column, treatment 
and cell are assumed to be random sample observations from respective population, and 
(iv) except treatment the observations are assumed to be random sample observations from 
corresponding populations. 

Let us consider the analysis first with assumptions (i) and (ii). For this analysis, Jet u~ put 
the restriction 

:La;= 2:!31 = L'Y1 = :LJijl = :LJi.il = :LJijl = o. 
j I 
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The estimated error sum of squares is 1> = LL L[Yi,ilm - fl, - &i - ~.i - i'1 - J;1iJ 2. 

The normal equation to obtain fl,, &i, S.i, i'1 and Ji.ii are : 

81> 
8µ = o, 

On simplification, we have 

81> 
-8- =O, 

Qi 

8¢ 
-- =0, 
8f31 

8¢ 
8i'1 = O, ~1> = 0. 

8c5i.il 

y .... = rk
2 

fl,+ rk b &; + rk L S1 + rk L i'1 + r LL L Jijl 

Yi .. = rkfl, + rk&i + r L ~i + r L i'1 + r LL J;11 
j l 

y.,1 .. = rkfl, + r L &; + rk~J + r L i'1 + r LL Ji.ii 
I 

y .. / = rkfl, + r L &i + r L ~J + rki'1 + r LL JiJl 
j 

YiJl· = rfl, + r&i + T~J + ri'1 + rJiJl· 

There are (k2 + 3k + 1) normal equations. Among these equations last k2 are independent 
and the remaining (3k + 1) are dependent on these last k2 equations. Hence, to get unique 
solution of these normal equations, we need to put (3k + 1) restrictions. 

The restrictions are 

L:a, = L:~j = 'L:i-1 = L:L:Jijl = L::L::Jijl = L::L::Ji.il = L:L:L:Jijl =o. 
j l .i I j I 

Under these restrictions the estimates are : 

&i = Y; ... -y .... , ~J = Y-J. -y .. . , i'1 = Y .. 1. -y 

JiJt = YiJI· - YiJ· - Yi-I· - Y-11- +Yi··· + Y-.i·· + Y .. 1. - 2Y .... · 
These estimates'are independent since covariances of estimates in pairs are zero. For example, 

Cov(&i, i'1) = Cov(Y; ... - Y ... ., Y-·l· -y .... ) 

= Cov{1j;. . ., Ji .. 1.) - Cov(y; ... , y .... ) - Cov(y ... ., Y .. 1.) + v(y .... ) 

ra2 rka2 rka2 a2 
=--------+-=0 

rkrk rkrk2 rk2rk rk2 · 

Similarly, all other covariances can be shown as zero. The total sum of squares of the 
observations can be partitioned as follows : 

k k k r k k k r 

LL L L(Yijlm - Y .... )
2 
=LL L L[(Y; ... - Y .... ) + (Y.j .. - Y .... ) 

j I m j I m 

+ (Y .. 1. - y .... ) + (Yijl· - Yij 00 - YH - Y.jl· + Y; ... + Y-j-

+ Y .. 1. - 2y .... ) + (Yi.ilm - Yi.ii· )]2 · 

Squaring the right side and on simplification, we get 
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+ rk LOJ .. 1. -'i} .... )
2 +TL L L(Yi.JI· -'il;.J .. -yi-1· 
- - - - + - - 2- )2 Y·JI· + Y; ... + Y.J.. Y .. 1. Y .... 

+ LLLL(Yijlm -yijl.)2 

=SS (Row)+ SS (Column)+ SS (Treatment) 

+SS (Observations)+ SS (Error) 

= S1 + S2 +Sa+ S4 + S5. 

By assumption all the sum of squares are distributed as chi-square. The d.f. of these sum 
of squares can be found out as follows : 

Er LL L('Yijl· -yij .. -yH -y·il· + Y·i .. +YI·+ 'fl+ - 2y ... .)2 

= rEL:L:L:(o;11 +eijl· -ei·l· -e.11. -e;1. +e.j.. +e .. 1. +e; ... - 2e-.... )2 

= rEL: LL of11 + rEL: L L:(e;11. - e;1 .. - ei·t· - e-Jt· + e; ... + e-J .. + e .. 1. - 2e .... )
2 

= r L:L:L:of11 + (k- l)(k- 2)a2 

= (k - l)(k - 2)a2 , if 6;11 = 0. 

E " " "( ,... - - + - + - + - r )2 r w w w Yiil· - Yij·· - Y;.1. - Y.J/· Y;... Y-J.. Yi·l· - Y.... = (k _ l)(k _ 2). 
a2 

Thus, ss (obs;rationsJ is distributed as x2 with (k-l)(k-2) d.f. under the restriction 0';11 = 0. 

Similarly, the d.f. of other sum of squares are found out. We have 

ELLLL(YiJlm -1Jw)2 
= ELLLL(eijlm -eiJl·)

2 

= LL LL eTJtm + r LL L E(eTJt· )
2 

.i l 

-2r L:L:L:ee;jl· 
j l 

Therefore, SS se;ror) is distributed as x2 with k 2 (r - 1) d.f. under no constraint and hence, 
to test the significance of Ho : oiil = 0, against HA : OijlO '/:- 0, the test statistic is 

F
4 

= S4/(k - l)(k - 2). 
S5 /k2 (r - 1) 

Under Ho this F4 has central variance ratio distribution having (k - l)(k - 2) and k2(r - 1) 
d.f. The non-null distribution of F4 is non-central F with non-centrality parameter 

A4 = ....!:__ "'""' "'""' "'""' 6
2 

.1 2a2 ~~~ IJ • 

The null hypothesis is rejected,. if F4 ~ Fo.os;{k-l){k-2),kl(r-l)· The other F-statistics are 
calculated as usual and the conclusion is drawn similarly. 
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ANOVA Table 

Sources of variation d.f. SS "Ms= SS 
d.f. 

F E(MS) 

Row k-1 S1 F1 = ~ 2 rk ~ 2 
SJ <T +-- a· 

85 k- 1 ' . 
Column k-1 S2 F'2 = s2 2 rk I:.a2 s2 (T +- . 

85 k - 1 ] 

Treatment k-1 S3 F3 = s3 2 rk I: 2 83 <T + k - 1 It 85 

Cell (k - l)(k - 2) S4 84 F4 = s4 
(T

2 
+ (k - 1~(k - 2) I: I:~ c'it31 - 85 

Error k2(r - 1) Ss 85 (T2 

Total rk2 
- 1 

The comparison of treatment effects in pairs is done as usual by Duncan's multiple range 
test, where the test statistic is 

[85' 2 
D1 = d:a,1,JV ;k' l = 2, 3, .. ., f = k (r - 1). 

Example 3.11 To study the impact of nitrogen as urea on production of marigold an 
experiment is conducted using 4 doses of nitrogen [OO(A), 30(B), 60(C) and 90(D) kg/ha]. The 
land is prepared using 30, 60, 90 and 120 kg/ha potash in rows and similar doses of phosphorus 

. in columns. Each do.ses of nitrogen is applied in 2 plots. The amount of flowers in kg/plot are 
recorded for analysis. 

Doses of Potash Doses of Phosphorus Total, Yi· .. 

P1 P2 ?3 P4 

Ki A-2.5, 3.2 B-4.0, 4.2 C-4.5, 5.0 · D-5.0, 5.2 33.6 

K2 B-3.5, 4.0 C-5.2, 5.5 D-5.2, 5.5 A-4.0, 3.0 35.9 

K3 C-4.0, 4.0 D-6.0, 6.5 A-4.6, 4.4 B-4.0, 4.8 38.3 

K4 D-4.5, 5.3 A-4.0, 4.2 B-4.0, 4.0 C-4.6, 5.2 35.8 

Total Y-i .. 31.0 39.6 37.2 35.8 143.6 

Y··I· : 29.9, 32.5, 38.0, 43.2; 'iJ .. 1. : 3.14, 4.06, 4.75, 5.40. 

Analyse the data and group the levels of nitrogen. 
. · c2 (143.6) 2 

Solution : We have r = 2, k = 4, G = 143.6, C.T. = rk2 = 
2 

x 
16 

= 644.405. 

SS (Total) = LL L LYfJlm - C.T. = 667.24 - 644.405 = 22.835. 
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The observations (YiJl·) of treatments in rows and columns are as follows : 

Rows Col1unns 

Pi P2 ?3 ?4 

Ki 5.7 8.2 9.5 10.2 

K2 7.5 10.7 10.7 7.0 

K3 8.0 12.5 9.0 8.8 

K4 9.8' 8.2 8.0 9.8 

SS (Row~) = LYkf... - C.T. = 
5166

·
3 

- 644.405 = 1.3825. 
T 2 X 4 

SS (Columns)= LYk
2

F - C.T. = 
5194

·
64 

- 644.405 = 4.925. 
T 2 X 4 

SS (Treatments)= LY~i. - C.T. = 
526

k
0

·
5 

- 644.405 = 13.1575. 
rk T 

SS (Observations) = LL LYTJt· - C.T. - SS (Row) - SS (Column) - SS (Treatment) 
T . 

= 
133~·26 - 644.405 - 1.3825 - 4.925 - 13.1575 = 1.26. 

SS (error) =SS (Total) - SS (Row) - SS (Column) - SS (Treatment) - SS (Observation) 

= 22.835 - 1.3825 - 4.925 - 13.1575 - 1.26 = 2.11. 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F F'.os ?-value 

Row 3 1.3825 0.4608 3.49 3.24 < 0.05 

Column 3 4.925 1.6417 12.45 3.24 0.00 

Treatment 3 13.1575 4.3858 33.25 3.24 o.oo 
Observation 6 1.26 0.21 1.'59 2.74 > 0.05 

Error 16 2.11 0.1319 - - -

Total 31 

Since F3 = 33.25 > Fo.os [?-value = 0.00], the levels of nitrogen are significantly different. 
At this stage the nitrogen levels are grouped by Duncan's multiple range test, where the test 
statistic is 

rs; 
D1 = doos,1,Jy-;:f' where f = 16; l = 2,3,4. 

The means of nitrogen levels in ascending order are A= 3.74, B = 4.06, C = 4.75, D = 5.40. 

D.E.S.M.-8 
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D - A= 5.40 - 3.74 = 1.66 > D4, .. means arc significantly different. 

C - A= 4.75 - 3.74 = 1.01 > D3 , •• A and Care different. 

D - B = 5.40 - 4.06 = 1.34 > D 3 , •• B and D arc different. 

B - A= 4.06 - 3.74 = 0.32 <Dz, .. A and Bare similar. 

C - B = 4.75 - 4.06 = 0.69 >Dz, .. Band Care different. 

D - C = 5.40 - 4.75 = 0.65 >Dz, C and D arc different. 

The underlined means do not differ significantly. A, B, C, D 

3.13 Analysis of p Latin Square Designs 
In agricultural experiment or in medical experiment, a. treatment or a group of treatments 

should not be recommended on the basis of its performance observed in one experiment. For 
example, a particular level of fertilizer may be suitable in one soil condition but not in all 
soil conditions. To recommend the fertilizer for all agroclimatic conditions, it is necessary to 
perform the experiment in all agroclimatic conditions and suitability of a fertilizer should be 
detected by combined analysis of data recorded from all experiments. The experiment may be 
repeated in different places or in different seasons or in both. 

Let us consider that a k x k Latin square design is repeated over p places, where places are 
randomly selected. Let Yhijl be the result of lth treatment in jth column of ith row in hth place 
( h = 1, 2, ... , p; i = j = l = 1, 2, ... , k). The model for such data is 

YhiJl = µ + <Xh + f3hi + "YhJ + c51 + ( ac5) hl + ehiJl, 

whereµ = general mean, ah = effect of h-th place, f3hi = effect of i-th row in h-th place, "'fhJ = 
effect of j-th column in h-th place, c51 = effect of l-th treatment, (ac5)hl = interaction of l-th 
treatment with h-th place and ehiJl = random error. 

"'fhJ = effect of j-th column in h-th place, c51 = effect of l-th treatment, (ac5)ht = interaction 
of l-th treatment with h-th place, and ehijl = random error. 

Assumption : (i) ah "' NI D(O, a~), (ii) f3hi "'NI D(O; a~), (iii) "YhJ "' NI D(O, a~), 

(iv) (ac5)1i1 "' NI D(O, a~6 ), (v) ehiJl "' NI D(O, az). 

Here c51 is fixed effect and its estimate is 81 = 'il .. 1 - 'i} ..... 

The total sum of squares can be partitioned as follows : 
pkkk pkkk 

LL L L(Yhijl - 'iJ .... )z =LL L L[('ilh ... -'i} .... ) + (Yhi .. - Yh· .) + ('ilh.;. -'i}h ... ) 

+ ('iJ ... 1 - 'iJ .. ) + ('i11i .. 1 - 'ilh ... ) - ('iJ ... 1 - 'iJ . . ) + (Jh,;.i1 - 'i11ii· 

- - + r )]z - Yh-J· - YH Yh ... 

= kz"'"'(- - - )z + k"'"'"'"'(- . - - )z + k"'"'"'"'(- . - - )z + k"'"'(- - - )z ~ Y1i... Y.... ~~ Yhi.. Yh... ~~ Y1 .. 1 . Y1i... · P ~ Y ... 1 Y .... 

The main objective of the analysis is to test the significance of the following hypotheses : 

(i) Ho : c51 = 0, against HA : c51 'I 0 

(ii) Ho : a~6 = 0, against HA : a~8 > 0 



BASIC OF.SIGN 

(iii) Ho : CT; = 0, against HA : CT; > 0 

(iv) Ho : CT~ = 0, against HA : CT~ > 0 

(v) Ho : CT~= 0, against HA : CT~ > 0. 
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To decide the test statistic for any of the above hypotheses, we need to find E(SS). The 
expected sum of squares are calculated as follows : 

p k k k 

E[SS (error)] =ELL L L[Yhijl ·-Th; .. -" ih·j· -'fh .. 1 + 2]],. ... ]
2 

h j I 

=LL LL E[e.hijt - eh; .. - eh-J- - e1i .. 1 + 2eh ... ]
2 

=LL L L[E(ehi1i) 2 + E(e~; .. ) + E(eL.) + E(e~ .. 1) 

+ 4E2:2:2:2:(e~ . ..)I 

- 2ELLL L(e1i;j1,e1ii .. ) - 2ELLLL(ehijt,eh·i·) 

- 2E LL LL ( ehijl, eh .. 1) + 4E LL LL( ehiJl, e,. ... ) 

+ 2EL': LL ~(-er.; .. , eh·J·) + 2EL LL L(e,.; .. , eh .. 1) 

- 4E LL LL ("e,.; .. ' e,. ... ) + 2E LL L l:)eh-J-. eh .. i) 

-4EL':L:~L:(e,.-j.,eh ... ) - 4EL:L:L:L:(e1i .. 1,eh ... ) 

= p(k - l)(k - 2)cr2 . 

E[SS (Squares)] = Ek2 L0h .. -y ... .)2 
h 

= k2 E L[a,. - a+ 73,.. - 73 .. ~;:yh· - ::Y .. + (a"S)h. - (aJ) .. + e,. ... - e .... ]2 

= (p - l)[CT
2 + kCT~ + kCT; + kCT~0 + k2 CT~]. 

Other expected sum of squares are calculated similarly. 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

E(MS) 

Squares p-l S1 81 · CT2 + kCT 2 + kCT2 + kCT 2 + k 2 CT 2 
~ ry ao a 

Row within Squares p(k - 1) S2 82 CT2 + kCT2 
~ 

Column within Squares p(k - 1) S3 83 CT 2 + kCT 2 
ry 

Treatment k-l S4 84 CT2 + kCT2 + ~ L(o - 8)2 
ao k - 1 I 

Squares x Treatment (p - l)(k - 1) S5 85 CT 2 + kCT2 
ao 

Error p(k - l)(k - 2) s6 86 CT2 

Total pk2 -1 
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The test statistic for 'Ho : o-~6 = 0 is F5 = s5/ s6 . If this hypothesis is rejected, the test 
statistic for Ho: ~l = 0 is F4 = s4/85. This F4 has (k-1) and (p-l)(k-1) d.f. If Ho: u~J = 0 
is true, then 8 4 is to be compared with the pooled value of s5 and 8 6 • That is 

F = _ 84 
4 (p-l)(k-l)sr,+p(k-I)(k-2)s6 ' 

(k-l)(pk-p-1) 

This F4 has (k - 1) and (k - l)(pk - p -- 1) d.f. 

The test statistics for Ho : tT~ = 0 and Ho : u~ = 0 are F3 = s3/ sc and F2 = s2f ::>6 , 

respectively. However, the test statistic for Ho : u~ = 0 is not found out directly. Under this 
latter hypothesis 

E[(81 + 286)] = E[82 + 83 + 85]. 

Th c h . . . F 81 + 286 ereiore. t e test stat1st1c 1s i = -----
. 82 + 83 + 85 

This Fi is approximately distributed as variances ratio [Satterthwaite (1946)] with_ 

(s1 + 286) 2 (82 + 83 + 85) 2 
and 

8 2 (s2J2 (s2J2 
_.:1_+~+ ' p(k·-i) p(k-1) (p-l}(k-i) 

A_+ (2s6) 2 

p-1 p(k-i)(k-2) 

Example 3.12 : In a dairy farm an experiment of feeding trial is performed with 4 different 
types of fodder (F1, F2, F3 and F4 ) to identify a best fodder for increased milk production. The 
fodder is fed to cows of different origin and different lactation periods. The design used is LSD 
and the experiment is repeated in 3 diff Prent sheds. After 4 weeks of start of feeding trial the 
milk production of one day per experimental cow is recorded for analysis. The milk production 
data are as follows : 

Milk Production (Yhijl kg) of Cows 

Experiment-I Total Production of Rows 

Origin Lactation Period Expe~ent Rows (y1i; .. ) 

of cows L1 L2 L3 L4 1 2 3 4 

C1 Fi-32.5 F2-35.l F3-34.6 F4-38.6 1 140.8 127.5 119.6 75.2 

C2 F2-34.6 F3-32.2 F4-30.2 Fi-30.5 2 .. 134.8 126.2 118.2 71.9 

C3 F3-30.5 F4-35.6 Fi-28.5 F2-25.0 3 134.0 122.2 115.4 69.0 

C4 F4-20.4 F1-18.2 F2-16.4 F3-20.2 . 409.6 375.9 353.2 216.1 Y·i .. 

Experiment-2 Total Production of Columns 

Origin Lactation Period Experiment Columns (Yh·J·) 

of cows Li L2 L3 L4 1 2 3 4 

C1 Fi-30.2 F2-33.2 F3-35.2 F4-36.2 1 118.0 121.1 109.7 114.3 

C2 F2-35.6 F3-30.0 F4-34.l Fi-26.5 2 116.l 109.9 113.5 111.6 

C3 F3-32.8 F4-31.2 F 1-25.5 F2-28.7 3 118.4 120.4 103.3 98.5 

C4 F4-17.5 Fi-15.5 F2-18.7 F3-20.2 Y·f 352.5 351.4 326.5 324.4 
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Experiment-3 Total Production of Treatments 

Origin, Lactation Period Experiment Treatments (Yh· ·I) 

of cows .l,1 L2 L3 L4 Fi F2 F3 F4 

C1 Fi-38.2 F2-35.0 F3-30.6 F4-30.2 1 109.7 111.1 117.5 124.8 

C2 F2-33.6 F3-32.0 F4-32.1 Fi-24.5 2 97.7 116.2 

C3 F3-30.4 F4-36.2 Fi-26.2 F2-42.6 3 106.1 105.6 

C4 F4-l6.2 Fi-17.2 F2-14.4 F3-21.2 y .. I 313.5 332.9 

Analyse the data and recommend the best fodder. 
c2 

Solutfon : We have k = 4, p = 3, G = 13~4.8, C.T. = pf:;;2 = 38239.23. 

SS (Total) = LL LL Y~iJt - C.T. = 40314.91 - 38239.23 = 2075.68. 

SS (Treatment) = LYk~ 1 - C.T. = 
460056

·
92 

- 38239.23 = 98.8467. 
p' 3 x 4 

118.2 119.0 
114.2 114.7 

349.9 358.5 

SS (Row within squares)= L [LY~ .. -- y~;··], h1 ... = 463.1, h2··· = 451.1, h3 ... = 440.6. 
h i 

= (56040.09 - (463.1) 2) (53238.33 - (451.1)2) 
4 16 + 4 16 

( 
50967.00 - ( 440.6) 2) 

+ 4 16 

= (14010.0225 - 13403.85) + (13309.5825 - 12718.2006) 

+ (12741.75 - 12133.0225) 
= 1806.2819. 

SS (Column within squares) = ~ [ L ( Y~J· - y~~··)] 
= (53687.79 - (463.1)2) (50894.03 - (451.1)2) 

4 16 + 4 16 

(
48887.86 - (440.6)2) 

+ 4 16 

= (13421.9475 - 13403.85) + (12723.5075 - 12718.2006) 

+ (12221.965 - 12133.0225) 
= 112.3469 

r: y2 612081.18 
SS (Squares)=+ - C.T. = 

16 
- 38239.23 = 15.8437. 

SS (Squares x Treatment) = L ~ Y~. 1 - C.T. - SS (Squares) - SS (Treatment) 

= 
1535

:
4

·
86 

- 38239.23 - 15.8437 - 98.8467 = 32.2946. 
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SS (Error) = SS (Total) - SS (Squares) - SS (Rows within squares) 

- SS (Column within squares) - SS (Treatment) - SS (Squares x treatment) 

= 2075.68 - 15.8437 - 1806.2819 - 112.3469 - 98.8467 - 32.2946 = 10.0662. 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F Fo.05 P-value 

Square 2 15.8437 7.92185 0.08 - -

Row within square 9 1806.2819 200.698 358.,88 2.47 0.00 

Column within square 9 112.3469 12.483 22.32 2.47 0.00 

Treatment 3 98.8467 32.9489 6.12 4.76 < 0.05 

Square x treatment 6 32.2946 5.3824 9.62 2.66 > 0.00 

Error 18 10.0662 0.55923 - - ---

Total 47 . I 
Since F5 = 1454.70 > F.05 (?-value < 0.01), the interaction of square and treatment is 

highly significant and hence, F 4 = 8 4 / s5 = 6.12. This F4 > Fo.05. Thus, the treatments are 
significantly different. Herc, F2 = 82/86 and F3 = s3/86. The rows and columns are also found 
significantly different. The milk nroduction varies significantly within the variation in lactation 
period of cows. Also, it. varies •vith the variation in source of cows. 

The test statistic for Ho : O"~ = 0 is 

Fi = s1 + 286 
s2 + 83 + s5 

The numerator d.f. of F1 is 

(8i + 286) 2 

~ + (2sa) 2 

p-1 p(k-l)(k-2) 

The denominator d.f. of Fi is 

(82 + 83 + 85)
2 

7.92185 + 2(0.0037) = 0.08. 
200.698 + 13.5941 + 5.3824 

[7.92185 + 2(0.0037)] 2 = 2. 
(7.92i85)2 + (2(0 0037))2 

3-1 3(4-1)(4-2) 

(200.698 + 13.5941+5.3824)2 = 11. 
(200.698)2 + (13.5941) 2 + (5.3824)2 

9 9 6 

Since Fi = 0.08 < F0 05; 2 ,11 = 3.98, the results observed in different squan•s arc similar. 
To identify the best fodder we need to compare all the varieties of fodder. The comparison 

is done by Duncan's multiple range test, where the test statistic is 

{Ii 
Dz = do.o5,l,f y Pk' l = 2, 3, 4; f = 6. 

Here 8 5 is used since this 8 5 is used as denominator to calculate F4. Now 

D2 = 3.46J5~3::4 = 2.32, D3 = 3.58J5~3::4 = 2.40, 

The means in ascending order are F 1 = 26.125, F 2 = 27.742, F3 = 29.158, F4 = 29.875. 
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F4 - F 1 = 29.875 - 26.125 = 3.75 > D4, .. the means differ significantly. 

F4 - F 2 = 29.875 - 27.742 = 2.133 < D3, .. F2 and F4 are similar. 

F 3 _,, F 1 = 29.158 - 26.125 = 3.033 > D2. .. Fi and F3 differ significantly. 

F2 - F 1 = 27.742 - 26.125 = 1.617 < D2, .. Fi and F2 are similar. 

The underlined means do not differ significantly 

F\, F2, F3, F4 

It is observed that better milk production is recorded from the cows when F4 is fed. However, 
F2, F3 and F4 are similar. 

3.14 Orthogonal Latin Square Designs ,, 
Two Latin square designs of sa~e order with two different sets of treatments are said to be 

orthogonal if the treatments of one appear once and only once with treatments of another one 
when one square is superimposed on other. For example, let us consider two squares with one 
set of treatments A, B and C and another set of treatments a, /3 and 'Y as follows. 

Square-I Square-2 

A B c a (3 'Y 

B c A 'Y a (3 

c A B (3 'Y a 

Now, square-1 is superimposed on square-2 and the resultant square takes the following 
shape: 

Square-3 

Aa B/3 c,..., 

B1 Ca A/3 

C/3 A1 Ba 

It is seen that any treatment of square-I is appeared once and only once with any treatment 
of square-2. So, square-1 and square-2 are orthogonal. 

Orthogonal Latin square designs are available in table prepared by Fisher and Yates (1948). 
In case of k x k Latin square design there are maximum (k - 1) orthogonal Latin square designs. 
If any two Latin square designs of a set of latin square designs are mutually orthogonal, then 
the set gives orthogonal Latin square designs. · 

The analysis of thi!? design is done as usual. Here analysis of orthogonal Latin square design 
of mth order is presented. Let us consider rn sets of letters as follows : 

Au A12 A1k 

A21 A22 A2k 

Amt Am2 Amk 

where rn < k. Let there be k2 plots for an experiment, where plots are arranged in k rows 
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and k columns. Now, if the mk letters are arranged in k2 plots, we shall get orthogonal Latin 
square design under the following conditions : 

(i) In each plot there is a combination of A 1 , A2 , ... , Am letters. The combination of plots 
of i-th row and j-th column are denoted by Ai(iJ)l A 2(ij)l ... , Am(iJ)· 

(ii) At(llJ At(12J At(lkJ 

At(21J At(22J At(2kJ 

At(kl! At(k2J At(kk! 

Here t = 1, 2, ... , m. This above square is a latin square. 

(iii) Any combination of At letter and At' letter (t -I- t') will appear once and only once in a 
p~t. . 

If rn = 2, then the resultant design is called Graeco latin square design. If k is the power 
of prime number, then orthogonal latin square of m-th order is available, when m ::; k - 1 

The model for the analysis of this design is 

Yi.ii=µ+ ai + f31 + 'Yl(i.iJ + 'Y2(i.iJ + · · · + 'Ym(ij) + e;11, 

where Yi.ii = ('ij)th value of lth treatment, µ = general mean, a; = effect of ith row, f31 = effect 
of jth column, 'Ya = effect of Aa (t' = 1, 2, ... , rn; i = j = l = 1, 2, ... , k). 

The normal equations to estimate the parameters of the model are : 
m k 

y ... = k2 ft + k L CTi + k L S1 + k L L ·'Yi1 
t I 

y; .. = kP, + k&i + L S1 + L L "Ya 

Y-.i· = kP, + La; + kS1 + LL "Ya 

Ttt = kP,+ L:ai + L:S1 + k"fa + k LL"Yt'L'· 
t' I' 

There are (m + 2)(k - 1) + 1 independent normal equations among the equations shown 
above. The solution of these equations provides · 

,_, __ {3, __ ,Ta_ 
µ = y .. ., ai = Yi .. - Y .. ., J = YI - Y .. ., 'Ytl = k - Y .... 

Here Ta is the total re.suit of Aa treatment. The sum of squares due to estimates is 

"""" . 2 """" 2_ 2 m ["""" r2 2 ] 
SS ( t . t ) u Yi.. u Y.1- Y... L u ti Y ... es nna e = -- + -- - - + -- - - . 

k k k2 k k2 
t=l 
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ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. 

F E(MS) 

Row k-1 81 
S1 2 k L: 2 S1 - a + k - 1 a:i Se 

Column k-l S2 
S2 2 k L: 2 s2 - a + k - 1 (3i Se 

Ai-letter k-1 83 
S3 2 k L: 2 S3 - a + k - 1 'Yu Se 

Ar letter k-1 S4 S4 2 k L: 2 
a + k - 1 1'21 

. . . . . . ... 

Am-letter k-1 Sm-2 
Sm-2 2 k L: 2 Sm-2 -- a + k - 1 'Yml Se 

Error (k-l)(k-m-1) Se Se - a2 

The null hypothesis is Ho : 'Yml = 'Ym2 = · · · = 'Ymk = 0. 

Th t t . . " O . F Sm-2 e es stat1st1c 1or 'Ymk = is = --. 
Se 

3.15 Graeco Latin Square Design 
Let there be three treatments A, B and C. Consider that there is a factor with levels a:, f3 

and ')'. The variation of this factor alo~g with the variation in rows and columns are needed 
to be controlled by design so. that the treatment effects are estimated avoiding the impacts of 
three external sources of variation. The plan of such design is as follows : 

Graeco Latin Square Design 

Ao: B(3 c,, 

B'Y Ca: A(3 

C(3 A'Y Ba 

Here it is observed that each treatment is allocated once and only once in a row and in a 
column. Also, it is observed that each treatment appears once and only once with each level of 
third factor, where the levels of third factor are a:, f3 and')'. The arrangement of treatments in 
rows, columns and with Greek letters is known as Graeco Latin square design. 

The design is used to control three external sources of variation. The randomisation of 
treatment in plots of a Graeco Latin square design is similarly done as it is done in Latin 
square design. The analysis of data of this design is also similar except that the sum of squares 
due to Greek letter is calculated and total sum of squares is decomposed into four identified 
components of variation. 

The design is a 4-way design since it has four componentb ·viz. row, column, treatment and 
Greek letter. Since there are 4 factors, the analysis of 3 x 3 Graeco Latin square design is not 
done unless the design is repeated several times. 
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Let YiJlm be the observation of lth treat.m":nt of jth column in ith row corresponding to mth 
level of greek letters. The model for this observation is 

Yijlm = µ + O'.i + /31 +'YI+ 8m-!- eijlm, 

where µ = general mean, O'.i = effec:t of ith row, /3.i = effect of jth column, 'YI = effect of lth 
treatment, 8m = effect of mth Greek letter and eijlm = random error. 

i = j = l = m = ·l, 2, ... , k. The analysis of variance table is shown below : 

ANOVA Table 

Sources of variation d.f. SS MS= SS E(MS) F . d.f . 

k 81 
Row k-1 S1 81 a2+--'La2 -

k -1 i 85 

Column k-1 S2 2 k 'L 2 82 
82 a + k - 1 /3j -

85 

k 83 
Treatment k-l S3 83 a2 + --'L'Y2 -

k- 1 I 85 

Greek letter k-l S4 2 k 'L 2 84 
84 a + k -1 8m -

85 

Error (k-l)(k-3) S5 84 a2 

Total k2 - 1 

H S LY'f.. CT CT a2 (y .... )2 s l"" 2 CT 
ere i = -k- - . ., . . = k2 = ~' 2 = k L.., Y.j .. - · ., 

. l"" 2 • l"" 2 S3 = k L.., Y .. 1. - 0.T., S4 = k L.., Y ... m - C.T., S5 =SS (Total) - Si - S2 - S3 - S4, 

SS (Total)= LLLLYt11m -C.T. 



Chapter 4 

Factorial Experiment 

4.1 Introduction 
The objective of the controlled experiment is to study the behaviour of certain characteristic 

under some controlled conditions. Tlie characteristic is usually known as treatment, where a 
treatment has different levels. In some experiment the. characteristic of more than one factor 
is also under investigation simultaneously. For example, let us consider that 5 new varieties of 
wheat are discovered by a team of agriculture scientists. The team needs to identify the best 
variety for general agroclimatic condition. To identify the best variety of wheat, an experiment 
needs to be conducted using different doses of fertilizer and different levels of irrigation. There 
are three factors, viz., wheat, fertilizer and irrigation. If all the three factors have same levels, 
an experiment through Latin square design can be performed using doses of fertilizer (say, 
nitrogen) in rows, irrigation in columns and the varieties of wheat are allocated in rows a!1d 
columns. If there are only two factors, say, wheat variety and fertilizer, an experim!'::;!. ":111 be 
conducted through randomized block design using levels of fertilizer in blocks aud varieties of 

. wheat are randomly allocated in all blocks. 

In practice, there may be more factors and each factor may have many levels. The ),asic 
designs so far we have discussed are not sufficient to study the impacts of more factors 

.. simultaneously. Alternatively, all factor levels may be combined and the combination of factor 
levels may be used as treatments in any experiment. The experiment in which combination of 
different factor levels are used as treatment is known as factorial experiment. These treatments 
are again allocated to the plots of some basic design. The usual design for factorial experiment 
is randomized block design, where treatments. are allocated to the plots of a bock by a random 
process. 

Let there be m factors Fi, F2, ... , Fm. Consider that i-th factor (i = 1, 2, ... , m) has Si 

levels. The total number of level combinations are s1 x s2 x · · · x Sm. The experiment in 
which all these factor level combinations are used as treatment is called factorial experiment. 
In such experiment the treatment effect is not studied, rather the main effect of each factor and 
the interaction of two or more factors are studied. For example, let us consider that nitrogen, 
potash and phosphorus are suitable for any experiment. Consider that each fertilizer has 2 
levels. The total number of level combi°nations is 2 x 2 x 2 = 23 . If in any experiment 23 

level combinations are used as treatment, then the experiment is called factorial experiment. 
In general, if there are n factors each having p levels, we have J'n factorial experiment. 

Asymmetrical factor experiment : The factorial experilnent in which different factors 
have different levels is called asymmetrical factorial e:t'periment. Let us consider that five doses 
of nitrogen are ·io qe tested in presence of 3 doses of potash and 4 doses of phosphorus. Then 
total level combinations are 5 x 3 x 4 = 60. Any experiment conducted with such 60-level 
combinations as treatment is known as asymmetrical factorial experiment. 

Main effects and interactions : Let there be three factors, viz., nitrogen (N), phosphorus 
(P) and potash (K) having 2 leyels each. Here capital lettex:s are used to indicate a factor and 

123 
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small letters are used to indicate the levels of the factors. The factor-level combinations can be 
written as 

nopoko, n1poko, nopiko, nip1ko, nopok1, n1pok1, nop1k1, n1p1k1. 

We have used 0 as first level and .1 as second level. If it is needed to compare the product of 
60 kg/ha of nitrogen with the product of 0 kg/ha, then 0 kg/ha is considered as first level, where 
nitrogen is absent and 60 kg/ha is considered as second level, where nitrogen is present. Thus, 
first level and second' level can be considered as absent and present of a factor, respectively. We 
can write the factor levels as 

000, 100, 010, 110, 001, 101, 011, 111 

or, (1); n, p, np, k, nk, pk, npk. 

In the latter case (1) is used to indicate the absence of all factors. 

Let us consider that an experiment is conducted with these 8-level combinations as treatment 
through a randomized block design. For simplicity, let us denote the result of corresponding 
treatment by the treatment itself. Hence, the result of the experiments are : 

(1), n,p,np,k,nk,pk,npk. 

Now, the effects of nitrogen, phosphorus and potash .are evaluated as follows : 

Simple effect of nitrogen (N) in absence of phosphorus (P) and potash (K) = n - (1) 

Simple effect of N in presence of P but in absence of K = np - p 

Simple effect of N in presence of K but in absence of P = nk - k 

Simple effect of N in presence of both K and P = npk - pk. 

The total effect of N, denoted by [NJ, is the sum of these simple effects. Thus, 

[NJ= (npk - pk)+ (nk -- k) + (np - p) + (n - (1)) = (n - l)(p + l)(k + 1), symbolically. 

The average effect of N, known as main effect of N, is denoted by N is 

1 
N = 4[(npk - pk)+ (nk - k) + (np - p) + (n - (1))] 

1 1 [NJ 
= 

22 
(n - l)(p + l)(k + 1) = 

23
_ 1 (n - l)(p + l)(k + 1) = 

23
_ 1 . 

Thus, main effect is the average of the sim pie· effects. 

Simple effect of Pin absence of N and K = p - (1) 

Simple effect of P in absence of N but in presence of K = pk - k 

Simple effect of P in absence of K but in presence of N = pn - n 

Simple effect of P in presence of both N and K = npk - nk 

Total effect of P, denoted by [P], is the sum of these 4 simple effects. Thus, 

[PJ = (p - (1)) +(pk - k) + (np - n) + (npk - nk) = (n + l)(p -- l)(k + 1). 

Main effect of P is the average of these 4 simple effects. Thus, 

P = ~(n + l)(p - l)(k + 1) = 
2
[;_J1 . 
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Simple effect; of K in absence of both N and P = k - (1) 

Simple effect of K in presence of N bnt in absence of P = nk -- n 
Simple effect of K in absence of N bnt in presence of P = pk - p 

Simple effect of K in presence of both N and P = npk - np 

Total effect of K, denoted by [K], is the sum of these 4 simple effects. We have 

[K] = (k - {l)) + (nk - n) +(pk - p) + (npk - np) = (n + l)(p + l)(k - I). 

Main effect of K is the average of these 4 simple effects. We write 

K = ~(n+ l)(p+ l)(k-1) = ~~J1 . 

!25 

It is observed that the effect of any factor is measured by subtracting the result of first level 
from second level [presence minus absence]. Now, · 

Effect of Nin presence of P = (npk - pk)+ np - p. 

Effect of Nin absence of P = (nk - k) + (n - (1)). 

Therefore, the effect of N in presence of P minus the effect of N in absence of P will give the 
effect of N and P. This effect is called interaction of N and P. The total of this interaction is 

[NP]= (npk - pk)+ (np - p) - {(nk - kj + (n - (l))} = (n - l)(p- l)(k + 1). 

This is also linear combination of 4 simple effects. The average of these 4 simple effects (linear 
combination of simple effects) is known as interaction and is written as 

1 [NP] 
NP= 4(n - l)(p- l)(k + 1) = 

23
_ 1 . 

Similarly, we have 

[NKJ = (npk - pk)+ (nk - k) - {(np - p) + (n - (1))} = (n - l)(p + l)(k -- 1). 

[NKJ · [PK] 
N K = 23_ 1 , [PK]= (n + l)(p - l)(k - 1), PK= 

23
_

1 
. 

[NP K] = ( n - 1 )(p - 1 )( k - 1), . NP K = [ ~:: ~]. 

If the experiment is replicated r times [experiment conducted in randomized design of r 
blocks], the main effects and interactions are calculated dividing the toti!-1 effect by r23 - 1 . 

Thus, we have 

N = ~ P = jfl_ K = -1!1_ NP'= [NP] NK = [NKJ 
r23- 1 ' r23 - 1 ' r23-l' r23- 1 ' r23-l' 

[PK] [NPK] . . 
PK = r 23_ 1 , NP K = r 23_ 1 . It is observed that there are (23 - 1) effects and interactions . 

of 23-factorial experiment. 

It is observed that any total effect is the linear combination (contrast) of factor level 
combinations, where half the levels ate with positive sign and half the levels are with negative 
sign. The positive sign is observed with a level combination if the factor effect under study 
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is present in the level combination and negative sign is observed if the factor is absent in the 
level combination. The signs for different level combinations are found out from a sign table as 
shown below. 

· The sign table is prepared writing the level combinations in first row of the table. The effect 
and interactions are written in the first column of the table. The body of the table is filled up . 
writing-+ve sign or -ve sign according to presence or absence of factor(s), respectively in a level 
combination. The sign is negative if odd number of factors are absent in a level combination. 

Sign Table for 23-Factorial Experiment 

Effects Level combinations 

or contrasts (1) n p np k nk pk npk 

N - + - + - + - + 
p - - + + - - + + 

NP + - - + + - - + 
K - - - - + + + + 

NK + - + - - + - + 
PK + + - - - - + + 

NPK - + + - + - - + 

If there are n factors each with 2 levels, the experiment is known as 2n-factorial experiment. 
The factors are, say, A, B, C, D, ... , N. Then 

[A] =(a - l)(b + l)(c + 1) · · · (n + 1), [B] = (a+ l)(b - l)(c + 1) · · · (n + 1) 

[NJ= (a+ l)(b+ 1) ... (n -1), [AB]= (a - l)(b- l)(c+ 1) .. -(n+ 1) 

[AC]= (a - l)(b + l)(c - 1) .. -(n + 1), ... , [AN]= (a - l)(b + l)(c + 1) .. -(n - 1) 

[ABC· .. NJ= (a - l)(b - l)(c - l)(d - 1) .. -(n - 1). 
\ 

In general, the total effect of any factor or total interaction· of any two or more factors are 
written, symbolically as 

[X] = (~ ± l)(b ± l)(c ± 1) · · · (n ± 1), 

where the sign is +ve if a factor is absent in X and sign is -ve if a factor is present in X. The , 
main effect or inter;:i.ction is written as 

1 
X = --1 (a± l(b ± l)(c ± 1) .. -(n ± 1). r2n-

There are (2n - 1) effects and interactions of the type X in a 2n-factorial experiment. 

Calculation of sum of square : In 2n_ factorial experiment, there are n main effects, "'c2 
two-factor i-nteractions, nC3 three-factor interactions, ... nCn n-factor interactions. In general, 
there are ncr r-factor interactions in 2n-factorial experiment. Each effect and interaction arc 
estimated with 1 d.f. The sum of squares of effects and interaction is calculated by 

SS(X) = [X]
2

• 
r2n 

This sum of squares has.I d.f. The denominat.or, except r, is calculated as the product sum of 
squares of coefficient, when [X} is written in the form : 

[X] = (1, ±1)(1, ±1)(1, ±1) · · · (1, ±1). 
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For example, in case of 23-factorial experiment, 

[NP K] = (1, -1)(1, -1)(1, -1), [(n - 1 )(p - l)(k - 1)]. 

The product of the sum of squares of coefficient is [12 + ( -1)2][12 + (-1)2][(1)2 + ( -1)2] = 23. 
The term r is used if the experiment is replicated r times. If the contrast. is written in the form 
Ii~ . 

[N PK]= npk + k + p + n - np - nk - pk - (1), 

then the denominator is the sum of squares of the coefficients in finding contrast. Thus, for 
NP K the divisor is 

[(1)2 + (1)2 + (1)2 + (1)2 + (-1)2 + (-1)2 + (-1)2 + (-1)2] = 23. 

The sum of squares due to replication (block) is calculated by 

SS (replication) = E Rr - C.T., 
2n 

where C.T. = G
2

2 

, G = grand total of observations and Ri = total of i-th replication (block); 
r n 

i=l,2, ... ,r. 

SS (Total) = EE E yr31 - C.T., where Yiil is the observation of l-th replication of j-th 
level of a factor A and i-th level of another factor B; i = 1, 2; j = 1, 2. 

The model for 22-factorial experiment when conducted through randomized block design is 

Yijl = µ + ai + /33 +'YI+ (af3)ij + eijl, 

where Yijl is the result of j-th level of B in presence of i-th level of A in l-th block, µ is the 
general mean, ai is the effect of i-th level of A, B3 is the effec~ of j-th level of B, 'YI is the effect. 
of l-th block, (oJ3)ij is the interaction of i-th level of A with 'J.-th level of B. The analysis of 
the model is to be performed in a similar way as it is done for other analysis of variance model. 

The sign table helps in deciding the contrast. But it is not practically applicable to find out 
the total effect for calculation of sum of squares. For 2n-factorial experiment there are (2n - 1) 
effects and interactions each having 1 d.f. The total effect and sum of squares of effects and 
interactions are calculated using Yates' algorithm. The method is discussed below : 

• 
Yates' Table to Calculate Effect Total and Sum of Squares 

Level Total Operation Effects SS=» 
combinations yield 

1 2 3= [ l 
(1) YI] YI+ Y2 = UI] UI + U2 =VI] Vi+ V2 G C.T. 
a Y2 Y3 + Y4 = u2 U3 + U4 = V2 Vg +Vi A SS(A) . 
b Y3] Y5 + Y6 = U3] U5 + U6 = V3] Vs +:·V6 B SS(B) 
ab Y4 Y1 + Ys = u4 U7'_+ US= Vi Vi+ Vs AB SS(AB) ·. 
c Ys] Y2 - YI= U5] u2 - uI =Vs] V2 -Vi c SS(C) 
ac Y6 Y4 - Y3 = U6 U4 - U3 = V6 Vi -V3 AC SS(AC) 
be Y1] Y6 - Ys = u1] U6 - U5 =Vi] v6 -Vs BC SS(BC) 
abc Ys Ys -y1 =us us - u1 =Vs Vs+ V1 ABC SS(ABC) 
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Here Vi + Vz = G = grand total, [A] = Va+ Vi, and so on. 

Here Va + Vi = U5 + u6 + u7 + us = Y2 - Yi + Y4 - Y3 + Y6 - Y5 + Ys - Y7. 
If Yi is replaced by the notation for its treatment combination, we have 

[A] = Va + Vi = a - ( 1) + ab - b + ac - c + abc - be = (a - 1 )( b + 1) ( c + 1). 

Similar is the case for other effects and interactions. 

Description of the table 

(i) First column contains the treatment combinations systematically and alphabetically. 

(ii) Second column is to represent the total yield from all replications corresponding to the 
treatment combinations. The total yields are shown in pairs as it is shown in the table. 

(iii} The operation is done with the total yields in pairs. The first half of the values in first 
operation is calculate<l from total yields adding total yields in pairs. Second half of 
the values is obtained by subtraction of total yields in pairs. The subtraction is done 
subtracting first value from second value in any pair. 

(iv) Second operation is similarly done as it is done in first operation. This operation is done 
using the result of first operation. 

(v) Third operation is also done in a similar way as it is done in second operation. But this 
operation is done using the result of second operation. 

All operations are done similarly using the result of preceding operation. The n-th operation 
. gives the effect total in case of 2n-factorial experiment. In the above table, third operation gives 

the effect total since it is prepared for 23-factorial experiment. 

In the last but one column the effects and interactions are written which corresponds to 
' the level combination. The first element of this column is the grand total of the experimental 

result. The last column gives the sum of squares of different effects and interactions. 

The sum of squares of replication, total and error are calcul~ted as usual. The ratio of mean 
squares of any effects or interactions to the mean square of error gives the respective F-test for 
that effects or intera.ctions. 

ANOVA Table 

Sources of variation d.f. SS MS= ss F=.!i.. . d7 Sg 

Replication or bl9ck r-1 S1 s1 

A" 1 S2 s2 

B 1 S3 83 

c 1 S4 84 
Main effects 3 - S10 - S10 

AB 1 S5 S5 

AC 1 s6 86 
BC 1 S1 87 

Two-factor interactions 3 - Sn - Sn 

ABC 1 Ss Sg 

Error (r - 1)(23 - 1) Sg Sg 

Total r23 - 1 
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The F-statistic to test the significance of i-th effect [i = 1, 2, ... , ('2" - 1J] is Fi = sif sg. 
The conclusion regarding significance of any effect or interaction is made a8 1rnual. 

In the above 2.3-factorial experiment, if any one is interested in testiug 1.he significance of 
two-factor interactions, then 

s11 S11 
F = -, where s11 = - and S10 = S5 + S5 + S7. 

• Sg 3 

Similar process is followed in testing the si_gnificance of any higher order interaction as a whole. 

In factorial experiment the main effects and lower order interactions are of interest. The 
higher order interactions or highest order interaction are of less iaterest. For that reason, the 
sum of squares due to highest order interaction, even if it is significant, is added to error sum 
of squares and mean square of any main effect is compared with the pooled mean square Nror. 
In 23-factorial experiment ABC is the highest order interaction and if the researcher is least 
interested in this interaction, the SS(ABC) is to be added to SS (error). 

Alternative way to calculate sum of squares : Let there be three factors A, B and C 
each having two levels. Let us denote these levels by 0 and l. Then the level combinations are 
000, 100, 010, llO, 001, 101, Oll, lll. The level combinations are for absence of ABC, A, B, 
AB, AC, C, AC, BC and ABC respectively. Let x;(i = 1, 2, 3) be the variable for i-th factor, 
where the values of any factor are 0 and l. Then the effeets and interactions of different factors 
at two different levels can be represented by linear equations in pairs a~ follows : 

(i) 1 . X1 + 0. X2 + 0. X3 = 0 I 
= 1 mod 2 

(ii) 0. X1 + 1 . X2 + 0. X3 = 0 I 
= 1 mod 2 

(iii) 0 . X1 + 0 . X2 + 1 . X3 = 0 I 
= 1 mod 2 

(iv) 1 ·XI + 1 · X2 + 0 · X3 = 0 , • 
= 1 mod 2 

(v) 1 ·xi + 0 · x2 + 1 · X3 = 0 I 
= 1 mod 2 

(vi) 0 ·xi+ 1·x2+1 · X3 = 0 I 
= 1 mod 2 

(vii) 1 ·xi + 1 · x2 + 1 · x3 = 0 I 
= 1 mod 2 

The solution of these equations are obtained using values of x;(i = 1, 7, 3) as 0 and 1. 

The solutions are derived according to the principle of finite fields under mod. If p is any 
prime number or power of a prime then for mod p, we have 

The equation 

0 = p = 2p = ... = qp 

1 = p + 1 = 2p + 1 = ... = qp + 1 

2 = p + 2 = 2p + 2 = ... = qp + 2 

p - 1 = 2p - 1 = 3p - 1 = ... = qp + p - 1 

1 · XI + 0 · X2 + Q • X3 = Q 12 
=1 

indicates that A is present at its two levels but B and C are absent. Therefore, soli.ition of this 
set of equations gives total of A at first level and second level. Therefore, 

D.E'S.M.-9 
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Ao = 000 + 010 + 001 + 011 

Ai = 100 + 110 + 101+111. 

• 

Thus, total effect of A, [A] = Ai - A0 . The total effect is calculated from all r replications. 
Hence, sum of squares of A is 

SS(A) = A~2~rAi - C.T., C.T. = ~:. 
The total effect of B is found out using the solutions of second set of equations, and total result 
of B at two levels are 

B0 = 000 + 100 + 101 + 001 

Bi= 010+ 110 + 010 + 111, [BJ= Bi - Bo 

1 2 2 SS(B) = 22r (B0 + B 1 ) - C.T. 

Similarly, other solutions and sum of squares are calculated as follows : 

Co = 000 + 110 + 100 + 010 [CJ = Ci - Co 

C1 = 001+011+101+111 

1 2 2 SS(C) = 22 r (C0 +Ci) - C.T. 

(AB) 0 = 000 + 001+110 + 111 [AB]= (AB) 0 - (AB)i 

(AB)i = 100 + 010 + 101 + 011 

1 [ 2 2 SS(AB) = 22 r (AB) 0 + (AB) 1] - C.T. 

(AC) 0 = 000 + 010 + 101+111 [AC]= (AC) 0 - (AC)i 

(AC)i = 100 + 001 + 011 + 110 

1 [ 2 2 SS(AC) = 22 r (AC) 0 + (AC)i] - C.T. 

(BC) 0 = 000 + 100 +OH+ 111 [BC]= (BC) 0 - (BC)i 

(BC)i = 001+101+110 + 010 
• 

1 2 2 SS(BC) = 22r [(BC)0 + (BC)i] - C.T. 

(ABC)o = 000 + 110 + 101 + 011 [ABC] = (ABC)i - (ABC)o 

(ABC)i = 100 + 010 + 001+111 

SS(ABC) = - 2

1 
[(ABC)5 + (ABC)iJ - C.T. 

2 T . 
It is observed that uiain effects are obtained subtracting first level total from second level 

total, two-factor interaction is obtained subtracting second level total from first level total. 
Thus, in case of odd order effect/interaction, first level total is subtracted from second. level 
total and even order interaction is calculated subtracting second level total from first level total. 

The sum of squares due to• block (replication) and error sum of squares due to error are 
calculated as usual. 
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Example 4.1 : In an agricultural experiment, the productivity of wheat under nitrogen, 
phosphorus, potash and irrigation are studied. The levels of nitrogen are 0 kg/ha and 90 kg/ha. 
The first levels of phosphorus and potash are also 0 kg/ha. The second levels of these two 
fertilizers are 30 kg/ha. The two levels of irrigation an~ two times irrigation and 4 times 
irrigation per week. This 24-factorial experiment is conducted through RBD of 16 plots. There 
are three blocks for the experiment. The plot size is 40' x 10'. The production of wheat per 
plot is recorded for analysis and given below : 

Production of ~heat (kg/plot) [Yijlkm.] 

Treatment combinations (1) Tl p np k 

Block-I 4.2 4.8 3.5 4.0 3.8 

Block-2 3.5 4.2 3.0 4.5 3.8 

Block-3 3.0 4.6 3.6 4.6 3.6 

Production of wheat (kg/plot) 

Treatment 'l n'l p'l npi k'i nb pki 
combinations 

Block-1 4.0 4.5 3.8 4.6 4.5 4.8 . 4.0 

Block-2 4.5 4.6 3.9 4.7 4.6 5.0 4.6 

Block-3 4.6 4.7 4.2 4.6 4.8 5.0 4.8 

Analyse the data and estimate the effects and interaction. 

Solution : 

nk pk npk 

4.2 3.2 3.9 

4.6 3.0 4.6 

4.7 4.2 4.8 

npk'i Total of block 
Ri 

4.6 66.4 

4.2 67.3 

4.0 69.8 

203.5 

Yates' Table to Calculate Sum of Squares 

Treatment Treatment Operations Effects and SS= });4 
combinations total 1 2 3 4 = [ l interactions 

(1) 10.7] 24.3] 47.5] 95.9] 203.5 G 862. 7552 
Tl 13.6 23.2 48.4 107.6 14.1 N 4.1419 
p 10.l] 24.7] 52.7] 11.1] -5.7 p 0.6769 

np 13.1 23.7 54.9 3.0 0.5 NP 0.0052 
k 11.2] 26.9] 5.9] -2.11 3.1 K 0.2002 

nk 13.5 25.8 5.2 -3.6J -3.1 NK 0.2002 
pk 10.4] 28.7] 2.7] 0.7] -1.3 . PK 0.0352 

npk 13.3 26.2 0.3 -0.2 -2.3 NPK 0.1102 
i 13.1] 2.9] -1.1] 0.9] 11.7 I 2.8519 

n·i 13.8 3.0 -1.0 2.2 -8.1 NI 1.3669 
pi 11.9] 2.3] -1.1] -0.7] -1.5 PI 0.0469 

npi 13.9 2.9 -2.5 -2.4 -0.9 NP! 0.0169 
ki 13.9] 0.7] 0.1] 0.1] 1.3 [([ 0.0352 

nki 14.8 2.0 0.6 -1.4 -1.7 NKI 0.0602 
pki 13.4] 0.9] 1.3] 0.5] -1.5 PK! 0.0469 

npki 12.8 -0.6 -1.5 -"2.8 -3.3 NPKI 0.2Q69 
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SS (effects and interactions) = SS(N) + SS(P) + SS(N P) + · · · + SS(N PK I)= 10.0216. 

SS (Total) =I: LL L LYTilkm - C.T. = 876.47 - 862.7552 = 13.7148. 

SS (Blocks)= L ~! -C.T. = 
138;~· 29 - 862.7552 = 0.3879. 

SS (error) =SS (Total) - SS (Blocks) - SS (Effects and interactions) 

= 13.7148 - 0.3879 - 10.0216 = 3.3053. 

ANOVA Table 

Sources of variation d.f. SS MS= SS F 
' dT 

Blocks 2 0.3879 0.19395 1.70 
N 1 4.1419 4:1419 36.36 
p 1 0.6769 0.6769 5.94 
K 1 0.2002 0.2002 1.76 
I 1 2.8519 2.8519 25.04 

NP 1 0.0052 0.0052 0.04 
NK 1 0.2002 0.2002 1.76 
PK 1 0.0352 0.0352 0.31 
NI 1 1.3669 1.3669 12.00 
PI 1 0.0469 0.0469 0.41 
KI 1 0.0352 0.0352 0.31 

Two-factor interactions - 6 - 1.6844 - 0.2807 -

NP! 1 0.0169 0.0169 0.15 
NKI 1 0.0602 0.0632 0.53 
PK! 1 0.0469 0.0469 0.41 
NPK 1 0.1102 0.1102 0.97 

F.05 

3.32 
4.17 

,, 

" 
" 
" 
" 
" 
" 
" 
" 

2.46 - 2.42 
4.17 

" ,, 
,, 

Three-factor interactions - 4 - 0.2342 - 0.0585 - 0.51 - 2.69 
Error 31 3.5322 0.1139 

Total 47 

Usually we are least interested in highest order interaction. Now1 let us investigate the 
significance of the interaction NP KI. The test statistic to test the significance of this 
interaction is 

MS(NPKI)" 0.2269 
F = MS( ) = - 102 = 2.06 < Fo.05-130 = 4.17. error 0.1 ' ' 

Therefore, the interaction NP KI is insignificant. As it is insignificant, the SS(N PK I) is to 
be added with error sum of squares. The new error sum of squares in the analysis of variance 
table is 

SS (error)+ SS (NP KI) = 3.3053 + 0.2269 = 3.5322. 

The mean square error to be used for F-statistic is 3.5322/31 = 0.1139. 

It is observed that the effects of nitrogen, phosphorus and irrigation are significant, since 
the F-statistics related to these effects are greater than F0.05 . The two-factor interactions as a 
whole are found significant [F = 2.46 > F0.05] but no two-factor interaction is found significant. 
No three-factor interaction is also found significant. 
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The estimate of effects and interactions are : 

N = ~ = ~ = 0.5875, P = ~ = -
5

·
7 

= -0.2375, 
'r24-i 3x8 r24-i 3x8 

[K] 3.1 [Jj · 11.7 
K = - 4 -i = -- = 0.1292, I= - 4 -i = -

3 8 
= 0.4875, 

r2 - 3 x 8 r2 - x 

[NK] -3.1 [NP] 0.5 
NK= -

4
-i = -

3
- = -0.1292, NP= - 4 -i = -

3 8 
=0.0208, 

r2 - x 8 r2 - x 

NI= [NI] = - 8.l = -0.3375, PK= [PK] = -1.3 = -0.0542 
r24-i 3x8 r24-i 3x8 

PI= [PI] = -1.5 = -0.0625, IK = [IK] = ~ = 0.0542 
"r24-i 3 x 8 r24-i 3 x 8 

NPK = [NPK] = - 2·3 = -0.0958, NP!= [NP!]= -0.9 = -0.0375 
r24-i 3x8 r24-i 3x8 

NKI = [NKIJ = -1.7 = -0.0708 PK!= [PK!] = -1.5 = -0.0625 
r24-i 3x8 ' r24-i 3x8 

NPKI = [NPKI] = - 3·3 = -0.1375. 
r24-i 3 x 8 . 

Alternative way to calculate sum of squares of effects and interactions : For 
24-factor.ial experiment the 16-treatment combinations can be written as follows : 

(1) n p np k nk pk npk ni pi npi ki nki pki npki 

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111 

where 0 is used for first level of a factor and 1 is used for second level of a factor. The effect 
total of any effect is found out taking the sum of treatments combinations obtained from the 
solution of the equations of the types : 

ixi + ix2 + ix3 + ix4 = 0 I 
= 1 mod 2, where i = 0, 1 

Here i = 0 indicates absence of a factor and i = 1 indicates presence of a factor. For example, 
for effect N the equation is 

xi = 0 I [xi + 0 · x2 + 0 · x3 + 0 · X4 : 0
1 

1
2
] 

= 1 mo~ 2 

Thus, we have 

No = 0000 + 0100 + 0010 + 0111 + 0001 + 0110 + 0101 + 0011 

= 10.7 + 10.1+11.2 + 13.4 + 13.l + 10.4 + 11.9 + 13.9 = 94.7 

Ni = 1000 + 1100 + 1101+1011+1001+1010 + 1110 + 1111 

= 13.6 + 13.1 + 13.9 + 14.8 + 13.8 + 13.5 + 13.3 + 12.8 = 108.8 

[NJ= Ni - No= 108.8 - 94.7 = 14.1 

SS(N) = r
2
!_

1 
(NJ+ Nl) - C.T. = (

94
·
7

)
2

3
: (~08 ·8 )

2 

- 862.7552 = 4.1419 
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Po = 0000 + 1000 + 1010 + 1001 + 0010 + OOll + 0001 + lOll 

= 10.7 + 13.0 + 13.5 + 13.8 + 11.2 + 13.9 + 13.1+14.8 = 104.6 

P1 = 0100 + 0101 + 0 ll 0 + 0 l ll + ll 00 + ll 01 + l ll 0 + 1111 

= 10.l + 11.9 + 10.4 + 13.4 + 13.1+13.9+13.3 + 12.8 = 98.9 

[P] = P1 - Po= 98.9 - 104.6 = -5.7 

l 2 2 (104.6) 2 + (98.9) 2 

SS(P) = r 24 _ 1 (P0 + P1 ) - C.T. = 
3 

x 
8 

- 862.7552 = 0.6769. 

Similarly, other sum of squares are calculated. The treatment combinations for different effects 
at two levels are : 

Ko = 0000 + 1000 + 0100 + 1100 + 0001 + 1001 + 0101 + llOl 

K 1 = 0010 + 1010 + OllO + 1110 + 0011 + lOll + Olll + 1111 

[K] = K1 - Ko 

Io = 0000 + 1000 + 0100 + 1100 + 0000 + 1010 + 0110 + l llO 

Ii = OOOi + 1001+0101+1101+0011+1011+0111+1111 

[J]=/1-/0 

(N P)o = 0000 + 0010 + 0001+0011+llOO+1110 + 1101 + llll 

= 10.7 + 11.2 + 13.l + 13.9 + 13.l + 13.3 + 13.9 + 12.8 = 102.0 

(N P)i = 1000 + 1001+1~10 + 1011+0100 + 0101+0110 + 0111 

= 13.6 + 13.8 + 13.5 + 14.8 + 10.1+11.9 + 10.4 + 13.4 = 101.5 

[NP] = (N P)o - (N P)i = 102 - 101.5 = 0.5 

SS(N P) = -
1
-[(N P)2 + (N P) 2] - C.T. = (l02

)
2 

+ (lOl.
5

)
2 

- 862.7552 = 0.0052 
r24 - 1 0 1 3 x 8 

(N K)o = 0000 + 1010 + 0001+1110 + 1111+0100 + 0101+1011 

(N K)i = 1000 + 0110 + 0111+0010 + 1001+0011+0010 + 0110 

[NK] --= (NK)o - (NK)i 

(N 1)0 = 0000 + 1001 + lOll + 1101 + 0110. + 1111 + 0100 + 0010 

(N I)i = 1000 + 1100 + 1010 + 0001+0111+0001+0101+0011 

(PK) 0 = 0000 + 0001+1000 + 1001+0110 + 1110 + 1111+0111 

(PK)i = 0100 + 1100 + 0010 + 1010 + 1011+1101+0101+0011 

(P/) 0 = 0000 + 1000 + 0010 + 1010 + 0101+1111+1101+0111 

(PI)i = 0100 + 1100 + 0110 + 0001+1001+0001+0011+1011 

(K/) 0 = 0000 + 1000 + 0100 + 1100 + 0011+1011+0111+1111 

(K I)i = 0010 + 1010 + 0110 + 1110 + 0001 + 1001 + 0101 + 1101 

(NP K)o = 0000 + 0001 + 1100 + 1101 + 0111 + 0110 + 1010 + 1011 

= 10.7 + 13.1+13.1+13.9 + 13.4 + 10.4 + 13.5 + 14.8 = 102.9 

(NPK)i = 1000 + 0100 + 0010 + 1001+0101+0011+1110 + 1111 

= 13.6 + 10.1+11.2 + 13.8 + 11.9 + 13.9 + 13.3 + 12.8 = 100.6 



FACTORIAL EXPERIMENT 

[NPK] = (NPK)i - (NPK)o = 100.6-102.9 = -2.3 

(NI; !)0 = 0000 + 0010 + 1100 + 0101 + 0111 + 1110 + 1011 + 1001 

= 10.7 + 11.2 + 13.1+11.9 + 13.4 + 13.3 + 14.8 + 13.8 = 102.2 

(N Pl)i = 1000 + 0100 + 0001+1010 + 0110 + 0011+1101+1111 

= 13.6 + 10.1 + 13.1 + 13.5 + 10.4 + 13.9 + 13.9 + 12.8 = 101.3 

[NP!]= (NPI)i - (NPI) 0 = 101.3 -102.2 = -0.9 

(N K !)0 = 0000 + 0100 + 1010 + 1110 + 1001 + 1101 + 0011 + 0111 

= 10.7 + 10.l + 13.5 + 13.3 + 13.8 + 13.9 + 13.9 + 13.4 = 102.6 

(N K I)i = 1000 + 1100 + 0010 + 0110 + 0001+0101+1011+1111 ., 
= 13.6 + 13.1+11.2 + 10.4 + 13.1+11.9 + 14.8 + 12.8 = 100.9 

[NKI] = (NKI)1 - (NKI)o = 100.9-102.6 = -1.7 

(PK !)0 = 0000 + 1000 + 0110 + 1110 + 0101+1101+0011+1011 

= 10.7 + 13.6 + 10.4 + 13.3 + 11.9 + 13.9 + 13.9 + 14.8 = 102.5 

(PK !)1 = 0100 + 1100 + 0010 + 1010 + 0001+1001+0111+1111 

= 10.1+13.1+11.2 + 13.5 + 13.1+13.8 + 13.4 + 12.8 = 101.1 

[PK!]= (PKI)1 - (PK/) 0 = 101.1-102.5 = -1.5 

[N PK !] 0 = 0000 + 1100 + 1010 + 1001+0110 + 0101+0011+1111 

= 10.7 + 13.l + 13.5 + 13.8 + 10.4 + 11.9 + 13.9 + 12.8 = 100.1 

(NP K I)i = 1000 + 0100 + 0010 + 0001 + 1011 + 1101 + 1110 + 0111 

= 13.6 + 10.1+11.2 + 13.1+14.8 + 13.9 + 13.3 + 13.4 = 103.4 

[NPKIJ = (NPKI)o - (NPKI)1=100.1-103.4 = -3.3. 
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Variance of effects and interactions : Let us consider that a 23 -factorial experiment is 
conducted through randQmized block design having r blocks. The factors are A, B and C, say. 
Then 

[A] = r(a - l)(b + l)(c + 1) = r (a - (1) +ab - b + ac - c + abc - be) 

A=~ r23-l 
Here [A] is a linear combination of r23 observations and observations are independent. Then 

V[A] = r23 cr2 • 

V[A] 
Therefore, V(A) = r 2 ( 23_ 1 ) 2 

Here cr2 is estimated by mean square error, i.e., 0-2 =MS (error). 
. '2 

The variance of A is estimated by V (A) = cr
3 2 

. 
r2 -

Since all effects and interactions are the linear combination of r23 observations, the variance 
of all effects and interactions is given by 

(j2 

V(X) = r23-2' 

where X indicates a particular effect or interaction. 
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In a similar way, if 2n-factorial experiment is conducted through randomized block design 
having r blocks, the variance of any effect or interaction is 

<Y2 

V(X) = r2n-2. 
2 

Estimate of this variance is v( x) = _!!__
2 

, 0-2 = MS (error). 
r2n-

This estimated variance is used to estimate the efficiency of the estimate of effect or 
interaction, where 

Efficiency = -(
1 

) 
v x 

For example, the efficiency of effect and interaction estimated in example 4.1, i.e., 

. r24 - 2 3 x 24 - 2 

Efficiency = ~ 0.
1139 

= 105.36. 

4.2 3n_Factorial Experiment 
Let us first consider 32-factorial experiment for factors A and Beach having three levels, say 

0,1, and 2. The level combinations are 00, 01, 02, 10, 11, 12, 20, 21, 22. The level combinations 
can be arranged as follows : 

~ bo b1 b2 Total ~ bo bi b2 Total 

ao aobo aob1 aob2 Ao ao 00 01 02 Ao 
a1 a1bo a1b1 a1b2 A1 

or 
a1 10 11 12 Ai 

a2 a2bo a2bi a2b2 A2 az 20 21 22 Az 

Total Bo Bi Bz G Total Bo Bi B2 G 

Any experiment in which these 9-treatment combinations are used as treatment, is known 
as 32-factorial experiment. 

There are 9 treatments in the experiment and using these 9 treatments the effects and 
interactions with 8 d.f. arc to be estimated. Sincc each factor has 3 levels, thc cffect of each 
factor has 2 d.f. and hence, the d.f. of interaction of factors is 4. However, each effect and 
interaction can be decomposed into effects and interactions of 1 d.f. each. The total effects and 
mean effects with 1 d.f. arc shown below : 

We have Ao = total result of the experiment using first level of A, 

A1 = total result of the experiment using second level of A, 

A2 = total result of the experiment using third level of A. . 
Then Ai - Ao = linear effect. of A due to change to second level of A from first level of A. 

= aibo + a1bi + aib2 - aobo - aobi - aob2 = (ai -- ao)(bo +bi + v2) 

= (-1,0, 1)(1, 1, 1), symbolically. 

Here ( -1, 0, 1) and ( 1, 1, 1) are used to indicate the coefficients of linear combination to estimate 
contrast of the type Ai - A0 . Again, the change in the experimental result due to the change 
in the levels of A from second level to third level is 

A2 - Ai = a2bo + a2bi + a2b2 - a1bo - a1b1 - a1b2 

= (a2 - ai)(bo + b1 + b2) = (0, -1, 1)(1, 1, 1), symbolically. 
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Here Ai - A0 and A2 - Ai are the change in the experimental result due to the linear change 
of degree one in the levels of A. The linear total effect of A is the sum of these linear changes. 
Thus, 

. [A'] = A2 - Ai +Ai - Ao 

' = (a2 - ao)(bo +bi + b2) 

= (-1,0, 1)(1, 1, 1). 

Here [A'] is used to denote total linear effect of A. The average linear effect of A, if the 
experiment is replicated r times, is given by 

A'= ~(a2 - ao)(bo +bi + b2)· 
r 

The impact of A due to the changes in the levels of A at two degree is measured by 

[A"]= (A2-Ai)-(Ai-Ao) = (a2-2ai+ao)(bo+bi+b2) = (1,-2,1)(1,1,l), symbolically. 

This [A"] is the total quadratic effect of A. The average quadratic effect of A is 

A"= ~(l, -2, 1)(1, 1, 1), [A"]= (1, -2, 1)(1, 1, 1). 
2r 

It is observed that linear effect of a factor is a linear combination of observations with 
coefficients ( -1, 0, 1) along with coefficients ( 1, 1, 1) of other factors. The quadratic effect is a 
linear combination with coefficients (1, -2, 1) along with coefficients (1, 1, 1) of other factors . 

. Thus, we have 

B' = ~(1, 1, 1)(-1,0, 1), [B'] = (1, 1, 1)(-1,0, 1) 
r 

B" = 
2
1 

(1, 1, 1)(1, -2, 1), [B"] = (1, 1, 1)(1, -2, 1). 
r . 

The interaction AB has 4 d.f. and.this interaction can be decomposed into 4 components having 
1 d.f. each. These are : . 

A'B'= 
2
1
r(-l,0,1)(-1,0,1), A"B'= 

4
1
r(l,-2,l)(-l,0,1), 

A'B" = 
4
1 

(-1,0,1)(1,-2,1), A"B" = ~(1,-2,1)(1,-2,1), 
r 8r 

[A' B'] = (-1, 0, 1)(-1, 0, 1), [A" B'] = (1, -2, 1)(-1, 0, 1), 

[A' B"] = (-1, 0, 1)(1, -2, 1), [A' B"] = (1, -2, 1)(1, -2, 1). 

It is observed that the effect total is rtl.e linear combination of observations corresponding 
to different levels of the factors. For example, · 

[B'] = (ao + ai + a2)(b2 - bo) = aob2 - aobo + aib2 - aibo + a2b2 - a2bo. 

The coefficients of linear combination corresponding to factor levels are ( -1, 0, 1), ( 1, -2, 1), 
(1, 1, 1) for linear effect, quadratic effect and for grand total, respectively. For example, the 
grand total is 

G = aobo + aobi + aob2 + aibo + aibi + aib2 + a2bo + a2bi + a2b2 

= (1, 1, 1)(1, 1, 1). 

The coefficients in the brackets are for first level, second level and third level, respectively. 
These coefficients arc tnw for any factor levels in 3n_factorial experiment. 
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The average effect (main effect) or interaction effect of any factor or factors is obtained 
dividing the effect total by appropriate divisior. For 32-factorial experiment the appropriate 
divisor for A', A", are r and 2r respectively, where r is the number of replications of the 
treatment. The divisor for B' and B" are similar. The divisor for Bis used from the convention 
that any main effect or interaction is estimated from the difference of the result of two plots. 
This convention is true for interaction and for quadratic effect. The usual divisor for quadratic 
effect and interaction is half of the products of sum of ~bsolute coefficients for factors. For 
example, the diviso~ for A' B' is half of (1 + 1)(1 + lf = 2; the divisor for A" B" is half of 
(1+2 + 1)(1+2 + 1) = 8. This convention is true for 3n_factorial experiment and for all effects 
and interactions when n > 2. · 

3 3-Factorial experiment : .Let there be 3 factors A, B and C. each having three levels, 
say, 0, 1 and 2. The level combinations are : 

000 010 020 100 110 120 200 210 220 
001 011 021 101 111 121 201 211 221 
002 012 022 102 112 122 202 212 222 

Here first notation is for A, second one for B and third notation is for C. If these 27 
treatment combinations are used as treatments in any experiment, the experiment is known as 
33-factorial experiment. 

As there are 27 treatments, we can estimate contrasts of effects and interactions of 26 d.f. 
(27 - 1). These effects are linear and quadratic. The interactions are : 

linear x linear, linear x quadratic, quadratic x linear, 

quadratic x quadratic, linear x linear x linear, 

linear x linear x quadratic, linear x quadratic x quadratic, 

linear x quadratic x linear, quadratic x linear x linear, 

ql!adratic x linear x quadratic, quadratic x quadratic x linear 

a,nd quadratic x quadratic x quadratic. The contrasts are : 

A'= ~(-1,0, 1)(1, 1, 1)(1, 1, 1) = 
9
1 

(a2 - ao)(bo-+ bi+ b2)(Co + c1 + c2) 
9r · r 

A"= l~r(-1,2,1)(1,l,1)(1,l,1) 

B' = _!_(1, 1, 1)(-1, 0, 1)(1, 1, 1), B" = 
18

1 
(1, 1, 1)(1, -2, 1)(1, 1, 1) 

9r • r . 

C' = ;r (1, 1, 1)(1, 1, 1)(-1, 0, 1), C' = l~r (1, 1, 1)(1, 1, 1)(1, -2, 1) 

A'B'=_!_(-l,0,1)(-1,0,l)(l,l,l), A'B"= 
12
1 

(-1,0,1)(1,-2,l)(l,l,l) 
6r r 

I I I' )( ' I 11 1 )( )( ) AC= -(-1,0,1)(1,1,l -1,0,1), AC = -
12 

(-1,0,l 1,1,l 1,-2,1 
~ r 

A" B" = -
1
-(1, -2, 1)(-1, -2, 1)(1, 1, 1), A"C" = 

24
1 

(1, -2, 1)(1, 1, 1)(1, -2, 1) 
24r r 

A"B' = _2_(1, -2, 1)(-1, 0, 1)(1, 1, 1), A"C' = -
12
1 

(1, -2, 1)(1, 1, 1)(-1, 0, 1) 
12r r 

B'C' = _!_(1,1,1)(-1,0,l)(-1,0,l), B'C" = -
2
1 

(1,l,l)(-1,0,1)(1,-2,1) 
6r 1 r 
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B 11C' = -
1
-(1, 1, 1)(1, -2, 1)( -1, 0, 1 ). B"C" = 

24

1 
(1, 1, 1)(1, -2, 1 )(1, -2, 1) 

12r r 

A' B'C' = _!_(-1, 0, 1)(-1, 0, 1)(-1, 0, 1), A' B'C" = _!_(-1, 0, 1)(-1, 0. 1)(1, -2, 1) 
4r 8r 

A'B"C' = _!_(-1,0, 1)(1,-2, 1)(-1,0, 1), A"B'C' = _!_(1,-2, 1)(-1,0, 1)(-1,0.1) 
8r 8r 

A'B"C" = - 1
-(-1,0, 1)(1, -2, 1)(1, -2, 1), A" B'C" = -

16

1 
(1, -2, 1)(-1,0, 1)(1,-2, 1) 

16r r 

A" B"C' = -
1
-(1, -2, 1)(1, -2.1)(-1, 0, 1), A" B"C" = 

32
1 

(1, -2, 1)(1, -2.1)(1, -2, 1). 
16r r 

Calculation of sum of squares : Let us describe the procedure for 32-factorial experiment. 
There are 8 contrasts. The total of each contrast is a linear combination of the result of different 
treatment combinations. Thus, 

[A']= (-1, 0, 1)(1, 1, 1) = (a2 - ao)(bi + b1 + b2) 

[A']2 
Here SS(A') = ~· where r is the number of replications of a treatment and 6 is the 

product of sum of squares of the coefficients for different levels of factors. For example, 
[(-1)2 + 02 + (1)2][12 + 12 + 12] = 6. This rule is true for all contrasts. Thus 

SS(A") = [A"]
2 

SS(B') = [B'J
2 

SS(B") = [B"J
2 

18r ' 6r ' 18r ' 

SS(A' B') = [A~~'J
2

, SS(A' B") = [A~~:'J
2

, SS(A" B') = [A:!']~, 
[A" B"J 2. 

SS(A" B") = . 
. 36r 

The sum of squares are calculated using Yate's algorithm. This algorithm is described 
below: 

Yates' Table to Calculate Sum of Squares in Case of 32-Factorial Experiment 

Treatment Total Operation Effects and Divisor SS= il 
rDi 

Combinations result of 1 2 = [ J Interacting D; 
treatment 

00 
x, l x, + x,+ x,·~ y, l Yi+ Y2 + Y3 G 9 

10 X2 X4 + X5 + X6 = Y2 Y4 + Y5 + Y6 A' 6 
20 X3 x1 + xs + xg = Y3 Y7 +YB+ Y9 A" 18 

01 "] x, - x, ~ "'] Y3 - Yi B' 6 
11 X5 X6 - X4 = 'Y5 Y6 - Y4 A'B' 4 
21 A"B' 12 

,' 
X6 Xg - X7 = Y6 Y9 -y7 

02 

"'l 
x, - 2x, + X3 ~ "']"' - 2112 + Y3 B" 18 

12 
!B - X4 - 2x5 + X6 = ¥B YG - 2y5 + Y4 A'B" 12 

22 Xg (f1 - 2xs + Xg = yg yg - 2ys + Y1 A"B" 36 

First column is for treatment combinations in a systematic manner arranged in first, second 
and third levels of first, second, ·and third factors and so on. Second column gives the total 
·result of a treatment from all replication. The operations of calculating total effect is done with 
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the result of total of treatments. The first one-third observations of first operation are obtained 
by linear combinations of treatment total with coefficients (1, 1, l), where total treatments are 
arranged in groups of :', and linear combination is done for each group. The second one-third 
observations of first operation is obtained by linear combinations of each group of 3 treatment 
totals with coefficients (-1, 0, 1) and the last one-third observations of first operation is obtained 
by linear combination with coefficient (1, -2, 1). The second operation is similarly done as it is 
done in first operation but the results of second 0peration is obtained from the results of first 
operation. The opercttion is continued up ton-th time. Each time the results are obtained from 
t.he results of the preceding operation. The n-th operation gives the total of contrast, where 
contrasts are systematically written in a column. The system of writing effects and interactions 
starts with linear and then quadratic and then the product of linear and quadratic contrasts. 
The first result of n-th operation gives grand total ( G). The sum of squares is the square of 
contrast total divided by appropriate divisor. 

Each factor has 3 levels and a factor sum of squares has 2 d.f. The sum of squares of 8 d.f. 
can be decomposed into 4 components each of 2 d.f. To calculate sum of squares of 2 d.f., 
the 3 totals of each effect and interaction are found using the solution of equations under mod 
3. The 4 components of effects and interactions each with 2 d.f. arc A, B, AB and AB2. The 
total of these effects and interactions arc obtained using the solutions of the following equations 
respectively. 

Xt = 0 X2 == 0 
=1 
=2 

Xt + X2 = 0 
=1 
=2 

Xt + 2x2 = 2 
= 1 mod3, 
=Z 

mod3, mod3, = 1 
=2 

Thus, we have 

Then 

Ao= 00 + 01+02, Bo= 00 + 10 + 20, (AB)o = 00 + 12 + 21, 

Ai = lO + 11 + 12, B1 = 01 + 11 + 21, (AB)i = 10 + 01 + 22, 

A2 =20+21+22, B2 =02+12+22, (AB)z=20+02+11, 

(AB2)0 = 00 + 11 + 22, (AB2)i = 10 + 02 + 21. 

(AB2)z = 20 + 12 + 01. 

) 
Afi +Ai+ A2 

SS(A = 
2 1 - C.T., where C.T. 

· 3 - r 

SS(B) = r3~_ 1 (B5 +Br+ Bi) - C.T., 

SS(AB) =+,[(AB)~+ (AB)i +(AB)~] - C.T. 
r3 -

1 2 )2 )2] SS(AB2) = r 32_1 [(AB2)0 + (AB2 1 + (AB2 2 - C.T. 

Other sum of squares are calculated as usual. 

mod3 

The effects and interactions having 26 d.f. are estimated from 33-factorial experiment. These 
effects and interactions can be decomposed into 13 components each of 2 d.f. The totals to 
calculate sum of squares of these 13 components are found out using the solutions of the 
following 13 sets of equations. 

Xt =0 X2 = 0 X3 = 0 XI+ X2 = 0 
=1 mod 3, =1 mod 3, =1 mod 3, =1 mod3, 
=2 =2 =2 =2 
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X1 + X3 = 0 X1+2x2 = Q 
=l 
=2 

mod 3, = 1 
xi+ 2x3 = 0 I 

mod 3, = 1 mod 3, 
=21 

X2 + X3 ~ 0 
= l mod 3, 
=2 

=2 

X2 + 2X3 = 0 
. = 1 

=2 
mod 3, 

X1 + Xz + X3 = 0 
=1 
=2 

mod 3, 
X 1 + X2 + 2:z:3 = 0 

=l 
~2 

x1 + 2x2 + 2x3 = 0 
= 1 mod3. 
=2 

mod 3, 
X1 + 2x2 + X3 = 0 

=1 
=2 
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mod 3, 

These equations are giving solutions for totals of A, B, C, AB, AB2, AC, AC2, BC, BC2, 
ABC, ABC2, AB2C and AB2C2 . The totals using solutions are shown below: 

Ao= 000 + 010 + 001+011+012 + 021+002 + 020 + 022 

A1 = 100 + 110 + 101+111+112 + 121+102 + 112 + 122 

A2 = 200 + 210 + 201 + 211 + 212 + 221 + 202 + 220 + 222 

Bo= 000 + 100 + 200 + 001+101+201+002 + 102 + 202 

B1 = 010 + 110 + 210 + 011+111-;t- 211+012 + 112 + 212 

B2 = 020 + 120 + 220 + 021+121+221+022 + 122 + 222 

C0 = 000 -t- 100 + 200 + 010 + 110 + 200 + 210 + 120 + 010 

C1 = 001+101 + 201+011+111 + 201+211+121+011 

C2 = 002 + 102 + 202 + 012 + 112 + 202 + 212 + 122 + 012 

(AB)o = 000 + 120 + 210 + 001+121 + 211 + 002 + 122 + 212 

(AB)i =: 100 + 101 + 102 + 010 + 011 + 012 + 220 + 221 + 222 

(AB)z = 200 + 201+202+020 + 021+022 + 110 + 111 + 112 

(AC)o = 000 + 010 + 020 + 102 + 112 + 122 + 201 + 211 + ~21 

(AC)i = 100 + 110 + 120 + 001 + 011 + 021 + 202 + 212 + 222 

(AC)z = 200 + 210 + 220+ 002 + 012 + 022 + 101+111+121 

(AB2)0 = 000 + 001+002 + 110 + 111+112 + 220 + 221 + 222 

(AB2)i = 100 + 101 + 102 + 020 + 021 + 022 + 210 + 211 + 212 

(AB2)z = 200 + 201 + 202 + 010 + 011 + 012 + 120 + 121 + 122 

(AC2)0 = 000 +·010 + 020 + 101 + 111 + 121 + 202 + 212 + 222 

(AC2h = 100 + 110 + 120 + 002 + 012 + 022 + 201 -t- 211 + 221 

(AC2)2 = 200 + 210 + 220 + 001 + 011 + 021 + 102 + 112 + 122 

(BC)o = 000 + 100 + 200 + 012 + 112 + 212 + 021 + 121 + 221 

(BC)i = 010 + 110 + 210 + 001 + 101 + 201 + 022 + 122 + 222 
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(BC)z = 020 + 120 + 220 + 002 + 102 + 202 + Oll + 111+211 

(BC2)0 = 000 + 100 + 200 + 011+111+211+022 +tJ22 + 222 

(BC2)i = 010 + 110 + 210 + 002 + 102 + 202 + 021 + 121 + 221 

(BC2)z = 020 + 120 + 220 + 012 + ll2 + 212 + 001 + 101 + 201 

(ABC)o = 000 + 120 + 210 + 012 + 021+102 + 201+222+111 

(ABC)i = 100 + 010 + 001 + 220 + 202 + 022 + ~12 + 121 + 211 

(ABC)2 = 200 + 020 + 002 + 110 + 101 + 011 + 221 + 212 + 122 

(ABC2)0 = 000 + 011 + 101 + 221 + 112 + 022 + 210 + 120 + 202 

(ABC2)i = 100 + 010 + 220 + 111+002 + 201+021+212 + 122 

(ABCi)z = 200 + 020 + 110 + 102 + 012 + 222 + 211 + 121 + 001 

(AB2C)o = 000 + 011 + 110 + 212 + 121 + 022 + 201 + 220 + 102 

(AB2C)i = 001 + 012 + 020 + 100 + 111 + 122 + 202 + 210 + 221 

(AB2C)z = 002 + 010 + 021 + 101 + 112 + 120 + 200 + 211 + 222 

(AB2C2)o = 000 + 012 + 021 + 101 + 110 + 122 + 202 + 211 + 220 

(AB2C2)i = 002 + 011 + 020 + 100 + 112 + 121 + 201 + 210 + 222 

(AB2C2)z = 001+010 + 022 + 102 + 111+120 + 200 + 212 + 221. 

The s•tms of squares are calculated as follows : 

. 1 2 2 2 1 2 2 2 SS(A) = r 33 _1 (~0 + A1 + A2) - C.T., SS(B) = r 33 _1 (B0 + B1 + B2 ) - C.T. 

1 2 2 2 1 2 2 2 SS(C) = r 33 _1 (C0 +C1 +C2)-C.T., SS(AB) = r 33_1 [(AB)0 + (AB) 1 + (AB) 2]-C.T. 

SS(ABC) = r
3
;_ 1 [(ABC)5 + (ABC)t +(ABC)~] - C.T. 

The sums of squares of A, B, C, AB, AC, BC and ABC" having 2, 2, 2, 4, 4, 4 and 8 
d.f., respectively are calculated in a similar way as it is done in three-way classification with r 
observations per cell. Here each of A, B and Chas 3 levels. For example, the sum of squares 
of AB of 4 d.f., is calculated from a t'wo-way table as follows : 

~ 
. 

bo bi bz Total 

ao 000 + 001 + 002 = YI 010 + 011 + 012 = Y4 020 + 021+022 = Y1 Ao 

a1 100 + 101 + 102 = Y2 110 + 111+112 = Ys 120 + 121 + 122 = YB A1 

a2 200 + 201+202 = y3 210 + 211 + 212 = Y6 220 + 221 + 222 = yg A2 

Total Bo B1 B2 G 

SS(AB) ~ _!_(y~ + y~ + y~ + · · · + y~) - C.T. - SS(A) - SS(~). 
3r 

For 3n_factorial experiment the effects and interactions having (3n - 1) d.f. are estimated. 
The linear effect of a factor is the linear combination of the levels of that factor with coefficients 
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( -1, 0, 1) in presence of all other factors. The quadratic effect is the linear combination with 
coefficients (1, -2, 1) in presence of all other factors. The interaction is also calculated in a 
similar way as it is done in 33-factorial experiment. 

The total to calculate sum of square having 2 d.f. are calculated using the solution of the 
equations 

ix1 + ix2 + ixi + · · · + ixn = 0 
= 1 mod 3, i = 0, 1, 2. 
=2 

Example 4.2 : To study the productivity of balsam apple under nitrogen and phosphorus 
fertilizers a 32-factorial experiment is conducted in an agricultural research station. The levels 
of nitrogen are no = 40 kg/ha, n 1 = 80 kg/ha and n 2 = 120 kg/ha. The levels of phosphorus 
are p0 = 30 kg/ha, Pt = 60 kg/ha and p2 = 90 kg/ha. Each level combination is applied in 
20' x 20' plot. The experiment is replicated in 3 blocks. The productions of balsam apple 
(kg/plot) are shown below : . 

Production (kg/plot) of balsam apple in different blocks 

Treatment Blocks 
Combinations 1 2 3 

00 14.6 15.2 15.0 
10 18.2 17.5 18.0 
20 28.0 27.5 26.2 
01 15.2 15.0 16.4 
11 20.6 19.2 20.0 
21 29.4 29.0 30.2 
02 16.4 18.6 17.6 
12 21.6 22.4 24.2 
22 32.2 31.8 33.1 

Total B, 196.2 196.2 200.7 

Analyse the data and comment on the impacts of fertilizer. 

Solution: 

Total 
production 

44.8 
53.7 
81.7 
46.6 
59.8 
88.6 
52.6 
68.2 
97.1 

593.1 

Yates' Table to Calculate Sum of Squares in Case of 392-Factorial ExpePiment 

Treatment Total of Operation Effects and Divisor SS= l..f. rD; 

combinations treatment 1 2 = [ l interactions Di r=3 

00 44.8] 180.2] 593.1 G 9 13028.43 
10 53.7 195.0 123.4 N' 6 845.976 
20 81.7 217.9 48.0 N" 18 42.667 . 
01 46.6] 36.9] 37.7 P' 6 78.961 
11 59.8 42.0 7.6 N'P' 4 4.813 
21 88.6 44.5 -5.8 N"P' 12 0.934 
02 52.6 l 19.1] 8.1 P" 18 1.215 
12 . 68.2 15.6 -2.6 N'P" 12 0.188· 
22 ·97.1 13.3 1.2 N" P"· 36 0.013 

' 
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C.T. = 13028.43, SS (Total)= LL LYf;t - C.T. = 14015.11 - 13028.43 = 986.68. 

SS (Block) = 2.3~'f - C.T. = ll 72g9
·
37 

- 13028.43 = 1.50. 

SS (error) =SS (Total) - SS (Block) - SS (Effects and interactions) 

= 986.68 - 1.50 - 974.767 = 10.413. 

' ANOVA Table 

Sources of variation d.f. SS MS= ss 
d.f. F ?-value 

Block 2 1.50 0.75 1.15 > 0.05 
·N' 1 845.976 845.976 1299.90 0.00 

. N" 1 42.667 42.667 65.56 0.00 
N - 2 - 888.643 - 444.333 - 682.75 0.00 
P' 1 78.96.1 78.961 121.33 0.00 
P" 1 1.215 1.215 1.87 > 0.05r 
p - 2 - 80.176 - 40.088 - 61.60 0.00 

N'P' 1 4.813 4.813 7.39 0.00 
N'P" 1 0.188 0.188 0.29 > 0.05 
N"P' 1 0.934 0.934 1.43 > 0.05 
N"P" 1 0.013 0.013 0.02 > 0.05 
NP - 4 - 5.948 - 1.487 - 2.28 > 0.05 

Error 16 10.413 0.6508 -

Total 26 

It is observed that both linear and quadratic fffccts of both the factors arc highly significant. 
The joint effect of nitrogen and phosphorus arc not found significant. However, one of the 
components of interaction of nitrogen and phosphorus, viz., linear x linear interaction is found 
highly significant [P-value 0.00 or F > Fo01]. 

The sum of squares of effects and interactions of 2 d.f. are calculated as follows : 

No = 00 + 01 + 02 = 44.8 + 46.6 + 92.6 = 144.0. 

Ni= 10 + 11+12 = 53.7 + 59.S + 68.2 = 181.7. 

N2 = 20 + 21of-22 = 81.7 + 88.6 + 97.l = 267.4. 

SS(N) = -1-(A~ +A~+ A~) - C.T. = 
125253

·
65 

- 13028.43 = 888.642. 
3xr 9 

.Po= 00 + 10 + 20 = 44.8 + 53.7 + 81.7 = 180.2. 

Pi = 01 + 11 + 21 = 46.6 + 59.8 + 88.6 = 195.0. 

P2 = 02 + 12 + 22 = 52.6 + 68.2 + 97.l = 217.9. 

SS(P) = -
1
-(B6 +Bi+ B~) - C.T. = ll 7

977
·
45 

- 13028.43 = 80.176. 
3 x r · 9 

(N P)o = 00 + 12 + 21 = 44.8 + 68.2 + 88.6 = 201.6. 

(NP)i = 01+10 + 22 = 46.6 + 53.7 + 97.1=197.4. 

(NP)2 = 11+20 + 02 = 59.8 + 81.7 + 52.6 = 194.1. 



FACTORIAL EXPERIMENT 145 

SS(NP) = 2_[(NP)6 + (NP)i +(NP)~] - C.T. = 
117284

·
13 

-13028.43 = 3.14. 
~ 9 

(N P2 ) 0 = 00 + 11+22 = 44.8 + 59.8 + 97.1 = 201.7. 

(N P2)i = 10 + 02 + 21=53.7+52.6 + 88.6 = 194.9. 

(N P2)2 = 20 + 01+12 = 81.7 + 46.6 + 68.2 = 196.5. 

SS(N P2) = 
3

1
r [(N P2)6 + (N P2)i + (N P2)~] - C.T. = 

1172:1.15 
- 13028.43 = 2.809. 

4.3 4n_Factorial Experiment 
Let there be n factors A, B, C, ... , N; each has 4 levels. The levels are usually denoted 

by 0, 1, 2, 3. The total level combinations are 4n and if all these level combinations are used 
as treatments in any experiment, then the experiment is called 4n_factorial experiment. From 
this experiment the effects and interactions of (4n - 1) d.f. arc estimated. These effects and 
interactions can be partitioned into (4n - 1) components each of one d.f. These are linear, 
quadratic, cubic effects and the interactions of these effects. 

However, since 4 is not a prime number, the interactions cannot be partitioned into 
components of ( 4 - 1) = 3 d.f. Thus, the total of effects and interactions are not found 
out using the equations of the type : 

ixi + ix2 + ix3 + ix4 = 0 
=1 
=2 
=3 

mod 4, i = 0, 1, 2, 3. 

Let us explain the analysis for 42-factorial experiment. The factors are assumed to be A 
and B. The total level combinations are 16 and these are shown in the table below. 

~ 
bo bi b2 b3 Total of A 

ao 00 01 02 03 Ao 
ai 10 11 12 13 Ai 
a2 20 21 22 23 A2 

a3 30 31 32 33 A3 

Total of B Bo Bi B2 B3 G 

From, this 42-factorial experiment one can estimate 15 components of effects and interactions 
each of 1 d.f. The effects are linear, quadratic and eubic. The two-factor interactions ar.e linear 
x linear, linear x quad~atic, linear x cubic, quadratic x cubic. The totals of effects and 
interactions are the linear combinations of treatments. The coefficients for linear effect are 
(-3, -1, 1, 3) for first, second, third and fourth levels of a factor, respectively. This coefficients 
are true for any factor. Thus, the total for linear effect of A is obtained by 

[At]= (-3,-1,l,3)(1,l,l,l) 

Similarly, [Bt]·= (1, 1, 1, 1)(-3, -1, 1,3). 

D.E.S.M.-10 
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The coefficients for quadratic and cnbic 0ffccts ar0 ( 1. -1. -1, 1) and ( -1, 3, -3, 1) respectively. 
Therefore, the totals for quadratic effect of A and cubic effect of A are given by 

[Aq] = (1, -1. -1, 1)(1. 1. 1, 1) 

[Ac·] = ( -1, 3, -3. 1 )(1. 1. 1, 1). 

Similarly, the total for quadratic and cubic cffrcts of B are : 

The total for interactions are : 

[Bq] = (1, 1, 1, 1)(1, -1, -1, 1) 

[Be]= (1.1.l,1)(-1,3,-3,1). 

[A1Bt] = (-3,-1.1,3)(-3,-1,l.3), [A1Bq] = (-3,-1,1.3)(1,1.l,l), 

[A1Bc] = (-3.-1,1.3)(-1,3,-3.1), [AqBt] = (1,-1.-1,1)(-3.-1,1,3), 

[AqBc] = (1, -1, -1, 1)(-1, 3, -3, 1). [AqBq] = (1. -1. -1.1)(1. -1, -1.1), 

[AcBt] = (-1,3,-3,1)(-3.-1.1.3). [AcBq] = (-1,3,-3,1)(1,-1.-1,1), 

[AcBc] = (-1, 3, -3, 1)(-1, 3, -3, l). 

The sum of squares of the effects and interactions arc calculated by 

SS(Z) = [Z;]
2 

' rD;' 

where D; is the appropriate divisor for i-th effect of interaction. The value of D; is the produCt 
of the sum of squares of coefficients for each factor l0vel. Thus, the D; value for At ( i = l) is 
[(-3)2 + (-1)2 + (1)2+(3)2][1 2 +1 2 +1 2 +1 2] = 80. D; for Aq is 

[12 + (-1)2 + r _ _i)2 + 12][12 + 12 + 12] = 16. 

The sum of squa1es can be calculated using Yate's algorithm. The algorithm is explained 
below: 

(i) The first column of Yate's table shows the treatment combinations in alphabetical order 
and in increasing order of levels. 

(ii) The second column is for the total of each treatment from different replications. 

(iii) The treatment totals are grouped. In each group there are 4 totals. The operational 
columns give the results from linear combinations of each group of totals. 

The first one-fourth of the first operation is a linear combination with coefficients 
(1, 1, 1.1). The second one-fourth of the first operation is linear combination with 
co0ffici0nts ( -3. -1.1. 3) of each group. The third one-fourth observation of first 
oper~:ttion is calculated in a similar way with coefficients ( 1, -1, -1, 1). The last one
fourth observation of the first operation is calcnlatcd in a similar way with coefficients 
(-1.3.-3.1). 

(iv) The subsequent operations are done in a similar way using the results of preceding 
operation. The n-th operation gives the total for effects and interactions. The first 
element of the n-th operation gives grand total (G). The other values are for the 
systematic lin.ear, quadratic, cubic and the corresponding interactions in a systematic 
fashion. The calculation is shown in the following table. 
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Yates' Table to Calculate Total for Effects and Interactions 

Treatment Trcati:ncnt Operation Effects and Appropriate 

Combinations total 1 2 = [I interactions divisor D, 

00 "'] XI + X2 + X3 + X4 = YI YI + Y2 + Y3 + Y4 G 16 

10 x2 X5 + X6 + X7 + XR = Y2 Ys+Y6+Y1+YR A1 80 

20 X3 Xg + x10 + xu + x12 = Y3 Y9 + YIO +YI I + Yl2 Aq 16 

30 X4 X13 + X14 + X15 + X16 = Y4 Yl3 + Y14 + Yl5 + Y16 Ac 80 

01 "" l 3x4 + X3 - x2 - 3x1 = Y5 3y4 + Y3 - Y2 - 3y1 a, 80 

11 X6 3x11 + X7 - X6 - 3x5 = Y6 3y11 + Y7 - Y6 - 3ys A1B1 400 
21 X7 3x12+x11-x10-3x9=y7 3y12 +y11 -y10-3yg AqB1 80 
31 Xg 3XJ6 + x15 - X14 - 3x13 =YR 3yl6 + Yl5 -y14 - 3y13 AcB1 400 

02 "' l X4 - X3 - X2 +XI = Y9 Y4 - Y3 - Y2 + YI Bq 16 
12 x10 :rs - X7 - X6 + X5 = YIO YR - Y7 - Y6 + Y5 A1Bq 80 
22 xu XJ2 - XJ I - X!O + Xg = YI I Yl2 - Yll - YIO + Y9 AqBq 16 
32 x12 X16 - X15 - X14 + X13 = Y12 Y16 - Yl5 - Yl4 + Yl3 AcBq 80 

03 
xn l x4 - 3x3 + 3x2 - x1 = Yl3 Y4 - 3y3 + 3y2 - Yl Be 80 

13 X14 xs - 3x7 + 3x6 - X5 = Yl4 YB - 3y7 + 3y6 - Y5 A1Bc 400 
23 X15 x12-3x11 +3x10-x9 =y15 Yl2 -3yu + 3y10 -yg AqBc 80 
33 XJ6 .'!:16 - 3x15 + 3x14 - x13 = Y16 Y16 - 3y15 + 3y14 -y13 Ac Be 400 

Example 4.3 : An experiment is conducted in a laboratory to study the mortality level 
of wood louse using two chemicals, viz., Abate (A) and Benlate (B). Four levels, viz., 0 ppm, 
500 ppm, 1000 ppm and 1500 ppm of each chemical are used in the experiment. The experfment 
is conducted through randomized block design using 2 blocks of 16 plots each. At the beginning 
of the experiment 30 wood lice are kept at each level combination of chemicals. After 7 days 
the dead wood lice are counted. The numbers of dead wood lice are shown in the following 
table. 

Treatment 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33 
combinations 

Dead wood 1 2 15 16 18 20 22 22 24 23 24 26 23 28 27 28 28 
lice in 2 
blocks 

1 17 16 17 19 21 21 23 23 22 25 21 27 26 26 29 

Total YiJ 3 32 32 35 39 43 43 47 46 46 51 44 55 53 54 57 

Analyse the <lata an<l comment on the effects of pesticides. 

Solution : The observations can be arranged in a 2 x 2 table showing the observations (y.;J) 
at each level of pesticides as below : 

~ 
bo bi b2 b3 Total of Ai 

ao 3 32 32 35 102 
a1 39 43 43 47 172 
a2 46 46 51 44 187 

a3 55 53 54 57 219 

Total Bi 143 174 180 183 680 
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C.T. = G
2 

= i.680)
2 

= 14450. 
r42 2 x 16 

SS {Total) = LL LY~il - C.T. = 15752 - 14450 

= 1302. 

SS(B) = r~ °EB~ - C.T. = 
1~~~4 -14450 = 126.75 

SS(A) = _!._ '°' A2 
- C.T. = 122918 

- 14460 = 914.75 
r4 ~ • 2 x 4 

ss(AB) = L: L: Yr1 - c.T. - sscs) - ss(A) = 
31478 

- 14450 - 126.75 - 914.75 
r 2 

= 247.50 

L:bt; 231272 
SS (Block) = --:42 - C.T. = -

1
-
6 

- - 14450 = 4.50, 

where totals of blocks are bl1 = 346, bl2 = 334. 

SS (error) = SS (Total) - SS (Block) - SS(B) - SS(A) - SS(AB) 

= 1302 - 4.5 - 126.75 - 914.75 - 247.56 

= 8.5. 

Tke sum of squares effects and interactions with 1 d.f. are calculated using Yate's algorithm 
as follows : 

Treatment Total of Operation Effects and Divisor SS= il r·D, 

Combinations treatment 1 2 = [ l interactions Di 

00 

3!] 143] 680 G 16 14450 
10 174 366 A1 80 837.225 
20 46 180 -38 Aq 16 45.125 
30 55 183 72 Ac 80 32.400 

01 32] 163] 126 B1 80 99.225 
11 43 66 -292 A1B1 400 106.58 
21 46 74 80 AqB1 80 40.00 
31 53 63 -14 AcB1 400 0.245 

02 32] -~7l -28 B· 16 24.50 q 
12 43 -4 86 A1Bq 80 46.225 
22 51 -8 -14 AqBq 16 6.125 
32 54 1 52 AcBq 80 16.90 

<13 35] 31 l 22 Be 80 3.025 
13 47 12 -124 A1Bc 400 19.22 
23 44 -2 40 AqBc . 80 10.00 
33 57 31 42 Ac Be 400 2.205 

It is observed that SS(Ai)+SS(Aq)+SS(Ac) = S(A) which is calculated previous!)c. Similar 
are the cases for SS(B) and SS(AB). The results are shown in analysis of variance table. 
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ANOVA Table 

Sources of variation d.f. SS MS= SS dT F P-value . 
Block 1 4.50 4.50 7.94 < 0.05 

A1 1 837.225 837.225 1477.37 0.00 

Aq 1 45.125 45.125 79.63 0.00 

Ac 1 32.400 32.400 57.17 0.00 

A - 3 - 914.75 - 304.92 - 538.06 0.00 

B1 1 99.225 99.225 175.09 0.00 

Bq 1 24.50 24.50 13.88 0.00 

Be 1 3.025 3.025 5.34 < 0.05 ., 
B - 3 126.75 - 42.25 - 74.55 0.00 

A1B1 1 106.58 106.58 - 188.07 0.00 

A1Bq 1 46.225 46.225 81.57 0.00 

A1Bc 1 19.22 19.22 33.92 0.00 

AqBt 1 40.00 40.008 70.58 0.00 

AqBq 1 6.125 6.1258 10.81 < 0.01 

AqBc 1 10.00 10.00 17.65 0.00 

AcBt 1 0.245 0.245 0.43 > 0.05 

AcBq 1 16.90 16.90 29.82 0.00 

Ac Be 1 2.205 2.205 3.89 > 0.05 

AB - 9 - 247.50 - 27.5 - 48.53 0.00 
Error 15 8.5 0.5667 - - -

Total 31 

The main effects of Abate and Benlate are highly significant. The linear changes, the 
quadratic changes or the cubic changes in the levels of pesticides arc significantly effective to 
kill wood louse. The joint effect of both the pesticides are also significant. 

4.4 p"-Factorial Experiment 

Let there be n factors A, B, C, D, ... , N each of which has p levels. The levels are, say, 
0, 1, 2, ... , (p - 1). The total level combinations are p". In an experiment if all these pn level 
combinations are used as treatment, then the experiment is called p"-factorial experiment. 

From this experiment (pn ·- 1) effects and interactions are estimated. These effects and 
interactions can be divided into (pn - l)/p - 1 components. Each of these components has 
(p - 1) d.f. provided p is a prime number. There are p total for each effect and interaction. 
These p totals are the totals of pn- l result of treatments. The treatments for any total is 
identified by the solutions of the equations of the type : 

ix1 + ix2 + ix3 + · · · + ix,. = 0 
=1 
=2 

=p-l 

modp; i=0,1,2, .. .,(p-1). 
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Here x.i(j = 1, 2, .... n) is used to indicate j-th factor. For example, if n = 2 and p = 5, 
then there are two factors A and B. Therefore, we have 5 totals of A, where these totals are the 
sum of results of treatments, the treatments are identified from t.he solution of the equations : 

X1 =0 
= 1 
=2 mod 5 
=3 
=4 

Therefore, we have 

[Ao] = 00 + 01 + 02 + 03 + 04, [A1] = 10 + 11 + 12 + 13 + 14 

[A2] = 20 + 21 + 22 + 23 + 24, [A3 ] = 30 + 31 + 32 + 33 + 34 

[A4] = 40 + 41 + 42 + 43 + 44. 

The sum of squares of A is given by 

1 '"" 2 SS(A) = r 52_1 ~Ai - C.T., 

,, 
c:::·. = c:. 

r5 
In general, if Xi is the total of any eff<'Ct or interaction for pn-factorial experiment, the sum 

of squares of that effect or interaction ir-; 
p-1 

SS (Effect or interaction)= -
1
-1 L x; - C.T. 

rpn- i=l 

Here r is the number of replication of the experiment. The sum of squares of replication (block) 
is calcula1ed as usual. 

For n = 2 and p = 5, the effects and interactions can be divid<'d into 6 components each of 4 
d.f. The components are A, B, AB1 , AB2 , AB3 , AB4 . The totals of these effects ar<' calculated 
from the sum of the result of those treatments and identified from the solution of the equations. 

x1=i('i=0, 1,2,3,4)1mod5; x2 = ·i('i = 0, 1, ... ,4)1mod5 

x1 + x2 = i('i = 0, 1, ... ,4)1mod5, xi+ 2x2 = i('i = O, l, .... 4)1mod5 

X1 + :Jx2 = i(i = 0, 1, ... , 4)1 mod 5, x1 + 4x2 = i('i = 0, 1, ... , 4)1 mod 5 respectively. 

The (52 - 1) effects and interactions can be partitioned into 24 components each of 1 d.f. 
These are linear, quadratic, cubic, quartic and the interactions of these effects. Each component 
is a linear combination of treatments, where the coefficients of different levels of factors arc 
shown in the table below : 

Effects Coefficients for different levels 

0 1 2 3 4 

Linear -2 -1 0 1 2 
Quadratic 2 -1 -2 -1 2 
Cubic -1 2 0 -2 1 
Quartic 1 -4 6 -4 1 

For example, the total of linear effect of A is 

A1 =(-2,-1,0,1,2)(1, 1, 1, 1, 1). 
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The sum of squares of these 24 components can be calculated using Yate's algorithm, where 
the operation will be done to get the linear cornbination according to the above mentioned 
coefficients. 

4.5 Generalized Interaction 
For 2"-factorial experiment, if the factors are A, B, C ..... N, then the interaction of A and 

B is AB, A and C is AC, A, B and C is ABC and so on. The interaction of A and BC is 
ABC. The interaction of A and AC or C and AC can also be determined. This is done under 
mod 2. Thus, the interaction of A and AC is A x AC= A2C = C uhder mod 2. Here, under 
mod 2, A2 = A0 = 1. Similarly, 

Ax ABC= A2BC = BCI mod 2 

AB x BC = AB2C = ACI mod 2 

Ax BC= ABC. 

Similar types of interactions can be identified under module 3 m case of 3"-factorial 
experiment. Thus, 

Ax AB= A2B = A4B2 = AB2I mod 3 

AB x AB2 = A2B3 = A4B6 =Ai mod 3 

AC x AC2 = A2C3 = A4C6 = Al mod 3 

ABC x BC = AB2C2 

ABC2 x AC2 = A2BC4 = A4B2Cs = AB2C2I mod 3 

Here C, BC, AC and ABC for 2"-factorial experiment and AB2, A, AB2C2. for 3"-factorial 
experiment are known as generalized interaction. 

The generalized interactions are very much important in confounded factorial experiment 
and in fractional replication of factorial experiment. 

4.6 Confounded Factorial Experiment 

In factorial experiment the treatments are the level combinations of factors and usually the 
experiment is conducted through randomized block design. If factors or levels or both are large, 
the level combinations become large which needs blocks of larger number of plots. Due to the 
use of blocks of large number of plots, there is a chance of heterogeneity in the plots within a 
block. The heterogeneity among the plots within a block may distort the objective of blocking. 
This problem can be avoided if blocks of smaller number of plots are used in the experiment. In 
that case all treatments are not allocated to the plots of a block, rather a portion of treatments 
are allocated in plots of a block so that the block contrast represents a higher order interaction 
of factors. Thus, in any replication more than one block is used in the experiment. Usually, 
for p"-factorial experiment blocks of multiple of pare used per replication, and treatments are 
allocated in plots within a block so that block contrasts represent one or more higher order 
interactions. This method of allocation of treatments to the plots within blocks per replication 
is known as confounding and the experiment is called confounded factorial experiment. 

In this technique the blocks are incomplete and the incomplete blocks are smaller in number 
of plots. The blocks with smaller number of plots are e::tpected to be more homogeneous. As a 
result block homogeneity increases and the efficiency of the experiment increases by reducing 
the experimental error. 
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Since higher order interaction and block contrast are entangled due to the use of confounded 
factorial experiment, the interaction which is less important to the researcher is usually 
confounded. The information on confounded interaction is lost but unronfounded effects and 
interactions arc C'Stimated with more efficiency. However, the confounded technique is used in 
such a way that no main effect is confounded with blocks. 

It is already mentioned that, in confounded factorial experiment the number of blocks per 
replication are more than one. Usually, for 2n-factorial experiment the number of blocks per 
replication is 2n-k(k < n) and for 3n_factorial experiment the number of blocks is 3n-k(k < n). 
For p"-factorial experiment the number of blocks is pn-k and there are pk plots per block. Due 
to the use of pn-k blocks (pn-k - 1)/(p - 1) interactions or components of interactions are 
confounded with blocks. 

It has been discussed that the total of treatment contrast is calculated from the treatments 
results, where treatments are decided solving the equations of the types : 

ix1 + ix2 + · · · + ixn = 0 
=1 

=2 modp; i=0,1,2,. . .,(p-l). 

=p-1 

The treatment contrast is the linear combination of the total of the contrast calculated from 
different solutions of the above types of equations. Thus, for 23-factorial experiment ABC is 
the highest order interaction and the equations to get the total of ABC at two levels are : 

X1 + X2 + X3 = 0 I d 2 = 1 mo 

so that we have 

(ABC)o = 000 + 011+110 + 101 

(ABC)i = 100 + 010 + 001+111. 

Therefore, the total of ABC contrast is 

[ABC]= (ABC)i - (ABC)0 = (111+100 + 010 + 001) - (000 + 011+110 + 101) 

= ( abe + a + b + e) - ( ( 1) + be + ab + ae) 

Now, if the treatments to get (ABC)i are allocated in Block-1 and the treatments to get 
(ABC) 0 are allocated in Block-2 within a replication, we get 

[ABC] = total result of Block-1 - total result of Block-2 

= B 1 - B2, where Bi= total of Block-i, i = 1, 2. 

That is 
Total of blocks 

Replication Block-1 abe a b e B1 

Block-2 (1) ab ae be B2 

It is observed that the block contrast [B1 - B2] is equal to the treatment contrast ABC. 
Therefore, the ABC interaction is confounded with blocks of a replication and the information 
of this interaction with 1 d.f. is lost. 
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Again, for 32-factorial experiment the totals of treatment contrast AB2 are calculated from 
the sum of results of treatments which are obtained from the solution of the equations : 

XI+ 2x2 = 0 
= 1 mod 3. 
=2 

Thus, we have (AB2 ) 0 = 00 + 11 + 22, (AB2h = 10 + 21 + 02, (AB2)2 = 20 + 01 + 12. 
Now, the treatments are allocated in blocks of 3 plots as under : 

Total of blocks 

Replication Bloc;k-1 00 11 22 Bi 
Block-2 10 21 02 B2 

Block-3 20 01 12 B3 

Here block contrast may be of the type (B3 - Bi) or (B1 - 2B2 +BJ). Both the contrasts 
are equivalent to the contrast of AB2 . Therefore, AB2 interaction is confounded with blocks 
and information of this interaction with 2 d.f. is lost. 

So far we have discussed the confounding of one component of contrast of treatment in one 
replication. In practice, more than one component of treatment contrasts can be confounded 
with blocks in a replication. For example, let us consider the allocation of treatments of 24-

factorial experiment in blocks of 4 plots each, where 

(ABCD)o = 0000 + 1100 + 1010 + 1001+0011+0101+0110 + 1111 

= ( 1) + ab + ae + ad + ed + bd + be + abed 

(ABCD)i = 1000 + 0100 + 0010 + 0001+1101+1110 + 0111+1011 

= a + b + e + d + abd + abe + bed + aed. 

These totals of (ABCD) 0 and (ABCD) are calculated using the result of treatments, where 
treatments are identified from the solution of the equations : 

xi + x2 + X3 + X4 = 0 I d 2 = 1 mo . 

Again, for AB interaction, we have 

XI+ X2: ~ 1 2. 

(AB)o = 0000 + 1100 + 0011+0010 + 0001+1111+1101+1110 

= (1) +ab+ cd + e + d +abed+ abd + abe. 

(AB)i = 1000 + 0100 + 1011+0111+1010 + 0110 + 1001+0101 

= a + b + aed + bed + ae + be + ad + bd. 

It is observed that half of treatments for (AB)o are used for (ABCD)o and another half are 
used for (ABCD)i. Similar is the case with (AB)i. Now, one can allocate 24 - 2 treatments in 
blocks within a replication as follows : 

Replication Blocks Treatments in plots Total 

1 (1) ab abed ed B1 
1 2 ae ad bd be B2 

3 a b aed bed B3 
4 abe abd e d B4 



154 DESIGN OF EXPERIMENTS AND SAMPLING METHODS 

It is observed that 

[ABCD) = B1 + B2 - B:i - B4, [AB] = B1 + B1 - B2 - B:i, 

[CD]= B1 + B3 - B2 - B4. 

All three interactions are block contrasts. These are confounded with blocks. Three 
interactions each with 1 d.f. are confounded with blocks. Here CD is automatically confounded 
with blocks, where CD is the generalized interaction of ABCD and AB [AB x ABCD = 
CDI mod 2]. 

In 2n-factorial experiment half of treatment contrasts for an interaction at first level is 
also used for treatment contrast of another interaction at first level. In other words, half of 
treatments with negative sign for a treatment are with positive signs for another treatment 
contrast and half of treatments with positive sign for a treatment contrast are with positive 
signs for another treatment contrast. Thus, if positive treatments of both contrasts and negative' 
treatments of both contrasts are allocated randomly in two separate blocks and the remaining 
negative and positive treatments are allocated separately in another two blocks, then two 
treatment contrasts (interactions) and their generalized interaction is confounded with blocks. 
In such a situation the block size is reduced to one-fourth and block homogeneity is expected 
more and the efficiency of the experiment is expected to be increased. 

Two or more interactions can be confounded in pn-factorial experiment also reducing the 
block size to pn-k. For example, let us consider the simultaneous confounding of AB and AC 
each of 2 d.f. in a replication in case of 33-factorial experiment. We have 

(AB)o = 000 + 120 + 210 + 001 + 121 + 211 + 002 + 122 + 212 

(AB)i = 100 + 1q1 + 102 + 220 + 221 + 222 + 010 + 011 + 012 

(AB)2 = 200 + 201+202+020 + 021+022 + 110 + 111+112 

(AC)o = 000 + 010 + 020 + 102 + 112 + 122 + 201 + 211 + 221 

(AC)i = 100 + 110 + 120 + 001 + 011 + 021 + 202 + 212 + 222 

(AC)2 = 200 + 210 + 220 + 002 + 012 + 022 + 101 + 111 + 121. 

The treatments are allocated as follows : 

Replication Blocks Treatments in blocks Block total 

1 000 211 122 B1 

2 120 001 212 B2 

3 210 121 002 B:i 

1 4 100 222· 011 B4 

5 110 021 202 B5 

6 101 220 012 B6 

7 102 221 010 B1 

8 200 022 111 BB 

9 201 020 112 Bg 

It is observed that 

(AB)o = B1 + B2 + B3, (AB)i = B4 + B6 + B1, (AB)2 =BB+ Bg + B5, 

(AC)o = B1 + B1 + Bg, (AC)i = B4 + 85 + B2. (AC)2 = 83 + B6 +BB· 
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Since the treatments required to calculate (AB) 0 or (AB)i or (AB)2 are allocated in 3 
different blocks, the interaction AB is confounded with blocks. Similar is the case with AC. 
The generalized interaction of AB and AC is AB· AC= A2BC = A4B2C2 = AB2C2I mod 3. 
-Here, we have 

(AB2C2)0 = B1 + B6 + Rr:,, (AB2C2)1 = B3 + B4 + B9, (AB2C2)2 = B2 + B1 + Bs. 

Therefore, AB2C2 interaction is also confounded with blocks. In total, 3 interactions each of 
2 d.f. are confounded with blocks in the above mentioned replication. 

In using this confounded technique the block size is reduced further. The plots in a block 
are fr ~ 33 = 3. Again, if we use blocks of 9 plots allocating treatments of B1, B5 and B6 in a 
block, treatments of B3, B 4 and B9 in another block and the treatments of B2, B1 and Bs in 
another block, then 2 d.f. of AB2C2 will be confounded with block. 

We have discussed the technique of confounding by allocating treatments to blocks of smaller 
number of plots in one replic:ition. In practice, there are many replications. 

One or many interactions can be confounded in all replications or in some replications. 
Accordingly, the technique of confounding is of two types, viz., total confounding and partial 
confounding. 

Total confounding : If an interaction is confounded in all replications of an experiment, 
the confounded technique is known as total confounding. For example, let us consider 24-

factorial experiment conducted through randomized block design replicated thrne times using 
two blocks per replication. The treatments in all three replications are as follows : 

Arrangement of treatments of 24 -factorial experiments in plots of blocks within 
replications 

Replication-I Replication-2 Replication-3 

Block-I Block-2 Block-I Block-2 Block-I Block-2 

(I) a ab abe abed abd 
ab b ac aed ab bed 
ac c (I) bed ac acd 
be d be a (I) a 
ad abc ad b ad b 
bd abd bd e bd e 
ed acd cd d cd d 

abed bed abed abd be abe· 

Total Bu B12 B21 B22 B31 B32 

Here [ABCD] =Bu - B12 in replication-I. 

[ABC D] = B21 - B22 in replication-2 

and [ABCD] = B31 - B32 in replication-3. 

In all replications ABC D interaction is confounded with blocks. ABC D interaction is totally 
confounded. The information of ABC D is totally lost. 

Partial confounding : If any interaction is confounded with blocks in some replications 
but not in all, the interaction is partially confounded. The technique of allocating treatments 
in blocks of a replication so that block contrasts represent an interaction in some replications 
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but not in all is· called partial confounding. For example, let us consider the allocation of 
treatments in blocks of replications as follows : 

Replications Blocks Treatments in plots Total of blocks 
. 

1 I (1) ab ed abed abe abd d e Bu 

2 a b ae be ad bd acd bed B12 

2 . I (I) cd ab abed aed bed a b B21 

2 e d abc abd ae be bd ad B22 

Here [AB]= Bu - B12 and [CD]= B21 - B22· 

Thus, interaction AB is confounded with blocks in replication-I, and interaction CD is 
confounded with blocks in replication-2. Both the interactions are partially confounded. 
Information of AB can be estimated from replication-2 and information of CD can be estimated 
from replication-I. Here [AB] from replication = Bu - Bi2· 

[ABh = [AB] from unconfounded replication= [AB] - [AB] from replication-I 

[AB]2 

:. SS(AB) from unconfounded blocks= (r _ I)123 

The partial confounded interaction sum of squares is calculated in a similar way as above. 
The sum of squares from all replications are calculated as usual by Yate's method. 

The effect total of totally confounded interaction is also confounded as usual by Yate's 
method. But its sum of squares is not calculated. The sum of squares of totally confounded 
interaction is included with error sum of squares. 

For pn-factorial experiment no interaction is totally confounded with blocks. Only (p- I) d.f. 
of an interaction is confounded with blocks of one replication. The (p - I) d.f. of an interaction 
is confounded with blocks within one replication but the remaining (p - 2) components each 
of (p -- I) d.f. are not confounded in that replication and hence, the sum of squares of these 
remaining components are calculated from the replication. For example, Jet us consider the 
confounding of AB interaction of 32-factorial experiment, where arrangements of treatments in 
plots are as follows : 

Replications Blocks Treatments in plots Total of blocks 

I 00 12 2I Bu 

1 2 10 .01 22 Bi2 

3 20 02 11 B13 

1 00 11 22 B21 

2 2 10 02 2I B22 

3 01 20 12 B23 

Here (ABo) = Bu, (AB1) = B12 and (AB)2 = 813; {AB2)0 = B21, (AB2)i = B22 and 
(AB2)2 = B23. Therefore, AB with 2 d.f. is confounded with blocks within replication-!. The 
interaction AB2 with 2 d.f. is confounded with blocks within replication-2. The interaction AB 
can be estimated from replication-2 and AB2 can be estimated from replication-I from such 
experiment of two replications. The interaction AB has 4 d.f., but the information of all 4 d.f. 
are not lost from an experiment. 
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The sum of squares of effects and interactions are caJculaterl as usual. The sum of squares 
of totally confounded interactions in case of 2"-factorial experiment are not calculated. The 
sum of squares of partially confounded interactions are calculated from those replications in 
which these are not confounded. The procedure is shown above. Other steps of analysis remain 
same as these are used in analysing unconfounded data of unconfounded factorial experiment. 
The d.f. of totally confounded interaction is added with the d.f. of error, but d.f. of partially 
confounded interaction is shown with a separate sign in the analysis of variance table. Let us 
now discuss some examples of totally and partially confounded factorial experiment. ' 

Example 4.4 : An experiment is conducted to study the productivity of maize using two 
doses of nitrogen as urea, two doses of phosphorus, two doses of potash and two levels of cow 
dung. The doses of nitrogen (N) are 60 kg/ha and 90 kg/ha, doses of phosphorus {P) are 
40 kg/ha and 80 kg/ha, doses of potash (K) are 30 kg/ha and 60 kg/ha and the levels of 
cow dung are 2 m.ton/ha and 3 m.ton/ha. The level combinations are used as treatments 
and treatments are applied in blocks of 4 plots per replication. The experiment is conducted 
through randomized block design and treatments are replicated 3 times. The productions of 
maize in 1 m2 plot are recorded for analysis. 

Production of Maize {in kg/plot, Yijtkm km) 

Replication Blocks Production against treatment per plot Total of 
-- -- blocks Bii 

1 {1)-2.5 np- 2.8 · npkd- 3.2 kd- 2.2 10.7 

1 2 nk- 3.0 nd- 2.7 pd- 2.0 pk - 2.2 9.9 

3 n-2.7 p-2.6 nkd- 3.4 pkd - 2.7 11.4 

4 npk- 3.0 npd- 2.8 k- 2.6 d- 2.5 10.9 

2 1 (1) - 2.6 np- 3.0 npkd- ~.6 kd- 2.6 11.8 

2 nk - 3.4 nd- 2.6 pd- 2.2 pk - 2.6 10.8 

3 n-2.6 p- 2.2 nkd- 3.0 pkd- 2.8 10.6 

4 npk - 3.6 npd- 3.4 k-2.8 d-2.0 11.8 

3 1 (1) - 2.4 np-3.0 npkd- 3.0 kd- 2.6 11.0 • 
2 nk - 3.6 nd- 2.9 pd- 2.4 pk - 2.0 10.9 

3 n-3.0 p- 2.6 nkd- 2.8 pkd-3.0 11.4' 

4 npk - 3.4 npd-3.6 k- 2.6 d-2.4 12.0 

Analyse the data and comment on the use of different fertilizers. 

Solution : This is a 24-factorial experiment, where 3 inte~actions are confounded with 
blocks. Number of replica.tions r = 3. It is observed that, 

. {N PJ = Bu + B14 - B12 - B13, [K DJ = Bu + B13 - B12. - B14 

and [NPKDJ =Bu+ B12 - B13 - B14. 

Therefore, NP, K D and NP K D interactions are confounded with blocks. The same 
treatment arrangements are noted in all three replications. Hence, all three interactions are 
totally confounded with blocks. 

< 
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SS (Blocks within replications) 

= ~ [E Bl1 _ (E Bi1)
2

] 
~ 4 42 . 
i=I . 

Here L B1.i = 42.9, .L B21 = 45.0, L B3.i = 45.3 

= [~{(10.7) 2 + (9.9) 2 + (11.4) 2 + (10.9) 2
} - (4~:)

2

] 

+ [~{(11.8) 2 + (10.8) 2 + (10.6) 2 + (11.8) 2
} - (4~~)

2

] 

+ [~{(11.0) 2 + (10.9) 2 + (11.4)2 + (12.0) 2
} - (4~·:)

2

] 
= (115.3175- 115.0256) + (126.87- 126.562) + (128.4425) - 128.2556) = 0.7863. 

Yates' Table to Calculate Sum of Squares 

Treatment Total of Operations Effects and SS=~ 
combinations treatment 1 2 3 4 = [ J interactions r=3 

(1) 7.5] 15.8] 32.0] 66.8] 133.2 G 369.63 = C.T. 
(n) 8.3 16.2 34.8 66.4 15.0 N 4.6875 

p 7.4] 18.0] 31.5] 7.4] 2.2 p 0.1008 
np 8.8 16.8 34.9 7.6" 3.2 NP -

k 8.0] 15.1] 2.2] -0.8] 6.2 K 0.8008 
nk 10.0 16.4 5.2 -3.0 1.6 NK 0.0533 

pk 6.8] 16.6] 4.5] 1.8] -1.2 PK 0.03 
npk 10.0 18.3 3.1 1.4 -1.8 NPK 0.0675 

d 6.9] 0.8] 0.4] 2.8] -0.4 D 0.0033 
nd 8.2 1.4 -1.2 3.4 0.2 ND 0.0008 

pd 6.6] 2.0] 1.3] 3.0] 3.8 .PD 0.3008 
npd 9.8 3.2 1.7 -1.4 -0.4 NPD 0.0033 
kd 7.4] 1.3] 0.6] -1·.6] 0.6 KD -

nkd 9.2 3.2 1.2 0.4 -4.4 NKD 0.4033 
pkd 8.5] 1.8] 1.9] 0.6] 2.0 PKD 0.0833 

npkd 9.8 1.3 -0.5 -2.4 -3.0 NPKD -

SS (unconfounded effects and interactions) = SS(N) + SS(P) + · · · 
+ SS(NKD) + SS(PKD) = 6.5347. 

SS (Total) = EE EE E Yljlkm - C.T. = 378.54 - 369.63 = 8.91. 

SS (Error) =SS (Total) -SS (Blocks within replications) 

-SS (Unconfoundcd cffocts and interactions) 

= 8.91 - 0.7863 - 6.5347 = 1.589. 
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ANOVA Table 

Sources of variation d.f. SS SS MS= <lT F Fo.os ?-value 

Blocks within - 9 0.7863 0.0874 1.43 2.30 > 0:05 
replication 

N 1 4.6875 4.6875 76.72 4.22 0.00 
p 1 0.1008 0.1008 1.65 " > 0.05 

K 1 0.8008 0.8008 13.11 " 0.00 

D 1 0.0033 0.0033 0.05 " > 0.05 

Main effects -- 4 5.5924 1.3981 22.88 2.74 0.00 

NK l 0.-0533 0.0533 0.87 4.22 > 0.05 

PK 1 0.03 0.03 0.49 " " 
ND 1 0.0008 0.0008 0.01 " " 
PD 1 0.3008 0.3008 4.92 " < 0.05 

Two-factor interaction - 4 0.3849 0.0962 1.57 2.74 > 0.05 
NPK 1 0.0675 0.0675 1.10 4.22 " 
NPD 1 0.0033 0.0033 0.05 " " 
NKD 1 0.4033 0.4033 6.60 " < 0.05 
PKD 1 0.0833 0.0833 1.36 " > 0.05 

Three-factor interactions - 4 0.5574 0.1393 2.28 2.74 > 0.05 
Error 26 1.589 0.0611 -

Total 47 

The F-statistics for which P-':'alues are greater than 0.05 indicate insignificant effects or 
interactions. The main effects arc found highly significant, but only the effects of nitrogen and 
potash are highly significant. The overall two-factor interactions are found insignificant but the 
interaction of phosphorus and cow-dung are significant. The interaction of nitrogen, potash ·and 
cow-dung is found significant though overall three-factor interactions are found insignificant. 

The main effects arc : 

N = ~ = l
5

.0 = 0.625, P = _El = ~ = 0.092 
r24 - 1 3 x 8 r24 - 1 3 x 8 ' 

[K] 6.2 [DJ -0.4 
K = r24-l = 3 x 8 = 0.258, D = r24-l = 24 = -0.017. 

The estimated variance of any one of the effects or interactions is : 

V(X) _ M S(error) _ 0.0611 _ 
- r211-2 - 3 x 24-2 - 0.005, 

whe~e X is effect or interaction. 

Example 4.5: To study the mortality capacity of Abate (A) and Benlate (B) an experiment 
is conducted using these pesticides at two levels on wood lice. The levels of concentration of 
these pesticides used in the experiment are 500 ppm and 1000 ppm. Thirty wood lice are 
kept under these pesticides at room temperature and at temperature 30 °C. This 23-factorial 
experiment is conducted through randomized block design of 4 plots each. The experiment is 
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repeated three times. After 7 days of the start of the experiment the number of dead wood lice 
are counted. The data are given below. 

Number of dead wood lice (Yijtk) under different treatment 

Replications Blocks Treatment and dead wood lice Total of blocks 
Bij 

I (I) - I8 at - 20 abt - 28 b- 25 9I =Bu 

I 2 a - 22 t - 20 bt- 24 ab- 27 93 = B12 

I (I)-I7 bt - 22 abt - 27 a - 24 90 = B21 

2 2 b- 24 t - 2I at- 22 ab- 26 93 = B22 . 
3 I a - 24 b- 25 t - 2I abt - 28 98 = B31 

2 ab- 24 at - 23 bt- 24 (I) - I5 86 = B32 

Analyse the data and interpret t]Je result of using pesticides. 

Solution : This is a 23-factorial experiment where three interactions, viz., AT, BT and 
ABT are partially confounded with blocks. The number of replications are r = 3. Here 

[AT] = Bu - B12, [BT] = B21 - B22, [ABT] = B31 - B32· 

Thus, AT is confounded partially in replication-I, BT is confounded partially in replication-2 
and ABT is partially confounded in replication-3. The sum of squares of AT, BT and ABT are 
to be calculated, respectively from replication-2 and replication-3; replication-I and replication-
3; replication-I and replication-2. Here 

L B1,; = I84, L B2j = I83, L B3j = I84. 

Yates' Table to calculate sum of squares 

Treatment Total of Operation Effects and SS=Y: 
7'2 

combinations treatment I 2 3 = [ l interactions r=3 

(I) 50] I20] 27I] 55I G I2650.042 
a 70 I5I '280 39 A 63.375 
b 74] I27] 23] 57 B I35.375 

ab 77 I53 I6 -7 AB 2.042 
t . 62] 2~] 3I] 9 T 3.375 

at 65 26 ~7 AT -
bt 70] I~] -I7] -5 BT -

abt 83 10 27 ABT -

"""' [ l.::i B[; (2.:: BiJ )
2 l SS (blocks within replications)= 7 --

4
-· - 23 

=SS (blocks within replication-I) +SS (blocks within replication-2) 

+SS (blocks within replication-3) 

= [9I
2

: 93
2 

- (I884)
2

] + [90
2

: 93
2 

- (1883)
2

] + [98
2

: 86
2 

- (1884)
2

] 

= (4232.5 - 4232.0) + (4187.25 - 4186.125) + (4.250 - 4232) = 0.5 + 1.125 + I8.0 = 18.625. 
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Total effect of AT from replication-2 and replication-3 is 

[AT]i = [AT]. - [AT] from replication-I = -i - (B11 - B!2) = - 7 - (91 --- 93) = -5. 

SS(AT) = [AT]i . = (- 5)
2 

= l .5625. 
(r - I)23 2 x 8 

Total effect of BT from replication-I and replication-3 is 

[BT]i = [BT] - [BT] from replication-2 = -5 - (90 - 93) = -5 + 3 = -2. 

SS(BT) = [BT]i. = (-2)
2 

= 0.25. 
(r - 1)23 2 x 8 

Total effect of ABT from replication-I and replication-2 is 

[ABT]i = [ABT] - [ABT] from replication-3 = 27 - (B31 - B32) = 27 - (98 - 86) = 15. 

SS(ABT) = [ABTJi. = (I5)
2 

= I4.0625. 
(r - 1)23 2 x 8 

SS (Effect and interactions) = SS(A) + SS(B) + · · · +SS( ABT) = 220.042. 

SS (Total) = LL LL Y'ltk - C.T. = I2909 - 12650.042 = 258.958. 

SS (Error) =SS (Total) - SS (Blocks within replications) - SS (Effects and interactions) 

= 258.958 - 18.625 - 220.042 = 20.291. 

ANOVA Table 

Sources of variation d.f. SS MS= SS 
d.f. F Fo.05 ?-value 

Blocks within 3 18.625 6.208 3.98 3.41 < 0.05 
replications 

A 1 63.375 63.375 40.60 4.67 0.00 
B 1 I35.375 135.375 86.73 

,, 
0.00 

T 1 3.375 3.375 2.16 
,, > 0.05 

Main effects -3 - 202.125 67.375 - 43.I7 3.41 0.00 
AB I 2.042 2.042 1.31 4.67 > 0.05 
AT l' I.5625 I.5625 l.QO ,, ,, 

BT 1' 0.25 0.25 0.16 
,, ,, 

ABT 1' 14.0625 14.0625 9.01 
,, 

0.00 
Error 13 20.291 1.5608 -

Total 23 

It is observed that the main effects arc highly significant. However, the effect of tcmpcratnrc 
is not significant. The partially confounded three-factor interaction is also highly significant. 
The results indicate that increasing the levels of concentration of abate and benlate more wood 
lice can be killed. 

The estimates of confounded effect arc : 

[AT]i -5 
AT = ( I) 23 1 = -- = -0.625, 

r- - 2x4 

[ABT]i 15 
ABT= (r - 1)2:i-1 = 2 x 4 = 1.875 

D.E.S M.-11 

BT= [BT]i = -2_ = -0.25, 
(r - I)23-l 2 x 4 
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The variance of an:v of th0 11nconfo11nded dfrcts or interactions is 

MS (Error) . . . 
V(X) "--C ---,,--

2 
, where X 1s eff0d or mteract1on 

r2°-

l.5608 
= -- = 0.2601 

3 x 2 
and variance of confounded int.Praction is 

MS (Error) . . . 
V ( X 1) = ( 

3 1 , where X 1 1s confounded effect or rnteract1011 .,. - 1)2 -

= 1.5608 = 0.3902. 
2 x 2 

Therefore, nnconfounded interactions or effects are estimated more efficiently than the 
confounded interactions. 

Example 4.6 : An experiment is conducted to study the productivity of marigold using 
three doses of nitrogen as urea and 3 doses of phosphorus. The doses of nitrogen are 30 kg/acre, 
60 kg/ acre and 90 kg/ acre; the doses of phosphorus are 20 kg/ acre, 40 kg/ acre and 60 kg/ acre. 
The plants are cultivated in the plots at distances of 611

, 911 and 12". The experiment is a 33 -

factorial experiment conducted through randomized block design of 3 plots each. The number 
of flowers per plant and the arrangement of treatments in blocks are shown below : 

Replications Blocks Number of flowers (:l/ijlk) per plant under 
different treatments 

1 000-12 012-21 
1 2 100-16 121-24 

3 200-20 212-23 
4 222-28 210-18 
5 120-20 102-17 
6 220-18 202-18 
7 022-26 010-15 
8 110-18 101-20 
9 002-14 011-16 

1 012-19 021-19 
2 2 112-20 121-23 

3 212-22 200-18 
4 222-27 210-19 
5 120-19 111-18 
6 220-19 202-20 
7 022-25 001-18 
8 101-22 110-21 
9 002-18 011-19 

Analyse the data and comment on the use of fertilizer. 

Solution : It is observed that 

021-18 
112-19 
221-20 
201-16 
111-18 
211-22 
001-14 
122-22 
020-15 

000-13 
100-17 
221-19 
201-17 
102-18 
211-21 
010-19 
122-24 
020-14 

Total of 
b;j 

51 =Bu 

59 = B12 
63 = B1:i 
62 = B14 
55 = B15 
58 = B 16 

55 = B11 
60 =Bis 
45 = B19 

51 = B21 

60 = B22 
59 = B23 
63 = B24 
55 = B2s 
60 = B26 
62 = B21 
67 = B2s 
51 = Bw 

(ABC)o =Bu + B14 +Bis, (ABC)i = Bi2 + B15 + Bi1, (ABC)2 = B13 +Bis+ B19, 

(BC)o = Bu + Bi3 + B12, (BC)i = B14 + Bi1 +Bis. (BC)2 = Bis+ B15 + B19. 
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Therefore. ABC and BC interactions each with 2 d.f are confounded with blocks. the 
generalilled interaction of ABC and BC is AB2C2 and it is also confounded with blocks. Since 
the arrangement of treatments in plots of hlocks in second replication is similar to that in 
replication-I, the three interactions ABC, BC and AB2C2 each of 2 d.f. are also confounded 
with blocks. The three interactions each of 2 d.f. are totally confounded with blocks. The sum 
of squares of thf'sc 3 intf'ractions will not be calculated. Sum of squares of other effects and 
interactions each of 2 d.f. are calculated as usual. 

The treatment totals are given below : . 

Treatments 000 001 002 010 011 012 020 021 022 100 101 102 

Total of 25 32 32 34 35 40 29 37 51 33 42 35 
treatments 

Treatments 110 111 112 120 121 122 200 201 202 210 211 212 

Total of 39 36 39 39 47 46 38 33 38 37 43 45 
treatments 

c 2 (1036) 2 

G = 1036, C.T = r 33 = 
2 

x 
27 

= 19875.8518. 

SS (Total) =LL L LYDik - C.T. = 2082 - 19875.8518 = 606.1482. 

R1 = L Bi.i = 508, R2 = L Bzj = 528, 

. . 1 " 536848 SS (Rephcat1ons) = 
27 
~ R? - C.T. = ---n- - 19875.8518 = 7.4075 

'°' [l::B2 (l::B.)2] SS (Blocks with replications) = ~ T-
27

•1 

= [28934 - (508)
2

] + [31210 - (528)
2

] 

3 27 3 27 

= (9644.667 - 9557.926) + (10403.333 - 10325.333) = 164.741. 

Ao = 000 + 001 + 002 + 010 + 011 + 012 + 020 + 021 + 022 = 315 

A1 = 100 + 101 + 102 + 110 + 111 + 112 + 120 + 121 + 122 = 356 

Az = 200 + 201 + 202 + 210 + 211 + 212 + 220 + 221 + 222 = 365 

Bo= 000 + 001+002+100 + 101+102 + 200 + 201 + 202 = 308 

BI = 010 + 011 + 012 + 110 + 111 + 112 + 210 + 211 + 212 = 348 

B2 = 020 + 021+022+120 + 121+122 + 220 + 221 + 222 = 380 

Co= 000 + 010 + 020 + 100 + 110 + 120 + 200 + 210 + 220 = 311 

C1 = 001+011+021+101+111+121+201+211+221 = 344 

C2 = 002 + 012 + 022 + 102 + 112 + 122 + 202 + 212 + 222 = 381 

(AB)o = 000 + 001+002+120 + 121+122 + 210 + 211 + 212 = 346 

(AB)i = 100 + 101 + 102 + 010 + 011 + 012 + 220 + 221 + 222 = 350 

(AB)z = 200 + 201.+ 202 + 020 + 021+022 + 110 + 111+112 = 340 

(AB2)0 = 000 + 001+002 + 110 + 111+112 + 220 + 221 + 222 = 334 

220 221 222 

37 39 55 
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(Afh)1 = 100 + 101+102 + 210 + 211+212 + 020 + 021+022 = 352 

(AB2 )2 = 200 + 201+202 + 120 + 121+122 + 010 + 011 + 012 = 350 

(AC)o = 000 + 010 + 020 + 102 + 112 + 122 + 201 + 211 + 221 = 323 

(AC)1 = 100 + 110 + 120 + 001+011+021 + 202 + 212 + 222 = 353 

(AC)2 = 200 + 210 + 220 + 002 + 012 + 022 + 101 + 111 + 121 = 360 

(AC2)o = 000 + 010 + 020 -t 202 + 212 + 222 + 101+111+121 = 351 

(AC2) I = 100 + 110 + 120 + 201 + 211 + 221 + 002 + 012 + 022 = 349 

(AC2)z = 200 + 210 + 220 + 001+011+021+102 + 112 + 122 = 336 

(BC2)0 = 000 + 100 + 200 + 011+111 + 211+022+122 + 222 = 362 

(BC2)i = 010 + 110 + 210 + 002 + 102 + 202 + 021+121 + 221 = 338 

(BC2)2 = 020 + 120 + 220 + 012 + 112 + 212 + 001 + 101 + 201 = 336 

(ABC2)0 = 000 + 011+101+221+112 + 022 + 210 + 120 + 202 = 345 

(ABC2)i = 100 + 010 + 220 + 111+002 + 201+021+212 + 122 = 333 

(ABC2 )z = 200 + 020 + 110 + 102 + 012 + 222 + 211+121+001 = 358 

(AB2C)0 = 000 + 011+110 + 212 + 121+022 + 201+220 + 102 = 347 

(AB2C)i = 001+012 + 020 + 100 + 111+122 + 202 + 210 + 221 = 330 

(AB2 C)z = 002 + 010 + 021 + 101 + 112 + 120 + 200 + 211 + 222 = 359 

SS(A) = 2_(A6 +Ai+ A~) - C.T. = 359186 
- 19875.8518 = 78.9260 

9r 9 x 2 

SS(B) = 2_(BJ +Bf+ Bi) - C.T. = 
360368 

- 19875.8518 = 144.5926 
9r 9 x 2 

SS(C) = 2-rcJ +cf+ Ci) - C.T. = 
36021

2
8 

- 19875.8518 = 136.2593 
9r 9 x 

SS(AB) = 2_[(AB)6 + (AB)i ~(AB)~] - C.T. = 
3
9

5781

2
6 

- 19875.8518 = 2.8149 
~ x 

SS(AB2) = 
9

1
r [(AB2)G + (AB2)i + (AB2)~] - C.T. = 

3g~~O -19875.8518 = 10.8149 

SS(AC) = 2_[(AC)6 + (AC)i +(AC)~] - C.T. = 
35853

2
8 

- 19875.8518 = 42.9260 
9r 9 x 

SS(AC2) = 
9

1
r[(AC2)6 + (AC2)i + (AC2)~] - C.T. = 

3!7~~8 - 19875.8518 = 7.3704 

SS(BC2) = 
9

1
r [(BC2)6 + (BC)i + (BC2)6J - C.T. = 

3:8:~4 - 19875.8518 = 23.2593 

SS(ABC2) = 2_[(ABC2)6 + (ABC2)i + (ABC2)~] - C.T. = 358078 
-19875.8518= 17.3704 

9r 9 x 2 

SS(AB2C) = 
9

1
r [(AB2C}a+ (AB2C)i + (AB2C)~] - C.T. = 

3~~l~O -19875.8518 = 23.5926. 

SS (Effects and interactions) = SS(A) + SS(B) + SS(C) + · · · + SS(AB2C) = 487.9264 

SS (Error) = SS (Total) - SS (Replications) - SS (Effects and interaction) 

= 606.1482-;- 7.4074 - 487.9264 = 110.8144. 
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ANOVA Table 

Sources of variation d.f. SS SS MS= IT F F.o5 ?-value 

Replications 1 7.4074 7.4074 2.14 4.15 > 0.05 

A 2 78.9260 39.463 11.40 3.30 0.00-

B 2 144.5926 72.2963 20.88 " 0.00 

c 2 136.2593 68.1296 19.67 " 0.00 

AB 2 2.8149 1.4074 0.41 " > 0.05 

AB2 2 10.8149 5.4074 1.56 " > 0.05 

AB - 4 - 13.6298 - 3.4074 0.98 2.67 > 0.05 

AC2 2 7.3704 3.6852 1.06 3.30 " 
AC 2 42.926 21.463 6.20 " < 0.05 
AC - 4 - 50.2964 - 12.5741 3.63 2.67 < 0.05 

BC2 2 23.2593 11.6296 3.36 3.30 < 0.05 

ABC2 2 17.3704 8.6852 2.51 " > 0.05 

AB2C 2 23.5926 11. 7963 3.41 " < 0.05 
Error 32 110.8144 3.46295 - - -

Total 53 

Here A is used for nitrogen, B is used for phosphorus and C is used for spacing. 

It is observed that the changes in the levels of nitrogen, phosphorus and spacing significantly 
increase the production of flower. The joint impact of nitrogen and spacing is also found 
significant. 

4. 7 Fractional Replication of Factorial Experiment 
In factorial experiment if the factors or levels of factors or both are large, the treatment 

combinations become large. The use of a large number of treatments creates problem. specially 
if the experiment is conducted through randomized block design. The problem is obviated 
using smaller number of plots per block, where there are multiple blocks per replication. The 
technique of allocation of treatment to the plots of a block of smaller size than the number of 
treatment is known as confounding. Sometimes the confounding technique is also not sufficient 
to reduce the block size. Further reduction of block size is needed for certain types of larger 
factorial experiment. 

One of the technique of selecting a set of treatments from all treatments is known as use 
of fractional replication of treatments so that the number of plots per block is reduced to 
1/pk(k < n) for p"-factorial experiment. Finney (1945) is the first man to introduce such a 
technique to select a fraction of treatments from all treatments. The selected treatments are 
used for the experiment and experiment is performed in a similar way as it is done for other 
factorial experiment. 

The fraction of treatments is profitably used in any experiment if the experimenter is 
not interested in any higher order interaction or interactions. It is noted that any effect or 
interaction is expressed as a linear combination of results of treatments, where sum of the 
coefficients of the linear combination is ·zero. 

For example, the interaction ABC in 23-factorial experiment is 

1 1 
ABC= 23_

1 
(a - l)(b - l)(c - 1) = 22 [abc +a+ b + c - (1) - ab - ac - be]. 
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An experiment can be conducted using all 8 treatments allocating then in two separate blocks 
so that block contrast represents ABC interaction. The technique is known as confounding. 
Thus, we have 

Total of block 

Replication Block-1 abc a b c B1 

Block-2 (1) ab ae be B2 

[ABC] = B1 - B2, the block size is reduced to half. Here ABC interaction is not estimated. 
Here abe. a, b, and c treatments are ! 23- factorial experiment. Another half of treatments are : 
(1 ), ab, ae, be. If in away experiment either half of treatments are used. the experiment is known 
as fractional factorial experiment. 

The use of abc, a, b and c as treatments in au experiment or the 1we of ( 1), ab, ac and be as 
treatments do not give iuformation on ABC interaction. Either half of the treatments are not 
suitable to estimate ABC contrast. 

Defining contrast : The interaction which can not be estimated in any factor~al experiment 
due to the use of fractional replication of treatments is kn0 .. n as defining contrast. Thus, in 
the above mentioned case of ~23-factorial experiment if abc, a, band care used as treatment, 
the interaction ABC cannot be estimated. The interaction is known as defining contrast. 

The interactions which is not important for tbe research can be used as defining contrast. 
If p\-pn.-factorial experiment is conduct.~d, k iuteractions can be used as defining contrasts and 
the block sizes are reduced furth ~r. The generalized interactions of k defining contrasts are also 
defining contrasts and those i1:teractions cannot be estimated. For example, if f; 23-factorial 
experiment is used, then we need only two treatments. These two treatments can be selected 
from abe, a, band c. We know, 

[AB]= abc + c - a - b. 

Then, either abc and c or a and b can be used for the experiment and in that case AB interaction 
cannot be estimated. Here AB is also defining contrast. The generalized interaction of ABC 
and AB is ABC· AB= C. Therefore, ABC. AB and Care defining contrasts. We write: 

I= ABC= AB= C, where I is used to indicate defining contrast. 

Principal block : In ! 23-factorial experiment if ABC is used as defining contrast, the 
treatments are either abc, a, b and e or (1), ab, be and ac. The either group of treatments 
constitutes principal block. Thus, the treatments which are used in any fractional replication 
of factorial experiment constitutes the principal block. If ABC and AB are used as defining 
contrast, then abc and c or a and b constitute the principal blocks. ThP effects and interactions 
are estimated using the treatments of principal block. 

Aliases : For ~ 23-factorial experiment if ABC is the defining contrast, then abe, a, b and 
c treatments constitute the principal block. From these four treatments, we have 

[A] = abc +a - b - c, [BJ = abe + b - a - e = [AC] 

[CJ = abc + e - a - b, [AB] = abe + c - a - b = [CJ 

[AC] =abc+b-a-c, [BC] =abc+a-b-e= [A]. 

Thus, [A]= [BC], [BJ= [AC], [CJ= [AB]. 

Here BC = A, we call, BC is the alias of A, 

AC= B, we call, AC is the alias of Band AB= C, we call, A is the alias of C. 
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The aliases are the generalized interaction of any effect or interaction with defiuing contrast. 
We have I= ABC. Its generalized interactions are: 

A· ABC= BC, B ·ABC= AC, C ·ABC= AB. 

Again, if (1), ab, ae and be treatments constitute the principal blocks, then 

[A] = ab + ae - be - ( 1), [AB] = ab + ( 1) - ae - be = - [CJ 

[BJ = ab + be - ac - ( 1), [A CJ = ac + ( 1) - ab - be = .- [BJ 

[CJ= ac +be - ab - (1), [BC]= be+ (1) - ab - ac =-[A] 

If 23-factorial experiment is replicated r-timcs, cff0cts and intNactions of 7 d.f. can be 
estimated. These are A, B, C, AB, AC, BC and ABC. But if ~23-factorial experiment is 
replicated r times, we hav<> 4 treatments to estimate effects and interactions of ( 4 - 1) = 3 
d.f. As ABC is the defining contrast, its effect cannot be estimated. The r<>maining six effects 
and interactions are A, B, C, AB, AC and ABC. But it is observed that A = BC, R = AC 
and C = AB. Therefore, three effects or interactions can be estimated from this experiment. 

The sum of squares of effects and interactions arc calculated as usual. The effect totals ar<> 
calculated from the results of treatments, where treatments are identified from the solution of 
equations of the type 

ix1 + ix2 + ix3 = 0 I 
= 1 

mod 2; i = 0, 1. 

The solutions are obtained from the treatment 111, 100, 010, 001. Thus, the solution providing 
total of Ao and A 1 are obtained from the equation : 

We have (Ao)o = 010 + 001, 

(A)i = 111+100. 

X1 = 0 I = 1 mod 2. 

1 2 2 SS(A) = - 23 1 
[A0 +Ai] - C.T., r -

Similarly, other sum of squares are calculated. 

ANOVA Table 

Sources of variation d.f. SS MS= ss 
dT 

Block r-1 

A 1 

B 1 

c 1 

Error 3(r - 1) 

Total r2 2 - 1 

F 

~24-Factorial experiment : Let us consider that there are 4 factors A, B, C and D 
and each of them has 2 levels. Total number of treatment combinations are 16. But we need 
to conduct the experiment with t24 = 4 treatments. To select 4 treatments we can use two 
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interactions as defining contrasts. Let these interactions be AB and CD. The treatm~nts to 
be used to calculate total of (AB)o and (AB)i are selected from the solution of the equations : 

X1 + X2 = 0 I d 2 == l lllO . 

Thus, we have 

(AB)o = 0000 + 0010 + 0001+0011+1100 + 1101+1110 + 1111 

(AB)i = 1000 + 0100 + 1010 + 0110 + 1001+0101+0111+1011. 

Either group of treatments for (AB)o and (AB)i can be considered for ~24-factorial experiment. 
Let us consider that the treatments used to get (AB) 0 are under consideration. From these 8 
treatments we need to select four treatments which wiH be used to get ( C D)o and ( C D)i. The 
treatments are selected from the solutions of the equations : 

Thus, we have 

X2 + X3 = 0 I d 2 = 1 mo . 

(CD)o = 0000 + 1100 + 0011+1111 

(CD)i = 0010 + 0001+1101+1110. 

Either group of 4 treatments for ( C D)0 or for ( C D)i can be used as required 4 treatments for 
the experiment. Let the selected groups be 0000, 1100, 0011 and 1111. 

Since AB and CD are used as defining contrasts, their generalized interaction 

AB · CD = ABC D is also defining contrast. Therefore, 

I= AB= CD= ABCD. 

The alias group of effects and interactions are : 

A= B = ACD =BCD 

C = ABC= D = ABD 

BC = AC= BD = AD. 

Thus, we can estimate effects and interactions of 3 d.f. Let these effects and interaction be 
A, C and BC. Thus, we have 

(A)o = 0000 + 0011. (A.1h = 1100 + 1111, (C)o = 0000 + 1100, 

(C)i = 0011+1111, (BC) 0 = 0000 + 1111, (BC)i = 1100 + 0011. 

SS(A) = ,12 (A6 +Ai) - C.T., where r is the number of replications of treatments. The other 
sum of squares are calculated as usual and in a similar way. 

ANOVA Table 

Sources of variation d.f. 

Replications T' - 1 

A 1 

c 1 

BC 1 
Error 3(r - 1) 

Total r22 - 1 
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i32-Factorial experiment : Let the three factors be A, B and C and each has three 
levels. Total level combinations are 9. We need to select three treatments for our experiment. 
To select 3 treatments let us consider AB2 as defining contrast. Then, we have 

(AB2)0 = 00 + 11 + 22, (AB2)i = 10 + 21 + 02. (AB2)2 = 20 + 12 + 01. 

There are 3 groups of treatments used to get (AB2)0 , (AB2)i and (AB2)2. Any of the group 
of treatments can be used for the required experiment. Lei the selected treatments be 00, 11 
and 22. 

Here I = AB2 . The alias group of effects an<l interactions arc 

A= AB= B. 

Since we have only 3 treatments to be used for the experiment, we ran estimatf' effects 
or interact.ions of 2 d.f. We can estimate the effect of A, where A has 2 d.f. Also, we have 
(A)o = 00, (A)i = 11, (A)2 = 22. Then 

1 2 2 2 SS(A) = -(A0 + A 1 + A2 ) - C.T. 
r 

ANOVA Table 

Sources of variation d.f. 

Replication r - 1 

A 1 

Error 2r - 1 

Total 3r - 1 

Confounding in fractional replication : The fractional replication of factorial 
experiment helps us in reducing the number of treatments so that the treatments are allocated 
in homogeneous plots within a block. Further reduction of block size can be achieved if the 
selected group of treatments are allocated in different blocks within a replication so that the 
block contrast represent a higher order interaction. The higher order interaction is confounded 
with blocks. The technique of allocating the selected treatments in different. blocks within a 
replication when block contrast represent a higher order interaction is known as confounding 
in fractional replication. The technique is useful if further reduction in block size is needed for 
any experiment. 

The confounded interaction and its generalized interaction with defining contrast is also 
confounded with blocks. Therefore, the information on defining contrast and confounded 
contrast are lost in such an experiment. Hence, confounding is done in such a way that no 
main effect is confounded with blocks. 

i33-Factorial experiment in 3 blocks : Let there be 3 factors A, Band C each having 3 
levels. Tot.al number of level combinations are 27 and we need to select 9 treatment combinations 
for our experiment. To select 9 treatments, we need to use an interaction as defining contrast. 
Let the defining contrast be AB2 C2 . 

Then, we have 

(AB2C2)0 = 000 + 012 + 021 + 101 + 110 + 122 + 202 + 211 + 220 

(AB2C2 )i = 002 + 011+020+100 + 112 + 121 + 201+210+222 

(AB2C2 )2 = 001 + 010 + 022 + 102 + 111+120 + 200 + 212 + 221. 
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There are 3 groups of treatments to calculate (AB2C2) 0 , (AB2 C2 )i and (AB2C2)2. In each 
group there are 9 treatments. Any of the group can be selected for the experiment. Let the 
selected group of treatment be 000, 012, 021, 101, llO, 122, 202, 211 and 220. These 9 treatments 
are to be allocated in 3 blocks of 3 plots each. This is possible if a higher order interaction 
is confounded with blocks. Let this interaction be BC2 . Then, using the above mentioned 9 
treatmei:1ts, we have 

(BC2)o = 000 + 122 + 211, (BC2)i = OQl + 110 + 202, (BC2)2 = 012 + 101 + 220. 

Therefore, the block contents per replication will be 

Block-11 000 j 122 I 211 1, Block-21 021 j llo I 2021, Block~3 I 012 j 101 I 220 I 
The generalized interaction of BC2 and AB2C2 is AC. Hence, AC interaction is also 

confounded with blocks. The alias group of effects and interactions arc : 

A= ABC= BC 

B = AC2 = ABC2 

C = AB2 = AB2C 

AB= AC= BC2. 

Therefore, we can estimate effects and interactions having 6 d.f. These effects are A, B and C. 
The interactions AB, AC and BC2 are confounded with blocks. We have 

(A)o = 000 + 021 + 012, (A) 1 = 122 + 110 + 101, (A)2 = 211+202 + 220, 

1 2 2 2 SS(A) = 
3

r (A0 + A 1 + A 2 ) - C.T. 

SS(B) and SS(C) are calculated in a similar way. 

ANOVA Table 

Sources of variation d.f. 

Blocks within replication 2r 

A 2 

B 2 

c 2 

Error 7(r - 1) 

Total 9r - 1 

Example 4. 7 : An experiment is conducted to study the change in milk production of 
cows after giving 3 new foods, say A, B and C, to cows of 3 lactation period. The cows are 
considered as factor D. Each factor A, B and C has 3 levels. The new foods are given to 
cows in 3 different sheds. In each shed there arc 9 cows and each shed is considered as a block. 
The experiment is conducted according to fr34-factorial plan. The milk production (in kg per 
cow) is recorded in a day during the experiment. The plan of treatment in blocks and milk 
production per cow are shown below : 
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Milk production (in kg/cow) according to food and lactation period 

Levels of treatment Milk production iu sheds (blocks) Total of 

ABCD 1 2 3 treatments 

0000 18.5 19.0 19.0 
1100 23.4 24.2 23.8 
1010 25.0 26.2 25.8 
2110 30.0 31.5 31.0 
0120 28.5 27.5 27.0 
0210 27.3 28.0 27.0 
2020 32.4 33.0 32.6 
2200 ~5.0 34.2 34.3 
1220 26.0 26.5 25.8 

Total of blocks Bi 246.1 250.1 246.3 

Analyse the data and comment on the suitability of new foods. 

Solution : We have r = 3, number of treatments are 9. 

The defining contrasts are I= AB2C2D = AB2C2D2 = AB2C2 = D. 

The alias group of effects and interactions are : 

56.5 
71.4 
77.0 
92.5 
83.0 
82.3 
98.0 
103.5 
78.3 

742.5 

A= AD= AD2 =BC= ABC= BCD= BCD2 = ABCD = ABCD2 

B = AC2 = AC2D = AC2D2 = BD = BD2 = ABC2 = ABC2D = ABC'2D2 

C = AB2 =CD= CD2 = AB2D = AB2C = AB2CD = AB2CD2 = AB2D2 

AB= AC= BC2 = ACD = ACD2 = ABD = ABD2 = BC2D = BC2D2. 
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Thf'refore, we can estimate effects and interactions having 8 d.f. These effects and interactions 
are A, B, C and AB. 

Here C.T. = G
2 

= (742
·
5

)
2 

= 20418.75. 
r9 3 x 9 

SS (Total)= LL LL LYfjlkm - C.T. = 20966.55 - 20418.75 = 547.8. 

SS (Bl~cks) = ~ L Bf - C.T. = 1837
;

8
·
91 

- 20418.75 = 1.129. 

(A)o = 0000 + 0120 + 0210 = 221.8, (A)i = 1100 + 1010 + 1220 = 226.7. 

(Ah ~ 2020 + 2200 + 2110 = 294.0. 

SS(A) = 
3

1 (A~+ Ai+ A~):_ C.T. = 
18702~ 13 

- 20418.75 = 361.709. 
T 3 X 

(B)o = 0000 + 1010 + 2020 = 231.5, (B)i = 1100 + 2110 + 0120 = 246.9. 

(B)2 = 0210 + 2200 + 1220 = 264.1. 

1 2 2 2 184300.67 
SS(B) = 

3
r (B0 + B 1 + B2 ) - C.T. = 

9 
- 20418.75 = 59.102. 

(C)o = 0000 + 1100 + 2200 = 231.4, (C)i = 1010 + 2110 + 0210 = 251.8. 

(C)2 = 0120 + 2020 + 1220 = 258.3. 

SS(C) = _!:_(CJ+ Cf+ C~) - C.T. = 1841
:

5
·
69 

- 20418.75 = 46.327. 
3r 
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(AB)o = 0000 + 2110 + 1220 = 227.3. (AB)i = 1010 + 0120 + 2200 = 263.5. 

(AB)2 = 1100 + 0210 + 2020 = 2Sl.7. 

( 
l 2 2 2 1844.50.4:3 

SS AB)= -(AB0 + AB1 + AB2 ) -· C.T. = g - 20418.75 = 75.742. 
3r 

SS (Error) =SS (Total) - SS (Blocks) - SS(A) - SS(B) - SS(C) - SS(AB) 

= 547.8 - l_.129 - 361.709 - 59.102 -- ·16.:327 - 75.742 = 3.791. 

ANOVA Table 

S,ources of variation d.f. SS SS A1S = <lT F Foo5 ?-value 

Blocks 2 1.129 0.5645 2.38 3.63 > 0.05 

A 2 361.709 180.8545 763.42 
,, 

0.00 

B 2 59.102 29.551 124.74 " 0.00 

c 2 46.327 23.1635 97.78 " 0.00 

AB 2 75.742 37.871 159.86 " 0.00 

Error 16 3.791 0.2359 - - --

Total 26 

It is observed that all the three foods arc highly significantly effective in increasing milk 
production. The joint effect of first two foods (AB) is also highly siguificant. 

Here A0 = 24.64, A1 = 25.19. A2 = 32.67: Bo= 25.72, B1 = 27.43 

B2 = 29.34; Co= 25.71, C1 = 27.98, C2 = 28.81. 

It is observed that with the change iu the levels of food the milk production increases. This is 
true for all the 3 foods. However, the significance.in t.h0 differ0ncc of the means can be verified 
by Duncan's multiple range test, where the test statistic is 

Dk = do o5.k.f 

Here D2 = do o5,2 16 

MS(Error); k = 2,3: f = 16. 
9 

MS (Error) = 3.00 J 0.236.5!_ = 0.486 
9 9 

D3 = doo~.a.wJ MS (:rror) = 3.l.5J
0

·
2g69 = 0.511. 

All the means are significantly different from each other. This is true for all the t.hre<' foods. 

4.8 Advantages and Disadvantages of Factorial Experiment 
Advantages : 

(i) The main effects of many factors can be studied simultaneously from one experiment. 

(ii) The in~eraction of many factors can be estimated from one single experiment. 

(iii) The main effects arc estimated from the results of each plot and hence, efficiency of the 
experiment increases in factorial experiment. 

(iv) The main effects and int0raction of several factors can be studied rnsing minimum 
experimental materials. 



Disadvantages : 

(i) If fa.ctorn ur levels c•r both are more, the treatment cumhinatioris h<~C•)me large. Therefrre, 
in cm1dud ing the f xperirnent through randomizr;d blod( df~Si~~n the hornov,encity of plots 
witbi1~ a bkwk mav lw losL 

(ii) The interact1ou of i'adorn in cas•~ of hi.e;hn l<~veis is nn1 e;'\..~ily int.crpretcd. 

4.9 Advantages an<l Disadvantages of Confounding 

Advantages : 

(i) Since all treatments are not allocated in a block, the block size is reduced in respect of 
number of plot.s and hence, homog('tteit.y of blocks is achi0v0d and the efficiency of the 
experiment increases. 

(ii) Large number of treatments can be allocated within the blocks in a replication. 

Disadvantages : 

(i) The information of confounded interaction is lost. 

(ii) Some interaction is estimated from smaller number of replicaf.ions, specially when an 
interaction is partially confot111ded. 

(iii) No interaction can ue confoumled totally i11 case of factorial experiments with higher 
levels of factors. 

(iv) The analysis is slightly complicated and cornplicatiou arises if there is any interaction of 
treatment with incomplete blocks. 

4.10 Asymmetrical Factorial Experiment 
The factorial experiments, so far we have discussed, are symmetrical in number of leveis. 

In practice, different factors may have different levels. If different factors have different levels, 
tl1en the factorial experiment is known as as.vmmetrical factorial experiment. For example, let 
us consider that A is a factor having p levels and B is another factor having q levels. The 
total number of level combinations are pq. If all pq levels are considered as treatments in any 
factorial experiment, the experiment is known as asymmetrical factorial experiment. 

The asymmetrical factorial experiment may be conducted through randomized block design 
or any other designs. The important designs used for asymmetrical factorial experiment are 
(i) Randomized block design, (ii) Split-plot design and (iii) Split-split-plot design. 

p x q-Factorial experiment : Let there be two factors A and B, where A hasp levels 
and B has q levels. The total number of level combinations are pq. Let these pq treatments are 
allocated in pq plots of a block, where there are r blocks to replicate each treatment r times. 
Let y;71 be the observiJ.tion of i-th level of B corresponding to j-th level of A in i-th block; 
i = 1, 2, ... , r; j = l, 2, ... , p; l = l, 2, ... , q. The model for Yijl observation is 

YiJI = µ + a; + f31 + 1'1 + (f31' )11 + e;71. (61) 

where µ = general mean, a 1 = effect of i-th ulock, f3J = effrct of j-th level of A, --y1 = effect of 
I-th level of B. (f3--Y)JI = interaction of j-th level of A with /-th level of B and e,11 c.= random 
error. 



174 DESIGN OF EXPERIMENTS AND SAMPLING l\IP,TJIODS 

The estimates of paramct<'fs and sum of squares of effects and interactions arc easily obtairn'd 
in a similar way as these are obtained in two-way classification with several observations per 
cell. Here 

1"'2 1"'2 SS(A) = .,.__ ~ y i· - C.T., SS(B) = - ~ y, 1 - C.T. 
qr · pr 

SS(AB) = ~ L LY~jl - C.T. - SS(A) - SS(B) 

c2 1 
where C.T. = - and G =grand total=""'""'""' Yiil; SS (Block)= - ""'y;._ - C.T. 

pqr ~~~ . pq~ 

ANOVA Table 

Sources of variation d.f SS SS MS.= d7 F = 8;/85 ,i = 1,2.3,4 

Blocks r - 1 S1 81 

A p-1 S2 8,2 
B q - 1 S3 83 

AB (p - l)(q - 1) S4 84 
Error (pq - l)(r - 1) Ss 85 

Total pqr - 1 

The effect A has (p - 1) d.f. and the effect B has ( q - 1) d.f. This effects can be expressed as 
linear, quadratic, cubic, quartic, and so on components each of 1 d.f. Each contrast of 1 d.f. is a 
linear combination of results of treatments. Depending on the number of levels, the coefficients 
of different levels combinations arc different. The coefficients of each combination to calculate 
effect total and the divisor to calculate sum of squares arc shown in the following table for 
p = 2, q = 6[2 x 6 factorial experiment]. 

Table below shows coefficients and divisor to calculate effect total and sum of squares of 
effects and interactions of 2 x 6-factorial experiment. 

Effects and Levels of factors Divisor 

interactions ao ai D; 

bo b1 b2 b3 b4 bs bo b1 b2 b3 b4 b5 

A -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 12 

B1 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5 140 

AB1 5 3 1 -1 -3 5 -5 -3 -1 1 3 5 140 

B2 5 -1 -4 -4 -1 5 5 1 -4 -4 -1 5 168 

AB2 -5 1 4 4 1 -5 5 -1 -4 -4 -1 5 168 

B3 -5 7 4 -4 -7 5 -5 7 4 -4 -7 5 328 

AB3 5 -7 -4 4 7 -5 -5 7 4 -4 -7 5 328 

B4 1 -3 2 2 -3 1 1 -3 -2 2 -3 1 56 

AB4 -1 3 -2 -2 3 -1 1 -3 -2 2 -3 1 56 

B5 -1 5 -10 10 -5 1 -1 5 -10 10 -5 1 504 

ABs 1 -5 10 -10 5 -1 -1 5 -10 10 -5 1 504 



FACTORIAL EXPERI:\IENT 175 

ANOVA Table 

Sources of variation d.f. SS SS MS= IT F = s;/ s9 , ·i = 1. 2 .... , 8 

Blocks - r - 1 S1 s1 

A p-l S2 S2 

B q-l S3 S3 

c rn - 1 S4 84 

AB (p - l)(q - 1) S5 85 

AC (p - l)(m - 1) s6 86 

BC (q -- l)(rn - 1) S1 87 

ABC (p - l)(q - l)(m - 1) Ss Ss 

Error (r - l)(pqm - 1) Sg Sg 

Total pqrm -1 

Example 4.8 : An experiment is conducted in an agricultural research station to study 
the productivity of high yielding variety of rice using 4 levels of nitrogen, 3 levels of phosphorus 
and 2 levels of potash. The levels of nitrogen are 30 kg/acre, 60 kg/acre, 90 kg/acre and 
120 kg/acre. The levels of phosphorus are 30 kg/acre, 60 kg/acre and 90 kg/acre. The levels 
of potash are 20 kg/acre and 40 kg/acre. The experiment is conducted through randomi~ed 
block design having 3 blocks. The production of rice (kg/plot) of each treatment in different 
replications are shown below : 

Treatment Blocks Total Treatment Blocks 
combinations 1 2 3 Y-jlk combinations 1 2 3 
n p k n p k 

0 0 0 5.2 5.6 5.5 16.3 2 0 0 9.2 9.0 9.5 
0 0 1 5.3 5.6 5.4 16.3 2 0 1 9.7 9.2 9.6 
0 1 0 6.2 6.0 6.0 18.2 2 1 0 10.8 11.0 10.9 
0 1 1 6.5 6.5 6.2 19.2 2 1 1 11.8 11.6 11.0 
0 2 0 7.0 6.8 6.7 20.5 2 2 0 12.6 11.6 11.4 
0 2 1 7.2 7.0 6.6 20.8 2 2 1 12.5 11.8 11.8 
0 0 0 8.2 8.0 8.2 24.4 3 0 0 12.0 12.0 12.1 
1 0 1 8.8 8.8 8.6 26.2 3 0 1 12.4 12.2 12.0 
1 1 0 10.2 10.5 10.4 31.l 3 1 0 12.8 12.6 12.5 
1 1 1 10.5 10.4 10.6 31.5 3 1 1 12.9 12.7 12.6 
1 2 0 10.8 10.4 10.7 31.9 3 2 0 12.8 12.8 12.8 -1 2 1 10.2 10.7 l0.6 31.5 3 2 1 12.8 12.7 12.8 

Total y; .. 287.9 

Analyse the data and comment on the suitability of different fertilizers. 

Solution : Here r = 3. p = 4, q = 3, m = 2, G = 708.4 = 287.9 + 420.5 

C.T. = .!!.___ = (
708.4)

2 
= 6969.869 

pqrm 4 x 3 x 2 x 3 . 

Total 
Y-jlk 

27.7 
28.5 
32.7 
34.4 
35.6· 
36.1 
36.1 
36.6 
37.9 
38.2 
38.4 
38.3 

420.5 

SS (Total)= LL L LYitk -·c.T. = 7408.74 - 6969.869 = 438.871 

1 167285.06 SS (Block) = - "'""'y;.._ - C.T. = 
4 

- 6969.869 = 0.342 
pqm~ x3x2 
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The production of nitrogen and 
phosphorus (Y·Jl·) 

The production of nitrogen 
and potash (Y-.J-k) 

~ 0 1 . 2 Total YJ ~ 
0 32.6 37.4 41.3 111.3 0 
1 50.6 62.6 63.4 176.6 1 
2 56.2 67.l 71.7 195.0 2 
3 72.7 76.1 76.7 225.5 3 

Total Y·l· 212.l 243.2 253.l 708.4 Total y .. k 

Production of"phosphorus and potash (y .. 1k) 

~ 0 1 2 

0 104.5 119.9 126.4 
1 107.6 123.3 126.7 

1 L: 2 132450.5 SS(N) = - Y-J .. - C.T. = 
3 

- 6969.869 = 388.492 
qrm x 3 x 2 

SS(P) = -
1
- '°' y 2 

- C.T. = 
168192

'
26 

- 6969.869 = 38.142 
prm ~ .. / 4 x 3 x 2 

SS(K) = -
1
- L Y~k - C.T. = 

250~38 .4 - 6969.869 = 0.642 
·pqr 4x x3 

SS(N P) = -
1 '°' '°' y2

11 . - C.T. - SS(N) - SS(P) 
rm~~· 

= 44427
·
02 

- 6969.869 - 388.492 '- 38.142 = 8.000 
3 x 2 

SS(NK) = __!__ LLY~-k - C.T. - SS(N) - SS(K) 
rq -

66232
.4

6 
- 6969.869 - 388.492 - 0.642 = 0.159 

3 x 3 . 

SS(PK) = __!__ L LY~lk - C.T. - SS(P) - SS(K) 
rp 

= 
841~i·76 - 6969.869 - 38.142 - 0.642 = 0.244 

0 1 

55.0 56.3 
87.4 89.2 
96.0 99.0 
112.4 113.1 

350.8 357.6 

SS(NPK) =~LL LY2jlk - C.T. - SS(N) - SS(P) - SS(k) - SS(N P) 

- SS(NK) - SS(PK) 

= 222~2 ·01 - 6969.869 - 388.492 - 38.142 - 0.642 - 8.000 - 0.159 - 0.244 

= 1.507 
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SS (error) =SS (Total) - SS (Blocks)- SS(N) - SS(P) ~ SS(K) SS(N P)- SS(N K) 

-SS(PK)- SS(NPK) 

= 438.871 - 0.342 - 388.492 - 38.142 - 0.642 - 8.000 - 0.159 - 0.244 - 1.507 

= 1.343 

ANOVA Table 

Sources of variation d.f SS MS- SS - d.7 F F.o5 ?-value 

Blocks 2 0.342 0.171 5.86 3.21 0.00 
N 3 388.492 129.497 4434.84 2.82 0.00 
p 2 38.142 19.071 653.12 3.21 0.00 
K 1 0.642 0.642 21.99 4.06 0.00 

NP 6 8.000 1.333 45.66 2.31 0.00 
NK 3 0.159 0.053 1.82 2.82 > 0.05 
PK 2 0.244 0.122 4.18 3.21 < 0.05 

NPK 6 1.507 0.251 8.60 2.31 0.00 
Error 46 1.343 0.0292 - - -

Total 71 

It is observed that except the interaction NJ? all other effects and interactions arc significant. 
The production of rice significantly increases with the increase in the levels of fertilizers. The 
mean productions are 

No= 6.18, N1 = 0.81, N2 = 10.83, N 3 = 12.53; Po= 8.84, P1 = 10.13, P2 = 10.54 

Ko= 9.74, K 1 '== 9.93 
The first two groups of means can be compared pairwise using Duncan's multiple range test, 

where the test statistic to compare means of nitrogen is : 

Dk = d.o5,k.f MS(error). k = 2 3 4· f = 46 
' ' ' ' ' qrm 

[OJii9i J0.0292 
D2::::::: 2.77y----ig = 0.111, D3::::::: 2.92 ----ig = 0.118 

Thus, each mean of nitrogen is significantly different from other. The production significantly 
increases with the increase in levels of nitrogen. 

The test statistic to compare the means of phosphorus is : 

Die = d.o5,k,f . MS (error); k = 2, 3; f = 46. 
prm 

[OJii9i J0.0292 
Dz::::::: 2.77y ~ = 0.097, D3::::::: 2.92 ~ = 0.102 

Thus, with the increase in the level#) of phosphorus the production increases significantly and 
this is true for every level of phosphorus. 

D.E.S.M.-12 
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4.11 Split-Plot Design 
To conduct the asymmetrical factorial experiment some factor may need larger experimental 

materials compared to the need of materials of other factor. For example, in agricultural 
experiment if irrigation is a factor having different levels, it needs large experimental area to 
apply irrigat_ion of different levels. In such a case if another factor is fertilizer having different 
levels, a large area used for one level of irrigation may be splitted into several smaller plots where 
in the smaller plots different ·doses of a fertilizer can be applied. This means that the larger 
area, usually known as whole-plot, can be splitted into several sub-plots. In each replication if 
there are several whole plots and each whole-plot is divided irito several sub-plots or split-plots, 
then the levels of a factor which needs larger materials can be randomly allocated to whole-plots 
and the levels of another_factor which needs smaller materials can be randomly allocated to the 
split-plots within a whole-plot. The two-steps randomisation process can be replicated several 
times. Then the resultant design is known as split-plot design. 

Let there be two factors A and B, where A hasp levels and B has q levels. The levels of 
A are such that they need larger experimental materials to be used in the experiment and the 
levels of B are ·such that they need smaller materials to be used in the experiment. In such a 
case, the entire experimental materials per replication are divided into p whole-plots and each 
whole-plot is divided into q split-plots. The p levels of A are randomly allocated to whole
plots and q levels of B are randomly allocated to q split-plots of a whole-plot. The process of 
randomisation is replicated r times. Then the resultant design is known as split-plot design: 

There are two different steps of randomisation in split-plot/design and hence, it may be 
considered as the combination of more than one randomized block design. If the observations 
of split-plots are added, we have the data of randomized block design, where p treatments are 
allocated randomly in plots of r blocks. Therefore, the observations of whole-plot treatment 
(A) replicated r times can be analysed in a similar way as it is done for the data of randomized 
block design. This analysis is usually known as whole-plot analysis or whole-plot comparison 
and during this analysis we get one error sum of squares which is usually known as whole-plot. 
error or error-1. Again, adding the observations of a treatment combination for r replicates, 
we get the two-way classified data for factor A and factor B. These two-way data can also be 
analysed similar to the analysis of data of randomized block design having r observations per 
cell. This second step of analysis also gives one error sum of squares which is usually known as 
sub-plot error or error-2. 

The levels of A and B may be same. In that case the experiment is symmetrical factorial 
experiment. If levels of A and B are different, the experiment is asymmetrical factorial 
experiment. Therefore, the split-plot experiment is a factorial experiment. The arrangement 
of treatments in whole-plots and split-plots of a blocks can be shown as follows : 

Whole-plots (Wi, i=l,2, ... ,p) 

a1 a2 ... llp 

Block bi b2 . . . bq b1 b2 ... bq . .. b2 . .. bq 
or 

replication 

Total of A1 A2 ... Ap 

whole-plots 

Here Ai -A2 is a contrast of A. It is also a contrast of two Nhole-plots, viz. Wi - W2. Hence, 
contrast of A (whole-plot factor) is entangled with contrast of whole-plots. That is, whole-plot 
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factor is confounde'1 with whole plots and hence, split-plot experiment may be considered as 
confounded facto~ial experiment. Again, the p-le~els of A may be the combinations of several 
factors and q levels of B may also 'be the combinations of another group of factors. If the 
level combinations in both cases are more, the. treatments in whole-plots and sub-plots may be 
allocated in a similar way as it is done in con~ounded factorial experiment. 

The whole-plot treatments may be allocated. in whole-plots following the technique of 
randomized block design or latin square desigr;. Accordingly, the name of the design is split-plot 
design using randomized block design technique or split-plot design using Latin square design 
technique. 

Advantages and Disadvantages of Split-plot Design 

Advantages: 

(i) Since the whole-plot factor needs larger experimental materials, these can be sub-divided 
into several parts, and levels of second factor can be allocated to the sub-plots. The effect 
of second factor is also estimated simultaneously with first factor. 

(ii) There are pq plots per block. But due to the use of sub-plots in a whole-plot, the design 
is more efficient than the randomized block design having pq plots. The efficiency is 
observed in estimating sub-plot factor effect and interaction of sub-plot and whole-plot. 
factors. · 

(iii) The efficiency of split-plot design increases compared to the randomized block design if 
whole-plot treatment is allocated in whole-plots using Latin square design technique or 
incomplete Latin square design technique. 

Disadvantages : 

(i) Since whole-plot factor i~ confounded with whole-plots, the effect of whole-plot factor is 
estimated with less efficiency. 

(ii) The data of split-plot experiment become non-orthogonal since the observations of sub
plots within a whole-plot are correlated. 

(iii) The analysis of data of split-plot design becomes complicated if. there are missing 
observations. · 

Analysis of split-plot design : Let Yijl be the observation of i-th level of B in j-th 
whole-plot of i-th replication. The model for y;11(i = 1, 2, ... , r; j = 1, 2, ... ,p; l = 1, 2,. :. , q) 
observation is 

Yi.ii = µ+a;+ f31 +'YI + (f3'Y)11 + €ijl, 

where µ = general mean, a; = effect of i-th block (replication), {31 = effect of j-th level of A, 
'YI = effect of l-th level of B, (f3'Y).il = interaction of j-th level of A with l-th level of B, eiJI = 
random error. 

The assumption for analysis of the data is 

(i) E(ei.il) = 0, (ii) E[ei.il,ei'j'I'] = 0, ifi =/. i',j =/. j',l =f:. l'. 

= pa2 , if i = i', j = j', l =/. l' 

·= a 2,_if i = i',j := j', l = l'. 
To analyse the data the following restrictions can be imposed : 

La;= Lf31 = L 'YI= L(f3'Y)11 = L(f3'Y)J1 = 0. 
j I 
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Since the observations of a whole-plot h1 any replication are non-orthogonal, an,orthogonal 
transformation is needed to the vector of q observations of j-th whole-plot in i-th block. This 
is done as follc.ws : 

Uii 
Zi.il 

Zi12 

q q 

I 
1 

,fi/ 
a21 

aq

a-31

1

.

1 

1 
,fti 

aq-1.2· · · aq-1,q I [ Yiil ] 
Yii2 
. ' 

Yiiq 

where Lal'l = 0, l:a;,1 = 1, l:al'l; l"l = 0, l' =I l" = 1,2, ... ,q-1 
I 

q-1 q-1 

l:a~ 1 =1- ~. L Lal'1a1'k = -~, l =I k = 1,2, .. . ,q. 
l'=l . q l'=l q 

1 q 1 . 
We have Ui.i = y'q ~Yi.ii = y'q ~ (µ + a; + /3.i + 1'1 + (/3'Y) 11 + eiJt) 

1 
= ..fii(µ + ai + /3;) + 6ij, where 6;J = rneiJ· . yq 

Thus, the estimates of µ,a; and /31 are to be obtained from the observations U;;(i 
1,2 .... ,r; j = 1,2, ... ,p). 

) 1 ' 
Here V(8;J) = V(U;; = -V(YiJI + YiJ2 + · · · + Yi.iq) . q 

= ~ [L V (Yi.ii) + L t Cov(YiJI, YiJl' )] 
q I l#l' 

= 0"2[1 + (q - l)p]. 

This is the variance of first kind of error. 

Again, Z;,;1' = a1'1Yi.il + a1'2YiJ2 + · · · + a1'qYiJq• l' =/; l = 1, 2, ... q · 
q q 

= L a1,1b1 + (/3'Y)Jt] + Eijl' .. where lijl' = L a1'1e;;1. 
l=l l=l 

The estimates of 'Yt and (/3'Y)Jl are to be estimated from Z;Jt' observations. 

Here V(ci.il') = V[al'IYiJI + a1'2Y;12 + · · · + a1'qYijq] 

= Laf,1V(y;Ji) + LLa1'1a1'kCov(y;J1,YiJk) = 0"
2 (1 - p). 

I# 

This is the variance of the second kind of error. 

Let w1 = 1/0"2 [1 + (q - l)p], w2 = "i;u2 (1 - p). Since two-error variances are not similar, 
weighted least squares method is to be ~pplied to estimate the parameters. The weighted 
estimated error sum of squares is 

<P = w1 LL L[U;.i - ..fij(fl, + &i + ,B;)J2. + W2 LL L[Zi.il' - L a1'1(-Y1 +(,B'Y).i1)]2. 
l 
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The normal equations are 

8¢ o 8¢ O 8? = 0, D¢ = O and D</> 0 
8µ = ' 8&; = ' 8/3

1 
811 8("ih)j1 = · 

Solving these equations, we get 

P, = fi.... O:; = Y; .. - fi. .. • SJ = YI - Y . , ..Y1 = Ii .. 1 ·- Ii .. 

(ir);1 = Y.11 - Y-j - y I + 'iJ ... 

It is observed that the estimates of parameters do not depend on the error variances. But 
the estimates are obtained from ui.i observations (i = 1, 2, .... r; j = 1, 2, ... 1 p), where ui} 

observations are obtained adding the observations of sub-plots of a whole-plot. Therefore, the 
sum of squares due to P,, and O:i are to be found out from Yi.i· observations. Hence, we have 

QLL(Yij· -'iJ ... )2 =pql:('iJ;. -'iJ ... )2 +qrl:('iJ.j. -'iJ .. )2 

+ q L l:(YiJ· - 'iJ, .. - Y·j· + 'iJ,. )2 
=SS(&;)+ SS(S.1) +SS (Error-1) = S1 + S2 + S3. 

The second step of analysis is to be performed using the observations Z;1t' ( i = 1, 2, ... , r; .i = 
1, 2, ... ,p; l' = 1, 2, ... , q - 1) However, on simplification, we have 

S4 = SS(..Y1) = prl:('iJ .. 1-'iJ .. .)2, 

S5 = SS(f3..Y11) = r L L(Y.Jl - YI - 'iJ 1 + fi ... )2 

s6 = SS(Error-2) =LL L(Yijl - Y-jl --yij· + Y-j.) 2 

ANOVA Table 

Sources of d.f. SS MS= SS CIT E(MS) F 
variation 

Replications r-1 S1 81 u2 + J!!L z: a2 1 r-1 i 
F1=8if83 

A p-1 S2 82 ()2 + ~ l:f32 1 p-1 .7 F2 = 82/s3 
Error-1 (r - l)(p - 1) S3 S3 u? -

B q - 1 84 84 u2+..E!....z: 1 2 2 q-1 I F3 = s4/s5 

AB (p-l)(q-1) S5 S5 u~ + (p-1frq-1) l: l:(f31 )J1 F4=s5/85 
Error-2 p(r - l)(q - 1) s6 85 ()2 2 -

Total pqr - 1 

Here ur = o-2[1 + (q - l)pj, er~= o-2(1 - p); E(s3) = Uf, E(s5) =er~. The estimate of pis 
S3 - S5 p = ( ) . It is known that '(J is positive. Therefore, s3 > s6 . 

83 + q - 1 85 

The main objective of this analysis is to test the significance of the hypotheses 

(i) Ho : f3J = 0, against HA : f31 =I O; (ii) Ho : 11 = 0, gainst HA : T'l =/= 0 and 
(iii) Ho: ({31)11 = 0, against HA: ({31)11 =I 0. 

The test statistic for H 0 (i) is F2, where the null-distribution of F2 is variance ratio F and 
the non-null distribution of F2 is non-central F with non-centrality parameter 

qr '°' 2 >.2 = 2u2 ~ f31 . 
1 
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The d.f. of F2 are (p - 1) and (p - l)(r - 1). Therefore, F2 ;::: Fo.os;(p-l),(p-I)(r-l) leads us to 
reject the null hypothesis (i). 

The test statistic for Ho (ii) is F3 . It has (q - 1) and p(r - l)(q - 1) d.f. Under H0 (ii) F3 

is distributed as variance ratio. Therefore, if F3 ;::: Fo.os;(q-IJ,p(r-I)(q-lJ• Ho is rejected. The 
non-null distribution of F3 is non-central F with non-centrality parameter 

AJ = 2pr2 L 'Yf. 
a2 

The test statistic for H 0 (iii) is F4 _, It has (p - 1 )( q - 1) and p( r - 1 )( q - 1) d .f. The null 
distribution of F4 is variance ratio distribution. Hance, if F4 ;::: Fo.os;(p-l)(q-IJ,p(r-I)(q-IJ, Ho 
is rejected. The non-null distribution of F4 is non-central with non-centrality parameter 

A4 = 2:2 t ~)Jh)J1· 
2 j I 

If the hypothesis Ho : (31 = 0 is rejected, we need to compare the pairs of ~.ll wholE-plo1. 
treatments ( A.i, j = 1, 2, ... , p). The hypothesis for this is 

Ho: f31 = f31'• against HA : f31 "I (3.i', for all J "I j' = 1, 2, ... ,p. 

If the comparison is planned for a particular P.air, the test statistic is 

'!J.i -'fjf 
t1= ~ ' l!a. 

qr 

where t 1 is distributed as Student's t with (p - l)(r ~ 1) d.f. The calculated value of 
t1 ;::: to.02s,11,-1)(r-l) leads us to reject the null hypothesis. 

The comparison of all pairs is done by Duncan's multiple range test, where the test statistic is 

Dk= doos,k,J!ff-,, k = 2,3, ... ,p; f = (p- l)(r - 1). 

At this stage of analysis one may need to compare any two levels of whole-plot treatment 
in which a particular level of sub-plot treatment is used. The hypothesis for this is 

Ho~ (3~ = (3~, against HA : f3) "I f3), (j "I j' = 1, 2, ... ,p). 

Here (3~ = effect of j-th level of A in presence of l-th level of B. The test statistic for this 
hypothesis is 

(- - )2 
Fs = r Y-jl2~;·j'l 1 where S2 = L L(Yijl - Y·jl - Yi-1 + '!J .. ,) 2 /(r - l)(p - 1). 

i .i 
2a2 

This S2 /a2 is distributed as central x2 with (r - l)(p- 1) d.f. and under Ho('!J .ii -]J.j'1)
2 I-;:- is 

distributed as x2 with 1 d.f. Therefore, F5 is distributed as variance ratio with 1 and ( r-1) (p-1) 
d.f. The non-null distribution of F is non-central with non-centrality parameter : 

As= ~[f31 - f3J' + (f3'Y)11 - (f3'Y)i'i] 2
. 

2a1 

The test statistic foe the hypothesis Ho : (3; = (3;',, j "I j' = 1, 2, ... , p; l "I l' = 1, 2, ... , q is 

r('fii11 - 'fi.1 111 )
2 

F5 = 2s2 

The distribution of F5 and F6 is same except th~ non-centrality parameter. 
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The Duncan's multiple range test to compare the means of Y . .i/ and Y .. ;'l or the mea1's of 
y. ii and y,1, I' (j f- j = 1, 2, ... , p; l f- l' = 1, 2, ... , q) is given by 

' ' 

fS2 . 
Dk =do o5,k.f1 y -:;:-; k = 2, 3, ... , p; !1 = (r - l)(p - 1). 

The rejection of Ho (ii) leads us to test''the significance of 

Ho: 'YI= 'YI' against HA: 'YI=/= 'YI'; l f- l' = 1, 2, ... , q. 

The test statistic for this hypothesis is 

t 
Y .. 1 -y .. ,, 

2-- {ii;_ . 
v pr 

This t2 follows Student's t distribution with p(r - l)(q - 1) d.f. For multiple comparison of the 
means y. 1(l = 1, 2, ... , q) the test statistic is 

Dk = do.o5,k,f2 J!jf:.; k = 2, 3, ... , q; h = p(r - l)(q - 1). 

The test statistic to compare the means of sub-plot treatment at any particular level of 
whole-plot treatment is 

Y.J1 - y-JI' 
t= {iii . 

Here also Duncan's multiple range test can be performed to compare all pairs of means at a 
particular level of whole-plot treatment. 

Efficiency of split-plot design : The analysis of variance table for split-plot experiment 
can be rewritten as follows : 

ANOVA Table 

Sources of variation d.f. SS MS= SS dT 

Replications T -- 1 S1 St 
A p-1 S2 s2 
Error-1 (p-l)(r-1) S3 S3 
B q-l S4 84 
AB (p-l)(q-1) S5 S5 
Error-2 p(r - l)(q - 1) s6 86 
Total pqr -1 

Consider that the effects of A, B and interaction of AB are insignificant and the effect of 
A is, on an average, equals the error variance-1. The impacts of B and AB equal the error 
variance-2. Then the analysis of variance table takes the following shape : 

ANOVA Table 

Sources of variation d.f. SS 

Replications r-1 (r - l)s1 
Error-1 r(p - 1) r(p - l)s3 
Error-2 pr(q - 1) pr(q - l)s6 

Total pqr....:. 1 
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The total error sum of squares is r(p - l)s3 + pr(q - l)s6. It has r(pq - 1) d.f. The above 
analysis of variance table looks like the analysis of variance table of randomized block experiment 
with pq treatments, where tr:eatment effects are insignificant. Therefon), the efficiency of split
plot design compared to randomized block design is 

(p- l)s3 + p(q - l)s6 
(pr - l)s6 

Example 4.9 : In an agricultural research station ~n experiment is conducted to study the 
productivity of q maize variety using 4 doses of nitrogen fertilizer under three different levels 
of irrigation. The levels of irrigation are daily one time irrigation (Ii) two times irrigation 
(h) and alternate day two times irrigation (hJ· The nitrogen fertilizer as urea at t\1e rate of 
90 kg/ha (N1), 120 kg/ha (N2), 150 kg/ha (N3) and 180 kg/ha (N4) are used in the experiment. 
The design used is split-plot, where whole-plot treatment is irrigation and sub-plot treatment 
is nitrogen. The experiment is replicated three times. The productions of maize (kg/plot) are 
shown below : 

Replication whole-plot Sub-plot treatment Total 
treatment 

Ni N2 N3 N4 Yi1· 

1 Ii 1.5 1.6 1.8 1.8 6.7 

I2 1.8 2.0 2.0 2.4 8.2 

I3 2.0 1.8 1.8 2.2 7.8 

2 Ii 1.6 1.8 1.8 2.0 7.2 

I2 2.0 2.2 2.4 2.2 8.8 

h 2.0 2.2 2.2 2.6 9.0 

3 Ii 1.8 2.0 2.0 2.4 8.2 

h 2.2 2.2 2.3 2.4 9.1 

I3 2.4 2.0 2.0 2.6 9.0 

Total y .. 1 17.3 17.8 18.3 20.6 

(i) Analyse the data and comment on the use of irrigation and nitrogen. 

(ii) Compare the levels of irrigation and nitrogen, if possible. 

(iii) Compare Ii and I2 in presence of N 4 . 

(iv) compare Na and N4 in presence of I3· 

Total 
Yi·· 

22.7 

25.0 

26.3 

74.0 

(v) Find the efficiency of the design compared to randomized block design. 

Solution : (i) We have p = 3, q = 4, r = 3, G = 74.0 

c2 (74.0) 2 

C.T. = - = = 152.1111. 
pqr 3 x 4 x 3 

SS (Total)= LLLYl11 - C.T. = 154.78-152.1111=2.6689.· 

y2 1831.98 
SS (Replications)= L ;~ - C.T. = 

4 
x 

3 
- 152.1111 = 0.5539. 
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P.roductions of irrigation and. nitrogen (y.31) 

Irrigation Nitrogen 
.. 

Total Y-J· 

Ni N2 N3 N4 

Ii 4.9 5.4 5.6 6.2 22.1 

Ii 6.0 6.4 6.7 7.0 26.1 
[3 6.4 6.0 6.0 7.4 25.8 

. 
SS(Irrigation) = '"'Y;. - C.T. = 

1835
'
26 

-152.1111=0.8272. 
L.J qr 4 x 3 

SS (Error-1) 
2 

=LL Yij· - C.T. -SS (Irrigation) - SS (Replications) 
q 

= 614
·
3 

- 152.1111 - 0.8272 - 0.5539 = 0.0828. 4 . 

. L: y 2 1375.38 SS (Nitrogen) = _ .. , - C. T. = - 152.1111 = 0. 7089. 
pr 3 x 3 

SS (Irrigation x Nitrogen) 
2 

=LL Y-JI - C.T. - SS (Irrigation) - SS (Nitrogen) 
r 

= 
46 ~· 54 - 152.1111- 0.8272- 0.7089 = 0.1995. 

SS (Error-2) =SS (Total) - SS (Replications) - SS (Irrigation) - SS (Error-1) 

185 

-SS (Nitrogen) - SS (Irrigation x Nitrogen) 

= 2.6689 - 0.5529 - 0.8272 - 0.0828 - 0.7089 - 0.1995 = 0.2966. 

ANOVA Table 

Sources of variation d.f. SS MS- SS - IT F Fos P-value 

Replications 2 0.5539 0.27695 13.38 6.94 < 0.05 
Irrigation (A) 2 0.8272 0.4136 19.98 

,, 
0.00 

Error-I 4 0.0828 0.0207 - - -
Nitrogen (B) 3 0.7089 0.2363 14.34 3.16 ·o.oo 
Irrigation x Nitrogen (AB) 6 0.1995 0.03325 2.02 2.66 > 0.05 
Error-2 18 0.2966 O.Oi648 -

Total 35 

The levels of irrigation are highly significant. The production of mai~ increases with the 
increase in the levels of irrigation. Similar is the case with the levels of nitrogen. · 

(ii) The levels of irrigation can be compared by Duncan's multiple range test, "here the Jn 
statistic · 

Dk = do.o5.k.f1 , k = 2, 3; /i = 4 
. 

(Ofil07 
D2 = 3.93y 4X3 = 0.163, D3 = 4.01 
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The means due to irrigation are in ascending order as follows : 

71 = 1.842, /3 = 2.15, 72 = 2.175 

7 2 - ] 1 = 2.175 - 1.842 = 0.333 > D3, :. the means arc significantly different. 

/3 - 71 = 2.15 ~ 1.842 = 0.308 > D2, /1 and /3 arc different. 

72 - /3 = 2.175 - 2.15 = 0.025 < D2, /2 and /3 are similar. 

To compare the means of levels of nitrogen the test statistic is 

' Dk = do.os,k.h , k = 2, 3, 4; h = 18. 
. . . 

D2 = 2.97 O.Ol648 = 0 127 D3 = 3.12 O.Ol648 = 0.133 
3x3 · ' 3x3 ' 

D4 = 3.21 0.01648 = 0.137. 
3x3 

The means due to the levels of nitrogen are in ascending order as follows : 

N1 = 1.922, N2 = 1.978., N3 = 2.033, N4 = 2.289. 

N 4 - N 1 = 2.289 - 1.922 = 0.367 > D4, the means differ significantly. 

N4 - N2 = 2.289-1.978 = 0.32 >DJ, N2 and N4 are different. 

N3 - N1=2.033-1.922=0.111 < D3, N1 and N3 are similar. 

NJ - N2 = 2.033 - 1.978 = 0.055 < D2, N2 and N3 are similar. 

N 4 - N 3 = 2.289 - 2.033 = 0.256 > D2, N3 and N4 are different. 

The underlined means are similar. 

(iii) We need to test Ho : /3f = {3~ against HA : /3f =I /3~. Here f3j =effect of j-th level of 
irrigation in presence of 4-th level of nitrogen (j = 1, 2). 

The production of maize using N4 are shown below : 

Replications Irrigation (Yij4) Total Yi·4 
/1 h /3 

1 1.8 2.4 2.2 6.4 
2 2.0 2.2 2.6 6.8 
3 2.4 2.4 2.6 7.4 

Total Y·J4 6.2 7.0 7.4 20.6 = G4 

C.T4 = C
2 

= (20.6)
2 

= 47.151. 
pr 3 x 3 

SS (Total)4 =LL Yl14 - C.T4 = 47.72 - 47.151=0.569. 

. . . LY2 141.96 
SS (Rephcat10ns)4 = __ ,_·4 - C.T4 = -

3 
- 47.151 = 0.169. 

. p 
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L Y2j4 . 142.2 
SS (lrrigation)4 = -- - C.T4 = -- - 47,151 = 0.249. 

r . 3 

S2 = [SS (Total)4 - SS (~plications) 4 - SS (Irrigation)4]/(p - l)(r - 1) 

1 
= 4[0.569 - 0.169 - 0.249] = 0.03775. 

The test statistic is 
= r(y. 14 - Y",24 )2 = 3(2.067 - 2.333)2 = 2.81. 

F 2s2 2 x 0.03775 

IB; 

F < Fo.os:1,4 = 7. 71, Ho is accepted. Therefore, the irrigation levels 1 and 2 in presence of N4 
are similar. 

(iv) We need to test Ho : .,,g = T't against HA : .,,g f; T't· Here 1'[ = effect of nitrogen in 
presence of /3(l = 3, 4). 

The test statistic is 
t = Y.33 - y 34 = 2.0 - 2.467 = -4.45. 

~ J2xo.gl6~8 

jtj > t0.025 ,18 = 2.101, Ho is rejected. The levels of nitrogen NJ and N4 are different in presence 
of h 

(v) The efficiency of split-plot design compared to randomized block design is 

(p - l)s3 + p(q - l)s6 = (3 - 1)0.0207 + 3(4 - 1)0.01648 = 
10

4.
653

. 
(pq - l)s6 (3 x 4 - 1)0.01{)48 

4.12 Estimation of Missing Value in Case of Split-Plot Design 
Let the observation of l-th sub-plot treatment in j-th whole-plot of i-th replication be 

missing. Let this observation be x. The missing value xis to be estimated in such a way that 
the sum of squares due to error-2 is minimum. 

This sum of squares in presence of x is written as 

Q =SS (Error-2) 
r p q 

"" "" "" 2 2 1 "" "" 2 1 . )2 = LLLYi1 j 1 l 1 +x - - LLYi'J'· - -(Yi1· +x 
i' j' I' q . q · 

1 LL 2 1 2 i L 2 . 1 2 - - Yfl' - -(y.11 + x) + "'"'!"' Y-j•· + -(Y·1· + x) , r r qr qr 
where i # i~, j # j', l # l'. 

The value of x is to be found out in such a way that :: = 0. Thus, we have 

. ryij· + QY-11 :- Y-1· x - _...__..;;...-.::_._.....;'---
- (q - l)(r - 1) · 

. ·. 

The analysis of data of split-plot experiment is performed in a usual manner after replacing 
the missing value by the estimated value of x. However, one degree of freedom is subtracted 
from the total d.f. and hence, from d.f. of error-2 if there is one missing observation. 

The variances of the differences in two means are calculated as follows : 

· V(y-1- -y-1'.') = ~[s3 + ks6], V(y .. 1 -y .. 1,) = 
286 [1 + kq] 

. ~ F p 
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v 07.11 - 'ii.111 ) = 
2
;

6 
[ 1 + ~q] . 

_ _ _ _ 2s3 2s5 2 
V(Y.Jt - Y.1 11) =- V(Y-Jt - Yfl') = - + -[(q - 1) + kq ] 

qr qr 

where k = 1/2(r - l)(q-:-- 1), if there is one missing observation. 

The value of k depends on number of missing observations and their positions. G. S. Watson 
has proposed the value of k, where k = m/2(r - d)(q- rn+c- l). Here rn =number of missillg 
observations, C = number of replications of one or more missing observations, d = number of 
missing observations of sub-plot treatment. In calculating these values the missing observations 
related to the means to be compared are considered . . 
4.13 Split-Split-Plot Design · 

In split-plot design the entire experimental materials for a replication are divided into several 
whole-plots and each whole-plot is sub-divided into several sub-plots. In some instances the 
sub-plots are again divided into several split-split-plots so that p levels of a factor A can be 
randomly allocated top whole-plots, q levels of sub-plot factor B can be allocated randomly to 
q sub-plots and m levels of sub-sub-plot factor C can be randomly allocated to m split-split
plots. The process of randomization is replicated r times in r blocks. The resultant design is 
known as split-split-plot design. 

Let YiJkl be the observation of l-th level of a factor C corresponding to the k-th level of a 
factor B and j-th level of another factor A in i-th replication [i = 1, 2, ... , r; j = 1, 2, ... , p; • 
k = 1, 2, ... , q; l =.I, 2, ... , m]. The linear model for this observation is 

Yijkl = µ+Qi + /31 + /k + (/31 )Jk + '51 + (/3t5)JI + (Tt5)kt + (f31t5)1k1 + eijkl, 

where µ = general mean, Qi = effect of i-th replication, /3i = effect of j-th level of A, /k = 
effect of k-th level of B, (/3/)jk = interaction of j-th level of A with k-th level of B, '51 = effect 
of l-th level of C, (/3t5)JI = interaction of j-th level "or A with l-th level of C, (Tt5)k1 = interaction 
of k-th level of B with l-th level of C, (/31t5)Jkl = interaction of j-th level of A with k-th level 
of B and l-th level of C, ei.ikl = random error. 

Let us consider that the model is a fixed effect model. Therefore, for the analytical purpose 
one can put the following restrictions : 

:L: Qi = :L: /3j = :L: /k = :L: 61 = L(/31)jk = L(f31)1k ·= L(f36)il = L(f3t5)jt 
j k .i I 

= ~)1t5)k1 = :l:ht5h1 = L:(/31t5)jkl = L(/31t5)jkl = L(/31t5)jkl = o. 
k I j k I 

The assumption for the analysis is 

E(eiJkl) = 0 

E( ) 2 'f . ., . •/ k k' l l' eiJkl,ei'J'k'l' =a ,1 i=i, J=J, = , = 

= p1a2, if i = i', j = j', k = k', l # l' 

= p2a2, if i = i', j = j', k # k' 

= 0, otherwise. 

The above assumptions on random component indicate that the errors and hence the 
observation vector is non-orthogonal. To perform the theoretical analysis, we need to perform 
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orthogonal transformation to observation vector. The non-orthogonality of data arises due to 
allocation of levels of sub-sub-plot factor to the levels of a sub-plot factor and also to the levels 
of a whole-plot factor. Therefore, we need two separate orthogonal transformations. 

Let us first consider.the following orthogonal transforrnation : 

~ 2 1 ~ 1 L-t aul = 1 - -, L-t auiaul' = --, l c:j:. l' = 1, 2, ... , m. 
u=l m u m 

This orthogonal transformation provides 
1 

U;Jk = r.;;;Yi1k = Vm(µ +a;+ /31 + 'Yk + (/3'Y)1k) + II;1k• 
ym 

We have Cov[Ui1k. Ui1k'] = Cov [ )mYiJk, )mYi1k'.] 

and 

1 [ 2 2 2] 2 = - P2<J + P2a + · · · + p2a = mp2a 
m 

1 
V(U;Jk) = -V(Yi1kl + Yiik2 + · · · +YiJkm) m . 

· = 2-[ma2 + m(m - 1.)p1a2] = a2 [1 + (m - l)pi]. 
m 

1 
where IT;;k = r.;;;e;1·k. 

. vm 

It is observed that the parameters µ 1 , ai, 131, 'Yk and (/3-y }1k are to be estimated from tee 
observations Uijk ( i = 1, 2, ... , r; j = 1, 2, ... , p; k = 1, 2, ... , q~. In practice, these observations 
are obtained by adding the observations of split-split-plots. Again, these observations are non
orthogonal. Hence, another orthogonal transformation is needed at least for the theorital·aspect 
of the analysis. Let this orthogonal transformation be as follows : · 

I Z::: I = I I~: 1£ : I~: I [ ~~:::·i· 
M,L-1 b~;~~;l· ~~~~~;~:.-.·~(·q·~~)q -fm~i1q· 

q q 

Here L bhk = 0, L b~k = 1, L bhkbh'k = O(h c:/:- h' = l, 2, ... , q - 1) 
k k 

q-1 q-1 . 

"'"" 2 1 "'"" . 1 I L-t bhk = 1 - -, L-t bhkbhk' = --, k # k = 1, 2, ... , q. 
h=l q h=l q . 

We have 
. 1 ' 

W;1 = ;rn-;;Y;1 .. = .;m:q(µ + a; + /31) + 'Pi1, ymq . 

where V(cp;j) = a2[1 + (m - l)p1 +.m(q - l)p2]. 
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From the first orthogorral transfo,rination, we have 

Zijku = auiYi.iki + au2Yi.ik2 + ... + au~ijkm 
m .. 

= Lau1 {8i ·+ (J38)j1 + ('Y8)k1 + (J3-y8)jkl} + Eijku, where Eijku = Lau1eijkl· 
l=i I 

We have Cov[Zijku, Zijku'] = 0 -and V[Zijku] = V[L; aulY'ijkl]. = o-2(1 - pi). 
"' . ' 

Under orthogonal transformation the sub-sub-plot observations transform to Zijku and these 
are.orthogonal. -Using these observations, we have to estimate the parameters 81, (J3-y)11, ('Y8)kl 
and (j3-y8)jkl· .Since these are the observations from the third steps of randomization, their 
analysis will generate an error sum of squares which is known as SS (Error-3). The variance of 
this error is a 2 (1 - pi). 

Again, we have 

1 q 1 1 q 

Mijh = r;;;: LbhkYijk· = r;;;: Lbhkbk + (J3-Y)Jk) + c/Jijh, where c/Jijh = r;;;: Lbhkeijk· 
v m k=i v m k . v m k=i 

V(c/Jijh) = V(Mijh) = a 2[1 + (m - l)pi - mp2]. 

This error variance arises due to the observations of sub-plot factor. It i.s the second kind of 
error variance. The parameters 'Yk and (J3-Y)Jk are to be estimated theoretically from Mijh 
observations. 

The observations W;J are due to replications and whole-plot factor. These observations arise 
from the first step. of randomization. Hence, the analysis of these observations will provide. an 
estimate of first kind· of error variance. The parameters µ, a; and /3j are to be estimated using 
these observations. · . 

We have observed three different errors arisen from orthogonal transformation. These are 
-<pi]• c/Jijh and Eijku· Let the reciprocal of the variances of these errors be 

1 Wi = -,,,.,--___,........,........,....,.._........,........,-,-........,--..,-~ 
a 2[1 + (m - l)pi + m(q - l)p2] 

and 

Now, the weighted error sum· of squares using W;j, Mijh and Zi]ku is written as 

¢ = Wi L L{Wij - .Jciffi(fl, + cli + ~)}2 

j 

+ W2 L: L: L: { M.;h - ;,,. ~?hkfo + (if-YJ,k)} 
2 

+ w, L: L: L: L: { z,,,; - ~ ""' ( J, + (;%) ,, + (:;;i)" + <hBJ '")}' 

The estimates of the parameters are obtained solving the equations 

8¢ 8¢ 8¢ 8¢ 8¢ 
8&i = o, 8µ = o, 8~1 = o,. 8.Yk = o, 88

1 
= o, 

8¢ 
8('/h)

1
k = o, 

~ = 0, ~ = 0 and !! = 0. 
8(/38)11 8('Y8)kl 8(j3-y8)jkl 
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The estimates are 

µ = 'fi ..... ai = 'fi; ... -'Y .... , ~J = Y·J·· -y .... , ik = 'fi .. k. -'fi .... 

J - - ((3-,\ - - - + -I= Y ... 1 - Y..... '''/.;ik = Y-ik· - Y-.i .. - Y .. k. Y .... 

(jj~)jl = Y-j:l - Y-j .. . - 'fi ... / +'!I.. ' (::y6)kt = Y .. k/ - Y .. k. - 'fl. I -t 'jj .... 

('Jf,YJ)Jkt = Y·Jkt - Y-Jk· - Y·i·I - Y .. k1 + Yf· + Y .. k. + 'fi ... 1 - 'fi .... 

191 

Since the estimates are free of reciprocals of error variances, the analysis; in practice, is done 
usually with the observations. The whole plot analysis is done with YiJ .. observations, the sub
plot analysis is done using Yiik· observations. The whole-plot error sum of squares is obtained 
during whole-plot analysis, sub-plot error sum of squares is obtained during sub-plot analysis. 
The sub-sub-plot error sum of squares is obtained during the analysis of original observations. 

The different sum of squares are : 

S1 =SS (Replications) = pqm I:CY; ... - 'Y .... )2 
.. 

S2 = SS(A) = qrm L(Y-i .. - 'fi .... )2 

Sa =SS (Error-I) = qm I: L(Y;1 .. - Yi ... - 'fl.J .. + 'fi .... )2 

S4 = SS(B) = prm L(Y .. k. - 'Y .... )2 

Ss = SS(AB) = rm L(Y.Jk· - Y-J .. - 'fi. k· + '!J .... )2 

86 = SS (Error-2) = m L L(Yiik· - Y;i .. - Y·ik· + Y.i . .)2 
S7 = SS(C) = pqr L('fi ... 1 - y ... .)2 

Ss = SS(AC) = qr I: L(Y-J-t - 'fi.1 .. - 'fi ... 1 + 'fi .... )2 

Sg = SS(BC) =pr L L(Y .. kt - Y .. k. - 'Y .. 1 + 'fi .... )2 

S10 = SS(ABC) = r ~ L L(Y.Jkl - Y-Jk· - Y·i·I - '!1 .. kl + Y-J .. + Y .. k. 
- - ")2 + Y ... / -.:Y .... 

Su= SS(Error-3) = LLL(YiJkl -'fj-Jkl)2
• 

The main objectives of this analysis are to test the significance of the hypotheses : 

(i) Ho: a;= 0 

(v) Ho : c51 = 0 

(ii) Ho : f31 = 0 

(vi) Ho : (/3c5)11 = 0 

(viii) Ho : (f3'Yc5)Jkl = 0. 

(iii) Ho: 'Yk = 0 . (iv) Ho: (f3'Y)Jk = 0 

(vii) Ho : ('Yc5)k1 = 0 and 

Here of= a 2 [1 + (m- l)p1 +m(q~ l)p2J, «,.~ = a 2[1 + (m- l)p1 - mp2] and a~ = a 2 (1- Pi). 

The F-statistic for h-th hypothesis is Fh(h = 1, 2, ... , 8) as shown in ANOVA table. The 
conclusion regarding a particular hyp9thesis will be drawn as usual [Fh ? Fo.os; Ji ,h, Ho is 
rejected; otherwise it is accepted. Here Ji and h are the numerator and denominator d.f., 
respectively of Fh]. 

One of the important aspect of the analysis of such.experimental data is the comparison of 
two split-plot treatments in presence of a particular whole-plot treatment. The hypothesis for 
this is · .. 

Ho : 'Yfc = ':f~, 

. against HA : 'Y~ 'I- "f~,; j = 1, 21 : • .,p; k -:f:. k' = 1, 2,. .. q. 
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ANOVA Table 

Sources of d.f. SS MS= SS dT E(MS) F 
variation 

Replications r-1 S1 S1 a2 + ~ 2.:a2 1 r-1 i 
F - !!. l - S3 

A p-l S2 s2 a2 + !i!:!!!. l.:!32 1 p-1 . J 
F2-=~ 

83 

Error-I (p-l)(r-1) S3 S3 a2 -1 

B q-1 S4 S4 0'2 + prm L 1 2 
2 q-1 k F3 = !.i 

86 

AB (p-l)(q-1) Ss • S5 a~+ (p'""";fCq-1) 2.: 2.:(f31)]k F. -~ 4 - 86 

-
Error-2 p(r - l)(q - 1) 86 86 a~ -

c (m-1) S1 S7 2 ....J!!l!_ 2.: 82 
0'3 + (m-1) l Fs = -1L 

St t 

AC (p-l)(m-1) Ss Ss a~+ (p-1?[m-l) I: L(f38)J1 F6 =.!.IL 
St t 

BC (q-l)(m-1) Sg 89 a~+ (q-1fc:r.-1) 2.: 2.:b0 )~, F1=.!.i.. 
Stt 

ABC (p- l)(q- l)(m-1) S10 Sl() a~+ {p-l)(q~l)(m-1) LL L(f318)Jkl Fs=.:'!.li 
s11 

Error-3 pq(r - l)(m - 1) Su s11 a2 
3 

Total pqrm -1 

Here ~ = effect of k-th sub-plot treatment io j-th whole plot. The test statistic for this 
hypothesis is. 

t - _'ii...:...jk_· _-_y...,:,1:-. k_'. 
- ~ . 

v-;::;; 
This t has p(r - l)(q - 1) d.f. This t test is ~ed to compare a particular pair of means of 
the type Y-jk· and Y·Jk' .. All pairs of means can ·be compared by Duncan's multiple range. test, 
where the test. statistic is 

Dh =·do.os:~.f[!f;;., h = 2, 3, ... , q: f = p(r..:. l)(q - 1). 

However, if we. need to compare two means of the types Y·Jk· and 'ii.J' k'., then the test statistic is 

(- - )2 T _ Y·Jk· - Y·J'k'· 
i - s2 (-1....) , 

01 rm 

where s2 m """"""""(- - - +- )2 
01 = (r _ l)(p _ l) 7 ~ YiJk: - Y·.ik· - Yi·k· Y .. k. · 

The statistic T1 is distributed as variance ratio distribution with 1 and (r ~ l)(p-1) d.f. under 

Ho : ~ = 1f (j I- j' = 1, 2, .. ., p; k I- k' = l, 2, ... , q): The non-null distribution .of Ti is 
non-central F with non-centrality parameter 

..\1 · = rm [{3 - f3 1 + 'Yk ·_ 'Yk' + (f3'Y) k - (f3'Y) ., k 1 ]
2 · 

. 2a2[l+(m-l)pi] 1 1 1 1 
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The hypothesis to compare to split-split-plot treatment means in presenC'~ of a particular 
split-plot factor is · 

H . y;k _:_ s:k 
0 . ul - ul' 

against HA: cSt 1' c5~, l 1' l' = 1,2, ... ,m; k = 1,2, ... ,q. 

The test statistic for this hypothesis is 

t = 'fJ kl - Y .. k1 1 

~ 
This t has pq(m - l)(r - 1) d.f. The Duncan's multiple range test statistic for the comparison. 
of all pairs of above said means is 

D1i=dah.f , h=2,3, ... m; f=pq(m-l)(r-1). 
' 

However, if comparison of means Y .. k/ and y ·k'l' is needed, the test statistic is 

(- ,... )2 
T

. Y .. kl - Y .. k'I' 
2= , 

S62 (:,.) 
1 

where S62 = (r _ l)(q _ l) L L(YiJkl -y·.ikl -yiJ·l + Y·Jkl)
2

. 

The statistic T2 is distributed as variance ratio with 1 and (r - l)(q - 1) d.f. under null 
hypothesis 

H . •k - y;k' 
0. ul - ul'. 

The non-null distribution of T2 is non-central F with non-centrality parameter : 

A2 = ( pr ) 2 bk - 'Yk' + c51 - c51 1 + ('Yc5)kl - ('Yc5)k 1 11 ]2. 
21-p2a 

The comparison of two split-split-plot treatment means at the same level of whole-plot 
treatment or at different levels of whole-plot treatrrient are done using the test statistics 

T, ~ ()}.'·I -ts)' and T, ~ (jJ.J ·I -r ''ii' )' , 1e,pect;vely. 
s2 2 s2 2 

00 ~ 00 ~ 

The null distributions of both the statistics are variance ratio distribution with 1 and 
(p - l)(r - 1) d.f. Here 

. SJ3 = (p _ l~(r _ l) L L(Yij·I -y·J·l - 'f}; .. 1 + 'fJ ... 1)
2

. 

The non-null distributions of T3 and T4 are non-central F-distribution with non-centrality 
parameter: 

and 

The multiple comparison of the means mentioned above can also be performed using S63 , 

where the Duncan's multiple range test statistic is 

S63 )( ( )( )' h = 2, 3, ... , m; f = (p - 1 r - 1). 
qrp-1 r-1 

D.E.S.M.-13 
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The analysis of data of split-split-plot experiment is also perforined as usual in presence 
of one missing observation of /-th split-split-plot treatment corresponding to k-th split-plot 
treatment and j-th whole-plot treatment in 'i-th replication except that 1 is subtracted from 
total d.f. and hence, from error-3 d.f. The missing observation is estimated by minimising the 
error-3 sum of squares, where the estimate is 

ryiJl· + my. jkl - Y·Jk· x = . 
(m-l)(r-1) · 

Efficiency of split-split-plot design : The split-split-plot experiment may be considered 
as a p x q x m asymmetrical factorial experiment, where number of treatments is pqm. The 
experiment with pqm treatments can also be performed through randomized block design. 
Allocating qm levels of two factors B and C in p levels of A, where p levels of A are randomly 
allocated to p whole-plots and qm levels are allocated to qm sub-plots of each whole-plot like 
split-plot experiment. Therefore, split-split-plot design can be compared with randomized block 
design and with split-plot design. 

ANOVA Table 

Sources of variation d.f. SS SS MS= IT 

Replications r-1 S1 s1 
A p-1 S2 S2 
Error-1 (p-l)(r-1) S3 S3 
B q-1 S4 84 
AB (p-l)(q-1) S5 S5 
Error-2 p(r - l)(q - 1) s6 Sfi 
c (m -1) S1 S7 
AC (p - l)(m - 1) Ss Ss 
BC (q - l)(m - 1) Sg Sg 
ABC (p - l)(q - l)(m - 1) S10 S10 
Error-3 pq(r - l)(m - 1) Sn Sn 
Total pqrm -1 

Let the efforts of C, AC, BC and ABC be insignificant and these are on an average, equal 
to error-3 variance. The analysis of variance table transforms to the following type : 

ANOVA Table 

Sources of variation d.f. SS 

Replications r - 1 (r - l)s1 
A p-1 (p- l)s2 
Error-1 (p-l)(r-1) (p - l)(r - l)s3 
B q-1 (q - l)s4 
AB (p-l)(q-1) (p - l)(q - l)s5 
Error-2 p(q - .J)(r - 1) p(q - l)(r - l)s5 
Error-3 pqr(rn - 1) pqr(rn - l)su 

Total pqrrn - 1 

The above analysis is similar to the analysis of observations in whole-plots and split-plots 
having r replications. Here total error sum of squares of split-plot analysis is p(q- l)(r- l)s6 + 
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pqr(m - l)sn. This error sum of squares has p(qrm - r - q + 1) <l.f. Th<'rcfore. the effiri<'nry 
of C. AC, BC and ABC of split-split-plot experiment compared to split-plot experiment is 

(r - l)(q - l}s6 + qr(m - l)s11 
(qrm - r - q+ l)s11 

and the efficiency of B and AB is 
(r - l)(q - l)s5 + qr(m - l)s11 

(qrm - r - q + l)s5 

Again, let ns consider that the effects of A, B and AB arc insignifir.ant. Assume that the effect 
of A, on an average, equals th<' error varianc0-l and th<' effects of B and interaction AB, on an 
average, equal the error variance-2. The analysis of variance table then becomes 

ANOVA Table 

Sources of variation d.f. SS 

Replications r-1 (r - l)s1 

Error-1 r(p - 1) r(p - l)s3 

Error-2 pr(q - 1) pr(q - l)s6 
Error-3 pqr(rn - 1) pqr(m - l)su 

Total pqrrn - 1 

The total error sum of squares is r(p- l)s3 + pr(q - l)s6 + pqr(m - l)su and its d.f. is 
r(pqm - 1). Therefore, compared to randomized block design the efficiency of split-split-plot 
design in estimating the effects and interactions C, AC, BC and AB is 

(p - l)s3 + p(q - l)s6 + pq(m - l)su 
(pqm - l)s11 

The efficiency of B and AB is 

(p - l)s3 + p(q - l)s6 + pq(m - l)su 
(pqm - l)s6 

Example 4.10 : An experiment is conducted to study the productivity of 3 different 
varieties of maize using 4 doses of nitrogen as urea. The seeds of maize varieties are sown in 
rows of 4 different types and these arc sown at different distances in a row. The distance of 
plants in rows and within a row is considered as split-split-plot factors, nitrogen is a sub-plot 
factor and variety of maize is considered as whole-plot factor. The four doses of nitrogen are 
Ni = 150 kg/ha; N2 = 200 kg/ha, N3 = 250 kg/ha and N 4 = 300 kg/ha. The distances of 
plants are: 

S1 = row to row distance is 37.5 cm and plant to plant distance is 20 cm 

S2 = row to row distance is 50 cm and plant to plant distance is 20 cm 

S3 = row to row distance· is 50 cm and plant to plant distance is 30 cm 

S4 = row to row distance is 70 cm and plant to plant distance is 30 cm. 

The productions of maize (kg/plot of 150 cm x 120 cm) are recorded for analysis. The 
experiment is replicated 3 times. 

(i) Analyse the data and comment on the use of nitrogen fertilizer. 

(ii) Group the varieties of maize, if possible. 
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(iii) ls th<'fc any difforencc in the use of N,1 iu producing first two varieties of maize? 

(iv) Compare the levels of nitrogen in prod"ucing first variety of maize. 

(v) Compare t.he plantation plans for N4 . 

(vi) Do you think that the plantation plans S3 and S4 arc different for N:i and N 4? 

(vii) Do you think that the first two vari<'t.ics of maiw arc different in plantation plan 84 ? 

(viii) Do you think that the first two varieties are giving similar results in plantation plans 8 3 

and S1? 

(ix) Find th<' efficiency of split-split-plot design comparect to split-plot design and ran<lomized 
block design. 

Production of Maize (Yijkt, kg/plot) 

Maize Doses of Spaces in replications 

variety nitrogen Replications 

1 2 3 

S1 S2 SJ S4 S1 S2 S3 S4 S1 S2 83 

Ni 0.63 0.55 1.00 1.05 0.62 0.54 1.00 1.03 0.60 0.55 0.99 

Vi Nz 0.68 0.65 1.00 1.06 0.67 0.66 1.02 1.05 0.67 0.66 1.00 
N3 0.75 0.70 1.08 1.10 0.74 0.70 1.06 1.10 0.75 0.70 1.06 
N4 0.80 0.67 1.02 1.08 0.80 0.68 1.00 1.10 0.81 0.68 1.02 

Ni 0.66 0.58 1.00 1.04 0.72 0.60 1.00 1.02 0.70 0.59 1.00 

Vz Nz 0.70 0.66 1.03 1.07 0.69 0.70 1.03 1.03 0.72 0.62 1.02 
N3 0.76 0.72 1.10 1.05 0.77 0.71 1.06 1.06 0.77 0.71 1.03 

N4 0.84 0.72 1.04 1.04 0.85 0.72 1.05 1.01 0.85 0.73 1.05 

N1 0.75 0.77 0.95 1.00 0.76 0.78 1.00 1.01 0.76 0.78 0.98 

Vi Nz 0.76 0.77 1.00 1.00 0.77 0.76 1.02 1.02 0.77 0.79 1.02 
N3 0.88 0.90 1.02 1.04 0.86 0.95 1.02 1.05 0.90 0.90 1.03 
N4 0.86 0.92 1.08 1.06 0.85 0.92 1.06 1.06 0.92 0.90 1.08 

Total Yi··· 42.59 42.68 42.53 

Solution : (i) Here r = 3, p = 3, q = m = 4. 

The production of replications 
and varieties are (Yi3 . .) : 

Varieties Replications Total Y1oo 

1 2 3 Yo100 

Vi 13.82 13.77 13.73 41.32 

V2 14.01 14.02 13.86 41.89 

V3 14.76 14.89 14.94 44.59 

Total Yi·. 42.59 42.68 42.53 127.80 

The production of varieties and 
doses of nitrogen (Y·jk·) are : 

Varieties Doses of nitrogen 

N1 Nz N3 N4 

Vi 9.58, 10.18 10.82 10.74 

Vi 9.92 10.31 10.74 10.92 

V3 10.54 10.69 11.59 11.77 

Total y k 30.04 31.18 33.15 33.43 

S4 
1.02 
1.06 
1.08 
1.08 

1.01 
1.04 
1.00 
1.02 

1.00 
1.01 
1.04 
1.06 
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The productions of varieties, nitrogen and spaces are (Y·ikl) : 

Doses of Varieties of maize 

nitrogen Vi V2 Vi 
S1 S2 S3 S4 S1 S2 S3 84 Si 82 S3 54 

Ni 1.85 1.64 2.99 3.10 2.08 1.77 3.00 3.07 2.27 2.33 2.93 3.01 

N2 2.02 1.97 3.02 3.17 2.11 Ul8 3.08 3.14 2.30 2.32 3.04 3.03 

N3 2.24 2.10 3.20 3.28 2.30 2.14 3.19 3.11 2.64 2.75 3.07 3.13 

N4 2.41 2.03 3.04 3.26 2.54 2.17 3.14 3.07 2.63 2.74 3.22 3.18 

Total YII 8.52 7.74 12.25 12.81 9.03 8.06 12.41 12.39 9.84 10.14 12.26 12.35 

Doses of nitrogen Spaces 

S1 S2 S3 S4 

N1 6.20 5.74 8.92 9.18 

N2 6.43 6.27 9.14 9.34 

N3 7.18 6.99 9.46 9.52 

N4 7.58 6.94 9.40 9.51 

Total y .. 1 27.39 25.94 :rn.92 37.55 

G = 127.80 

C.T. = _!!:..__ = (l 27·80)
2 

=-= 113.4225. 
pqrm 3 x 4 x 3 x 4 

SS (Total)= LL L LYZJkl - C.T. = 117.2782 - 113.4225 = 3.8557. 

1 . 5444.2914 
SS (Replications)= -- LYZ - C.T. = - 113.4225 = 0.0002. 

pqm 3 x 4 x 4 

S'S ( . ) 1 L 2 c 5450.3826 Vaneties = -- Yj· - .T. = - 113.4225 = 0.1271. 
qrm 4 x 3 x 4 · 

1 
SS (Error-I) = qm LL Yf1 .. - C.T. - SS (Replications) -- SS (Varieties) 

= 18
4
16

·
8316 

- 113.425 - 0.0002 - 0.1271 = 0.0022. 
x 4 

. 1 L:: 4091.0814 SS (Nitrogen) = -- y\ - C.T. = - 113.4225 = 0.2186 
Fm 3x3x4 

1 
SS (Varieties x Nitrogen) = rm LL Y;k. -C.T. - SS (Varieties) - SS (Nitrogen) 

1365.354 
--- - 113.4225 - 0.1271 - 0.2186 = 0.0113. 

3 x 5 
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The productions of varieties, nitrogen in replications (Yiik·) 

Varieties Replications 

1 2 3 

Doses of nitrogen 

Ni N2 N3 N4 Ni N2 N3 N4 Ni N2 N3 N4 

Vi 3.23 3.39 3.63 3.57 3.19 3.40 3.60 3.58 3.16 3.39 3.59 3.59 

V2 3.28 3.46 3.63 3.64 3.34 3.45 3.60 3.63 3.30 3.40 3.51 3.65 

V3 3.47 3.53 3.84 3.92 3.55 3.57 3.88 3.89 3.52 3.59 3.87 3.96 

SS (Error-2) = r~i LL L Yfik· - C.T. - SS (Replications) - SS (Varieties) 

- SS(Error-1)- SS(Nitrogen) - SS(Varif'ty x Nitrogen) 

= 455~142 - 113.4225 - 0.002 - 0.1271 -- 0.0022 - 0.218b - 0.0113 

= 0.0036. 

SS (Spaces) = - 1
- "°' "°' "°' y~ 1 - C.T. = 

4196
·
1846 

- 113.4225 = 3.1382. 
pqr L.. L.. L.. 3 x 4 x 3 

SS (Variety x Spaces) 

SS (Nitrogen x Spaces) 

= ~ "°' "°' y~1 . 1 -- C.T. - SS (Variety) - SS (Spaces) ('(" L.. L.. . 

·-
1403

.1
566 

-- 113.4225 - 0.1271 - 3.1382 = 0.2419. 
4 x 3 

= ~ "°' "°' Y~kt - C.T. - SS (Nitrogen) - SS (Spaces) 
pr L.. L.. 

= I05 1.~l 4 - 113.4225 - 0.2186 - 3.1382 = 0.0667. 
3x 

1 
SS (Variety x Nitrogen x Spaces) = :;: LL LY2

ikl - C.T. - SS (Variety) 

-SS (Nitrogen) - SS (Spaces) - SS (VarietyxNitrogen) - SS (Variety x Spaces) 

-SS (Nitrogen x Spaces) 

35
1.;

534 
- 113.4225 - 0.1271 - 0.2186 

-3.1382 - 0.0113 - 0.2419 - 0.0667 

= 0.0282. 

SS (Error-3) =SS (Total) - SS (Replications) - SS (Varieties) - SS (Error-I) 

- SS (Nitrogen) - SS (Variety x Nitrogen) - SS (Error-2) 

- SS (Spaces) - SS (Variety x Spaces) - SS (Nitrogen x Spaces) 

- SS (Variety x Nitrogen x Spaces) 

= 3.8557 - 0.0002 - 0.1271 .... 0.0022 - 0.2186 - 0.0113 

- 0.0036 - 3.1382 - 0.2419 - 0.0667 - 0.0282 

= 0.0177. 
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ANOVA Table 

Sources of variation d.f. SS SS MS= IT F F.o5 

Replications 2 0.0002 0.0001 0.18 6.04 

Variety (V) 2 0.1271 0.06355 115.54 " 
Error-I 4 0.0022 0.00055 - -

Nitrogen (N) 3 0.2186 0.07287 364.35 3.16 
VN 6 0.0113 0.00188 9.40 2.66 

Error-2 18 0.0036 0.0002 - -

Space (S) 3 3.1382 1.04607 4558.62 2.74 

vs 6 0.2419 0.04032 168.00 2.23 

NS 9 0.0667 0.00741 30.87 2.02 

VNS 18 0.0282 0.00157 6.54 1.75 

Error-3 72 0.0177 0.00024 - -

Total 143 

It is observed that the varieties, the doses of nitrogen and the diffcr~nt spaces are highly 
significantly different. The mean pro<l11ctions due to the use of diffl'rent doses of nitrogm arc : 

N1 = 0.83, N2 = 0.87. N3 = 0.92. N 4 = 0.93. 

With the increase in the doses of nitrogen the production of maize increases and this is true for 
every dose. All doses arC' significantly different. This is observe<l by Duncan's multiple range 
test, where the test statistic is 

D;, = do 05.h.f ~, h = 2, 3, 4; f == 18. 

Here D2 = 0.0070, D3 = 0.0073. and 0 4 = 0.0076. 

(ii) The variety means are, in ascending order, as follows : 

V1 = 0.86, V2 = 0.87, V3 = 0.93. 

The Duncan's multiple range test statistic for grouping variety means is 

D,, = do.o5,h.f ~' h = 2, 3; f = 4. 

Here D2 = 0.0133, D3 = 0.0136. 

It is observed that Vi and V2 are in the same group, since V 2 - V 1 •. l)i. 

(iii) We need to test significance of the hypothesis fl0 : ;3f = di against HA : f3t cl /3i. 
where /3t = effect of variety Vi in presence of N 4 and /3~ = effect of variety h in presence of 
N.1. The test statistic for this hypothesis is 

(
- - 2 

T Y.14 - Y.2.1.) h 
4 I = 52 ( ..L) . w ere r = 3, ni = . 

OJ rm 

SJ1 = (r- l~p- l) LL0li.J4· -'Ili4· -y., I· +y .i)
2

. 
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Here m L LCih.J4· - y-.14· - Yi++ 'fl. 4.)2 
] . 

= m L LYIJ4· - C.T1 - SS (Replication)i - SS (Varietes) 1. 

This sum of squares are calculated using the data of only N4 in different replication:;, whole-plots 
and in different. spaces. 

The productions of replications and varieties (YiJ4 ) are given below : 

Replications Varieties Total, R; 

Vi V2 V3 

1 3.57 3-.64 3.92 11.13 
2 3.58 3.63 3.89 1-1.10 
3 3.59 3.65 3.96 11.20 

Total V1 10.74 10.92 11.77 33.43 = G1 

C.T1 = Ci = (33.43)2 = 31.0435. 
prm 3 x 3 x 4 · 

. 1 ""' 372.5269 SS (Rephcations)i = - L.,, Rf - C.T1 = - 31.0435 = 0.0004. 
pm 3 x 4 

. . 1 I: 3n.1269 
SS (Vanet1es) 1 = - v? - C.T1 = - 31.0435 = 0.0504. 

rm · 3 x 4 · 

SJ1 = ( 
1
( [2- LL Yt14 . - C.T1 - SS (Replications) 1 - SS (Varieties) 1] 

r - 1) p - 1) m 

= -
1

- [
124

'
3785 

- 31.0435- 0.0004 - 0.0504] = 0.00008. 
2 x 2 4 

T 
(0.895 - 0.91) 2 7 

1 = 2 = 16.8 . 
0.00008 X 3x 4 

Since T1 > Fo.o5 ; 1,4 = 7.41, Ho is rejected. The averages of production of variety-I and 
variety-2 in presence of N4 are significantly different. 

(iv) We need to compare the ;neai1s 'fl.tk· (k = 1, 2, 3, 4). The Duncan's multiple range test 
statistic for the comparison is : 

D 4 = 3.21 ~ = 0.0131. 

The means to be compared are : 

Nu= Yu = 9.58 = 0.798, N12 = y.12. = 10.18 = 0.848, 
rm 12 rm 12 

N 13 = y 13. = 10
'
82 = 0.902, N 14 = y 14. = 10

·
74 = 0.895. 

rm 12 rm 12 
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N 13 - N 11 = 0.104 > D4 , all means arc significantly different. 

N 13 - N 12 = 0.054 > D3, N13 and N12 arc different. 

N14 - N 11 = 0.097 > D3, N11 and N 14 an' different. 

N 12 - N 11 = 0.05 > D2, N.11 and N12 arc different. 

N14 - N12 = 0.047 > D2, N12 and N14 are different. 

N 13 - N 14 = 0.007 < D2, N13 and N14 are similar. 

The first l/ariety of maize is produced in similar amount using N3 and N4 . 
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(v) We need to compare the means of S1 (l = 1, 2, 3, 4) in presence of N4 . The means are 
]J .. 41 , where 

y .. 41 7.58 - y 42 6.94 
-y = - = - =0842 Y .. 42 = - = - =0.771. .. 41 9 . ' 9 pr pr 

- y .. 43 9.40 - - y 44 - 9.51 - 1 057 
Y .. 43 = -pr = -

9
- = 1.044, Y. 44 - -- - -- - . . 

pr 9 

The Duncan's multiple range test statistic for the comparison of the above means is 

/Q.60024 J0.00024 
D 2 = 2.821 y -g = 0.0145, D 3 = 2.971 

9 
= 0.0153, 

' J0.00024 D4 = 3.071 
9 

= 0.0158. 

:Y .. 44 - Jl .. 42 = 0.0286 > D4 , all means arc significantly different. 

Y. 44 - y .41 = 0.215 > D3, S1 and S4 in presence of N 4 arc different. 

]J .. 43 - y 42 = 0.273 > D3. S2 and S3 in presence of N 4 arc different. 

]J .. 41 - ]J .. 42 = 0.071 > D2, Si and S2 in presence of N4 an• different. 

'iJ .. 43 - 'iJ .. 41 = 0.202 > D2, Si and S3 in presence of N4 are different. 

]J .. 44 - 'iJ .. 43 = 0.013 < D2, S3 and S4 in presence of N4 are similar. 

(vi) We need to compare the means ]J .. 34 and fi .. 43 . The test statistic to compare such means 
(Y .. kl and Y .. k'l') is· 

where 

This means that sum of squares is to be calculated using the observations of any particular 
variety and the observations of any particular space. Since we are comparing the means of N3 
related to S4 , we can use the observations related to factor level S4 in presence of Vi. 
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The productions in replication::; corresponding to Vi and S4 (Yilk4 ) are shown below : 

Replications Doses of nitrogen Total Rk 

N1 N2 N3 N4 

1 1.05 1.06 1.10 1.08 4.29 

2 1.03 1.05 1.10 1.10 4.28 

3 1.02 1.06 1.08 1.08 4.24 

Total Nk 3.10 3.17 3.28 3.26 12.81 = G2 

C.T2 =· G~ = (l 2.81 )
2 

= 13.6747. 
rq 3 x 4 

SS (Total) 2 = L LYiik4 - C.T2 = 13.6827 - 13.6747 = 0.008. 

. . 1 54.7001 
SS (Replicat1ons) 2 = - "R~ - C.T2 = - 13.6747 = 0.0003. 

q~ 4 

1 41.0449 
SS (Nitrogenh =-;. ~ Nf - C.T2 = 

3 
- 13.6747 = 0.0069. 

2 - 1 S02 - (r _ 
1 
)(q _ l) [SS (Total)2 - SS (Replications) 2 - SS (Nitrogen)2 ] 

= -2 
1 

[0.008 - 0.0003 - 0.0069] = 0.00013. 
x3 

T2 = (1.~58 - 1.044)2 = 6.78. 

3x 3 ~ 0.00013 

This T2 > Fo.os;1,6 = 5.99. The two means arc sigtiificantly different. 

(vii) We need to compare the means 'fl.1-4 and 'fl 2.4 . The test statistic to compare these 
means is: 

(- - )2 
T _ Y.1.4 - Y.2-4 

3 - ( ) ' 8 2 2 
03 q7· 

s2 q ""(- - _ - )2 
03 = (p _ l)(r _ l) ~ ~ JhJ·4 - Y .H - Yi 4 + Y ... 4 · 

' J 

where 

This S53 is to be calculated using the observations of S4 only for different rcplications, wholc
plots and sub-plots. 

The productions of S4 in replications (Yi.H) are tabulated below : 

Replications Varieties Total, R1 

Vi Vi Vi 
1 4.29 4.20 4.10 12.59 

2 4.28 4.12 4.14 12.54 

3 4.24 4.07 4.11 12.42 

Total Vi 12.81 12.39 12.35 37.55 = G3 
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C T 3 = G~ = (37·55)
2 

= 39.1667. 
· pqr 3 x 4 x 3 

1 '"''"' 2 156.7211 SS (Total) 3 = q ~ ~ Y;.1. 4 - C.T3 = 
4 

- 39.1667 = 0.013575. 

. . 1 L 410.0161 SS (Rephcat10nsh = - Rf - C.T3 = - 39.1667 = 0.001308. 
pq 3 x 4 

. . 1 470.1307 
SS (Vanet1es) 3 = - '°' V/ - C.T3 = 

4 
- 39.1667 = 0.010858. 

qr~ x 3 

S~3 = ( )\ ) [SS (Totalh - SS (Replicationsh - SS (Varieties)3 ] 
p-1 r-1 

1 
= 2 x 2 [0.01375 - 0.001308 - 0.010858] r= 0.00035. 

T
3 

= (1.0~75 - 1.0325)
2 = 21.00. 

4 x 3 (0.00035) 

Since T3 > Foo5; 1,4 = 7.71, the means arc significantly different. 
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(viii) We need to compare the means 'j]. 1.3 and Y.2-4 and the means y. 1 4 and y. 2.3 . The test 
statistics fur the comparison of two groups of means are : 

T
4 

= (y 1.3 - ]7 2.4 )
2 = (l.0~08 - 1.03:5)

2 = 2_35 
s2. (2) 4 x 3 (0.00030) 

03 qr 

and 
'T' ('Y".1.4 - 'Y2.3)2 (1.0675 - 1.0342)2 
.t5= = 2 =19.01. 

s2 (2) '43(0.00035) 
· 03 qr x 

Since T4 < Fo.05; 1,4 = 7.71, the means ]J. 1.3 and ]J. 2 .4 are similar. But the means 'fj. 1.4 and 'i]. 2 .3 
arc significantly different since T5 > Fo.o5; 1,4 = 7. 71. 

(ix) The efficiency of split-split-plot design compared to split-plot design in estimating the 
effects and interactions S, VS, NS and V NS is 

(r - l)(q - l)s6 + qr(rn - l)su = (3 - 1)(4 - 1)0.0002 + 4 x 3(4 - 1)0.00024 = 
97

_
623

_ 
(qrrn-r-q+l)su (4x3x4-3-4+1)0.Q,0024 · 

This efficiency in estimating the effects and interactions of N and V N is 

(r - l)(q - l)s6 + qr(m - l)su (3 - 1)(4 - 1)0.0002 + 4 x 3(4 - 1)0.00024 . 401 ------.-------= • = 117.l /'O. 
(qrm - r - q + l)s6 (4 x 3 x 4 - 3 - 4 + 1)0.0002 

The same two efficiencies compared to randomized block design are respectively : 

(p - l)s3 + p(q - l)s6 + pq(rn - l)s11 

(pqm - l)su 

= (3 - 1)0.00055 + 3(4 - 1)0.0002 + 3 x 4(4 - 1)0.00024 = 02 3o/c 
(3x4x4-1)0.00024 

1 
· 

0 

(p - l)s3 + p(q - l)s6 + pq(rn - l)su 

(pqrn - l)s6 
and 

= (3 - 1)0.00055 + 3(4 - 1)0.0002 + 3 x 4(4 - 1)0.00024 = 01 

(3 X 4 X 4 - 1 )0.0002 122·8 
/'O. 
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4.14 Split-Block Design (Split-Plot Design with Sub-units in Strips) 
Let there be two factors A and B. The factor A hasp levels and the factor B has q levels. 

The p levels of A are randomly allocated to p whole-plots of a block and each level of B is 
randomly allocated to all whole-plots of a block. The arrangement of p levels of A and q levels 
of B in a block (replications) is as follows : 

!)( A1 A2 ... Ap 

B1 

B2 

Bq 

Here the levels of B are perpendicularly allocated over the levels of A so that each level of B is 
allocated to a block of P plots (p levels of A). If this arrangement of p levels of A and q levels of 
B are repeated in r blocks, the resultant design is called split-block design or strip-plot design 
where sub-units are allocated in a strip of p plots. 

The design is used in agricultural experiment as well as in laboratory experiment. For 
example, let us consider that in a zoological experiment the death rate of earth-worm kept in· 
different pesticides is undf'r investigation. Let there be four types of earth-worms. These are 
kept in three different pesticides in such a way that groups of earth-worm of each type are kept 
in each pesticide separately. If B1 , B2 and B3 are the types of pesticides and A1 , A2 • A3 and A4 

are the types of earth-worms; then the earth-worms can be kept according to a plan as shown 
above. The advantage of such experiment is that _it helps us to study the joint impacts of the 
type of earth-worm and pesticide, where pesticide can be allocated to experimental units of 
smaller size. T?e interaction AB is estimated more efficiently. 

Let YiJl be the result of /-th level of B in j-th level of A and in i-th replication ( i = 
1, 2, ... , r; j = 1, 2, ... , p; l = 1, 2, ... , q). The linear model for y,11 observation is 

Yi.il = µ+a; + /31 + "Yl + (/3'Y )ji + eijl. 

where µ = general mean, a; = effect of 'i-th replication, /3.i = effect of j-th level of A, "Yl = 
effect of l-th level of B, (/3"Y )Jl = interaction of j-th level of A with /-th level of B, e;Jl = random 
component. 

Assume that the model is a fixed effect model with restrictions 

I: a,= I: /31 = L:(!3"Y)11 = L:(!3"Y).il = o. 
j l 

FUrther assumptions are : 

E(ei.il) = 0, E[eiJl• ei'J'l'] = 0'
2

, if i = i',j = j', l = l' 

= P10"
2

, if i = i', j = j' l =I- l' 

= p20"
2

, if i = i' j =I- j', l = l' 

= 0, otherwise. 
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The assumption on errors indicates that the data are non-orthogonal. Therefore, orthogonal 
transformation 011 data vector are needed at least in the theoretical aspects of the analysis. Let 
the first transformation be 

Uij 

zi.11 

Z1j2 

= 1· a.q=-~:11 .. 1 ; . ; 
aq-1,2· · · aq-1.q I [ Yijl l 

Yi12 

YiJq 

1 q 1 
Thus, uij = r,:; L Yijl = Jq(µ +a; + f3.J) + r,;Cij. 

yq 1=1 yq 
q 

and ziju = L au1b1 + (f31').iil + L autCijl, u -I- l = L 2, ... '(q - 1). 
l=l l 

But U;j or zi.iu are not orthogonal. Further, orthogonal transformations are : 

wi(p-l)u I ~ ~ $ 
bp-1,1 bp-1,2· .. bp-1,p 

.fiiii .fiiii VPii 
b11 b12 . . . b1p 

= b21 b22 . . . b2p M;2u I 
1 1 _l I 

M;(p-l)u b~·~:.~ .. ·b~·~:.~::: ~~~·1-.p 
1 

Thus, we have V; = ffq(µ +a;) + --e; .. 
Jpq 

wiku = L bkjUij, k -I- j = 1, 2, ... ' (p - 1) 
j 

1 
= Lbkjf3J + r;; LbkjCij·· 

yq j 

1 1 
M;.u = ;;;;Z,.u = VPL aunt+ ;;;; L autCi·l· 

vP 1 vP 1 

Z;1u 

Z;2u 

Z;3u 

and 

Miku = L bkjziju =LL au1bkJ(f3'Y)Jl +LL autbkjeijl· 
j j l j l 

The random component e;11 is divided into several components, where 

1 1 1 
eijl = ;;;me; .. + r,; L bkjCij· + ;;;; L au1Ci-1 +LL au1bkjCijl· 

V pq Y q j Y p l j I 

We have 

V(V;) = V (~ e; .) = a 2[1 + (q - l)p1 + (p - l)p2]. 



206 DESIGN OF EXPERIMENTS ANO SAMPLING 11ETllOOS 

But the sum of squares of the random error component (ei .. /ffe) is not available. Here ei·· is 
related to the observations of i-th replication. This is available by adding all observations in i-th 
replication (i = 1, 2, .... r). But these added observations give sum of squares of replications. 
Therefore, in analysing data of ~plit-blor.k design, we have three different errors. These errors 
and their variances are show~ below : 

Let 

and 

V [ ~ L bk.ieij·] = a
2 [1 + (q - l)p1 - P2] 

V [ ~ L au.1eu] = a 2 [1 - /)1 + (p - l)p2] 

V [L ~ au1bkjei.ill = a
2 [1-: P1 - P2]. 

J .. 1 

1 
W2 = . 

a 2[1 + (q - l)p1 - P2]' 
1 

W3 = ......,,...,---~~~~~_...,. 
a 2[1 - P1 + (p - l)p2] 

1 
W4 

= a 2 [1 - P1 - P2J' 
1 

W1= . 
a 2[1 + (q - l)p1 + (p - l)p2] 

Therefore, the estimates of parameters are to be found out by minimizing weighted error 
sum of squares </>, where 

</> = W1 L:rv.: - ..JPQ(P, + &;)] 2 + W2 LL L:rwiku - L bk.t.B.il
2 

k u 
• 2 

+ W3 LL[Mi·u - JPL:au61]
2 + W4LL~ [Miku = LLau1bkj(,B-y)jll 

iu I iku 11 

The estimates are 

[l,='iJ ...• &i='iJ; .. -'i] ... , ~i='il-.1--'iJ ... i'1='iJ .. 1-'iJ ... , 

(.B"Y)jl = Ti.,1 - Y.1·-y . - y ·I +Ti .. • 
. ·JI 

It is observed that the estimates are free of weights. Hence, the sum of squares due to 
estimates are also of free of weights. The sum of squares are : 

SS (Replications) = S1 = pq L(Yi - y.,.)2' 

SS(A) = S2 =qr L0l.i· - y .) 2
. 

SS (Error-1) = S3 = q L L(Yi.i· -Yi·· -'!J-.1- +Ti .. )
2

. 

SS(B) = S4 =pr L(y .. 1 - y )2
, 

SS (Error-2) = p L L(Yu - 'fJ; .. - 'f} .. 1 + y . . )2 
'-" S5 

SS(AB) = s6 = r L L(Y.jl - 'f}.j. -- 'Jj, I+ 'iJ ... )2 

SS (Error-3) = LL L(Yijl - Yi.i· - 'ik1 - Y·JI +Yi·· + Y-.1- + y .. 1 - Y . .)2 = S7. 
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ANOVA Table 

Sources of variation d.f. SS SS MS= IT F 

Replications . r-1 S1 S1 

A p-1 S2 . s2 F1 = s2f s3 

Error-I (p-l)(r-1) S3 S3 -

B q-1 S4 84 F2 = s4/s5 
Error-2 (q-l)(r-1) S5 S5 -

AB (p-l)(q-1) S5 S5 F3 = s5/s1 
Error-3 (p - l)(q - l)(r - 1) S1 87 -

Total pqr-1 

Here the test statistics F1, F2 and F3 are calculated to test the significance of the hypotheses 

(i) Ho : /31 = 0 against HA : /3) =/. 0 

(ii) Ho : 11 =· 0 against HA : 11 =/. 0 

and (iii) Ho: (/31)11 = 0 against HA : (/31)J1 =/. 0 

respectively. The mnltiple comparison to compare the means of different levels of A and B are 
usually found out. However, the comparison of two means of Bin presence of a particular level 
of A ('ii.Ji and y.11 ,) is done using the test statistk : 

r('ii.11 - Y-11 1 
)

2 
1 '°"' '°"' _ - - 2 

T1 = 2Soi , where Soi= (q _ l)(r _ l) L.,, L.,,(YiJI - Y.11 - Yij· + Y.1.) . 

The null distribution ofT1 is central F with 1 and (q-l)(r-1) d.f. The non-null distribution 
of T1 is non-central F with non-centraHty parameter 

r 2 
)q = 2172 ( l _ Pi) b1 - 11' + (/31) 11 - (/31 )J1•] · 

Again, the comparison of two means of the types y.11 and Y-j'I can be made using the test 
statistic 

rW.11 - Y-j'1)
2 

1 '°"' '°"' . - - - 2 
T2 = 2s02 

where So2 = (p _ l)(r _ l) L.,, L.,,(YiJI - Y-11 - Yi-I+ Y .1) 

The null distribution of T2 is central F with 1 and (p- l)(r - 1) d.f. The non-null distribution 
of T2 is non-central F with non-centrality parameter : 

A2 = 2172(lr- p
2
) [/3.; --f3J 1 + (/31)11 - (lh)1 1 1J2. 

Since EMS (replications) = a 2[1 + (q - l)p1 + (p - l)p2] + .;:!r Lo:~, the exact F statistic 
is not available to test the significance of Ho : O:i = 0. It is seen that 

E(s1 + s7) = E(s3 + s5) 

under Ho. Therefore, approximate F-statistic is 

F =SJ+ 87. 
S3 + S5 
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According to SatterthV.:aite (1946), the above F has 

(s1 +s1)2 
2 2 • and 

....!L_ + Sz 
r-1 {p-t)(r-l)(q-1) 

d.f. c•2 s2 ''t + . (p-1) 1·-l) (q-l)~r-1) 

Example 4.11 : In an agricultural research station an experiment is conducted to "tudy 
the germination rate of a variety of maize using three doses of phosphorus as P2 0 5 . The doses of 
phosphorus are P1 = 90 kg/ha, P2 = 120 kg/ha and P3 = 150 kg/ha. The doses ot phosphorus 
are used randomly in 3 groups of plots. During land preparation the doses of phosphorus are 
applied. In the plots, where a dose of phosphorus is applied, three doses of nitrogen as urea are 
also applied during land preparation. The design used in the experiment is split-block design. 
The experiment is replicated 3 times. The number of germinated seeds per plot (out of 25 seeds 
per plot) are shown below : -

Number of germinated seeds in different replications (Yijt) 

Replications 

1 2 3 

Doses of phosporus Levels of nitrogen Levels of nitrogen Levels of nitrogen 
N1 N2 N3 N1 N2 

P1 18 18 20 17 19 

P2 21 20 22 20 20 

?3 22 23 23 22 23 

(i) Analyse the data and group the doses of phosphorus. 

(ii) Compare the means of P2 and P.J in presence of N3 . 

(iii) Compare the means of N 2 and N3 in presence of P3 . 

N3 N1 N2 N3 

19 18 20 18 

21 22 21 21 
24 23 23 24 

(iv) Find the efficiency of this design compared to randomized block design in estimating the 
interaction of nitrogen and phosphorus. 

Solution : (i) We have r = 3, p = 3, q = 3 
. . 

The observations of phosphorus and replications (Yii·) 

Replications Levels of phosphorus 

P1 P2 

1 56 63 

2 55 61 

3 56 64 

Total y.1 . 167 188 

C.T. = G
2 

= (562)
2 

= 11697.9259. 
pqr 3x3x3 

?3 

68 

69 

70 

207 

Total Yi·· 

187 

185 
190 

562 = G 

SS (Total) = LL L Yf;1 - C.T. = 11804 - 11697.9259 = 106.0741. 
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SS (Replications) = 2_ ~ y;,. - C.T. = 
105294 

- 11697.9259 = 1.4074. 
pqL.. 3x3 

1 106082 
SS(Phosphorus) = - LY;. - C.T. = -- - 11697.9259 = 88.9630. 

qr . 3~3 

SS (Error-I)=~ L LY?i· - C.T. - SS.(replications) - SS (Phosphorus) 

= 35~68 - 11697.9259' - 1.4074 - 88.9630 = 1.03'70. 

The observations of nitrogen and replications (Yi·l) 

Replications Levels of nitrogen 

N1 N2 N3 

1 61 61 65 

2 59 62 64 

3 63 64 63 

Total y .. 1 183 187 192 

. 1 2: 105322 SS (Nitrogen)= - y~1 - C.T. = -- - 11697.9259 = 4.5185. 
pr 3 x 3 

SS (Error-2) = ! L LY~j - C.T. - SS (Replications) - SS (Nitrogen) 
p . 

= 
351~2 - 11697.9259 - 1.4074 - 4.5185. 

3 
= 3.4815. 

The observations of phosphorus and nitrogen (y.;i) 

Levels pf phosphorus Levels of nitrogen 

N1 N2 N3 

P1 53 57 57 

P2 63 61 64 

P3 67 69 
·. 

71 

209 

SS
0

(Phosphorus x Nitrogen) = ~ L LY;t - C.T - SS (Phosphorus) - SS (Nitrogen) 

= 
35~84 - 11697.9259 - 88.9630 ~ 4.5185 = 3.2623. 

SS (Error-3) =SS (Total) - SS (Replications) - SS (Phosphorus) - SS (Error-1) 

D.E.S.M.-14 

-SS (Ni~rogen) - SS (Error-2) - SS (Phosphorus x. Nitrogen) 

= 106.0741 - 1.4074 - 88.9630 - 1.0370 - 4.5185 - 3.4815 - 3:2623 

= 3.4044. 
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ANOVA Table 

Sources of variation d.f. SS MS= SS CIT F F.o5 

Replicatibns 2 1.4074 0.7037 - -
Phosphorus 2 88.9630 44.4815 171.58 6.94 
Error-1 4 1.0370 0.25925 - -
Nitrogen 2 4.5185 2.25925 2.60 6.94 
Error-2 4 3.4815 0.8704 - -
Phosphorus x nitrogen 4 3.2623 0.8165 1.92 3.84 
Error-3 8 3.4044 0.42555 - -
Total 26 

It is observed that the levels of phosphorus differ significantly in influencing the germination 
rate of a variety of maize. The means of germinated seeds under .different levels of phosphorus 
are: 

Pi = 18.556, P2 = 20.889, P3 = 23.000. 

These means can be grouped using Duncan's multiple range test, where the test statistic is 

. . 

We have D2 = 3.93J0 · 2~925 = 0.113, D3 = 4.01J0 · 2~925 = 0.115. 

All the means are significantly different since pairwise difference in means are greater than 
D2. The three levels of phosphorus are in three different groups. 

(ii) We need to compare the means 'Y. 23 and JJ.33 . These means are 'Y.23 = 21.33 and 
'Y.33 = 23.67. The test statistic to compare these means is 

(- - )2 r. = r Y.23 - Y.33 where 
2 

2So2 ' 

1 
So2 = (p _ l){r _ l) L L(YiJI -y·JI - Yi-1 + 'Y .. 1)

2
; l = ~ 

' ] 

= (p- l)l(r _ l) [LLY?i3 -C.T2 - SS{Replications)2 -SS{Phosphorus)2] 

The observations of replications and phosphorus in presence of Ns{YiJs) 

Replications Levels of phosphorus Total Yi·3 
Pi P2 P3 

1 20 22 23 65 
2 19 21 24 64 
3 18 21 24 63 

Total Y-J3 57 64 71 192 = G2 
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C.T2. = (;?2 
= ~~2~

2 

= 4096.00. 

. . 1 "" 12290 SS (Repbcat10nsh = P Li yf. 3 - C.T2 = -
3

- - 4096.00 = 0.6667. 

1 "" 2 12386 SS (Phosphorus)2 =;:Li Y.;3 - C.T2. = -
3

- - 4096.00 = 32.6667. 

So2 = (p _ l)l(r _ l) IL LYlj3 - C.T2 - SS (Replications)2 

- SS (Phosphorus hi 

= 2 ~ 2 [4132 - 4096.00 - 0.6667 - 32.6667] = 0.66665. 

Therefore, To = 3(21.33 - 23·67)
2 

= 12.32 2 2 x 0.66665 . 

This T2 > Fo.s;1,4 = 7.71. The two means arc significantly different. 

(iii) We need to compare the means 'jj,32 = 23.00 and 'jj.33 = 23.67. It is observed that the 
levels of nitrogen do not differ significantly and hence, the comparison of means of different 
levels of nitrogen is not needed. However, we can compare the means in presence of a particular 
dose of phosphorus. The test statistic for this is 

T . r(Jj,jt - 'Y.;1• )2 h S 1 """"( - - - )2 . 
1 = 2s01 

, w ere 01 = (q _ l)(r _ l) Li Li Yijl - Y.11 - Yij· + y,1. ; J = 3. 

The observations of nitrogen in presence of P3 in different replications (Yi31) 

Replications Levels of nitrogen Total Yi3· 

N1 N2 N3 

1 22 23 23 68 
2 22 23 24 69 
3 23 23 24 70 

Total y.31 67 69 71 207 = G1 

C.T1 = G~ = <
3
207)

3

2 
= 4761.00. 

pq x 

' ( . . . 1 "" 2 14285 . SS Rephcations)i = q L.JYi.3 - C.T1 = -
3

- - 4761.00 = 0.6667 

1 "" 14291 , SS (Nitrogen)1 = :; Li y~31 - C.T1 = -
3
- - 4761.00 = 2.6667. 

1 
So1 = (q _ l){r _ l) IL LYl31 - C.T1 - SS (Replicat~ons) 1 - SS (Nitrogen)i] 

= 2 ~ 2 [4765 - 4761.00 - 0.6667 - 2.6667] = 0.16665. 

Therefore, T = 3{23.00 - 23.67)2 = 4 04 1 2 x 0.166665 . . 

But T1 < Fo.os;l,4 = 7.71. The two means do not differ significantly. 
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{iv) The efficiency of split-block design in estimating interaction (AB) of phosphorus and 
nitrogen compared to randomized block design is 

(p - l)sa + (q - l)ss + (p - l)(q - l)s1 
(pq - l)s1 

- (3 - 1)0.25925 + (3 - 1)0.8704 + (3 - 1)(3 - 1)0.42555 
- (9 - 1)0.42555 

3.9615 
= 3.4044 = 116.36%. 



Chapter 5. 

Incomplete Block Design 

5.1 Introduction 
One of the disadvantages of randomized Llock design is that the block heterogeneity arises 

if number of plots are needed to allocate a large number of treatments in a block. This problem 
of allocation of a large number of treatments in a block is obviated introducing confounding 
technique in the experiment. The fractional replication of factorial experiment is also used to 
remove the problem of block heterogeneity in the experi.:ient. The confounded technique or 
application of fractional replication of treatment does not provide information on somf. effects 
and interactions. Therefore, those interactions which are least important are confounded with 
blocks so that block contrast within a replication represents a higher order interaction. 

In varietal trial experiment if number of variety is large, a portion of it cannot be used 
in the experiment and there is no scope to loose information on any effect of a variety. The 
experiment is to be conducted in such a way that all effects of varieties arc estimated with eqnal 
efficiency without allocating all treatments in plots of a block. The design of snch varietal trial 
experiment in the field of agriculture has first been introduced by Yates (1936). Later on, Yates, 
Fisher and Bose (1939) have developed the technique to allocate large number of treatments.in 
smaller number of plots of a block. 

Let there be v treatments which are to be allocated in k(k < v) plots of a block. Since 
number of plots is less than number of treatments, all treatments are not allocated within plots 
of a block il.nd the block is called incomplete. However, the treatments are allocated in blocks 
in such a way that each pair of treatments is compared with same efficiency. Yates, Fisher 
and Bose (1939) have first introduced the technique of analysis of data obtained from such 
experiment. 

The main objective of incomplete block design is to estimate the treatment effect without 
allocating all treatments in a block. Therefore, the two factor effects, viz., treatment effect and 
block effect are of interest. The observations are influenced by these two factors except the • influence of uncontrolled source of variation (error). Therefore, the model to represent the data 
obtained from incomplete block design is 

i = 1,2,. .. ,b; j = 1,2, ... ,v; l = 1,2,' .. .,nii· 

Here Yi.ii = lth observation of j-th treatment in i-th block, µ = general mean, O'i = effect of 
i-th block, f31 =effect of j-th treatment, (a/3)ij = interaction of j-th treatment with i-th block 
and eiil = random error. 

In such experiment, if any nii = 0, the block can be considered incomplete. The analysis of 
such experimental data can be performed using the technique of analysis of randomized block 
design with missing observations. The general form of analysis of such experimental data is 
shown in section 2.4. 

213 
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The value of nij = 0 indicates that in i-th block j-th treatment is missing and niJ = 1 
indieates that j-th treatment is allocated once in i-th block. Therefore, the block is incomplete 
if niJ = 0 or 1. However, the j-th treatment is allocated in i-th block in such a way that all 
j-th and j'-th (j i- j' = l, 2, ... , v) treatments can be compared with equal efficiency. 

5.2 Balanced Incomplete Block {BIB) Design 
Let there be v treatments which are to be allocated in b blocks of k plots ( k < v) each. The 

allocation of v treatments in b blocks of k plots each is called BIB desigr if the treatments are 
allocated in such a way that 

(i) each treatment is replicated r times (r < b) 
(ii) each pair of treatments is replicated in ~ blocks (A :5 r). 
In such an arrangement of treatments in blocks, if b = v, the design is called symmetric BIB 

design. 
The design is introduced first for varietal trial experiment in the field of agriculture. 

However, the design is not suitable for varietal trial experiment if the treatments need moCt
replications. Moreover, the design is not suitable for any number of treatments. 

Relation among Parameters of BIB Design 
It has already been mentioned that the number of observations of j-th treatment in i-th 

block is niJ [i = 1, 2, ... , b; j = 1, 2, ... , v), where for BIB design n;1 = 0 or 1. The observations 
of all treatments in all blocks can be represented by a matrix N called incidence matrix, where . . 

•tu n12 n1j niv 
n21 n22 n2i n2v 

N= 
n;1 n;2 n;i niv 

nb1 nb2 nbi nbv bxv .. 
Here L n;3 =Ni.= k, L nij = N.3 = r, L n;jnis =A, (j i- s) 

j i 

LLnij = n = LN;. = LN.3 =bk= VT. 

j i j 

The values b, ·u, T, k and A related.to n;1 observations are called parameters of BIB design. 
Let us now discuss the relations of these parameters. • · 

(i) bk= vr 
Proof : The design has b blocks and each block has k plots. Hence, total number of plots 

are bk. The design is used to study the effects of v treatments. Each treatment is replicated T 

times. Therefore, total number of observatio?S of v treatments are VT. These vr observations 
are obtained from bk plats. Since each plot contains maximum 1 treatment, bk= vr. 

(ii) ~(v - 1) = r(k - 1) 
Proof : From the incidence matrix, we have 

L 
A A 

.:.] N'N= 
T A 

A A vxv 
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""' 2 ""' 2 . ""' . Here ~ nij = k, ~ nij = r, ~ ni3nis = ..\, (J-:/:- s). 
j i i 

Post multiplying N' N by 1 = (1, 1, ... , l)~xv• we have 

From both the results, we have 

r + ..\(v - 1) = ._rk or, ..\(v·- 1) = r(k - 1). 

(iii) r > >. 
Proof: We have ..\(v-1) = r(k-1). From the condition of BIB design, we have k-1 < v-1 

or, v - 1 > k - l. Therefore, to maintain equality ..\(v - 1) = r(k - 1) ..\ must be less than r . 
.• r > ..\. 

(iv) b ~ v [Fisher's inequality] 

Proof : We have 

N'N ~ [ .:. 

,\ ,\ 

:. ] 
1' ,\ ,\ ,\ 

1' ,\ 
and IN'NI = 

,\ r ,\ ,\ 

,\ ,\ ,\ ,\ ,\ r vxv 

Subtracting first column from other columns, we have 

r ..\-r ..\-r ..\-r 

IN'NI= 
..\ r-..\ 0 0 

,\ 0 0 r - ..\ 

Adding the sum of all rows except first row with the first row, we get 

r + ..\( v - 1) 0 0 0 
..\ r-..\ 0 0 

IN' NI = ..\ 0 r - ..\ 0 = [r + ..\(v - l)][r - ..\]v-1. 

,\ 0 0 r - ..\ 
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IN' NI =I- 0, ·: r > ,\, . 
Hence, r(N' N) = r(N') = r(N) = v. 

b? v [since row rank is equal to column rank]. 

(v) r ~ k 

Proof : We know bk = vr· and b ? v. 

k ~ r or, r? k. 

(vi) b ~ v + r '- k 

Proof : We have b ;::: v, r ? k. 

v(r - k) ? k(r - k) [·: k < v] 

vr ? vk + rk - k2 

bk ;?: vk + rk - k2 . 

b? v + r - k. 

(vii) For a symmetric BIB design (r - ,\) is a perfect square. 

Proof: We have IN' NI = [r + ,\(v - l)][r - ,\]"-1 = [r + r(k - l)J[r - -X]"- 1 

= rk(r - ,\)"-1 . 

. For a symmetric BIB design b = v and hence, r = k (·:bk= vr) . 

.Again, IN' NI= INl2 = r 2 (r - v)"- 1 . 

INI = ±r(r - ,\)<v-1)/2. 

• But INI is an integer (since the elements in N are either 0 or 1] and r is also an integer. 
Therefore, (r - ,\)(v-lJ/2 must be an integer and hence, (r - ,\)112 is an integer. Hence, (r - ,\) 
is a perfect square. 

(viii) For a BIB design if bis divisible by r, then b? v + r - l. 

Proof : If b is divisible by r, let us take b = nr, where n is an integer and greater than 1. 
We know 

or, 

,\(v - 1) = r(k - 1) 

_ ,\(v - 1) _ ,\(nk - 1) _ ,\(n - 1) ,\ 
r- k-1 - k-1 - k-1 + n 

= +ve quantity (•: n > 1, k > 1). 

Again; b ~ v, :. b ~ v + r - l. 

If this is not true, f> < v + r - 1. 

nr < v+r -1, 
r 

r(n - 1) < v -1, r(n -1).< x<k - 1) 

,\(n - 1) 
1 k-1 < . 

This is not true and hence, b < v + r - 1 is not true. Therefore, b ? v + r - 1. 
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(ix) For a symmet-ric BIB design 'Yii' = .X, where 'Yii'. = L ni;ni'i, i =f i' = 1, 2, .' .. , b. 
i . 

Proof : From the incidence matrix, we have 

[nu ni2 nt; .. . 
ni. l [nu n21 ... 

NN' = ~.2~ n22 n2; ... n2v n12 n22 

. . . 
• nb1 nti2 nb; . ... nbv n1v n2v 
. ;. 

' [ k 
'Y12 'Y13 

~·1 ' = 'Y21 k 'Y23 'Y2b 

'Ybl 'Yb2 'Yb3 k bxb 

Since b = v and r(N) = v, jv-1 is available and N N- 1 =I. 
. NN' = NN'NN- 1 ~ N(N'N)N- 1 . 

[ r 

.X ,\ 

:. ] = (r - A)J.,, H l · :. . . .X r .X 
Agam, N'N = ·~· 

.X A 

. .. N(N'N)'=(r-A)N+N[ i] (I I ... I ]ix.A 

= (r - A)N +A [ j ] ( I I .. · I J k. 

n01 l nb2 

nbv 

1 

1 

1 

N(N'N)N~' = (r -A)NN-1 + {j ] [ I I .. · I J kW 1 

. .. 
= [ .f 

,\ 

1' 

.X 

"fii' = ,\ [from (a) aud (b)J 

1 ] N N-1 [·: r = kJ ~ 

,\ 

n ,\ ... 

,\ 

. : . ] . 
vxv 
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(a) 

(b) 
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5.3 Analysis of BIB Design 
The BIB design is constructed in such a way that a group of k treatments are allocated in 

plots of a block. Again, the group of k treatments are allocated to a block randomly. Thus, 
there are two steps of randomisation in allocating treatments to the plots of blocks. Since a 
group of treatments are randomly selected for a block, the block efff'ct may be random. The 
block effect may also be considered as fixed effect. Thus, there are two types of analysis of 
the data of BIB design. The analysis of data assuming fixed block effect is called intra-block 
analysis and if block effect is considered as random variable, the analysis is called inter-block 
analysis. · 

Since all blocks are not of same types, the treatment effect \'aries with the variation in 
block effect~ Therefore, some information of treatments are retained in blocks. The inter-block 
analysis is done to recover the information which is retained with block. Thus, the treatment 
effect is also estimated using intra-block and inter-block estimate. This estimate. is known 
as combined intra- and inter-block estimate with recovery of inter-block information. In the 
present section, all three types of analysis will be discussed. 

Intra-block Analysis of BIB Design: The model for this analysis is 

Yijl = µ + ai + /3j + eijl. (A) 

·where Yijl = lth observation of j-th treatment in i-th block, µ = general mean, ai = effect of 
i-th block, /3j = effect of j-th treatment and ei.il = random error [i = 1, 2, ... , b; j = 1, 2, ... , v; 
l == nij = 0 or 1]. Since nij = 0 or 1, the interaction (a/3)ij considered in the model is dropped.· 

Assumption : The error term e;jl is distributed normally with mean zero and variance a 2 . 

The normal equations to estimate the parameters are : 

y ... = bkµ + k L &; + r E .81 

y; .. = kµ + k&i + E nij/31 

Y·1· = rfi, + 2: n;j&; + rf3j. 

Replaci~g the value of&;= Y~· - fl. - ~ 2: n;j/3j from {b) in (c), we get 

Cj1f31 + Cj2ih + ... + Cjjf3j + ... + Cjvf3v = Qj; j = 1, 2, ... 'v, 

· L11~ n~- r r .A(v -- 1) 
where C .. = N · - .-!l. = r - - = -(k - 1) = ---

11 ·i N· k k k iO ,. 

"' n;jnis A . Cjs = - L.t -y:;;- = -k, J =Is= 1, 2, ... , v . 

.A - ·.A- .A~- 1"' k(v - 1)/3j + kf3j - k L.t /3j = Q;, ~ = Y·j· - k L.t n;jy; ... 
j 

Putting the restriction 2: f31 = 0, we get 

1 - - Q1 
kf31[A(v - 1) +A]= Q1 ~ /31 = rE' 

AV 
where r = rk· 

(a) 

(b) 

(c) 
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The sum of squares due to 'estimate is : 

. ) I"' 2 1·"' 2 SS (Estimates = k ~Yi .. _+ rE ~Qi 

and S3 =SS (Error)= LL:LYi1 +~LY;_ - r~ LQJ .. 
The objective of the analysis is to test the significance of Ho: /31 = /32'= · · · = f3v· 

Under Ho, the model (A) stands 

Yi1l = µ+·ai + eijl· 

The sum of squares due to estimates of this model is 

SS (Estimates) = ~Y?.. 
Hence, sum of squares due to treatment under Ho is {d) - (e), where 

I "" 2 S2 =SS (Treatments)adjusted = rE ~Qi. 

The block sum of squares unadjusted (ignoring treatment) is 

' 1 G2 

S1 = SS (Blocks) = k LYl. - C.T., C.T. = bk· 

ANOVA Table 

Sources of Variation d.f. SS MS= SS 
d.f. 

Blocks (unadjusted} b-I S1 S1 

Treatments (adjusted) v-I S2 S2 

Intra-block error bk-b-v+I S3 83 

Total . bk- I 

If F2 ~ Fo.os; v-1, bk-b-v+i, Ho is rejected. 

The variabce of the estimate of contrast /3i - {38 is 

F 

F1 = !.!. 
83 

F2 =!a. 
83 

-
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(d) 

(B) 

(e) 

where V(O,;) = C,;ia2 and Cov (01 , 08 ).= C18a2 . The estimate of this variance is 2s3 /rE, where 
s3 is the mean square intra-block error. The estimate of variance of the estimate of contrast 
E di/3i is !1J E dJ, where Edi = O. Therefore, usual t-test can be performed to test the 
significance of any contrast of treatment effects. 

The variance of i31 - fis in BIB design is 

• • 2a2 2 
V(,Bi - /3s) = rE, where <r = intra-block error variance 
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Let the variance of the estimated contrast fij - fis be 
. 2 

V(fij - Ss) = 
2
UR, . r 

if the experiment is conducted through randomized block design, where uh is the error variance 
in case of randomized block design. Therefore, the efficiency of BIB design compared to 
randomized block design is 

2u2 2u2 u 2 

Efficiency of BIB design = --11. / -E = E -112 · 
: r r u 

Here E :c: ~ = >.v - >. + >. = >.(v - 1) + >. = r(k - 1) +A < i" 
rk rk-r+r ·r(k-·l)+r r(k-l)+r ' 

since>. > r. The efficiency of BIB design is less than that of R.BD. 
Inter-block Analysis : Yates (1940) has proposed this ailalysis using the block total, 

where block total is 
Yi·· = kµ, + kai + L ni1/31 + ei ... 

The original model for BIB design is 

Yijl = µ, + ai + f3i + eijl, 

i = 1, 2, ... , b; j = 1, 2, ... , v; l = nii = 0 or 1 
The block effect ai is assumed random variable and hence, the assumption for this analysis is 

E(ai) = 0 · E(ai,a;•) = u!, if i = i' = 1,2,. .. ,b 

= 0, otherwise 

.and E(ai,e;1)=0. 

It is observed that V(yi . .) = k(o-1 ·+ ku~), where E(e;J) = 0 and V(eii) = u2
• 

Since block effect is random variable, the parameters µ, and f3J are to be estimated by 
minimizing the error sum of squares. 

</> = L (Yi .. - k{.t - L nii Pi) 
2 

· 

The normal equations are : 

y ... = bkµ + r 2.: fi1 

L n;iy; .. =;= rk{.t + L nii L niJSi· 
j 

The equation (g) can be written as 

L:nij (y~ .. - ~k·) = fij (~ - ~) + ~ L:Sj.' 

Under the restriction L fi1 ~ 0, we have 

A Pj ""' (yi.. y ... ) 
f3 = t(r ->.)'where Pi= L:nij -,:;- bk . 

The inter-block adjusted treatment sum of squares is 

. k ""' 2 S1 =SS (Treatment)ajdusted = r _ ,\ L..J Pj · 

(f) 

(g) 
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ANQ..VA Table . 
Sources of Variation d.f. SS MS= SS 

. d.f. E(MS) F 

Treatment (adjusted) v-1 S1 St q2 + ku2 + r-~ L,/P .!.I. 
• Q rrv=r; . J s2 

Inter-block error b-v S2 83 u2 + ku~ 

Total b-1 . 

The analysis is done if b =/= v and in that case, the usual F-test statistic is calculated tp test 
the significance of Ho : /3j = 0. The variance of f31 - f3s is given by : 

V(iJ; _ f3s) = 2k(a
2 + ka~). 

. r- .X 

where inter-block error mean square s2 is the estimate of ( a 2 + ka~). Therefore, the significance 
of the contrast of the type {3j - /3s (j =I= .9 = 1, 2, ... 'v) can be tested by t-test. 

Combined Intra- and Inter-block Analysis of BIB Design : It has already been 
mentioned that a group of k treatments selected from v treatments are randomly allocated to 
blocks arid hence, block effect is random variable. Due to variability in blocks the treatment 
behaves differently in different blocks. In such a situation only intra-block estimate of treatment 
effect is .not sufficient to get the informat\on on treatment. Some information on treatment is 
retained in the blocks. Thus, we need the tombined intra- and inter-block estimate of treatment 
effect. The combined estimate is known a.ci estimate of treatment ~ffect after recovery of inter
block information, where the recovered estimate of treatment effect is 

, . Pj 
/31 (mter-block) = 1 ( ) . 

'kr-.X 

The combined estimate is found out as follows : 
The model for BIB design is 

Yijl = µ + ai + /31 + eijl· 

~ = 1, 2, ... , b; j = 1, 2, ... , v; l = nij = 0 or 1., 
We have already observed that the intra-block and inter-block error variances are a 2 and 

u 2 + ka~, respectively. Let W = ;J.r and W1 = {a")X:.,.!). Then weighted error sum of squar~s 
for combined intra- and inter-block analysis is 

~ ~ wL; L;L:C•;;1 -,;-a; -P,J' + :• L; [•; .. - kµ-~ n.,sJ 
The f31 is found out from the equation H; = 0. We have 

W [ Y-i· - rfl. - L nijCti - r/31] + i~1 [L n•iYi .. - rkj.L - L n;1 L nijf3jl = 0. 
' J 

From intra-block analysis, we have 

1 1"" ' a= kyi .. - fl:-- k L- n;j/3j. 
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Putting the value of &i in the above equation and on simplification, we get 

' , . _ WQ1 + W1P1 _ Q1 + pP1 · W1 
• • /3i - rEW + Jt1.(r - ..\) - rE + f (r - ..\)' p = w· 

If b f. v, the combined estimate of /3j can also be obtained from weighted' estimates of 
intra- and inter-block estimates. The variances of intra- and inter-block estimates of f3J are 
respectively 

, (v - l)o-2 - . (v - l)(o-2 + ko-~) 
V(/31 ) intra-block= vrE and V(/31) mter-block = I(r _ ,\) . 

vrE v(r - ,\) 
Let w = (v _ l)o-2 and w1 = k(v _ l)(o-2 + ko-~). Then 

v [rE r - ,\ ] Wv r. p ] 
w + w~ = v - 1 o-2 + k(o-2 + ko-~) = v - 1 · l~E + ;;(r - ,\) · 

Therefore, the weighted estimate of /31 is : 

/3
, ·( . h d) 1 [Q1 vrE · kPi v(r - ,\) ] 
i welg te = w + w1 rE (v - l)o-2 + (r - ..\) k(v - l)(o-2 + ko-~)· 

- Q1 + pPJ 
-rE+f(r-..\)' 

However, the value of Wand W1 and hence, pare unknown. These values can be estimated. 
Let the estimate of W be W = -fr, where s2 is the inira-block error mean square. Let the 
estimate of q~ be s~, where 

2 1 2 
Sa= b - 1 Sa 

and S~ =SS (Treatment) adjusted+ SS (Blocks) unadjusted - SS (Treatment) unadjusted. . . 
Here E(s!) = o-2 + v~ - l) o-!. Also E(s2) = o-2. 

-1 

E( 2 _ 2) _ v(r-1) 2 
8 a 8 - b-1 O'a. 

, 2 (b - l)(s~ - s2 ) 
O' = . 

a v(r - 1) 

Therefore, the estimate of W1 is 

, v(r - 1) 
W1 = 2 • k(b - l)s~ - (v - k)s 

Hence, p can be estimated and the estimate of combined treatment effect is 

, . Q1 + fJP1 
/31 (combined) = . 

rE+f(r-..\) 
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The above estimate of {31 is not unbiased since it is found out using p. The value w and Wt 

can be estimated independently (if bf. v). Hence, the bias of order Et can be removed from 
the estimate of {31 where Ji =bk - b- v + 1 and '2 = b - v. The adjusted estimate of f31 [Meir 
(1953)] is 

/3• ( b' d) d' ed w/31 (intra)+ w1f31 (inter) """ 1 [82 R] c ll 
1 com me a JUSt = . . - L., -

1 
-
8 2 1or a Xi· 

W +Wt i Xi 

H R 
w/31 (intra)+ w1f31 (inter) w w1 

ere = . . , x1 = -, x2 = -. 
w+w1 w w 

Herc the adjnstoo combined intra- and inter-block estimate of treatment effect is suggested. 
However, such estimate is not needed if s! $ s2 . 

The inter-block analysis is possible if b > v. Let F2 be the test statistic to test the significance 
of Ho : {31 = 0. Again, let F 1 be the test statistic for the same hypothesis in intra-block analysis. 
Using these two test stati~tics we can infer about the significance of combined effect of /31. This 
is possible by combining the two test statistics result F1 and F2. We have 

Pi= P [F ~ ;:] , i = 1, 2. 

It is known that intra-block analysis is more powerful than the inter-block analysis. 
Therefore, the combination of tests is to be done in such a way that F1 gets maximum weight. 
Thus, the critical region for the combined test is to be found out so that · 

w : {P1P~ $ C}, 0 $ fJ $ 1. 

where w = critical region. The null hypothesis of insignificance of combined treatment effect is 
rejected if P1P~ $Ca. The value of Ca is to be found out in such a way that 

p{p1p~ $ Ca} = a. 

If 0 = 0, only the intra-block test statistic F1 is to be used. If 0 = 1, then the test statistic is 

2 

x2 = -2l:lnp( 
i=l 

This x2 has 2 x 2 d.f. In pra.Ctice, 

1-E:( u2) 
f) = --e u 2 + ku~ ' 

where u 2 is to be replaced by intra-block error mean square and (u2 + ku~) is to be replaced 
by inter-block error mean square. 

E)'.Cample 5.1 : In a laboratory an experiment is conducted to study the impacts of 
pesticides on heart rate of one kind of slug: The pesticides are applied on different slugs 
according to·the plan of BIB design with parameter b = 12, v = 9, k = 3, r = 4 and .>i = 1. 
The arrangement of pesticides and the heart rate per minute of slugs under different pesticides 
are shown below : 



224 DESIGN OF EXPERIMENTS ~ND SAMPLING METHODS 

Block Treatment Heart rate· Block total Block Treatment Heart rate Block total 
under Yi·· under Yi .. 

treatment treatment 

1 
. 1 2 3 10 10 8 28 7 1 6 8 11 8 9 28 

2 4 5 6 10 9 8 27 8 2 4 9 10 9 8 27 • 
3 7 8 9 11 10 10 31 9 3 5 7 8 8 10 26 
4 1 4 7 9 9 10 28 10 1 5 9 • 10 8 9 27 
5 2 5 8 11 10 9 30 11 2 6 7 10 8 10 28 

6 3 6 9 9 8 10 27 12 3 4 8 8 8 9. 25 

(i) Group the pesticides, if possible, from intra-block analysis. 

(ii} Find combined intra- and inter-block estimate of pe.sticide effect. 

(iii) FiRd the efficiency of BIB design compared to randomized ·block design_ 
. . 

Solution : (i) We have b = 12, v = 9, r = 4, k = 3, .>. = 1. 
Table to estimate treatment effect (intra-block analysis) 

Treatment Total of Total of block Adjusted treatment 
treatment totals in which total 

Y·i· jth treatment is Q1 = Y·J· - t E niJYi·· 

present L ni;Yi·· 
i 

1 40 111 3.00 
2 41 113 3.3333 
3 33 106 -2.3333 
4 36 107 0.3333 

5 35 110 -1.6666 
6 32 110 -4.6666 
7 41 113 3.3333 
8 37 114 -1.0000· 

9 37 112 -0.3333 

Total 332 0.00 

' G2 (332)2 

G = 332, C.T. = bk = 
12 

x 
3 

= ~061.7778. 

SS (Total)= EE E yi1 - C.T. = 3096 - 3061.7778 = 34.2222. 

1 9214 
SS (Blocks) = k LY;. - C.T. = -

3
- - 3061.7778 = 9.5555. 

SS (Treatment) adjusted= r~ L QJ = 20.8143. 

Treatment effect 
f11 = Q1/rE 
E=~=0.75 

rE = 3.00 

1.0000 
1.1111 

-0.7778 
0.1111 

-0.5555 
-1.5555 

1.1111 
-0.3333 
-0.1111 

SS {Intra-block error) = SS (Total) - SS (Blocks) - SS (Treatment) adjusted 

= 34.2222 - 9.5555 - 20.8143 = 3.8524. 
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ANOVA Table 

So~rces of Variation d.f. SS MS= SS 
d.f. 

F Fc1.05 

Blocks (unadjusted) 11 9.5555 0.8687 3.61 2.45 

Treatment (adjusted) 8 20.8143 2.6018 10.84 2.59 

Intra-block error 16 3.8524 0.2408 - --

Total 35 

It is observed that the pesticides differ signifiqmtly in influencing the heart beat of slugs. 
The pesticides can be grouped using Duncan's multiple range test, where the test statistic is : 

rs.; 
D1i = do o5,h.f y -;£' h = 2. 3, .... 9; f = 16, s3 = 0.2408 

fQ.2408 
D2 = 3.ooy ~ = o.8499, 

fQ.2408 
D3 = 3.15y ~ = 0.8924, 

fQ.2408 
D4 = 3.23y ~ = 0.9151, 

fQ.2408 
D5 = 3.30y ~ = 0.9343, 

fQ.2408 
D6 = 3.34y ~ = 0.9463, 

fQ.2408 
D1 = 3.37 y ~ = 0.9548, 

fQ.2408 
DB = 3.39V ~ = 0.9604, 

fQ.2408 
Dg = 3.41 y ~ = 0.9661. 

f31 - /36 = 2.6666 > Dg, all the effects are significantly different. 

/Ji - /36 = 2.5555 > D1, Ti and T6 arc different. 

f34 - f33 = 1.8889 >.D8, T3 and T1 are different. 

/34 - /36 '= 1.6666 > D6, T4 and T6 are different. 

/Ji - f33 = 1.7778 > D6, Ti and T3 are different. 

/Ji - f35 = 1.5555 > D5, Ti and T5 are differnt. 

f34 - f33 = 0.8889 < D5, T3 and T4 are not different. 

In a similar way all pairs can be compared. The treatments which do not differ are underlined 
below: 

T6, T3, T5, Ts, Tg, T4, T1, T2, T1 
-- ---,where T1 is the j-th treatment (pesticide). 

D.E.S.M.-15 
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(ii) Inter-block estimate of treatment effects arc as follows : 

Treatment Pi = L ni.i (Y~· - ~~·) 
A p, 

/3i = f(r ~ .X) 

1 0.1111 0.1111 
2 0.7778 0.7778 

3 -1.5555 -1.5555 

4 -1.2222 -1.2222 

5 -0.2222 -0.2222 

6 -0.2222 -0.2222 

7 0.7778 0.7778 

8 1.1111 1.1111 

9 0.4444 0.4444 

SS (Treatment) adjusted from inter-block analysis= r ~ALP} = 6.6664. 

1 '\;"'"'"' . 
SS (Inter-block error) = k ~ Yioo - C.T. - SS (Treatment) adjusted 

= 9.5555 - 6.6664 = 2.8891. 

Now, W = l/MS (Intra-block error)= 4.1528. 

Again, 
, v(r - 1) 

VV1 - ---~-~----,..-
- k ( b - 1) s~ - ( v - k) s2 ' 

.. s2 
wheres;= -b °' , s 2 = MS (Intra-block error)= 0.2408. 

-1 

S~ =SS (Treatment) adjusted+ SS (Blocks) unadjusted - SS (Treatment) 

1 12334 
SS (Treatment)=; LY~i· - C.T. = -

4
- - 3061.7778 = 21.7222. 

s; = 20.8143 + 9.5555 - 21.7222 = 8.6476, s; = 0.7861. 

lV = 9( 4 - 1) = 21 = u 22. 
1 

3(12 - 1)0.7861 - (9 - 3)0.2408 24.4965 ° 
A W1 1.1022 

Therefore, p = -,- = -- = 0.2654. vv 4.1528 

The combined intra- and inter-block estimate of treatment effects are as follows : 

Tre~tment ~.i = 
QJ + pPJ Treatment ~j = 

QJ + pPJ 
rE+~(r-.X) rE+~(r-A) 

1 0.9277 6 -1.4472 
2 1.0840 7 1.0840 
3 -0.8410 8 -0.2159 
4 0.0027 9 -0.0659 

5 -0.5284 
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(iii).SS (Error) from randomized block design analysis 

=SS (Total) - SS (Treatment) - SS (Blocks)= 34.2222 - 21.7222 - 9.5555 

= 2.9445. 

, _ SS (Error) from RBD _ 
84 an - ) - 0.1 0. 

d.f. (Error 

Again, an= 0.2408 (from BIB design). 

Therefore, efficiency of BIB design compared to RB design is : 

a-'h_ o.1840 
E 0-2 = 0.75

0
.
2408 

= 57.313 

Estimation of Missing Value in BIB Design. 

227 

Let the observation of j-th treatment in i-th block be missing. Let this l-th observation of 
j-th treatment be x. We need to estimate the value of x so that the intra-block error sum of 
squares is minimum. 

During intra-block analysis it is observed that the adjusted total of j-th treatment is 

1 1 
Q1 = Y·J· - k L niJYi·· = Y·1· - y;;BJ. 

where B.i = total of block totals of those blocks in which j-th treatment is present. Since j-th 
treatment is missing in i-th block, the adjusted total of j-th treatment is : 

1 1 
Qi = y'1~ + (Y·.i· + x) - y;;f3j - y;;(Yi·· + x). 

Here Bj =total of block totals of blocks except i-th block in which j-th treatment is present. 

Due to missing value in i-th block, the adjusted total of j'-th treatments (j =f. j') which are 
present in i-th block are also affected. Let these adjusted total be Q.i', where 

Q1 1 = Y·.i'· - ~Bj, - ~(Yi··+ x); j' = 1, 2, ... , k - 1 

1 x 
= Y·i'· - y;;B.i' - -;;;· 

Here B_j, = total of block totals except -i-th block in which j'-th treatment is present, {3i' = 
total of block totals of those blocks in which j'-th treatment is missing. 

Therefore, we have 

~ 2 ( x)2 ( x)2 ( x)2 ( x(k-1))
2 

L.. Q1 =constant+ Qi - k + Q2 - k + · · · + Qk-I - k + QJ + k 

Here constant is used to indicate terms free of x. 

On simplification, we get 

~ 2 (k - l)x2 2xQj x 2 (k - 1)2 
L.. Q.i = constant + k2 - -k- + k2 + 2xQ.i · 

Here Qj = adjusted total of all j'-th treatment present in i-th block. 
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Therefore, the intra-block error sum of squares is given by 

2 1 (k - 1)x2 . 2xQ.} x 2 (k -- 1)2 _ 2Q1x 
</J =constant+ x -- ,;(y;. + ;c)2 - rEk2 -t- rEk -· -rEk2-· rE 

Now. 8t o:c· 0 [J'ives 
7i:i: " 

. _ rEy1 .. -- Qj + kQ1 
x --·- ., . 

(k -- l)(rE - 1) 

Example 5.2 Estimate the missing value of x of the following BIB design and analyse 
the data. 

Block Treatment Result of Block total Block total 
treatments, (Yi.it) y; .. with x 

I 1 2 3 10 12 10 32 32 

2 I 4 5 11 13 9 33 33 

3 1 6 7 10 x 8 18 + x 24 

4 2 4 6 11 12 10 33 33 

5 2 5 7 12 10 9 31 31 

6 3 4 7 11 13 10 34 34 

7 3 5 6 12 11 10 33 33 

Here the observation of 6th treatment in third block is missing. We have y; .. = y 3 = 18. 
k = 3 T = 3 A = 1 b = 'U = 7 TE.= 7/3 , , , ' . 

The other treatments in the third block are 1 and 7. 

Treatment Total of Total of block totals Qj = Yf - t L nif.IJi· Qj 
treatment in which j-th treatment with x 

y j· ' L, is present, n;:iy; .. 

1 31 83 + x 3.33 - J 1.33 

2 35 96 3 3 

3 33 99 0 0 

4 38 100 4.67 4.67 

5 30 97 -2.33 -2.33 

6 20+x 84 + x -8 + x - J -4.00 

7 27 83 + x -0.67 - J -2.67 

The missing observation'x is 

rEy; .. - Qj +Qi 
x = (k - l)(rE _ l) , Qj =Qi+ Q1 = 3.33 + (-0.67) = 2.66, Q.i = -8 

l18-2.66-3 x 8 
3 = 6 

(3.-1)n-1;_ · 

C.T. = G
2 

= (22
0)

2 
= 2~04.762 

bk 7 x 3 
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SS (Total)= LL LYfn - C.T. = 2360 - 2304.762 = 55.238. 

1 ~ 2 6984 . 
SS (Blocks)= k ~ Y;. - C.T. = -

3
- -- 2304.762 = 23.238. 

SS (Treatment) adjustl'd = r~ L Q] = 26.201. 

SS (Intra-block error) = SS (Total) - SS (Blocks) - SS (Treatment) adjusted 

= 55.238 - 23.238 - 26.201 = 5.799. 

ANOVA Table 

Sources of Variation d.f. SS MS= SS 
d.f. 

F Foo5 

Blocks (unadjusted) 6 23.238 :3.873 4.68 3.87 

Treatment (adjusted) 6 26.201 4.367 5.27 3.87 

Intra-block error 7 5.799 0.828 - -

Tot.al 19 

The treatments arc significantly different. 

5.4 Partially Balanced Incomplete Block (PBIB) Design 

229 

It has already been mentioned that BIB design is not available for any number of treatments. 
Even, if a BIB design is available for any number of treatments, its number of replications 
becomes large. To avoid the problem, Bose and Nair (1939) have evolved a group of designs 
which are known as PBIB design. However, the variances of the estimate of contrasts for the 
proposed designs are not same. The modified form of PBIB design has been proposed by Bose 
and Nair, Nair and Rao (1942) and later on Bose and Shimamota (1952). 

The definition of PBIB design depends on association scheme of treatments. Let there be v 
treatments for an experiment. Each treatment is associatPd with othPr trnat.mcnts in different 
blocks differently. This association of treatments is the basis of association schcmP of PBIB 
design. 

Association Scheme of PBIB Design : 

(i) Any two treatments A and B is either first, second, third, or mth associates and if A is 
i-th associates of B. then Bis also i-th associate of A. 

(ii) For any treatment A the number.of treatments which are i-th associate with A is ni. The 
value of ni does not depend on. the choice of A. 

(iii) If A and B are mutually i-th associate for any pair of treatments A and B, then the 
number of treatments which are simultaneously i-th associate of A and kth associate of 
B is P]k• where PJk does not depend on i-th associate of A and B. Here v, ni, PJk 
(i,j = 1, 2, ... , m) are the parameters of m-class association scheme. The parameters are 
related as follows : 

m 

Lni=v-1, 
i=l 

m 

L P;'k = n1 - bi.i, 
k=l 

where bi.i = 1, if i = j and b;.1 = 0, otherwise. 



230 DESIGN OF EXPERIMENTS ANO SAMPLING METHODS 

Let A and B be two treatments which are mutually in i-th association scheme. In such a 
case k-th associate of A (k = 1, 2, ... , m) must be all numbers of j-th associate of B (.j j:. i). 
Therefore, 

m 

L,PJk = n1. 
k=l 

If j = i, A itself is _j-th associate of B and for that reason all numbers of j-th associate of 
B become the numbers of kth associate of A. Therefore, 

m 

L Pjk = Tlj - 1. 
k=l 

Under the association scheme discussed above, PBIB design is defined as an arrangement 
of v treatments in b blocks of k plots each ( k < v) if the following conditions are satisfied : 

(i) In each block there are k number of (k < v) separate treatments. 

(ii) Each treatment appears in r blocks. 

(iii) If A and B are i-th associate in association scheme, then A and B appear together in Ai 
blocks. Here Ai does not depend on A and B. But they are i-th associate. Here .),; 's are 
not equal and b, v, r, k, Ai are the parameters of PBIB design. 

Let us explain the association scheme of a PBIB design with parameters b = v = 9, 
r = k = 3, n 1 = 6, n2 = 2, A1 = 1, A2 = 0. The treatments in different blocks arc (1, 2, 3), 
( 4, 5, ·6), (7, 8, 9), (1, 4, 7), (2, 5, 8), (3. 6, 9), (1, 5, 9), (7, 2, 6) and ( 4, 8, 3). The association scheme 
of treatments 1, 2, 3 and 6 an• as f::illows : 

. n1 = 6, A1 = 1 

1 
<= 2, :~, 4, 5. 7, 9 (First associates) 

~----- 6, 8 (Second associates) 
h2 = 2, >-2 = 0 

• n 1 = 6, ..\ 1 = 1 

2
< I. :3, 5, G, 7, 8 

~-----4,9 
n2 = 2, >-2 = 0 

n1 = 6, >.1 = 1 
3< 1, 2, 4, 6, 8, 9 

~-----5,7 
n-:. = 2, >-2 = 0 

n1 = 6, >-1 = 1 
6< 2, 3, 4, 5, 7, 9 

..__ _____ 1, 8 

n2 = 2, >-2 = 0 

It is observed that treatments 1 and 2 are in first association scheme. The value Pl1 = 3 
for these two treatments. Here there are 3 treatments (3, 5 and 7) which are common in first 
association scheme of 2 and 1. Similarly, 

Pl2 = 2 = PJ1 , PJ2 = 0. 

Here Pl2 = 2 indicates the number of treatments which are common in first association 
scheme of 1 and second association scheme of 2. Both 1 and 2 are first associate. Treatment 1 
and 6 are second associate. The number of common treatments in first association scheme of 1 
and first association scheme of 6 are 6 (2, 3, 4, 5, 7, 9). This number is Pi21 = 6. Similarly, other 
common treatment numbers are : 

Pl2 = 0 = P:j1 , P:j2 = 1. 

Classification of PBIB Designs with Two Associate Classes 

The design shown above is a PBIB design of two associate classes. The two associate classes 
PBIB designs can be classified into five classes. These are: (a) Group Divisible (GD) Scheme, 
(b) Triangular Scheme, (c) Latin Square Scheme, (d) Cyclic Scheme, (e) Simple PBIB Design. 
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The simple PBIB design is that one in which treatments are in two association scheme and 
for this scheme, either A1 # 0, Az = 0 or, A1 = 0, A2 # 0. 

5.5 Analysis of PBIB Design 
The model for this design is 

Yh.il = µ + o:h + {3.i + e1i11, (1) 

h = 1, 2, ... , b; j = 1, 2, ... , v; l = nh.i = 0 or 1. Here Yh.1l = the l-th r.esult of j-th treatment 
in h-th block, µ = general mean, 0:1i = effect of h-th block, {31 = effect of j-th treatment and 
e1i11 = random error; 

n1i1 = 0, if j-th treatment is absent in h-th block 

= 1, if j-th treatment is present in h-th block. 

L nh.i = r, L nhj = k, L n1i1n1i1 1 = Aj, if j-th and j'-th treatments are i-th associates 
h j h 

(i = 1, 2, ... , m; m = 2, if the design is simple PBIB design). 

Intra-block Analysis for Simple PBIB Design 
The normal equations to estimate the treatment effect {3.i is 

r(k - l)b1 - A1S1(b,;) - AzS2(b.i) = kQ.1 

r(k - l)S1(b1) - S1(b1)(A1P[1 + AzP[2) - n1A1b1 - S2(b,;)(A1Pf1 + Az?[2) = kS1(Q1) 

r(k - l)S2(b1) - S1(b,;)(A1Pi1 + AzP}2) - S2(b,;)(A1Pi1 + AzPi2) - n2A2b1 = kS2(Q1 ). 

1 
Here, Qi = Y·.i· - k L n1i1Yh 

h 

S; (~;) = sum of n; treatments which are ·i-th associates with j-th treatment 

S;( Q1) = sum of adjusted total of above mentioned n; treatments. 

Solving the first two equations, we get the value of b,; under the restriction 

where the estimate is 
, k{B2QJ - AzS1(QJ)} 

f31 = -----------"-'-
. A1B2 - AzB1 . 

Here Ai= r(k - 1) + Az, A2 = Az - Ai, 

Bi= (A2 - A1)P1
2
2, B2 = r(k - 1) + Az + (A2 - Ai)(?l1 - Pf1). 

The variance of the estimate of contrast of the type {31 - {3J' is : 

if j-th and j'-th treatments are first associates 

if j-th and j'-th treatments are second associates. 
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Here u 2 is the intra-block error variauce. Its estimate is the intra-block error mean square, 
where 

SS (Intra-block error)= LL LY?,11 -- C.T. - SS (Blocks) unadjusted - L ~.iQ.i. 
The variances of the estimate of treatment contrast depend on the association scheme. 

These variances are averaged to compare with the variance of estimate of treatment contrast 
of randomized block design. The average variance (A.V.) is given by 

A V (/3
, . _ 13, . ) = n 1 Vi + n2 V2 

· · J .7' n1 + n2 · 

Therefore, the efficiency factor of this design compared to randomized block design is : 

(v - l)(A1B2 - A2B1) 
rk{(v - l)B2 + n1A2} 

Example 5.3 : An experiment is conducted to study the loss of body weight of one 
type of sing kept under 9 different pesticides. The experiment is conducted through PBIB 
design having parameters b = v = 9, r = k = 4, n1 = n2 = 4, )11 = 2, >.2 = 1, where the 
trcatmC'llts arc' 9 different pesticides. The slugs arc kept in different pesticides for sewn days 
at room temperature. After 7 days the loss in body weights (in gm) are recorded. The plan of 
treatmC'llts and the loss of body weight under different p0sticid<'s ar0 shown below : 

Block (Treatments) and loss in Block total 
body weight (in gms) Yh .. 

1 (1) 0.2 (3) 0.5 (5) 0.5 (8) 0.2 1.4 

2 (2) 0.2 (3) 0.6 ( 4) 0.4 (7) 0.3 1.5 

3 (3) 0.6 (6) 0.8 (7) 0.5 (8) 0.3 2.2 

4 (1) 0.4 (2) 0.2 (6) 0.7 (9) 0.5 1.8 

5 ( 1) 0.3 (5) 0.4 (6) 0.6 (7) 0.4 1. 7 

6 (3) 0.5 (4) 0.5 (5) 0.5 (9) 0.7 2.2 

7 (2) 0.4 (4) 0.4 (6) 0.5 (8) 0.4 1.7 

8 (1) 0.5 (:i) 0.6 (8) 0.5 (9) 0.6 2.2 

9 (2) 0.3 (5) 0.4 (7) 0.6 (9) 0.5 1.8 

(i) Analyse the data and group the pesticides, if possible. 

(ii) Find the combined intra- and inter-block estimatf' of 0ffects of pPsticides. 

(iii) Is there any difference between pesticide-8 and pesticide-9? 

Compare these two treatments using combined intra- and inter-block information. 

Solution : (i) The association scheme of the design is 

n1=1, >.1 = 2 
l<:: 5. 6, 8, 9 

~~~~~-2, 3, 4, 7 
n2 = 4, >.2 = 1 

111=1, >. 1 = 2 
2<:: 4, 6, 7, 9 

~~~~~-1,3, 5, 8 
n2 = 4, >.2 = 1 
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ni = 4, >11 = 2 
7< 2, 3, 5, 6 

~---- 1, 4, 8, !) 
n2 = 4, >.2 = 1 

n1 = 4, >.1 = 2 

5
( L 3, 7, D 

'--· ----- 2. 4. (). 8 
n2 = 4, >.2 = l ' ' 

n1 = 4, )q = 2 
8< 1, 3, 4, 6 

--------2,5, 7,!J 
n2 = 4, >.2 = 1 
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111 = 4 >.1 = 2 
6< ' 1, 2. 7, 8 

--------3,4. 5,9 
n2 = 4, >.2 = 1 

n1 = 4, >.1 = 2 
9< 1. 2, 4, 5 

~----3, 6, 7. 8 
n2 = 4, >.2 = 1 · 

Plk = [ ~ ~ ] , Pfk = [ ~ ~ ] , G = 16.5, C.T. = ~: = (~6~5t = 7.5625. 

SS (Total) = LL L Yl.11 - C.T. = 8.33 - 7.5625 

= 0.7675. 

Table to estimate Intra-block Effect of Treatment 

Treatment Total of Total of block totals Q1 = Y·1· - ~ Lnh1Yh 
h 

treatment in wl"fich j-th treatment 

y j· is present, L nh]Yh .. 
h 

1 1.4 7.1 -0.375 

2 1.1 6.8 -0.600 

3 2.2 7.3 0.375 

4 1.9 7.6 0.000 

5 1.8 7.1 0.025 

6 2.6 7.4 0.750 

7 1.8 7.2 0.000 

8 1.4 7.5 -0.475 

9 2.3 8.0 0.300 

B2 = r(k - 1) + >.2 + (>.2 - .><.1)(Pl1 - P[i) = 14. 

B1 = (>.2 - >.i)Pf2 = -2, A1 = r(k - 1) + >.2 = 13, 

A2 = >.2 - >.1 = -1, A1B2 - A2B1 = 180. 

SS (Treatment) adjusted= L ~1Q1 = 0.4516. 

~1 = k[B2Qi - A2S1(Q;)] 
A1B2 - A2B1 

-0.103 

-0.163 

0.107 

-0.009 

0.014 

0.205 

0.012 

-0.131 

0.072 

. 1" 30.99 SS (Block) unadjusted= k ~ y;._ - C.T. = -
4

- - 7.5625 = 0.185. 

SS (Intra-block error) = SS (Total) - SS (Treatment) adjusted - SS (Block) unadjusted 

= 0.7675 - 0.4516 - 0.185 

= 0.1309. 
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ANOVA Table 

Sources of Variation d.f. SS MS= SS 
d.f. 

F Fo.o5 
-·---

Blocks (unadjusted) 8 0.185 0.02312 3.35 2.48 

Treatment (adjusted) 8 0.4516 0.05645 8.19 2.48 

Intra-block error 19 0.1309 0.00689 - -

Total 35 

It is observed that the pesticides are significantly different in reducing the body weight of 
slugs. 

Now, the variance of the estimate of contrast of the type /3.i - /3]' (j =f. j' = 1, 2, ... , v), 
where j-th and j'-th treatments in first association scheme is : 

, ((3,. _ (3,. ) _ 2k(B2 + A2 )a2 
_ 2 x 4(14 - 1)0.00689 _ O 00·

3
--
9
-
8 

h , 2 _ o o ,
89 v .1 J' i - A A B - O - . , w ere <7 - • Oti . 

i B2 - 2 i 18 
( 

When j-th and j'-th treatments are in the second association scheme,'1 
I 

/ 
2 x 4 x 14 x 0.00689 = 0042 

180 o. 9' 

Therefore, to compare the effects of two pesticides, which are in first association scheme, 
the LSD is given by : 

LSD= to.os,19Vv(/3.i - f31, )i =; 2.093)0.00398 = 0.132. 

The same LSD when two treatments are in second association scheme is : 

LSD =to o5,19V v(/31 - /3y )2 = 2.09.3)0.00429 = 0.137. 

The treatment effects in ascending order are /32 = -0.163, /38 = -0.131, /31 

{34 = -0.009, f31 = 0.012, {35 = 0.014, {39 = 0.072, {33 = 0.107, [36 = 0.201. 

~'~'~'~'~'~'~'~'~ 

The underlined effects do not differ significantly. 

We have 

w = 1 = 145.13788 .. 
MS (Intra-block error) 

W1 = (.b ';(r - ? k) , wheres= MS (Intra-block error), 
k - 1 Sa - V - S 

Sa = MS (Block) adjusted. 

SS (Block) adjusted= SS (Block) unadjusted - SS (Treatment) unadjusted 

-0.103, 

+SS (Treatment) adjusted. 
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. 1'""" 32.11 
SS (Treatment) unadjusted) = ;: L.., y2

j· - C.T. = -
4

- - 7.5625 = 0.465. 

SS (Block) adjusted= 0.185 - 0.465 + 0.4516 = 0.1716. 

1 0.1716 
•• Sa= (k _ 

1
/S (Block) adjusted= -

8
- = 0.02145. 

w = 9(4 - l) = 41.41422. 
• • I 4(9 - 1)0.02145 - (9 - 4)0.00689 

Now, for combined intra- and int.er-block estimate of treatment effects, we have 

A~ = ~{W(k - 1) + Wi} + (W - W1).A2 = 2011.0351 

A2 = (.A2 - -A1) + (W - W1) = -103.72358 

B~ = (W - W1 )(.A2 - .A1)P;22 = -207.44732 

B~ = r{W(k - 1) + Wi} + (W - W1){-A2 + (.A2 - -A1)(Pl1 - Pf1)} = 2114.75876. 

A~B2 - A2B~ = 4231336.91~. 

Table to Estimate Combined Intra- and Inter-block Treatment Effect. 
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Treatment P1 = I: nhJYh .. - fG R.i = WkQ.1 + W1Pi S1(R.i) f3 _ [B~R1-A~Si(R,t)I 
J - A\ B~-A~B\ 

No. 

1 -0.2333 -227.36876 375.94592 -0.1044 

2 -0.5333 -3?0.41711 645.47694 ..:..0.1593 

3 -0.0333 216.32773 ' -258.48172 U.1018 
4 0.2667 11.04517 -221.17128 0.0001 
5 -0.2333 4.85185 185.21477 0.0070 
6 0.0667 438.1759'7 -872.16461 0.1976 
7 -0.1333 -5.52052 288.93844 0.0043 

8 0.1667 -268.85822 438.18011 -0.1236 
9 0.6667 201.77632 -581.88885 0.0866 

Using the above analy~is the homogeneity of treatment effects cannot be tested by F-test 
statistic since Wand W1 are estimated va!Ues. However, a quantity related to treatment sum of 
squares is f: I: /31R.i = 61.44. This quantity is approximately distributed as x2 with (v -1) = 8 
d.f. Since 61.44 is greater than x5.o5,8 , the treatment effects are significantly different. 

(iii) The pesticide-8 and pesticide-9 are in second association scheme. The variance of the 
treatment contrast of these two treatments is estimated by 

A ., 2kB~ A A 

v(/3.i - /3J) = A' B' _A' B' = 0.003998, s · e({31 - /3.j) = 0.06323. 
1 2 2 1 

Tl 
c t _ f3s - /:Jg _ -0.1236 - 0.0866 _ _ 

32 1ere1ore, - . . - - 3. . 
s · e(/38 - {39 ) 0.06323 

Here !ti > to 025,19 = 2.093. Pesticide-8 and pcsticide-9 are significantly different. 
If j-th and j'-th treatments are in first association scheme, then 

A A 2k(B~ + A2) 
v(/31 - /31') =· A' B' _ A' B' = 0.0038. 

1 2 2 1 



Chapter 6 

Covariance Analysis 

6.1 Definition 
The local control is used to classify the experimental materials. or experimental units into 

homogcnco1rn groups so that the treatment is unaffected by unrontrollcd source of variation 
when it is qualitative in character. For example, let us consider the experiment of testing the 
homogeneity of several doses of nitrogen when it is used to produce marigold. To study the 
effects of <loses of nitrogen different <loses of nitrogen arc to be applied in agricultural plots 
of homogenf'Ous fertility. If the plots used for different levels of nitrogen are not of same type 
in respect of fertility, the production will be affected by fertility differentials an<l treatment 
effect. will be entangled with fertility effect.. This fertility differential is a source of experimental 
error which can be reduced by local control. The product.ion of marigold will also be affected 
if number of plants under different levels of nitrogen arc not same. The variation in number 
of plants is also an external source of variation and it cannot be controlled by local control. 
This external source of variation is quantitative in character. In such a situation the effect of 
nitrogen is to be estimated after eliminating the impact of number of plants on production. 
Covariance analysis is a technique to estimate the treatment effect. after eliminating the effect 
of quantitative external source of variation. The quantitative external source of variation is 
known as concomitant variable and it is used to control the experimental error. 

The concomitant variable is denoted by x and the experimental result is denoted by y, 
where y is assumed to be linearly dependent on ;t. Therefore, to formulate the mathematical 
model for the observations of y a regression coefficient of y on x is introduced along with other 
parameters to measure the impacts of qualitative variables. As a result the analysis of data 
is performed using analysis of variance technique and technique of regression analysis. Since 
analysis of variance and regression analysis is performed simultaneously the technique is called 
covariance analysis. 

The main ob,jective of covariance analysis is to estimate the treatment effect eliminating the 
effect of concomitant variable. The effect of the concomitant variable is the regression coefficient 
of y variable on concomitant variable x. In practice, there may be more than one concomitant 
variable and hence, in the usual analysis of variance model more than one regression parameters 
are to be introduced. 

Assumptions in covariance analysis: (i) The concomitant variables x's are non-random 
variable and the values of these variables are observed without error. 

(ii) The regression of y on x is linear after eliminating the effects of block and treatment. 
The regression effect. is independent of block effect and treatment effect,. 

(iii) The experimental error is assumed to be normally distributed with mean zero and 
common variance cr2 . 

Application of analysis of covariance : The covariance analysis is used in the following 
aspects. 

236 
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(i) The covariance analysis is used to control the quantitative external source of variation 
and h<'nc<\ to increase the efficiency of the experiment. 

(ii) It is used t;o estimate the treatment effect el,iminating the effect of concomitant variable. 

(iii) It. is hdpful in estimating the effect of missing value. The technique of covariance analysis 
is used to analyse the data having missing observations. 

(iv) It helps to explain the model for treatment. effect. 

6.2 Covariance Analysis in Case of Completely Randomized Design 
(CRD) with One Concomitant Variable 

The model for CRD with one concomitant variable is 

Yii = µ + ai + f3(xiJ - x .. ) + eiJ, 
i = 1. 2, ... 'p; j = 1, 2, . ' . 'q. 

(A) 

Here YiJ = observation of j-th replication of i-th treatment, µ = general mean, a, = effect 
of i-th treatment, f3 = the regression coefficient. of y on x, eiJ = random error. 

The normal equations to estimate the parameters in the model (A) are : 

y .. = pqfl + q L, &; 

Yi· = qjl + q&, + qf3(x, - x .. ) 

L LYii(x,1 - x .. ) = q L &i(x;. - x .. ) + f3 L L(x;1 - x . .)2. 

Let Gyy = L, 'L,(Yii - y .)2 

Gxx = L, 'L,(x;J - x .. )2 

T.vY = q L('fi;. - 'fi. )2 

Txx = q L,(x;. - x .. )2 

Gxy = L, 'L,(xij - X. )(yij - y .. ) Txy = q L,(x;. - x .. )('fi;. - 'Y .. ) 

Eyy = Gyy -- T,11 y. Exx = Gxx - Txx, Exy = Gxy - Txy 

Then under the restriction L,, &; = 0, we have 
• A , E 

µ = 'fi.,, &; =(Th -y.) - f3(x;. - x .. ) and f3 = Exy. 
xx 

The sum of squares due to estimates is : 

SS(estimates) =fly;.+ L,&;yi· + L,L,/3y;7 (x;1 -x .. ) 
= pqy~ + q L,('!i;. - y ){('!i;. - y .) - /3(x;. ~ x .. )} + /3Gxy 

= pqy~ + Tyy + /3(Gxy - Txy) 

= pqy~ + Tyy + /3Exy· 

The d.f. of this SS( estimates) is (p + 1). The sum of squares of error is: 
2 -2 A A A 

SS (error) = L, L, Yij - pqy .. - Tyy - f3Exy = Gyy - T11 y -. f3Exy = Eyy - fJExy· (a) 

The d.f. of this sum of squares is (pq - p - 1). 

The main objective of this analysis is to test the significance of the hypothesis : 

Ho : a; = 0, against HA : a; f= 0. 

Under the null hypothesis the model becomes 

( ) 
; Gxy 

Yi].=µ+ f3 XiJ - x .. + e,.J, where f3 = --. 
Gxx 
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The sum of squares of estimates is : 

SS (estimate)= {Ly .. + J L LY;1(x;J - x .. )::;:: pqy~ + Jexy· 

The d.f. of the above sum of"squares is 2. The SS (error) under Ho is : 

SS (error)= eyy - Sexy· (b) 

The d.f. of this error sum of squares is pq - 2. The sum of squares due to treatment under Ho 
is : 

SS(O:;) = (b) - (a) = eYY - Jexy - Eyy + SExy = Tyy - Jexy + bExy· 

This sum of squares has (p - 1) d.f. 

In practice, the covariance analysis is performed, if {3 -1- 0. Therefore, at the frist step of 
analysis we need to test the significance of 

Ho : {3 = 0 against HA : {3 -1- 0. 

The model under the above null hypothesis is 

where fl, = 'fi .. , O:; = Y;. - ]j. .. The sum of squares due to error of the above model is 

SS (error) = Eyy· 

This sum of squares has p(q - 1) d.f. Now, subtracting (a) from (c), we have 

SS(b) = ~Exy· 

This SS(S) has 1 d.f. Hence, the test statistic for Ho : f3 = 0 is 

F = bExy/l 
(Eyy - bExy)/(pq - p - 1) 

(c) 

This F has 1 and (pq - p - 1) d.f. If Ho : {3 =a· is rejected, then covariance analysis is needed, 
ot.herwise usual analysis of variance is sufficient to test the significance of Ho : a; = 0. Under 
covariance analysis, the test statistic for Ho : a; = 0 is 

F = (Tyy - Sc_xy + SExy)/(p - 1). 
(Eyy - {3E;y)/(pq - p - 1) 

This F has (p - 1) and (pq - p - 1) d.f. 

ANCOVA Table 

Sources of SS(x) SS(y) Sp(xy) Regression Adjusted 

variation coefficient SS d.f. 

Treatment Txx Tyy Txy p-1 

Error Exx Eyy Exy b-& - Ex Eyy - bExy pq-p-1 

Total exx eyy exy 

SS(O:;) under 

Ho 

T.vY - Sexy + bExy 
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The adjusted treatment means are 

'fk (adjusted) ='th~ - /3(xi. - x .. ) 

2 [1 (xi. - x .. )2
] 

V[yi· (adjusted))= a - + E . 
q xx 

Also, we have V(y.;. - yi'·) adjusted= a 2 [~ + (xi·~ Xi•.)
2

]. 
q xx 

Hence, the test statistic to test the significance of Ho : Qi = Qi' ( i -I- i' = 1, 2, ... , p) is 

F = ('fh - yi'·) 2 
adjusted. 

cr2 [a + (x;. -x;1.)2] 
q E,,., 

Herc cr2 = 
1 

[Eyy - /3Exy]· This F has 1 and (pq - p - 1) d.f. 
pq-p-1 

239 

It is observed that V(yi· - Y;•.) depends on (xi· - Xi•.) 2 . The average value of V('.ih - yi'·) 
can be written as 

l+ . 
2MS(error) [ Txx/(p-l)] 

q Exx 

This variance can be used for multiple comparison of treatment means. 

The above covariance analysis is based on the ~sumption that the impact of concomitant 
variable is same for all treatments. In practice, the different treatments may be responded 
differently by the concomitant variable. To tackle this situation differential regression coefficient 
is introduced in the ll}Odel. Thus, the model becomes 

Yii =µ+Qi+ /3i(Xij - Xi.)+ €ij, 

i = 1,2,. . .,p; j = 1,2, .. .,q. 

The estimate of /3i is 

, Exy; 
/3i = -E , where 

XXi 

E - '"'(y -y )(x -x ) Exx, = '"'(x,·1· - -x. ·,·.) 2 su~h that xy; - L..- ij - i· ij - i· ' L..-
i i 

p p p 

Exy = L Exy;' Exx = L Exx;' Eyy = L Eyy; and Eyy; = L (y;j - Y;. )2. 
i=l i=l i=l j 

The sum of squares due to estimates for the model is : 

SS(estimates) = fl,y .. + E&iYi· + EEf3iYiJ(X,J -xi.) 

p 

= pqy~ + q L(Y;. - Y .. )2 + L /3;Exy;-
i=l 

The d.f. of this sum of squares is 2p. The error sum of squares is : 

p 

S1 =SS (error)= L LY~i - pqy~. - q L(Jh -y..)2 
- L /3iExy; = Eyy - L /3;Exy;· 

i=l 
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Here Si has p(q - 1) - p d.f. Now the sum of squares due to the use of /3; instead of /3 is given 
by 

p 

S2 = Eyy - ~Exy - Si = L ~iExy, - ~Exy· 
i=i 

The d.f. of S2 is (p - 1). Now, to test the significance of the hypothesis: 

Ho : /3i = f32 = · · · = /3p = /3, 

the test statistic is 
F _ S2f(p - 1) 

- Sif[p(q - 1) - p]' 
This F is distributed as variance ratio with (p - 1) and [p( q - 1) - p] d.f. 

For the covariance analysis the concomitant variable x is assumed to be non-random variable. 
If x is also a random variable, the reg·ression of y on x is : 

Cl xy 2 2 such that /3 = - 2 . Here µx, µy, ax, a Y and a xy are means, variances and covariance of the 
Clx 

variables X and Y. Under assumption of randomness of x, 

E[M S(ai)] = a 2 + qa; and E[M S (error)] = a 2
. 

Therefore, to test the significance of Ho : a~ = 0, the test statistic is : 

F = (Tyy - ~?xy + ~Exy)/(p - 1). 
(Eyy - f3Exy)/.f(p(q - 1) - 1] 

Example 6.1 : In,,an agricultural research station an experiment is conducted to study 
the productivity of 4 varieties of potato using nitrogen fertilizer. The agricultural plots for 
cultivation are found homogeneous in respect of fertility. The potato varieties are randomly 
allocated to different plots. But the amount of fertilizer used (x kg/plot) in different plots are 
not same. The production of potato (y kg) in different plots along with amount of fertilizer 
used are given below : 

Plots Potato varieties 

1 2 3 4 

y x y x y x y x . 
1 45.2 1.2 55.0 1.5 30.5 1.0 40.0 1.5 
2 46.4 1.0 54.0 1.3 35.2 L5 44.2 1.2 

3 44.0 1.0 50.0 1.2 32.4 1.3 40.0 1.3 
4 50.0 1.5 50.0 1.0 38.0 2.0 42.2 1.2 
5 48.5 1.2 54.2 1.4 40.2 2.0 41.2 1.0 

Total y;. 234.1 263.2 176.3 207.6 

X;. 5.9 6.4 7.8 6.2 

(i) Analyse the data and group the varieties of potato which are similar in productivity. 

(ii) Do you think that the impacts of concomitant variable are homogeneous for all varieties 
of potato. 
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Solution : (i) We have p = 4, q = 5, G11 = 881.2, Gx = 26.3. 

c; . c2 

C.T11 = - = 38825.672, C.Tx = __!. = 34.5845. 
pq pq 

Gyy = EE Yl; - C.T 11 = 39773.9 - 38825.672 = 948.228. 

· Gxx = L LX~i - C.Tx = 36.23 - 34.5845 = 1.6455. 

GxG11 C.Tx11 = W-- = 1158.778. 

Gxy = LLXijYii -C.Txy = 1155:12-1158.778= -3.658. 

Tyy =~LY? - C.Ty = 198!56
•
5 ~ 38825.672 = 825.628. 

1 "' 2 175.05 
Txx = q L.,,Xi· - C.Tx = -

5
- - 34.5845 = 0.4255. 

1 5727.93 
Txy = - "'Xi·Yi· - C.Txy = - 1158.778 = -13.192. 

qL... 5 

E1111 = G1111 - T1111 = 948.228 - 825.628 = 122.60. 

Ezx = Gxx - Txx = 1.6455 - 0.4255 = 1.22. 

Exy = Gxy - Txy = -3.658 + 13.192 = 9.534. 

• Exy 9.534 ~ Gxy -3.658 
{3 = Exx = 1.22 = 7·81 ' f3 = Gxx = 1.6455 = - 2·223· 
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SS {Potatoes) = T1111 - /3Gx11 + /3Ex 11 = 825.628 - 2.223 x 3.658 + 7.81 x 9.534 = 891.957. 

SS {error)= E 1111 - /3Ex11 = 122.60 - 7.81 x 9.534 = 48.139. 

We need to test the significance of Ho : f3 = 0. The test statistic is : 

F = /3Ex11 = 7.81 x 9.534 = 23_20_ 
SS (error)/15 48.139/15 

Since F = 23.20 > Fo.05;1,15 = 4.54, Ho is rejected. The production of potato varies significantly 
with the variation in the ·amount of fertilizer. Hence, we need to estimate the effects of varieties 
of potato eliminating the effect of fortili7.er. 

The test statistic to test the significance of variety effect {Ho : 01 = 02 = 03 = 04) the test 
statistic is 

F = SS {Potatoes)/3 = 891.957 /3 = 92_64_ 
MS(error) 3.2093 

Since F = 92.64 > F0.o5;3 .15 = 2.29, Ho is rejected. The varieties of potato are significantly 
different. 

ANCOVA Table 

Source of SS(x) SS(y) SP(xy) Regression Adjusted SS(ai) under Ho 
variation coefficient SS 

Potatoes 0.4255 825.628 -13.192 891.953 
Error 1.22 122.60 9.534 7.81 48.139 

Total 

D.E.S.M.-16 
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The adjusted treatment means are : 

Tk (adjusted)= 1h -/J(xi. - x .. ) 
yi-(adj) = ?k - P(xi. - :x .. ) = 46.82- 7.81(1.18-1.315) = 47.87. 

1h(adj) = Y-2. - /J(x2. - :x .. ) = 52.64- 7.81(1.28- 1.315) = 52.91 

Y-3 .(adj) = Y-3. - f3(x3. - x .. ) = 35.26 - 7.81(1.56 - 1.315) = 33.35 

y4 .(adj) = y~. - {J(x ... - x .. ) = 41.52 - 7.81(1.24- 1.315) = 42.11. 

To group these adjusted means we can perform Duncan's multiple range test, where the test 
statistic is : 

D = "'- MS{error) [l Tu/p- l]· k = 2 3 4. f = 15 k ...,.os.1c.1 + E , , , , . 
q %% 

D2 = 3.01x0.845 = 2.55, D3 = 3.16 x 0.846 = 2.67, D4 = 3.25 x 0.846 = 2.75. 

Th. - y3. = 19.56 > D4, all means are significantly different. 

y2. -Jh = 10.80 > D3, variety-2 and variety-4 are different. 

y1. -y3 . = 14.52 > D3, variety-I and variety-3 arc different. 

y4 . - jiJ_ = 8.76 > D2, variety-3 and varicty-4 are different. 

y1. -y4. = 5.76 > D2, variety-I and varicty-4 are different. 

y2. -y1. = 5.04 > D2, variety-I and variety-2 arc different. 

All varieties are significantly different. 

(ii) We need to test the significance of the.null hypothesis Ho: /31 = fJ2 = fJJ = /J4 = /3. 

- E%11- ~ _2 r 
We know {Ji=~· where Ezz, = L-Xii - --!:. 

zz, j q 

E ~ Xi·Yi· • 3 4 zy9 = L-XijYij - --, i = 1,2, , 
j q 

E _ ~ . . _ X1.y1. _ 277 84 _ 5.9 X 234.1 - l 602 
ZJ11 - L-Xt1YJ1 -q- - • 5 - ' . 

E _ ~ . . _ X2-f/2· _ 33B 5S _ 6.4 X 263.2 _ l 6S4 
Zl/2 - L-X21Y'J.1 -q- - • 5 - • • 

E - ~ . . - X3.Y'J. - 28182 - 7.8 X 176.3 - 6 792 
Z1f3 - L-X3JY'JJ -q- - · 5 - · · 

E _ ~ . . _ X4.y4. _ 256 8B _ 6.2 X 207.6 _ -O S44 
ZJ14 - L-X41Y41 q - . 5 - . . 

Exx
1 

= I:xi; - x~. = 7.13- (5-
5
9

)
2 

= 0.168, /31 = EEzy, = 9.536. 
q ~ 

E - ~ 2 - x 2 . - 8 34 - (6.4)
2 

- 0 148 CL - EZ!/2 - 11 378 
zz2. - L- X2; q - . -5- - . ' Vl - Erz2 - . . 

E - '°' 2 - xl - 12 94 - (7-8)
2 

- 0 772 a - Ezy3 - 8 798 
XX3 - L- X3j - - . 5 - . ' µ3 - E - . . 

q ~ 



CoVARJANCF: ANALYSIS 243 

~ 2 X~. {6.2)2 ~ Ez114 · 
Ezz4 = ~x4; - - = 7.82 - -- = 0.132, fJ4 = -E .= -4.121. 

. q 5 ZZ4 

p 

Si = En - L PiEZJI, = 122.60 - 116.628 = 5.972. 
i=l 

S2 = En - PEz11 - Si = 122.60 - 7.81 X 9.534 - 5.972 = 42.167. 

F = 5-i/p - 1 = 42.167 /3 = 28_24_ 
s./fp(q- 1) - Pl 5;972/12 

Since F > Fo.05;3,12 = 3.49, Ho of homogeneous regression coefficients is rejected. Thus, 
diffr.rent varieties of potato arc influenred differently by fertilizer. 

6.3 Covariance Analysis in Completely Randomized Design with Two 
Concomitant Variables 

The model for this analysis is 

1/i; =µ+a;+ fJ(x;; - % .. ) + -r(z.; - z .. } + l!i;, (A) 

i = 1.2, ... ,p; j = 1,2, ... ,q. 

Here "!/ii = result of i-th treatment in j-th replication, µ = general mean, o; = effect of 
i-th treatment, Xi; and z.; are the values of concomitant variable corresponding to 1/ii, fJ = 
regression coefficient of yon x, 'Y =regression "ocflicicnt of yon z, l!i; =random error. 

The normal equations to estimate the parameters in the model (A) are: 

y .. =pqii+qE&. 

1/i· = qf.a. + ,P; + qiJ(x;. - x .. ) + tfY(Zi. - z .. ) 
EE11i;(x.; - x .. ) = qEa;(x;. -x .. ) + PEECx.; -x .. )2 + -YEE<x•; -x .. )(z;; -z .. } 

EEYi;(Zi; -z .. ) = qE&.{zi. -z .. ) + PEE(x;; -x .. )(Zi; -z .. ) +.YEE(z.; -z .. )2• 

Let G1111 = LL(1/i; -y .. )2
, Gzz = EE(x;; -% .. ) 2

, GZJI = EE{:r:;; -% .. )(!Ii; -jj . .) 

Gzz = EE(x;; -x .. )(z;; -% .. ), Tw = qEOk -j . .)2 , Tzz = qE(x;. - % .. )2 

TZJI = qE(x;. -x .. )(y;. -y .. ), Tzz = q}:(x.;. -x .. )(z;. -z .. ) 

G,,z = EEC!li; -i .. )(z.; -z .. }, T11z = qE(i;. -i .. ){Z;. -z .. } 
En = Gn ·- T n• Ezz = Gzz - T.zz• EZJI = GZll - 7;.,. E.z = G11z - T.,z 

Ezz = Gzz - Tzz· 

Under the restriction Eai = 0, we have 

f.a. =Ji ..• a.;= Ok -i .. ) - fJ(x •. - x .. ) -.Y{zi. - z .. ) 
Ez11 = PEzz + :YEzz 

Eyz = PE:n + :YEu. 

Solving equations shown above, we ge~·' 

jJ = EuEzy - Ex,,Eyz i' = ExxEyz - E:uEzy 
ExzE:ez - ~z ' EzxE:ez - ~z . 
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S1 = SS(cstimaW8) = ji.y .. + EaiYi· + fJE LYij(x;; -x .. ) +.YE LYi;(z;, - z .. ) 
= 'pcfll + T Y1I _:_ PTz11 - i'Tyz + /JGz71 + ..YG11• 

= pqy~ + Tyy + /JEz,, + iE11z· 

The d.f. of S1 is (p + 2). The sum of squares due to error is : 
2 P-2 ' -S2 = SS(error) ::::i LLYi; -pqy .. -T,,,, -{:JEz11 -.:YE11 .. = E7171 - fJEz71 - .:YT11 ... 

The d.f. M S2 is p(q- 1) - 2. 

The main objective of this analysis is to test the significance of 

Ho : a; = 0 against HA : a; "I 0. 

Under Ho the model is: 
y;; = µ + /3(x;; - x .. ) + -y(z;; - z .. ). 

The normal equations to estimate the parameters in the model (B) are: 

' ' 

y .. = pqjL. Gz71 = /JGxx + ~G:z;:, G71;: =./3Gx;: +~Gu. 

On simplification, we get 

' - - k - GxyGu - G;:zGy;: : - Gy;:Gx;z - Gx71Gxz 
µ-y .. ,µ- GG G2 ·'Y- GG G2 

xx ~z - :rz x~ zz - :rz 

The sum of squares of estimates is. 

Sa= SS (estimate) = {.t.y .. +EE /3(Xij - x .. )y;; +EE ~(Z;j - z .. )y;; 

2 : -
= pqy., + /3Gx11 + "fG11z:. 

The d.f. of Sa is 3. The error sum of squares is 

S4 = SS (error) = L LYi - pqfj~ - PGx11 - ~Gyz: = G1111 - PGxy - ~Gyz:· 

The d.f. of S4 is (pq - 3). Therefore, the test statistic for Ho : a; = 0 is : 

F = (S4 - 83)/p - 1. 
S4/(pq- 3) 

Here S4 - S2 = SS(&;) under Ho = T1111 + /JExy + iE'll" - f3Gx 11 - ~G,,,,. 
This F is distributed as variance ratio with (p - 1) and (pq - 3) d.f. 

(B) 

If the null hypothesis Ho : a;= 0 is rejected, we need to compare the treatment effects in 
pairs. The null hypothesis for the comparison is : 

Ho:a;=a;• (i-f.i'=l,2, ... ,p) or, Ho:a;-O:;•=O. 

The estimate of the contrast ai - a;• ( i "I i' = 1, 2, ... , p) is : 

&; - &;· = <1h -Y;•.) - /3(x;. - x .. ) - i(z;. - z .. ). 
The variance of the estimate of this contrast is : 

2a2 
V(&; - &;1 ) = - + (x;. - X;•.) 2 V(P) + (z;. - Z;•.) 2 V(i) 

q -
+ 2(x;. - x;1.)(z;. - z;•.)Cov(/3, i), 
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') Eu<r
2 

{' Exx<r
2 

C (R ') Exz<T
2 

where V({j = E E - E2 . V -y) = E E - fil , ov ~."Y = E E - E2 . 
ZZ ZZ zz %% ZZ %% XX %% X% 

The estimate of u2 is MS (error)= S2/[p(q - 1) - 2}. · 

Example 6.2 : In a dairy farm an experiment is conducted to study the impacts .of 4 
different types of fodder on milk production of cows. Each food is given to 5 difforent cows. 
But the amount of food (x kg) and lactation period (z) of cows are not same. The milk 
production (y kg) and the data on x and z are shown below : . 

Milk production of cows fed different fodder 

Cows Food-1 Food-2 Food-3 

y x z y x z y x 

1 28.5 10.5 2 26.5 14.2 2 24.2 12.2 
2 19.6 9.6 3 32.6 16.4 3 26.4 11.6 
3 30.2 12.2 1 30.2 15.2 2 35.6 15.0 
4 26.4 11.4 2 24.6 12.6 1 30.4 14.2 
5 28.7 11.8 1 25.2 12.8 1 28.6 11.8 

Total Y;· 133.4 139.1 145.2 

Xi. 55.5 71.2 64.8 

Zi. 9 9 

(i) Analyse the data and comment. 

(ii) Is there any difference between food-3 and food-4? 

Solution: (i) We have p = 4, q = 5, Gy = 524.2, Gx = 243.7. 

~ G2 
G"' = 38, C.T11 = -1l = 13739.282, C.T"' = -2. = 2969.4845. 

pq pq 

C ~ C GxG11 .Tz = - = 72.2, .Txy = -- = 6387.377. 
pq pq 

C ' G:i:Gz GyGz 
.Txz = -- = 463.03, C.TJ/% = -- = 995.98. 

pq pq 

GYll = L LYf; - C.T11 = 14158.56 - 13739.282 = 419.278. 

Gxx = LL xf; - C.T :z = 3046.33 - 2969.4845 = 76.8455. 

Gu= L:L:zl; - C.Tz = 84- 72.2 = 11.8. 

Gxy = LL XijYii - C.T xv = 6532.37 - 6387.377 = 144.993. 

Gn = LLXijZij - C.Txz = 472.20- 463.03 = 9.17. 

Gyz =LL YijZi; - C.T11z = 1015.9 - 995.98 = 19.92. 

Tll!I = ! LYt - C.Ty = 695~9'66 - 13739.282 = 174.65. 
q . 

1 "' 2 15073.57 
Txx = q L.Jxi. - C.T:z = 

5 
- 2969.4845 = 45.2295. 

z 

1 
2 
3 
2 
2 

10 

Food-4 

y x z 

18.4 9.2 1 
22.7 10.4 2 
22.0 11.6 3 
26.2 12.0 3 
17.2 9.0 1 

106.5 

52.2 

10 
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1 ~ 2 362 
Tu= q L.,zi· - C.T,. = 5- 72.2 = 0.2. 

1 32275.88 . 
Tzv = q LXi-1/i· - C.Tq = 

5 
- 6387.377 = 67.799. 

1 2310.3 
Tz.- = q L Xi-Zi· - C.Tz.- = -

5
- - 463.03 = -0.97. 

1 ~ 4969.5 
T11,. = q L.,Yi·Zi· -C.T11,. = -S- - 995.98 = -2.08. 

En = Gn - Tn = 244.628, ~ = Gzz - '!zz = 31.616. 

Eu = G..,. - T..,. = 11.6. 

EZJI = GZJI - Tq = 77.194, Ez.- = Gn -Tz.- = 10.14, Ey.- = G* .. - T ... = 22.0. 

jJ = EuEz11 - Ez.-E11 .. = 11.6 x 77.194 - 10.14 x ~-0 = ~3704 = :!.547 
E22Eu - ~.. 31.616 X 11.6- {10.14) 263.926 

..y = EzzE11,. - E,,,,.EZll = 31.616 x 22.0- 10.14 x 77.b4 = -87.1952 = 
0

_
330

_ 
E22E..,. - ~.. . 31.616 X 11.6 - {10.14)2 263.926 

Si = En - /JEZJI - iEy .. = 244.628 - 2.547 x 77.194 + 0.33 x 22.0 = 55.275. 

p = G ... GZJI - G2 ,.G11,. = 11.8 x 144.993- 9.17 x 19.92 = 1528.251 = 
1

_
858

_ 
G:ezGu - ~a 76.8455 X 11.8 - (9.17)2 822.688 

. '1 = G22G11,. - G2 ,.G,,,. = 76.8455 X 19.92- 9.17 X 144.993 = 201.1765 = 
0

_
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_ 
GzzGu - m,. 76.8455 x 11.8 - (9.17)2 822.688 

Ss =" T 1111 + /JEZJI + iE11.- - PGZJI - PG,,,. 

= 174.65 + 2.547 x 77.194- 0.33 x 22.0- 1.858 x 144.993- 0.244 x 19.92 = 89.746. 

Therefore, to test the signifkance of food effect (Ho: a.= O) the test statistic is: 

Ss/p-1 89.746/3 . 
F = 82/W(q - 1) ~ 2) = 55.275/14 = 

7·58· 

Since F > Fo.os;a,14 = 3.34, Ho is rejected. The milk production changes with the change in 
food. 

(ii) We need to test the significance of the hypothesis : 

Ho : 03 = 04 or, Ho : 03 - 04 = 0. 

The estimate of this contrast is : 03 - 04, where 

Q3 - 04 = Y3. - Y4. - /J(x3. - X4.) - i(z3. - Z4.) 

= (29.04 - 21.3) - 2.547(12.96 - 10.44) + 0.33(2.00 - 2.00) = 1.3216. 

({J.) E..,.if2 11.6 x 3.9482 
735 

h • 2 S2 · 
3 9482 v = = =0.1 , w ere u = (p(q-l)- 2) = · · E22 E:u - ~.. 263.926 

(·)- E22iT2 _31.616x3.9482_ 04729 V')'- - - .. 
EzzEu - ~a 263.926 
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Now 

Cov(P.i) = - E ;z;s~ ~ = 1014 X 3.9482 = -0.1517. 
zz u :n 263.926 

20-2 
v(o3 - a4) = - + (x3. - X4.)2v(P) + (z3. - Z4.)2v(.Y) 

q 
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+ 2(x3. - x4.}(z3. - z4.)Cov{Pi) 

= 2 
x 
3~9482 + {12.96- 10.44)2(0.1735) [·: Z3 .• = %4. = 2.00} 

= 2.6811. 

Tberefo - 03 - 04 - 1.3216 - 0 81 re,t- - ~- .. 
s.e{o3 - &4) v2.6811 

Since t < to.05,14 = 2.145, Ho i.'I accepted. Food-3 does not differ significantly from food-4. 

6.4 Covariance Analysis in Randomized Block Design with One 
Concomitant Variable 

The model assumed for this analysis is 

Yi;=µ+ ai + fJ; + "'Y(xi; - x .. ) + eii• 
i = 1,2, .. . ,p; j = 1,2, .. . ,q. 

(A) 

Here 'Yi; = the response of j-th treatment in i-th block, µ = general mean, ai = effect of 
i-th block, /J; = effect of j-th treatment, Xii = the value of concomitant variable corresponding 
to '!/i;, "')'=regression coefficient of 11 on x, e;; =random error. 

Assumption : e;; ,...., NID (0, u2). 

The normal equations to estimate the parameters in the model (A) are : 

11·· =pqfi+q}:ai +PEPi 

'Yi·= qf.i + qiti + L:P; + ifY(xi. -x .. ) 

11·i = pfl + E Qi + PPi + n(x.j - x .. ) 
EE11i;(:z:i; -x .. ) = qEai('Xi. - x .. ) + PLP;(x.i - x .. ) + i EE(xii - x .. )2 . 

Let G,,. = L L(Yi; - Ji .. )2
, Gzz = L L(Xij - X .. )2

, Gz11 = L L(Xij - X .. )(yij - 1} .. ) 

T 1111 = p L:(Y.; - 1/ .. )2
, Tzz = p E(x.; - x .. )2

, T zv = p E(x.; - x .. )(11.; - 1/ .. ) 

B1111 = q L(Yi· - 1/ . .)2 , Bzz = q E(xi. - X .. )~, Bzy = q L(Xi. - X .. )(1];. - 1/ .. ) 

E1111 = G1111 - B1111 - T1111, Ezz =·Gzz - Bzz - Tzz, Ezy = Gzv - B:z:y - Tzy· 

Putting all values in normal equations and under restrictions, L: &i = 0, E /J; = 0, we get 

ii= 11 .. , oi = (1/,. -Ji .. ) - i(x;. - x .. ), fJ; = (Ji.i -W .. ) - .:Y(x.; - x .. ) 

d - Ezv an "')'=-. 
Ezz 

The sum of squares due to estimates for the model is : 

Si = SS (estimates) jJy .. + E itiYi· + L: P;Y·i + i EE Yii(:z:;; - x .. ) 

= 'P'iff.. + T1111 + B1111 + iEzv· 
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This sum of squares has (p + q) d.f. The sum of squares due to error is 

82 = L LY~j - pqy~ - T1111 - Byy - iExy = Eyy - iExy• 

The d.f. of 82 is (pq - p- q). 

The main objective of this analysis is to test the significance of 

Ho : f3J_· = O against HA : f3J =I- 0. 

The model (A) under H 0 transforms to 

YiJ = µ + ai + i(xiJ - x .. ) + eiJ· 

The estimates of the parameters in the model (B) are: 

• _ • { _ ) ~ {- _ ) · ~ Exy + Txy 
µ = y,., ai = 'fh - y.. - "I Xi. - x.. and "I = E T . 

;i;x+ xx 
The sum of squares due to estimates for the model is : 

Sa = pqy~ + 8 1111 + ~(Ex11 + Tz 11 ). 

The d.f. of Sa is (p + 1). The sum of squares of error is: 

"" "" ~ . 2 • • S4 = L...J L...J Yij - pqy .. - BirY - :Y(Exy + Txy) = Eyy + Ty11 - :Y(Exy + Txy). 

The d.f. of S4 is (pq - p - 1). Again, the sum of squares of treatment under Ho is: 

Ss = SS {treatment) = S4 - S2 = T11y + :YEx11 + ~(Exy + T,, 11 ). 

This Ss has (q - 1) d.f. Hence, the test statistic to test the significance of Ho: f3J = 0, is : 

F = Ss/(q - 1) . 
S2/(pq - p - q) 

(B) 

This F is distributed as variance ratio with (q - 1) and (pq - p - q) d.f. Before performing 
the covariance analysis we need to test the significance of Ho : "I = 0 against HA : "( =I- 0. It 
is needed since the rejection of this hypothesis leads us to do the covariance analysis. If the 
regression coefficient "( is not significant, covariance analysis will not provide better information 
on treatment parameters. Now, under Ho : 'Y = 0, the model takes the shape: 

YiJ = µ + ai + f31 + eij. (C) 

This is the usual model for the data· collected from randomized block design. The sum of 
squares of error for the model (C) is S6 = E 1111 • This S6 has (p - l)(q - 1) d.f. Hence, the sum 
of squares due to the estimat~ of 'Y is : 

S1 = S6 - S2 = i Ex11 • 

This S1 has 1 d.f. Therefore, the test statistic to test the significance of Ho : 'Y = 0 is : 

F= S1 . 
S2/(pq - p - q) 

This F is distributed as variance ratio with 1 and (pq - p - q) d.f. 
The significance of regression parameter "I can also be tested by t-test, where the test 

statistic is : 
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Here the null hypothesis is Ho = 'Y ='Yo (a specified val~e). This t has (pq - p - q) d.f. Here 

u2 = S2/(pq - p - q). 

The analysis provides adjusted treatment means, where the adjustment is done to eliminate 
the impa,ct of concomitant variable. The adjusted treatment means are : 

'Y., (adjusted)= -:Y., -·.Y(x., - x .. ); j = 1, 2, ... , q 

The variance of this adjusted mean is : 

Also, we have 

Vf('jj-J) adjusted]= a 2 [~ + (x.i ~~ .. )
2

] . 

L, d1P1 = L, d1mi., -w .. > - -Y(x-j - x .. ), L, d1 = o. 
j 

The variance of this estimate of contrast E d1P1 is : 

To get the estimate of this variance u 2 is to be replaced by 0-2 = S2/(pq - p- q). However, to 
compare the means of two treatments, we have average variance of the difference of any pair of 
treatment means. This variance is : · 

(- _ ) 2u2 
( T:x:x/(q - 1)] . -

Vy.1 -y .• =P· l+ Eu ,J=f.s=l,2, ... ,q. 

ANCOVA Table 

Source of SS(x) SS(y) SP(xy) Regression Adjusted d.f. SS 
variation coefficient SS under Ho 

Blocks B:xx B'll'll Bx'll p-1 

Treatment Tx:x T'll'll TX'I/ -Y=~ ., .. q-1 S~=S4 --S2 
Error . 

Exx E'll'll E:x11 E11'11-..YE:x11 pq-p-q 

Treatment Exx+Txx E1111 + T1111 E:x11 + Tx11 
+Error 

Example 6.3 : In an agricultural research station an experiment is conducted to study the 
productivity of balsam apple under nitrogen fertilizer. Four levels of nitrogen as urea are used 
in the experiment. The levels are 30 kg/ha, 60 kg/ha, 90 kg/ha and 120 kg/ha. The levels 
of nitrogen are allocated to 4 different plots of a block. The design used is randomized block 
design having 5 blocks. The production of balsam apple in a plot of size 10' x 15' are recorded 
along with the number of plants per plot. 
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Production or balsam apple (Jli; kg) along with number of plants (Zij) 

Blocks Levels of nitrogen . 
N1 N2 N3 

y x 'II z y x 

1 50.5 42 55.0 52 52.3 45 
2 48.0 50 60.2 55 51.4 48 
3 40.5 46 40.5 48 35.0 40 
4 52.0 48 50.0 51 48.0 46 
5 • 50.0 45 56.0 48 55.0 49 

Total y.; .241.0 261.7 241.7 
x.; 231 254 228 

' 
(i) Analyse the data and group the levels of nitrogen. 
(ii) Justify the use of covariance analysis. 

N4 
y 

60.0 
61.0 
65.o· 
35.0 
38.0 

259.0 

Total 
z Yi· :l:i· 

50 217.8 189 
48 220.6 201 
52 181.0 186 
35 185.0 180 
40 199.0 182 

1003.4 938 
225 

(iii) F.stimate the efficiency of covarianre analysis in randomi7.ed block design compared to 
analysis of randomi.7.ed block design. 

Solution : We have p = 5, q = 4, G11 = 1003.4, Gz = 938 

C.T11 = 0: = 50340.578, C.Tz = a! = 43992.2 
pq pq 

C.Tzt1 = GzGy =47059.46, G1111 =LL~ -C.T11 =51770.04-50340.578= 1429.462. 
pq 

Gu= EEx~; -C.Tz = 44426- 43992.2 = 433.8. 

GZJI = E LXiJYii - c._Tz11 = 47659.7 - 47059.46 = 600.24. 

1 ~ 2 202688.2 
Bn = q L..J Yi· - C.T 11 = 

4 
- 50340.578 = 331.472. 

I 252067.78 
T 1111 = p L 1/·j - C.Ty = 5 - 50340.578 = 72.978. 

. 1 ~ 2 176242 
Bzz = q L..J Xi· - C.T z = -

4
- - 43992.2 = 68.3. 

1 . 220486 
Tzl = P Ex;-c.Tz = 

5 
-43992.2 = 105.0. 

1 188688.8 
Bzt1 = q Lx;.y;. - C.Tz11 = 

4 
- 47059.46 = 112.74. 

. 1 ~ . 235525.4 
Tz11 = p L- x.;Y·i - C.T z11 = 

5 
- 47059.46 = 45.62. 

En= G1111 -· B1111 - T1111 = 1429.462- 331.472- 72.978 = 1025.012. 

Ezz = Gu - Bu - Tzz = 433.8 - 68.3 - 105.0 = 260.5. 

Ez11 = GZJI - BZ11 -Tzt1=600.24~112.74- 45.62 = 441.88. 

i = Eq = 441.88 = 1.6963. 
E,_ 260.5 
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5-i = E1111 - :YEzw = 1025.012 - 1.6963 x 441.88 = 275.451 

i = E:rr1 + Tztt = 441.88 + 45.62 = l.3338. 
Ezz +Tu 260.5+ 105.0 
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S4 =En+ T1111 -4(Eztt +Tztt) = 1025.012+ 72.978-1.3338(441.88 + 45.62) = 447.7625. 

S5 = SS(Treatment) adjusted= s. -S2 = 447.7625- 275.451=172.3115. 

Therefore, to test the significance of Ho : {Ji = 0, the test statistic is : 

F = Ss/(q - I) = 172.3115/3 = 2_29_ 
S2/(pq - p - q) 275.451/11 

Since F < Fo.06;3,n = 3.59, Ho is accepted. The levels of nitrogen belong to one group. 

ANCOVA '.lable 

Source of SS(x) SP(xy) SS(y) Adjusted 

variation SS d.f. 

Blocks 68.3 112.74 331.472 
Treatment 105.0 45.62 72.978 172.3115 3 
Error 260.5 441.88 1025.012 275.451 11 

(ii) To justify the use of concomitant variable we need to test the significance of 

Ho : 1' = 0 aganist HA : 'Y =I 0. 

The test statistic is : 

F = 'rEztt = 1.6963 x 441.88 = 29_93_ 
5-i/(pq-p- q) 275.451/11 

Since F > Fo.06;1,11 = 4.84, Ho is rejected. Regression is significant. Hence covariance analysis 
needed. 

(iii) The average variance of the difference of two adjusted trt-.atment means is 

(- _ ) 20-2 [ Tzz/q-1] -2 S( ) v Y.i - Y-i' = P 1 + Ein , u = M error = 25.041 

= 25.041 [1 105.0/4 - l] = 5 68 
5 + 260.5 . 1. 

If the analysis is done without covariance analysis, then 

Io .such analysis, 

- 2 E1111 1025.012 
qR::::: (p- l){q - 1) = (5 - 1)(4 - 1) = 8S.4l8. 

2<12 
v(jJ.i - Y-i') = -1! = 34.167. 

p 

Hence, the relative efficiency of covariance analysis in randomized blO<'k design compared to 
simple randomized design is 

v(y.i - Ji.;•) in case of RBD 34.167 
3 

( ) 
. . = -- = 601.4 . 

v 'Y.; - i.;• adJusted 5.681 
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6.5 Covariance Analysis in Randomized Block Design with Two 
Concomitant Variables 

The model assun1cJ for this analysis is 

YiJ = µ + oi + /31 + -y(xi1 -·x .. ) + c5(zi; - z .. ) + ei1, 

i=l,2, ... ,p; j=l,2, ... ,q. 

(A) 

Here YiJ = result of j-th tre'atment in i-th block, Oi = effect of i-th block, #1 = effect of j-th 
treatment, Xi1 = the value of one concomitant variable corresponding to YiJ, ZiJ = the value 
of another concomitant variable corresponding to Yi1• 'Y = regression coefficient of yon x. t5 = 
regression coefficient of y on z, eij = random error. 

The normal equations to estimate the parameters in the model (A) are: 

y .. = pqfi. + q E &i +PE f11 

Yi· = qfi. + q&i + E f11 + 'li(xi. - x .. ) + qJ(zi. - z .. ) 

Y.; = pfi. + E &i + pf11 + Pi'(x.J - x .. ) + pJ(z.1 - z .. ) 

E LYi1(xi1 - x .. ) = q L,&i(xi. - x .. ) + p L,/11(x.; - x .. ) 

+ i'E L,(Xij -x .. )2 +Jr, L,(Zij - z .. )(Xij - x .. ) 

E LYi1(zi1 - z .. ) = qL,&i(zi· - z .. } + P L,/11(z.1 -z .. ) 

+ i' E L,(xi1 - x .. )(zi1 - z .. ) + J E L,(zi1 - z .. )2
. • 

We can define Gyy, G"'"'' Gxy, By11 , B:r:xi Bx11 , T11y, Txx, T11y, E11y, E:r:x and Exy as these are 
defined in section {6.4). 

Moreover, let 

Gu= L,L,(ziJ -z .. )2 ,Gxz = L,L,(xiJ -x .. )(ziJ -z .. ). 

Bu = <i L,(zi. - z .. )2
, Bx:r = q L,(xi. - x .. )(zi. - z .. ). 

Tu = p L,(z., - z .. )2 , Tx:r = p L,(x.1 - x .. )(z.1 - z .. ). 

Gy:i = EE(YiJ -y .. )(ziJ -z .. ), By:i = qL,(yi· -y .. )(zi. -z .. ). 
Ty:i = p EOi.j -y .. )('Z-j - z .. ), Eu= Gu - Bu· - Tu. 

E:n = Gx:r - Bu - Txzt E11z = Gy:i - Byz - Tyz· 

Replacing these vafoes in the normal equations and putting the restrictions E &i = E /11 = 0, 
we get, on simplification 

µ = w ... ai = (ih - 'Y .. ) - i'(xi. - x .. ) - 6(-zi. - z .. ) 

/J, = (W.1 -y .. ) - .Y(x-J - x .. ) - J(z.1 - z .. ) 

- EuExy - Ex:iEy:r i ExxEy:i - Ex:iExy 'Y = ' u = _____ ...,,,.__....,...---...;;.. 
ExxEu - ~:r ExxEu - ~z 

The sum of squares due to estimates is : 

S1 = fi.y .. + L,&iYi· + Ef11Y-J + i'EL,(xi; -x .. )Yii + 6L,L,(zi; -z .. ) 
= pqy~ + Tyy + Byy + '}E,,,y + 8E11z. 
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The d.f. of 8 1 is (p + q + 1). The sum of squares of error is: 

82 =LL Y~j - pqy~ -T!ltl - B1111 - iEx11 - JEzy = E'/111 - .::YEx11 - 6Ei1r 

The d.f. of S2 is (pq - p - q + 1). 
The main objective of this analysis is to test the significance s:>f 

Ho : /3i = 0 against HA : /31 :/: 0. 

Under this null hypothesis the model stands 

Yij = µ + Cki +-y(Xij - x .. ) + o(Zij - z .. ) + eij· 

The estimates of the parameters in the model are : 

µ = fi. .. &i = ('fh - ii .. ) - 1(xi. - x .. ) - J(z., - z .. ). 

Here E~x = Exx + Txx• E~z = Exz + Txz• E~z = Ezz + Tzz 

E~11 = Exy + TxY• E~,. = E 11,. + T11 ,., E~11 = Eyy + T1111 • 

The sum of squares due to estimates in case of model is : 

S3 = fl,y .. + E&iYi· +1EE(xii -x .. )YiJ +6EE(zi; -z .. )YiJ 

- 2 B ~E' rE' = pqy .. + YY + 'Y xy + 11 yz• 

The d.f. of S3 is (p + 2). The sum of squares due to error is 

S4 = LLYf1·- pqy~ - Byy - 1~y -JE~,.. 
The d.f. of $4 is (pq - p - 2). Hence, the sum of squares of treatment under Ho is 

Ss =SS (treatment) adjusted= 84 - S2 = T1111 + iEx11 + 6E11z -1E~y - 6E~z· 

The d.f. or'Ss is (q - 1). Hence, the test' statistic for the hypothes~s is 
•. 

F= Ss/q-1 . 
82/(pq-p-q+ 1) 

The estimate of treatment contrast after eliminating the effect of rnncomitant variable is 

f3j -f3j' = (Ji.3 - Y.jl) - i'(x.; - X.j') - J{z.j - Z.j' ). 

The variance of this estimated contrast is 

• • 2cr2 
2 2 • 

V(f3J - f3j') = - + (x.j - X.j') V(i') + (z.j - Z.j') V(o) 
p 

+ 2(x.i - x.J' )(z.1 - Z-J• )Cov(i', J). 

(
• • ExzCT2 

and Cov -y, c5) = - E E _ E 2 • 
xx zz xz 
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Example 6.4 : In an agricultural research station an experiment is conducted to study 
the impact of 3 levels of nitrogen iu producing sugarcane. The levels of nitrogen are 
Ni = 200 kg/acre, N2 = 220 kg/acre and N3 = 240 kg/acre. The nitrogen fertilizer is applied 
in plots of 5 blocks. But the sizes of plots (x sq. ft) and hence, the number of plants in plots 
(z} arc not same. The production of sugarc.ane in different plots (y kg) along with the values 
of x and z are shown below : 

Blocks Treatment 

Ni N2 Na 
z y z -'X y ·z x y z 

1 300 85 28 400 125'" 30 350 105 28 
2 450 120 40 400 115 35 200 95 15 
3 400 105 32 300 88 25 300 110 26 
4 300 90 25 300 99 27 400 125 32 
5 350 100 30 300 94 25 400 12C) 30 

Total x.1 1800 1700 1650 

Y-i 5 00 521 555 
Z.j 155 142 131 

(i) Analyse the data and group the levels of nitrogen. 

(ii) Is there any justification of using concomitant variables? 

Solution : {i) We have p = 5, q = 3, Gz = 5150, G11 = 1576. 

c2 <2. . 
C.Tz = __::. = 1768166.667, C.T11 = __!. = 165585.0667. 

pq pq 

~~ ~ C.Tx11 = -- = 541093.333. G,, = 428, C.T. = - = 12212.2667, 
pq pq 

GZGZ c.c. 
C.T.u = -- = 146946.667, C.T11• = -- = 44968.533. 

pq pq 

G'll?I = EE Yf; - C.T JI := 168156 - 165585.0667 = 2570.93~. 

G:n: =EE~; -C.Tz = 1827500-1768166.667= 59333.333. 

Gu= EEEzi-c.T,, = 12646-12212.2667=433.7333. 

G.,y =EE XijYii - C.Tzy = 550550 - 541093.333 = 9456.667. 

Gu= EExi;Zs; - C.Tza = 151700- 146946.667 = 4753.333. 

G11z = EE YijZij - C.T 11z = 45613 - 44968.533 = 644.467. 

l "' 2 497126 By11 = q ~ y,. - C.T 11 = -
3
- - 165585.0667 = 123.60. 

1 ~ 2 5307500 
Bu = q ~xi· - C.T :r = 

3 
- 1768166.667 = 999.9996. 

1 ~ 2 36666 
Bu= q ~ Zi· - C.Tz = -

3
- - 12212.2667 = 9.7333. 

'fotal 

Xi Yi· Zs· 

1050 315 86 
losO 330 90 
1000 303 83 
1000 314 84 
1050 314 85 

5150 
1576 

428 
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1 ~ 1623950 . 
B:i:v = q L..JXi·11i· -C.Tzw = 

3 
-541093.333= 223.3334. 

1 ~ 441050 
B:n = q L..Jxi·Zi· -C.T:i:ac = 

3 
-146946.667= 69.9997. 

1 ~ 135005 
B11• = q L..,J'lli·Zi· -C.T11• = 

3 
- 44968.533 = 33.133?. 

1 829466 
Tn = p LY~ -C.T11 = 

5 
-165585.0667 = 308.1333 

1 ~ 8852500 
T:i::i: = P L..J ~ - C.T:z: = 

5 
- 1768166.667 = 2333.333 

1 ~ 2 61350 
Tu= P L..J z.; - C.T. = -

5
- - 12212.2667 = 57.7333 

1 2701450 
Tz11 = p LX-jJ/·j -C.T:i:y = 

5 
- 541093.333 = -803.333 

1 . 736550 
Tzz = p L x.;z.; - C.T :z:;s = 

5 
- 146946.667 = 363.333 

1 ~ 224187 
T11• = P L..JY·;:z.; - C.T11,. = 

5 
- 44968.533 = -131.133 

En= G.,,.,, - Tw - B1111 = 2570.9333- 308.1333 - 123.60 = 2139.2 

Ezz = G'" - B,.. - Tz:i: = 59333.333 - 999.9996 - 2333.333 = 56000.0004 

E.~ =Gu - Bu -Tu= 433.7333- 9.7333- 57.7333 = 366.2667 

Ez11 = G:i:y - B%JI - Tz,, = 9456.667 - 223.3334 + 803.333 = 10036.6666 

E:u = G:n - Bz-,. - Tzz = 4753.333 - 69.9997 - 363.333 = 4320.0003 

E,,. = G11.,, - 8 11.,, -T11,. = 644.467 - 33.1337 + 131.133 = 742.4663. 

i = E • .,,ESJI - Ez.,_Ey,. = 468642.1158 = 0_253 
E,.zEu - ~;s 1848532.754 

s = E:i:zE,,;s - E:.,.Ez11 = -1780289.626 = -0 963 
E:uEzz~z 1848532.754 · · 

S2 = SS (error) = En - iE%JI - SE11.,, 

= 2139.2 - 0.253 x 10036.6666 + 0.963 x 742.4663 = 314.918 

E'n = E1111 + T1111 = 2447.3333, E~z =Eu+ T:i::r: = 58333.3334 

E',,.,, =:-= E.,,.,, + T.,,.,, = 424.0. ~11 = E.11 + T,.11 = 9233.3336 

E~. = E:u +Tu= 4683.3333, E;z = Eyz + Tyz = 611.3333 

~ _ E~.,,E~ - E~,.E;,. = 1051857.25 = O 
376 

'Y - E~,.E~. - E~ 2799722.563 . 

J _ ~zE;.,, - E~,.E~ _ - 7581669.511 __ 
2 - E' E' - E 12 - 2799722 563 - . 708 

zz .z:.z %.Z: • 

255 



256 OF.SIGN OF EXPERIMENTS AND SAMPLING METHOD8 

84 = E~11 - ~E~11 - JE~z 
= 2447.3333 - 0.376 x 9233.3336 + 2.708 x 611.3333 = 631.089 

8s =SS {Treatment) ad,iusted = S4 - 82 = 631.089.- 611.3333 = 19.7557. 

Hence, to test the significance of Ho : f3J = 0 against HA : Bi "I 0 the test statistic is : 

F = Ss/q - l = 19.7557/2 = O.l9. · 
82/(pq - p - q - 1) 314.918/6 

Since F < Fo.05;2.6 = 5.14, Ho is accepted. There is no significant change in the production 
levels due to the changes in the levels of nitrogen. All levels of nitrogen belong to one group. 

ANCOVA Table 

Sources of SS(x) SS(y) SS(z) SP(xy) SP(xz) SP(yz) SS adjusted 
variation 

Block 999.9996 123.60 9.7333 223.3334 69:9997 33.1337 -
Treatment 2333.333 308.1333 57.7333 -803.333 363.333". -131.133 19.7557 
Error 56000.0004 2139.2 366.2667 10036.6666 4320.0003 742.4663 314.918 

The adjusted treatment means are shown in the table below : 

Levels of Y-J X.j z.1 ')-(x-J - x .. ) 6(z.1 - z .. ) adjusted means 
nitrogen = (1J.1 - i(x.1 - x .. ) 

-6(-z.1 -z .. ) 

Ni 100.00 360.00 31.00 4.217 -2.379 98.162 
N2 104.20 340.00 28.40 -0.842 0.125 104.917 
N3 111.00 330.00 26.20 -3.372 2.244 111.128 

To compare the adjusted means the estimated variance of the difference of two means is 

V(1j.i. - y ... ) adjusted = 
2!2

, where 

0-2 = M.S.{error) 

=S2/(pq-p-q-l) 
= 52.486 

[ 
948489.6629 ] 

= 52 .486 l + {3 - 1)1848532.754 = 65·95· 

However, the m~ans need not be compared since by F-test the means are found 
homogeneous. 

(ii) To justify the use of concomitant variable we need to test the significance of 

Ho : '"'(= 0 and Ho : ~ = 0. 

If any of the hypothesis is tejected, the use of that corresponding concomitant variable is needed. 
We have 

V(i) = Eui7
2 

= 366.2667 x 52.486 = O.Ol0399 
ExxEzz -- E;,, 1848532.754 . .. . 
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S.({y) = JV0) = 0.10198 

/(
, _ Exxa2 

_ 56000.00. 04 x 52.486 _ 
1 

q,0006 l 5) - - - .;:);J w 

Ex.r,Ezz -E'f:z 1818532.75·1 

s.e(J) = RJ = 1.26096. 

Hence, we get 
1 0.253 2 8 t---- - 4 

- s.c(i') - 0.10198 - · 
and t - ~ - -0.963 - -0 ~r. 

- s.e( J) - 1.26096 - · 1 
u. 

Since t 0 05 .6 = 2.447, there is no evidence against Ho : 5 = 0. So the concomitant variable z is 
not useful in the analysis. Again, Ho : 'Y = 0 is rejected indicating the necessity of concomitant 
variable x. 

6.6 Technique of Covariance Analysis in Analysing Data of 
Randomized Block Design with Missing Observations 

We have discussed the technique of analysis of data with one and two missing observations 
in case of randomized block design.The technique is similar in case of data obtained from Latin 
square design, split-plot design, split-split-plot design, BIB design and other designs. But the 
technique becomes complicated if there are more than two missing observations. In such a 
situation technique of covariance analysis can be applied assuming one concomitant variable 
for one missing observation. Let us describe the technique to analyse the data of a randomized 
block design when there are two missing values. The method can be generalized if there are 
more than.two missing values. 

Let the observation of j-th treatment in i-th block (Yi.i) and the observation of s-th treatment 
ink-th block (Yks) be missing. Let us use one concomitant variable x for the missing observation 
of j-th treatment in i-th block and z for the missing observation of s-th treatment in k-th block. 
The x;.i be the value of concomitant variable x corresponding to Yi.i, and Zks be the value of 
concomitant variable z corresponding to Yk.s· The values of x and z are either zero or 1. Let 
X;.i = 1 and other Xi.J's are zero. Similarly, Zks = 1 and other Z;.i 's are zero. The data set of the 
experiment can be shown as follows : 

Block Tre?.trnent Total 

1 2 ... .. j ... ... . .. s .. ·q 
x y z x y z x y z ... x y z x y z Xi. Yi· Zi. 

1 0 Yu 0 0 Y12 0 . . . 0 YIJ 0 ... 0 Yis 0 0 Y1q 0 0 Yi· 0 
2 0 Y21 0 0 Y22 0 . . . 0 Y2.1 0 ... 0 Y2s 0 0 Y2q 0 0 Y2· 0 

. . . . . . . . . . . . ... 

l 0 Y;1 0 0 Y;2 0 1 0 0 ... 0 Yis 0 0 Yiq 0 1 Yi· 0 

. . . . . . . . . . . . . . . . . . . . ... . ... 
k 0 .I/kl 0 0 Yk2 0 0 Yk.i 0 ... 0 0 1 0 Ykq 0 0 Yk· 1 

. . . . . . . . . . . . . . . . . . . . . . . . ... 
p 0 Ypt 0 0 Yp2 0 0 Ypj 0 ... 0 Yp~ 0 0 Ypq 0 0 Yp· 0 

Total x.i 0 0 1 0 0 1 y .. 1 

Y-J Y·I Y·2 Y·J Y·s Y·q 
Z.j 0 0 0 1 0 

D.E.S.M.-17 
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The model for the above observations of Yi.1 1s 

/J,j = µ + O:; + f3j + "f(X;J - X.) + J(zij - Z .. ) + eij. (X) 

The parameters in the model have usual meanings. The analysis of the model (X) is to 
be performed in a similar way as it is done in analysing model (A) discussed in section 6.5. 
However. the sum of squares and sum of products related to the variables x and z have some 
definite values. These values are : 

1 
Txx = - - -

1 1 
Bxx = - - - G.cx = 1 - _!._ 

p pq q pq pq 

1 1 
Tzz = - - -, 

1 1 
Bzz = - - -

1 
Gzz = 1 -- -

p pq q pq pq 

1 
T,z = --

1 
Bxz = --

1 
Gxz = --

pq 

T _ Y1 _ "#.:.:_ 
xy - p pq 

T ~-!L_ zy - p pq 

pq 
y;. y .. 

Bx:v = q - pq 

Yk y .. 
Bzv = - - -. q pq 

pq 

G 
y .. 

xy = --
pq 
y .. 

Gz:v = 
pq 

Exx = Gxx - Bxx - Txx = 1 - ~ - ~ + _!._, 
fl q pq 

[·: C.Tx = ;q] 

[·: C.Tz = _!._] 
pq 

Ezz = Gzz -- Bzz - Tzz = 1 - ~ - ~ + _!._, 
p q pq 

E~z = Ezz + Tzz = 1 - ~ 
q 

Exz ·= G,:z -· B.cz - Txz = _!._, E~z = Exz + Txz = 0 
pq 

Ex,,= Gx,, - Bx-.. - Txy = - (Yi +Yi - y .. ). E' = E:ry + Tx,. =_Yi· ., ., ., , p q pq xy . ., q 

E G B T (
Yk y.,, y .. ) E' E T Yk· zy = zy - Z"IJ - zy = - - + - - - • zy = zy + zy = - -' ' ' ' q p pq . q 

Thus, the estimates of "( and c5 will be obtained in a similar way as it is done in the previous 
section. The other analytical steps are also similarly done. Here, we have 

0 0 A 1 A 

f3.J - (3 .. = (YJ.i -y_.) - i(x 1 -_ x ... ) - c5(z.i - z . .,) = ('!l.7 -Tis) - P(i'- c5) 

V(~J - ~ .. ) = 20-2 [i + q ] • 
' p pq-p-q 

- - 1 
!3.J - !3.J' = ('!J..1 - '!J.,,) -- -)', j i j' is 

' p 

- - a
2 

[ q(p-l)(q-l) ] 
\l(f3,-f3r)=-:p 2+(p-l)2(q-1)2-1. 

Example 6.5 : An 0xp0rim0nt is conduct0d to study th0 productivity of four diffor0nt 
varieties of maize using five levels of nitrogen. All varieties of maize are cultivated using each 
level of nitrogen. Each level of nitrogen is used in four plots aud in the plots 4 varieties of maize 
are randomly alloca~d. The desig11 used is randomized blocJ< design. During experimentation 
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the production data of second variety of maize in the first block and the data of fourth variety 
in the third IJlock are lost. The production data (y kg in plots of 15' x 20') are shown below : 

Blocks Treatment Total 

M1 M2 M3 M4 

x y z x y z x y z x y z :c;. y;. 

1 0 20.0 0 1 0 0 0 28.0 0 0 28.5 0 1 76.5 
2 0 20.2 0 0 29.2 0 0 28.5 0 0 27.0 0 0 104.9 
3 0 20.8 0 0 30.0 0 0 26.0 0 0 0 1 0 76.8 
4 0 20.9 0 0 31.5 0 0 27.5 0 0 27.0 0 0 106.9 
5 0 20.0 0 0 29.5 0 0 28.0 0 0 27.5 0 0 105.0 

Total x . .i 0 1 0 0 1 . 
Y.i 101.9 120.2 138.0 110.0 470.1 
z . .1 0 0 0 1 

(i) Analyse the data and justify the use of covariance technique in this analysis. 

(ii) Is thcr0 any diff0rnnc0 bf'tw0en M2 and M4 ? 

(iii) Is th0r0 any diff0rnnc0 b0tw00n M2 and M 1? 

Z1. 

0 
0 
1 
0 
0 

1 

Solution : (i) WP have p = 5. q = 4. Here x = 1 is used to indicate the missing value of 
second treatment and z = 1 is taken to indicate the missing value of fourth trf'atment. 

C G~ (470.1)
2 

"""" 2 .Ty= pq = 
20 

= 11049.7005, Gyy = ~~Yi.i - C.Ty = 1481.9295 

Tvy = 2: Y~i - C. Ty = 
559

:
5

·
65 

- 11049. 7005 = 145.4295 
p 

1"" 2 45207.11 
Byy = - ~ y, - C.Ty = 

4 
- 11049.7005 = 252.077 . q 

Eyy = Gyy - Byy -T_vy = 1084.423, E~y = Eyy + Tvy = 1229.8525 

1 1 1 I 1 } 
Ex.i: = 1 - - - - + - = 0.60, Exx = 1 - - = 0.75, Gxx = 1 - - = 0.95 

p q pq q pq 

1 1 1 I 1 1 
Ezz = 1 - - - - + - = 0.60, Ezz = 1 - - = 0.75, Gzz = 1 - - = 0.95 

p q pq q pq 

E' 1 I 
~xz = - = 0.05, Exz = 0 

pq 

Exy = -(y~ + Y~i - ~~) = -19.66, _E~Y = _Y~· = -19.125 

Ezy = - (Yk + y._. - !L_) = -17.695, E' = _Yk· = -19.20 
q p pq zy q 

, EzzExy - ExzEyz .( ExzEzy - ExzExy 
'Y = E E 2 = -30.52. u = 2 = -26.95 

xx zz - Ezz ExxEzz - Exz 

i = E;zE~y - E~zE~z = _25.50, J = E~xE;y - E~zE~y _ 
E~x.Ez'z - Ex'2z E' E' - £12 - -23.59 

..._, . xx ...Jzz xz 
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S5 =SS (treatment)adjusted = Ty11 -·1E~11 - JE~Y + iExy + JEzy 

= 145.4295 - 25 5 x 19.125 - 23.59 x 19.20 

+ 30.52 x 19.66 + 26.95 x l 7.f:i95 
= 281.72. 

S 2 ==SS (error) adjusted ::-" Eyy - "f E.xy - JEzy 

= 1084.423 -- 30.52 x 19.66 - 26.95 x 17.695 = 7.52. 

In a similar way the adjusted block sum of squares can be calculated, where this sum of 
squares is given by 

Here 

SS (Block) adjusted= Byy - iE1xy - 5E1zy + "fExy + JEw 

E1xy = Exy + Bxy = -19.66 +CJ~ - ~~) = -24.04 

E1zy = Ezy + Bzy = -17.695 + (Yk - ~) = -22.00 . ' q pq 

E1xx = Exx + Bxx = 0.60 + (~ - ~) = 0.80 
q pq 

E1zz = Ezz + Bzz = 0.60 + (~ - ~) = 0.80 
q pq 

1 
E1xz = Exz + Bxz = 0.05 - - = 0.00 

pq 

i = E1zzElxy - E1,,.
2
E1yz = 30.05, J = E1xxElyz - EixyElxz = _ 27.50 

E1x;:Elzz - El.rz ElxxElzz - Efxz 

SS (Block) adjusted= 252.077 -- 30.05 x_19.66 - 27.50 x 22.00 

+ 30.52 x 19.66 + 26.95 x 17.695 
= 133.20. 

ANCOVA Table 

Sources of variation d.f. Adjusted SS MS (adjusted) F Fo.05 

Block 4 133.20 33.30 44.28 3.48 
Treatment ·3 281.72 93.91 124.87 3.71 
Error 10 7.52 0.752 

Total 17 

It is sC'en that the maize varieties differ significantly. The levels of nitrogen also vary 
significantly. 

Ezz0-2 
- 2 We have V(i) = 2 , where a = MS(error) = 0.752 

ExxEzz - Exz 

= 0.60 X 0.752 V(J) = ExxJ2 = 0.60 X 0.752 
0.60 X 0.60 - (0.05) 2 ' EaEzz - E~z 0.60 X 0.60- (0.05) 2 

= 1.2621. 

s.e(i) = JI.2621 = 1.1234, s.e( J) = 1.1234. 
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The covariance technique can be justified if the hypothesis Ho : 'Y = 0 or, Ho : 6 = 0 or both 
are rejected. The test ::;tatistic for the first hypothesis is 

t = _i_ = -30.52 = -27.17. 
s.c(i) 1.1234 

The test statistic for the second hypothesis is 

J -26.95 
t = --, = -- = -23.99. 

s.e( J) 1.1234 

Since itl > t0 05;1o = 2.228, both the null hypothesis arc rejected. Th0 effocts of concomitant 
variables used are significa'nt. Hence, covariance analysis is fruitful in ::;uch analysis of data with 
missing values. 

The analysis of data can also be performed estimating the missing values, where the estimate 
of second treatment is 

(p - l)(q - l)(PB1 + qT2 - G) - (PB3 + qT4 - G) 
X= ~~~~~~~~~~~~~~~~~~-

(p - 1) 2 (q - 1) 2 - 1 . 

Here B 1 = total of block-1 in which treatment M 2 is missing 

B3 = total of block-3 in which treatment M4 is missing 

T2 = total of M 2 , T4 = total of M 4 , G = grand total. 

(5 - 1)(4 - 1)(5 x 76.5 + 4 x 120.2 - 470.1) - (5 x 76.8 + 4 x 110.0 - 470.1) x - ~~~~~~~~~~~~~-.,.-~~~~~~~~~~~~~~~ 
. - (5-1) 2 (4-1)2-1 

4718.4 - 353.9 
= 143 = 30.52. 

Similarly, the estimate of fourth treatment is 

(p - l)(q - l)(pB3 + qT4 - G) - (pB1 + qTz - G) 
y = (p - 1)2(q - 1)2 - 1 = 26.95. 

Now, the corrected totals are 

Yi : 107.02, 204.9. 103.75, 106.9, 105.0 

y J : 101.9, 150, 72, 138.0, 136.95; G = 527.57. 

c 2 (527.57) 2 

C.T. = - = = 13916.5052. 
pq 20 

SS (Total)= 272.8977, SS (Block)= 1.9855, SS (Treatment)= 263.381, 

SS (Error) = 7.5312, a 2 = MS (Error)= 0.75312. 

, , a
2 

[ ·q J o.75312 [ 4 J 
Now, V(,61-.62)=-p 2+(p-l)(q-l) = 5 2+(5-1)(4-1) 

= 0.3514. 

Here b1 is the estimator of effect of M1 and b2 is the estimator of effect of M4 . The variance 
of the difference of these two estimators in case of covariance analysis is 

V(b1 - b2) = a2 [2 + q(p - l)(q - 1) ] = 0.752 [2 + ~] 
p (p-1)2(q-1) 2 -1 5 143 

= 0.3513. 
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Since in both the cases V(/31 - /32) are almost same, the covariance analysis is justified. The 
technique is better, since it can be applied for analysis of data of randomized block design with 
several missing observations. 

(ii) We need to test the significance of H0 : fh = {34. 

The variance of the estimate of contrast /32 - /34 is 

v(/32 - f34) = 20"
2 

[1 + q ] = 2 x 0. 752 [1 + 4 ] 
p pq - p - q 5 20 - 5 - 4 

= 0.4102. 

s.e (/32 - /34 ) = J0.4102 = 0.6404. 

The adjusted estimate of /32 - {34 is 
, , 1 , . 1 

f32 - {34 = (y 2 - y 4 ) - -('Y - J) = (24.04 - 22.00) - c:(-30.52 + 26.05) = 2.754. 
p v 

t = /32, - f14, 2.754 
s.e(f3

2 
_ {3

4
) = 0.6404 = 4.30 > to.05.10 = 2.228. 

(iii) Ho: f31 = f32, V(/31 - /32) = 0.3513, s,e(/31 - /32) = 0.5D27 

, , 1 
/31 -f32 = (y J -y2) - -"y = 2.444 

p 

f31 - /32 2.41'.4 
t = s.e(/3, _ /32) = 0.5027 = 4.12 > tu.05.10 = 2.228. 

Hence M2 and M 4 differ significantly. The treatments M 1 and M 2 also differ significantly. 

6. 7 Covariance Analysis in Latin Square Design with One 
Concomitant Variable 

The model assumed for this analysis is 

Yi:il =µ+a;+ {3.i + 1't + J(x;.it - x .. ) + ei.it, (A) 

i = j = l =- 1, 2,, .. , k, where Yi:il = the result of /-th treatment in j-th column corresponding 
to i-th row when an experiment is conducted using k x k Latin square design, Cl';, f3.J and 1'! have 
their usual meanings, X;jt = the value of the concomitant variable corresponding to .l!i.1t, J = 
the regression codfirif'nt of y on x and e;.it = random error. 

Assumption : e;jt is normally and independently distributed with mean zero and 
variance CJ

2 . 

The normal equations to estimate the parameters in the model (A) are : 

y, .. = kf.t + k&; + L.fl.1 + L.1'1 + kJ(xi - x ... ) 

YI= k{.t + "L,&i + k/31 + "L,"'ft + kJ(x-J- - x ... ) 

Y· t = kf.t + L. &i + L. /3.1 + ki1 + kJ(x .. 1 - x ... ), 

L. L. LYi11(x,Jl - x ... ) = k L. &i(x; .. - x ... ) + k L./3.i(x-J- - x ... ) 

\. 
+ k"'f1(x .. 1 - x ... ) + J L. L. L,(xiJt - x .. .)2. 
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Let Gyy = LLL(Yi/i -y )2, Ga= LLL(X,jt - x .. )2
. Ryy = kL:CJh - Y )2 

G.cy =LL 2.:(Yi1l - y. )(Xijl - x ... ). R..cy = k 'L,('!J.i. - y )(x; .. - x .. ) 

R..n = k 2.:(x, .. - x. )2
• Cyy = k 2.:(YJ.i· - 'fl . .)2. C,.,. = k 2.:(xf - x .. )2 

Cxy = k 2.:(Y·i· - y )(xi· - x ... ), T,111 =k2.:(YJ 1 - y )2 .. 
Txy = k2.:(x 1-x. )(y. 1-IJ. ), T,,,. = k2.:(x.1-x ... )2 

Ex.r = G,,,, - Rx,, - C.rJ: - Txx' Eyy = Gyy - Ryy - C1111 - T9 y 

.Exy = Gxy - Rxy - Cxy - T.ry, E:x = Exx + T.rx. E~y = Eyy + Tyy 

E:y = Exy + Txy· 

Now, under the restriction L &; = L sj = L 11 = 0 and using the above notational values. Wf' 

get 

&; = (YJ;. - y .. ) - J(x; - x ... ), sj = (YJ,r - y ) - J(x.j. - x ... ) 

11 = (y 1 - y ) - J (x. t - x ... ), fi = YJ... and 

The sum of squares of the estimates is 

S1 = k2y2
. + Ryy + C9 y + T11 y + 6E.cy· 

This sum of squares has (3k - 1) d.f. ThP adjusted sum of squares of error is 

S2 = E 9 :v - 15Ex:v· 

This S2 has (k - l)(k - 2) - 1 d.f. 

Under the null hypothesis Ho : 'YI = 0, the model stands 

:tlijl =µ+ex;+ /3i + J(xiil - x .. ). 
The sum of squares of estimates for the model (B) is 

This SJ has (2k) d.f. The sum of squares due to error in analysing the model (B) is 

S4 = E~9 - JE::v· 

The d.f. of S4 is (k2 - 2k). Hence, the sum of squares of treatment under Ho is 

Ss = S4' - S2 = T119 - JExy - JE::v. 

(B) 

This S5 has (k - 1) d.f. Hence, the test statistic to test the significance of treatment effect. is 

F= S5/(k-l) 
Sz/{(k - l)(k - 2) - 1}. 

The covariance analysis is used profitably if Ho : 15 = 0 is rejected. The test statistic to test 
the significance of this hypothesis is 

F = JEx:v 
Sz/{(k - l)(k - 2) - 1}. 
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This F has 1 and (k - l)(k - 2) - 1 d.f. To test the significance of the hypothesis t-test can 
also be applied, where the test statistic is 

J 
t=--,. 

s.e( 6) 
A a-2 

Here s.e(J) = -, &2 = S2/{(k - l)(k - 2) - 1}. 
Exx 

The adjusted treatment mean is 

?J. 1 (adjusted)= )J. 1 - Jex. 1 - x .. ). 
Variance of this adjusted mean is 

V(- ) d" d 2 [1 (x .. 1-x .. )2]. y .. 1 a Juste = a -k + 
Exx 

The variance of the estimated contrast I: d1"'f1 is 

V(~ d A ) = 2 [I: df (I: d1X.1)
2

] 
~ I/I (J k + E.cx . 

The average variance of(y .1 - 'iJ .. /') adjusted is 

( 2a2 
[ Txx/(k - 1)] 

V y 1 - 'i}. 1,) adjusted = k 1 + E.rx . 

This variance is used to compare the pairs of treatment. 

Example 6.6 : To study the impact of dry food on milk production of cows an experiment 
is conducted using 16 cows, where cows are grouped according to lactation p~riod and body 
weights. Cows are divided into 4 lactation periods and into 4 groups according to body weight. 
The cows are fed 4 types of dry food. During the experiment one day milk productions (y kg) 
are recorded. The experiment is conducted through a 4 x 4 Latin square design. The amounts 
of food per cow per day (x kg) arc <liffcrcnt. 

Lactation Body weight 
period W1 W2 'W3 

x y x y x y x 

L1 AlO.O 32.0 Bl2.5 35.6 c 8.0 30.5 Dl5.0 
L2 Bll.5 34.0 Al2.0 33.5 DlO.O 34.0 ClO.O 

L3 Cl2.0 35.5 Dll.O 36.5 Al2.0 33.5 Bl5.0 

L4 D9.5 25.0 c 8.0 28.5 BlO.O 35.0 A 11.5 

Total Yi 126.5 134.l 133.0 

Xf 43.0 43.5 40.0 51.5 

Analyse the data and comment on the performance of food. 

c2 
Solution : Cy = 532.6, Gx = 178.0, C.T .c = k; = 1980.25 

W4 

y 

36.0 
32.0 
37.0 
34.0 

139.0 

c2 
C.T y = k~ = 17728.92, Gyy = LL L Y~jl - C.T y = 148.94 

Total 
X; .. Yi·· 

45.5 134.1 
43.5 133.5 
50.0 142.5 
39.0 122.5 

532.6 
178.0 

Gx.c =LL L x711 - C.Tx = 61.75, G.cy =LL X;1 tYijl - C.Txy = 67.825 
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GxGy , 1 "\:""' 2 C 
C.Tx~ = ~ = 5925.175, Ryy = k ~ Y; .. - .Ty= 50.47 

1 "\:""' 2 1 
Rxx = k ~ X; .. - C.T x = 15.625, Rxy = k L Xi y;. - C.T xy = 27.65 

y.1: 133.0, 141.6, 126.5, 131.5 

x .. 1 : 45.5, 49.0, 38.0, 45.5 

1 "\:""' 2 - 1 "\:""' . Cyy = k ~YI - C.Ty = 19.845, Cxy - k ~ x j .l/·j - C.T ry = 12.66 

Cxx = ~ L:x2
1. - C.Tx = 18.125, Tyy :=: ~ LY~I - C.Ty = 29.595 

1 1 
Tx.r = k Lx~1 - C.Tx = 16.125, Txy = k Lx .. 1y 1 - C.Txy = 19.862 

Erx = Gn - Rxx - Crx - Txx = 11.875, E~:r = Exx + Txx = 28.00 

Eyy = Gyy - Ryy - Cyy - Tyy = 49.03, E~Y = Eyy + T1JY = 78.625 

Exy = Gxy - Rxy - Cxy - Txy = 7.653, E~y = Exy + T.i;y = 27.515 

, E , E' 
0 = _..=Jj_ = 0.644, 0 = _..=Jj_ = 0.983 

Exx E~x 

S2 = Eyy - JExy = 49.03 - 0.644 x 7.653 = 44.101 

S4 = E~y - JE~Y = 78.625 - 0.983 x 27.515 = 51.578. 

Hence, the sum of squares due to treatment under Ho : 11 = 0 is 

S5. = S4 - S2 = 51.578 - 44.101 = 7.477. 

The test statistic to test the significance of Ho : 11 = 0 is 

F = S5 /(k - 1) = 7.477 /3 = 0. 28 . 
Sz/(k - l)(k - 2) - 1 44.101/5 
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Since F < F0 05 ;3,5 = 5.41. Ho is accepted. The types of dry food do not differ significantly. 

ANCOVA Table 

Sources of variation SS(x) SS(y) SP(xy) adjusted F 

SS d.f. 

Rows 15.625 50.47 27.65 - -

Columns 18.125 19.845 12.66 - -

Treatments 16.125 29.595 19.862 7.477 3 0.28 
Errors 11.875 49.03 7.653 44.101 5 

The adjusted treatment means are 

'fJ .. 1 (adjusted)= y,,1 - J(x. 1 - x ... ): 33.09, 34.67, 32.67, 32.71. 

The average variance to compare the means in pairs is 

(- _ ) . 20-
2 

[ Txx/(k - 1)] ,2 S2 
v Y .. 1 - y .. 1• adjusted=~ 1 + Exx , O' = (k _ l)(k _ 2) _ l = 8.8202 

- 2 x 8.8202 [ 16.125/3] -
- 4 1 + 11.875 - 5.41. 



Chapter 7 

Variance Component Analysis 

7.1 Introduction 
The data collected from controlled experiment are represeuted by experimental design model. 

Model is of.three types, viz., (a) Fixed effect model, (b) Mixed cff~ct mod<'!, and (c) Random 
effect model. Th<' analyses of random effect model and mixed eff Pct model arc known as varianc<' 
component analysis. 

Let us consider a model for the data of randomized block design, where the model is 

YiJ = µ + ai + f31 + e,J, 

i=l,2, ... ,p; j=l.2, ... ,q. 

Here YiJ = the rPsult of j-th treatment iu i-th block, µ = general mean, D'i = effect of i-th 
block, f3.1 = effect of j-th treatment, eij = random error. 

In the above experiment q treatments are randomly allocated to q plots of a block. The p 
blocks used in the experiment are assumed to be randomly selected from a population of blocks 
and q treatments are also assumed to be randomly selected from a population of treatments. · 
For example, let us consider that an agricultural research station discovered 10 varieties of high 
yielding rice and the researcher in the station wants to verify the productivity of 5 varieties of 
rice. These 5 varieties can be selected randomly from 10 varieties. In such a case, the effect of 
tLe variety is random. Again, consider that, in the station there are 50 cropping areas. The 
selected 5 varieties of rice can be cultivated in plots of randomly selected 10 cropping areas. If 
each cropping area is considered a block, the block effect is random. In such a case, the model 
a,;sumed for the analysis is random effect model. If the randomly selected varieties of rice are 
cultivated in all possible cropping arc~as, where an area is considered a block, the block effect 
is fixed and in that case the model for the data is mixccl effect model. The g.cneral mffin µ is 
always considered constant. 

Since th\' block effect (n;), treatment effect ((3:i), except the random component (ei.i), are 
assumed random [eu is always random], they have their distribution. Let us assume that 
(i) a, rv NID(O, a;'.,), (ii) f3J "'NID(O, a~). (iii) e;j "'NID(O, a 2 ), and (iv) all random variables 
arc mutually indepemkmt. Therefore, unlike the analysis of fixed effect model, the analysis of 
random effect model involves the estimation of variance components (a;;,, a~ and a 2

) and tests 
the significance of these variance components. As block effect and tre.atment effect arc random 
variable, we cannot estimate' these effects or their contrast. 

In analyzing fixed effect model [a; and (37 are parameters], we usually test the significance 
of the hypothesis : 

Ho : 0'1 = 02 = · · · = O'p or Ho : D'i = 0 for all i = 1, 2, ... p 

and Ho : f31 = /32 = · · · = (3q or Ho : f3J = 0 for all j = 1, 2, ... q. 

First hypothesis indicates that the block effects arc homogeneous and the second hypothesis 
indicates that the treatment effects arc homogeneous. If block effects arc same, the variance 

266 
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of block effects is zero. Hence, when block effect is considered random variable, the equivalent 
hypothesis of similar block 0ffects is Ho : a; = 0 against HA : a~ > 0. In a similar way it 
can be mentioned that the homogeneity of treatm0nt effNts leads to ep;_;1cia.tl' th<' h,vpothesis 
Ho : a~ = 0 against HA : a~ > 0. Since analysis of random effect and mixed eff<'ct rnodds 
involves the estimation and test of variance components, the analysis is known as variauce 
component analysis. 

7.2 Assumptions m Variance Component Analysis 

Let the model Tor variance component analysis be 

Yijl =µ+a;+ f3J + (a/3);1 + l:'ijl· 

i=l,2, .. .,p; j=l,2, .. .,q; l=l,2, ... ,r. 

The assumptions to analyse the above model are : 

Assumption-I: The raudom variable ai,/3j, (af3)ii and e;i/ are independently distributed 
each with mean zero and variauces a;, a~, a;(j and a 2 , respectively. 

Assumption-2: (i) a,"" NID(O,a;,), (ii) /3.i ""NID(O,a~) (iii).(a;3),1 ,...., NID(O,a?.8 ). 

(iv) e,j/ rv NID(O, a 2 ), 1v) all raudom variables are mutually independent. 

Assumption-3 : (a) Let a; be fixed effect and it is restrict<'d that La; = 0. Bul 

/3j ""NID(O, a~). Again, under the restriction 2:)a/3)i.i = 0. (af3)ij is : 

N (o, p-
1 a~,,,); Cov[(o:/3)ij, (a/3kil = -~a;8 (i =f i'). Also, /3i and (af3)ii are independcnt. p µ . p . . . 

(b) Under the restriction La;= O; /3j rv NID(O, a~); (a/3);.i ""NID(O, a?,8 ). /31 and (n/3);1 

are independent. 

The first assumption is that the model is random effect model but the distributions of th<' 
random variables arc not specified. Assumpt.ion-2 indicates that the model is random <'ffect 
one and the random variables·follow normal distribution. Assumption-3(a) indicates that the 
11'.odel is mixed effect model but one of the random variables is not independently distributed. 
The assnmption-3(b) is also related to mixed effect mo(kl but all the random variables arc 
independently distributed. 

7.3 Method of Variance Component Analysis 
It has already been mentioned that the variance component analysis involyes the estimation 

and test of v&iance components. The estimation of variance components is done by (a) l\lethod 
of least squares (Analysis of Variance Technique), (b) Method of maximum likelihood. The 
method depends on assumption of the random variable. For example, if assumption-I discussed 
above is considered, the variance component analysis is to be performed using method of least 
squares. But method of maximum iikelihood can be used if Assumption-2 is considered, since 
probability density function and hence, likelihood function for the variable can be found out. 
However, analysis of variance technique can be applied irrespective of the assumption. We shall 
only discuss the diethod of analysis of variance technique to estimate the variance component. 

The analysis of variance technique leads us to find the E(MS), where MS is the mean 
square of effects and/or interactions. The e~pected value of mean squares or expectt>d value 
of functions of mean squares equals the variance component. Solution of the equations gives 
the estimate of variance component. Let us explain the method in analysing the model for 
completely randomized design. 
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The model assumed is 

Yii = µ + ai + e;.1; i = 1. 2, ... , p: j == 1, 2, ... , q. 

Assumption : (i) o:i "V NID(O, a-;), (ii) e;i ~ )\TID(O, a 2
) (iii) o:; and e;i are independently 

distributed. 

According to analysis of variance technique the total sum of squares of the observation is 
partitioned as follows : 

p q 

L L(Y-i.i -YI.) 2 = q 2:01, -y )2 + L LCl/i1 -'Y;.) 2 = S1 + S2. 

j 

Now we have E(S1 ) = Eq '£(Y;. -y )2 = (p - l)[a2 + qa;J 

E (~) = a 2 + qa;,. 
p-1 

Again, E(S2) = p(q - l)a2 or, E [p(qS~ 1)] = a 2
. 

Here 
S2 

s2 = . Therefore, 0-2 = s2 = MS (error). 
p(q - 1) 

Also we have E(s1 - s2) = qa;. where s1 = Sif(p - 1) =MS (treatment). 

'2 1 ( ) . . a 0 = - St - S2 . 
q 

The estimates er2 and a-; are unbiased and 

V(er2) = 2a4 and V(0-2) = 2 [(a2 + qa;,)2 + a4 ] . 
p( q - 1) 0 q2 p - 1 p( q - 1) 

Under the assumption of ni and e;.7 we know that s 2 is distributed as x2a 2 with p(q - 1) 
d.f. and s 1 is distributed as x2(a2 + qa;,) with (p-- 1) d.f. Hence, we get the above variances of 
0-2 and er;_. The estimates ir2 and a;_ are unbiased and their variances are minimum ·[Graybill 
(1961)]. Searle (1971a, 1971b) has shown that the unbiased estimates of these variances are: 

v(er2) = and v(0-2) = - 0 + -----20-4 ' 2 [(0-2 + q0-2 )2 0-4 ] 
0 p(q-1)+2 ° q2 p+l p(q-1)+2. 

The main objective of this analysis is to test the significance of 

Ho : a;, = 0 against HA : a;, > 0. 

Since E(s1 ) = a 2 + qa;_ and E(s2 ) = a 2 , we have under H0 , E(s 1 ) = E(s2 ). Hence, the test 
statistic is 

ANOVA Table 

Sources of variation d.f. SS MS- ss 
- d.f. E(MS) F 

Treatment p-1 Si St a 2 + qa; si/s2 
Error p(q - 1) S2 s2 a2 

Total pq- 1 
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7.4 Variance Component Analysis in Two-Way Classification 
Let A and B be two factors having levels p and q respectively. Consider that each level 

combination is replicated r times and the result corrt:sponding to /-th replication of .i-th level 
of Hin presence ofi-th level of A is Yi.iL(i "= 1,2, ... ,p; j "'~ 1,2 .... ,q; l = 1,2, .... r). Thf 
model for Yi.JI observation is 

YiJl = 11 + n; + (1j + (o:/1)i; + ei.11: (A) 

where 1-1. = general mean, n; = effect of i-th level of A. PJ = effect of j-th level of B, (et/3),.i = 
interaction of 'i-th level of A with j-th level of B and e;.11 = random component. 

Assumption : (i) u; "' NID(O, u;), (ii) /3.1 "' NID(O, u~) (iii) (et/3),; "' NID(O, u~11 ), 
(iv) eii1 ,...., NID(O, u 2

), and (v) all random variables are mutually independent. 

The total sum of squares of the observations is partitioned into component sum of squares 
as follows : 

Here 

Let 

p q 1' 

LL L(:l/iil - y )2 =qr '£,(Y; - y )2 +pr '£/YI"..: Y )2 

j 

j 

E(S4) = ELLL(;iJ,Jl -!l;;.)2 = ELLL(ei.Jl -i\;.) 2 

=LL L E(e~1 i) + r LL E(ef1 ) - 2E LL L e;;11\7 . 
.i j I .i j I 

2 

= pqra2 + pqr'!.._ - 2r" "ee; r ~~ J 

= pqru2 + pqu2 - 2pqu2 = pq(r - 1 )u 2
. 

S4 
84 = ( l) = M.S (error). Then E(.84) = u 2

. 
pq T -

.i 

In a similar way, we can show that 

E(Si) = (u2 + ru;, 13 + qra;,)(p - 1) 

E(S2 ) = (u2 + ra;f:J + pra~)(q - 1) 

E(S3) = (u2 + ra;,6)(p - l)(q - 1). 

These analytical results are shown in the following analysis of variance table : 

ANOVA Table 

Sources of variation d.f. SS MS= ss 
d.f' E(MS) 

A p-1 S1 S1 u2 + ru2 + qru2 
n{:J °' 

B q-1 S2 s2 0"2 + ru2 + pru2 n/J iJ 
AB (p - 1 )(q - 1) S3 S3 0'2 + 7'0'2 n/3 
Error pq(r - 1) S4 84 0'2 

Total pqr -1 
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The objective of the analysis is to test the significance of the hypotheses : 

(i) fl0 : a~ = 0. against JI A : a~ > 0 

(ii) Ho : a~ = 0, against fl A : a~ > 0 

(iii) Hu: a~ 8 = 0. against HA : a~ 8 > 0. 

F\Jrther objective is to estimate these variance components. 

The test statistic for hypothesis (iii) is F:i = 8 3 / s4 . This F follows variance ratiQ distribution 
with (p- l)(q-1) and pq(r-1) d.f. If F3 ~ Foo5{p-l){q-lJ.pq(r-lJ' Ho is rejected. If Ho (iii) is 
rejected, the test statistic for Ho (ii) is F2 = s2f s3 . This .P.2 follows variance ratio distribution 
with (q - 1) and (p -· l)(q - 1) d.f. If H0 (iii) is not rejected, s 2 is to be compared with the 
pooled value of s3 and s4 , where the pooled value is (S3 + S4)/(pqr - p- q + 1). Thus, the test 
statistic is : 

82 
F2 = ~----:-,--------

( 53 + S4)/(pqr - p - q + 1)' 

This F2 follows variance ratio distribution with ( q - 1) and (pqr - p - q + 1) d.f. The test 
statistic for H 0 (i) is F 1 = sif s:1 wheu H 0 (iii) is rejected. If H 0 (iii) is not rejected, then 

F _ 81 1 - (Sa + S 4) / (pqr - P - q + 1) . 

The conclusion at C'ach step is drawn as usual. 

It is observed that E( 8 4 ) = a 2
. Hence, the estimator of a 2 is s4 . Again, it is observed that 

Similarly, E(s2 - s;i) = praJ, 

• 2 1 ( ) a nfJ = - 83 - S4 . 
r 

• 2 1 ( ' 
013 = - S2 - S;i). 

pr 

2 1 
er = -(s1 - s;i). ,, qr 

By assumption S4 is distribut0d as y 2a 2 with pq(r - 1) d.f. Hence, V(S4 ) = V(x2a 2 ) = 
a 4V(x 2 ) = 2pq(r -- l)a 4 . 

Hrnce, V(er 2
) = V(s4) = V [ 

54 
] = 

204 
. 

pq(r - 1) pq(r - 1) 

In a similar way, we find 

V(er2) = -- ,,13 ,, + .o:/3 
2 [ (02 + ra2 + qra2 )2 . (a2 + ra2 )2 l 

,, (qr )2 p - 1 (p - 1 ) ( q - 1 ) 

V(er2) = __ a.B f3 + o:/3 
2 [(02 + ra2 + pra2)2 (02 + ra2 )2 l 

P (pr) 2 q - 1 · (p - 1 ) ( q - 1 ) 

·2 2 [(a.2+ra~13)2 a4 l V(a ) - - + ----
o:/3 - r 2 (p - l)(q - 1) pq(r - 1) · 

The unbiased estimators of these variances are : 

( • 2 a ( · 2) o:/3 o: + o:/3 2 • 4 2 [ (fr2 + rer2 + qrer2 )2 (fr2 + ra2 )2 l 
va )= pq(r-1)+2' vao: = (gr) 2 p+l (p-l)(q-1)+2 
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('2) o.B {3 -t of3 2 [(a-2 + r&2 + pru2)2 (cJ-2 + r&2 )2 l 
v a f3 = (pr) 2 q + 1 - (p - 1 ) ( q - 1) + 2 

v( a-2 ) = _ of3 + a . 2 [ (0-2 + ru2 )2 - 4 l 
06 r2 (p - 1 )( q - 1) + 2 pq( r -- 1) + 2 

The above analysis is done assnming random effect model. Let ns ('Onsider that the cfff'('t 
n; is non-random and the restriclio11 for n; is LO'; = 0. In that case, thf' model (A) is a mixed 
effect model. To analyse the mod<'I. n; is to be f'Stimated in a similar way as it is doue in 
analysing fixed effect modd. The sum of sqnar<'s of diffcn'nt. <'ff<'rts and interaction aw found 
out as usual. However, 

E[AJS(ci;)] = E(s1) = a 2 + ra;,6 + _!!!___ ~ n;. 
p--lL..., 

The other steps of the analysis remain same. However, the variance of the primary contrast 
of fix<'d effects is 

2(MS used as denominator in testing the significance of fixed effect) 

No. of observations in calrnlating means r<'iated to fixed <'ffect 

7.5 Steps in Calculating E(M S) for Variance Component Analysis 
It is observed that the import.ant steps in analysing mixed effect model or random <'ffcct 

model are to find out the E(MS). Montgomery (1984) has proposed a simple method to find 
the value of E( MS). The method is based on several steps. The steps are discussed below : 

Step-1 : Let the model be 

Yi.1t = µ + n, + f3J + ( n/3);1 + eu1, 

i=l,2, ... , p; j=l,2, ... ,q; l=l,2, .... r. 

The model can be written as 

Yi.ii=µ+ n; + /3.i + (n/3);.i + e(i.JJI· 

Here i,j and l arc suffixes. These suffixes can be classified as (a) alive, (b) dead and (c) absent. 
The suffix which is under bracket. is consid<'fcd as dead. otherwise the suffix is alive:. In th<' 
model the suffixes i and j in e(iJ)l arc in brack<'t. These suffixes arc dead. Bnt i and j in (a/3) •. 1 

are alive. Again, l in (n/3);.i is absent. 

Step-2 : The d.f. of any component in the model is the product. of levels of dead suffixes and 
level minus one of alive suffixes present in a component. Thus, the d.f. of ( 0'./3),1 is (p-- I)( q - 1 ). 
Again, the d.f. of e(,JJI is pq(r - 1), since i and j in e(•.iJl arc dead suffix<'s but l is alive snffix. 

Step-3 : In any model the components, exceptµ, ar<' either fixed effect or random variabl<'. 
Each random variable has a variance component and each fixed effect is dcnot<'d by a symbol. 
In finding E(M S) we usually write variance component for the variance of the random variable 
and for fixed effect wc.mrite snm of sqnarcs of the effect divided by the respective d.f. as variance 
of that effect. For example, if n; in a model (i = 1, 2, ... , p) is fixed effect, then its varian('<' is 

°'2 
taken as L (p_o'lJ. 

Step-4 : The coefficients of each variance component is multiplied by some numbers, wh<'n' 
numbers arc the levels of suffixes which ai:.c absent in a component. For example, the variance 
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component of (oJJ);i is multiplied by r, where r is the level of I and this l is absent in (af3) 1i. 
The coefficients for different variance components arc' found out by preparing a table. The 
number of columns in the table is equal to the number of suffixes in the model. The number 
of rows in the table is equal to the numk>er of components, except µ. Thus, there will be row 
'or each component, except µ; in the model. The suffixes arc written in a row outside the main 
table. There is another row outside the table to write the l<'vel of <'ach suffix. Moreover, the 
suffixes arc indicated by F or R if an pffect is fixed or random, respectively. The body of tlw 
table is then filled up using the following principle : 

(a) The value corresponding to a row and a column is 1 if the dead suffix in the row coincides 
with the suffix in column. 

(b) The value corrC'sponding to a row and a column is zero if the suffix in the row coincides 
with the suffix in column and if that suffix in column is for fixed effect F. But the value is 1 if 
the suffix in column is for random effect R. 

(c) The elements in other rows and columns are filled up with the value of levels written in 
the column. All values in columns corresponding to error term are 1. 

( d) To find E(M S) of any component of a model, the elements in -row corresponding to 
that component are filled up for all columns related to alive suffi~ of that component. Thf' 
variance component related to a component in row is multiplied by the product of the visible 
element in that row. Therefore, each variance component has a coefficient. Thf' Pxpcctf'd 
value of MS[E(MS)] of a component is the sum of variance components with corresponding 
components with corresponding coefficient. To take the sum of components we need to consider 
those variance components which arc related to the suffix of thf' component for which E( 111 S) is 
to be calculated. In calculating the product of visible numbers, the elements except the element 
corresponding to the suffix(Ps) of the component i.s considered. The E(M S) for error is a 2 . 

Let us explain the method in calculating the E(M S) of the model. 

YiJl =µ+a;+ /3i + (0:(3);1 + e(i.i)l· 

Let us assume that the~ model is a fixed effect model. Herc i = 1, 2, ... p; j = 1, 2, ... , q; l = 
1, 2, ... , r. 

Table to find E(MS) 

Component F F R d.f. E(MS) 
p q r 
i J l 

O:; 0 q r p-1 a2 + ...!l!:.... I;a2 
p-1 i 

!31 p 0 r q-1 IJ2 + _EI_ I: 132 q-1 .1 

( o:(3);j 0 0 r (p-l)(q-1) a2 + (p-1J(q-lJ I: L;(af3);j 
e(i.i)l 1 1 1 pq(r - 1) a2 

Since l suffix is used for replication, it is always random. The d.f. is r,a.kula.ted, for example, 
for (o:/3);7 as (p - l)(q - 1), since i and j both arc a.live suffix and the level of i is p, the level 
of j is q. So d.f. corresponding to a.live suffixes ij is (p - l)(q - 1). The first element in the 
table is zero, sincf' first row is rcla.tf'd to suffix i and first column is related to suffix i with 
F. The suffixes j and l in Sf'cond and third columns do not coincide with suffix i in first row 
and hence, the elements corresponding to second and third columns a.re q and r, respectively. 
Similar argument is true for other elements. 
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The E(MS) for error is a 2 . To calculate E(MS) for component related to (a/3)i.i• we need 
to add variance components related to (a/3)ij and e(iJJI• since. the suffix ij is present in th~e 
two components. The coefficient related to varianrG component a 2 related t< • e(ii)l is 1 since 
visible clements .in the table is 1 corrnsponding to suffix l !except the ~uffixes i and jj in the 
columns. The coefficient related to variance component of (a/3)ij 'is r since the visible 'element 
in the row related to (a/3)ij is r, except the elements corresponding to i and j in the column. 
Therefore, • · 

E[MS(for a/3iJ)] = a
2 + (p- l;(q _ l) L L(a,B)IJ· 

Here (a/3)ij is fixed effect and its variance component is 

The E(MS) corresponding to ,Bj will be the sum of variance components related to 
e(iJJI• (a/3),1 and ,8.i, since the suffix j is present in all these components. The coefficient related 
to a 2 is 1, since the product of elements in columns corresponding to i and l (except column 
corresponding to j) are 1 and 1. The coefficient related to variance component of (a/3);1 is 
zero, since the product of the elements in the row corresponding to (a/3)ij are 0 and r [except 
the element corresponding to column indicated by j]. Hence, the variance component related 
to ( cr/3);J is not added in calculating E( MS) related to /31. The coefficient related to variance 
component of {31 is pr, since the visible numbers in the rows related to /31 are p and r (except 
the element corresponding to column indicated by j). Finally, 

In a similar way, we get 

E[MS(for a;)]= a 2 + p ~ 
1 
L:a~. 

Let us now consider the calculation of E(M S) assuming random effect model. The values 
of E(MS) are as given in the table below: 

Table to find E(MS) 

Component. R R R d.f. E(MS) 
i j l 
p q T 

Q; 1 q T p-I a 2 + ra2 + qra2 
a/J °' . /31 p 1 T q-I a 2 + ra2 + pra2 
Ot/J (J 

( a/3);j 1 1 T (p - l)(q _: 1) a 2 + ra2 
Ot/J 

e(ij)I 1 1 1 pq(r - 1) a2 

The argument to add various variance components is similar as it is ·made to calc~late E(M S) 
for fixed effect model. For example, let us consider the calculation of E(J\,f S) corresponding to 
component a;. The suffix 'i' is present in a;, (a/3)iJ and e{ijJI and hence, to calculate E(M S) 
for a; we need to add the variance components a~, a~fJ and a 2 related 'to a;, (a/3},;1 and eiJI, 
respectively. The coefficient of a 2 is .1, since the product of visible numbers corresponding to 
row e;11 are 1 and 1 (except the number corresponding to i in the column). The coefficient of 

D.E.S.M.-18 
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a~.B is r, since the visible numbers corresponding to row (a/3)iJ are 1 and r. The coefficient 
of a~ is qr, since the visible members corresponding to row ai are q and r except the number 
corresponding to column head by i. Therefore, we have 

E[MS(for ai)] = a2 + ra~.B + qra~. 
Similarly, we can find E(M S) for ·all components assuming mixed effect model, where it is 

assumed that ai is fixed with a restriction E ai = 0. It is further assumed that 

~)a/3)ij = 0 and (a/3)iJ "'N ( 0, p; 1 a~8); Cov [(a/3)i.i• (a/3)i'J] = -~u~8 {i 'f j) . 
• 

Also, it it assumed that tJi and (a/));1 are independent. The E(MS) of different components 
are shown below : 

Table to find E(MS) 

Component R R R d.f E(MS) 
i j l 
p q r 

O'.i 0 q r p-1 u2 + ru2· + ...!l!._ L:a2 a.8 p-1 i 

/31 p 1 r q-1 u2 + pra~ 
( a/3)ij 0 1 r (p- l)(q-1) 0-2 + ru2 a.8 

e(ij)l 1 1 1 pq(r - 1) a2 

7.6 Demerits of Analysis of Variance Technique in Variance 
Component Analysis 

In section 7.4, it is observed that &~8 = ~(s3 - s4). But this estimate may be negative, 
r 

sipce it is not sure that s3 is greater than s 4 . In practice, s3 may be less than s4 and hence, the 
estimate u a/3 may be negative. This problem may arise for any estimate of variance component. 
But variance should not be negative. This is the problem of analysis of variance technique. 
However, the technique is widely used as a method of variance component analysis and any 
negative estimate is considered as insignificant. 

Example 7.1 : The management of a poultry farm collected 10 varieties of dry concentrate 
from the market for its chicks. Initially the management planned to give 5 varieties of dry 
concentrate to the chicks and 5 varieties are randomly selected. The concentrates. were given 
to chicks of 4 different ages. Each concentrate was continued up to the age 45 days of chicks 
and then the weights of chicks were recorded. The weights (in kg) are given below : 

Weight ofchicks (Yi;1, in kg) 

Age of Dry concentrate Total y; .. 

chick D1 D2 D3 D4 Ds 
Ai 2.0, 1.8,1.5, 2.0,2.0, 1.8 1.8,1.5,1.5 2.0,2.1,2.2 1.5,1.4,1.2 26.3 

A2 1.5, 1.5, 1.4, 1.6,1.8,1.7, 1.6,1.5,1.5 1.8,2.0,1.9 1.1,1.2,l.O 23.1 

A3 1.4,1.4, 1.2 1.3,1.4, 1.5 1.0,l.0,1.0 1.4,1.5,1.4 1.0,1.1,l.O 18.6 
A4 1.0, 1.0,0.8, l.0,1.2, 1.0 1.0,0.8,0.8 i.0,1.2,1.0 0.8,0.8,l.O 14.4 

Total Y·J· 16.5 . 18.3 15.0 19.5 13.1 82.4 
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(i) Analyse the data and comment on the use of dry concentrate. 
(ii) Do you think that the use of dry concentrate is giving better result for the chicks of a.ge 

Ai compared to the chicks of age A4? 

Solution : (i) We have p = 4, q = 5, r = 3. Since dry concentrates are selected randomly, 
the effect of dry concentrate is random. But the effect of age may be assumed fixed. We have · 
the total weights of 3 chicks in each. group as follows : 

The observations [Yi;.] 

Age Dry concentrate Mean Y-i·· 
Di D2 Da D4 Ds 

. 

Ai 5.3 5.8 4.8 6.3 4.1 1.75 

A2 4.4 5.1 4.6 5.7 3.3 1.54 

Aa 4.0 4.2 3.0 4.3 3.1 1.24 

A4 2.8 3.2 2.6 3.2 2.6 0.96 

c2 .{82.4)2 • 
C.T. = - = 

4 5 
= 113.1627, TotQ.I SS= EE E Yljl - C.T. = 8.6373. 

pqr x x3 . 

1 ~ . 138400 
SS (Concentrate)= pr Li y~j- - C.T. = '"'4'X3""" - 113.1627 = 2.1706. 

. 1 1778.62 
SS (Age)= qr LY?.. - C.T. = 

5 
x 

3 
- 113.1627 = 5.4120. 

1 . 
SS (Age x Concentrate) = - L LYl;. - C.T. - SS (Age) - SS (Concentrate) · 

r 
363.76 

= -
3

- - 113.1621- 5.412- 2.1106 = o.soa " 
I 

SS (Error) = Total SS - SS (Age) - SS {Concentrate) - SS (Age x Concentrate) 

= 0.5467. 

Anova Table 

Sources of d.f. MS=ff. E(MS) F Fo.os 
variation 

Age 3 8i =1.803 u2 + ru2 + ..!l!,_ E a~ Ot/J p-i • Fi= 42.93 3.49 

Concentrate 4 82 = 0,543 u2 + pru~ F2 = 38.78 2.61 

Age x concentrate 12 83 = 0.042 u 2+ ru2 
Ot/J Fa= 3.00 2.80 

Error 40 $4 = 0.014 (12 

Tot.al 59 

The F-statistic for Ho : u!/J = 0 is Fa = 83/ 84 = 3.00 and the test statistic for Ho : ul = 0 
is F2 = 82/ 84 = 38. 78. It indicates that the concentrates differ significantly. Since u!.B > 0, the 
test statistic for Ho : ai = 0 is Fi = 81/sa = 42.93. The weights of chicks differ significantly. 

Herc &!.B = !(83 - 84) = 0.0093, u~ = ..!_(s2 - s4) = 0.042, 0-2 = 0.014. 
r . pr . . 
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2 [ (0-2+rif2 )2 -4 l 
Also, we have v(O-~fJ) = 2 ( )( QfJ) 

2 
+ ( a ) 

r. p-1 q-1 + pqr-1 +2 

= ~ [{0.014 + 3 x 0.0093)
2 

{0.014)
2

] = 0.000 3 
32 12 + 2 + 40 + 2 ° . 

v(a2 )- -- fJ +-----_ 2 [(iT2 + pra-2 )2 &4 l 
fJ - {pr)2 q + 1 pq(r - 1) + 2 

= 2 '[(0.014 + 4 x 3 x 0.042)
2 

{0.014)
2

] = 0 00 62 
(4 x 3) 2 5 + 1 + 40 + 2 . 0 . 

• v(0-2) = 2<74 = 2(0.014)2 = 0.0000093. 
pq(r - 1) + 2 40 + 2 

{ii) We need to test Ho : 0:1 = 0:4 against HA : 0-1 =I= 0:4. 

The test statistic is t = 'fhfiifil .. -- 'fh. = I.75 - 0·96 = 10.56. 
~ ./~ 

q1' v 15 

Here s3 is used in the denominator since this mean square is used as denominator to test 
Ho : o:i = 0. Since !ti > to.05, 12 = 2.179, Ho is rejected. The use of concentrate gives better 
result for the chicks of age A 1 . 

7.7 Variance Component Analysis for Three-Way Classification 
Let A, B and C be three factors having levels p, q and r. Consiqer that the result of z;th 

level. of C corresponding to j-th level of B and i-th level of A is Yi.ii. The model for this 
Yijt(i = 1, 2, ... ,p; j = 1, 2, ... , q; l =I, 2, ... , r) observation is: 

Yijl = µ + O:i + /3j +'YI+ (o:/3)ij + (o:f'),1 + (/31')11 + e._;1. 

The effects and interactions have their usual meanings. 

Assumption : (a) (i) ai is fixed effect with restriction La; = 0. 

{ii) /31 ,..., NID(O, a~), (iii) 'YI ,..., NID{O, a;), {iv) (a/3);1 ,..., N(O, l?fa~fJ) (v) (a'Y)a 

NID(O, Efa~,.), {vi) (/3'Y)J1 ""NID{O, a~,.), (vii) e;11 ,..., NID(O, o-2). 

(viii) All the random variables are mutually independent. 

(ix) Cov [(a/3);j, (o:/3)i'j] = -~a~fJ' i 
0

=I= i'. 
p 

. 1 2 
(x) Cov [(o:'Y)a, (0:1');1!] = --aQ,.. 

p 

(b) (i) O:i "'NID{O, a~). Also the assumptions (ii) to (viii) are valid. 
The total sum of squares of the observations is partitioned as follows : 

LL L(Yi11 -y .. .)2 =qr L(Y; .. - 'Y ... )2 +pr 2:;(y.J· -y ... )2 + pq L(Y .. 1 -y ... )2 

+ r L L(Yij- - 'ih. - Y-j· +'ii ... )2 + q L L(Yu - 'iii .. - Y .. 1 + 'Y .. )2 

+ p L 2::01-jl - ~-j- - Ii. I+ Ii ... )2 

+LL L(Yi11 - Yij· - Yi-I - Y-jl + Y; .. + Y-j- + 'fi.., - Y ... )2 

= S1 + S2 + S3 + S4 + S5 + S6 + S1. 
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Now, we can find the E(MS) of different components presPnt in the model. Th<' E(MS) 
are shown in the following tables : 

Table to find E(MS) according to assumption (a) 

Component FRR d.f. MS- SS -rr. E(MS) 
i j l 
p q r 

O'i 0 q r p-1 81 2 2 2 ...E..E 2 a + ra013 + qa0"Y + 
11

_ 1 ai 

/31 p 1 r q-1 82 a2 + pa2 + pra2 th /3 

'YI p q 1 r - 1 83 a 2 + pa~"Y + pqa~ 

( a/3)ij 0 1 r (p-l)(q-1) 84 a 2 + ra2 
o{J 

(Cl'')' )ii 0 q 1 (p - .l){r - 1) S5 a2 + qa2 
ct"Y 

(/3"1 )11 p 1 1 (q-l)(r-1) S5 a2 + paz fJ-y 

Ei11 1 1 1 (p - l)(q - l)(r - 1) S7 a2 

Table to find E(MS) according to assumption (b) 

Component RRR d.f. SS MS=rr E(MS) 
i j l 
P q r 

a; 1 q r (p- 1) 81 2+ 2 + 2 2 a ra013 qa0"Y + qra0 

/31 p 1 r (q - 1) 82 2 2 • 2 2 
a + ra afJ + pa /3-y + pra fl 

'YI p q 1 (r - 1) S3 2 2 2 2 a + qua-y +pa fJ-y + pqa"Y 

( a/3)i1 1 1 r (p-l)(q-1) S4 az + raz o/3 

(Cl'')' ).1 1 q 1 (p-l)(r-1) S5 a2 + qa2 
O')' 

(/3'Y )11 p 1 1 (q-l)(r-1) 85 a2 + pa2 /3-y 

Eijl 1 1 1 (p - l)(q - l)(r - 1) 87 0'2 

Now, to test.the significance of Ho : a~"Y = 0, H0 : a~"Y = 0, Ho : a~fJ = 0, the test :::tatistics 
are respectively (under both assumptions) 

85 85 84 
F5 = - , F5 = -, F4 = -. 

87 87 87 

The test statistic for Ho : a~ = 0 [under assumption (a)], 

S3 "f 2 F3 = -, 1 afl"Y > 0. 
85 

2 S3 
IfafJ-y=O,thenF3 =(S, S)/( )( ) 6+ 1 pq-1 r-1 

Under assumption {b) if a~"Y = 0 and a~"Y = 0, then 

F3 = 83 
(S5 + 86 + S1)/(pq - l)(r - I)" 
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But, if a~,, = 0 and O"~" > 0, then 

Again, if a~,, > 0 and u~.., = 0, then 
S3 

Fa=-. 
85 

However, the test statistic takes different form if both u~,. > 0 and u~,, > 0. Under Ho : u; = 0, 
we have 

E(sa + s7) = E(s5 + s5). · 

83 + 87 
Therefore, F3 = [Satterthwaite {1946)J 

85 + S5 

(s3 + s1 )2 (s5 + se)2 
The d.f. of F3 are 2 2 and ,.2 82 

• 
_!1... + 87 ij + 0 
r-1 (p-l}(q-l}(r-1) (p-l}{r-1) (q-t){1·-l) 

The test statistic for Ho : CT~ = 0 [under assumption (a)] is 
s2 2 

F2 = -, when ufJ.., > 0. 
S5. 

f 
2 s2 · 

I up..., =0, then F2 = (S
6 

+ S
7
)/p(q- l){r-· l} 

Under assumption (b) when bl)th a~fJ = 0 and a~,, = 0, then 
s2 

F2 = . 
(S4 + S6 + S1)/(pr -1)(q- I) 

L 2 2 s2 et u013 = 0 and a,,..,> 0, then F2 = -. 
. ,., ' Se 

A l 2 2 s2 gain, et CT0t/3 > 0 but u13..., = 0, then F2 = -. 
S4 

If both u~fJ > 0 and a~,. > 0, we have under Ho : a~ = 0, 

E(s2 + s1) = E(s4 + s5). 

S2 + S7 Therefore, F2 = . 
S4 + S5 

. {s2 + s7 ) 2 (s4 + se)2 
The d.f. of F2 are 2 2 ·. and 2 2 

..1.. + s7 ":! + s!j 
q-1 (p.,-l}(q-l)(r-1) (p-l}{q-l) (q-l}{r-1) 

Finally, the test statistic for Ho : Oi = 0 or, Ho : CT~ = 0 is 
. . St 2 2 

Fi = (S . S S )/( . ) , when a°'13 = 0 and a0 ,, = 0. " 4+ 5+ 1 p-lqr 

But, if u~13 > 0 and a~,. > 0, we have under Ho : a~ = 0, 

E(si + s1) = E(s4 + s5). 
St+ 87 

Therefore, F1 = . 
84 + 85 

(s1+s1)2 
The d.f. of F1 are - 2-----------. ...!1.. + . "z 

P:-1 (p-:-l)(q-l}{r-"l) 

and 



VARIANCE COMPONENT ANALYSIS 279 

Estimation of Variance Components 

Assumption (a): We have 

·2 ·2 1( ) -2 1( ) ·2 1( ) 
(f = 87, (f fJ"Y = - 86 - 87 , (f Ol"f = - 85 - 87 , a o{J = - S4 - S7 ' 

p q T 

-2 1 ( ) d -2 1 ( ) a fJ = - s2 - s6 an a "Y = - 83 - 86 . 
'[J'r pq 

The variances of these estimates are : 

V{0-2} - 2a4 V(0-2 ) - 2_ [ (a2 + pa~"Y)2 + a4 l 
- (p-l}{q-l)(r-1}' fJ"Y - p2 (q-l)(r-1) (p-l){q-l)(r-1) 

vc2 ) O"f + -------,-.--2 [ (a2 + qa2 )2 a4 l 
(fOl"f = q2 (p - l}{r - 1) (p - l}(q - l){r - 1} 

v ( (f ) = - + .,.----,....,..---.,....,..---,-, 2 2 [ (a2 + ra!.B)2 a4 l 
o {J r2 (p - l){q - 1) (p - l)(q - l}{r - 1} 

V{0-2) - -- fJ"Y fJ + fJ"Y 
2 [(a2+pa2 +pra2)2 (a2+p.a2 )2] 

fJ -(pr)2 q-1 (q-l)(r-1} 

V(0-2) = -- .B"Y "Y + .B"Y 
2 [(a2 + pa2 + pqa2)2 (a2 + pa2 )2 l 

"Y (pq)2 r - 1 (q - l)(r - 1) · 

The unbiased estimates of these variances are : 

C2) 28~ 
V'1 = (p-l}(q-l}(r-1)+2' 

v(a-2 ) = 2_ [ · 8~ + 8~ ] 
fJ"Y p2 ( q - 1 )( r - 1) + 2 (p - 1 )( q - 1) ( r - 1) + 2 

c2 2 [ 8~ s~ ] 
V a °'"Y) = q2 (p, - l ){ r - 1) + 2 + (p - 1 ){ q - 1 ){ r - 1) + 2 

, 2 2 [ ' s~ . s~ ] 
v(uo,B) = r2 (p -· l)(q - 1) + 2 + (p - l)(q - l)(r - 1) + 2 

c 2 2 [. S~ . ·8~ ·] 
v afJ) = (pr) 2 q + 1 + (q ~ l}(r - 1) + 2 

, 2 2 [ 8~ s~ ] 
v(a"Y) = (pq)2 r + 1 + (q - l}(r - I)+ 2 · 

Assumption {b) : The estimates, their variances and the estimates of variances for the 
components a~.B• u~"Y' a~,, and a 2 are similar as these are for assumption (a). However, we have 
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The variances of these estimates are : 

V.(a ) = -- + -------
, 2 2 [ ( a 2 + ra;,a + qa~'Y + qra~) 2 a4 
"' (qr) 2 p-1 (p-l)(q-l)(r-1) 

+ <>'Y + ,8-y 
(a2 + qaz )2 (a2 + pa2 )2 l 
(p- l)(r - 1) (q - l)(r - 1) 

, 2 2 [ ( a 2 + pa~'Y + T0"~,8 + pra~) 2 
0"4 

V(a,a) = (pr)2 . q - 1 . + (p - l)(q - l)(r - 1) 

+ .8'Y + o,8 
(a2 + pa2 )2 (a2 + ra2 )2 j 

• (q - l)(r - 1) (p - l)(r"""'" 1) 

" 2 2 [ ( a 2 + qa~.., + pa~.., + pqcr~ )2 
a4 

V(cr ) = -- + ------
. .., (pq) 2 r - 1 (p - 1) ( q - 1) ( r - 1) 

+ Q")' + .B'Y (a2 +qa2 )2 (a2 + pa2 )2 l 
(p-l)(r-1) (q-l)(r.-1) · 

The esti~nates of tqese variances are : 

" 2 2 [ s~ s~ s~ s~ ' ] 
v( ""') = (qr )2 p + 1 + (p - 1 )( q - 1) ( r - 1) + 2 + (p - 1 )( q - 1) + 2 + (p - 1 )( r - 1) + 2 

"2 S2 S7 S4 S6 2 
[ 

2 2 2 ,2 ] 

v(a,a)= (pr)2 q+l + (p-l)(q-l)(r-1)+.2+ (p-l){q-1)+2+ (q-l)(r-1)+2 

(" 2 2 [ s~ s~ s~ s~ ] 
v o·'Y) = -(p-q )-2 -r -+-1 + (p - 1 )( q - 1 )( r - 1) + 2 + (p - 1 )( r - 1) + 2 + -( q---1-)..,-( r----1...,..) _+_2 



Chapter 8 

Nested Classification 

8.1 Introduction 
The analysis of variance what we have so far discussed are cross-classificatio,n, where the 

levels of a factor are tested with all levels of another factor or other factors. As an example, 
we can mention the case of factorial experiment in which the levels of a factor are crossed 
with levels of one or more factors. If the factor is variety of an agricultural crop, it can be 
cultivated using different level'! of fertilizer. However, there are some factor or factors the levels 
of which are similar for another factor but IJOt same. For. example, let us consider the study 
of fertility variation of couples of different social status living in rural and urban areas. The 
fertility behaviour of urban and rural couples is not expected to be similar. The couples of each 
area can be divided into different social status, viz., (i) low, (ii) medium, {iii) high. The social 
status of urban people and rural people may be similar but not same. Hence, we can assume 
that level of social status {B) are nested within the levels of residential area (A). In such a case 
many couples of each area and of each social status may be investigated to study the impact of 
these· factors on their fertility. The method of data collection of such experiment is known as 
nested design. · 

·We hav~ mentioned two-stage nested design the data of whicli can be arranged as follows : 

Factor: A Ai A2 Ap 

Factor: B Bi, B2,···· Bq Bi, B2, ... , Bq ... Bi, B2, ... ,·Bq 

Yiu Yi2i ... Yiq1 . .. . .. Ypqi 

Y112 Yi22 ... Yiq2 . .. . .. Ypq2 

Ylln Yi2n . . . Yiqn ... . .. Ypqn 

Total YiJ· .Yll· Y12- ... Yiq· Ypl· • Yp2·.' · · Ypq_· 
Yi .. Yi .. Y2 .. Yp .. 

Here there are n observations for each level of B nested within the levels of A. This is called 
balanced nested design. The number of observations for different levels of B within levels of A 
may be unequa:l. For example, let the number of observations of jth level of B within ith level 
of A be nij [i = 1, 2, ... , p; j = 1, 2, ... , q]. In such a case, the design is known as unbalanced 
nested design. Again, the ievels of B may be different within different levels of A. Let Qi be 
the levels of B within the level of Ai. This is also a case of unbalanced nested design. 

• In some case, there may be three factors A, B and C such that the levels of C Ii.re nested 
within the levels of B and the levels of B are nested within the levels of A. Such a design is 
called three-stage nested design. In a similar way, multi-stage nested design can be formulated. 

281 
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Again, it may happen that the levels of C are similar for all levels of B but not same and all 
levels of B are same .for all levels of A. This is a case of cross and. nested classification, where 
levels of C are nested within the levels of B and levels uf B are crossed with levels of A. 

As there are many factors (at least two factors) having many levels, the levels may be 
randomly selected for an experiment or all levels may be used for an experiment. Accordingly, 
the analysis of data of nested design can be performed assuming random effect and fixed effect 
models. The effects may be mixed also and the model may be niixed effect model. Let us now 
discuss some an~lyses of data collected through nested design. 

8.2 Two-Stage Nested Classification 
The model assumed for this analysi.S is 

Yiil = µ + Qi + /3i(i) + eiil, 

i = 1,2, ... ,p; j = 1,2, ... ,q; l = 1,2, ... ,r. 
Here µ = general mean, Qi = effect of ith level of A, /3i(i) = effect of jth level of B within 

ith level of A, eijl = random error, and Yijl = the lth observation of jth level of B within ith 
level of A. 

Assumption : 

(a) Qi and f3J(i) are fixed effects with restrictions Lai = L f3j(il = 0. 
j 

{b) Qi is fixed effect with restriction Lai = 0 and f3J(i) is random variable, where 
f31(i) ,...., NI D(O, a~). 

(c) ai ,...., NI D(O, a~), (3j(iJ "'NI D(O, <1~). 

In every case, eijl ,...., NI D(O, a 2 ). Moreover, eijl are mutually independent of other random 
variables: 

Analysis under Assumption (a) : The normal equations to estimate the parameters are: 

y ... = pqrf1, +qr L &i + r LL f31(i) 
i j 

Yi ... = qrµ+ qr&i + r L f31(iJ 
j 

Yij· = rfl, + r&, + r°!Jj(i). 

There are (pq + p + 1) normal equations. All of them are not independent. First equation 
is the sum of p equations shown in second set and the second set of equations are obtained 
adding q equations shown in each set of last pq equations. Therefore, only last pq equations 
are independent. To get unique solutions of the normal equations, we need to put (p + 1) 

restrictions. The restrictions are L &i = L .Bi(i) = U. 
j 

Under the restrictions, we have f1, = Y.... &i =Yi .. - Y.... /3j(il =. Yij· ..,... Yi··· 
The total sum of squares of observations is partitioned into component sum of squares and 

is shown below : 

LLL(Yi11-Y ... )2 =qr L(Yi .. -y ... )2 +r LL(YiJ· -yi .. )2 + LLL(Yijl-Yi1.J
2 

i j 

=SS (A)+ SS (B within A)+ SS (Error) = S1 + S2 + S3: 
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ANOVA Table 

Sources of Variation d.f. SS MS= SS 
d.f. 

E(MS) F 

A p-1 81 u2 + ..!/!._ E a2 S1 
St -p-1 • S3 

B within A p(q- 1) 82 u
2 

+ p(q,._ ii Ej !3J(i) 
s2 

s2 -
83 

Err9r pq(r - 1) S3 83 u2 

Total pqr -1 

We need to test the significance of Ho : ai = 0 and Ho : f3j(i) = 0. The test statistics for 
these hypotheses are, respectively F1 = st/ 83 and F2 = s2/ 83. At this stage, if it is needed to 
compare the pairwise leveb of A, then the test statistic is 

§: 
Dk= du.o5,k,pq(r-l)Y qr' k = 2, 3, ... ,p. 

Analysis under Assumptions (b) and ( c) 
assum~tions as follows : 

We have E(MS) under these two 

E(MS) Assumption 

{b) (c) 

E(s1) u 2 + ru~ + ~ E a 2 
p-1 • u 2 + ru2 + qru2 

/J Q 

E(s2) u 2 +ru2 
.fJ u2 + ru2 fJ 

E(83) u2 u2 
. 

·The test statistic for Ho : u~ = 0 is F2 = s2/ s3. If u~ _>_0-; the test statistic for Ho : ai = 0 
or Ho : u~ = 0 is Fi = sif s2, otherwise, 

F 81 
1 = (S2 + S3)/p(qr - 1). 

U7 h '2 '2 1 ( ) • 2 · 1 ( ) vvc ave u ~ s3, ufJ = - 82 - s3 , u 0 = - 81 - 82 , 
r qr 

4 
V(a2)-'- 2u 

- pq(r - 1) 

V(u) = - + , -2 2 [(u2 + ru~)2 a4 l 
fJ r 2 p(q-1) . pq(r-1) 

v ( &2) - -- . fJ Q + fJ 
2 [(u2 + ru2 + qru2)2 (u2 + ru2)2] 

°' - (qr)2 . p - 1 . p(q - 1) · 

The estimates of these variances are : 

c 2 . . 83 c 2 82 83 22 . 2[ .2 2 ] 
vu ) = pq(r - 1) + 2' ~ ufJ) = r 2 p(q - 1) + 2 + pq(r - 1) + 2 · 

v(u ) = -- -- + · , 2 2 [· 8~ 8~ · ] 

°' (qr)2 p + 1 . p(q-.:. 1) + 2 · .. , 
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Example 8.1 : The IQ of students of a university are investigat.ed to difforPntiate t.hc 
students of• different departments within the faculties. The students are selected from four 
departments of each f..., :ulty. The included faculties are three. 

The I.Q. of students (Yijl) 

Faculty (A) F1 F2 . F3 
Departmept D1 D2 D3 D4 D1 D2 D3 D4 Di D2 D3 . D4 
Replication (B) 

1 80 85 70 72 65 66 70 72 

2 85 82 68 70 66 68 75 75 

3 82 80 65 70 60 70 78 80 
Total Ytj· 247 247 203 212 191 204 223 227 

Total Yi·· 909 845 

(i) Analyse the data and differentiate the faculties, if possible. 

(ii) Is there any difference between D 1 and D3 in F 1? 

70 75 80 

71 72 78 

70 74 75 

211 221 233 

903 

G2 
Solution : (i) We have p = 3, q:::::: 4, r = 3, G = 2657 C.T. ;= - = 196101.3611. 

pqr 

SS (Total) =LL LYf11 - C.T. = 1327.6389. 

SS (A) = :r LYt .. - C.T. = 
2~5~7; 5 - 196101.3611 = 208.2222. 

SS(B within A) = ~ [j L :ti -~~· l 

80 

80 

78 

238 

= [208171 - (909)
2

] + [179355 - (845)
2

]' + [204295 - (903)
2

] 

3 4x3 3 4x3 3 4x3 

= 533.5833 + 282.9167 + 147.5833 = 964.0833. 

SS (Error) =SS (Total) - SS(A) - SS (B within A) 

= 155.3334. 

ANOVA Table 

Sources of variation d.f. SS MS- ss - IT 

A (faculty) 2 208.222.2 s1 = 104.1111 

B within A 9 964.0833 s2 = 107.1204 

Error 24 155.3334 83 = 6.4722 

Total 35 

F 

16.08 

16.55 

-

Fo.os 

3.40 

2.30 

-

It is observed that in terms of average I.Q. the students of different faculties are different. 
The averages are F 1 = 75.75, F 2 = 70.42, F 3 = 75.25. To differentiate these means we can 
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perform Duncan's multiple range test, wh~~e the test statistic is 

.· !Yi. ' Dk = do.o5.k,pq(r-l) y qr, k = 2, 3. ~ 

rm J6.4722 • 
D 2 = 2.92y ~ = 2.14, Da = 3.07 ~ = 2.25. 

Using the values bf D2 and D3 it may be concluded that the students of F1 and Fa are 
significantly different than the students of °F2 in terms of. average 1.Q. The students of F1 
and F3 are similar. 

(ii) We need to test the significance of 

Ho : .81(1) = 11a(ll against HA : /11(1) f: /1a(lJ· 
The test statistic is 

t = Yu. - i/13. 

~ 
Since !ti > to.os.24 = 2.064, Ho is rejected. 
F1 arc significantly different. 

= 82.33 - 67.67 = 7.06 ... 
J2x634722 

The average I.Q. of students qf D1 and Da within 

The above analysis is performed assuming fixed effect model. If it is as:;umed that the 
faculties and the departments within a faculty are randomly selected, then we need to test the 
significance of Ho : a~ = 0 and Ho :·a~ = 0. The test statistic for Ho: a~ = 0 is F2 = 16.55 and 
it indicates that a~ > 0, i.<'., the variation in average 1.Q. of students in different departments 
within faculties are significantly different. 

Since a~ > 0, the test statistic for Ho : a~ = 0 is F1 = sif s2 = 0.97. This test statistic does 
not provide evidence of differential I.Q. of students of different faculties. 

The estimates of variance components and the estimates of variances of estimates of variance 
components are given below: 

a~= ~(s2 - s3) = 33.55, a!= 2-(s1 - s2) = -0.25. 
r . . . qr 

The negative variance indicates the insignificance of this component. The phenomenon is 
already been observed by F-test. · 

v(0-2) = ..!_ [ s~ + s~ ] ~ ~ [(107.1204)
2 + (6.4722)

2
] 

fJ r2 p(q - 1) + 2 pq(r-:- 1) + 2 9 9 + 2 24 + 2 

= 232~11· . 

v(a2) == _2_ [~ + s~ ] ~· ~ [(104.1.111)
2 + {107.1204)

2
] 

°' (qr)2 p + 1 p(q - 1) + 2 144 3 + 1 9 + 2 

= 52.12. 

8.3 Three-Stage Nested Classification 
. Let there be three factors A, B and C having levels p, q and r respectively. The levels of C 

are such that these are similar for each level of B but not same and the levels of B. are nested 
within the levels of A. Let.yiJlk be the k-th observation. of l-th level of C within j-th level of 
Band i-th level of A(i = 1, 2, ... , p; j = 1, 2,: . ., q: l = 1, 2, ... , r; k = 1, 2, ... , m). The model 
for this YiJlk observation is ' 

YiJlk = µ + O'.j + .BJ(i) + 'Yl(ij) + Eijlk· (A) 
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whereµ= general mean, a; = effect of i-th level of A, Bj(i) = effect of j-th levels of B within 
i-th level of A, 'Yl(iiJ = effect of l-th level of C within i-th and j-th level of A and B, e;11k is a 
random error. 

Assumption : (a) (i) all effects arc fixed effects with restrictions 

L: a; = L: f31(i) = L: 'Yl(ij) = o. 
j I 

(b) (i) a;,..., NID(O,a~), (ii) /3j(iJ ""NID(O,a~) (iii) 'Yt(iiJ,..., NID(O,a~). 

(c) (i) a; is fixed effect with restriction E ai = 0, 

(ii) f31(i) ,..., NID(O, a~), (iii) 'Yl(iJJ ,..., NID(O, a~). 

Moreover, in every ca.se e;jtk "' NID{O, a 2) and all random variables are mutually 
independent. 

Analysis under assumption (a) : .The normal equations to estimate the parameters are: 

y .... = pqrmft + qrm Ea;+ rm EE PJ(i) +: m EE E i'1(ij) 

y; ... = qrmf.i + qrma; +rm 2:1 .Bi(i) + m 2:1 2:1 i1(iJ) 

Yij .. = rmfl, -I rm&; + rm.Bj(i) + m 2:1 i'1(ij) 

Yiil- = m(fi, +a;+ f3i(iJ + .Y1c;;J)· 

There are· (pqr + pq + p + 1) normal equations. Among these, only pqr equations in the last set 
are independent. Hence, to get the unique solution of these equations we need to put pq + p + 1 
restrictions. The restrictions are 

L: a; = L: f3;(i) = L: 1,(ij) = o. 
j I 

Under the restrictions the estimates are 

fi, =Ji ... ., .&; = 'fk .. - fj, ... , f31ci> = Y;j .. - Y; .... i1 = Yijt· - Yij·" 

The total sum of squares of observations is' partitioned as follows : 

EE E 2:(Y;;1k - :Y .... )2 = qrm E(:Y; ... - :Y .... )2 +rm E_EOiij .. - 'Yi ... )2 

+ m 2:(:Y;31. -.;i; .. )2 +EE E E(Y;11k - 'lh11.)2 

= SS(A) + SS(B within A)+ SS(C within A and B) +SS (Error) 

= S1 + S2 + S3 + S4. 

ANOVA Table 

Sources of variation d.f. SS MS= SS rr. E(MS) F 

A p-1 Si s1 a2 + qrm Eo:~ 
p-1 i 

sif s4 

B within A p(q - 1) S2 s2 u
2 + ,,c;":.:1, EE !3Jc;' s2/s4 

C within B and A pq(r. - 1) 83 S3 u2 + pq(~-1) EE E 'Y~ij) s3/s4 

Error pqr(m -1) S4 S4 0'2 

Total pqrm·-1 
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The main objective of the analysis is to test the significance of Ho : ai = 0, Ho : f3J(i! = 0 
and Ho : 'Yl{ijJ = 0. The test statistics for these hypotheses are respectively F1 = 8if 84, 
F2 = 82/ 84 and F3 = s3/ 84. The multiple comparison is also done as usual. 

Analysis under assumption (b) and ( c) : The expected mean square of different 
components are shown below : 

Component. E(MS) under MS 

Assumption (b) .Assumption ( c) 8& 

ai u2 + mu2 + mru2 + ~ E a 2 
"Y 13 p-1 • u2 + mu2 + rmu2 + qrmu2 

"Y 13 Q 81 

f3j(i) u2 + mu2 + rmu2 
"Y fJ u2 + mu2 + rm<t2 

"Y /J .82 

'Yl(ij) u2 +mu2 
"Y 

u2 + mu2 
"Y 83 

eijlk q2 q2 84 

The ~bjective of these analyses a.re to test the significance of (i) Ho : u; = 0, (ii) Ho : u~ = 0, 
(iii) Ho : u~ = 0 or ai ,,,; 0. The test statistics are discussed below : 

The test statistic for Ho : u; is F3 = s3 / s4 . If it is observed that u; > 0, then the test 
statistic for Ho : u~ = 0 is F2 = s2/ s3, otherwise, 

S2 
F2 = . 

(S3 + S4)/pq(rm - 1) 

The test statistic for Ho : u~ = 0 or Ho : ai = 0 is F1 = sif s2, provided u~ > 0. If u~ = 0 but 
u; > 0, then Ft is to be computed as follows : 

F s1 
1 = (S2 + S3)/p(qr - 1). 

If 2 2 · S1 
both u"Y = 0 and u 13 = 0, then F1 = (S S S )/ ( · )" 

2+ 3+ 4 pqrm-1 
The estimates of variance components are : 

-2 2 1 ( ) -2 1 ( ) d -2 1 ( ) u = 84, u-Y = - 83 - s4 , u13 = - 82 - s3 an u0 = -- 81 - s2 • 
rn rm qrm 

The variances of these estimates are : 

V( -2) - 2u• vc-2 - 2 ['q2 + mu;)2 q4 l 
u - pqr(m - 1)' O'-y) - m2 pq(r - 1) + pq~(m - 1) · 

V(0-2) = -- -Y 13 + . -Y 
2 [(u2 + mu2 + rmu2)2 (u2 + mu2)2] 

13 (rm)2 p(q - 1) • pq(r·- 1) · 

v (0-2) = "Y fJ Q + "Y fJ · . 2 [(a2 +. ma2 + rmu2 + qrma2)2 (u.2 + mu2 + rma2)2] 
0 (qrm) 2 · p - 1 p(q- 1) · 

The estimates of these variances are : 

v(0-2) = 2s~ . , v(0-2) = _2_. [ . 8~ . + -....,· ,....·-8-.~....,.--] 
pqr(m -1) + 2 -Y m2 pq(r - 1) + 2 pqr(m - 1) !f- 2 · 

( , 2) 2 [ . s~ 8~ ] , 2 2 [ sl 8~ ] v a13 = -- + v(u ) = - + (rm)2 p(q-1)+2 p(q-1)+2' 0 (qrm)2 p+l p(q.:...1)+2 · 
··. 
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Example 8.2 An experiment is conducted to study the differential in productivity of . 
local variety (LV) of rice and high yielding variety of rice (HY)'). Each variety has two crops, 
viz., Aus and Aman. The rice varieties are cultivated in ·three different seasons in different 
agricultural plots. The production per plot (Yijlk kg) in different replications are recorded for 
analysis. Analyse the data and comment on the differentiality of rice variety and crop variety 
within a variety. 

The production of rice (Yijlk kg) 

Season (A) 

S1 S2 S3 

~plication Variety of rice (B) 

LV HYV LY RYV LY HYV 

Crop type ( C) 

Aus Aman Aus Aman Aus Aman Aus Aman Aus Aman Aus Aman 

1 8.5 10.2 15.6 20.8 9.5 12.5 18.6 25.6 8.0 10.4 
2 9.0 10.4 16,0 20.0 9.0 14.6 18.0 25.0 8.0 11.0 
3 9.2 10.6 16.0 20.5 9.8 13.8 18.5 25.8 8.4 11.2 

4 9.3 10.4 16.2 20.6 9.4 12.8 18.2 25.5 8.3 11.5 

Total Yiil· 36.0 41.6 63.8 81.9 37.7 53.7 73.3 101.9 32.7 44.1 

Yii .. 77.6 145.7 91.4 175.2 76.8 

Yi ... 223.3 266.6 

Solution : We have p = 3, q = 2, r = 2, m = 4, G =: 714.6 

C.T. = ...!!:.._ = (714
·
6

)
2 

= 10638.6075, 
pqrm 48 

SS (Total) = LL LL Y?jtk - C.T. = 1417.5725. 

SS(, A)= -
1
- ~y2 - C.T. = 

171428
·
54 

- 10638.6075 = 75.6762. 
qrm ~ ,... 16 . 

SS (B within A) = L [L:j YD .. - ~'f. .. l 
i rm qrm 

= [27250.25 - (223.3)
2

] [39049.00 - (266.6)
2

] 

8 16 . + 8 16 

15.0 21.6 

15.0 22.4 
14.8 22.0 

15.3 21.8 

60.1 87.8 

147.9 

224.7 

[
27772.65 - (224.7) 2

] 

+ 8 16 

= 281.4712 + 438.9025 + 315.9606 = 1036.3243. 

Ss(c . 1. A dB) ~~ [LY?11· Y?1 .. ] . wit un an = 7 ~ -;;;:- .- -:;:;:; 
= [756.64 - 752.72] + [2694.5125 - 2653.5612] 
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+ [1076.245 - 1044.245] + [39~9.125 - 3836.88] 

+ [753.525 - 737.2] + [2830.2125 - 2734.:I012] = 246.4013. 

SS (Error).= SS (Total) - SS(A) - SS(B within A) - SS(C within A and B) = 59.1707. 

ANOVA Table 

Sources of variation d.f. SS SS MS= rr. F F.or, 

A 2 75.6762 37.8381 23.02 3.27 

B within A 3 1036.3243 345.4414 210.17 2.87 

C with A and B 6 246.4013 41.0668 24.98 2.37 
Error 36 59.1707 1.6436 -

Total 47 

It is observed that the crop variety within a variety differs significantly(·: F3 > F005 ;6 ,36 ). 

Again, the varid.y of ric0 within seasons also differs significantly. 

Th0 abow analysis has been performed assuming fixed effect model. Let us assume that 
th0 model is a random effect model. Then to test the significance of Ho : a; = 0, the test 
statistic is F3 = 24.98 and it is observed that er; > 0. The test statistic for Ho : CT~ = 0 is 
F2 = s2/s3 = 8.41. This test indicates that er~> 0. Now, the test statistic for Ho: er~= 0 is 
F1 = sif s2 = 0.11. This indicates that the seasonal variation in production is insignificant. 

The estimates of variance components and the estimates of variance of the estimates of 
variance components are given below : · 

ir2 = 1.6436, Cr[J = 38.05, Cr~ = 9.86, Cr~ = -19.23. 

The negative variance indicates insignificant effect of season. 

v(ir 2 ) = 2s~ 2(1.6436)
2 

= 0. 142. 
pq(m-l)r+2 36+2 

C 2) 2 [ s5 . s~ ] 2 [ (41.0668)
2 

(1.6436)
2

] 
va-r =m2 pq(r.-1)+2+pqr(m-1)+2 =16 6+2 + 36+2 

== 26.36. 

(' 2) 2 [ s~ s~ ] 2 [(345.4414)
2 

(41.0668)
2

] 

vaf3 =.(rm)2 p(q-1)+2+pq(r-1)+2 =54 3+2 + 6+2 

= 752.40. 

( . 2) _ 2 [ si s~ ] _ 2 [(37.8381) 2 (345.4414) 2
] 

VCT - --+ -- +-----
°' (qrm)2 p + 1 p(q - 1) + 2 256 3 + 1 3 + 2 

= 189.25. 

8.4 Unbalanced Three-Stage Nested Classification 
The model for this analysis is 

YiJlk =µ+a;+ f3j(i) + 'Yl(i.i) + e;Jtk, 

i=l,2, ... .,p; j=l,2, ... ,q;. l=l,2 .... ,r;1; k=l,2, .. ., n;.11· 

(A) 
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The parameters in the model have their usual meanings. The assumptions to analyse the 
data are assumed to be similar to the assumptions discussed in the previous section. 

Let n =LL L nu1, N,.. =LL ni.1t, Ni.r = L ni.Jf, R =LL T'i.J, R.; = L T';.J, 
j j l .i .i 

The normal equations to estimate the parameters in the model (A) are : 

y .... = nfl, +I: Ni .. &;+ I: I: N;1.SJ(i) +I: I: I: n;11"Yt(i.JJ 

Yi .. = N; .. fl, + N; .. &; + L:.i N;J.SJ(iJ + 2:1 2:1 n;.Jt"Yt(i.i! 

Yi.i. = N;1.µ + N;J.&; + N;;.S.i(iJ + 2:1 n;.Jt"Yt(i.i! 

Yi.JI· = ni.Jt(fl, + &i + SJ(iJ + "Yt(ijJ)· 

To get the unique solution of these normal equations we need to put the following restrictions : 

L: N; .. &; = L: N;jsj(i) = L: Tlijl-rl(ij) = o . 
.i l 

Under the restrictions the estimates are : 

fl,= 'fl ... , &; =Th .. - y .... , SJ(iJ =Yu. - 'Y; ... 
it(ij) = YiJl· - Y;.1 ... Here the means are : 

1 1 1 
Yi .. = N L N;.iYii·" Y;j .. = ~ LYijl" Yijl· = --2: Yi.Jlk, 

,.. J •1· l ni.il k 

1 
'fJ ... = - LN; .. y; ... · 

n . 

The sum of squares due to estimate is 

SS (estimates) = fl,y . +I: &;y; ... +I: I: ~J(iJYiJ .. +I: I: I: n;11Yiil· 

=LLL~Y?Jt·· 
i .i I i.11 

The d.f. of this sum of squares is R. 

Therefore, the sum of squares due to error is 

The d.f. of 84 is (n - R). 
The main objective of this analysis is to test the following hypotheses : 

(i) Ho : a:; = 0, (ii) Ho : f3.i(iJ = 0, (iii) Ho : 'Yl(iJJ = 0. 

Under null hypothesis (iii), the model becomes 

Yi.ilk = µ +a; + f3J(i) + ei.Jlk. 

i=l,2, ... ,p; j=l,2, ... , q;; l=l,2, ... ,r;1; k=l,2, ... ,n;Jt· 

(B) 
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The sum of squares due to estimates following the model (B) is 

S5 =SS (Esti.matcs) = fLYi· .. + L &iYi .. +LL ~.i(i)YiJ .. 

= LLN
1 

Yfj 
i j L.J• 

The error sum of squares for the model is 
' 

S5 = LLLYijlk - LL N~ .Yfi 
' j .1 

The d.f. of S5 is n - Q. Therefore, SS(,:Yl(ijJ) under null hypothesis (iii) is 

S3 = s6 - S4 = LL [L Yi,. - Y~ ·] · 
. . n, 11 f\, 1. 
' J l . . 

The d.f. of S3 is R - Q. Hence, the test statistic for Ho : 'Yl(i.iJ = 0 is 

Under null hypothesis (ii), the model (B) becomes 

Yi.Jlk = µ + Q'; + Eijlk. 
The sum of squares due to estimates following mode (C) is 

S1 =SS (Estimates) =fly .... + L &1yi ... ::::: L -1
-. yf. 

N, .. 

The d.f. of S1 is p. The error sum of squares of this model is 

1 
Ss =SS (Error)= LL L LYfJlk - L N; .. yf... · 

The d.f. of Ss is (n - p). Hence, the SS(~j(iJ) is 

S2 = Ss - s6 = L [L ~ .· YTJ .. - ~" ] · 
i •.J· , .. 

The d.f. of S2 is (Q - p). Hence, the test statistic for Ho : f3J(i) = 0 is 

F
2 

= (Ss - S6)/Q - p 
S4/(n - R) . 

Following. the model ( C), we have 

S = SS( - ·) = """_1_ 2 - Y~ .. i a, L..t N Y,... . ;.. n 

This S1 has (p - 1) d.f. Hence, the test statistic for Ho: a;= 0 is 

F1 = Sif (p - 1) . 
S4/(n - R) 
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(C) 
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Let us now write the analysis of variance table for mixe<l effect and random effect model. 

ANOVATable 

Sources of variation d.f SS MS- SS -. d.1' E(AfS) 

Under Assumption (b) Uuder Assumption (c) 

A p-· l Si s1 2 c 2 c 2 a + 3a-r + 4af3 2 c 2 c 2 2 a+ 3a1 + 4aP'+Cr;an 

+ p~t L; Ni .. a; 
B within A Q-p 52 S2 2 c 2 c 2 a + 1a1 + 2af3 a

2 + C1a; + C2a~ 
C within B and A R-Q 53 83 a

2 + C a
2 

0 1 a
2 + C a

2 
0 'I 

Error n-R 54 84 a2 a2 

Total n-1 

1 
Here Co= ---

R-Q [n-~~ e=~;;;,,) l · c, ~ Q ~" [" - ~(Liv:'~) l 
c, ~ Q ~ P [ ~ { ~ (L~=1,,) }-~ (L' ~,n1") l 
03 =_I [" (L1 Lt n~il) _ .!._ '°' '°' '°' nL] 

p - 1 L N{. n LL L J 

' 

C4 = _1 [" ( L, Nii·) - .!._ '°' '°' N2 .] , C5 = _1 [n - L N;2.] . 
p - 1 L N;.. n LL '1 p -- 1 n 

' 
The test statistic to test the significance of H0 : a; = 0 is F3 = s3 / s4 . If a; = 0 is noted 

down, then the test statistic for Ho : a~ = 0 is 

p. _ Sz 
2 

- (SJ+ 54 )/(n - Q) 

However, if a; > 0, F2 does not provide exact result. An approximate test statistic can be 
found out as follows : Under Ho : a~ = 0, we have 

Hence, the test statistic is 

The d.f. of this F4 are 

E[Cos2 + C1s4] = E[C1s3 + Cos4]. 

F
4 

= Gosz+ C1s4. 
C1s3·+ Cos4 

(Cos2 + C1s4) 2 

(Cos2J 2 + (C1s4) 2 

Q-p n-R 

and 
(C1s3 + Cos4)2 

(C1s3)2 + (Cos4) 2 ' 
R-Q n-R 

The F-statistic for H 0 : a~ = 0 can be found out in a similar way. Here, under a~ = 0, we have 
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,z ,z 1 ( ) er = 84, er -Y = -C s3 - 84 , 
0 

a~ (approx)= ~5 (s1 - s2) 

a~= c:Cz [Cos2 + C1s4 - C183 - Cos4 ]. 

If er~ > 0, the exact estimate of er; is not available. 

The estimates of variance of the above estimates 

, 2 2s~ , 2 2 [ s~ 8~ ] 
v(cr)=n-R+2.v(er-y)=CJ R-Q+2+n-R+2' 

(
, 2) 2 [ (Co84) 2 (C1s3)2 (Co82)2 (C184)

2 
] 

v ere = (C0 C2 ) 2 n-R+2 + R-Q+2 + Q-p+2 + n- R+2 · 

The estimate a; is exact, if C 1 = C3 and C2 = C4. 

Under this condition the estimates of variance of a; is 

Example 8.3 : A social scientist investigated the fertility behaviour of some urban and 
rural couples. The couples were classified into three social classes, viz., Low (L), Medium (M) 
and High (H). Th0 couples of each social statns have differ0nt 10vcls of cdnration. Th0 conplcs 
were divided into three groups. viz., illiterate (I), educated (E) and higher educated (1-! E) in 
respect of female's education. The number of ever born children of each couple is recorded for 
analysis. Investigate the variability in fertility behavior according to social factors. 

Number of ever born children (Yijlk) per couple 

Area (A) 

Urban Rural 

Social status (B) 

Replication L M H L M 

Level of education 

I E I E HE I E HE I E I E HE 

4 3 5 2 2 5 4 2 6 4 6 4 2 

5 3 4 3 2 6 4 2 7 3 5 3 2 

6 5 3 2 4 3 4 3 6 3 

3 4 3 3 4 
4 2 5 

6 

Total Yi.11 22 11 g 12 11 15 11 4 31 10 21 10 4 

Yi.i· 33 32 30 41 35 

Yi·· 95 76 
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Here n = 45; N11. = 8, N12 = 11, Nia. = 8, Nz1. = 9, Nz2 = 9; N 1. = 27. 

N2 . = 18; Q1 = 3, Q2 = 2; ru = 2. r12 = 3, r13 = 3, r21 = 2, r22 = 3; Q = 5; 

R = 13; Co = 3.21, C1 = 3.82, C2 = 8.93, C;j = 3.96, C4 = 9.09. 

c2 
C5 = 21.6; G = 171, C.T. = - = 649.8, SS (Total) = 85.2. 

n 

SS(A) = L YT. - C.T. = 5.35, 
. Ni. 

i 

SS(B within A) = L [L. Yfi · - NYl] = (341.72 - 334.26) + (322.89 - 320.89) 
N .. 1. i· l J . • 

= 9.46. 

. [ 2 2 l SS(C within A and B) =LL L YiJI· - Yij·· 
. . 

1 
n,11 N,1. 

i J . ~ 

= {137.133 - 136.125) + (100.7 - 93.091) + (123.33:> -- 112.8) 

+ (193.5 - 186.778) + (151.583 - 136.111) 

=:= 41.344 . 

. SS (Error)= SS (Total)- SS(A)- SS(B within A) - SS(C within A and B) = 29.046. 

ANOVA Table 

Sources of variation d.f. SS SS MS=rr E(M S) for random F 
effect model (fixed effect) 

A 1 5.35 5.35 a 2 + 3.96a~ + 9.09a~ + 2l.6a; 5.89 

B within A 3 9.46 3.153 a 2 + 3.82a~ + 8.93a~ 3.47 

C within A and B 8 41.344 5.168 a 2 + 3.2la~ 5.69 

Error 32 29.046 0.908 a2 -

Total 44 

The fertility levels in rural and urban areas arc significantly diffcrcnt [F1 = 5.89 > 
Fo.o5;l,J2 = 4.16]. The fertility levels according to social status within an area are also 
significantly different [F2 = 3.47 > Fo.os;3,32 = 2.91]. The fertility levels vary significantly 
by levels of education within social status and area [F3 = 5.69 > F005 ;8 ,32 = 2.26]. 

Let us now dis.cuss the analysis assuming random effect modcL The test statistic to test the 
significance of Ho : a~ = 0 is F3 = si/ s3 = 5.69. It indicates that a; > 0. Since a; > 0, the 
test statistic for Ho : a~ = 0 is 

F
4 

= Cos2 + C1s4 = 3.21 x 3.153 + 3.82 x 0.908 = 13.590 = 
0

_
60

_ 
C1s3 + Cos4 3.82 x 5.168 + 3.21 x 0.908 22.656 

The d.f. of F4 are 

(Cos2 + C1s4)2 = (13.590) 2 = 
5 

(C1s3 + Cos4) 2 

~ + (C1s4) 2 34.522 ' ~ + (Cos4) 2 

~ n-R --n::::q- n-R 

Thus, H0 : a~ = 0 is true. 

(22.656) 2 
- 0 

48.983 - 1 . 
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Since a~ = 0, the test statistic for Ho : a~ = 0 is 

F = C1s1 + C3 s4 = 3.82 x 5.35 + 3.96 x 0.908 = 24.318 = 1.52 _ 
C3s 2 + C1s4 3.96 x 3.153 + 3.82 x 0.908 15.954 

The d.f. of F are : 

(C1s1 + C3s4) 2 (24.318)2 = 
1 

(C3s2 + C1s4)2 

~ + (C3s4) 2 - 418.075 ' (C3s2J 2 + (C1s4) 2 

p-1 n-R Q-p n-R 

This also indicates that a~ = 0. 

The estimates of variance components are : 

1 
fr2 = s4 = 0.908, fr~= Co (s3 - s4) = 1.33. 

(15.954) 2 

52.342 = 5
· 

fr~ = 
00

1

02 
[Cos2 + C1s4 - C1s3 - Cos4] = -0.32 (insignificant). 

We have C1 :::::: 4, C3 = 4, C2 :::::: 9 and C4 :::::: 9. 

Therefore, er! = ~5 (s1 - s2) = 0.10. 

v(fr2
) = 

28~ = 0.048. 
n-R+2 

(

A 2) 2 [ (Cos2)2 (C1s4) 2 (C1s3)2 (Cos4) 2 ] 
va = · + + +----

8 (C0 C2 )2 Q-p+2 n-R+2 R-Q+2 n-R+2 

= 2 x 59.961 = 0.146. 
821.699 

A 2 2 [ si s~ ] v(all:) = c2 -- + Q 2 = 0.049. 
5 p+l -p+ 

8.5 Nested and Cross Classification 

295 

Let there be three factors A, B and C having levels p, q and r respectively. The q levels of B 
are such that these can be used for any level of B. For example, if the levels of A are doses of 
fertilizer and the levels of B are varieties of a crop, then each level of B can be cultivated using 
any or all levels of A. Here all levels of B are same for all levels of A. The levels of factors A 
and B are crossed. Again, let us consider that the r levels of C are such that these are similar 
for any level of B but not same. For example, let the levels of C be the seed variety of a crop 
variety. The seed varieties are similar for different crop varieties but not same. Here the levels 
of C are nested within the levels of B. Thus, we have nested and get cross classification in 
performing experiment with the levels of A, B and C. 

Let lJiJlk be the experimental result of k-th replication of l-th level of C nested within the j
th level of Band in presence ofi-th level of A (i = 1, 2, ... ,p;j = 1, 2, ... , q; 1:.: 1, 2, ... , r; k = 
1, 2, ... , m). The model for this observation is 

Yijlk = µ + ai + {3.i + (0:{3);1 + 'Yt(j) + (cq)i!UJ + CiJlk· (A) 

Here µ = general mean, O:i = effect of i-th level of A, {3.i = effect of j-th level of B, (a{3);J = 
interaction of j-th level of B with i-th level of A, 'Yl(j) =effect of l-th level of C within j-th level 
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of B, ( o:-y );1(.J) = interaction of i-th level of A and I-th level of C within j-th level of B, e;.ilk = 
random error. Let us assume that the model (A) is a fixed effect model with restrictions : 

2= a; = 2= (3.i = L:(af3)ij = L:(af3)ij = 2= 'Yl(.i) = L:(a1)il(i) = 2:(0:1);1uJ = o. 
j I I 

The main assumption for the analysis is that the errors are normally and independently 
distributed. 

The normal equations to estimate the parameters in the model (A) are : 

y ... = pqrmfl, + qrm L: a;+ prm z:= /3.i + ~m L: L:(a/3)i1 +pm L: L: :Y1w 
I j 

+ rn LL; L(cq);L(j)· 
.i I 

Yi .. = qrmfl, + qrma; +rm L /3.i +rm L(a/3)i.i + m LL i1(.JJ + m L L(a/y);1(.i). 

Yoi .. = prmfl, +rm La;+ prm/3.i +rm L(o:/3)i.i +mp L i1uJ + m L L(o:i);1(j). 
I I 

Yi.i:· = rm{L +rm&;+ rm/3.i + rm(a/3);.i + m L iiuJ + m L(ai);1(jJ· 
l I 

y .ii· =pmµ+ m L: a;+ pmf3.i + m L:(o:/3)i.i + pm:Y1w + m L:(a:Y)il(.j). 

Yi.ii· = m({L +a; + f3.i + (o:/3);1 + i1(.iJ + (ai);1ciJ). 

There are (pqr + pq +qr+ p + q + 1) normal equations. But except the pqr equations in the 
last set all other equations depend on last set of equations. Hence, to get the unique solution 
of these equations, we need to put the following restrictions : 

L &; = L f3.i = L(;fJ)i.J = L(a{3);1 = L i1(1J = L(iYYL1w = L(CD);1uJ = O. 
j I I 

Under the restrictions, and on simplification, we get 

µ' --y c¥ --y. --y· {3'· --y --y 
- .... , i - i··· .... , J - -j·· .... , 

(a/3);.i = 'ih.i .. - 'iJ.; ... - Yf +'ii ... ., iL(J) = 'il11 - Y-j .. 

(cry);1uJ = ('ilw - Y;.i .. - 'ii.JI·+ 'il-J .. ). 

~he total sum of squares of observations is partitioned and, we get the following component 
sum of squares : 

LL L L(Yijlk - 'iJ ... )2 = qrm l:(Jh. -'i} . .. )2 + prm L(Y-j .. - 'i} . .. )2 

+rm L L(Y;j .. - }J; ... - Y-.i .. + 'iJ ... )2 +pm L L(Y-.il· - YfY 

+ m LL L(Yi.il· - Y;.i .. -'il-JL + 'ilf.) 2 
+LL L L(Yijlk - Yi.il.)2 

SS (Total) = SS(A) + SS(B) + SS(AB) + SS(C within B) 

+ SS(C within Bin presence of A)+ SS (Error) 

= S1 + S2 + S3 + S4 + S5 + S5. 
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ANOVA Table 

Sources of variation d.f. SS SS MS= n E(MS) 

A p- 1 S1 81 a2 + !l!2!.': L0'2 p-1 ' 
B q - 1 S2 82 a2 + E!:.!!!:. Lf32 q-1 J 

AB (p - l)(q - 1) S3 83 2 .,.m LL( f3)2 a + (p-l)(q-1) 0 i.i 

C within B q(r - 1) S4 84 2 ~LL 2 a + q r-lJ 'Yt(.i) 

C within B in (p - l)(r '- l)q S5 
presence of A 

85 a 2 + m LLL( )2 
(p-1)('1"- l)q en i!(j) 

Error pqr(m - 1) s6 86 a2 

Total pqrm - 1 

The main objective of the analysis is to test the significance of the hypotheses Ho : ai = 0, 
H 0 : f3J = 0, Ho: (af3)iJ = 0 Ho: 'Y!(jJ = 0 and Ho: (a'Y);t(j) = 0. The test statistics for these 
hypotheses are, respectively F 1 = 8i/ 86 , F2 = 82/ 86, F3 = 83/ 85, F4 = 84/ 86, F5 = 85/ 86 . The 
other analysis is similarly done as it is done in analysing fixed effect model. 

If it is assumed that the model is a random effect model, then we need to find the E(M S), 
where mean squares are 8~(h = 1, 2, ... , 6). The E(M S) values are shown below: 

Component RRRR E(MS) MS 
·i j l k 
pqrm 

O:; 1 q rm 2 2 2 2 
a + ma°''Y + rma0 fJ + qrma0 81 

f3i p 1 rm 2 2 2 2 2 a + macn + rmaafJ + prmafJ + pma'Y 82 

(a(3);.J 11 rm 2 2 2 a + ma n-y + rma nfJ 83 

'Yl(j) p 1 lm a 2 + ma2 + pm;2 
Cl.')' ')' 84 

( O'."f )il(.7) 111 m a 2 + ma2 
Ct"'f 85 

eijl(kJ 1 1 1 1 a2 86 

The above table is prepared on the basis of assumptions : 

(i) ui ""NID(O, a~), (ii) (3.i ""NID(O, a~), (iii) (a(3);J ""NID(O, a~fl), (iv) 'Yt(jJ ""NID(O, a;), 

(v) (o:'Y)i!UJ ""NID(O,a~"Y), (vi) eijlk ""NID(O,a2), (vii) all random variables are mutually 
independent. 

The test .statistics for th<' significance of different variance components are to be found out 
as usual. 



Chapter 9 

Group of Experiments 

9.1 Introduction 
In agriculture, industry, medical science, biological science, psychology and in sociological 

experiment tke treatments are repeated over places and/or seasons to select the best group of 
treatments suitable for all places and/or seasons. Due to changes in fertility levels in different 
places or due to changes in weather and atmosphere or due to experimental conditions or due 
to changes in method of cultivation, the treatments behave differently in different places and/or 
seasons. Therefore, from a single experiment conducted in only one place or only in one season 
or only in one experimental condition no decision can be made to recommend a treatment or 
a group of treatments as best. The repetition of the experiment over places and/or seasons is 
needed to select a best group of treatments suitable for all places and/or for all seasons. This 
involves the analysis of group of experiments. Here repeated experiment over places and/or 
seasons is known as group of experiments. 

The analysis of group of experiments is not complicated if the experimental materials and 
weather conditions remain same for all experiments. Usual method of least squares can be 
applied to analyse the <iata except that two new parameters, one for place or seasonal effect 
and one for the interaction of places x treatments interaction, are intr.oduced in the model 
<ilong with usual parameters in the model for a design. However, the experimental materials 
or experimental conditions may not be homogeneous for all experiments. The heterogeneous 
<xperimental conditions make the analysis complicated. The sources of complicated analysis are 
(1) experiments of unequal sizes, (ii) unequal precisions of the experiments, and (iii) unstability 
in +.he behaviour of treatments over places and/or seasons. 

Besides the above mentioned problems, same experiment may be conducted in different 
methods by different r<'searchers. ThHs, the precision of the experiments may not be same. 
Therefore, the combined analysis.for all the data becomes complicated. The usual test statistic 

. is affected due to heterogeneity in the experimental conditions. The sources of inaccuracy in 
the usual analysis of variance test are : 

(i) heterogeneity in error variances due to unstable behaviour of treatments, 

(ii) heterogeneity in error variances due to variability in blocks, 

(iii) non-normality of error variances, 

(iv) heterogeneity in weather conditions, 

(v) heterogeneity in methods of experimentation. 

It has already been mentioned that usual analysis of variance technique is applied if the 
error variances of all experiments are found homogeneous. The analysis becomes slightly 
complicated if the place x treatments interaction is found heterogeneous. The analysis is 
performed assuming mixf'd effect model, where places x treatments interaction and effect of 
places are assumed random factors. 

298 
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The analysis becomes complicated if the· error variances are heterogeneous. However, 
approximate analysis of the groups of experiments is suggested by many statisticians. Important 
works in these fields are due to Cochran (1937, 1954), Yates and Cochran (1938), Gomes and 
Guimaraes (1958), Jones et al (1960), Calinski (1966), Afonja (1968), Tyagi et al. (1970), Raheja 
and Tyagi (1974). Bhuyan (1982) has presented three different methods which arc superior than 
the methods available for the data. An exact test has been proposed by Bhuyan for equality 
of treatments effects, where treatments arc stable over all places. Bhuyan also proposed a 
method to select stable treatments for places and/or seasons using all the information of the 
experiments. Here analysis of groups of experiments for a group of randomized block designs 
are prese1_1ted. 

9.2 Analysis of Groups of Randomized Block Designs 
Let there be v treatments randomly allocated to b blocks of a randomized block design. 

Consider that the experiment is repeated in p randomly selected places. Let Yhi.i be the result 
of jth treatment in ·ith block of hth place (h = 1, 2, ... , p; ·i = 1, 2, ... , b; j = 1, 2, ... , v). The 
model for Yhi.i ob~ervations is 

YhiJ =µ+a,,+ f31i; + 'Y.i + (a1)1i.; + ehi.i· 

Here µ = genral mean, a,, = effect of hth place, /311; = effect of 'ith block within hth place, 
'Y.i = effect of jth treatment, (a1)1tJ = interaction of jth treatment with hth place and e,,,.i = 
random error. 

Assumptions for Analysis : (i) e1i;J ,..., NI D(O, a 2 ), (ii) a 11 ,..., NI D(O, a~), 
(iii) f31i; ,..., NID(O,a~), (iv) (a'Y)h.J ,..., NJD(O,a~"I), (v) all random variables are mutually 
independent. 

Restriction : L 'Y.i = 0 

Since e'rror variances are assumed homogeneous, usi:al analysis of variance technique can be 
.applied for the analysis. The total sum of squares of observations can be partitioned as follows : 

LL L(YhiJ -y )2 = bv L(Y,. .. -y,,.)2 + v L L(Y1i;. -)J,. . .)2 

+ pb L(Y .. j -y .. ,) 2 + b L L(Y1l'] - y,.,. - y.,j + y, . .)2 

+LL L(Yhij -yhi· -y,,,j + y,. . .)2. 

The sum of squares ·in right-hand and left-hand sides of the equations are distributed as 
x2a 2 with (pbv - 1 ), (p- 1 ), p{b- 1), (v - 1 ), (p- 1 )(v - 1) and p(b ___: l)(v - 1) d.f., respectively. 

ANOVA Table 

Sources of Variation d.f. SS MS= SS 
d.f. 

E(MS) 

Places p-1 S1 s1 a 2 + ba2 + bva2 + va2 
a"( a p 

Blocks within places p(b - 1) S2 s2. a
2 + va~ 

Tr.eatments v-1 S3 S3 a2 + ba2 + J!!!_ L 'Y2 
a"( v-1 J 

Places x treatments (p-l)(v-1) S4 S4 a 2 + ba2 
a"( 

Error p(b - l)(v - 1) Ss S5 a2 

Total pbv- 1 
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The main objective of the analysis is to test the significance of 

HO : 'YI • = 1'2 = · · · = 'Yv (a) 

against HA : at least o.ic of the equality does not hold good. Before performing the test for the 
above hypothesis, we need to test the significance of H 0 : a;,'Y = against HA : a;,'Y > 0. The 
test statistic for this hypothesis is 

This F 1 is distributed as variance ratio with (p - l)(v - 1) and p(b - l)(v - 1) d.f. If this 
hypothesis is rejected, then the test statistic for the hypothesis (a) is· 

This F2 is distributed as variance ratio with (v - 1) and (p - l)(v - 1) d.f. However, if 
a;,'Y = 0, the test statistic for (a) is 

S3 (pb - 1 )(v - 1) 
F3 = ...,..-~..,.....,~~~~~~~~~~-

(p - l)(v - l)s4 + p(b - l)(v - 1)85 

9;3 Analysis when Error Variances are Heterogeneous 
Let us assume that ehi.i ,...., N (0, af,); h = 1, 2, ... , p. Then the total sum of squares is found 

out by weighted analysis, where weights are reciprocal of error variances. Let ivh = l/af.. Then 

LL L W1i(Yhi.i - y .. .)2 = bv L W1i('JJ1i .. - y .. .)2 + v LL W1i(Yhi· -yh .. )2 

+ Wb """"'(- - - )2 + b""""'""""' w (,- - - - - + - )2 ~ Y .. j Y... ~~ h Yh-J Y1i. Y·.i Y ... 

+LL L W1iW1i,1. - 'JJ,.; - y,.'.j + 'JJ,. .)2 

L W,.y,... 1 . """"' 
Here 'JJ ... = Wbv , 'J} .. 1 =· W ~ W1i'J],..1, W 

2 
= L W1i, V('JJ .. j - Y ·s) = Wb' 

j I- s = 1,2, . .. ,v. 

ANOVA Table 

Sources of Variation d.f. MS= SS 
d.f. 

E(MS) 

Places p-1 S1 
w ( · L: wf. ) [ 2 2 2 1 + p-l 1 - W' bO'<"'Y + V0'13 + bVO'o: 

Blocks within places p(b - 1) 82 1 +·";VO'~ 

Treatments v - 1 83 1 + b L: w,~ 0'2 + Wb L 1'2 
W a-y v-1 .J 

Places x treatments (p-l)(v-1) 84 1 + Wb (l _ L: wf.) a2 
p-1 wr C>"( 

Error p( b - 1 ) ( v - 1) 85 1 

Total pbv - 1 

Here also the test statistic for H0 : O'~-y = 0 is F = s 4 / s5 and if this Ho is accepted, then 
F-statistic will be similar to F3 mentioned above. But, if a;,'Y -:/- 0, the usual analysis of variance 
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F-statistic is not available, even if lV1i is known. Here 

k1E(83) = k2E(s4) + k3E(8;,), 

where ki = w2 ·_ 2: w,~, k2 = (v - 1) E vvf., k3 = w 2 
- v E w,;. 

Therefore, F4 = ..:_.~.!!2._ to test the significance of hypothesis (a). 
k2s4 + k3s;, . 

If lV1i is known, this latter F-statistic is distributed approximately as ,variance ratio with 
(k2s4 + k3ss) 2 

( v - 1) and (k2s4)2 (k3.,c,)2 
{p-l)(v-1) + p(b-l)(v-1) 

d.f. 

If TV1i is uot known, the approximation is not satisfactory. 

In practice, TV,, is not known and it is estimated from hth experiment, where Wh 
(h=L2 .... ,p). Here 

(J'
• 2 = "\'"""' "\'"""' (Yhi:i -'!hiO -Tho:i - 'fhoo)

2 

MS (I' ) f f l 
h LL (b _ l)(v _ l) = '.Jrror rom it l experiment. 

i .7 

It has already been mentioned that the distributiou of F4 is approximate even if TV,, is 
known. If TVh is not known and it is replaced by its estimate, the distribution of F4 may not 
be approximate to variance ratio distribution. Therefore. the conclusion regarding treatment 
contrast may not be appropriate when weighted analysis is performed using estima.t.ed error 
variance as weight. However, if the d.f. of the individual experiment, (b - l)(v - 1). is large 
enough, then F4 statistic will be nearer to variance ratio distribution. 

Due to the weighted analysis, the estimate of treatment effect and F-statistic become biased. 
However, the bias of order p/(tJ-1)( v-1) can be removed using Meier's (1953) theorem [Bhuyan 
(1982)]. The adjusted estimated-treatment effect is 

1.i (adjusted)= E:h ('!J,,.:i - ~h .. ) 
- (b-l)~v-l) [L:U:,,(l-w1,)('fh.J-'fh.-Ti )+it.)]. 

i,\/ _ w" E W"y"·:i E w,,:;1,. 
Here h - W, Y .. j = W 'fl... W 

The adjusted variance of this estimated effect and the adjusted variance of the estimated 
treatment difference are given by 

V(i1)(adjusted) = ~.~ I 1 + (b - l)~v - 1) L:wh(l - w,,)] 

V(ij - i .. )(adjusted) = ~:b [ 1 + (b - J)~v - 1) L w1i(~ - Wit)] 

respectively. 

The adjusted F-statistic to test the significance of H 0 : )'i = )'2 = · · · = )',, assuming fixed 
effect model is given by 

v 

i\.· ;- -·-L (A ' )2 
b lJ .. J Y ... 

j 
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- bW1i(1 - w1i) I):Y .. 1 - :Y ... )2 + bW1iw1i ·~:_)1h.1 - 'fh .. )2 

j 

Bhuyan and Miah (1989) have discussed that, if (b - l)(v - 1) is large, the adjusted F-statistic 
provides satisfactory result. 

We have already observed that the weighted analysis of groups of experiments, when 
error variances are heterogeneous, becomes complicated and the usual weighted analysis does 
not provide satisfactory F-statistir (unless adjusted assuming fixed effect model) t.o test the 
significance of 

Ho : 1'1 = 12 = · · · = l'v. 

The analysis becomes complicated due to the presence of places x treatments interaction 
term in the model. However, if the treatments are stable over all places/seasons, the places x 
treatments interaction term can be dropped from the model. Bhuyan (1982) has suggested to 
select the stable group of treatments. The stability of treatment effects is tested on the basis 
of work of James (1951) and Welch (1951). 

Theorem : Let i1tJ be the estimated treatment effect of .i-th treatment in h-th place 
( h = l, 2, ... , p; .i = 1, 2, ... , v). Consider that t 1.1, t 2.1 •.•. , tpJ are normally and independently 
distributed with means T 11 , T21 , ... , TpJ and variances Dlj. D2.i· ... , DP.i• respectively. Also 
consider that d 11 ,d21,. .. ,dPi are the estimates of D11,D2J•···•DPi• with d.f. fi,f2, ... fp, 
respectively. Here d11J is distributed as x2 and it is independent of t1i1 . Thus, to test the 
significance of 

the test statistic is 

F= 
I: W1i1(t1i1 - t1)2 /(p - 1) 

2· 1 + 2(~-2) '°' f (l _ W1,3) 
p -1 L. h W; 

This F is distributed as variance ratio to the order Jh . The d.f. of F is 

(p-1) and [ 3 . '""1 (1 W1i1)2]-1 P2=1 L, f,. - ~ 

Here 

(b) 

The proof of this theorem bas been discussed by Welch (1951). James (1951) has proved 

that, if flt is large, the statistic L Vv111 (t1iJ - lj )2 is distributed as x2 with (p - 1) d.f. and his 
h 

statistic can be used to test the hypothesis (b). For small f1i the statistic is to be compared 
with 

x2 [1 + 3x2+(p+1) '"".2._ (1- W1i1)2] · 
2(p2 - 1) L, f1i wJ 

Here x2 is the table value of x2 distribution at 10Qa3 level of significance with (p - 1) d.f. 
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The hypothesis (b) can be tested for all v treatments. The rejection of the hypothesis leads 
as to conclude that j-th treatment is not stable over all places. The unstable treatment is not 
suitable to recommend for all places/seasons and hence, such treatments can be dropped from 
combined analysis. 

The combined analysis can be performed for stable treatments. Let there be q :S: v stable 
treatments for all places, where the estimate of j-th treatment effect in h-th place be 

l1t.i='fi1t.1 -'ih .. ; h=l,2, ... ,p; j=l.2, .... q::;v. 

Tl . f . V( ) ( v - l) 2 d . . . ( ) v - l ' 2 Tl b' d 1e variance o ti.1 is l1iJ = ~uh an its estunator 1s v tn.i = ~cr1,. 1e com me 

treatment effect is estimated by 

The variance of t1 is 

where f~ = Ji. - 4
(P -

2
). The variance formula has been derived on the basis of work of 

p-1 
Cochran and Carroll (1953) with an adjustment suggested by Meier (1953). 

The analysis with stable group of treatments enable us to drop places x treatments 
interaction from the model and hence, the problem in weighted analysis due to the interaction 
term is avoided. Moreover, due to the use of stable group of treatments for combined analysis 
the heterogeneity of error variances may be removed. This was observed by Bhuyan and Saha 
(1984). Besides this advantage, we can perform analysis with data of individual experiment. 
The problem is to test the significance of 

Ho : T1 = T2 = · · · = Tq, q = :v. (c) 

The hypothesis ( c) can be tested separately with the data of p places. Let F1t ( h = 1, 2, ... , p) 
be the F-statistic for hypothesis (c) in h-th place and let Ph be the p-value of Fh-statistic. The 
Ph values observed in all p places can be combined to draw a single conclusion for the hypothesis 
(c). According to Fisher (1941), 

p 

z = -2L1nP11 
h=l 

is distributed as chi-square with 2p d.f. This Z-statistic is used to draw the conclusion regarding 
hypothesis (c). Similar Z-statistic can also be found out to test the significance of 

Ho: T1 =Ts against HA: Tj -=f. Ts, j "I- s = 1,2, ... ,q. 

We have discussed combined analysis with stable group of treatments. In practice, the 
treatments or most of the treatments may not be stable. In such a situation we need alternative 
proce~ure for the combined analysis. Our problem is to test the significance of 

Ho : "YI = "Y2 = · · · = "Yv· (d) 

The hypothesis can alternatively formulated by 

Ho : AB1 = AB2 = · · · = ABP, 
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where AO, ~ [ . : 

-1 0 0 
0 -1 0 

. 1 0 .0 

Let AOh be the estimate of AB", where 

l I -1 0 0 
. 1 0 -1 0 

ABh = Th = . ~. 
0 0 

0 j l l1t1 l 0 th2 

~~ (v-l)xv l~v . 

Here 
. ·2a~ 

thi = ?h.i - ?h., V(thi - ths). = -b-, h = 1, 2, .. . p. 

Th,...., IN(ABh, Wha~), Wh =AC;;- A', Wh is a (v - 1) x (v - 1) non-singular matrix and it is 
similar for any generalized inverse of Ch. Then, if a~ is known, we can use the statistic : 

p 

t = L:<T1i - T)'w1i- 1(Th - T)/a~. 
h=l 

This tis distributed as x2 with (p - l)(v - 1) d.f. Here 

is the combined estimator of treatment contrast from all places. 

Th!"! proof regarding the distribution of 't' has been discussed by James (1954). According 
to him, if a~ is not known, its estimator 0-~ can be used to find 't' statistic, where the statistic is 

p 

i = L:<T1i - T)W1i~ 1 (T1i.- T)/0-~. 
h=l 

Jam es has shown that, if f1i is large enough i jg distributed as x2 with (p - 1 )( v - 1) d.f. For 
smaller values of f1i(h = 1,2, ... ,p)i is to be compared with 

k . 2 
1 

3x2 + {(p - l)(v - 1) + 2} 1. w~ - 1 w~ - 1 

[ ]

2 

= X' + 2[(p - l)(v - l){(p - l)(v - 1) + 2}] ~ fh { l - b} ~ ( b) 
Here x2 is the tabulated value of x2 at 100a3 level of significance with (p- l)(v - 1) d.f. Here 

20-1i . 
v(thj - t1is) = -b-, J "/; s. 

The above method of analysis is suitable to test the significance of treatment effects from 
combined analysis of any experiment conducted through any design. Let us explain the method 
of analysis for the analysis of three experiments conducted through BIB design having 
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parameters b = v ;;:= 7, r = k = 3 and ,\ = 1. The trcatm<'nt effects estimated from experiments 
of 3 places are shown below : 

Places Estimates of trealment effects ( th.i) 

1 2 3 4 5 6 7 

1 -2.1543 1.9971 -0.2743 3.1129 --3.9741 -1.2371 2.7200 

2 -1.1829 -3.3743 5.0729 -5.1686 -7.8357 8.8229 3.6657 

3 -0.4590 -0.8360 0.3760 0.3290 -0.3060 0.3860 -0.1010 

The other analytical results are : 

Places '2 
ah MS(treatrnent) F 

1 5.05311 16.75948 3.32 

2 3.14572 84.74342 26.94 

3 0.24240 0.54850 2.27 

The error variances al,(h = 1,2,3).are found heterogeneous by Bartlett's (1937) x2 test. 

The estimates of T1i are : 

-4.1514 2.7914 0.3770 
-1.8800 -6.2557 -0.8350 

T1 = 
-5.2672 

, T2 = 3.9857 
'T3 = 

-0.7880 
1.8171 6.6528 -0.7650 

-0.9172 -10.0057 -0.8450 
-4.8743 -4.8486 -0.3580 

The inverse of estimated variance-covariance matrices of T1i are : l 0.39580 -0.06596 -0.06596] . 
v(T1) = (W1at)-1 = 

-0.06596 0.39580 -0.06596 

-0.06596 0.39;~~ . 6x6 

[ 063579 -0.10596 -0.10596 l 
v(T:i) = (W2a~)- 1 = 

-0.10596 -0.10596 0.63579 6 x 6 l 8.25128 -1.37521 -1.37521 ] 
(T) _ (W , 2)_ 1 _ -1.37521 8.25128 -1.37521 

v 3 - 3a3 - ... 

-1.37521 8.~5128 6 x 6 

Therefore, T' = [0.1232 - 1.4359 - 0.7992 - 0.4647 - 1,.1661 . - 1.1333]. 

The test statistic i = 161.04. It is approxi'mately distributed as x2 since Ji = h = h = 8. 
Thus, i is compared with k = 42.51 (value of x2 at 53 level of significance with 12 d.f.). Since 
i > k, Ho is rejected. The treatment contrasts_ are significantly different. Herc 

• r2 
v(t111 - t1is) = rfl, j # s = 1,2, .. . ,v. 
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If the hypothesis Ho : AB1 = AB2 = · · · = ABµ is rejected, we need to test the significance of 
Ho: AB1i = c5 against HA : A01i f c5, where c5 = 0 indicates that any contrast hi - "(8 ,j f s] is 
insignificant. The test statistic using estimated error variances is 

This i 1 is also approximately distributed as x2 with (v - 1) d.f., provided j,,'s are large. For 
smaller values of fh the cakulated i 1 is to be compared with 

where x2 is the table value of chi-square at 100a% level of significance with (v - 1) d.f. 

The above hypothesis indicates that all (v - 1) contrasts are insignificant. In practice, we 
need to investigatP the insignificance of any particular contrast 'Yi - 'Y 8 , j f s = 1. 2, .... v. For 
this the test statistic is 

For large value off,., i 2 is approximately distributed as x2 with (p - 1) d.f. For smaller values 
off h (h = 1, 2, ... , p), i2 is to be compared with 

k = 2 [1 3x2+(p+1) '°' 2- (1.....: w~)-1 {'"' (w~)-I}] 
2 x + 2(' 2 - 1) L.., f b L.., b ' p h h 

where x2 is the table value of x2 at 100a% level of significance with (p - 1) d.f. Here 

fu, = t,,.i - t,._.. j f s = 1, 2, ... , v. 

A 20-2 . w2 
For BIB design. V(TI1i) = -" and for RB design, V(T111 ) = -

1 
". 

rE 1 

For the example cited above the i 2 statistics for each of 'Y.i - 'Ys (j f s = 1, 2, ... , v) contrast 
are shown below : 

Contrast i2 Contrast t2 Contrast i2 Contrast i2 

'YI - 'Y2 5.92 'Y2 - ')'3 21.57 'Y3 - 'Ys 58.37 'Ys - 'Y6 95.12 

'YI - "(3 10.21 'Y2 - 'Y4 3.02 'Y3 - 'Y6 5.16 'Ys - 'Y7 57.45 

'YI - "(4 12.98 ')'2 - ')'5 0.76 'Y3 - ')'7 3.51 /"6 - ')'7 12.55 

'YI - ')'5 19.89 ')'2 - /'6 47.55 'Y4 - ')'5 12.85 

'YI - 'Y6 28.97 ')'2 - 'Y7 13.73 'Y4 - 'Y6 73.31 

'YI - 'Y7 10.83 ')'3 - ')'4 39.62 'Y4 - "17 29.69 

The values of £2 are to be compared with k2 = 7.84 at 5% level of significance. It is observed 
that except 'YI - 1 2 , 1 2 - "(4 , "(3 - "(6 and "(3 - 'Y7 all other contrasts are significantly different. 

Example 9.1 In a poultry farm' an experiment is conducted to study the impact of 5 
vari0ties of dry food for layer hen. The foods ar0 given to hem of 4 different ages and the 
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experiment is repeated over 3 <lifkrent seasons. The number of eggs of each hen are recorded 
for analysis. The data of 3 experiments are shown below : 

Data of number of eggs per hen in each season for different foods (Yhij) 

Season-1 Season-2 

Age Foods Foods 

1 2 3 4 5 Total, Yl·· 1 2 3 4 5 Total, Y2 

1 100 95 110 85 85 475 95 92 100 80 80 447 
2 98 90 90 86 80 444 95 87 80 ·82 75 419 
3 105 98 112 88 90 493 100 95 100 85 85 465 
4 95 90 85 80 80 430 90 85 80 85 78 418 

Total Yhi 398 373 397 339 335 1842 380 359 360 332 318 1749 

Season-3 

Foods 

Age 1 2 3 4 5 Total y3 . 

1 90 90 100 70 78 428 
2 95 85 80 76 75 411 
3 98 92 100 80 83 453 
4 90 87 80 75 75 407 

Total y3 .i 373 354 360 301 311 1699 

Analyse the data and verify the suitability .of dry food. 

Solution : We have h = 3, b = 4, v = 5, ar = 276.2, a~ = 270.0, a~ = 306. 7; 
Ji = fz = h = 12. These error variances are homogeneous by Bartlett's (1937) x2-test, 
where x2 = 0.06. Hence, usual analysis of variance technique can be applied for the combined 
analysis of the data of 3 experiments. For combined data, we have 

C.T. = 466401.67, SS (Total) = 4992.33. 

SS (Ages within seasons) = t [Y~i· - Yb~·],= 1070.1. 
h=l 

SS (Food) = L yb~J - C.T. = 
5625966 

- 466401.67 = 2428.83. 
. p 3 x 4 

LY2 9338566 
SS (Seasons) = -b "· - C.T. = - 466401.67 = 526.63. 

v 4 x 5 
2 

SS (Seasons x Foods)= LL Y~-J - C.T. - SS (Seasons) - SS (Foods) 

= 
187

:
884 

- 466401.67 - 526.63 - 2428.83 = 113.87. 

SS (Error) =SS (Total) - SS (Seasons) - SS (Ages within seasons) 

- SS (Foods) - SS (Seasons x Foods) 

= 4992.33 - 526.63 - 1070.1 - 2428.83 - 113.87 = 852.9. 
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ANOVA Table 

Sources of variation <lf. SS MS= SS 
- d.f. F Fo.(J<, 

Seasons 2 526.63 263.315 ~- -
Ages within seasons 9 1070.1 118.900 ·- -· 

Foods 4 2428.83 607.207 27.63 2.594 
Sea.sons x foods 8 113.87 14.234 0.60 2.216 
Error 36 852.9 23.692 

Total 59 

It is noted that H 0 : a;'Y = 0 is true since the F-statistic is F = 0.60 < F0 05 ,8 ,36 = 2.216. 

Therefore, to test the significance of 

Ho : /'1 = /'2 = !'3 = !'4 = ')'5, 

the test statistic is 

F = s3 /(v - l)(pb - 1) = 607.207 = 27_63_ 
(p - l)(v - l)s4 + p(b - l)(v - l)s5 21.972 

, 
Since F = 27.63 > Fo o5;4,44 = 2.594, the foods arc significantly different. 

By Duncan's multiple range test we can compare the pairs of treatments, where the DMRT 
values are 

(p - l)(v - l)s4 + p(b - l)(v - l)s5 
(v-l)(pb-l)b 'k=2,3,4,5 

ffl.972 
Dz = 2.846v --4- = 6.67, D3 = 7.05, D4 = 7.21, D5 = 7.26. 

The means of foods are 71 .. 1 = 95.92, fi.. 2 = 90.50, 71 .. 3 = 93.08, y .. 4 = 81.00, Y 5. = 80.33. 
It is observed that the first 3 foods are similar and the last 2 foods are similar. But first 3 

foods significantly differ from last 2 foods. 



Chapter 10 

Construction of Design 

10.1 Introduction 
The basic idea of construction of design was explained first by Sir R. A. Fisher. He contribu

ted in the field of construction of design during 1919-30 and proposed some rules and regulations 
to conduct experiment. The basic 3 rules are (a) Randomisation, (b) Replication, and (c) Local 
Control. By local control the treatments are allocated in blocks of homogeneous plots. This in 
turn increases the precision of the contrast to be estimated. But if number of treatments are 
large, it is difficult to have large number of homogeneous plots in a block. With the incn:'ase 
in number of treatments, there is a chance of increasing heterogeneity in the plots of a block 
and hence, efficiency of the experiment is decreasing. To avoid this problem ~he block size can 
be reduced to allocate a group of selected treatments to the plots of a block and there may be 
more blocks in a replication of the experiment. The reduction of block size for each replicatioh 
to allocate a part of treatment in a block is the technique what is known as construction of 
design and this technique provides the idea of inc0mplete block design. 

In case of factorial experiment, if factors or level of a factor is increased, the total level 
combinations are increased creating a problem to have blocks of size to allocate all level 
combinations as treatment. As a result, all treatments are allocated in blocks of smaller size, 
where plots in a block are homogeneous. The allocation of treatments to blocks within a 
replication is done according to some principles. The basic principle of allocation of a group 
of treatments from all treatments in blocks is to be followed in such a way that pre-identified 
treatment contrast can be estimated with more efficiency. The selected group of treatments are 
allocated in plots of a block by a random process. The selection of group of treatments from 
all treatments under study and allocation of selected group of treatments to plots of a block 
are the aspects of design of experiment. 

Depending on the allocation of selected group of treatments the construction of design is 
of different types. Yates (1936) has done work on the construction of design at first. The 
problem arisen in the proposed method of construction by Yates has been solved jointly by 
Fisher, Yates and Bose (1939). Later on many developments have been done in this field by 
Bose and Nair (1939), Nair and Rao (1942), Bose and Shimamoto (1952), Kempthorne (1953) 
and by many others. In this chapter, the idea of construction of balanced incomplete block 
design and partially balanced incomplete block design will be expressed. 

10.2 Some Mathematical Concept Related to Construction of Design 
Groups : Let S be the set of values a, b and c. If any operation ( *) is done on each pair 

of observations of S, th~n the new observations will be the unique observation of this set. 
Operation ( *) is called binary operation. Thus, if a, b E S, then a* b = g E S. 

Let S be a set and(*) is a binary operation. Consider that E =< (S, *) is a mathematical 
rule. The mathematical rule will create group, if the following rules are valid : 
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Group 1 In S there is au element e (e E S) so that e * S = :c = x * e, x E S. Here e is 
called identity of group and it is unique. 

Group 2 : For each value of x (x E S) there is unique value x- 1 (x- 1 E S) so that 
x- 1 * x = e = x * x- 1

. Here x- 1 is the inverse of x. 
Group 3 : The binary operation ( *) follows associative rule. Let a, b and c be the elements 

in S. Then a* b * c = (a* b) * c. 
Group 4 : The binary operation ( *) follows commutative rule. Consider that a and b are 

the elements in S. Then a * b = b * a. The group under this rule is called abelian group. 

Fields : Let F be the set of some elements and two binary operation ( +) and ( ·) are possible, 
then f =< F, the · > is called field, if the followil'lg rules are valid. 

F-1 : < F, + > is the abelian group, the identity of which is denoted by zero and the inverse 
of x E Fis denoted by -x. 

F-2: If F0 = {x E F/x i- O}, then> F0 and·> will be abelian group. 

F-3 : If in any set F there are limited elements, then Fis called limited field or Galois liciu. 

The construction of some design depends on properties of GalQis field. Here some f-'roperties 
are discussed. 

1. If any positive number N is divided by p, then the r•;sidue after division can be written 
equal to N. That is R = N mod p. Herc pis the number of elements in a set and R is 
the value of the set under mod p. 

2. If pis the prime number, ~'1en operations addition, subtraction, multiplication and division 
can be done on the elerr.<::nts of the set and the new elements obtained under the operation 
are the elements in the set undt::r mod p. Let p = 11, then under mod p the elements 
will be 0, 1, 2, ... , iO. 

Here, 5 + 6 = 11 = 0 mod p 

5 - ti= (5 + 11 - 6) mod p = 10 mod p 

5 x 6 = 8 mod p 

5 -7- 6 = ( 5 + 5 x 11) -7- 6 = 10 mod p. 

If e? ..:h element in the set {O, l, 2, ... , 10} is multiplied by non-zero element of the set, we 
have new result of the product a·nd the products will be the elements of the set except 
zero. This is possible as p is a prime number. In such a situation the field generated 
by the elements is known as Galoi's Field. For example, if the element 4 in the set of 
elements {O, 1, 2, ... , 10} is multiplied by the elements in the set except zero, then under 
mod 11, we get the elements in the set except zero. For example, 4 x 10 = 7 mod 11. 
Here field is written as GF(p = 11). 

3. In every GF(p) there is at least one observation, the value of different powers of it under 
mod p is the non-zero observation of GF(p). Such value is called primitive root. For 
example, in GF(p = 11), we have 2° = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5, 25 = 10, 26 = 9, 
27 = 7, 28 = 3, 29 = 6. Again, 6° = 1, 61 = 6, 62 = 3, 63 = 7, 64 = 9, 6::; = 10, 66 = 5, 
67 = 8, 68 = 4, 69 = 2. 

Here 2 and 6 of G F(p = 11) are the two primitive roots. In this method an infinite number 
can also be expressed by p-value, if p is a prime number. However, if p is the power of a 
prime number, then a function can be considered for the number and the infinite number 
can be expressed by p according to the following method. 
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Let S = pn, where p is a prime number and n is any positive integer value. Then 

xP" - 1 = Q 

equation can be considered and a function is also considered as follows : 
n ·-1 

xP -1 
¢(:i:) = F(x) 
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Let us consider that F(x) is the greatest factor of xP" - 1 = 0. This ¢(x) is called 
cyclotomic polynomial. If the function from ¢(x) can be expressed as n degree polynomial, 
then the function is called minimum function. For example, let S = p" = 32

. 

x 8 -· 1 
Then ¢(x) = -- = x 4 + 1. 

x 4 - 1 

Again, x 4 + 1 = (x2 + x + 2)(x2 + 2x + 2) mod 3. 

Therefore, (x2 + :r + 2) and (x2 + 2x + 2) are the minimum function of field 32
. Here for all 

powers of x up to xP"-
2 

the values except zero in the field 32 arc available. For example, 
from the minimum function x2 + x + 2, we have 

x0 = 1, x1 = 1, x2 = :c + 1, x3 = 2x + 1, :c4 = 2, x5 = 2x, x 6 = 2x + 2, x 7 = :i: + 2. 

Using these values orthogonal Latin square design can be constructed. 

10.3 Construction of Incomplete Block Design Using Primitive Root 
If p is a prime number and if x is the primitive root of G F(p), then up to xP- 2 the eveu 

or odd power of x can be used to form an initial block. Then adding 1 under mod p with tlie 
values of initial block symmetric BIB design can be constructed. The parameters of such BIB 
design are b = v, r = k and >.. 

Let us consider that p = 11. The primitive roof of GF(p = 11) is 6. Using the even powers 
of 6 under mod p, we have initial block as follows : 

1 3 9 5 4. 

Now, by adding 1 under mod 11 with all elements in the initial block, we have other block 
as follows : 

Block Treatments in Blocks 

1 1 3 9 5 4 

2 2 4 10 6 5 

3 3 5 0 7 6 
4 4 6 1 8 7 

5 5 7 2 9 8 

6 6 8 3 10 9 
7 7 9 4 0 10 

8 8 10 5 1 0 

9 9 0 6 2 1 

10 10 1 7 3 2 

11 0 2 8 4 3 
For this BIB design the parameters are b = v = 11, T = k 5 and >. 2. This is a 

symmetric BIB design. 
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Now, if one block and its treatments are excluded from the above arrangement, we get 
another BIB design. Let us delete the first block and its treatments. Then 

Block Treatments in Blocks 
1 2 10 6 
2 0 7 6 
3 6 8 7 
4 7 2 8 
5 6 8 10 
6 7 0 10 
7 8 10 0 
8 0 6 2 
9 10 7 2 

10 0 2 8 

For this new design the parameters are : 

b' = b - 1 = 10, v' = v - k = 11 - 5 = 6, r' = r = 5, k' = k - >. = 5 - 2 = 3, >.' = >. = 2. 

Another design can be formed with the treatments which are not included in the above 
design. The new parameters are b" = b - 1, v" = k, r" = r - 1, k" = >. and >." = >. - 1. We 
have not ·included 1, 3, 9, 5, 4. With this set of treatments the arrangements of treatments in 
blocks are as follows : 

Block Treatments Block Treatments 
1 4 5 6 4 9 
2 3 5 7 1 5 
3 1 4 8 1 9 
4 9 5 9 1 3 
5 3 9 10 3 4 

The parameters of the above design are : 

b" = 10, v" = 5, r" = 4, k" = 2, >. = 1. 

If (4>. + 3) is a prime number or power of a prime number, then a symmetric BIB design 
. can be constructed with parameters b ~ v = 4>. + 3, r = k = 2>. + 1 and >.. Let >. = 4, then 

4>. +3 = 19, where the primitive root of 19 [GF(19)] is 2. Now, using the even powers of 2 we 
can form an initial block and by adding 1 under mod 19 with treatment numbers. We can form 
a BIB design as shown below : 

Block Treatments 
1 1 4 16 7 9 17 11 6 5 
2 2 5 17 8 10 18 12 7 6 
3 3 6 18 9 11 0 13 8 7 
4 4 7 0 10 12. 1 14 9 8 
5 5 8 1 11 13 2 15 10 9 
6 6 9 2 12 14 3 16 11 10 
7 7 10 3 13 15 4 17 12 11 
8 8 11 4 14 16 5 18 13 12 

Contd ... 
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Block Treatments 

9 9 12 5 15 17 6 0 14 13 

10 10 13 6 16 18 7 1 15 14 

11 11 14 7 17 0 8 2 16 15 

12 12 15 8 18 1 9 3 17 16 

13 13 16 9 0 2 10 4 18 17 

14 14 17 10 1 3 11 5 0 18 

15 15 18 11 2 4 12 6 1 0 

16 16 0 12 3 5 13 7 2 1 

17 17 1 13 4 6 14 8 3 2 

18 18 2 14 5 7 15 9 4 3 

19 0 3 15 6 8 16 10 5 4 

The parameters of the above design are 

b = v = 4 x 4 + 3 = 19; r = k = 2 x 4 + 1 = 9; >. = 4. 

If the parameters of a BIB design are b, v, r, k and>., then if we discard the blocks in which 
a particular treatment is allocated, we get a PBIB design. Let us consider the BIB design with 
7 treatments formed by initial block as follows : 

Block Treatments Block Treatments 

1 1 2 4 5 5 6 1 

2 2 3 5 6 6 0 2 

3 3 4 6 7 0 1 3 

4 4 5 0 

Now, let us delete the blocks having treatment 6. Then new blocks with treatments are as 
follows : 

Block Treatments 

1 1 2 4 

2 2 3 5 

3 4 5 0 I . 

4 0 1 3 

This new design is a PBIB design having parameters. 

b' = b - r = 7 - 3 = 4; v' = v - 1 = 7 - 1 = 6, r' = r - 1 = 3 - 1 = 2; k' = k = 3, >.1 = 1, 

>.2 = 0, n1 = v - k = 7 - 3 = 4, n2 = k - 2 = 3 - 2 = 1, p~2 = 0, P]k = [; ~], PJk = [~ ~]. 
In some cases, instead of using all the even or odd powers of primitive root of GF(p) one 

can use some of the even ot odd powers of primitive root to form an initial block. In that case, 
PBIB design can t>e forn,1ed. For example, let us consider the 3 odd powers of the primitive 
root of GF(ll), where the primitive root is 2. The 3 odd powers of 2 under mod 11 are: 

• 
2 8 10. 
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Let us consider the initial block containing treatments 2, 8, 10 and other block contents as 
follows : 

Block Treatments Block Treatments 
1 2 8 10 7 8 3 5 
2 3 9 0 8 9 4 6 
3 4 10 1 9 10 5 7 
4 5 0 2 10 0 6 8 
5 6 1 3. 11 1 7 9 
6 7 2 4 

The parameters of the above PBIB design are b = v = 11, T = k = 3, A1 1, ..\2 = 0, 

n1 = 6, n2 = 4, P~k = [~ 3] ' 1 - [2 0 'Pjk - 3 ~]. 
10.4 Construction of Design from Other Design 

Let there be a BIB design having parameters b, v, r, k and .A. Consider that the blocks of 
this design are B 1 , B2, ... ; Bb. In block B; there are k treatments (k < v). Now, another 
design can be formed using the other treatments which are not in ith block. As an example, 
let us consider the following two designs, where second one is constructed with the treatments 
which are not included in i-th block of the first design. 

First Design Second Design 

Block Treatments Block Treatments 
1 1 2 4 1 0 3 5 6 
2 2 3 5 2 1 4 0 6 
3 3 4 6 3 0 1 2 5 
4 4 5 0 4 1 2 3 6 
5 5 6 1 5 0 2 3 4 
6 6 0 2 6 1 3 4 5 
7 0 1 3 7 2 5 4 6 

The parameters of first design are b = v = 7, r = k = 3, ,\ = 1. 

The parameters pf the second design are b' = b = 7, v' = v = 7, r' = b - r = 7 - 3 = 4, 
k' = v - k = 7 - 3 = 4, .A' = b - 2r + ,\ = 7 - 2 x 3 + 1 = 2 

Here second design is complementary to first design. 

The complementar:v design can also be formed from the construction of design obtained from 
the system of confounding of factorial experiment. For example, let us consider that for a 23 

factorial experiment two interactions AC and BC will be confounded in a replication. Then their 
generalized interaction AB is automatically confounded in the replication. Now, considering 
AB, AC and BC as 3 separate treatments, we can allocate 3 treatments in an incomplete 
block of 3 plots. For 23 factorial experiments we have 7 effects and interactions; these are A, 
B, C, AB, AC, BC and ABC. Any two of these effects and interactions can be confounded 
in a replication. Then their generalized interaction will automatically be confounded. We 
have 7 systems of confounding. The seven effects and interactions can be considered as 7 
treatments and these 7 treatments are denoted by, viz., 1, 2, 3, ... , 7. For example, if A and 
B are confounded in one replication, then their generalized interaction AB is automatically 
confounded. If we denote A by treatment 1, B by treatment 2 and AB by treatment 3, then, if 
treatment 1, 2 and 3 are allocated in a block of 3 plots, we shall get an incomplete block. In a 
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similar way, we shall get 7 blocks of 3 plots. The system of confounding and the arrangement 
of treatments from confounded effects and interactions arc shown below : 

· Replication Confounded Effects and Interactions Blo.;.:K Treatments 

A B AB c AC BC ABC 
1 ./ ./ ./ 1 1 2 3 

2 ./ ./ ./ 2 1 4 5 

3 ./ ./ ./ 3 2 4 6 

4 ./ ./ ./ 4 2 5 7 

5 ./ ./ ./ 5 1 6 7 

6 ./ ./ ./ 6 3 4 7 

7 ./ ./ ./ 7 3 5 6 

The parameters of the above BIB design constructed from the system of confounding effects 
and interactions are b = v = 7; r = k = 3 and A = 1. 

Now, a complementary design can be constructed using the remaining treatments which are 
not included in a block. The new design is shown below : 

Block Treatments Block Treatments 
1 4, 5, 6, 7 5 2, 3, 4, 5 
2 2, 3, 6, 7 6 1, 2, 5, 6 
3 1, 3, 5, 7 7 1, 2, 4, 7 
4 1, 3, 4, 6 

The parameters of this complementary design are b' = v' = 7, r' = k' = 4, A'= 2. 

The incomplete block design can also be constructed by dual design. For this, the block 
numbers in which a particular treatment is allocated can be considered as the. treatments in a 
block. For example, in the above design, treatment 1 is allocated in block numbers 3, 4, 6, 7. 
So, 3, 4, 6, 7 can be considered as treatments for a block. Thus, we have a new design as 
follows : 

Block Treatments in Block Block Treatments in Block 
1 1 4 5 7 5 2 5 6 7 
2 1 3 5 6 6 2 3 4 5 
3 1 2 4 6 7 3 4 6 7 
4 1 2 3 7 

This above design is also a BIB design having parameters b' = v' = 7 = b = v, r' = r = 4, 
k' = k = 4; N = A = 2. 

The above dual design is formed from the symmetric BIB ucsign. But, if principal design is 
not symmetric, the dual design will not be symmetric. 

If the parameters of a BIB design are b, v, r, k and A = 1, then the dual design will be 
PBIB design of parameters : 

b' = v, v' = b, r' = k, k' ·= r, AJ = 1, A2 = 0, n1 = k(r -1), n2 = b-1- k(r- l), Pii = k2. 

The above parameters are the parameters of 2 associates PBIB design. 

Again, if dual design is formed from a BIB design having parameters b, v, r, k and A= 2, 
then the dual design will be 3 associates PBIB design. However, for A = 2 the dual design 
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may be a 2 associates PBIB design. For example, let us consider the dual design obtained from 
principal design having parameter b = 10, v = 5, r = 4, k = 2 and A= 1, where the principal 
and dual des.igns are as follows : 

Principal Design Dual Design 
Block Treatments Block Treatments 

in Blocks in Blocks• 
1 3 4 1 1 3 6 10 
2 2 4 2 3 7 8 9 
3 0 3 3 2 5 9 10 
4 4 8 4 1 2 4 7 
5 2 8 5 4 5 6 8 
6 3 8 
7 0 4 
8 0 8 
9 0 2 
10 3 2 

The parameters of this dual design are b1 = 5, v1 = 10, r1 = 2, k1 = 4, Ai = 1, A2 = 0, 
ni = 6, n2 = 3, P~i = 4. 

10.5 Construction of Incomplete Block Design from Orthogonal Latin 
Square Design 

Let us discuss the construction of Latin square design before the construction of incomplete 
block design. Let us consider that F; (i = 1, 2, ... , m) is the prime number or power of a ptime 
number and F = (Fi, F2, ... , Fm), where F; (i = 1, 2, ... , m) are the components of F. The 
value of GF(F;) including minimum fl,lnction is available based on the value of F;. For example, 
let F = 12 or F = 3 x 4, where Fi = 3 and F2 = 4. Again, the values of GF(3) and GF(22) are 
0, 1, 2 and 0, 1, o:, o:2. The minimum function of GF(22) is a 2 +a+ 1. Then the combinations 
of the values of GF(3) and GF(22 ) are as follows : 

00, 01, Oa, Oa2 , 10, 11, la,.la2 , 20, 21, 2a, 2a2 . 

These 12 values of combination can be used to form a 12 x 12 Latin square design, where 
each combination is considered a treatment. 

In the same way using each value from m different fields the combination of values can be 
done and one can get F combined values. If F is a prime number or power of a prime number, 
then the results of combination for rrf = 1 and GF(F;) are the values of GF(F). 

Let us consider that the combination of F values are for the F x F Latin square design with 
F treatments .. The combination of Ji' values can be arranged in F rows and F columns so that 
paired value ofrow and column can.be added, where all the results of all possible added values 
of 2 can be presented through a table. Here the column is called principa:l column and row is 
called principal row. The table obtained from the results of addition is a Latin square design. 
In finding the results of addition the minimum function of GF(F) is considered zero. 

The values of principal column are multiplied by the values of GF(F), except the values 0 
and 1, to get the values of new column. At this stage two values in pairs from new column and 
principal column are added to get a table of new values, This gives orthogonal Latin square 
design. As many as orthogonal Latin square designs are available depending on the number of 
times the values of principal column are multiplied and table of added values are obtained. As 
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every time multiplication is done by new value, not more than (S - 1) multiple are availablt,, 
where S is the minimum factor of F .. The process can be explained for 4 x 4 Latin sq iare 
design. 

Let us consider GF(22 ) for 4 x 4 Latin square desfgn. The values of GF(22 ) are 0, l, a and 
a 2 and the minimum function of this field is a 2 +a+ 1 == 0. Now, the values of 0, 1, a and 
a 2 are to be written iu principal row and principal column and step-by-step the values of row 
column are to be ~dded to get the following 4 x 4 Latin square design. 

Principal Principal Row 
Column 0 1 0 02 

0 0 1 a 0'2 

1 1 0 Q2 a 
a a 0'2 0 1 
a2 a2 a 1 0 

Now, the elements in principal column are multiplied by a and using principal row we shall 
add the two elements of row and column to have the following arrangements of treatments : 

Second Principal 0 1 0 02 

Column 

0 0 1 a 0'2 

a a 0'2 0 1 
a2 Q2 a 1 0 
1 1 0 Q2 a 

Again, multiplying the elements in the principal column by a 2 and following the similar 
method as discussed above, the following arrangement is obtained : 

Third Principal 0 1 0 02 

Column 

0 0 1 a a2 

a2 Q2 a 1 0 
1 1 0 a2 a 
a a a2 0 1 

The above 3 arrangements oftr~atments are 3 orthogonal Latin square designs. 

If there are S 2 treatment, they can be arranged foto S x S square. If this S x S Latin square 
design is orthogonal, then the BIB design of parameters v = S 2 , b = S 2 + S, k = S, r = S + 1 
and >. = 1 can be formed. 

As the treatments are allocated in S x S square, in each block there are S treatments and 
there are S blocks. The number of treatments which are allocated in rows of first S x S squares 
can be allocated in columns to get another S x S squares. The second square generates another 
S blocks having S plots in each block. After that a S x S orthogonal Latin square design 
can be formed and oll this design one can superimpose the first S x S square. Due to this 
arrangement of squares, there will be treatments of square with a particular treatment of"Latin 
square. These treatments can be allocated in blocks. Thus; for S treatments of Latin square 
design S blocks will be available. In. a similar way, blocks will be formed from the available 
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orthogonal Latin square design. In such arrangements of treatment of first two squares and 
orthogonal Latin square design a BIB design of parameters : v = 16, b = 20, k = 4, r = 5 and 
A = 1 is formed, where 8 = 4. 

If 8 = 4, v = 8 2 = 16; b = 8 2 + 8 = 20, k = 4, r = 5 and A= 1. 

The treatments in blocks are as follows : 

Block Treatments in Block Block Treatments in Block 
1 1 2 3 4 5 1 5 9 >13 
2 5 6 7 8 6 2 6 10 14 
3 9 10 11 12 7 3 7 11 15 
4 13 14 15 16 /8 4 8 12 16 

The other blocks are available from orthogonal Latin square designs as follows : 

Block Treatments in Block Treatments in Block Treatments in 
Block Block Block 

9 1 6 11 16 13 1 7 12 14 17 1 8 10 15 
10 2 5 12 15 14 2 8 11 13 18 2 7 9 16 
11 3 8 9 .14 15 3 5 10 16 19 3 6 12 13 
12 4 7 10 15 16 4 6 9 15 20 4 5 11 14 

Using the design so constructed as above another design can be constructed with another 
8 + 1 treatments, where total treatments are 8 + 8 + 1. In such a case, the jth treatment 
(j = 1, 2, ... , 8) of new 8 + 1 treatments can be allocated to any set of 8 blocks in any order 
and with the new 8 + l treatments if a new block is constructed, then 8 2 + 8 + 1 blocks will 
be available and in each block there will b!J 8 + 1 plots. The parameters of the design are 
b = v = 8 2 + 8 + 1, r = k = 8 + 1, .X = 1. 

Let us consider 5 new treatments, where the treatments are 17, 18, 19, 20, 21. Then, if 
these 5 treatments are allocated in the above design, we get the following design : 

Block 

1 
2 
3 
4 
5 
6 
7 

Treatments in 
Block 

1 2 3 4 17 
5 6 7 8 18 
9 10 11 12 19 
13 14 15 16 20 
1 5 9 13 18 
2 6 10 14 19 
3 7 11 15 20 

Block 

8 
9 
10 
11 
12 
13 
14 

Treatments in 
Block 

4 8 12 16 21 
1 6 11 16 17 
2 5 12 15 19 
3 8 9 14 20 
ti 7 10 15 21 
1 7 12 14 17 
2 8 11 13 18 

Block 

15 
16 
17 
18 
19 
20 
21 

The paranwters of this design are b = v = 21, r = k = 5, A= 1. 

10.6 Optimum Design 

Treatments in 
Block 

3 5 10 16 
4 6 9 15 
1 8 
2 7 
3 6 
4 5 
17 18 

10 15 
9 16 
12 13 
11 14 
19 20 

20 
21 
17 
18 
19 
21 
21 

It is observed that the design of a set of treatments may be different. As there may be 
different designs for the same set of treatment, one needs to decide which design is optimum. 
Kieter (1958, 1959) has indicated some discriminating features to identify the optimum design. 
Lis proposed discriminating rules are A, D, E, L, M. 

Let us consider that for a set of treatments there are D designs. If there are v treatments, 
one may be interested to estimate the impact of all treatments or to study any contrast of the 
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treatments. Let us consider a function of treatment effects as 

8 = L'y, 

where "I is the treatment eff Pct an<l L is v x v matrix and v is the number of treatments. If 
the elements in L are so chosen that 8 indicates a vector of contrast, then significance of 8 can 
be tested. Let us consider that 8 can be estimated from any of the d designs (d E D). Let 
the variance-covar:iance matrix of 8 be Cov (8). Here, let us discuss the discriminating features 
proposed by Kieter on the basis of the variance-covariance of 8. 

A-Optimum: The design d(d E D) will be A-Optimum, ·if for the unconditional and limited 
values of l a design d(d E D) is such that 

tr Cov(8) :::; tr Cov(8o). 

Here 80 is estimated from d0 (do E D). 
D-Optimum: Let r(L) = l:::; v - 1. A design d(d ED) will be called D-optimum, if 

jCov(8)j :::; jCov(8o)I, 

where 80 is estimated from do(do E D). 
E-Optimum : Let r(L) = l :::; v - 1. A design d(d E D) will be called £-optimum, if the 

maximum laterit roots of Cov (8) are such that they are equal or less than the latent roots of 
a design do(do E D). 

For £-optimum and M-optimum Kieter (1958) can be discussed. 

Exercises 

1. What is meant by analysis of variance? Explain the concept of design of experiment. 
Illustrate the basic principles of experimental design. 

2. What is analysis of variance? How <loes it <liffer from regression analysis? Explain the 
terms related to analysis of variance with example. 

3. What is the difference bctween analysis of variance model and regression model? Write 
down the assumptions of analysis of variance. Explain the basic principles of experimental 
design. 

4. Define linear model and analysis of variance mo<lel. Explain the con<litions fur efficient 
experiment. Discuss the technique of analysis of variance. 

5. Distinguish among fixe<l effect, mixed effect and random effect models. What is the 
difference between analysis of variance model and regression model? Explain the basic 
principles of design of experiment. 

6. What do you mean by experiment and design of experiment? What are the pre-requisites 
of a good experiment? What are the consequences of violation of assumptions in analysis 
of variance? 

7. Discuss the analysis of variance technique. How does analysis of variance differ from 
regression analysis? Explain the uses of analysis of variance. 

8. Define design of experiment. What is the use of design of experiment? Explain the -basic 
principles of design of experiment. How would you estimate the number of replication per 
treatment in an experiment? 

9. Explain the concept of parametric function, estimable function and contrast. Show that 
there are exactly k estimabl!l functions, where k is the rank of the design matrix. 

State and prove Cochran's theorem. Explain its application in analysis of variance. 
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10. Define contrast,. estimable function, parametdc function. Show that for a model 

Y = X B + U, the linear estimator of>.' Bis r'X'Y, where X' Xr = >.. 
11. What do you mean_ by multipie comparison? What are the different methods of multiple 

comparison. 

12. Distinguish between regression model and analysis variance model. 

For the model Y = X /3 + U under usual assumption .and notation, shovs that 

(i) r' X'Y is the unbiased linear estimator of,\' B, where X' X r = >., 
(ii) X /3 and X' X /3 are estimable functions, 

(iii} r' X'Y is the BLUE, 

(iv} if /3 is a vector of k elements, there are (k -1) orthogonal contrasts of the elements 
in /3. · 

13. What do you mean by mul,tiple classification? For a multiple classification model, 

·Yi11=µ+a;+/31+ei.il; i=l,2, ... ,p; j=l,2, ... ,q; l=l,2, ... ,nij, 

show that the rank of the design matrix is p + q - 1. Also show that there are exactly 
p + q - 1 estimable functions of the parameters in the model. 

14. Define two-way classification. Give examples of two-way classified data. Describe different 
steps of two-way classification. · 

15. Distinguish between orthogonal and non-orthogonal designs. For the model, 

Yi11=µ+a;+/31+ei:il; i=l_,2, ... ,p; j=l,2, ... ,q; l=l,2, ... ,n;J· 

Show that if L:; Ci = L:; dj = 0, L:; c;ai and L:; d1{31 are estimable functions. Describe 
the procedure to find the adjusted sum of squares due to ~J and also discuss the test of 
significance of Ho : /31 = 0. 

16. Define three-way classification. Describe the different steps in analysing the data of three
way classification with several obser~ations per cell. 

17. Distinguish regression model and design of experiment model. Define two-way classifica
tion. Mention som~ examples of two-way classified data. Show that, for a two-way classified 
data E[MS (Tueatment) 2'. E[MS (Error)]. · 

18. For a model Yijl = µ+a;+/3.i+(a/3);.; +e;11, i = 1, 2, ... , p; j = 1, 2, ... , q; l = 1, 2, ... , niJ• 
describe the analytica,l procedure of the data. 

19. What is meant by linear statistical model? Write down the assumptions in analysing 
such a model. How covariance analysis model differs from analysis of variance model and 
regression model? 

Establish a linear model for two-way classification with r observations per cell. Find the 
rank of the design matrix or' such a model. Write down the different steps in analysing 
such a model. 

20. What is meant by experiment and experimental design? What are the requisites for a 
good experiment? Explain clearly the basic principles of experimental design. 

21. Distinguish between completely randomized design and randomized block design. How 
would you analyse the data of randomized block design with missing observations? 
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22. What is Latin square design? What is the need of such a design? Dist.i.nguish among 
standard, conjugate ~nd self-conjugate Latin square design. 

Write down the method of construction of k x k Latin.square desi&n. Discuss the different 
steps in analysing data uf k x k Latin square design. 

When do we use treatment mean square as error mean square? 

23. Compare and contrast randomized block design· and Latin square design. Write down the 
advantages and disadvantages of randomized block desi.gn. 

Find relative efficiency of LSD compared to RBD and CRD. 

24. What is meant by orthogonality of design. Discuss the different steps of analysis of 
orthogonal Latin square design. Write down the advantages and disadvantages of Latin 
square design. 

Show that the orthogonality of LSD is lost if one observation is missing. 

25. Define Latin square design, graeco Latin square design and orthogonal Latin square design. 
Explain the situation where these three designs can be used. Write down the different 
steps of analysis of LSD. Compare CRD, RBD and LSD. 

26. Define randomized block design explaining its advantages and disadvantages. 

Explain covariance technique in ana,lysing data of RBD with missing observations. 

27. What is meant by efficiency of a design? Find rdative efficiency of RBD compared to 
CRD. 

Explain the method of analysis of LSD with two missing observations. 

28. What is the need of repeated LSD? Explain method of analysis of p LSD. 

Define orthogonal Latin square design and graeco Latin square design. 

29. Distinguish between factorial experiment and non-factorial experiment. Explain main 
effect, simple effect, total effect, mean effect and interaction in case of factorial experiment. 
Write down the Yates' algorithm in analysing data of factorial experiment. 

30. What do you mean by factorial l(Xperiment? explain advantages, disadvantages and uses 
of factorial experiment. Establish analysis of variance table for 24-factorial experiment. 

31. Distinguish between symmetric and asymmetric factoria1 experiment. Give some practical 
examples of asymmetrical factorial experiment. 

Explain different methods of analysis of 23-factorial experiment. 

32. What is confounding? Write down its advantages and disadvantages. 

Find block contents so that two interactions of a 24-factorial experiment are confounded 
in one replication. Explain the method of analysis of such experimental data. 

33. Distinguish between partial confounding and total confo.unding. Find total effect::; of 
different effects and interactions using linear equations. Use 25-factorial experiment. 

34. Explain method of confounding. What is the need of it? How analysis of data of confoun
ded factorial experiment differs from that of unconfounded factorial experiment? Discuss 
the efficiency of unconfounded factorial experiment. 

35. What do you mean by generalized interaction? Distinguish fractional replication in 
factorial experiment and confounded factorial experiment. 

Discuss the analysis of -b25-factorial experiment. 

D.E.S.M.-21 
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36. Explain the concept of defining contrast, generalized interaction, alias and principal blocks 
related to factorial experiment. 

If 23-factorial experiment is conducted through LSD, write down the linear model of the 
data. Also write down the different steps in analysing data of s1ich an experiment. 

37. What is factorial experiment? Write down its advantages and disadvantages. 

Find block contents to conduct 25-factorial experiment in blocks of 23-plot so that 2-factor 
and 3-factor interactions are balanced confounded. 

38. What is meant by generalized interaction? Show that when two interactions are confoun
ded simultaneously in one replication, their generalized interaction is also confounded in 
that replication. Find block contents to conduct 33 factorial experiment so that AB2C 
and ABC2 are confounded in one replication. 

Discuss the analytical procedure of such experimental data. 

39. Distinguish partial confounding and total confounding. Discuss in detail the analysis of 
partially confounded 24-factorial experiment. 

40. Explain the need of fractional factorial experiment. Write down the problems in using 
fractional replication of factorial experiment. 

Show that in conducting ~26-factorial experiment in blocks of 23-plots, all main effects 
and 2-factor interactions cannot be estimated. 

How would you analyse the data of such an experiment? 

41. Distinguish symmetrical and asymmetrical factorial experiment. Is there any difference 
in the analysis of such two types of experimental data? 

Discuss the analysis of 2 x 5 factorial experiment. 

42. Define split-plot design. Write down its advantages, disadvantages and uses. 

Discuss the analysis of data obtained from split-plot experiment. 

Give a comparative study of randomized block design, split-plot design and confounded 
factorial experiment. 

43. What is meant by split-plot design? Explain its different types. Is split-plot desi~n an 
orthogonal design? Justify your answer. 

Discuss the analysis of split-plot design and find its efficiency compared to RBD. 

44. Define split-split-plot design and explain its analytical procedure. Find relative efficiency 
of this design compared to split-plot design. 

Discuss the· method of estimation of missing observation in split-split-plot design. 

45. Explain the situation where split-plot design is used by necessity. 

Suggest the model for split-plot experiment· in RBD and its analysis. Find the relative 
efficiency of split-plot design compared to RBD. 

46. Is there any similarity between split-split-plot design and split-block design? Justify your 
answer. Discuss the efficiency of split-split-plot design. 

Find the exact test statistic to compare two sub-plot treatments in the same main plot. 

47. Define split-split-plot design. Why the data of such design are not orthogonal? Explain 
the reason why there are two-error variances in split-plot design. 
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48. Explain split-plot design with its advantages and disadvantages. 

Discuss the analysis of split-plot design. Find exact test statistic to compare two whole
plot treatments in the same sub-plot. 

49. Explain the concept of split-block design. How docs it differ from split-split-plot design? 
Discuss the analytical procedure of split-block design. 

50. What do you mean by incomplete block design? What is the need of such a design? How 
would you analyse the data obtained from incomplete block design? 

51. Define BIB design. Why is it so called? For a BIB design show that (i) b ~ v, 
(ii) >.(v - 1) = r(k - 1), (iii) b ~ v + r - 1. · 

What is the need of inter-block analysis of a BIB design? Explain intra- and inter-block 
analysis of BIB design. 

52. Define BIB design. Establish the relations among the parameters of BIB design. Discuss 
the advantages and disadvantages of BIB design. 

Find combined intra- and inter-block estimate of treatment effect. 

53. Define BIB design. What are the different types of incomplete block design? Giv<' a 
comparative study of these designs. Discuss the analysis of a simple lattice design. 

54. Define PBIB design. How does it differ from BIB design? Explain the association scheme 
of PBIB design. Discuss the analysis of PBIB design. 

55. What do you mean by incomplete block design? When it becomes partially balanced? 
Discuss the analysis of data obtained from two-association scheme PBIB design. 

56. Define BIB and PBIB designs. Prove the following relations for a BIB design with 
parameters b, v, r, k and.>.: (i) >.(v - 1) = r(k - 1), (ii) b ~ v. 

Construct a BIB design with parameters b = v = 7, r = k = 3 and >. = 1. 

57. Show that, if a block of a symmetric BIB design is dropped, the resultant design is also 
BIB design. Explain the intra-block analysis of BIB design. 

58. What is the need of incomplete block design? Distinguish between symmetric and 
assymmetric BIB design. How would you estimate the combined intra- and inter-block 
estimate of treatment effect? 

59. Define BIB design. Establish the relations of parameters of BIB design. What is the need 
of inter-block analysis of a BIB design? 

Discuss the intra-block analysis of BIB design. 

60. What d? you mean by variance component analysis? When do we use this analysis? What 
are the different methods of variance component analysis? Write down the advantages 
and disadvantages of method of variance component analysis. 

Discuss the different steps of variance component analysis of three-way classification. 

61. Distinguish among fixed effect model. mixed effect model and random effect model. 

Why do we need to nse mixed effect and random effect models? Explain the assumptions 
for variance component analysis. How would you estimate the variance components in 
case of two-way classification with several observations per cell. Find the variance of your 
estimates. Also suggest the estimators of variance of estimates of variance components. 

62. Define random effect model. Give an example where we need to establish random effect 
model. 
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Disci1ss the diffor0nt steps in analysing random C'ffect model for three-way classification 
with several observations per cell. 

63. Distinguish between fixed eff<'ct model and random effort model. What is the problem in 
estimating vari<u1ce component by analysi.s of variance technique. 

Explain <liffercmt steps in finding E(l\!J S) for both mixed effect and random effect model. 

64. Define nested classification. Explain the necessity uf this classification. What is the 
<lifforence between balanced and unbalanced nested da.ssification? Discuss th<' different 
steps in analysing the data of a balanced two-stage nested design. 

65. What is meant by balanced nested classification. How docs it differ from unbalanced 
nested classification? Explain the need of nested and cross classification simultaneously. 

66. What is the difference b0twccn nested and cross classifications. Discuss the analytical 
procedure of data of a balanced three-stage nested design. 

67. Distinguish between balanced and unbalanced nested classification. Explain the method 
of three factor nested and cross classified data. Mention some practical situations where 
we need nested classification. 

68. What is meant by concomitant variable? What is the need of using this variable in 
analysis of variance? 

Explain the method of analysis of randomized block design with one concomitant variable. 

69. Define covariance analysis? How would you test the significance of effect of concomitant 
variable. Discuss the different steps in analysing data of LSD with one concomitant 
variable. 

70. Explain in detail the application of covariance technique to analyse the data with missing 
observations with special· reference to RBD. 

71. What is meant by covariance analysis? Explain diffNent experimental situations where 
we can use covariance technique to analyse the data. 

Discuss covariance analysis to analyse the data of a RBD with two missing observations. 

72. Define covariance analysis. How docs it differ from analysis of variance? Explain the 
assumptions needed for covariance analysis. 

How would yon justify the use of one regression coefficient for all treatments? 

73. What do you mean by groups of experiments? Why do you need the analysis of groups 
of experiments? Mention the problems in analysing groups of experiments. Explain some 
suitable techniques to avoid the problems in analysing groups of experiments. 

74. What is meant by stable treatment? Write down the steps to select stable treatments. 

How would you analyse the data of a group of randomized block designs with stable group 
of treatments. 

75. Explain the need of groups of experiment. What arc the different problems that arise in 
weighted analysis of data of groups of experiments. Suggest methods to overcome these 
problems. 

76. What is meant by combined analysis? What is the need to this analysis. Explain the 
method of combined analysis of a group of LS designs. 

77. Define group of experiment. Why place/sea.son effects are considered random? Also 
mention the reason why the places x treatments interaction is considered random. How 
docs this interaction affect the combined analysis of a group of experiment? 
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Chapter 11 

Elementary Discussion on Sampling Methods 

11.1 Concept of Sampling 
Statistics deals with collection, tabulation, analysis and interpretation of data, where data 

are collected from a population acco'rding to some pre-determined objective. Data can be 
collected from all population units or from a representative part of population units. The 
method of selection of a representative part of population units is known as sampling and 
selected units constitute a sample. For example, a cook decides about the well-boiled of rice 
when prepares a pan of rice. The decision is made observing few rice from the whole pan of rice. 
Here all rice in the pan may be considered as population rice and few selected rice constitute 
the sample rice. The method of selection of rice is known as sampling. The selected sample 
rice leads to conclude about the well-cooked of the pan of rice. However, the decision regarding 
population characteristic depends on sample size and on representativeness of population units. 
Deming (1950) mentioned that, "Sampling is not mere substitution of a partial coverage for 
a total coverage. It is the science and art of controlling an:d measuring reliability of useful 
statistical information through the theory of probability." 

The sampling method does not provide precise information about population characteristic if 
any populat'ion unit is preferred than other. For example, the weaver usually shows a part of the 
cloth which is well prepared. But this well-prepared part of the cloth is not the representative 
part of the cloth and the decision will not be well-informative if anybody observes only the 
well-prepared part. 

11.2 Scope of Sampling 
In practice, the sampling method has been utilized since long, specially to estimate the 

population characteristic like mean, variance, proportion of some variable or attribute. The 
development of the theory of sampling has been started since 1940. Since then, it is used in 
the following aspects : . 

(i) the bureau of statistics of any country utilizes sampling method to estimate the literacy 
rate, employment rate, amount of service holders, to study the income distribution of 
people, to study the health condition of people, to estimate death rate, birth rate, etc. 

(ii) The agricultural statistics unit of tJ:ie government utilizes sampling method to estimate 
the total production of agricultural crop and to predict the future production. 

(iii) In industrial sector, the owner of the industry utilizes it in controlling .the quality of 
production, to estimate the demand of the production. . 

(iv) The bureau of economics can utilize this to study the condition of investment, savings, 
loan, deposit, etc. . 

(v) Sampling method is also used for opinion survey, if it is needed to formulate a new policy 
by the governm~t. 

329 
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{vi) To study the effectiveness of a new discovered medicine, sampling method may be utilized 
to select some units 011 which medicine is to be applied. 

(vii) For any research of academic interest or national interest the data can be collected through 
sampling method. 

(viii) To estimate the cost on food, education, residence, health at national level the data can 
be collected through sampling method. 

11.3 Important Points to be Considered During Sa!flpling 
The sampling methods are in use in our day-to-day life since long. However, the method of 

estimation of population characteristic as proposed by Laplace in 1783 is in use since mid-thirty 
of the last century. Since then attempts have been made to develop the method of sampling and 
to improve the estimate of parameter. The following points are to be considered in imprnving 
the estimate of parameter : 

{i) the sampling unit must be representative of the population units, 

{ii) the estimator of the parameter must be efficient and its accuracy must be measured, 

(iii) the cost of sampling and sample survey should be minimum. 

(iv) the sample survey should be completed within a short stipulated time period. 

To minimize the cost and time during sample survey the following aspects should be 
considered : 

(a) the mode of selection of sampling units, 
(b) the number of sampling units, and (c) the mode of analysis of collected data. 

All the problems discussed above can be solved if probability theory is applied in method 
of sampling. The probability sampling leads us to estimate the parameter efficiently and also 
leads us to draw conclusion efficiently with more precision. 

11.4 Different Sampling Methods 
The objective of sampling is to select a representative part of the population units to collect 

information regarding any characteri~tic of the population. Fisher (1935) has shown that if the 
sampling units are selected randomly, the estimate of error in estimating population parameter 
is available und hence the precision of the estimator under study can be measured. Thus, as a 
sampling method, we can mention two methods, viz., (a) probability sampling and (b) sampling 
without probability .. Deming (1950) has discussed in detail about probability sampling. Since 
1940 the development of probability sampling has been continuing. In this sampling each 
population unit is selected with a known probability. Thus, diffcf'.ent probability sampling 
methods and the estimation procedure of parameter will be discussed in the following chapters. 
The important probability sampling techniques are (i) simple random sampling, (ii) stratified 
sampling, (iii) systematic sampling, {iv) cluster sampling, (v) multi-stage sampling, (vi) multi
phase sampling. 

The non-probability sampling is usually known as (a) judgement sampling, and {b) quota 
sampling. Besides these two non-probability sampling, there are other two non-probability 
sampling. These are (c) Convenience sampling and (d) Snowball sampling. In all the cases the 
units are not selected with some pre-assigned probability and hence, the reliability of estimator 
cannot be estimated. The non-probability sampling is used in large scale during 1920-1930. 

Judgement Sampling or Purposive Selection: In this sampling, the researcher selects 
population units according to his personal judgement or choice. For example, to study the 
family planning adoption behaviour a researcher can select a group of couples from one area 



ELEMENTARY DISCUSSION ON SAMPLING l\iETllODS 331 

according to his personal judgement. For the same study in the same area a second researcher 
may select another group of couples. But no one can claim that Lheir selected couples represent 
the whole of the couples of the area under investigation. In reality, a list of couples, usually 
known as frame, of child-bearing ages is difficult to get and hence, the researcher as a simpler 
tool chooses the judgement sampling. But this judgement sampling does not provide reliable 
information on population characteristic. The analysis of data collected through judgement 
sampling is also not done according to pre-determined level of precision. 

The judgement sampling, though has some limitations, is not strictly prohibited or is not 
accepted at. all. In some instances where the population units are not well defined or are not 
well specified or are not well located or the frame is not updated, the judgement sampling 
is preferred. As mentioned earlier, the judgement sampling is suitably used in selecting the 
couples to study the family planning adoption behaviour. 

Quota Sampling : This sampling is slightly different than judgement sampling. Thf' 
frame of the population uni.,s is not available or it is not up dated. However,. the units are 
classified into several groups. For example, the couples of child-bearing ages are not listed 
properly for any particular region. But they may be classified according to their duration of 
marriage. The couples who are in the beginning of their life are more prone in adopting any 
of the family planning methods than those who want child during 2-5 years of duration of 
marriage. Again, those who have at least one child are more prone in adopting family planniug 
methods. Therefore, the. couples can be classified at least into three groups and tv stt,dy the 
adoption behaviour of the couples they may be selected in different amounts from :3 different 
groups. The number of couples to be investigated from each group is pre-determined. This 
number is considered a quota and survey is continued until a quota is fulfillea. This type of 
sampling is known as quota sampling. 

Since q1iota sampling is not a probability sampling, its reliability and efficiency of the 
estimator is not beyond question. In this sampling there is a scope of investigator's bias in 
the information and as a result its application is reduced day by day. However, if the selected 
units of any group are consistent with the population units of that group, the selected sample 
may represent the population and the analytical result will be reliable. The quota sampling is 
widely used in opinion survey. 

The method of mail questionnaire is also used in the field of sample survey. The cost 
and complexity in this type of survey is reduced. If questionnaire is sent to individual who 
is selected with probability, the survey is equivalent to that one which is done according to 
probability sampling. However, in this survey method there is more chances of non-response 
error. The individuals may not send back the filled in questionnaire. However, to avoid this 
problem Hansen and Hurwitz (1946) have proposed to send questionnaire through mail a..<> well 
as to investigate the unit personally. According to them a group of individuals among non
respondents are to be selected by probability sampling and they are to be investigated and 
interviewed face to face. There are other methods of red1~cing error due to non-response. These 
will be discussed later on. -

Convenience Sampling : This is also a non-random sampling, where the up-dated frame 
is not available. It is similar to purposive or judgement sampling, because the researcher 
select some units from a population according to his convenience. It is neither probability nor 
judg.ement sampling even the units are selected at random. ·For exam{11e, the cost of living 
index number is to be calculated for middle and upper class of people. The frame of these two 
groups of people is not available. However, on the assumption, that middle and upper class of 
people have land phone in their house and from telephone directory some of the owners of the 
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telephone set may be selected purposively or at random for investigation. This type of selection 
is done as it is convenient to the researcher to have a sample of middle and upper class of 
people. Thus, the technique of selection of units is called convenience sampling. 

This technique is also suitable for pilot survey.' 

Snowball Sampling : The snow is usually falls on the top of the hill which can roll to 
the ground. The snow which falls on the ground does not roll. The snowball begins small but 
becomes bigger and bigger as it rolls downhill. 

The snowb~ll sampling means an unit is observed or smaller units are observed and units are 
increased as study proceeds. For example, some researchers need to study the social character 
of drug addicted people. The population of drug addicted people cannot be identified but data 
are needed from them. In such a situation, if you find one or some of the drug addicted people, 
you can collect information. from him or from them about social characters. Also one can ask 
the selected drug addicted people about other similar group of people whom can be met. Qne 
drug addicted people may know other such grou·p of people. So, if one can be selected he can 
be helpful to select others and in this way sample size will be bigger and bigger like snowball. 

This snowball sampling is a non-raridom sampling. However, it can be called a pseudo
random s~mpling like systematic sampling if first unit is selected at random from a group of 
units. The other units are to be selected based on the information provided to the first unit. 

11.5 Advantages and Limitations of Sampling 
With increased use of statistics in different disciplines the use of sampling is aiso increased. 

The statistical dafa are essential in any development plan in any field. One of the important 
sources of statistical data is sample survey. The sampling techniques are applied profitably in 
the following fields : 

(i) it is advantageous to collect statistical data within a short period of time and with 
minimum cost, 

(ii) even with a smaller sample more reliable data are collected through sample survey if the 
sample is selected through probability sampling, 

(iii) if the frame is not known or if the size of the population units is not known or if the 
population is not properly identified along with its location, lt is better to use sampling 
methods to estimate the population parameter, 

(iv) the non-sampling error is increased in census survey when the population is large. In 
such a case ~arnpling is advantageous, 

(v) the sampling is more precise if there is more variability in the observations related to 
characteristics under study, 

(vi) since in sample survey the unit1l to be covered are smaller in size, well-trained personnels 
can be appointed easily to get reliable information. 

Inspite of the above advantages, the sampling methods have some limitations. These are : 

(i) if the data in sample survey arc collected by inefficient investigators, the reliability of thP 
analytical results will be lost, 

(ii) the misplanning of the survey may lead to fallacious conclusion, 
(iii) jf the survey is not conducted properly by well-trained and organized personnel, the 

survey result may lead to misleading conclusion, 
(iv) if the sampling method is not used properly, the sample units may not be representative 

of the population units. 
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11.6 Census and Sample Survey 
The complete count of the. populatio.n units in an~' survey is known as <'ewms. It has alre11dy 

been mentioned that the count of all population units may create the problem :Jf twn-sampl.ng 
error as large scale survey needs large organizational set-up to complelf' the survey. \Vii h 
the increase in population size we need more ·we;J-trained m<in-powcr to complete the job. In 
practice, the bigger is the organizational set-up, the more is the chance of untrained p<'rs<mnels. 
However, the status of survey depends on the use of the results. fo pop1dati<m plnnning ihe 
population census is a must. The sample survey is not sufficient in the field of total m1mt of 
population. Similar is the case with agriculture c;ensus, housing census, economic census, etc. 

The sample survey is used when we need to guess the population parameter. To estimate 
the production of wheat in a year in the country it is necessary to count the total production 
produced in all agricultural plots in a year. A representative part of the plots used in producing 
wheat is to be selected and estimate of total production can be made using the production of 
those selected plots. The sample survey is a technique where smaller representative units are 
selected and those selected units are investigated to collect information. 

It has already been mentioned that the sample survey is advantageous in collecting 
information with minimum cost and within short period of time. However, sample survey 
is not recommended if there is less chance to get reliable estimate of the population parameter 
from small scale investigation. In some cases, the sample survey is conducted in deciding the 
reliability of the result of census. 

From the above discussion it is clear that both sample survey and census have same merits 
and demerits. These are discussed in the next section. 

11. 7 Merits a'nd Demerits of Census and Sample Survey 
Mahalanobis (1950), Yates (1953), Zarkovich (1961) and Lahiri (1963) have discussed the 

merits and demerits of census and sample survey. Cochran (1977) has classified the 1 rits of 
sample survey into 5 classes. These are : 

{i) the survey is conducted with reduced cost, 
(ii) greater speed is observed in getting result, 

(iii) sample survey results are more accurate, 
(iv) the scope is greater, and 
(v) the adaptability of the result is increased. 

The other merits and demerits of both census and survey have already been mentioned in 
the previous section. 

11.8 Principal Steps in a Sample Survey 
Since the adaptability of the survey result is increasing day by day in any scientific 

investigation, the sample survey must be well planned so that reliable estimate of population 
parameter is available. The following steps are to be considered to conduct a good survey. 

1. The objective of the survey should be well stated : If the objective of the sample 
survey is not well mentioned, the data to be collected and the population to be covered are not 
decided properly. The pre-determined objective helps in preparing a well-designed questionnaire 
which will contain different questions consistent with the objective of the survey. Inconsistent 
information create the complexity in the analysis and it does not help in taking appropriate 
decision. The objective of the survey is formulated in such a way that it is consistent with the 
available resources of the survey. 
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2. Population to be surveyed should be identified : The size and location of the 
population units to be covered in any survey must be well known and well identified. For 
example, if a survey is needed to study the success of white revolution in milk production of an 
area, then all the farmers producing milk for commercial purpose will constitute the population. 
A part of the producers from any part of the area under study will not be sufficient to form the 
population. · 

3. Pilot survey : For efficient management of survey work, clear and concise idea about 
population to be surveyed is necessary. The information related to location of, the population 
units, the mode of transport in the area, the level of communication of the units are the pre
requisites to conduct an efficient survey. In case of human population, the behaviour and 
the work status of the majority should be known by the investigators. These information are 
collected before conducting the main survey. A survey prior to the main survey to collect 
necessary information about population is known as pilot survey. The pilot survey also helps 
in estimating the cost of the survey. Also, it helps in giving training to the investigators. 
Questionnaire is pre-tested during pilot survey. 

4. Reference of survey and period of report : The time period to conduct the survey 
should be consistent with the time period for which the survey result will be used. If the 
objective of the survey to collect economic information prior to the preparation of budget of 
fiscal :-:ear 2016-17 (say), the economic survey should be completed before formulation of the 
budget. The suitable time period for such a budget is the end of financial year 2015-16. The 
report of the survey should also be prepared before formulation of the budget so that reference 
can be maid for any component of the budget. Thus, the reference period of survey should be 
well mentioned, since the survey results arc used in different policy making activities. 

5. Decision on nature of information to be collected : The decision regarding 
information which are to be collected througb sample survey or census must be well decided 
before conducting the survey. Accordingly, the questionnaire should contain the questions 
related to the variables for which data are sought. For example, if data are needed on total 
expenditure of a family in household expenditure survey, there should be questions related to 
family expenditure either by a single question or by maih components of expenditure. But, 
if detailed information regarding diffNcnt components of expenditure arc needed, questions 
should be set up in that way. The collected information should be consistent with the objective 
of the survey. 

In large scale survey, it is better to collect more information as per as possible so that those 
information can be used in any future research activities. However, the intensive data collection 
should be planned within the budgetary limit of the survey. The investigator who will use the 
survey result or who is responsible for the analysis must be consulted at the planning stage of 
the survey so that questions on required variables are included in the questionnaire. 

6. Method of data collection : Before conducting the survey the method of data 
collection is to be decided. Data can be collected through personnel interview by the investigator 
or it can be collected by mail questionnaire method. These are the mode of primary data 
collection. 

!n some instances, primary data may not be needed. Secondary data from official publication 
or from the publication of some previous survey report arc sufficient for a survey. In such cases, 
the method of data collection is decided according to the objective of the survey. 

7. Preparation of frame : The complete list of population units is known as frame. It 
is necessary to select the sampling units through any probability sampling method. Frame is 
also constructed according to the objective of the survey. For example, if the objective of the 
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survey is to estimate the per hectare cost of cultivation of maize, the population units are the 
farmers who cultivate maize during a particular period. Again, if the objective is to estimate 
the agriculture production of a crop by crop-cutting system, then there is no need of frame of 
agricultural land. 

The frame should be updated and complete. However, the frame may be defective due to 
the following causes : 

(a) inaccuracy, (b) incomplete, ( c) duplication of units,. ( d) inadequate, ( e) out of data. 
Frame should be prepared so that all the above defects are avoided. 

8. Choice of sample design : It has already been defined that a sa~ple is a representative 
part of population units. Th~ selected pot'ulation units are called sampling units. The sampling 
units are usually sc!C'ct<'d by probability sampling. There are different probability sampling 
schemes, viz., simple random sampling, stratified sampling, cluster sampling, systematic 
sampling, two-stage sampling, three-stage sampling, double sampling, etc. The sample is 
selected using any of the sampling schemes. But the scheme is decided in such a way that 
it is consistent with the objective of the survey and with the resources available for the survey. 

9. '!raining of personnel engaged in survey work : This is an important component of 
the survey work at the planning stage. Many people are involved in survey work. The persons 
who are supposed to collect information from sampling units are usually called enumerators. 
There are supervisors who are responsible to supervise the field work of the enumerators. Both 
the groups must be well trained so that data are collected accurately. If data are collected by 
enumerators who are not well trained, their personal bias or ignorance may distort the collected 
information. The inaccurate data will not be fruitful to draw a valid conclusion corresponding 
to the objective of the survey. 

10. Preparation of questionnaire : The schedule which is used to collect information 
on difforC'nt aspects of thC' sampling units is called questionnaire. The questionnaire should 
be simple and comprehensive. The simple and comprehensive questionnaire is helpful to the 
sampling units if he wishes to fill in the questionnaire himself. 

The questionnaire which is to be used in the survey must be pre-tested so that data are 
collected without any hindrance. The questions related religious sentiment, or persona:! belief 
should be avoided. 

11. Different stages of analysis of data : The collected data are analysed to prepare 
report according to the objective of the survey. For proper an·d unbiased analysis the analytical 
stages are classified as follows : 

(a) data should be edited and scrutinised, 

(b) data are tabulated, and 

(c) statistical analysis of data is performed. 

The data must be edited to avoid the missing information and the inconsistency in 
information. If necessary, the incorrect and inconsistent informatio~ are recollected from the 
sampling unit. If it is not possible, the inconsistent information of any sampling unit is dropp·ed 
from the analysis. However, the dropping of any information may create the problem of non
response. 

The tabulation of data is necessary for any pa~ticular pre-determined analytical procedure. 
The mode of analysis becomes easier in case of tabulated information. 

Tabulation of data. is a preliminary step of analysis. Detailed statistical analysis is done 
according to the objective of the survey. 
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12. Preparation of report : The ai1alytical results are r~ported to infer about the 
population characteristics. The final survey report is presented in chapters. The contents of 
the report should include : 

(a) Introduction and objective of the survey 

(b) Method of data coll~ction and analysis 

(c) Results 

(d} Accuracy of analysis 

(e) Expenditure 

(f) Future scope of research 

(g) Merits and demerits of the survey 

(h} Summary of analytical results 

(i) Reference of research 

U) Appendix containing questiounaire, sample and map of area covered, if any, in the survey. 

Report can also be presented according to the UNO (1949) instruction. 

11.9 Sampling Error and Precision 
Let the parameter to be estimated for any population be () and the estimate of () be iJ. 

The estimate is derived from the sample observations. If the sample observations represent 
the population observations, the sample estimate is, usually, unbiased [E(iJ = ()j, but it is 
not exactly equal to the parameter. The discrepancy in estimate and parameter is known as 
sampling error and it is estjmated by [iJ- E(iJ)]. This error arises since we do not find the value 
of() from population observations. The average value of sampling error depends on sample size, 

· sampling method and method of estimation. 

The sampling error [s.e.J is defined by 

s.e. = iJ - E(iJ) = {J - (), E(iJ) = e, if {J is unbiased. 

() = iJ - s.e. 

It is clear that if () is known the value of s.e. can be calculated. In practice, () is unknown 
and s.e. is not calculated. However, fJ follows same sampling distribution, where mean of iJ is 
E(iJ). This mean of iJ can be used to estimate the confidence interval of(). 

Let us consider that iJ follows normal distribution with mean E(iJ) = () and variance of fJ 
• 2 
IS 0'9· 

Then 

or, 

[ e-e ] P -1.96 < ~ < 1.96 = 0.95 or, 
a9 • 

P [-l.96a0 < fJ - () < l.96a6 J = 0.95 

P[iJ - l.96a9 < () < iJ + l·.96a0] = 0.95. 

The result can be shown graphically as below : 

0.025 0.025 

A 
A 

E(O)=O 
(} - 196171; A 
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The graph shows that {J will lie between A and B. with probability 0.95 a~d with this 
probability liJ - Bl :::; 1.960'6. The maximum value of IB - Bl is 1.96 0'0, whnre IB -- Bl is the 
sampling error. and l. 96 O' 0 is the half of the confidence interval. 

The above analytical results indicate that iJ - B is not only the difference of estimate and 
parameter, it indicates the maximum variation in iJ and B in case of repeated samples. This 
amount of {J - B is the amount of precision of the estimate. If iJ - B is estimated from a sample, 
it is called sampling error and if it is estimated from repeated samples and if confidence iimit is 
related to it, it is called precision. Since 1.960'9 is the maximum value of liJ - Bl, the precision 

is estimated by O' 6 [V ( iJ)]. 
The V(iJ) is also used to compare the precision of two or more estimates. The reliability of 

estimate is increased if V(iJ) is decreased. 

11.10 Reliability 
The precision of the estimate is measured by IB-BI = 1.960'0, when the confidence interval is 

calculated with probability 0.95. For 903 confidence interval IB- Bl = 1.640'9. We have already 

mentioned that reliability of the estimate is increased if V(iJ) is decreased and it is observed 
that reliability is related with a coefficient, where this coefficient is 1.96 for 953 confidence 
interval and 1.64 for 903 confidence interval. The value B - B is known as precision and 953 
reliability of precision is half of the confidence limit. 

Therefore, IB - Bl = ~ confidence limit = 1.960'9, for 953 confidence limit. 

We can write, d = ZO'", where d = precision, z = reliability coefficient and O' 6 is the variance 
of 8. 

11.11 Determination of Sample Size 
It has already been mentioned that the parameter B of a population is estimated by iJ 

from sample observations. Whatever be the size of sample, if it is not equal to population 
size, there is a discrepancy between B and B. This discrepancy depends on sample size. The 
discrepancy between parameter and estimate is known as sampling error and it also depends on 
the variability in the population observations. More variation in observations results in more 
value in V(B). However, the sample size is to be estimated in such a way that the accuraqy of 
the estimate is increased and the precision of iJ - B is decreased. 

Let us consider that we have a population of size N and we need to select a sample of size 
n( n :::; N) to estimate the population mean X, where the sample mean is x = !; I: Xi. The 

variance of ?i; is ( ~), where v(x) = 0'2 . Then the precision of the estimate x is given by 

d = z JV(?i), where z is the confidence coefficient 
O' 

=z-
Vn 

or, lx-Xl=zO'/.jn. 

This implies that x - X will be minimum, if ri is large. 

Let us consider that we need a sample to estimate the average birth-weight (in lb) of new
born babies in a hospital within a year. Assume that the variance of birth-weight .of babies is 
0.25 lb2 . If confidence coefficient z is taken as 2, then 
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d = 2~ (95% value of normal-variable is approximately 2) vn 
and for n = 100, d = 0.1 lb. Thus, with 95% reliability the estimate of precision is ±0.1. Now, 
for different values of n, d can be estimated as follows : 

2 x 0.5 
n = 150, d = -- = 0.08 . v1ilii 
. 2 x 0.5 
n = 200, d = -- = 0.07 

v'200 
2 x 0.5 

n = 400, d = vf400 = 0.05. 

It is noted that with the increase in the value of n, the precision is decreased and x tends 
to X. Now, for a certain value of precision we can estimate the value of n as follows : 

Let the precision be d = Ix - XI = 0.2 lb. 

a 
Then d = z yn 

or, 0.2 = 
2 ~·5 

or, n = 25. 

(za)2 
Thus, we haven=~' where V(x) = a 2

. 

Here z is used assuming the distribution of x as normal. The distribution of x may follow 
Students' t~distribution. In that case 

(t!!a) 2 
2 

n = -;p:-• 

where t!! is the tabulated value of Student's t to construct 100(1- a:)% confidence limit for X. 
2 

We have considered the determination of sample size to estimate population mean X. The 
parameter to be estimated may be of proportion P of any characteristic. Let P be the proportion 
of newborn babies who by birth are affected by jaundice. Consider that pis the sample estimate 
of P, where V(p) = ~· In such a case, the value of n is 

z 2 PQ 
n=~· 

If it is assumed that 60% babies are affected by jaundice and we need to estimate the proportion 
of jaundice affected babies with precision 0.05, then 

n = 2
2 x 0.6 x 0.4 = 384. 

(0.05) 2 

This method of estimation of n is used if sample is selected by simple random sampling. 
The method of estimation of sample size becomes complicated if multi-stage sampling plan is 
used. 

Example 11.1 : In a college, there are 4000 students. The average educational expenditure 
of these students per month are to be estimated in such a way that the discrepancy in the average 
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estimate and the population average does not exceed Rs. 10.00. Find the value of sample size 
n so that the average is estimated with 95% reliability.' What will be the sample size, if average 
is sought with '99% reliability? 

Solution : Given d = Ix - XI :S Rs. 10.00. 
( ZO' )2 

We know, n = ~· 
If the variance of expenditure per month of the students is Rs. 4900.00 

= (1.96)
2 

x 4900 = 188 
n (10)2 . 

If estimate is sought with 99% reliability, then 

2 . 
= (2.57) 4900 = 324 

n (10)2 . 

If variance of expenditure of students is Rs. 10000.00, then for 95% reliability, 

= (1.96)
2
10000 = 384 

n (10)2 . 

For 99% reliability, 
= (2.57)

2
10000 = 660 

n (10)2 . 

It is noted that the sample needs to be increased if the variability in the population 
observations increases. Also n needs to be increased if the level of reliability increases. 

11.12 Non-Sampling Error 
The different types of errors that 'creep in survey results during data collection and dat& 

analysis are known as non-sampling errors. The sources of non-sampling errors are : 

(a) Error in sample selection. 
(b) Failure to collect information from some sampling units. 
(c) Error in reporting. 

(d) Non-response error. 
(e) Error in pre-analysis ofdata. 

Error iri sample selection : The sample is a representative part of population units. 
If sampling units are selected purposively or if it is selected to represent some units havii1g a 
special character Of: if it is selected in such a way that only sampling units possess the character 
under study, the sample will not be a representative part of the population and due to the above 
type of sampling the error will creep in the estimate. However, random selection of sampling 
units avoids this type of problem. 

Failure to collect information from some sampling units : The sampling unit may 
be located but information from it may not be collected due to its absence during survey period 
or due to refusal to provide information or due to ignorance of any question. In case of absence 
of any unit it may be revisited, otherwise due to lack of information from such type of unit the 
error will creep in the estimate. The failure of collection of information occurs mostly in case 
of mail questionnaire. 
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Error in reporting : The respondent may provide wrong information due to ignorance or 
willingly. If questions regarding income or expenditure are asked, the respondents may provide 
downward or upward bias information in respective cases. Information on age may not be 
reported properly and accurately. If measuring devices are not used properly, the information 
on height, weight are not recorded correctly. These latter source of error is due to ignorance of 
thc respondents. The experienc•olci enumerator is capable to collect correct information in such 
cases. 

Non-response error : The respoudents may refuse to be interviewed, specially in surveys 
related to social, economical and political aspects. They may refuse to provide information if 
there are questions against their belief and custom. The answer to questions related to politics 
is avoided by many respondents. Mail questionnaire may not be returned by the respQndents. 
If the respondents refuse to provide information in any of the above mentioned ways, the error 
creeps in the estimate. 

Error in pre-analysis of data : The collected data are edited, scrutinized or coded 
before these are used for analysis. Any type of mistake in editorial work or in scrutinizing or 
in coding work may distort the analysis. This type of error arises due to Jack of seriousness of 
the researcher or the supervisor responsible for analytical work. 

11.13 Bias 
The survey is conducted to estimate the parameter, say e. Let us consider that [J is the 

estimate of e. This estimate is unbiased if E(B) = e. Let us consider another estimator of e, 
say t. If E(t) # 0, t is called biased estimator of e. The amount, if bias, is measured by 

3 = E(t) - e = E(t - 0). 

Let us consider that the variance of B is V ( B). The mean square of error of t is given by 

MSE(t) = E(t - 0) 2 = E[{t - E(t)} + ( {E(t) - O} )] 2 

= E[t - E(t)]2 + E[E(t) - 0]2 + 2E[t - E(t)][E(t) - OJ 

= V(t) + 3 2 . 

Here t is biased estimator of e. This biased estimator may be preferred, if 3 is smaller. 
Sometimes V(t) may be less tha,n V(O). Let us explain the facts by graph as follows : 

E(t) = O+ B 

A A 
E(O)=O (J 

It is observed that [J is more dispersed than t. In such a case if 3 2 is small t may be preferred 
than e, if any such t is available. 



Chapter 12 

Simple Random Sampling 

12.1 Definition and Estimation of Parameter 
The simplPst and widely used method of sampling is simple random sampling if frame is 

known. Let there be N units in population and we need to draw a sample of size n(n ~ N) 

from this population. The probable samples of size n are ( 1;;). If the prob~bilities of selecting 

each of the samples are equal, then the sampling method is known as simple random sampling. 

The units of a simple random sample are drawn one by one. To select the units two methods 
are followed. These are : (i) each unit is selected replacing the preceding selected one in the 
population (SRWR), (ii) each unit is selected without replacing the previous or any unit selected 
before (SRWOR). In both the methods the units are selected until required n units are included 
in the sample. For example, let us consider that we have a population of size N = 3, where the 
values of the characteristic under study are 2, 4, 6. We need to select a sample of size n = 2. 
The selected sample observations are : 

Sample observations Sample observations 
without replacement with replacement 

SI. No. Observations SI.No. Observations SI.No. Observations 

1 2,4 1 2,2 7 4,2 
2 2,6 2 2,4 8 6,2 
3 4,6 3 4,4 9 6,4 

4 2,6 
5 6,6 
6 4,6 

In the former case, the number of probable samples is 3 and in the latter case this number 
is 9. If the probability of selection of any of the sample is ! in the first case and i in the second 
case, the. sample is called simple random sample and the method of drawing sample is known 
as simple random sampling (SRS). ' 

Method of selection of sample : The sample is to be selected at random. The random 
selection is done by two methods. These are (i) Lottery method, (ii) Use of random number 
table. 

Lottery method : It has already been mentioned that the SRS is used if frame is available. 
The serial number in the list of population units is written in a piece of paper. Serial numbers 
of all units are written in pieces of paper of same size and same colour. These pieces of paper 
are folded separately and put in a box so that all pieces can be well mixed. The pieces of paper 
are folded in such a way that the number written in it is not seen in any way. For a population 
of size N there will be N pieces of paper. If we need to select a sample of s:ze n(n ~ N), n 
pieces of paper are to be taken out of the box one by one. At each step of selection, the remaining 
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pieces are well mixed. The units with serial number written in the selected pieces of paper 
constitute the sampling unit and the sample is known as a simple random sample. 

In lottery method of selection, no population units is preferred during selection procedure. 
However, in case of large population size the pieces of paper are more and the person involved 
in taking out of pieces may try to take a piece from a particular part of the box where pieces are 
kept. This personal attitude of the researcher creates the problem of bias in sample selection. 

Use of random number table : The random number table is one in which the digits 
from 0 to 9 are arranged in rectangular form. The digits are so arranged that using digits of 
any row or column, any number of required digit can be formed. The most widely used random 
numbers are presented in 

(i} Tippets Random Number Table, 

{ii} Tables of Random Sampling Numbers-by Kendall and Smith (1954). 

{iii} Statistical Tables for Biological, Agricultural and 'Medical Research-by R. A. Fisher and 
F. Yates. 

(iv) Tracts for Computers: Tables of Random Numbers-by M. G. Kendall and B. Babingtou 
Smith. 

As an example, one of such table is given in appendix. At present random numbers are 
generate.cl using computer programming. Random number is also available in scientific calcula
tor. 

The population units are lhted giving serial number against each unit. For example, if 
N = 100, the units are numl.•cred by 00, 01, 02, . .'., 99. Let us wnsider that out of N = 100 
units a random sample of n = 10 units are to be selected. This N is of two-digit number and 
hence, rar.dom number of l,wo digits is to be chosen using any mw or any column of the random 
number table. For a sample of size n = 10, ten two-digit numbers are to be selected (i) without 
selecting a number more than once (if sampling is WOR), (ii) selecting the same number 
repeatedly (if san1pling is WR), if it is observed again and again. In some cases, the selected 
number is more than the number of units in the population, in that case, the random number 
is dropped, or subtracting N repeatedly from the selected number the residue is considered as 
selected random number. For example, let us consider that N = 50 and the serial numbers of 
the units i>re 01, 02, ... , 50. The first selected random number from the above given random 
number t ctble is 51 (using first two columns of the first row). To select the sample this number 
51 may be dropped, or subtracting N = 50 from this number we have residue=:= 51 - 50 = 01. 
Therefore, the unit bearing serial number 01 is to be selected in the sample. 

Method of estimation of parameters : Let there be N units in a population. The 
values of the characteristic under study of these N units are y1 , y2 , ... , YN and the values of 
the characteristic under study of then sample units are y1, y2, ... , Yn· 

Population 

Population total, Y = Yi + Y2 + · · · + Y N 

N 

= LYi =NY. 
i=l 

- 1 N 
Population mean, Y = N LYi· 

i=l 

Sample 

Sample total, y = Yi + Y2 + · · · + Yn 
n 

= LYi = n'jj. 
i=l 

1 n 

Sample mean, y = - LYi· 
n i=I 



SIMPLE RANDOM SAMPLING '343 

Population variance : Sample variance : 
N 

s2 = N ~ 1 L(Yi - Y) 2
, if N is finite. 2 1 I:( -)2 s = -- Yi -y · 

n-l 
N 

0'2 = ~ L(Yi - Y) 2
, if N is large. 

It is assumed that a random sample of size n is drawn without replacement from the 
population. The objective is to estimate the parameters Y and S 2 • 

Theorem : If a simple random sample of size n is drawn without replacement from a 
population of size N, then sample mean is an unbiased estimator of population niean. 

Proof : Let the population observations be y1 , Y2, ... , yN. The population mean is 

- 1 N 1 -
Y = N LYi· The sample mean is y =; LYi· We need to prove that E(y) = Y. 

[
1 n l 1 n 1 n [N l 

We know, E(Y) = E ; LYi =; ~E(yi) =; L LPiYi , 

since Pi is the probability of selection of Yi from the population. In simple random sampling 
Pi=!:; for all i = 1, 2, ... , N. Therefore, 

ln(lN) 1
11

- -

E(y)=;L: NLYi =;L:Y=Y. 

Corollary : If y is an unbiased estimator of Y. then the unbiased estimator of population 
total Y is Y =Ny. w • 

We have E(Y) = E(Ny) = N E(Y) =NY= Y. 

Theorem : If a simple random sample of size n is drawn without replacement from a 
population of size N, then the sample variance s2 is an unbiased estimator of population 
variance S 2 . 

Proof : Let the population observations be y1 , Y2, ... , y N' Then sample varian-.::e is 

s 2 = -
1
- "(Yi -Y)2 and the population variance is S2 = -

1
- ~(y; - Y) 2

. We. need 
n-l.L...- N-1.L...-

to prove that E( s2 ) = S2 . 

2 1"" . 2 1 ~ - -2 
We have s. = n _ 

1 
L_..(Yi -Y) = n, 

1 
L...-[(y; - Y) - (y- Y)J 

1 [~ - 2 - 2] = n-l L_..(Yi-Y) -n(y-Y) . 

E(s2
) = -

1
- [~ E(yi -Y)2 

- nE(y-Y)2
] = -

1
-[n0'2 - nV(y)] 

n-l L...- n-l 

_ 1 [ N -__ 1 S2 N - n s2] - -- n-- -n--- , 
n- l n Nn 

2 N - 1 s2 V (-y) = N - n s2 
(J' =~' Nn 

= nS2 nN - n - N + n = S2 

n- l Nn · 
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Theorem If a simple random sample of size n is drawn without replacement from a 
population of size N, then the variance of sall)ple mean y is given by 

V(y) = NN~ n 52. 

N 

Proof: Let Y1, y2, ... , yN be population observations, where 5 2 = N ~ 
1 

L(Yi - Y) 2 and 
1 n . 

Y = - L Yi. We need to show that 
n 

V(Y) = NN-nn 52. 

We have V(y) = E(y- Y) 2 = E [L:: Yi - y] 
~ ~,E [ty; -nY]' 

1 - - - 2 
= 2E[(Y1 - Y) + (y2 - Y) + · · · + (Yn - Y)] 

n 

1 [~ - 2 ~ - -] = n2 E L)Yi. - Y) + f;;(y; - Y)(YJ - Y) 

= ~2 [t a 2 + E t(Yi - Y)(YJ - Y)] , ': E(yi - Y) 2 
= a 2 

•"#.J 

1 [~ N - 1 2 ~ - -] = n 2 L, -;:;-5 + L,_ E(yi - Y)(y1 - Y) . 
•#J 

N 

Now, E(yi - Y)(y1 - Y) = N(;- l) 1=(Yi - Y)(yJ - Y), 
i#J 

since the probability of selecting YJ after Yi without replacement is N(: _ l). Again, 

N(:- l) f)Y; - Y)(YJ .:_ Y) = N(:- l) [{t(y; -Y)}

2 

-·t(y; - Y)
2

] 

i#J i 

(N - 1)52 

N(N - 1)' 

5 2 Na2 a 2 

= - N = - N(N - 1) = - N - 1 · 

1 [n(N - 1) N 5
2

] 
Therefore, V(y) = n 2 N 5

2 
- ~ N 

= _2_ [n(N -1)52 
_ n(n-1) 82 ] = N - n 5 2. 

n 2 N N Nn 
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1 [ n a2 l V(y) = n2 L a2 - ~ N - 1 
= a

2 
[n _ n( n - 1)] 

n 2 N-1 

= N - n a2 - 1 - N a2 = 1 - { a2 
n(N - 1) - n (1 - f:t) 1 - N n 

= : , if finite population correction (f.p.c.) f = ~ is neglected. 

. 1 - .!!. 8 2 8 2 
Again, V(y) = __ N_52 = (1 - !)- =-,if f.p.c. is neglected. 

n n n 

Here f = ~ is also called sampling fraction. 

Corollary : The variance of the estimator of population total in simple random sampling is 

. N - n N ( 1 - f) N S 2 

V(Y) = V(NY) = N 2--82 = 8 2 = --; if f.p.c. is neglected. 
Nn n n 

Corollary : The standard error of estimator of population mean in simple random sampling 
is given by 

S.E. (y) = 0f{y) = ~82 = J(l -f): = Jn_, if f.p.c. is neglected. 

Corollary : The standard error of estimator of population total in simple random sampling 
is given by 

. S.E. (Y) = VV(Y) = J N(l: f) 8 2 = J N:2

, if f.p.c. is neglected. 

Corollary : In simple random sampling with replacement the standard error of sample 
mean is given by 

S.E.(y) = ~ = N-n 
---a2= 
n(N - 1) 

1 - f a2 a2 
= -, if f.p.c. is neglected. 

(1-/:t) n n 

Corollary : In simple random sampling with replacement the standard error of estimator 
of population total is given by 

S.E. (Y)
0

= ~ = _N_2_(N_-_n_) a2 = 
n(N -1) 

N 2 (1 - f) 2 Na . " · 
( 

1 ) a = r.;:;' if f.p.c. is neglected. 
n 1- N yn 

Corollary : In simple random sampling with replacement the estimator of variance of 
sample mean is given by 

N - n 1- f s2 

v(y) = -N s2 = --s2 = -, if f.p.c. is neglected. 
n . n n 
N-n · N-n 

E[v(y)] = -N E(s2
) = -N 8 2

, ·: E(s2
) = 8 2

. 
n · n 

Here 

Corollary : In simple random sampling without replacement the estimator of variance of . 
the estimator of population total is given by 

(y.)- N2(N-n) 2_(·-f)N2s2 - N2s2 ff . l d v - s - 1 -- - -- i .p.c 1s neg ecte . 
Nn n n ' 
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Corollary In simple random sampling without replacement the estimator of standard 
error of the estimators of population means and population total are given, respectively by 

. ~ . I s2. s 
s.e. (y) = y--;;;:;-s2 = v (1 - n-:;;: = 7n' if f.p.c. is neglected. 

. . / N 2(N - n)s2 . / - N2s2 Ns . . 
s.e. (Y) = y Nn = V (1_- !)-· -n- = ./ii' if f.p.c. is neglected. 

Confidence interval of population mean : Let Y1, Y2, ... , yN ob~ervations follow normal 
distribution. Then Yi• i = 1, 2,. .. 'N Cn are NID (Y, 1fv-..n S 2

), where V(y) is estimated by 
82 

v(Y) = (1 - f)-. 
n 

Then 100(1 - a)% confidence interval of Y is given by 

y ± tt.n-l J (1 - !)s2. 

~ / s2 • / . s2 
Here Y L = y- tf,n-l y (I - !)-:;;: and Yu = Y + tf,n_.l V (1 - !)-:;;:· 

In a similar way, the 100(1 - a)% confidence interval of Y is written as 

Y ± tf,n-l J(l -!)~, 
• • . / N2 s2 ~ • · j . N2 s2 

where YL = Y - t~.n-l y (1 - f)-n- and Yu = Y + tf,n-l y (1 - !)-;;:-. 

Example 12.1 : Assume. that in a population there are n = 3 units. The values of the 
characteristic under stt:dy of these three units are 4, 8, and 6. 

(i) Draw all possible simple random samples of size n = 2 (a) with replacement, (b) without 
replacement. 

(ii) Show that sample mean is an unbiased estimator of population mean. 

(iii) Show that sample variance is an unbiased estimato" of population variance. 

(iv} Find V(y), V(Y), S.E.(y), S.E (Y). 
(v) Estimate V(y), V(Y), S.E.(y), S.E.(Y). 

(vi) Estimate 953 confidence interval for Y. 

Solution : (i) The selected sample observations, sample means, ·s~mple variances, probabi
lity of selection are shown below : 

Sample information 

Without replacement (a) With replacement (b) 

SL Observations Yi 8~ ~ n~l l:(Yi - Y) 2 Observations Yi s2 • Probability of 
No. selection for 

(a) (b) 

1 4,8 6 8 4, 4 4 0 l 1 
3 9 

2 4, 6 5 2 4,8 6 8 l l 
3 9 

-
Contd ... 
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Table contd ... 

Sample information 

Without replacement (a) With replacement (b) 

SL Observations 'fh sr = n~l L(Yi -y)2 Observations Yi s2 
' 

Probability of 
No. 

3 8,6 7 2 8, 4 

4 - - - 6, 6 

5 - - - 6, 8 

6 - - - 8, 8 

7 - - - 8,6 

8 - - 4, 6 

9 - - - 6, 4 

( .. ) Th l . y 1 '°' v 4 + 8 + 6 6 11 e popu ation mean, = N L..., 1 i = 
3 

= 

3 1 ~ 
E(y) = LPiYi = -(6 + 5 + 7) = 6 = Y. 

i=l 
3 

:-. sample mean is an unbiased estimator of population mean. 

The distribution of Y; (in case of with-replacement sampling) 

Yi 4 5 6 7 8 

P(yi) =Pi 1 2 
9 9 

3 2 
9 9 

1 
9 

6 8 

6 0 

7 2 

8 0 

7 2 

5 2 

5 2 

1 2 3 2 1 
E(y) = LPiYi =: 4 x 9 + 5 x 9 + 6 x 9 + 7 x 9 + 8 x 9 = 6. 

The population variance is 

s' ~ N ~ 1 D•; - Y)' ~ N ~ 1 [f:.1 -(L::••l'] 
1 

= 3 - 1 [116 - 108] = 4. 

Hence, sample variance is an unbiased estimator of popolation variance. 

Again, for sampling with replacement 

( 2 I: 2 3 4 2 8 Es ) = PiS· = 0 x - + 2 x - + 8 x - ·= -. • 9 9 9- 3 

selection for 

(a) (b) 

1 1 
3 9 

1 - 9 
1 - 9 
1 - 9 
1 - 9 
1 - 9 
1 - 9 
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The sampling with replacement is considered as sampling from infinite population and in 
that case the population variance is 

CT2 = ~ t(Yi -Y)2 = ~ [Eyl- (E~i)2] = ~ [116- (1:)2] = ~-
E(s2) = cr2 . 

The sample' variance is an unbiased estiruator of population variance. 

N-n 3-2 
(iv) V(y) = --S2 = -- x 4 (·: S2 = 4 in case of sampling without replacement). 

Nm 3 x 2 

= 0.67. 

V(Y) = N 2V(y) = 32 x % = 13.5 

S.E (Y) = JV(Y} = Jo.67 = 0.82 

S.E (Y) = /V(i) = v1i"3.5 = 3.67. 

(v) Estimate of V(Y), V(Y) are, respectively : 

v(y) = N - n s2 = 3 
-

2 
x 8 [using s~ = 8 from sampling without replacement] 

Nn 3 x 2 

= 1.33. 

v(Y) = N 2v(y) = 32 x ~ = 12.0. 

Also, we have 

s.e. (y) = VVfff} = v'f.33 = 1.15, s.e. {Y) = R) = v'I2.0 = 3.46. 

(vi) 953 confidence interval is given by y ± to.02s.1 Js.e.(y). 

Thus, Y L = y- 12.706 x 1.15 

= 6 - 14.61 = -8.61. 

Yu ='ii+ to.02s,1s.e.(y) 

= 6 + 12.706 x 1.15 = 20.61. 

The V (Y) is also calculated from sampling with replacement information, where 

cr2 §. 8 
V(Y) = -:;; = t = G = 1.33. 

[Here sampling with replacement is equivalent to sampling from infinite population]. 

V(Y) can also be calculated from the probability distribution of y, where E(y) = 6. 

V(Y) = E(y2) - [E(Y)] 2 

1 2 3 2 1 336 
E(y2) = LY2 P(y) = 42 x 9 + 52 x 9 + 62 x 9 + 72 x 9 + 82 x 9 = 9· 

V(Y) = E('f/) - [E(y] 2 = 
3
:

6 
- (6) 2 = 1.33. 

- cr2 8 
V(Y) = N 2V(Y) = N 2

- = 32 x - = 12. 
n 6 
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Example 12.2 : The following data represent the net area sown (in '000 hectares) in 
<liffcrent financial year sinC'C 1950-51 to 1993-94. The area sown arc presented serially. 

SL No. Area Sl. No Area Sl. No. Area Sl. No. Area 
sown sown sown sown 

' 
01 118746 10 132939 19 1S7313 28 141953 
02 119409 11 133199 20 138772 29 142981 
03 123442 12 135399 21 140267 30 138903 
04 126806 13 136341 22 139721 ·31 140002 
05 127845 14 136483 23 137144 32 141928 
06 129156 15 133120 24 142416 33 14Q220 
07 130848 16 136198 25 137791 34 142841 
08 129080 17 137232 26 141652 35 140892 
09 131828 18 139876 27 139476 36 140901 

[ Source : Agricultural statistics at a glance, Ministry of Agriculture]. 

(i) Select a simple random sample of size n = 10 years 

(ii) Estimate the average net area sown per year. 

(iii) Estimate the variance of the estimated net area sown. 

(iv) Estimate the total area sown during study period. 

(v) Estimate the variance of the estimate of total area sown. 

(vi) Find 953 confidence interval of the average area sown. 

Sl. No Area 1 
sown 

37 139578 
38 134085 
39 141891 
40 142339 
41 142999 
42 141632 
43 142645 
44 142095 

Solution : (i) We have N = 44, n = 10. To select 10 years ten random numbers without 
replacement are selected. Vide random number table in appendix. 

Selected random 07 16 04 39 11 06 2() 

number 

Selected year 07 16 04 39 11 06 20 

Area sown, Yi 130848 136198 126806 141891 133199 129156 138772 

Selected random 28 10 41 
number -

Selected year 28 10 41 

Area sown, Yi 141953 132939 142999 

(ii) The estimate of average net area sown is given by 

1 "'"""" 1354761 Y = ;; ~Yi= 
10 

= 135476.1 ('000 hactares) 

(iii) The estimate of variance of estimated average net area sown is given by 

v(y) = NN- n s2, where s2 = _2.._1 ["'"""" Yl - (2: Yi)2] = .299234965 = ;3248329.44 
n n- ~ n . 9 

44-10 
= 44 x 10 x 33248329.44 

= 2569189.093 ('000 hactares) 2 

s.e. (y) = JV(Y) = 1602.87 ('000 hactares). 
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(iv) The estimate of total area sown during study period is given by 

Y =Ny= 44 x 135476.1 = 5960948.4 ('000 hactare) 

(v) The estimate of variance of the !=!Btimated total area sown is given by 

v(Y) = N 2v(Y) = 442 x 2569189.093 = 4973950084 ('000 hactares)2. 

(vi) 953 confidence interval for mean area sown is given by y ::l;: to.025,gs.e. (y), where 
, ' 
Y L = y- too2s, s.e.(Y) = 135476.1- 2.262 x 1602.87 = 131850.41 ('000 hactares) 

Yu = y + to.025, s.e.(Y) = 135476.1 + 2.262 x 1602.87 = 139101.79 ('000 hactares). 

12.2 Estimation of Propqrtion in Case of Simple Random Sampling 
If the variable under study is .qualitative in nature, the parameter to be estimated is the 

population proportion or the variance of the estimated proportion. For example, let us consider 
that in a population there are N units and the values of the variable under study are Yi, where 
y; = 1, if the characteristic is present in i-th unit or Yi = 0, if the unit does not posses the 
character. The characteristic may be HIV positive among the patients in a hospital, or family 
planning adoption among couples living in an area, or first division in B Sc (Hons.) examination 
among students of a university, or affected by yellow fever, etc. 

Let A be the number of units in the population possessing the character under study. 
N 

Then A = L Yi ~nd N - A = the units ~ho do not possess the character. The proportion 
i=l 

of units possessing the character is 

. A' 1 ~ 
p~ N = N~Yi· 

' i=l 

Then Q = N ~ A = i - P = proportion of units in the population who do not possess the 

character. The problem is to estimate P and to estimate the variance of the estimated P. 
\ 

Let a sample of size n be drawn. Then the sample proportion is given by 

p= 2_ ~Yi=!!:.., 
n~ n 

where a = number of units in the sample possessing the character under study. We have 
. \,. 

ii-a 
q=·-- = 1-p 

n 
as proportion of units not possessing the character. 

Theorem : In simple random sampling, pis an unbiased estimator of P. 
n 

Proof : We known that the sample mean y = ~ L Yi is an unbiased estimator of 
N 

Y ~ ~ LYi· That is 

E(y) = Y. 

1 - 1 N 
Here y = :;; L Yi = ~ = p and Y = N L Yi = P. 

E(p) = P. 
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· Corollary : The population total units possessing the character under study is A and its 
unbiased estimator is A = Np, 

since E(A) = N E(p) =NP= A. 

We have S 2 ~ N ~ 
1 
f)y; - Y)2 ~ N ~I [ f:y/ - (E,.::•)'] 

= N ~ 1 [A - ~] = N ~ 1 [ 1 - ~ 1 = z ~~ . 
Also, we have 

s2 = _1_ ~(Yi - y)2 = _1_ [~ Y? - (LYi)2] 
n-1.l.J n-1 .l.J n 

= _ 1_ [a_ a
2

] =_a_ [1 - !:]· = npq , where q = 1- p = 1 - !:. 
n-l n n-1 n n-l n 

Theorem : In simple random sampling without replacement the variance of the sample 
proportion p is given by 

NPQ 
V(p) = (l - !) n(N - 1)' 

Proof : We know V (y) = N N~ n S2 , where in estimating proportion S2 

1 """ a P = - .l.J Yi = - . Therefore, 
n n 

= NPQ and 
N- l 

V(p) = N - n NPQ = (l -f) NPQ 
Nn N - 1 (N - l)n 

NPQ 'ff . l d n(N _ l), i .p.c. is neg ecte . 

Theorem : In simple random sampling with replacement the variance of the sample 
proportion is given by 

V(p)= N-nPQ = NPQ (l-1). 
N-l n n(N-l) 

Proof: In simple random sampling with replacement, V(Y) = (z = 7):, where 

U 2 = 2_ [""" y2 _ (L Yi)
21 

. N.l.J' NJ' 

In case of estimation of proportion, we have 

a2 = 2_ [A - A 2] = A [1 - A ] = PQ 
N ' N N N . 

N - n _ 1""" a . NPQ(l - !) 
V(p) = n(N -· t.) PQ, where p = y = :;:; .l.J Yi= :;:; = n(N ..... l) . 

Coroll~y : In simple random sampling without replacement the variance of the estimator 
of population total is given by · 

V(A) = N2(N - n) PQ. 
n(N - 1) . · 
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V(A) = V(N ) = N2V( ) = N2(N - n) NPQ 
p p N(N-l) n 

= N
2
(N - n) PQ = N

3
(1 - f) PQ 

.n(N-l) · n(N-1) 

N 2 (l - f) 
= PQ, if N is large. 

n 

Theorem : In simple random sampling without replacement ~~'{ is an unbiased estimator 

of';/]. 

Proof: We know that E(s2 ) = 8 2 , where 

2 1 [L 2 (L Yi):]·· npq s = --
1 

Yi - = --, when Yi = 1 or 0. 
n- n. n-l 

E ( npq ) = N PQ . 
n-l N-1 

Corollary : In simple random sampling without replacement the unbiased estimator of 
V(p) is given by 

v(p) = (1 - f) pq 
1 

= _!!J_' if f.p.c. is neglected. 
n- n-1 

N - n . [· npq ] N PQ We have V(p) = (N · ) PQ. Agam, E -- = --. 
n -1 n-1 N-1 

[ 
N-n ] N-n N-n 

E[v(p)] = E N(n - l)pq = Nn(N - 1} N PQ = n(N - 1) PQ = V(p). 

Corollary : In simple random sampling with replacement the unbiased estimator of V(p) 
is given by 

v(p) = pq 1 · 
n-

Sampling with replacement is equivalent to sampling from infinite population and hence 
f.p.c. is neglected. Therefore, . np 

v(p) = --. 
n-1 

Corollary : In simple random sampling without replacement the unbiased estimator of 
V(A) is given by 

- N(N - n) N 2pq N 2pq . . 
v(A) = pq = (1 - !)-- = --, 1f f.p.c. 1s neglected. 

n-1 n-l n-1 

Corollary : In simple random sampling without replacement the estimator of standard 
error of sample proportion is given by 

s.e. (p) = J(l - f)_!!J_. 
n-l 
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Corollary : In simple random sampling without replacement the estimator of standard 
error of A is given by . v !V2pq s.e. (A)= (1 - !)-. 

n-1 

Corollary : In simple random sampling without replacement the 100(1 - a)% confideuce 
interval of population proportion P is given by 

p ± Z'js.e. (p). 

Thus, we have 
h = p - z ... s.e. (p) and Pu = P + z ... s.e. (p). 

2 2 

If a = 0.05, Zo.025 = 1.96. 

Example 12.3 : The following data represent the birth-weight (in lb) of some new born 
babies born in a hospital. 

SL.No. Birth- SL. No. Birth- SL. No. Birth- SL. No. Birth- SL. No. Birth-
of baby weight of baby weight of baby weight of baby weight of baby weight 

01 6.5 27 7.3 53 6.6 79 6.8 105 5.8 
02 5.8 28 6.1 54 6.0 80 6.7 106 5.9 
03 6.2 29 5.5 55 5.8 81 7.2 107 6.3 
04· 6.8 30 5.2 56 7.2 82 6.6 108 6.6 
05 7.2 31 6.1 57 7.0 83 6.8 109 6.7 
06 5.0 32 6.4 58 7.1 84 6.4 110 6.8 
07 5.2 33 6.6 59 6.9 85 5.8 111 6.9 
08 5.1 34 7.0 60 5.2 86 7.2 112 7.2 
09 5.2 35 6.6 61 5.8 87 7.1 113 7.5 
10 5.2 36 6.0 62 5.5 88 5.9 114 6.1 
11 5.6 37 6.2 63 5.7 89 5.9 115 6.2 
12 5.8 38 7.1 64 5.5 90 6.4 116 6.4 
13 6.1 39 7.0 65 7.2 91 6.6 117 6.6 
14 5.2 40 5.1 66 6.2 92 6.0 118 6.8 
15 6.4 41 5.2 67 6.8 93 5.5 119 6.2 
16 6.3 42 6.4 68 5.8 94 5.8 120 5.2 
17 .7.0 43 6.8 69 5.9 95 6.0 121 5.4 
18 7.1 44 7.0 70 7.2 96 6.2 122 5.8 
t9 7.0 45 7.5 71 7.4 97 6.4 123 7.0 
20 6.8 46 7.1 72 5.8 98 6.8 124 6.8 
21 5.2 47 6.8 73 5.5 99 6.6 125 6.6 
22 6.8 48 7.0 74 6.4 100 7.2 126 6.9 
23 5.5 49 6.6 75 6.8 101 7.5 127 7.2 
24 5.8 50 6.5 76 7.5 102 7.0 128 7.0 
25 7.0 51 5.8 77 7.1 103 5.5 129 7.0 
26 7.2 52 6.4 78 6.9 104 5.8 130 7.0 

D.E.S.M.-2~ 
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SL.No. Birth SL. No. Birth SL. No .. Birth SL. No. Birth SL. No. Birth 
of baby weight of baby weight of baby weight of baby weight of baby weight 

131 7.1 145 6.8 159 6.3 173 6.4 187 5.9 
132 6.6 146 6.9 160 6.4 174 7.0 188 6.5 
133 6.2 147 6.8 161 6.2 175 7.1 189 6.6 
134 6.4 148 6.9 162 6.2 176 6.2 190 6.2 
135 6.8 149 5.8 163 6.8 177 6.8 191 6.0 
136 6.2 150 5.5 164 5.8 178 6.0 192 5.8 
137 6.1 151 6.0 165 5.9 179 6.2 193 5.6 
138 6.0 152 6.2 166 6.0 180 6.4 194 5.7 
139 6.2 153 6.8 167 5.7 181 6.2 195 5.8 
140 6.5 154 6.7 168 7.2 182 6.0 196 5.9 
141 7.0 155 6.6 169 7.4 183 6.0 197 7.2 
142 7.2 156 6.0 170 7.0 184 5.8 198 7.3 
143 6.2 157 6.4 171 7.0 185 5.5 199 6.8 
144 6.4 158 6.2 172 7.2 186 5.8 200 6.2 

{i) Draw a simple random sample of 20 babies and estimate the proportion of babies with 
weight more than 6.5 lb. 

{ii) Estimate the standard error of your estimate. 

(iii) Find 953 confidence interval for the population proportion of babies having weight more 
than 6.5 lb. · 

(iv) Estimate the total number of babies having weight more than 6.5 lb. 

(v) Estimate the standard error of the estimator of total number of babies having weight 
more than 6.5 lb. 

{vi) Estimate the average weight of babies. 

{vii) Find 953 confidence interval for the population total weight of babies. 

Solution : (i) The simple random sample of n = 20 observations is drawn using random 
number table given in appendix taking first three columns of the table. 

Random 114 161 081 037 153 111 146 042 121 164 100 053 
number 

Body 6.1 6.2 7.2 6.2 6.8 6.9 6.9 6.4 5.4 5.8 7.2 6.6 
weight, Yi 

Xi= Yi> 6.5 0 0 1 0 1 1 1 0 0 0 1 1 

Random 040 167 190 127 115 175 095 016 
number 

Body 5.1 5.7 6.2 7.2 6.2 7.1 6.0 6.3 
weight, Yi 

X; =Yi> 6.5 0 0 0 1 0 1 0 0 

X; = 0, if Yi ~ 6.5, Xi = l, if Yi > 6.5. 
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The estimate of proportion of babies having weight more than 6.5 lb is given by 

p = ~ = ~ L Xi = :o = 0.4. 

(ii) We have n = 20, N = 200. The estimate of standard error of p is 

r::t:::i ·pq ( 20 ) 0.4 x 0.6 
s.e. (p) = v U\J'J, where v(p) = (1 - !) n _ 

1 
= 1 -

200 20 
_ 

1 
· = 0.011368. 

s.e. (p) = JV(P) = J0.011368 = 0.1066. 

(iii) The 953 confidence interval of pop~lation proportion P is given by 

p± Zo.025s.e. (p), where' h = p- Zoo25 and s.e. (p) = 0.4- ~.96 x 0.1066 = 0.19. 

Pu = p + Zo.025; s.e. (p) = 0.4 + 1.96 x 0.1066 = 0.61. 

(iv) The estimate of total number of babies having weight more than 6.5 lb is given by 

A = Np = 200 x 0.4 = 80. 
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{v) The estimate of standard error of the estimate of total number of babie::? having weight 
more than 6.5 lb is giveµ by 

s.e. (A)= ~'where v(A) = N 2v(p) = {200)20.011368 = 454.72. 

{vi) The estimate of average weight of babies is given by 

1 127.5 
y= - LYi = -- = 6.375 lb. 

n 20 

{vii) The estimated variance of "fi is 

v(Y) = N-ns2, where s2 = _1_ ['°'Y2_ (~y;)2] 
Nn n-1 L,.;' n 

200-20 . 1. [ (127.5) 2
] 

= 200 x 20 0.3714, = 20 - 1 819.87 - 20 = 0.3714. 

= 0.016713 {lb) 2 

Ej.e. (y) = ~ = J0.016713 = 0.1293 lb. 

953 confidence interval of Y is given by y ± to.o25,19s.e. (Y). 

We have Y L = y- to.025,19s.e. (y) = 6.375 - 2.093 x 0.1293 = 6.10 lb. 

Yu = y +to 025,19s.e. (y) = 6.375 + 2.093 x 0.1293 = 6.65 lb. 

{viii) The estimate of population total weight is given by 

Y = Ny= 200 x 6.375 = 1275 lb. 

v(Y) = N 2v(Y) = {200)2 x 0.016713 = 668.52 {lb) 2 . 

s.e. (Y) = ~ = J668.52 = 25.86 lb. 
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Therefore, 9.5% confidence interval for Y is given by 

Y ± to.02s,19s.e. (Y), 

where YL = Y - t0,025s.e. (Y) = 1275 - 2.093 x 25.86 = 1220.88 lb. · 

}[, = Y + lo.o25s.e. (Y) = 1275 + 2.093 x 25.86 = 1329.12 lb. 

Example 12.4 : There are 20000 families living in an area. Five hundred families are 
randomly selected without replacement from this area and found that out of 500 selected tamilies 
300 families have number of ever born children more than 2. 

(i) Estimate the proportion of families having more than 2 ever born children. 

(ii) Find 95% confidence interval for population proportion of families having ever born 
children more than 2. 

(iii) Estimate the total number of families having number of ever born children more than 2. 

Solution : (i) Given N = 20000, n = 500, a= 300. The estimate of proportion of families 
having more than 2 ever born children is 

a 300 
p = - = - = 0.60. 

n 500 

pq n 500 
(ii) We have v(p) = (1 - f)--, where f = - = -- = 0.025. 

n - 1 N 20000 

This f can be neglected. Then 

v(p) = _!:!!!__ = 0·
6 x 0.4 = 0.001206. 

n - 1 200 - 1 

s.e. (p) = /V(P) = J0.001206 = 0.0347. 

Therefore, 95% confidence interval for population proportion of families having more than 2 
ever born children is given by 

p ± Z.025 s.e. (p), where h = p - Z.025 s.e. (p) = 0.6 - 1.96 x 0.0347 = 0.53. 

Pu = p + Zo.025 s.e. (p) = 0.6 + 1.96 x 0.0347 = 0.67. 

(iii) The estimate of total number of families having more than 2 ever born children is 
given by 

A= Np= 20000 x 0.6 = 12000. 



Chapter 13 

Stratified Random Sampling 

13.1 Definition 
In simple random sampling the variance of the estimator of population mean or population 

total increases with the increase in the value of 5 2 , the population variance. Again, 5 2 

increases with the increase in heterogeneity in the population observations. Therefore, in case of 
heterogeneity in the population observations the efficiency of simple random sample estimator is 
decreased. This problem can be overcome using alternative sampling plan to select the sample. 

Let us consider that the population size of a population under study be N, where the 
population units are classified into k classes (strata) according to their affinity to be included 
in a class. For example, let us consider a population of students who appear at an entrance 
examination for higher studies. The students may be originated from colleges of rural area or 
from colleges of urban area. It is expected that or assumed that the performance of urban 
students is better than that of rural students. In such a case, if average performance is under 
study, heterogeneity in performance of students is assumed to be present. The variance in 
performance of all students is expected more. However, the variation in performance of rural 
students or the variation in performance of urban students are expected to be less. Hence, the 
rural students can be included in a strata and urban students can be included in another strata 
(k = 2). Now, if separate sample is drawn from two separate strata, the estimate of population 
parameter is expected to be more efficient (at least S 2 is expected to be less). Now, if separate 
simple random sample is drawn from each stratum, the sampling is known as stratified random 
sampling. 

The stratified random sampling is a widely used random sampling technique. It helps in 
estimating the population parameter more efficiently, specially if the population units are more 
heterogeneous in characteristic under study. 

Method of estimation of parameters : Let the population units be divided into k 
strata, where h-th stratum has Nh population units such that L Nh = N, h = 1, 2, ... , k. 

h 
The strata are non-overlapping. No unit should be included in more than one stratum. The 
problem is to draw a random sample of size n in such a way that n1i units are to be drawn 
from h-th stratum so that L n1i = n. If n1i units are drawn using simple random sampling 

h 
technique from h-th stratum, then sampling procedure is known as stratified random sampling. 

Let Yhi be the value of variable under study for i-th unit of h-th stratum; i = 1, 2, ... , N1i; 
h = 1, 2, ... , L. Then the population mean of h-th stratum is given by 

Nh 

Y,, = NhYh = LYhi 
i=l 

357 
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is the population total of h-th stratum. The population variance of h-th stratum is given by 

1 
N,, 

2 '"' - 2 Sh= N _ l ~(Yhi - Y1i) . 
h i=l 

The sample mean, sample variance and sample total of h-th stratum are given, respectively by 

The population mean, population total and population variance are given, respectively by 

l L N,, l L " L 

Y = N LLYhi = N LN1iY1i, where N = LNh 
h=l t=l h=l h=l 

L N,, L 

Y = L LYhi = LN1iY1i, and 
h=l i=l h=l 

1 
L Nh 

2 '"''"' -2 S = N _ l ~ ~ (y1i; - Y) . 
h=l i=l 

The sainple mean is definee by 

where w1i = nh = proportion of sample observations from h-th stratum. Let W1i = .!::fJ'- be 
n 

the proportion of observations of h-th stratum and fh = .!.!A..Nn be the sampling fraction of h-th 
h 

stratum. The stratified sample mean is defined by 

1 L L N 

'"' '"' " Yst = N ~ N1ifh = ~ W"y", where W1i = fi· 
h=l h=l 

H - d - ·11 b .f n1i N1i ere y an y st w1 e same 1 -;- = N 
n n 

or, n1i = N N h or, nh ex N1i, where N is proportionality constant. Thus, y and y st give 

the same result if sample size of h-th stratum is allocated under proportional allocation. 

Let us now investigate the characteristics of the estimator Yst under proportional allocation 
of sample size in h-th stratum. 

Theorem : In stratified random samp)ing under proportional allocation the sample 
estimator Yst is an unbiased estimator of population mean Y. 

1 
Proof: We define Yst = NL Nhfh = L W1iyh, where W1i = N1i/N. It is assumed that 

the sample of size nh is drawn from h-th stratum usfog simple random sampling scheme. So Y1i 
is an unbiased estimator of Y 1i[E(]j,.) = Y h]· Therefore, 

L L L 

E[Ystl =EL WhYh = L W1iE(y,.) = L W1iY h = Y. 
h=l 
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Corollary : In stratified random sampling under proportional allocation the unbiased 
estimator of population total is given by 

Y = Nfist· 

Theorem : In stratified random sampling if sample is selected independently_ from each 
stratum by simple random sampling scheme, then 

[, [, 2 
_ """ 2 _ """ Nh Nh - n1i 2 

V(Yst) = L.. Wh V(yh) = L., N 2 1V S1i, 
h=I h=I ' hnh 

Nn S2 
where s~ = N 

1 
1 L(Yhi - Y1i) 2 = ~2 L N1i(N1i - nh)_!.!.. 

h - i=I nh 

[, 

Proof: Let us first prove that V(Y8 i) = L W~V(iJ,.). 
h=I 

Now, V(Ji,,) ~ V lt W,jhl ~ t. W~V(j},,) + 2 t. t. W,. W, Cov (jj,,Ji,) 

[, 

= LW~V(]J,.), 'ih and Y.i are independent 
h=I 

1 """ 2 -= N2 L.. Nh V(yh). 

Again, simple random sample is drawn from h-th stratum and hence, 

N Nn 
- h - nh 2 2 1 """ - 2 V(yh) = N Sh, where s,, =NJ. L.,(Yhi - Y h) . 

hnh h - i=I 

s2 
= 2: w,; _!.!:., if fh is neglected. 

n1i 

Corollary : If n,, from h-th stratum is allocated under proportional allocation, 

s2 s2 
V OJ st) = L W1i ( 1 - J) _!.!:. = L W1i _!.!:., if f is neglected. 

n n 

Proof: Under proportional allocation, we have n 11 ex N1i or, n,, = ~Nh. 
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n 
Now, let us replace n1i by N N1i in V(ilsd· 

(- _ 1 '°"' 2 N,. - ft N,. st. 1 '°"' st. 
We have V Yst) - N 2 ~Nh N ..!!:.N = N ~N1i(l - !)-

" N h n 

L S2 n 
= L W,. ~·, if f = N is neglected. 

h=l 

Corollary : In stratified random sampling the variance of Yst is given by 

L S2 
• 2 '""' f V(Yst) = N V(Yst) = ~ N1i(N1i - n1i)-' 

h=l n,. 
= L N,7(1 - J,./t. 

n1i 

- '°"' N2 st. . f f n,. . II 
- ~ " - , 1 h = - 1s sma . n,. N,. · 

This variance is given by 

· N'°"' 2 N'°"' 2 n ,V(Yst) = -:; ~ N1i(l - f)S,. = h ~ N,.S,., if f = N is neglected. 

When n,. <X N,.. 

. '°"' sf We have V(Yst) = ~ N,.(Nh - n,.)---1:.. n,. 
n 

In case of proportional allocation, (n1i <X N1i)nh = NN,.. 

n . 
Replacing n,. by N N,. in V (Y.t), we get 

. '"' n st. V(Yst) = ~ N1i(N1i - N N,.) ftN,. 
\ 

N'°"' 2 n = - ~ N,.(1 - f)S,., where f = N 
n 

N =-:; L N1iS?., if f is neglected. 

Theorem : In stratified random sampling the estimate of variance of Yst is given by 

1 . L s2 .· 1 nh 

v(Y8 t) = N 2 L N,.(N1i - n,.)-1!.., wheres~= -- L(Yhi -y1.)2. 
h=I n,. n,. - 1 i=l 

Proof : Since simple random sample is drawn from h-th stratum in stratified random 
sampling, the sample variance 

l nh • 

s~ = --1 L(Yf,i -y,.)2 n,. - i=l 

Nh 

is an unbiased estimator of s~ = N 
1 

L(Yhi - Y,.) 2
, [E(s~) = st.J. 

h - 1 i=l 
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1 S2 

= - "'""""Nh(Nh - nh)-1!:. 
N 2 L-1 nh 

= V(1/st). 

Hence, v(Yst) is an unbiased estimator of V(Yst)· 

Further, we.have 

v(Yst) = -1
- "'""""N~ (i -~) 8~ = "'""""W~(l - fh) 

8~ 
N 2 L-1 Nh nh L-1 nh 

h 

8 2 nh · 
= L w,~-1!., if fh = -N. is neglected. 

nh h 
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Corollary : In stratified random sampling, if sample units from h-th stratum are selected 
with proportional allocation (nh <X Nh), then 

L 

(- ) 1 - J "'"""" 2 1 "'"""" 2 .f . d v Yst = -n- L-1 W1181i =;; L-1 W118 11 , 1 J 1s neglecte , 
h=I 

1 . 8 2 n 
Proof: We have v(Yst) = N 2 2:N1i(N1i - n11)n:, where n11 = NNh. 

1 L ( n ) 8
2 

8
2 

•• v(Yst) =NZ LN" Nh - NN" .!!.~ = LWh(l - J) ~ 
. h=l N h 

= * L: w,,8;l' if 1 is neglected. 

Corollary : In stratified random sampling the estimated variance of Yst is given by 
L N2 2 

v(Yst) = N 2v(y8 i} = L ~(1 - f1i) 
h=l n,, 
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Corollary : In stratified random sampling, if sampling units from h-th stratum are selected 
according to proportional sampling scheme (n1i ex N1i), then 100(1 - a)% confidence intervals 
of Y and Y are respectively given by 

and Yst ± t'f J ~ L N1i(l - f)s~ 

or, Yst ± t'f J ~- L N1is~, if f is neglected. 

1 - L W1is~, if f is neglected 
n h 

If it is assumed that Yst and Yst are normally distributed, the value oft~ is to be replaced 
by Z!f, where Z is a normal variate. The assumption will be true, if all n11 are sufficiently 
large. For small value of n1t, t is to be used from Student's t-table, where the d.f. oft is to be 
approximated [Satterth Waite (1946)] by 

N1i(N1t - n1i) N N1i(l - f) N N1i ·r f. l d 
where Yh = = = --, 1 1s neg ecte . 

nh n n 

Example 13.1 : In a rural area there are 345 farmers. These farmers are classified into 3 
classes according to their amount of cultivable land. The small scale farmers have Jess than 1 
hectare of land, the medium farmers have 1 to 3 hectares of land and large scale farmers have 
3 a'ld more hectares of land. The amount of land cultivated for paddy by these farmers in a 
season are shown below : · 

Amount of land (Yhi, in hectares) 

Small S.L. No. 01 02 03 04 05 06 07 08 09 10 11 

farmers Yli 0.5 0.6 0.4 0.7 0.6 0.7 0.5 0.5 0.6 0.7 0.3 

S.L. No. 12 13 14 15 16 17 18 19 20 21 22 

Yli 0.5 0.7 0.6 0.4 0.4 0.4 0.6 0.2 0.3 0.4 0.6 

S.L. No. 23 24 25 26 27 28 29 30 31 32 33 

Yli 0.6 0.6 0.7 0.7 0.5 0.4 0.3 0.5 0.5 0.2 0.1 

S.L. No. 34 35 36 37 38 39 40 41 42 43 44 

Yli 0.7 0.6 0.5 0.5 0.5 0.4 0.3 0.1 0.2 0.1 0.2 
S.L. No. 45 46 47 48 49 50 51 52 53 54 55 

Yli 0.2 0.1 0.4 0.4 0.3 0.5 0.3 0.6 0.3 0.5 0.5 

S.L. No. 56 57 58 59 60 61 62 63 64 65 66 

Yli 0.4 0.3 0.3 0.3 0.4 0.4 0.2 0.4 0.6 0.6 0.5 
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Small S.L. No. 67 68 69 70 71 72 73 74 75 76 77 

farmers Yi; 0.2 0.6 0.5 0.5 0.4 0.3 0.6 0.7 0.2 0.6 04 

S.L. No. 78 79 80 81 82 83 84 85 86 87 88 

Yli 0.5 0.5 0.4 0.6 0.6 0.5 0.4 0.4 0.3 0.2 0.1 

S.L. No. 89 90 91 92 93 94 95 96 97 98 99 

Yli 0.6 0.4 0.3 0.4 0.4 0.4 0.2 0.1 0.2 0.7 0.6 

S·.L. No. 100 101 102 103 104 105 106 107 108 109 110 

Yi; 0.3 0.5 0.4 0.2 0.4 0.2 0.6 0.7 0.4 0.4 0.5 

S.L. No. 111 112 113 114 115 116 117 118 119 120 121 

Yli 0.6 0.5 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.4 0.3 

Medium S.L. No. 01 02 03 04 05 06 07 08 09 10 11 

farmers Yzi 2.5 2.0 1.5 1.6 1.0 2.4 2.0 2.0 1.8 1.9 1.5 

S.L. No. 12 13 14 15 16 17 18 19 20 21 22 

Yzi 1.0 1.6 2.0 1.8 1.5 1.6 1.0 1.2 1.4 1.5 1.0 

S.L. No. 23 24 25 26 27 28 29 30 31 32 33 

Y2i 1.6 1.8 1.9 2.0 2.2 2.4 2.0 2.5 1.6 1.7 1.5 

S .. L. No. 34 35 36 37 38 39 40 41 42 43 44 

Yzi 1.0 1.2 1.4 2.0 1.7 1.8 1.6 1.9 2.0 1.8 1.5 

S.L. No. 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Yzi 1.8 1.5 1.6 1.5 1.0 1.2 1.4 1.2 1.0 1.1 1.3 1.2 1.6 1.8 1.9 

S.L. No. 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

Yzi 1.0 1.1 1.2 1.3 1.0 1.4 1.5 1.1 1.6 1.7 1.6 1.7 1.8 1.9 1.2 

S.L. No. 7~ 76 77 78 79 80 81 82 83 84 85 86 87 88 89 . 
Yz; 1.6 1.0 1.2 1.2 1.3 1.4 1.8 1.4 1.5 1.6 1.7 2.0 ·2.1 2.2 2.2 

S.L. No. 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 

Yz; 2.4 1.6 1.7 2.0 2.1 2.2 2.0 1.6 1.8 1.7 1.8 1.0 1.6 1.4 1.5 

S.L. No. 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 

Y2i 1.8 2.U 1.9 2.4 2.8 2.2 2.6 2.3 2.0 1.9 1.6 2.0 2.4 2.5 1.7 

S.L. No. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 

Y2i 1.0 1.2 1.4 1.3 1.5 1.6 1.4 1.6 1.4 1.7 1.2 1.1 1.2 1.3 1.2 
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Medium S.L. No. 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 

farmers Yz; 1.8 1.6 1.7 2.0 2.1 2.2 2.4 1.8 1.6 2.2 2.0 1.6 1.2 1.5 1.5 

Large S.L. No (J j 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

farmers Y3i 4.5 4.0 3.8 5.5 6.8 7.5 4.6 5.5 5.6 5.0 4.2 4.5 6.2 4.8 5.6 

S.L. No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Y3i 5.0 4.5 4.2 5.0 5.0 5.0 5.0 6.2 5.5 5.2 5.1 4.8 4.0 4.5 4.6 

S.L.'No. 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

Y3i 4.0 4.2 6.0 6.1 6.2 7.5 7.2 6.0 4.8 4.4 5.0 5.1 5.0 5.0 4.5 

S.L. No. 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

Y3i 4.0 4.2 4.8 5.0 5.2 5.2 5.1 4.2 4.0 4.6 4.7 4.6 4.0 4.8 4.9 
S.L. No. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 

Y3i 5.0 5.1 5.2 5.0 4.6 4.1 4.2 4.0 4.2 4.1 4.2 4.5 5.0 5.5 6.0 

(i) Select 203 farmers by stratified random sampling scheme to estimate the average laud 
cultivated for paddy. Select sample by proportional allocation. 

(ii) Find 953 confidence interval for the average land cultivated for paddy. 

(iii) Find 953 confidence interval for the total land cultivated for paddy. 

Solution : (i) We have N = 345, N 1 = 121, N 2 = 149, N 3 = 75. We need a sample of 
n = 69 (203 of 345). Under proportional allocation, 

ni = 24, n2 = 30, n3 = 15. 

Small Rn. No. 514 161 481 837 953 946 642 721 164 100 853 840 767 190 

farmers SL. No 030 040 118 111 106 099 037 116 043 100 006 114 041 069 
of units 

Yli 0.5 0.3 0.6 0.6 0.6 0.6 0.5 0.5 0.1 0.3 0.7 0.5 0.1 0.5 

Rn. No. ·727 115 714 175 095 816 972 262 532 461 
SL. No 001 115 109 054 095 090 004 020 48 098 
of units 

Yli 0.5 o .. 5 0.4 0.5 0.2 0.4 0.7 0.3 0.4 0.7 

Medium Rn. No. 532 816 678 504 597 947 018 851 977 433 478 242 319 379 

farmers SL. No 085 071 082 057 001 053 018 106 083 135 031 093 021 081 
of units 

Y2; 1.7 1.7 1.4 1.6 2.5 1.0 1.0 2.0 1.5 1.8 1.6 2.0 1.5 1.8 

Rn. No. 829 659 569 162 963 841 490 435 252 392 568 482 483 384 
SL. No 084 063 122 013 069 096 043 137 103 094 121 035 036 086 
of units 

Y2; 1.6 1.3 1.4 1.6 1.7 2.0 1.8 1.7 1.4 2.1 1.2 1.2 1.4 2.0 
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Rn. No. 524 102 

SL. No 078 102 
of units 

!./2; - 1.2 1.6 

Large Rn. No. 192 420 662 514 820 397 734 590 001 703 101 234 011 

farmers SL. No 042 045 062 064 070 022 059 065 001 028 026 009 011 
of units 

Y3i 5.1 4.5 5.1 5.0 4.1 5.0 4.8 4.6 4.5 4.0 5.1 5.6 4.2 

Rn. No. 774 

SL. No. 94 
of units 

Here 
1 24 11 

Yi = - L Yli = - = 0.46 hectare 
ni 24 

i=i 

1 
30 

48.3 1 
15 

68.4 
y2 = - L Y2i = -- = 1.61 hectares, y3 = - L Y3i = -- = 4.56 hectares. 

n2 30 n3 15 
i=i i=i 

The estimated average of land cultivated for paddy is given by 

1 L - 1 
Yst = NL NhY h = 

345 
[121 X 0.46 + 149 X 1.61+75 X 4.56] 

h=i 
= 1.85 hectares. 

(ii) We have 8~ = -
1
- ['°' Y~i - (2: Yhi)

2

] , h = 1, 2, 3 
n1i - 1 L.....; n1i 

8
2 = - 1

- [5.35 - (l1)
2

] 8 2 = - 1
- [81.17 - (

48
·
3

)
2

] = o 1175 
i 24 - 1 24 ' 2 30 - 1 30 . 

= 0.0134. 

8
2 = -

1
- [322. 78 - ( 

48
'
3

)
2

] = 11 9467. 3 15 - 1 15 . 

The estimate of variance of estimated average amount of land (Yst) is given by 

l-f"' v(Y'st)prop = -- L.....; Wh8~ 
n 

Ni 121 N2 149 W = N3 = ~ = 0_22_ 
Wi = N = 345 = 0·35• w2 = N = 345 = 0.43, 3 JV 345 

( 69 ) - 1 - 345 v(Yst)prop = 
69 

[0.35 x 0.0134 + 0.43 x 0.1175 + 0.2_2 x 11.9467] 

1 - 0.20 . 
= 69 x 2.683489 = 0.031113. 

s.e. (Yst)prop = Jv(y8 t)prop = J0.031113 = 0.1764. 

36f 

922 

022 

5.0 
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The 95% of confidence interval of population mean Y is 

Yst ± to.025S.e (Yst)prop, 

where to.025 is the tabulated value oft at 5% level of significance with ne d.f., where 

<E ghs'f.)2 n - ..:.=;,..;;.._"'""'""'_ e - " g:s: 
L. nh-1 

NNh 
9h = --(1-/) 

n 
345 x 121 . 345 x 149 345 x 75 

91 = 69 (1 - 0~2), 92 = 69 (1 - 0.2), 93 = 69 (1 - 0.2) 

= 484 = 596 

( 484 x 0.0134 + 596 x 0.1175 + 300 x 11.9467)2 

ne = (484)2(0.0134)2 + (596)2(0.1175)2 + (300)2(11.9467)2 
. 24-1 30-1 15-1 

13399447.67 
= 917680.0592 = 

15
· 

= 300 

Therefore, Y L = Yst - to.025,15 s.e. Olst) = 1.85 - 2.131 x 0.1764 = 1.47 hectares. 

Yu= Yst + to.025,15s.e. ('fist)= 1.85 + 2.131X0.1764 = 2.23 hectares. 

(iii) 95% confidence interval for total land cultivated for paddy is given by 

·Yst ±to 025,15 s.e. (Yst). 

Here Yst = Nyst = 345 x 1.85 ::::: 638.25 hectares 

v(Yst} = N 2v(y8 t) = (345) 2 (0.031113) = 3703.2248 

s.e. (Yst) = J v(Yst) = \/'3703.2248 = 60.8541. 

Now YL = Yst - to 025,15 s.e (Y8 t) ~ 638.25 - 2.131 X 60.8541 = 508.57 hectare~. 

Yu= Yst + too25,15s.e. cYst) = 638.25 + 2.131 x 60.8541 = 767.93 hectares. 

13.2 Allocation of Sample Size in Different Strata 
In stratified random sampling the sample units are selected from stratum by simple random 

sampling scheme. The sample size nh 
0

is to be selected from h-th stratum of size N,.. The 
problem is to decide the value of nh for h-th stratum. This problem is known as problem 
of allocation of sample size in h-th stratum. One ~olution of this problem is to select nh 
proportional to Nh· In general, the value of nh is allocated in such a way that the estimate 
is more precise. However, the decision regarding nh is so made that it is consistent with the 
overall resources of the survey. 

The important points to be considered in allocating nh are : 
(i) stratum size, (ii) variability of variable observed within stratum units, (iii) cost of survey 

of sampling unit in the stratum. Considering all the above points, the following four methods 
of allocation are, usually, considered. These are : 

(a) Equal sample size in each stratum. 
(b) Proportional allocation. 

(c) Optimum allocation. 
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Optimum allocation is again of two types, viz., 

(i) Neyman allocation (nh ex NhSh)· 

(ii) Optimum allocation for a fixed cost [n11 ex ~] 
Here Sh is the standard deviation of variable observed in h-th stratum. 

367 

Equal sample size in each stratum : Let a population be of size N. The population 
units are divided into strata according to the homogeneity of the values of variable under study. 
Let the population units of h-th stratum be Nh(h = 1, 2: ... , £). We need a sample of size n. 
Then 

n 
nh = I (h = 1, 2, .. ., L) 

indicates that sample units are equally allocated to h-th stratum. 
This allocation is done to avoid the problem that arises in selecting sample. It is an 

administrative advantage in sample selection. However, the estimate is not efficient if N h's 
differ much and if the variability in observations is more. 

The variance of the estimated mean is given by 

The estimated variance is given by 

v(Yst) = ~W~ (L- ;h) ~· 
Proportional allocation : Bowley (1926) has proposed this method of allocation. In this 

method the sample is allocated by 

n 
nh ex N,. or, nh = NNh, 

where ~ is proportionality constant. 

The estimate of variance and the variance of the estimate of population mean under this 
allocation scheme has already been discussed in the previous section. 

Optimum allocation : In this method the sample size nh is selected according to 

(i) nh ex NhSh [allocation under fixed sample size]· 

d (") NhSh [ 11 d fi d ] an n nh ex ../(!/. a ocation un er xe cost 

2 1 ~ . - 2 
where Sh = N _ l L-,(Yhi - Y h) 

h . i=l 

L 

and c =Co+ L Chnh, where ch is the cost of selection ofsample from h-th stratum. 
h=l 

The first method of optimum allocation is known as Neyman allocation and has been first 
proposed by Tschuprow (1923). In this a.llocation the variability of observation is also under 
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consideration. Under Neyman (1934) allocation, 

nNhSn 
nh = L NhSh. 

In this allocation, it is assumed that the cost of sampling in each stratum remains same. 
The variance of the estimator under this sampling scheme becomes minimum. 

Theorem : In stratified random sampling the variance of fist is minimum if n,. ex N,.S,., 
where Yst is an estimate of population mean from a specified sample of size rt. 

i s2 

Proof: We know V(Y8 t) = N 2 L Nh(Nh - nh)__l!.. 
nh 

L 

The sample size n = L nh. The value of nh is to be selected in such a way that V(Yst) is 
h=l 

minimum. This is possible, if 

</> = V(Yst) +A (L nh - n) 

is minimum. Here A is called Lagrange's Multiplier. 

i s2 ( ) We have ¢ = N 2 L Nh(Nh - nh) n~ +A L nh-: n 

1 L N~S~ 1 L 2 (2: ) = - -- - - NhSh +A nh - n N2 nh N2 . 

8¢ = __ 1_ N~ S~ + A. 
8nh N 2 n~ 

Using the principle of maxima and minima, we can write 

8¢ = O => A = _I_ N~ S~ 
8nh N 2 n~ · 

NhSh 
We have nh = r,· 

NvA 
Taking sum on both sides, we get 

- ENhSh I\ - EN1iS1i 
n - N v'). or, v A - N n . 

Putting the value of v'X in the equation of n1i above, we get 

NhSh Nn nN1iSh 
nh = = =----

N"LNhSh ENhSh. 
n 

n,. ex NhSh, where L NhSh is proportionality constant. 

The minimum variance under Neyman allocation is given by 
. 1 2 1 

V(Yst)min = nN2 (2: NhSh) - N2 L NhS~ 
= ~ (I:w1is1i)

2 
- ~ I:whs~ 

= ~ (2: whsh) 2 ' if f.p.c. is neglected. 
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The estimate of V(Yst)min is obtained by 

- 1 ("""" )
2 

1 """" 2 v(y_.1)rnin = :;: L.,, Whsh - NL.,, W1is1i 

= ~ (L Whs1i) 
2

, it f.p.c. is neglected 
n. 

The minimum variance of Yst under Neyman allocation is given by 

V(Yst)min = N 2V(y) 

= ~ (LN"s")
2 

- L:Nhsr.. 

The unbiased estimate of V(Yst)min is 

v(Yst)min = ~ (L Nnsh) 
2 

- L Nhs~, 
l nh 

where s~ = ---i L. (Yhi - Y1t) 2
. 

nh - •=l 
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The variance of estimate under Neyman allocation becomes minimum. But there is one 
disadvantage of this method of allocation, since the value of nh involves S,.. In praetice, the 
value of S,. is not known. However, S,. can be replaced by its estimate, if it is available from 
any previous survey conducted to study the same variable. The value S1i can also be estimated 
in the first stage of sampling if the sampling is done in different stages. 

Allocation under fixed cost : Neyman allocation does not take into consideration of 
cost involvement in selecting sample from h-th stratum. We need minimum variance of the 
estimator, but the survey should be finished within a fixed amount of cost. Let us consider that 
for a survey the fixed cost is 

C =Co+ L:c,.n,., 

where Ch is the cost of taking sample from h-th stratum, C is the totai cost of the survey and 
Co is the overhead cost of survey. The sample size n,. is to be allocated in h-th stratum so that 
the variance of the estimator is minimum under the given fixed cost. 

Theorem : Under a fixed cost function of the type 

C =Co+ LnhCh, 

th . f th . t f l t' · · · 'f NhSh e vanance o . e est1ma or o popu a 10n mean is mm1mum, 1 nh ex v1Ch, . 

. The minimum variance is given by 

Proof : The variance of the estimator of population mean is 

n F SM -?A 

_ _ 1 """" N1iSl. V(Yst) - N 2 L.,,(N1i - n1i)-
n1i 

=_I_"""" N(.S(. __ 1_ """"NhSf.. 
N2 L.,, n1i N2 L.,, 
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To allocate sample size n1i in h-th stratum so that V('.iJst) is minimum, let us consider a function 

1 N 2S 2 1 · 
¢ = N2 2:.>__L_!!. - N2 L N,,S~ +A [Co+ L c,,n,, - CJ, 

n1i 

where A is Lagrange's multiplier. The value of nh is to be found out from the equation 

8
<1> O (b . . 1 f . d . . . ) -

8 
= y prmc1p e o maxima an mm1m1a . 

·n1i 

8¢ N,:s?. 
We have -

8 
= - = - N 2 2 + -XC1i = 0 

n1i n 11 

'C = N~S?. N11Sh 
" h N 2 2 or, n1i = 1\7'1. 

n 11 Nv.XC,, 
or, 

Taking sum over h on both sides, we get 

n = L N11S1i or, v'>.. = _1_ L N1iS1i. 
N J>;G,; N n y'C/, 

Substituting the value of ,,/>. in the equation of n1i given above, we get 

or, 

N1iS1i n N1iSh 
n1i = N y'C/,-1 " ~ = " ~ y'C/, 

h Nn W v'G-.h ~ v'Ch h 

N11S1i n 
n,, ex .;c;, , where I: ~ is called proportionality constant. 

" 
Replacing the value of n1i in V0/

8
t), we get 

(- ) - 1 (""" T In) """ N1iS1i 1 """ 2 V Y.st min - nN2 L.,, 1\ 1iS1i v C1i L.,, y'C/, - N 2 L.,, N,.S,,. 

If all C1.'s are same [C1 = C2 = · · · =CL = C (say)], 
1 2 1 . 

V('.iJst)min = nN 2 (L N1iS1i) - N2 L N1iS?. = V(Yst)min [by Neyman allocation]. 

Again, if all S1i 's are same, then n11 under Neyman allocation becomes 

n 
n1i = NN,.. 

From this optimum allocation, it may be concluded as follows : 

(a) If N1i is large, n1i should be large. 

(b) If sr. is large, n,, should be large. 

(c) If cost C1i is smaller, n1i may be larger. 

The conclusions (a) and (b) are applicable in case of Neyman allocation also. 

For optimum allocation the value of n should be pre-determined. However, if n is not known, 
it is estimated by 

and 

_(C-Co)(L:N11Sn/y'C/,) .f t. fi d 
n - " 17' , 1 cos 1s xe 

uN1iS1ivC1i 

- (I: W1iS1iy'C/,)(L: W1iS1i/y'C/,) ·r v(- ) . fi d 
n - (- ) 1 " 2 , 1 y st 1s xe . 

V Yst + 71i u W1iS11 
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Example 13.2 : Draw a stratified random sample of size n = 50 by Neyman allocation using 
the data of Example 13.1. Find 95% confidence interval for population mean and population 
total. 

Solution : 'In the given example N1 = 121. N2 = 149. N3 = 75. N = 345. Also, we have 

s2 = _1_ ['°" 2. - (L Yli)2] = _1_ [25.86 - (52.8)2] = o.0235 
i N - 1 ,L_, Yti Ni 120 121 

S2 = _1_ ['°" 2. - (LY2i)2] = _1_ [434.06- (252.8)2] = 0.0394 2 . N2 - 1 ,L_, Y2
i N2 148 149 . 

sj = _1_ ['°" Y~i - (L Y3Y J = 2-. [19oi.11 - (372.8)2 J = o.6501 
N3 - 1 ,L_, N3 74 73 

Si = 0.1533, S2 = 0.1985, S3 = 0.8063, L NhSh = 108.5983. 

. . nN1iS1i 
Accordmg to Neyman allocation n1i = L N1iS1i · 

50 x 18.5493 50 x 29.5765 50 x 60.4725 
• • ni = , n2 = , n3 = 108.5983 108.5983 108.5983 

= 8.54 ~ 8 = 13.62;::::: 14 = 27.84;::::: 28 

Strata The Sample observations are (Yhi) 

Small Rn. No. 514 161 481 837 953 946 642 721 

farmers SL. No. of 30 40 n8 111 106 99 37 116 
units 

Yli 0.5 0.3 0.6 0.6 0.6 0.6 0.5 0.5 

Strata The sample observations (Yhi) 

'· Rn. No. 164 100 853 840 767 190 727 115 714 175 816 458 972 262 

Medium SL. No. 015 100 108 95 022 041 131 h5 118 026 071 011 078 113 

·farmers Y2; 1.8 1.8 2.4 2.2 1.0 1.9 1.1 1.6 2.5 2.0 1.7 1.5 1.2 2.0 

Rn. No. 877 461 532 816 678 504 597 947 018 851 977 433 478 242 319 379 

Large SL. No. 052 011 007 066 003 054 072 047 018 026 002 058 028 017 019 004 

farmers Y3i 5.1 4.2 4.6 4.1 3.8 4.0 4.5 4.2 4.2 5.1 4.0 4.0 4.0 4.5 5.0 5.5 

Rn. No. 827 659 569 162 963 841 490 435 252 568 482 483 

SL. No. 002 059 044 012 063 016 040 060 027 043 032 033 

Y3i 4.0 4.8 5.0 4.5 5.2 5.0 4.4 4.9 4.8 5.0 4.2 6.0 

Now, 1 2: 4.2 1 2: 24.7 . Yi = - Yli = -
8 

= 0.525 hectare, y2 = - Y2i = - = 1.764 hectares 
n1 n2 14 

1 128.6 
Y3 = n

3 
L Y3i = ~ = 4.593 hectares. 



372 DESIGN OF EXPERIMENTS AND SAMPLING METHODS 

The estimate of population mean is 

Again, 

1 1 . 
Yst = NL Nh'fh = 

345 
[121 x 0.525 + 149 x 1.764 + 75 x 4.593] 

728.836 
= 

345 
=-~ 2.1 hectares . 

. 2 _ 1 ['°" 2 (L Yhi)
2

] s,,--- ~Yhi-
n1i - 1 n1t 

si = 
8 
~ 

1 
[ 2.28 ~ ( 

4
;)

2

] = 0.01071, s~ = 
14 
~ 

1 
[ 46.29 - (2~:)2 ] = 0.2086, 

s~ = -
1
- [598 48 - (

128
·
6

)
2

] = 0 2903 3 28 - 1 . 28 . . 

s1 = 0.1035, s2 = 0.4567, s 3 = 0.5388. 

The estimate of variance of Y.st by Neyman allocation is 

1 ( )2 1 2 v('Yst) = ;;: L W1is1t - N L Whsh 

1 

50 [
121 x 0.1035 149 x 0.4567 75 x 0.5388] 2 

345 + 345. + 345 

1 [ 121 x 0.01071 149 x 0.2086 75 x 0.2903] 
- 345 345 + 345 + 345 

= 0.0024594 - 0.0004549 = 0.0020045. 

s.e.('fi .. t) = Jv(YJ .. t) = J0.0020045 = 0.04477. 

953 confidence interval of population mean (Y) is 

Yst ± to.025,n.s.e.('fist), 

(L 9hs2 
)

2 N Nh 
ne = 928~ , where 9h = --(1 - f) 

I:~ n 
where 

n 50 345 x 121 
f = N = 

345 
= 0.145, 91 = 

50 
(1 - 0.145) = 713.84, 

345 x 149 . 345 x 75 
92 = 50 (1 - 0.145) = 879.02, 93 = 50 (1 - 0.145) = 442.46, 

(713.84 x 0.01071 + 879.02 x 0.2086 + 442.46 x 0.2903) 2 

ne = (713 84J2(0 01011)2 + (879.02)2(0.2086)2 + (442.46) 2 (0.2903) 2 

8-1 14-1 28-1 

102051.4564 
3205

_ 
7252 

::::::: 32, to 025,32 = 2.037. 

Now, Y L = Yst - too25,32 s.e.('fist) = 2.11 - 2.037 x 0.04477 = 2.02 hectares 

Yu = Yst + to.025,32 s.e. (Yst) = 2.11 + 2.037 x 0.04477 = 2.20 hectares. 

The estimate of population total is 

Yst = N'fist = 345 X 2.11 = 727.95. 
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v(Y,t) = N 2 v("fist) = (345)2(0.0020045) = 238.585612. 

s.e. (Yst) = /v(Yst) = J238.585612 = 15.4462. 

953 confidence interval of population total (Y) is Yst ± to.025.32 s.e. (Yst)· 

Thus, YL = Yst - to.025 s.e. (Yst) = 727.95 - 2.037 x 15.4462 = 696.49. 

Yu = Yst + to.025 s.e. (Yst) = 727.95 + 2.037 x 15.4462 = 759.41. · 

13.3 Estimation of Proportion from Stratified Random Sample 
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The parameters which are usually estimated from sample observations are population mean 
and population total, where the population mean is Y and population iota! is Y. The variable 
under study is y, where Yhi is the value of i-th unit in h-th stratum (h = 1, 2 ..... h; i = 

L 

1, 2, ... , Nh)· The total units in the population are N = L N1i. Here 
h=l 

Here values of y are Yhi and the variable is assumed to be quantitative in nature. 

The variable may be qualitative in nature, where Yhi = 1, if tpe quality under study is 
present in i-th unit of h-th stratum Yhi = 0 otherwise. · 

Let Ah number of units in h-th stratum possess the characteristic (quality) under study, 
where 

N,, 

Ah= LYhi· 
i=l 

Then A = total number of units in the population possessing the characteristic under study 

L L N 1, 

= 2:A1i = L LYhi· 
h=l h 

The population proportions of units possessing the quality m h-th stratum and m the 
population are, respectively 

1 N,.. A,. 
P1i=-2:Y1ii=
. N1i. N1i 

i=l 

1 L Ni. 1 A 
an~ P= N LLYhi = N LAh = N. 

h i 

A1i A 
We have Qh = 1 - Ph= 1 - N1i, Q = 1 - P = 1- N. 

Also, we haves~= 1 [LY~; - (l:Yhi)
2

] = _l_ [A1i _A~] 
N1i - 1 . . Nh N11 - 1 N1i 

i 

s2 = _1_ ["""" 2 _ (2:2:Y1ii)
2

] = _1_ [""A _ (l:A1i)
2

] 
N - 1 L,, L,, Y1ii N . N - 1 L,, h N 

= _1 [A- A2] 
N-l N 

NPQ 
= N-l· 
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Let a sample of n units be drawn from the population by stratified random sampling scheme. 
L 

The sample size from h-th stratum is nh so that n = L n1i. Consider that ah number of units 
h=l 

in the sample from h-th stratum possess the quality under study and a = Lah is the number 
of units in the sample possessing the characteristic. Here 

n1i L nh L 

ah= LYhi, a= LLYhi = 2:a1i. 
i=l h h=l 

The sample proportion of h-th stratum is 

1 nh 

'""" ah a,, 
Ph = - ~ Yhi = - , Qh = 1 - Ph = 1 - - . 

n,. i=l n11 n1i 

The sample pr.oportion from all sample units is 

1 1 1 h a 
P = - L L Yhi = - Lah = - L ;ihPh = - . 

n n 11 n h=l n 

Also, we have 

= _I_ [a,. _ a~] = 
n1i - 1 n1i 

The problem is to estimate P and S 2 = NN PQ . 
- 1 

Corollary : In stratified random sampling the unbiased estimator of population proportion 
Pis given by 

l L L 

Pst = N L N1iph = L W1iPh· 
. h=l h=l 

Here E(Pst) ~ L N1iE(p1i) = ~ L N1iP1i, [·: Ph is an estimate obtained from simple 

random sampling from h-th stratum]. 

Corollary : In stratified random sampling under proportional allocation the variance of 
the estimate of population proportion is given by 

V( ) - 1 - f L W1iN1iP1iQ1i 
Pst prop - N l n ,.-

h 

= 
1 

- f L WhP1iQ1i, if N,. =· N1i - 1, when Nh is large enough 
n h 

= 2. L W1iP1iQ1i, if f.p.c. is neglected. 
n h . 

1 s2 

We have V(Yst) = N 2 L N1i(N1i - n,.)--1!. 
n1i 
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and 

V( ) 
_ 1 - f"""' WhN1iP1iQ1i 

Pst prop - ~ N l , 
n h h -

Corollary : In stratified random sampling under proportional allcx:ation the unbiased 
estimate of variance of estimate of population proportion (Pst) is given by 

, ( ) _ 1 - f """' W1in1ip1iQ1i 
V Pst prop - --~ l 

n h n1i -

1 """' W1in1iphqh 'ff , l d = - ~ , 1 ,p.c. IS neg ecte . 
n nh - 1 • 

h 

Corollary : In stratified random sampling under proportional allocation and with 
replacement the variance of estimate of population proportion is given by 

Corollary : In stratified random sampling under proportional allocation and with 
replacement the estimate of V(Pst) is given by 

, ( ) _ 1 """' W1in1iphq1i 
V Pst prop - - ~ l · 

n h nh -

Corollary : In stratified random sampling under proportional allocation the estimate of 
population total units possessing a characteristic is given by 

Ast= Npst = L NhPh· 
h 

Corollary : In stratified random sampling under proportional allocation the variancr of 
Ast is given by • 

V(A, ) = N
2

(1 - J) """' W1iN1iPhQ1i = N
2

(1 - J) """'W n Q 
st ~ N 1 ~ ""' "' n h 1i- n h 

= ~ L N1iP1iQ1i, if f.p.c. is neglected. 
h 

· Corollary : In stratified random sampling under proportional allocation and with 
replacement the variance of Ast is given by 

Corollary : In stratified random sampling under proportional allocation the estimate of 
V(Ast) is given by 

(A ) _ N
2

(1 -. f)"""' W1in1ip11Qh _ N"""' N1in1ip1iQh 'ff . 1 t d v st - ~ 
1 

- - ~ 
1 

, 1 .p.c. IS neg ec e . 
• n n1i - n h n11 -
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Corollary : In stratified random sampling under Neyman allocation the variance of Pst is 
given by 

N,,P,,Q,,)
2 

. . ---- , 1f f.p.c. 1s neglected 
N,,,- l 

= ~ (Lw,,JP,,Q1if, if N,. ~ N,. - l. 

Corollary : In stratified random sampling under Neyman aJiocation the estimate of V(Pst) 
is given by 

~----2 

, if f.p.c. is neglected. 

Corollary : In stratified random sampling under Neyman allocation V(Ast) is given by 

V(A ) = .!_ ('°' N N,,P,,Q1i)2 - '°' N~P,,Q,, 
st opt ~ h N 1 ~ N 1 n h ,,- h ,,-

= ~ (LN,,JP,.Q,,f - LN1iP1iQh, if N,, ~ N1i - l. 

Corollary: In stratified random sampling under Neyman allocation the estimate of V(Ast) 
is given by 

~---- 2 -'°' N,, n1ip1iq,,. 
~ n,,- l 

h 

Corollary : In stratified random sampling with replacement and under Neyman aJiocation 
the estimate of V(Pst) is given by 

Corollary : In stratified random sampling the 100(1-a)3 confidence interval of Pis given 
by 

Pst ± Z~s.e. (Pst) 

Pst - Z~ s.e. (Pst) < P < Pst + Z~ s.e. (Pst), where s.e. (Pst) = Jv(Pst)· 

Example 13.3: In a rural area there are 1500 couples of child-bearing ages. These couples 
are classified into 4 classes according to the levels of eduction of female. The number of couples 
in each class are as foilows : 

Illiterate, N 1 = 225 
Primary educated, N2 = 432 

Secondary educated, N3 = 648 

Higher secondary and above, N4 = 195. 
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Twenty five per cent couples are selected under proportional allocation scheme, and the 
family planning adoption behaviour of these selected couples are recorded on investigation. 
The number of selected couples from different strata and number of couples adopting family 
planning method are shown below : 

nh : 56, 108, 162, 49, n = 375 

ah : 21, 54, 96, 38, a= 209 

Find 95% confidence interval for the population proportion of adopter couples. Also find 
953 confidence interval for total number of adopter couples. 

• a1 21 a2 54 a3 96 a4 38 
· Solut1on: We have P1 = - = -, P2 = - = -, p3 = - = -, p4 = - = -

n1 56 n2 108 n3 162 n4 49 

= 0.375 = 0.50 = 0.593 = 0.776 

2 n1p1q1 56 x 0.375 x 0.625 = 
0 23864 

= 
0 48 s1 = n1 - 1 = 56 - 1 . , 81 . 85 

2 n2p2q2 
82 = --- = 

n2 - 1 

108 x 0.50 x 0.50 
08 

= 0.25234, 82 = 0.50233 
1 - 1 

L 

2 nJp3q3 162 X 0.593 X 0.407'2_ O 
24286 83 

= 
0

_
4928 83 = n3 - 1 = 162 - 1 - · ' 

2 n4p4q4 49 X 0.776 X 0.224 = O 
17745 84 

= 
0

_
42124

_ 
84 = n4 - 1 = 49 - 1 · ' 

The estimate of population proportion of adopter couples is 

1 
4 

1 
Pst = N L N hPh = 

1500 
[225 x 0.375 + 432 x 0.5 + 648 x 0.593 + 195 x 0. 776] 

h=l 

= 0.557. 
n 375 

Also, we have f = N = 
1500 

= 0.25. 

Ni 225 N2 432 N3 648 · 
W1 = N = 1500 = 0.15, W2. = N = 1500 = 0.288, W3 = N = 1500 = 0.432, 

N4 195 
W4 = N = 1500 = 0.13. 

·The estimate of variance of Pst under proportional allocation is 
L • 

( ) 1 - f L Whnhphqh 1 - f L W 2 
V Pst = -- = -- h8h 

n nh - 1 n 
h=l 

1 - 0.25 ' 
== 375 [0.15 x 0.23864 + 0.288 x 0.25234 + 0.432 x 0.24286 + 0.13 x 0.177451 

= 0.0004729. 

s.e. (pst) = Jv(pst) = J0.0004729 = 0.02175. 

953 confidence interval for the population proportion [P] of adopter couples is 

Pst ± Zo.025Js.e.(Pst.), 

where h = Pst - Zo.025 Js.e. (Pst) = 0.557 - 1.96 x 0.02175 = 0.514. 

Pu = Pst + Zo.025 Js.e. (Pst) = 0.557 + 1.96 x 0.02175 = 0.600. 
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Again, the estimate of total adopter couples in the population is 

Ast = NPst = 1500 X 0.557 = 836. 

The estimate of variance of Ast is 

v(A8 t) = N 2v(p8 t) = (1500) 2 x 0.0004729 = 1064.025. 

s.e. (Ast)= Jv(Ast) = )1064.025 = 32.6194. 

953 confidence interval for population total [A] of adopter couples is 

A..t ± Zo.025 s.e. (Ast), 

where AL = Ast - Zo 025 s.e. (Ast) = 836 - 1.96 x 32.6194 = 772. 

•Air= Ast + Zo.025 s.e. (Ast) = 836 + 1.96 x 32.6194 = 900. 

Example 13.4 : In a diagnostic centre 2000 patients attended for blood test, specially 
for grouping of blood and for F.B.S. From this population 113 patients were selected under 
Neyman allocation, where patients were classified into 7 classes, viz., patients of blood group 
A+, A- 1 , B+, s-1 , o+, 0- 1 and others. The information of population units and sample 
units are shown below : · 

No. of units in Number of units in the sample Blood 

Population Sample having normal F.B.S. group 

N,, nh 

815 98 62 = a1 A+ 

218 17 11 = a2 A-

337 42 23 = a3 s+ 

162 20 8 = a4 B-

352 30 18 = a5 o+ 

80 8 5 = ati o-

36 5 
. 

2 = a 7 others 

2000 220 

Find 95% confidence interval for population proportion of patients having normal F.B.S. 
Also find 953 confidence inrerval for the total patients having normal F.B.S. 

Solution : We have 

a1 62 a2 11 a3 23 
P1 = ni = 98 = 0.63, P2 = n

2 
= 17 = 0.65, p3 = n

3 
= 42 = 0.55, 

a4 8 a5 18 a6 5 
P4 = n

4 
"'" 20 = 0.40, p5 = ns = 30 = 0.60, P6 = n

6 
= S = 0.625, 

a7 2 
821 

__ n1p1q1 __ 98 x 0.63 x 0.37 __ .
23

.
5503

, 
P7 = n

7 
= 5 = 0.40, n1 - 1 98 - l 

8~ = ~ = 17 x 0.65 x 0.35 = 0.2417, 8~ = n3p3q3 = 42 x 0.55 x 0.45 = 0.25851 
n2 - 1 17 - 1 · n3 - 1 42 - 1 
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8~ = n 4p 4q4 = 20 x 0.40 x 0.60 = 0.2526, 8~ = n;p5q5 = 30 x 0.60 x 0.40 = 0.2483, 
n4 - 1 20 ~ 1 n5 - 1 30 - 1 

8~ = n 6p 6q6 = 8 x 0.625 x 0.375 = 0.2679, 8~ = n1p7q7 = 5 x 0.4 X 0.6 = 0.3000. 
n 6 - 1 8 - 1 n1 - 1 5 - 1 

The estimate of population proportion of patients is given by 

7 _ L NhPh Pst - --
N 

h=l 

1 
= 2000 [815 x 0.63 + 218 x 0.65 + 337 x 0.55 + 162 x 0.40 . 

+ 352 x 0.60 + 80 x 0.625 + 36 x 0.40] 

1278.5 
= 2000 = 0.64. 

The estimate of variance of Pst under Neyman allocation is 

= ~ (L Wh8h) 
2

, if N is large .(f.p.c. is neglected). 

Nh 
We have Wh =ti .. 

. N1 815 N2 218 N3 337 
W1 = N = 2000 = 0.4075, W2 = N = 2000 = 0.109, W3 = N = 2000 = 0.1685, 

N4 162 N5 352 N6 80 
W4 = N = 

2000 
= 0.081, W5 = N = 

2000 
= 0.176, w6 = N = 

2000 
= o.o4, 

N1 36 
W1 = N = 2000 = 0.018, 

8 1 = 4.8529, 8 2 = 0.4916, 8 3 = 0.5035, 8 4 = 0.5026, 85 = 0.4983, 

86 = 0.5176. 87 = 0.5477. 
. . 1 2 

v(p8 t) = :;:;: (:~:::: W1is1i) , ·: N = 2000 is large 

1 = 220 [0.4075 x 4.8529 + 0.109 x 0.4916 + 0.1685 x 0.5035 

+ 0.081 x 0.5026 + 0.176 x 0.4983 + 0.04 x 0.5176 + 0.018 x 0.5477] 2 

= 0.021067. 

s.e. (Pst) = Jv(Pst) = v'0.021067 = 0.1451. 

953 confidence interval of population proportion of patients having normal F.B.S. is given by 

Pst ± Zo.025 s.e. (p.t), where 

h = Pst - Zo.025s.e. (Pst) = 0.64 - 1.96 x 0.1451 = 0.356. 

Pu = Pst + Zo.025 s.e. (Pst) = 0.64 t 1.96 x 0.1451 = 0.924. 
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The estimate of total patient having normal F.B.S. is 

Ast = NPst = 2000 X 0.64 = 1280. 

The estimate of variance of A~t is 

v(Ast) = N 2 v(p8 t) = (2000)2 X 0.021067 = 84268. 

s.e (Ast)= ..Jv(A8 t) = J84268 = 290.29. 

953 confidence interval for total patients having normal F.B.S. is . 
Ast± Zo.025 s.e. (Ast), 

where AL = Ast - Zo.025 s.e. (Ast) = 1280 - 1.96 x 290.29 = 711. 

Au = Ast + Zo.025 S:e. (Ast) = 1280 + 1.96 x 290.29 = 1849. 

13.4 Relative Precision of Simple Random and Stratified Random 
Sampling 

It is already mentioned that Neyman allocation is done by minimizing the variance of the 
estimator. Thus, it is expected that the stratified random. sampling under Neyman allocation 
is more efficient than proportional allocation. Also, it is mentioned that stratified random 
sampling is more applicable than simple random sampling if the population observations are 
more heterogeneous. Therefore, we can compare the precision of simple random sampling, 
stratified random sampling under proportional allocation and under optimum allocation. 

Theorem : If ~h is negligible, then Vran :'.'.'. Vprop :'.'.'. Vopt(NJ> where 

V..an = V (y) in simple random sampling, 

Vprop = V (Y) under p!"oportional allocation in stratified random sampling, 

Vopt(N) = V(y) under Neyman allocation in stratified random sampling. 

Proof: If -
1
- is negligible, Nl is also negligible. We know that 

Nh 

V(-) 1 - / 2 c-) 1 - / ~ 2 y ran = --S , V y prop = --~ WhSn and 
n n 

- h=l 

V(Y)opt(NJ = ~ (t whsh)

2 

- ~ i:, whs~. 
h=l h=l 

Let Yhi be the value of the variable under study for i-th 'unit in h-th stratum (h = 1, 2, ... , L; 
i = 1, 2, ... , Nh). Then, total sum of squares of N observations is (N = L Nh)· 

L Nh 

(N - 1)82 = L L(Yhi - Y) 2 

= L L[(Yhi - Yh) + (Yh - Y)] 2 

= L L(Yhi -Yh)2 + LNh(Yh -Y) 2 
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1 1 
Dividing both sides by N and neglecting the term N and N ~, we get 

2 ~ 2 ~ - -2 s = L- whsh + L- Wh(Y1i -Y) 

82 (1 - f) ~ 2 (1- !) ~ - - 2 
{1-J)- .= ·--L-J whsh + L-J Wh(Yh -Y). 

n n n 
• • V..an = Vprop + positive quantity => Vran ? Vprop. 

The equality sign holds good, if Y h = Y. 
2 . 

1-f L 2 1 ( L ) 1 L 2 
Vprop - Vopt(N) = -- L w,.sh - - L whsh + N L whsh 

n h n h h 
Again, 

= ~I: whsr. - ~ (2: w,.sh) 
2 

• • .. r.p.c. is neglected 

= :n [LNhS1,- (2:N~S1i)2] 

= :nLNh(Sh-S) 2
, where S= ~ LNhSh. 

Vprop - Vopt(NJ = +ve quantity => Vprop ? V<;>pt(N). 

Therefore, V..an ? Vprop ~ Vopt(N)· 

From the above result, we have 

1-/~ -2 
Vran = Vprop + -- L-(Y,, - Y) 

n . 

1 ~ -2 l-f~- -2 = Vopt(NJ + -N L-Nh(S1i - S) + --L-(Yh -Y) . n n 
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It is observed that the variance of 'fist is minimum if sample is selected under Neyman 
allocation. The variance is minimum compared to the variance of y under simple random 
sampling. The minimum variance of Yst[V(y8 i} 0 pt(N)] depends on two quantities, viz., S1, and 
Y h· Therefore, it may be concluded that Neyman allocation will provide more efficient estimate 
of population mean if the variance of observations within a stratum is more and if the Y h's 
arc more hcterogeneons. If the observations of different strata are homogeneous, the simple 
random sampling may be used as a better sampling technique. 
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It is observed that if stratified random sampling is drawn under proportional allocation, 
then V(Y'.t)prop is greater than V(Y)ran. if 

Let us consider that S~ for every stratum is less and let us denote this by S~. Then 

1"" 2 2 N L..,,(N - Nh)Sh = (L - l)Sw. 

This implies that 

·I: Nh(V" - V) 82 or, L < w· -1 

That is, the mean square error within stratum is less than mean square error between strata. 
If this condition does not prevail, V(y) will be greater than V(Y'.t)prop· 

13.5 Estimation of Gain in Precision due to Stratification 
It is obser-ved that estimator of population parameter under stratified random sampling is 

more efficient than that from simple random sampling. Let us now estimate this precision. 
Let nh(h = 1, 2, ... , L) be the sample size from h-th stratum. The mean and variance from 

sample of h-th stratum are, respectively Yh and s~. Then the estimate of variance of Yst is 

(- ) - ""'w,;s~ -~ w,;s~ 
V Y st - L..,, --:;;;:-- L..,, ~ · 

Let us compare this variance with v(Y), where y is a simple random sample calculated from a 
sample of n observations. Let 

l L nh 

s2 = n - 1 L L (Yhi - Y)2. 

h=l i=l 

N-n ' 
We ha¥e v(y) = --s2

, where v(Y) is an unbiased estimator of V(y). Here 
Nn 

L Nh 
. N - n 2 2 1 ""' .""' - 2 V(Y) = ~S , where S = N _ 

1 
L..,, L..,,(Yhi - Y) . 

We known that 
1 ( L Nh nh 2 ) 1 2 
NE L ;-- LYhi =NL LYhi• 

h=l h i=l h i 

Also, it is known that Yst is an u~biased estimator of Y and v(Y'.t) is an unbiased estimator of 
V(y.t), where 

i s2 

V(Y'.t) = N 2 L Nh(Nh - nh)_J.!.. 
nh 

Again, V('Y.t) = E('Y~t) - [E(Y.t)]2 = E('Y~t) - Y
2

. 
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Therefore, the unbiased estimator of Y
2 

is 

Now, V(Y)ran = n~ --~) [ ~ t E(Yhi - Y)
2

] 

The unbiased estimator of V (Y)ran is 

N - n 1 L n,. 
v(y)ran = --,;r;;:--8

2
, where 8

2 = n _ l L L(Yhi - y) 2
. 

Replacing 82 and on simplification, we get 

v(y)ran= n~--nl) [n:l82 +v(Y8 t)]. 
If n and N are large, then n - 1 ;:::: n and N - 1 ;:::: N and we have 

N-n 
v(Y)ran = ~82 . 

383 

Therefore, the relative efficiency of stratified random sampling compared to simple random 
sampling is 

v(Y)ran - V(Yst) X 100%. 
v(Yst) 

The above quantity is gain in precision due to stratification compared to simple random 
sampling. This gain is achieved if stratification is done properly so that the observations within 
a stratum are more homogeneous and all the strata are heterogeneous. 

In practice, the stratification is not possible using the values of the variable, since the values 
are not known before the survey. However, more precise estimate under stratified random 
sampling is found out if the following conditions exist in the population : 

(a) The population units are divided into several parts and the sizes of parts vary widely. 

(b) The estimator of variable which is needed to be estimated is associated with the size 
of the population units. 

(c) The sizes of the strata are estimated properly. 

As an example of (a), we can mention the estimation problem of income of employees in 
different industries. The sizes of industry in terms of employees ·or in terms of economic act~vities 
vary widely. Each industry can be considered a stratum. 

If number of employees of an industry is to be estimated, the number is associated with 
the size of industry. In such a case stratification will usually provide more precise estimate. 
To estimate the area under wheat cultivation in a state, the state can be divided into ~egion 
according to the area under wheat cultivation. 

Example 13.5 : Estimate the gain in precision due to stratification compared to simple 
random sampling using the data of example 13.2. 

Solution : We have v(Yst)opt(N) = 0.0020045. 

v(y)ran=n~~nl) [n:l82 +v(y8 t)], 
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where 2-= _1_ ["" 2_ .:._ (LLYhi)2] = _1_ [647.05- (157.5)2] = 3.0801. 8 n - 1 ~ ~Yi., n 50 - 1 50 

345 - 50 [ 50 - 1 ] 
v(Y) = 

50
(
345 

_ l) ---SO- x 3.0801+0.0020045 

= 0.0518051. 

Therefore, the relative gain 
sampling is 

in precision due to stratification compared to simple random 

v(°Y)ran - v(y)opt(N) 

v('Yst) 
lOOo/c = 0.0518051 - 0.0020045 x 1003 = 2484.443 . 

x 
0 

0.0020045 ° 0 

13.6 Method of Constructiqn of Strata 
It has already been mentioned that the stratification is profitable if stratum variances 

(S~, h = 1, 2, ... , L) are more heterogeneous. Moreover, the technique is more profitable in 
a case where Y h's are more heterogeneous. However, the observations within a stratum should 
be homogeneous. These points are to be kept in mind in construCting strata. · 

There were many suggestions in constructing strata. Sethi (1963) suggested the method of 
selecting optimum points for special kind of populations. Later on, Sethi et al. (1966) utilized 
his earlier technique in real world data. Delenius (1957) proposed the equation to decide the 
best limit of stratum when number of strata are known. He also found out the equations to 
decide the boundary of stratum in case of proportional and Neyman allocations. · 

In practice, the contiguous geographical regions are included in a stratum, specially in any 
agricultural survey research. The stratification is also done using the characteristics of some 
related variables related to the study variable. For example, to estimate the total production of 
jute in an area the stratification can be done usi~g the information of total cultivated land in 
the smaller segments of the study area. To -estimate the total maize production of an area, the 
area can be divided into strata according to the availability of irrigation facilities. However, the 
best method of stratification is the use of frequency distribution of the variable under study, 
though the technique is not feasible in most cases. Therefore, it is better to use the frequency 
distribution of some variables related to the vatiable under study. The frequency distribution 
of the variable observed in any previous survey may also be used as a basis of stratification. 
Let us discuss the method of stratification for Neyman allocation. 

Let Yo and Y2 be respectively the smallest and the largest values of the variable under study. 
The stratum boundary of the remaining values y1 , y2 , ... , YL-I is to be decided in such a way 
that V(Yst)opt(N) is minimum, where 

v (;;,,).,«N> ~ ~ ( ~ w,s,)' - ~ ~ w,si 

= ~ (Z: whsh) 
2

' if f.p.c. is neglected. 

The V(:Yst) will be minimum if L whsh is minimum. To minimize the quantity L whsh. it 
is to be differentiated with respect to Yh, where Yh is used in calculating S,. as well as Sh+I· 
Therefore, to minimize L whsh with respect to Yh. we get 

a a a 
-8 L whsh = -8 (WnSh) + -8 (Wh+1Sh+d· 

Yh Yh Yh 
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Let f(y) be the frequency distribution of y, then 

l y" aw" 
W1i = f(t)dt, -a-= f(y1i). 

• Y1,-1 Yh 

Yi. [r'• tj(t)dt] 
2 

Again, W1iS2 = { t2 f(t)dt - -=--Y_,",_-
1
------

h },, . fYh f(t)dt 
Yh- I JYh- I 

Now, differentiating W1iSl,, we get 

sl, aaw" + 2w"s" aas" = yf,f(y1i) - 2y1iµ1tf(y1i) + sU(Yh). 
Yh Yh 

Here µ1i is the mean of Yh in h-th stratum. On simplification, we get 

D(W1tS1i) _ 
8 

aw,, w as" _ ~f( ) (y,, - µ") 2 + sF, 
ayh - 11 ay11 + " ayh - 2 Yh S11 . 

Similarly, a(W1i+iY1i+1) = - ~ f(y1i) (Yh - µ1i+1)2 - Sf.+1. 
ay,, 2 S1t+1 

Therefore, the equation for Yh is 

(Yh - µ1i)2 + Sl, = (Yh - µ1i+i)2 + Sl.+1 I = 1 2 L - 1 
s,, 811+1 ' i ' ' ... , . 

However, the application of this equation is not easy in practice. We need to discuss some 
simple technique to form strata. Some methods are stated below : 

(i) Equalization of WhSh : Delinius and Gurney (1951) proposed the technique of 
construction of strata equalizing W1iS1i. They have also proposed to select equal number of 
units from each stratum. But the technique needs the value of Sf. and it is not available. So, 
the application of the technique is not suitable. 

(ii) Equalization of strata totals : Mahalanobis (1952) proposed this technique. He has" 
proposed to select equal units from those strata for which W1i Y11 are equals. But the technique is 
not suitable to select units from normal distributiOn, Gamma distribution and Beta distribution. 

(i) Equalization of WhRh : Ayoma (1954) proposed this technique. According to him 
W1i Rh's are to be equalized and to form strata and equal units are to be selected from those 
strata for which W h R1i 's are equal. Here R1i is the range of values of Yh. 

13. 7 Number of Strata 
The number of strata is pre-determined when stratified random sample is selected. But the 

question arises how to decide the number of strata. The following two points are to be kept in 
mind in determining number of strata : 

(i) To observe whether VCiist) dt:!creases with the increase in number of strata. 

(ii) To observe the change in cost of survey when strata increase. 

There are many suggestions to decide the number of strata. Cochran (1977) explained the 
method as follows : 

Consider that the values of the variable Y are used in constructing strata. Also consider 
that Y is distributed uniformly over the range [a, a + d]. Then the variance of Y is 

d2 d2 s; = 12 and V(Y) = 12n", 

D.E.S.M.-25 
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where y is the sample mean of n observations. If N1i's are equal (h 
variance of the observations in h-th.stratum is 

1 
where W1i = z· 

1, 2, ... , h), then the 

1 ( ) 2 1 ( 1 d ) 
2 

d
2 v (Y) 

Therefore, V('fl.t) = ;:; L W1iSy1i = ;:; LL Lv'f2 = 12n£2 = -:;-

Thus, it is observed that, for a rectangular distribution V('fl.t) is decreased inversely _to 
the square of strata number (£2 ). Similar .r~sult is also observed in selecting sample under 
Neyman allocation from skewed population having finite range. Cochran (1961) studied the 
ratio V('flst)fV(y) for rectangular distribution and skewed distribution. He also found out 
V('flst)fV(Y) in selecting sample from skewed distribution, when L = 2, 3, 4, where the ratios 
are 0.232, 0.098 and 0.053, respectively. The corresponding values in selecting sample from 
rectangular distribution are 0.250, 0.111 and 0.062. This results indicate that V('flst) decreases 
with the increase in number of strata. However, the argument is not always true, specially if 
stratification is done using information of variable correlated to the study variable. Cochran 
has showed that unless Pxy > 0.95 for L = 6, the V('fl.t) is not decreased so much. 

Sethi (1963) has observed that if L exceeds 6, the sampling results are not improved so 
much. This is observed in analysing the cost function when strata sizes are changed. Moreover, 
if strata number increases, the sample size n needs to be decreased to complete the survey 
within the specified cost. 

Let us study the relationship of cost function and sample size n. Let the cost function be 

C = Co+ LC1 + nC2, 

where Co is the overall cost of survey, C1 and C2 are the costs of survey of each stratum and 
each unit, respectively. Sethi (1963) has showed that 

52 
V(Y.1) = -(bL2 +CL+ d)- 1 

n 

in selecting sample from Gamma distribution under proportional allocation and equal allocation. 
Here the values of b, c and d are calculated from variance ratio when L = 1. 2 and 3. The 
minimization of this variance for the above cost function gives 

L = 2(C - Co)/3C1 

n = (C - Co)/3C2. 

13.8 Effects of Error Due to Estimation of Stratum Size 
It is already noted that in stratified random l'!ampling the sample stratum size n1i depends 

on population stratum size N1i(h = 1, 2, ... L), specially if sample is selected under proportional 
allocation and Neyman allocation. The problem in selecting sample arises if N1i is not known 
or if N1i is replaced from the knowledge of some previous survey results. The previous survey 
information on N,, may not be valid for current survey. In such a case W1i = !:Jt- is not used 
properly to have the estimate, rather its estimate w1i is uwd, where 

L 

Yst = LW1tY1i· 
h=l 

Here w1i is not the exact value of N1i/N; h = 1, 2, ... L. 
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Due to the use of w,. instead of Wh the following error arises in the sample estimates : 

(i) The sample estimate is not unbiased. Since the estimator is biased, the mean square 
error of estimate instead of variance is used to estimate the accuracy of the estimator. 
But the accuracy of the estimator should be estimated on the basis of the mean of the 
estimator. 

(ii) The amount of bias is not reduced even the sample size is increased. As a result the 
stratified random sampling for a fixed sample size is less precise than the simple random 
sampling. 

(iii) The standard error of Yst provides the downward biased estimator of error of Yst· 

Let us investigate the mean sq11are error ofy8 t, when Yst is biased. Let the biased estimator 
of population mean 1s 

L . 

Yst = L WhY1,, where w,. is the estimator of wh = ~·. 
h=l 

h 

Then E('Y.t) ~ LWhYh. 
h=l 

L , 

Against E(y.t)U = L why"' where ('Y.t)U = unbiased estimator. 
h=l 

Therefore, the bias of estimator is 

= L(w1i - Wh)Y h· 

h 

This bias is free of sample size. Now, the MSE (JJ.t) is 

. _ """wf.Sf. [""" _ ]2 MSE (Yst) = L..,, %(1 - f1i) + L..,,(wh - W1i)Y11 . 

But the variance of ('Y.t)U is 

(- """w~sr, . V Yst)v = L..,, --(1 - fh). 
n11 

It is observed that V('Y.t)v is less than V('Y.t)· 

13.9 Determination of Sample Size 
The determination of sample size has been discussed in section 11.11. In this section, we 

shall discuss the determination of sample size in stratified random sampling. Let us discuss the 
method in dealing with (a) continuous variable and (b~qualitative variable or discrete variable. 

Determination of sample size in case of continuous variable : Let nh, 'rh. and s 11 be 
the sample size, sample mean and sample standard deviation of h-th stratum. Let s1i be the 
estimator of Sh, where Sh is the population standard deviation of h-th stratum. Let us consider 
nh = Whn, where w1i is to be assumed. Then the variance of Yst is 

_ 1 L Whsf, 1 L 2 N11 V = V(Yst) = - -- - N W1is 11 , where Wh = -. 
n ~ N 

I: w,.s~ 
, h Wh 

n = V + ~ 2: Whsr 
We have 
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If f.p.c. is negkcted, then the preliminary value of n is, say, n0 , where 

no = 2._ \""'."' w,.s~. 
V LJ Wh 

h 

If n0 /N is not negligible, then 

n= 1 2· 
1 +NV I:W1is,. 

The value of 11 depends on allocation of sample sizes also. Let us consider that 

n1i ex N1is1i. 

Then 

I:W1is~ 
Again, n1i ex N1i, then no = V 

no 
and n = --n-· 

1 + N 
In practice, the value of V is not known. Let the error in estimator be d and it is pre

determined. Then V = (d/z)2 , where z is the value of standard normal variate. 

Determination of sample size in case of qualitative variable : If the variable under 
study is qualitative in nature, we usually estimate the population proportion, where population 
proportion of a characteristic is P. The estimate of P is Pst. where Pst = '°' W1ip1i and Ph = !!ti.. ~ ni, 

Here a1i is the total number of sample units in h-th stratum possessing a characteristic. The 
sample variance of the characteristic of h-th stratum is 

Then 

If 
1 - f L 

n,. ex N,., V(Pst)prop = --L W1iP1iQ1i. 
n 

h=l 

The estimate of V(Pst)prop is given by 

then 

( ) - 1 - f L WhPhQh 
V Pst prop - -- l · n n,, -

V(Pst)opt(N) = 2_ (I:: W1i 
n h 

The estimate of this variance is 

v(Pst)opt(N) = 2. (L W,, 
n h 

The V(Pst) will be minimum, if 

N" ../Pi:(Jf. n,, ~ n or, L ( N,, vPiJJh) 
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Let 
2: WhPhQh 

V(Pst)prop = V and let the assumed value of V be no = V . 

no 
n=---. 

1+~ 
Then 

If 
( 2: w,. y'Phqh) 2 

V(pst)opt(N) = V, then no = V 

and 
no 

However, the value of V is not known to us and it cannot be estimated before the survey. 
But, we can assume that the estimator should have error d (say). Then V = (d/z) 2 can be 
calculated, where z is the value of normal variate. 

Example 13.6 : To estimate the milk production per cow in an area, the area has been 
divided into strata according to the number of cows in stratum. The stratum size and stratum 
sample variance of milk production are given below : 

Stratum Stratum s~ of milk production Total milk production 
SL. No. Size, Nh 

1 115 1162 
2 85 1436 20042 kg 
3 150 562 

4 200 875 

Total 550 

Determine the sample size to estimate the total milk production in the area. It is assumed 
that the C.V. of total milk production is 53. 

Solution : Let Yst be the total milk production in the area. 

Then s.e. (Yst) = 0.05 x 20042 = 1002.l. 

•• V(Yst) = V = [s.e.(Yst)] 2 = (1002.1) 2 = 1004204.41. 

N ~ 2 550 
no = V ~ Nhsh = 10042 04 .41 x 514990 = 282. 

Now, for pr9portional allocation, 

no 282 282 
n = -- = = -- = 186. 

l_+ ~ 1 + ~~~ 1.5127 

13.10 Effect of :qeviation from Optimum Allocation 
According to Neyman allocation the sample size nh is given by 

nNhSh 
nh = L N1iSh, h = 1, 2, ... , L 

and the variance of fist is given by 
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In practice, the value of S,, is not known, whereas we use· it to calculate n,,. However, the 
estimate s1i of S,, can be used. But due to this replacement the value of n,, is not exactly found 
out. Let the value of n1i be nh, if it is calculated using s,.. Therefore, we have 

V(- ) = '°' w,;sr. _ _.!._ '°' w· s2 Yst L 1 NL h h" n,. 
Now, the difference in the value of VOlst) due to the use of nh instead of n1i is 

w2s2 1 ( )2 
V(Yst) - V(Yst}opt(N) = L ~ - - L W1iS1i · 

n,. n 

Replacing W,.S,. in right side in terms of n,,, we get 

(- - (I: w,.S,.) 2 
['"' n7, ] __ · (I: w,.S,,)2 

'"' (n~, - n,.)2 

V Yst) - V(Yst)opt(N) = 2 L - - n L . n n,, n 2 nh 
At this stage, if f.p.c. is neglected, 

1 ('"' \ 2 
V(Yst)opt(NJ = n 2 LW1iS1ij · 

Therefore, the relative increase in the variance due to the deviation of optimum allocation is 
given by 

V(ii .. t) - VcYst)opt(N) = .!_ '°' (n~, - n1i) 2
. 

''(- ) L I "! .Yst opt(NJ n h n,. 

Example 13.7 : Using th~data of Example 13.l investigr,te the impact of deviation of 
optimum allocation. 

Soluti.on: Given N 1 = 121, N2 = 149, N3 = 75, N = 345; Sr= 0.0235, Si= 0.0394, Sj = 
0.6501. According to Neyman allocation ni = 8, n2 = 14, n3 = 28; si = 0.01071, s~ = 
0.2086, s~ = 0.2903. The variance of Yst under Neyman allocation is v(iist) = 0.0020045. If n,. 
is calculated using s~ instead of Sf., we get 

n~ = nN1s1 = 50 x 121 x 0.1035 = 5, n~ = nN2s2 = 50 x x 149 x 0.4567 = 28. 
I: N1is1i 120.9818 I: N1is1i 120.9818 

, nN3s3 50 x 75 x 0.5388 
n3 = I: N1is1i = 120.9818 = 

17' 

Now, the V(Yst) using nh is 

v(- ) = '°' w,;sr. _ _.!._ '°' w s2 = _1 '°'NT.ST. _ _ 1 '°' N s2 
Yst L 1 N L h h N2 L 1 N2 L h h 

h n,, n,. 
1 

= (345)2 [68.8127 + 31.2399 + 215.1066 - 57.4716] 

= 0.0021649. 

Again, variance of Yst under Neyman allocation is 
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Hence, the relative increase in the variance due to deviation of optimum allocation is 

V(y,t) - VCYst)opt(N) = 0.0021649 - 0.0014988 = 
44

.
443

. 
VOJst)opt(N) 0.0014988 

13.11 Stratified Sampling with Varying Probabilities 

391 

We have discussed stratified random sampling where sample units from h-th stratum are 
selected under simple random sampling scheme without replacement. In practice, the sample 
units may be selected with replacement and also these are selected with varying probabilities. 
Let us now discuss the sample selection with varying probabilities. ' 

Let Ph; be the probability of selection of i-th. unit from h-th stratum; i = 1, 2, ... N1i; 

h = 1, 2, ... , L so that 

i=l 

Let Yhi be the value of i-th unit of h-th stratum. Then, we can define 

Z Yhi 
hi= NhP1i;. 

1 n1, 1 nh 

Zh = - "°' Zhi = -- "°' Yhi. 
nh tr nhNh tr P1i; 

Then 

This Z h is the unbiased estimator of population mean. 

Nh 

Here. zh. = L phizhi = y h. 

i=l 

L L - "°' N1i- "°' - -Again, z .. = L., '}izh. = L., w,,zh. = Y. 
h=l h=l 

The variance of Z h is 

The unbiased estimator of Y is 

1 L 1 .L Yhi 
= N 

1 
n1i . P,,;· 

' ' 
Here 
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The variance of Z w is 

1 1 [Ni, 2 2-2] 
= N2 L n,. ~Y1idP1i; - N1iY1~ . 

The unbiased estimator of V(Zw) is 

L 2 1 n1i 

v(Zw) = L w,;~, where s~ = -- L(Z1i; - z,.) 2
. 

h= I n,. n1i - 1 
i= 1 

13 .12 Post-stratification 
The stratified sampling is precise than simple random sampling if strata sizes and variances 

of the var.iablc nnder stndy for different strata arc known. In practice, the sizes of strata may not 
be known. Stratum variance may be replaced by its estimate from any related previous survey. 
But the estimated stratum size does not serve the purpose well. As an example of unknown 
stratum size, let us mention the case of sampling to estimate the fertility of ever married 
couples. The level of fertility varies with the variation of female education and occupation. 
But, in practice, it is difficult to know the number of ever married females of child bearing ages 
who have different levels of education or different levels of occupation. In such a case if strata 
is formed according to the level of education or occupation, it is difficult to get the valnc of N,., 
even it is difficult to identify their strata unless a survey is conducted. The problem is solved 
by stratification after the completion of survey work. Hansen, Hurwitz and Madow (1953) 
have discussed the sampling technique of post-stratification. Williams (1962) has proposed the 
formula to get the variance of the estimator in such sampling. 

Let there be N units in a population. Consider that n units are selected from the population 
by simple random sampling and these .units are divided into L strata according to the values 
of the variable under study. Assume that the population size of h-th stratum is N1i and it is 
known. Then, we can find Yw = L w,,y,, instead of y = * L LYhi, where w,, = N,./N an<l 
y,. is the sample mean of h-th stratum. The variance of Yw is given by 

where n 11 is the size of sample from h-th stratum. It is assumed that no n1, ii:i zero. If in a 
repeated sampling n,. is found zero, the sampling units of two or more can be added. 

Stephen (1945) has showed that if n1i is large enough, V('Yw) is not increased too much, 
where · 



Chapter 14 

Systematic Sampling 

14.1 Introduction 
In random sampling the sampling units are selected at random using random numbers. Each 

unit is selected at random. In some cases the first unit is selected at random and other units are 
selected in a systematic way, where the subsequent units are selected at a pre-specified distance 
from the first unit. Since the units, except the first unit, are selected in a systematic way, the 
technique of selecting sample units is called systematic sampling. 

Let there be N units in a population, where the units are identified by serial number 1 to 
N. Let us consider that N = nk and we need to select n units in the sample. Assume that 
k is an integer. Then one uriit from first 1 to k units is selected randomly and let the serial 
number of this selected unit is 'i'. Now, the subsequent units for systematic sample will be at 
a distance of k units from the preceding selected units. Thus, if first selected unit is 'i', the 
subsequent selected units bearing serial numbers are i + k, i + 2k, i + 3k, ... , i + (n - l)k. 
Since the first unit is selected at random and other units are selected in a systematic way, the 
sampling technique is called systematic sampling. It is also called Pseudo Random Sampling, 
since first unit is selected randomly. 

14.2 Method of Selecting Systematic Sample 
There arc mainly two different techniques which are adopted in selecting systematic sample. 

These are: (a) Linear Systematic Sampling (b) Circular Systematic Sampling . 

. Linear Systematic Sampling : Let there be N = nk units in a population. Assume that 
the population units are linearly arranged and each unit is identified by a serial number from 
1 to N. The problem is to select a random sample of n observations. Let us select a random 
number which will lie in the limit 1 to k. Let this number be i (i ::; k). Then, according to 
systematic sampling scheme the selected units in the sample bear the serial number i, i + k, 
i + 2k, ... , i + (n - l)k. 

The Observations of k Systematic Samples 

SI.No. 1 2 k 

1 Y1 Y2 Yi Yk 

2 YI+k Y2+k Yi+k Yk+k 

3 Y1+2k Y2+2k Yi+2k Yk+2k 

Yi+(J-l)k Y2+(j- l)k Yi+(j-l)k Yk+(j-l)k 

n Yi+(n-l)k .Y2+(n-lJk Yi+(n-l)k Yk+(n-l)k 

Mean Th. 'fh. 'fh Yk .• 

393 



394 DESIGN .OF EXPERIMENTS AND SAMPLING METHODS 

The process of selection by systematic sampling scheme provides k samples. Let YJ be the 
value of the variable under study of jth population unit (j = 1, 2, .. ~, N). Then the observations 
of k samples will be as in the previous page. 

The k samples as shown above is available if N = nk. In each sample there are n 
observatio.ns. But, if N i nk, at least one sample is not of size·n. The sample size of one 
sample may be of size (n - 1) or (n + 1). Let us explain this by an example'. Let there be 
N = 24 observations and we need a sample of size n = 5. Then the sample observations of 
different samples will be as follows : 

First Case Second Case 

SI.No. Sample observations SI.No. 

1 Y1, Y61 Y11, Y16, Y21 1 Y1, Y6, Y11, Y16, Y21, Y26 
2 Y2, y7, Y12, Y11, Y22 2 Y2, y7, Y12, y17, Y22, -

3 y3, Ys, Y13, Y1s, Y2a 3 y3, Ys, Y13, Y1s, y23, -

4 y4, yg, Y14, y19, Y24 4 y4, yg, YI".1 Y15, Y24, -

5 y5, Y10, Y15, Y20, - 5 y5, Y10, Y1s, Y20, Y2s, -

It is seen in the first case that the fifth sample is of size n = 4 ( < 5). Again, if N = 26 
(second case), the first sample has n = 6 (> 5) observations. However, this problem does not 
arise always even if Ni nk. 

If N = nk, k is considered an integer near to N/n and a random number is selected which 
exists between numbers 1 to k. The every kth unit is to be selected in the sample. Thus, if 
N = 24, k is to be considered as 5 (·: 24/5:::::: 5) and a random number is to be selected from 
the numbers 1 to 5. If the selected random number is 4 (4th sample of the first case), then the 
4th, 9th, 14th, 19th and 24th units are included in the sample. 

To select units by systematic sampling scheme, the population units are divided into n 
groups each of k units. A unit is selected first by a random process from first k units of the first 
group and then the other units are included in the sample at kth distance from the preceding 
selected unh .. However, sometimes the first unit is not selected at random, rather first unit is 
selected from the centre of the list of k units. Thus, if k is even, -.~th unit or k:pth unit is 
selected as the first unit and if k is odd, ~th unit is selected as the first unit. Other units 
are selected at kth distance from the preceding selected unit. Thus, if N = 24 and if we need a 
sample of size n = 5, k is to be taken as 5 and the first selected unit is ¥th or 3rd unit. The 
·selected sample contains the observations y3, Ys, y13, Y1s, Y23· The latter method of selection 
of systematic sample is proposed by Madow (1953). 

Circular Systematic Sampling : It has already been mentioned that if N i nk, the 
sample size in selecting sampling units is changed [n is less or more than by l]. To avoid this 
problem Lahiri (1952) has proposed a method in which first unit is selected randomly from all 
units in the population and the subsequent units are selected at a distance k from the preceding 
selected unit. For example, let us again consider the selection of n = 5 units in a sample from 
N = 24 units. Here k:::::: 5. Let the first selected unit be 12. Then the sample observations are 
Y12, Y11, Y22, Ya, YB· 
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In general, there are 5 samples. The sample observations are : 

Sample No. Sample Observations 

1 YI Y6 Yu YI6 Y21 
2 Y2 Y1 YI2 YI7 Y22 

3 Y3 Ys YI3 Yis Y23 

4 Y4 yg YI4 Yl9 Y24 

5 Y5 Y10 YI5 Y20 YI 

If the first selected unit is ith unit, then the other units in the sample will be of number 

i + jk, if ·i + jk ~ N [j = 0, 1, ... , (n - l)] 

i + jk - N, if i + jk > N. 

The probability of inclusion of any unit in such a sampling is 1 / N. 
It is known that, if a single sample is selected in this sampling scheme, the estimate of 

sampling variance is not unbiased. To avoid this problem, Singh and Singh (1977) have proposed 
another method of sampling plan. Let there be N units in a population. We need to select 
a sample of n (n < N) units. Let u (~ n) and d be two pre-determined integers. These two 
integers are to be selected in such a way that 

(i) In each sample different sampling units are included. 

(ii) The probability of inclusion of every pairs of unit will not be zero. 

Now, let us select a random number from the numbers 1 to N. Let this selected number be 
r. Starting from this rth unit u units are to be selected one by one. Then n - u = v units are 
to be selected at d distances so that d ~ u and u + vd ~ N. If the sampling units are selected 
in the above mentioned way, the n units will be included in the sample in two steps or in many 
steps. Consider that to select n units in the sample, there needs p steps, where 

{log log J¥- - log log ~} 
p;:::: log2 · 

14.3 Advantages and Disadvantages of Systematic Sampling 
Advantages 

(i) The main advantage of this method is that the sampling units are selected easily. There 
is no chance of ~rror to be creeped in selecting sampling units. This sampling technique 
is easily applied in the field of agricultural survey. Moreover, the technique is suitable 
if frame is not available. This is the main advantage of systematic sampling over simple 
random sampling. 

(ii) Since every kth unit is selected in the sample, there is no chance of exclusion of any 
special unit of population in the sample. If the units at a distance k are not correlated, 
the estimate of pop4lation characteristic becomes more precise. Since population units 
are divided into n strata of sizes k and one unit is selected from each stratum, the 
efficiency of systematic sampling is similar to that of stratified sampling when one unit 
is selected from each stratum. 

(iii) Systematic sampling is similar to cluster sampling. If there are k clusters and a cluster of 
n units are selected in the sample, then cluster saniple is equivalent to systematic sample. 
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Disadvantages 

However, there are some disadvantages of systematic sampling. The estimate under this 
scheme does not provL£. unbiased estimate if there is periodicity among the population units. 
Moreover, if a single sample is selected, it is difficult to get estimate of sampling variance. 

14.4 Method of Estimation in Systematic Sampling 
Let there be N units a population such that N = nk. Let us consider that a sample of 

n units is selected from the population. Let the value of jth observation of ith sample be 
YiJ (i = 1, 2, ... , k; j = 1, 2, ... , n) and the mean of ith sample be 

1 
Yi= - LYij· n . 

J 

This mean is systematic sample mean and is denoted by 

1 · n 

Ysy = "fh =;;: LYii· 
j=l 

The population mean Y = ~ L L YiJ = :k L L Yii · 

Theorem : From a population of size N = nk if a systematic sample of size n is drawn, then. 
systematic sample mean Ysy is an unbiased estimator of population mean Y and the variance 
of Ysy is given by 

vc- ) = N - 1 82 _ k(n - 1) 82 Ysy N N wsy• 

k n k n 

2 1 "" - 2 8 2 1 ""< - )2 S = N _ l L.., L..,(Yii - Y) and wsy = k(n _ l) L.., L.., Yii - Yi. · 
i J i J 

where 

Proof : The systematic sample mean y sy is 

1 n 

Ysy = ;;: LYij =Yi.· 

. lk 
1

kn _ 

E(Y8 y) = E("!J;.) = -k LY;.= -k LLYij = Y. 
i=l n 

Hence, systematic sample mean is an unbiased estimator of population mean. 

The variance of the systematic sample mean is 

- 1~- -2 
V(Ysy) = k L..,(Yi. - Y) · 

k k n 

2 "" -2 " -2 "" 2 We have (N - l)S = L.., L..,(Yii - Y) = n L..,("fh - Y) + L.., L..,(YiJ - 'U;.) . 

According to the technique of analysis of variance the. d.f. of L: l:('U;. - Y) 2 is k(n - 1 ). Since 

1 k -
V(Ysy) = k L(Yi. - Y) 2

, we can write: 

k n 

(N - 1)82 = nkV(Ysy) + L L(Yij -y;.) 2
. 
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_ (N - l)S2 1 ~~ _ 2 (N - l)S2 1 ~~ _ 2 
· • V(Ys11 ) = nk. - nk L.J L.J(Yij - Yi.) = N - N L.J L.)Yij - Yi.) 

= (N - l)S2 
_ k(n - 1) S2 

N N ws11· 

k-1 2 2 1 - . 
Corollary : V(1j811 ) = -k-Se• where Se = k _ 

1 
EOh - Y). i!ere s: is the variance 

of sample mean 11:nd this is obtained from i-th sample mean. 
The above formula of V(]J811 ) does not provide any information that the variance of 

systematic sample mean decreases with the increase in Sample size. Therefore, systematic 
sampling technique is to be applied with ·care. 

. _ (N-l)S2 k(n-1) 2 Agam, V(Y 811 ) = N - N Swsy· 

It is observed that VOJsy) will be minimum if s~sy becomes more. This s~sy becomes more 
if the sampling units are more heterogeneous. This is possible if the units within a group are 
more homogeneous and units of different groups are heterogeneous. 

Corollary : The variance of the systematic sample mean is also written as 

S
2 (N -1) V(Ys11 ) = n -y;;- [1 + (n - l)pwJ. 

where 
E(Yi1 - Y)(Yiu - Y) . 

Pw = E(Yi1 - Y)2 , J -=J u 

2 
k n _ _ 

= (n _ l)(N _ l)S2 L L(Yij - Y)(Yiu - Y). 
i 1<u 

Also V(y811 ) = S~st ( N;. n) [l + (n - l)PwstJ. 

where 
l k n 

s~st = n(k - 1) L ~(Yij - y)2 
• J 

E(yij - y-j)(Yiu - JJ.u) 
Pwst = E( .. __ ·)2 

Yi1 Y.1 

and 

= 2 . ~ ~ (Yij -y,j)(Yiu -JJ.u) 
n(n - l){k - 1) L.J ~ S 2 

, i<u wst 

Here S~st is the variance of the observations· within the groups (strata). 

- 1~- -2 
We have V(y811 ) = k L.J(Yi· - Y) •. 

k 
2 - 2~ - - 2 ~ - - . - 2 n kV(Ys11 ) = n L.J(Yi· - Y) = L...J[(Yi1 - Y) + (Yi2 - Y) +···+(Yin - Y)] 

k n 
i 

= LL(Yij -Y)2 +2L L(Yij -Y)(Yiu -Y) 
j j<u 

= (N - l)S2 + (n - l){N - l)S2Pw· 

( 
2 , 

N-l)S . N-1 · · 
V(Y811 ) = n2 k [1 + (n - l)pw] = nN 8 2 [11:" (n ~ l)Pw]· 
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Here Pw is the intra-class correlation coefficient of observations within a sample. Thus, it may 
be concluded that, if the intra-class correlation coefficient of observations within a systematic 
sample increases, the V(Ysy) is also increased. This means that the efficiency of systematic 
sampling will be increased if the classes are so formed that the correlation of observations 
between classes are minimum. 

Let us now verify the formula V(Ysy) = S~st ( N; n) [1 + (n - l)Pwstl· 

Consider that y-J is the mean of j-th class (j = 1, 2, ... , n). The variance of the observations 
of j-th class included in different systematic sample is 

2 1 '°'( - )2 
SJ ==: k - 1 ~ YiJ - Y.J . 

It has already been mentioned tha.t systematic sampling may be considered as stratified 
sampling, where one unit is selected from each stratum of size k. Then 

k-1~ k-1 
V(Yst) = nN ~SJ= ~S!st· 

j.: 1 

l k n · 

.. VOJst) = nN L L(Yij - y)2. , 

Aga;n, V (Y.,) ~ ~ ;;~:.~~ Y)' ~ ~ L [~ L Yij - ~ t Y-Jl 
2 

t J J=l 

= n!k L [LYij -ii.1]
2 

= n!k ·[L L{Yij·-,-y.j)
2.L L(Yij -y.j)(Yiu ~Y.u)] 

i J i i<u · 
·1. . 

. 1 :· ·. 2 . : . . 2 
= n 2k[n(k - 1).Swst-+ n(n - .. 1}(~ - ~},PwstSwstl 

(k-l)S~8tf ·.(. · )=·· ·] N-n 2 [. ( ) J = N 1 + -~ ~ 1 Pwst .= ~Swst 1 + n -1 Pwst. 

Here Pwst is the n~n-circular serial correlation 'toefficient. 

Thus, the efficiency of systematic sampling depends on Pwst· If Pwst = 0, systematic 
sampling and stratified sampling are equally efficient. The efficiency of systematic sampling 
will be decreasing, if Pwst increases gradually. 

Estimation of sampling variance of systematic sample mean : The systematic 
sample may be considered as simple random sample of size n = _1. The sample of one unit 
does not provide unbiased estimate of variance. However, the biased estimator if V(Ysy) may 
be found out. 

Let us consider that k independent systematic samples are selected and each sample is of 
size n. Then the estimator of variance of systematic sample mean is 

'V(Y.,) ~ N ;;n n '~•' whern '~• ~ n ~ 1 [ ~>1; - nJill 
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Comparison of systematic sampling, simple random sampling and stratified 
sampling : Let there be N units in a population and a simple random sample of n units 
be selected from this population. Then 

·N-n 2 1"°' 2 1 ~ - 2 V (Y) = ~8 , where 'fl= :;:;: ~Yi, 8 = N _ 1 ~(y; - Y) · 

If a systematic sample of size n is drawn from this population, then 

N-1 2 V('flsy) = -N 8 [l + (n - l)pw), 
n 

where Pw is the intra-cla<>s correlation coefficient. It is already mentioned that V('fl8 y) > V(y), 
if p increases. Again, ·~ 

V(- ) = N - 1 82 _ k(n - 1) 82 Ysy N N wsy· 

If systematic sampling is more efficient than simple random sampling, then 

N - 1 82 _ k ( n - 1) 82 N - n 82 
N N wsy < Nn 

or, k(n- l)S! .. y > [(N -1) - N ~ n] S2 

or, k(n - l)S~sy > k(n - l)S2 

or, s~sy > 8 2
. 

Thus systematic sampling is more efficient than simple random sampling, if 8~sy > S2 . 

s2 (N-1) Since V('flsy) = ~ ~ [1 + (n - l)pw], Pw cannot be less than -1/(n - 1). Because 

VO/sy) cannot be negative. Therefore, the lowest value of Pw is -1/(n - 1). Now, V('flsy) as 
given above and V(y) can be compared. Hence, the relative efficiency of systematic sampling 
compared to simple random sampling is 

V(Y) N - n _ 1 
V('flsy) = (N _ l) [1 + Pw(n - 1)] . 

Thus, both sampling scheme will be of equal efficiency, if.pw = -l/(N - 1). If Pw > 
-1 / ( N - 1), simple random sampling is more efficient than systematic sampling. But, if 
Pw < -1/(N - 1), systematic sampiing will be more efficient. 

It has already been mentioned that systematic sampling is equivalent to stratified sampling, 
where one unit is selected from each stratum. hi such a case, 

k - 1 
V('fl .. t) = ~8!st· 

- k - 1 2 
Again, V(y8 y) = ~Swst [l + (n - l)Pwst]. 

Comparing above two variances, it can be mentioned that if Pwst = 0, both sampling schemes 
arc equally efficient. The relative efficiency of systematic sampling compared to stratified 
sampling is 

V('flst) [1 ( 1) 1-1 V(- ) = . + n - Pwst · 
Ysy 

If Pwst > 0, the systematic sampling becomes less efficient compared to stratified sampling. 
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Example 14.1 : A farmer sells milk everyday. The amounts of milk soid (kg) per day are 
shown below : 

Day Milk Day Milk day Milk Day Milk Day Milk Day Milk 
sold sold sold sold sold sold 

1 30.5 41 28.0 81 29.0 121 20.0 161 30.0 201 25.0 
2 24.6 42 28.5 82 29.0 122 25.6 162 27.0 202 25.5 
3 32.4 43 28.5 83 29.0 123 30.0 163 26.0 203 24.0 
4 22.6 44 28.5 84 30.0 124 30.0 164 25.0 204 28.0 
5 20.5 45 30.0 85 30.0 125 31.2 165 25.0 205 28.5 
6 28.9 46 30.0 86 30.0 126 32.3 166 22.0 206 29.0 
7 30.4 47 30.0 87 29.0 127 34.0 167 26.0 207 29.0 
8 30.2 48 30.0 - 88 27.0 128 30.0 168 28.2 208 29.0 
9 30.6 49 30.0 89 27.5 129 32.0 169 20.5 209 30.0 
10 26.6 50 30.0 90 28.0 130 32.0 170 20.0 210 29.5 
11 28.7 51 25.5 91 28.0 131 32.0 171 21.2 211 25.0 
12 25.0 52 26.5 92 28.0 132 30.0 172 28.0 212 25.0 
13 26.0 53 26.0 93 28.0 133 30.0 173 28.0 213 25.0 
14 25.0 54 26.0 94 29.0 134 30.0 174 30.0 214 26.0 
15 25.0 55 26.0 95 29.0 135 30.0 175 30.0 215 22.0 
16 25.0 56 25.5 96 29.0 136 30.5 176 30.2 216 21.2 
17 25.0 57. 25.0 97 30.0 137 30.5 177 30.5 217 22.5 
18 26.0 58 26.0 98 30.0 138 31.0 178 33.0 218 23.0 

.19 25.0 59 27.0 99 30.0 139 30.0 179 29.0 219 28.0 
20 30.0 60 28.0 100 30.0 140 30.0 180 30.0 220 22.5 
21 28.0 61 28.0 101 30.0 141 28.0 181 30.5 221 24.6 
22 28.0 62 28.0 102 30.0 142 27.0 182 31.2 222 25.0 
23 28.0 63 28.5 103 25.0 143 27.5 183 34.0 223 30.0 
24 28.0 64 28.5 104 25.0 144 27.5 184 35.0 224 30.0 
25 29.0 65 28.5 105 25.0 145 27.5 185 34.0 225 30.0 
26 31.0 66 28.5 106 25.0 146 28.0 186 30.2 226 30.0 
27 32.0 67 32.0 107 26.0 147 29.0 187 30.5 227 28.2 
28 30.0 68 32.0 108 26.0 148 29.0 188 30.5 228 28.0 
29 28.0 69 32.0 109 26.0 149 29.5 189 30.0 229 29.0 
·30 29.0 70 31.0 110 ·26.0 150 29.0 190 30.0 230 29.0 
31 27.5 71 30.0 111 26.0 151 28.0 191 30.0 231 29.0 
32 27.5 72 30.0 112 27.0 152 28.0 192 30.0 232 32.5 
33 27.5 73 30.0 113 27.0 153 28.0 193 26.0 233 . 32.0 
34 25.0 74 28.5 114 27.0 154 28.0 194 25.5 234 32.0 
35 25.5 75 29.0 115 27.0 155 28.0 195 24.0 235 30.0 
36 27.5 76 31.5 116 27.0 156 28.5 196 24.0 236 29.0 
37 27.8 77 31.5 117 24.0 157 30.2 197 24.0 237 29.0 
38 28.0 78 31.0 118 24.5 158 30.0 198 20.0 238 29.0 
39 28.0 79 28.2 119 25.5 159 30.5 199 22.2 239 30.5 
40 28.0 80 28.5 120 20.0 160 30.5 200 25.0 240 31.,5 
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Day' Milk Day Milk day Milk Day Milk Day 
sold' sold sold sold 

241 31.5 262 32.0 283 28.0 304 27.0 325 
242 31.0 263 30.0 284 28.0 305 30.0 326 
243 30.0 264 30.0 285 28.0 306 28.0 327 
244 30.0 265 28.0 286 34.0 307 28.5 328 
245 28.0 266 28.5 287 33.0 308 28.5 329 
246 28.0 267 28.0 288 32.0 309 29.0 330 
247 24.0 268 28.0 289. 32.0 310 29.0 331 
248 24.0 269 28.0 290 30.0 311 30.0 332 
249 26.0 270 29.5 291 26.0 312 30.0 333 
250 26.5 271 29.5 292 26.6 313 30.0 334 
251 26.5 272 27.0 293 26.5 314 31.5 335 
252 27.0 273 27.0 294 27.0 315 32.5 336 
253 27.0 274 26.0 295 27.0 316 33.0 337 
254 27.0 275 26.2 296 28.2 317 33.0 338 
255 28.0 276 26.4 297 25.0 318 28.0 339 
256 29.5 277 25.0 298 25.0 319 29.0 340 
257 30.0 278 25.0 299 24.0 320 29.0 341 

. 258 30.0 279 24.0 300 22.0 321 30.0 342 
259 30.0 280 22.0 301 20.0 322 30.0 343 
260 29.5 281 20.0 302 22.0 323 26.0 344 
26i 30.0 282 20.0 303 27.0 324 26.5 345 

(i) Draw a systematic sample of size n = 30. 

(ii) Estimate the total amount of milk sold throughout the year. 

(iii) Estimate the variance of the estimated total milk production. 

401 

Milk Day Milk 
sold sold 

27.5 346 30.2 
27.8 347 30.4 
29.0 348 30.4 
29.0 349 24.0 
30.0 350 26.2 
24.5 351 25.0 
25.5 352 25.0 
24.5 353 32.0 
23.0 354 32.5 
27.0 355 30.2 
24.0 356 30.0 
24.0 357 31.6 
24.0 358 25.5 
24.5 359 25.8 
25.5 360 25.0 
25.0 361 24.0 
26.0 362 24.5 
26.2 363 20.2 
28.2 364 23.0 
28.6 365 23.5 
29.2 

(iv) Estimate the grain in· precision of systematic sampling compared to simple random 
sampling. 

Solution : (i) We have N = 365, n = 30, k ~ 12 (k ::::: ~ ). Since k is not an integer, we 
need to select sample observations by circular sy~tematic sampling. The first unit is selected 
using a "Random Number" selected from the numbers 1 to 365. This number is (using random 
number table sho,wn in appendix) '161. Therefore, the selected days are : 

161;173,185,197,209,221,233,245,257,269,281,293,305,317,329,341,353,365,012,024, 
036,048,060,072,084,096, 108,120,132,144. 

The Selected SamRle Observations 

SL. Milk SL. Milk SL. Milk SL. Milk SL. Milk 
No. sold No. sold No. sold No. sold No. sold 

1 30.0 7 32.0 13 30.0 19 25.0 25 30.0 
2 28.0 8 28.0 14 33.0 20 28.0 26 29.0 
3 34.0 9 30.0 15 30.0 21 27.5 27 26.0 
4 

. .,., 
24.0 10 28.0 16 26.0 22 30.0 28 20.0 

5 30.0 11 20.0 17 32.0 23 28.0 29 30.0 
6 24.6 12 26.5 18 23.5 24 30.0 30 27.5 
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(ii) The estimate of total milk sold throughout the year is given by 

Ysy = NySY' 
, 1 n 

where Ysy = - LYiJ, i = 1 
n 

j=l 

- 840.6 - 8 02 k -30-2. g 

= 365 x 28.02 = 10227.3 kg. 

(iii) The estimate of variance of the estimated total milk production is 

, N(N - n) 2 v(Ysy) = 8We' 
n 

2· 1 [2:: 2 -2] where 8we = -- Yii - nyi· , 
n-1 · 

1 n 

Yi· = -; L Yij = 28.02 

. 1 
= 30 - 1 [23879.16 - 30(28.02) 2

] = 11.2258. 

, 365(365 - 30) 
v(Ysy) = 

30 
. X 11.2258 = 45754.46. 

(iv) The gain in precisio!1 of systematic sampling over simple random sampling is 

v(Y) - v(Ysy) 

v(Ysy) 

Here v(Y) = N(N - n) 8 2 , 

n 

where 2 1 
8 =--

n-l 
, i = l. 

8
2 = -

1
- [23879.16 - (

840
·
6

)
2

] = 11.2258. 
30 - 1 30 

v(Y) = 365 ( 3~~ - 3
o) x 1 i.2258 = 45754.46. 

It is observed that v(Y) = v(Ysy). However, v(Ysy) is not an unbiased estimator of V(Ysy) 
and hence, this v(Ysy) should not be used to compare with v(Y). 

Another biased estimator of V(Ysy) is 

v(Y.,) ~ ~~~ = 7! [~(Y;; -Y;;+.)
2

] , i ~I 
= 

365(365 - 30) (710.67) = 49940.90. 
2 x 30(30 - 1) 

Hence, there is no net gain in precision of systematic sampling compared to simple random 
sampling, since v(Ysy) > v(Y). This comparison is also not perfect as v(Ysy) is not unbiased. 
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Example 14.2 : The following data represent the amount of fish (in kg) sold in a market_ 
in different days in the month of April 2015. 

Day Amount Day .Amount Day Amount Day Amount Day Amount 
of fish of fish of fish of fish of fish 

1 800.5 7 600.0 13 700.6 19 660.2 25 895.0 
2 970.2 8 715.8 14 785.7 20 775.0 26 1008.0 
3 612.5 9 865.2 15 975.0 21 842.0· 27 975.0 
4 995.7 10 1000.0 16 670.0 22 632.8 28 1062.5 
5 870.5 11 1014.5 17 500.2 23 780.6 29 770.6 
6 900.0 12 880.7 18 .842.8 24 990.0 30 715.5 

(i) Draw all possible systematic samples of days after each 5 days to estimate the average 
fish sold in the market. 

(ii) Estimate the variance of the estimate of average fish sold per day. 

(iii) Compare .systematic sample with simple random sample and stratified sample. 

Solution : (i) Here N = 30, k = 5, n = 6. Since k = 5, we have to select a random 
number from numbers 1 to 5. Using the 'Random Number Table' given in Appendix, the 
selected random number is 5. Hence, all possible systematic samples are as follows : 

Sample Sampling units Total Mean 
numbers YiO 'iho 

1 870.5 1000.0 975.0 775.0 895.0 715.5 5231.0 871.83 
2 800.5 900.0 1014.5 670.0 842.0 1008.0 5235.0 872.50 

3 970.2 600.0 880.7 500.2 632.8 975.0 4558.9 759.82 
4 612.5 715.8 700.6 842.8 780.6 1062.5 4714.8 785.80 

5 995.7 865.2 785.7 660.2 990.0 770.6 5067.4 &;14.57 

Total '!101 4249.4 4081.0 4356.5 3448.2 4140.4 4531.6 24807.l 

The estimate of average fish sold per day is 

1 5231.0 
Ysy = -;:; LYij = -

6
- = 871.83. 

This average is based on the first sample. The estimates on the basis of other samples are 
shown in the table (Yi-' i = 1, 2, 3, 4, 5). 

(ii) The estimate of varia~1ce of the estimate of average fish is v('iJsy) = N - n s!c· 
Nn 

Here s!c = n ~ 1 [t yfj - nyf.] ·i = 1, 
J=l 

since estimate of average fish sold is obtained from the first sample. 

1 s!c = 
6 

_ l [4621985.5 - .6(871.83)2
] = 12292.04. 

30-6 
v('iJsy) = 

30 
X 

6 
12292.04 = 1638.94. 
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(iii) The variance of systematic sample mean is 

_ . N-1 2 k 2 
V(Ysy) = --;:;-S - N(n - l)S.wsy• 

where s2 = -·-1 - ["" y2. - CI: LYij)2] = _1 _ [21148128 ~3 - {24807.1)2] 
N - 1 ~ ~ '3 N 30 - 1 . 30 

= 21898.44. 

sz - 1 ""CY .. --y )2 wsy - k(n- l) ~~ •J i· 

= k(n 1_ 1) [ {LYi1 - (L~1j)2} + { LY~.i - (1:~2j)2} 

{ L Y~.i ~ CI: ~3j )2 } + { L Y~j - (L ~4j )2 } + { L Y~j - (L ~5j )2 } ] 

= 1 
[{4621985.5 - C

523
L0)

2
} {4653938.5 - (

5235
·
0

)
2

} {3678181.41 
5(6 - 1) 6 + 6 + 

- (
455

:·
9

)
2

} + { 3826920.7- (
471

:·
8

)
2

} + { 4367102.42- (
5
o
5
;.4)

2
}] 

= ;5 [571455.6949] =. 22858.2278. 

V(Ysy) = 
30

3~ 
1 

x 21898.44 -
5 (53~ l) x 22858.2278 = 2119.969. 

N -n 30- 6 
V(Y) = ~S2 = 

30 
x 

6 
x 21898.44 = 2919.792. 

The gain in precision of systematic sampling compared to simple random sampling is 

V(Y) - V(Ysy) x 
1003 

= 2919,.792 - 2119.969 x 
1003 

= 
37

.
733 

V(Ysy) 2119.969 

. k - 1 ~ 2 2 [~ 2 (y.j)2] k - 1 2 
Again, V(Yst) = ~~SJ; where SJ = ~ YiJ - -k- /k - 1 = --p,rSwst· 

n J=l i=l 

SL. No. 

1 
2 

3 
4 

5 

6 

Total 

LYTJ YT1/k s2 = _1_ [L 2. - (y-J)2] 
J k - 1 Yi1 k 

i i 

3706433.28 3611480.072 23738:302 

3430940.68 3330912.2 25007.12 
3863632.59 3795818.45 16953.535 

2445900.92 2378016.648 16971.068 

3499861.20 3428582.432 17819.692 

4201359.86 4107079.712 23570.037 

124059.754 

5-1 
V(Yst) = --124059.754 = 2756.883. 

6 x 30 
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Therefore, the gain in precision of systematic sampling compared to stratified sampling is 

V(Yst) - V(Ysy) x 10 01 = 2756.883 - 2119.969 x 10001 = 30.04o/c. 
V(Ysy) Oio 2119.969 

10 0 

14.5 Systematic Sampling when Population Units are in Random 
Order 

If the frame is formed with random serial number, then there is no possibility of any linear 
trend in the population observations; the population observations which are located nearby are 
not correlated and no strata can be formed with those nearby units. For example, let us consider 
the survey to estimate the monthly expenditure of some students of a college where students 
are listed according to the first letter of their name and students are selected in a systematic 
way after every 5 students. In such a case the variable monthly expenditure of students will 
not be correlated with the serial number of the frame or there will not be any trend with the 
increase in serial number and expenditure. There will be less chance of correlation in amount 
of expenditure of·a group of 5 or 10 students who are nearby in the frame. The students cannot 
be grouped into strata. The systematic sampling in such a situation is equivalent to simple 
random sampling. However, V(Ysy) will not always be equal to V(Y), since V(Ysy) depends on 
the value of k. · 

Let there be N units in a finite population. These N units can be arranged in N! ways. 
Now, if any one arrangement is selected at random and if systematic sample is selected from 
that randomly selected arrangement of population units, then 

E V(Ysy) = V(Y). 

However, if population units are not selected from N! arrangements, EV(Ysy) i= V(Y). The 
V(y) is fixed for every arrangements of N!. 

Theorem : Let the observations of a super population be y1 , y2 , ... , YN such that 

E(yi) = µ, E(y; - µ)(YJ - µ) = 0, if ii= j 

= a;, if ·i = j. 

Then, if systematic sample of size n is drawn from such a population 

E V(Ysy) = EV(y). 

Proof: We know that, if a simple random sample of size n is drawn from a finite population 
of size N, then 

N 

V·(Y) = N - n 32 = N - n _._I_ °"(Y; - Y)2., 
Nn Nn N-l ~ 

N N 

But " -2 " - 2 " 2 - 2 ~(Yi - Y) =~[(Yi - µ) - (Y - µ)] =~(Yi - µ) - N(Y -.µ) . 

Again, 
- 1 N 

E(Y - µ) 2 = N 2 La} [·: Yi and Yi (i i= j) are not correlated] 

Then N-n 1 [N _ l 
E V(Y) = ~ N - 1 L E(yi - ~) 2 

- N E(Y - µ) 2 
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N N~i n N ~ 1 [ f= er? - :2 f= er?] 

N-n N 

nN2 L:a?. 

Let Yu is the sample mean of 'U-th systematic sample. Then 

1 k - 1 k -
V(Ysy) = k L(Yu - Y) 2 

= k L[(Yu - µ) - (Y - µ)] 2 

u u=l 

= ~ [L(Yu - µ) 2 
- k(Y - µ)~]. 

Here Yu is the sample mean of uncorrelated sample. Therefore, we ca.n write : 

N - n'""' = nN2 ~a?= E[V(y)]. 

14.6 . Systematic Sampling in Populations with Linear Trend 
Let there be N units in a population and there is linear trend in the observations of 

population units. The observations can be represented by a model : 

Yi = a + /3i, i = 1, 2, ... , N. 

It is observed that the value of Yi is increased according io the model given above, where a and 
f3 are constants. The values of Yi for different values of i can be shown graphically as follows : 

• = systematic sample 
o = stratified sample 

From the graph it is clear that if in a stratum systematic sample observation is smaller, it is 
smaller in every stratum. But it is not true, if there is one unit in a stratum and in that case, 
V(Ysy) > VOlst)· This is true since there is a chance of less variation within the observations 
of a stratum. 

For linear trend in popuiation observations, 

- 1 N (N +I) 
Y= NL(a+f3i)=a+,B 

2 
. 
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Also 1 - . 1 N [ . (N + l)J 
s2 = N - 1 L(Yi - Y)2 = N - i I: a+ f3i - a - f3 2 

/32 
N (· N + 1)

2 
N(N + 1){32 nk(nk + 1){32 

= N - 1 L i - -2 - 12 12 

Then V(Y) = N - n S 2 = N - n nk(nk + 1){32 = (k - l)(nk + 1){32 

Nn Nn 12 12 

In a similar way, we have 

(- )= N-n 82 ~ k-1 k(k+l)f32 = (k-l)(k+l){32 (k2 -1){32 

V Yst Nn w nk 12 12n 12n 

Again, in case of systematic sampling, 

V(~ ) = ~ ~(- _ Y)2 = ~ k(k + l)(k -1){3
2 

Ysy k L.. y, k 12 
i=l 

(k2 - 1){32 

12 

_ k2 -1 _ k2 -l (k-l)(N+l) 
Therefore, V(Yst) = ~ ::; V(Ysy) = 12::; l2 · 

Now, if n = 1, V(Y8 t) = V(Ysy). 

407 

It is observed that the variance of stratified sample is ~th portion of variance of systematic 
sample. This is true for simple random sample also. We have 

k+l 
V(Yst) : V(Ysy): V(Y) :: -- : k + 1 : nk + 1 

n 

:::::; ~ : 1 : n = 1 : n : n 2 

n 

However, the efficiency of systematic sample can be increased using Yates (1948) concction or 
using modified method suggested by Singh et al. (1968). 



Chapter 15 

Ratio and Regression Estimator 

15.1 Ratio Estimator 
The objective of the sample survey is to estimate the parameter of the population under 

consideration. The estimator so far discussed is simple average of sample observations. However, 
the estimator can be defined using some auxiliary information which are related to the sample 
observations, if these are available from each sampling unit. Such types of estimators where 
the values of the related variable are used to estimate the parameter of the main variable 
are (a) Ratio Estimator, and (b) Regression Estimator. In this chapter we shall discuss ratio 
estimator. The ratio estimator can even be defined if total value of the auxiliary variable instead 
of all observations is known . 

. Let there be N units in a population. Assume that n units are selected under simple random 
sampling scheme without replacement (SRSWOR). Let Yi be the value of the variable under 
study recorded from i-th unit in the population (i = 1, 2, ... , N) and Xi be the value of a related 
variabl.e which is related to Yi· Now, 

where 

N _ l N 
Y = L Yi = total of variable y, Y = N L Yi· 

i=l i=l 

N _ l N 

X = L xi = total of variable x, X = NL Xi· 

i=I i=I 

ri = Yi = ratio of the value of y and x variable for ·i-th unit. 
:i:i 

' 1~ ' y y 
r = - ~ ri, R = - = -, 

n i=I X X 

n l n l n 

y =LY;, x = L X;, y = - LYi, x =; L Xi. 
i=l i=l • n i=I i=I 

n 

Also, consider that the population correlation coefficient of two variables is p. Here R, Y n and 
Yn are respectively the estimator of R, Y and Y. 

Theorem : In simple random sampling if sample of size n is selected, then the sample 
obs~rvations provides ratio estimator of population mean, population total and population ratio 

as Y, Yn and R respectively. If the sample size is large, the variances of these estimators are 

~ 1-j 1 N N • 2 

V(YR) :=:::: -n- N- I LL(Y; - Rx;) 
i=l i=I 

408 
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A N 2 (1 - !) N 2 

V(Yn)::::: n(N _ l-) t;(Yi - Rx,) 

. l-f 1 ~ 2 
and V(R)::::: --=z N _ l ~(Yi - Rx;) , 

nX i=l 

where Y n =Ex. Yn = ¥..x = Y, R = ¥.. = E. f = .!!:.. x x X x x N. 

Proof: Let us first check whether R is a biased or unbiased estimator of R. We can write, 

A y y-RX . 
R - R = - - R = . We can also wnte : x x 
1 

x + (~ - X) = ~ ( 1 + x ; X) -1 ::::: ~ ( 1 - x ; X) . -
x 

[neglecting the higher powers of (x - X)/ X]. 

Hence, , y-RX( x-X) R-R::::: 1--=-. 
x x 

Now E(y- RX)= E(Y)- R(x) = Y- RX= 0. 

, (Ti - RX) (x - x) 
Therefore, E(R - R)::::: -E . 

x x 
- - - l-f 

But Ey(x - X) = E(y - Y)(x - X) = --pSxSy, . n 

where 
. 2 1 ~ -2 2 1 {--.. -2 

S:c = N _ l ~ x, - X) , SY = N _ l ~(y; - Y) , 
i=l i=l 

E(x - X)(y - Y) 
P = Bx Sy . 

Ex(x- X) = E(x- X)(x- X) = l - f s;. 
. . n Again, 

Hence, E(R - R)::::: 1 - f [RS2 - pS S ] = 1 - f [ s; - Syx ] R 
nX2 x Y x n X2 RX2 

1 - f [ 2 ] 2 s; Syx · =--Cx-Cxy 1 Cx=-2 , Cxy==. 
n X XY 

Hence, R is not an unbiased estimator of R. Therefore, ·other estimators involving ft are also 
not unbiased. 

Let us now find the variance of R, where 

V(R) = E[R - E(RJ]2 ::::: E(R - R) 2 [·: E(R)::::: R] 

= E [¥- Rr =·E (y~ RX) 2 ::::: ; 2 E(y- RX)2. 

Let u; =Yi - Rx; (i = 1, 2, ... , N). 
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Then u = y - RX and U = Y - RX = 0. 

V(R) ~ \E(u - U) 2 = \ V(u) = \ l - f s:. 
X X X n 

But 2 1 ~ -2 1 '""2 1 ~ 2 
Su= N _ l L)ui - U) = N _ 1 ~ ui = N _ l ~(y; - Rxi) . 

i=l 

Hence, ' l-f 1 ~ 2 
V(R) ~ ~ N _ l ~(Yi - Rx;) . 
. nX i=l . 

We know YR.= RX. 
N 

..:.. -2 - 1- 1 1 L: 2 V(Y R) = X V(R) ~ -- -N (Yi - Rx;) . 
n -l 

i=l 

Also YR= RX= RNX. 

V(YR) = N 2 X
2
V(R) ~ N

2

(~ - !) N ~ 
1 

L(Y; - Rx;) 2
. 

It is observed that the ratio estimator is obtained using the values of y-variable and x
variable. But the values of these variables may vary from sample to sample and hence, the 
distribution of ratio estimator may be different. However, the limiting distribution of ratio 
estimator follows normal distribution, if sample size becomes large. This indicates that the 
ratio estimator is consistent though it is biased. If the sample size is not large enough, the 
distribution of ratio estimator is positively skewed. 

Corollary : In simple random sampling the variance of ratio estimator R of R is 

• 1 - f 2 2 2 (1 - J)R2 
2 2 

V(R) ~ ~[Sy + R Sx - 2RpSxSy] = [Cy + Cx - 2pCxCy], 
nX n 

Bx Sy 
whtre Cx = X and Cy = y . 

Proof : We have 
N 

V(R) .~ ~ - 1
- L(Yi - Rxi)2 

nX N - I i=t 

1·-/ 1'"" - -2 
=· ni2 N _ l L.)(Yi - Y) - R(x; - X)] , • Y - RX = 0 

1 - f [ 1 ~ - 2 R
2 ~ - 2 

= nX2 N-l~(yi-Y) + N-l~(xi-X) 

. - N2~ I f:(x; -X)(y; - Y)l 
.,.. = 1 

-{ [s; + R 2s; - 2RSyx] 
nX 

1 - l [ 2 2 2 s ] Syx 
= _ 2 SY + R Sx - 2Rp xSy , p = S ·s 

nX xy 
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y _ (1-J)R2 [s; s; _ 2 Sx Sy] 
- -2 + _2 P- - ' R== 

n y x X Y x 
R2(1- J) 2 2 = [Cy+ Cx - 2pCxCy]· 

n 

Corollary : In simple random sampling the variance of the ratio estimator YR of Y is 

Corollary : In simple random sampling the variance of the ratio estimator YR of Y is 

-2 
(1 - J)Y 2 2 J ---[Cy+ Cx - 2pCxCy . 

n 
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From the above results it is observed that the variances of R, YR and YR are multiple of a 
fixed quantity 

1-f[ 2 2 -- CY + Cx - 2pCxCy]· 
n 

This quantity is the square of coefficient of variation. Thus, we can write : 

This (C.V.) 2 is same for all estimators. This (C.V.)2 is called relative variance of the estimator 
[Hansen., Hurwitz and Madow]. 

Corollary : If Cy= Cx = C, then V ( ~) = 
1

: f 2C2(1- p). 

Proof: We have V(R) ~ 1 
!..... f R2[c; + c; - 2pCxCy]· 
n 

. . V ( ~) .= 
1 

: f [C; + c; - 2pCxCy] = l : f (2C2 
- 2pC2

), 

l-f 
= --2c2 (1 - p). 

n 

Cy= C'!' = C 

_9orollary : In simple random sampling the ratio of bias of R to the standard error (S.E.) 
of R is 

bias ~(RS; - pSySx) H Sx(RSx ·_ pSy) 

S.E. = X [!.::::L(s2 + R2s2 - 2R SS )] i/2 = y ~ (S~ + R2s; - 2RpSxSy)1/2 
n y x Pyx 

. s .j1=J 
where C.V. (x) = x . 

x.;n 
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bias _ (R2 S~ + p2 S; - 2RpSxSy) 112 

Also, we have S.E. = Cov(x) (R2 S'7, + 8~ _ 2RpSxSy)l/2 

bias 
. . S.E. -:::; Cov(x), ·: p

2 
-:::; 1. 

Kish, Nai'uboodri and Pillai (1962) have shown that in maximum cases the above ratio is less 
than 0.03. 

Hartley and Ross (1954) have proposed a for:mula to find the bias. They have utilized the 
covariance of R and x in case of simple random sampling to find the bias of k This covariance is 

Cov(R,x) = E =·x - E = E(x) = Y-XE(R). A (y ) (y) - - A 

' X X. 

We have E(R) = y - Cov(R, x) = R - 1 Cov (R, x). 
x x x 

Therefore, the bias of R is 
A 1 A 

E(R) - R = -=Cov(R,x). x 
- -1 

. The above. bias formula is exact since the approximate value of ( 1 + x; X) is not used 

to find bias. We have 

lb
. (R' )j Cov (R, x). Pk,x a k a;x a kax 
1as = = <--=-X X - X [·: Pk,x-:::; 1] 

bias (R) C (R' _) ------'- < ov x . 
ak -

The above ratio is true in finding Yn and YR· From the above result Hartley and Ross have 
concluded that the bias of ratio estimator is negligible if Cov (Rx) < 0.1. 

15.2 Estimation of Variance of Ratio Estimator from Sample 
. N 
, 1 - f N 2 ~ 2 n 

We have V(Yn) ~ -n- N _ 1 L.)Yi - Rxi) , f = N. 
i=l 

A 1 N 

To estimate V(Yn) we need to estimate S~ = N _ 
1 

L(Yi - Rxi)2
. 

. i=l 

' 1 n A A y 
Cuchran (1977) has shown thats~= -- ~(Yi - Rxi)2

, R = = 
n-1 ~ x 

i=l 

can be used as an estimator of.S~. This estimator is biased of order 1/n. Hence, the estimator 
of V(Yn) is 

v(Yn) = N
2
(l - !) - 1- ~(Yi - Rxi) 2 

n n-1 ~ 
i=l 
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where s~ = n ~ 
1 
·~.)Yi -y) 2

, s; = n ~ 
1 

2.)xi - x) 2
, 'syx = ~ ~- 1 L(x; - x)(y; - y). 

In a similar way the estimator of V(R) obtained as 

and 

- 1-/ 2 -2 2 ,· -
v1(R) = --"2(sy + R sx - 2Rsyx), if Xis known 

nX 
A 1-/ 2 ·22 A --

v2(R) = --::z-(sy + R sx - 2Rsyx), if X is not k_nown. 
nx 

The estimator of V(Yn) is 

..:._ 1-f 2 '2 2 A 

v(Y R) = -- [sy + R sx - 2Rsyx]· 
n 

Using the above estimators of V(R) and V(Y R) the confidence limits of Rand Y are found 
out, where the (1 - a)100% confidence limits are 

.R±z'i{:(iiJ and YR±z'ijv(YR)· 

Here Z'i is the value of normal variate for probability a. However, if the distribution of R is 
skewed, the confidence limit of R is 

R ± z'i JCyy + Cxx - 2Cyx> 

where Cyy = 1 - f ~~ , C-xx = 1 - f ~~ , C 1 - f Syx 
n y n x 'Yx = -n- x'fi' 

Example 15.1 : To estimate the jute production in an area 30 farmers living in the 
area are randomly selected. The jute grower farmers in the area are 500. The information 
on jute production (y in 100 kg) and· the amount of land cultivated (x in acre) are 'Corded 
from the selected farmers. Find ratio estimate of total jute production in the area. At:>o .find 
953 confidence limit of the total jute production. Calculate the relative precision of your 
estimator compared to simple estimator. The total land used in the area for jute cultivation is 
approximately 450.00 acres. 

SI. No. Jute Land SI. No. Jut~- Land 
production cultivated production cultivated 

y x y x 
(in 100 kg) (in acre) (in 100 kg) (in acre) 

1 2.2 0.5 11 4.5 1.0 
2 2.6 0.8 12 3.0 0.5 
3 4.0 1.0 13 2.8 0.6 
4 6.5 . 2.0 14 2.4 0.6 
5 4.6 1.2 15 3.5 0.8 
6 6.0 2.2 16 4.5 1.4 . 
7 2.5 0.5 17 8.0 1.5 
8 2.5 0.6 - 18 10.0 2.0 
9 3.0 0.9 19 12.5 2.2 
10 7.0 1.5 20 8.5 1.8 
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SI. No. Jute Land SJ.·No. Jute Land 
production cultivated production cultivated 

y x y x 
(in 100 ·kg) (in acre) (in 100 kg) (in acre) 

. 
21 9.0 1.5 26 3.5 0.8 
22 3.5 0.7 27 9.5 2.4 , 
23 3.0 0.5 28 12.0 2.5 

24 2.0 0.4 29 10.5 1.5 

25 1.5 0.2 30 4.8 1.0 

Solution : We have N = 500, "n = 30, X = 450.00, E y = 159.9, Ex 35.1, 
y = 5.33, x = 1.17 R = y/x = 4.56. Hence, the estimate of total jute production is 

YR = RX = 4.56 x 450.00 = 2052.00. 

The estimate of variance of YR is 

, N2(1 - f) 2 "2 2 , 30 
v(YR) = n [8y + R 8x - 2R8yx], f = 

500 
= 0.06. 

8 2 = - 1-['°"'y2 - (l:y)2
] = - 1

- [1153.65- (l
59

·
9

)
2

] = 10.3925. 
Y n - 1 ~ n 30 - 1 • 30 

82 = _1_ ['°"' x2 - (l:x)2] = _1 _ [53.83 - (35.1)2] = 0.4401. 
x n - 1 ~ n 30 - 1 30 

·, 1 ['°"' Ex:L:y] 1 [ 159.9x35.l] 
8yx = n _ 

1 
~ xy - 'Ii = 

30 
_ 

1 
243.37 -

30 
= 1.9409. 

v(YR) = (500)
2
(l - 0.06) [10.3925 + (4.56)20.4401 - 2 x 4.56 x L9409] 
30 \ 

= 1 H66.24955. 

s.e. (YR)= Jv(YR) = 13~.16, 
The 95% confidence limits of Y are 

YRL = YR - Zo.025s .. e. (YR) and YRu = Y.R + Zo.025s.e. (YR) 

= 2052.00 - 1.96 x 132.16 

= 1792.97. 

= 2052.00 + 1.96 x 132.6 

= 2311.90. 

The estimate of variance of total jute production on the basis of simple estimate [estimate 
based on simple random sampling] is 

v(Y) = N
2

(1 - f) 8~ = (500)
2

(1 - 0.06) x 10.3925 = 81407.92. 
n 30 

Therefore, the relative precision of ratio estimator compared to simple estimator is 

R.P. = v(Y)---:_ v(YR) = 81407.92- 17466.25 = 3_661 or 366_13. 
v(YR) 17466.25 
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The estimate of average jute production per farmer is 

Yn =RX= 4.56 x 0.9 = 4.104 (100 kg) [·: X = 0.9]. 

The estimate of variance of YR .is 

~ 1-f 2 '2 2 A 

v(Y n) = -- [sy + R sx - 2Rsyx] 
n 

= ~l -3~·06) (10.3925 + (4.56) 20.4401 - 2 x 4.56 x 1.9409] 

= 0.0577. 

15.3 Comparison of Ratio Estimator and Simple Estimato'i-

415 

The simple estimator of population mean also known as sample mean per unit is y, '\Vhere 

y = ~LY· The esti~ator of Y in case of ratio estimator is YR· This ratio estimator will be 

efficient than y, if V(Y) < V(y). 

Theorem : In simple random sampling if sample size is large, the V(Y n) is less than V(y) 
when 

P > ~ Bx /Sy = ~ C.V.(x). 
2 X Y 2 C.V.(y) 

l-/2 ~ 1-f 2 22 
Proof: We have V(y) = --sy and V(Y n) = -- [Sy+ R Sx - 2RSyx]· 

n n 
If V(Y n) is less than V(Y), we can write : 

s; + R2 S'; - 2RpSySx < s; 
2pSySx >RS'; 

p > ~RSx = ~ Y Bx = ~ Bx /Sy = ~ C.V. (x). 
2 Sy 2 X Sy 2 X Y 2 C.V.(y) 

15.4 Unbiased Ratio Estimator and its Variance 
It has already been shown that the ratio estimator in case of simple random sampling is ~ot 

unbiased. Let us investigate the sampling method which may provide unbiased ratio estimator. 
One of the method of sampling is to select the sampling units with varying probabilities. Lahiri 
(1951) has proposed such a method. According to Lahiri the sampling units are to be selected 
on the basis of probability proportional to total size of sampling units (ppts). In this scheme, 

n 

the first unit is selected with probability proportional to L Xi and the remaining (n - 1) units 
i=l 

are to be selected with equal probability. Midzuno (1951) has proposed to select first unit with 
probability proportional to x1 and the remaining (n _:_ 1) units are to be selected from (N....., 1) 
units with equal probability without replacement. 

Let there be N units in a finite population. We need a sample of size n. Let the first unit in 
N 

the sample be selected with probability Pi ( i = 1, 2, . : . , N), where L Pi = 1. The remaining 
. i=l . 

(n - 1) units are-selected with equ~l probability without replacement. Consider that i-th unit 
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is selected first. The probability.of selection of i-th unit and the remaining (n - 1) units under 
. simple randoni sampling scheme is 

(N - 1) . . , pi/ n - 1 , i = 1, 2,_ ... , N. 

Now, if Pi = xi/ X, theq the probability of selection of a sample of size n is 

n n 

p ( S) = -,--i=_1 --..,.-

(~ = O 
i=l 

(N-1) X. 
n-1 

Here S is the sample space [S = S(y1; Y2, ... , Yn)] 

The ratio estimator Of population total under the sampling scheme mentioned above is 

Yn =RX= ~x 
x 

Theorem : If sampling units are selected with varying probabilities and without 
replacement, then the ratio estimator of population total is unbiased. 

Proof: The ratio estimator of population total is Yn = ~X = '#.x. 
x x 

N 

Now, EcYn) = E ['#.x] = x E ('#.) = x L '#. x 
I x x i=l x (N - 1) x 
l .n-1 

( ) 
LY=Y. 

N -1 
1 

n-1 

1 -

Here L;1 indicates the t~tal of y; included in all samples. Hence, ratio estimator is unbiased. 

In a similar way, we can show that the ratio estimator of Y is Y n and it is also unbiased. 

The variance of Y n is [Raj ( 1964)] 

' x y2 2 

V(Yn) = ( ) L - - Y . N - ! 1 x 
n-1 

The estimator of this variance is 

- - 2 N X [-2 (1 1 ) 2] v(Yn) = Yn - ~ y - ;;: - N sY . 

Unbiased ratio esti~ator in case of sampling with replacement : Let Yi= Y + Ei· 

Now, if we have a sample of n observations, then 

y = Y + E, where E('E) = 0 and E('E2
) = NN-n n s;. 

Again, let Xi= X+ E 1 i. Then x= X + 'E1 . Here also 

E(_)·. E(-2) N - ns2 
Ei = 0, Ei = N;;:- x· 
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Now, if sampling units are selected with varying probabilities, we can define Z; for i-th unit, 
where 

Yi -
Zi = -- = Y + Ei. 

Np; 

Xi -
Also, we can define Vi = -N = X.+ Eli 

Pi 

. f z . Zi Yi The ratio o i to vi 1s r; = - = -. 

Then 
' z 
R=-. v 

V; Xi 

We have E(Z;) = Y, E(v;) = X, E(Z) = Y, E(v) = X. 

2 1 N 
E('E2

) = uz = - '""p;(Z; - Y) 2 

n n L,; 
i=l 

. 2 N 
-2 (}' 1 I: - 2 E(E1) = -2. = - Pi(vi - X) 

n n 
i=l 

and E(EE1) = -{tp;(Z; -Y)(vi - X)} = -~puzuv. 
i=l 

We can express R in terms of E and E 1 , where 

, Y(l+t) 
R= . 

x(1+¥) 

Here E(R)=R+R[E~~i)_E~:i)]· 
Now, putting the values of E('Ei) and E(E E1 ), in E(R), we get 

E(R) = R [1+2- ( (}'~ - PO'zO'v)]. 
n x2 y x 

Therefore, the variance of R is 

V(R) = R2 (u; + O'~ - 2pO'zC7v)· 
n y x2 y x 

The estimator of this variance is 

, 11 lL:n '2 
v(R) = - =- -- (Z; - Hu;) . 

n v2 n - 1 
i=l 

The estimator of Y is Y = R X and the variance of this estimator is 

N · n 
...::... 1'"' 2 l'"'l . 2 

V(Y) =-;; L,;P;(Z; - Rvi) = nN2 L,; -:-(Yi - Rx;) . 
i=l i=l Pi 
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The estimator of this variance is 

..::.. 1 1 ~ ' 2 
v(Y) = ~ n _ 

1 
~(Z; - Rv;) .. 
i=l 

If the probability of selection of 'i-th unit is proportional to x;, i.e., 

p; = x;/NX. 

Then 
Yi y;- - X; -

Z; = -- = -X = r,X; v; = -- = X. 
Np; X; Np; 

We have 
1 N ..::.. - -

Zr=rX, v=X, R=r. R= NL:n,YR=Xr=Z. 
t=l 

The;efore, E(Yn) = E(z) = Y and V(Yn) = :' t,p. (r, -~ t,r.)' 
The estimator of this variance is 

..::.. x2 1 n 2 

v(YR) =--;;- n- l L(r;-r). 
i=l 

Example 15.2 : A dairy project is conducted in 25 villages in a district. The number of 
cattle and the number of cows in two consecutive years in the villages are shown below : 

·SL. No. of No. of cattle in No. of cows in No. of cows in 
village previous year a; previous year x; following year, Yi 

01 807 210 245 
02 408 115 109 
03 642 180 195 
04 538 148 162 
05 312 90 90 
06 416 100 120 
07 363 75 82 
08 162 52 63 
09 612 163 160 
10 540 178 180 
11 343 107 125 
12 275 82 95 
13 178 63 70 
14 578 162 175 
15 607 175 180 
16 361 122 131 
17 195 48 52 

. 18 212 50 51 
19 473 138 132 
20 308 147 142 
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SL. No. of No. of cattle in No. of cows in No. of cows in 
village previous year ai previous year x; following year, Yi 

21 213 62 58 
22 414 152 147 
23 162 75 68 
24 470 168 180 

25 285 62 70 

Total A= 9874 x = 2924 

(i) Select a random sample of 403 villages with probability proportional to total number of 
cattle in the villages and estimate the number of cows in the following year. Also estimate the 
variance of your estimator. 

(ii) Compare your estimator with simple estimator under PPS scheme: 

Solution : Here N = 25, n = 10, X = 2924, A= 9874. 

Following Lahiri's rule and using random number table given in Appendix the pairs of 
selected random numbers are : 

(16, 161), ( 11, 111)' (10, 100), ( 19, 190)' (17, 175 ), (09, 095 ), (01, 018), (24, 242)' 
(25, 252), (20, 203). 

Therefore, the serial numbers of selected villages are 16, 11, 10, 19, 17, 09, 01, 24, 25, 20. 

The information of sample observations are given below : 

SL. No. ai Xi Yi Pi=~ 

16 361 122 131 0.03656 
11 343 107 125 0.03474 
10 540 178 180 0.05469 
19 473 138 132 0.04790 
17 195 48 52 0.01975 
09 612 163 160 0.06198 
01 807 210 245 0.08173 
24 470 168 180 0.04760 
25 285 62 70 0.02886 
20 308 147 142 0.03119 

Total 1343 1417 

Here - _ I: Zi _ 1288.02 _ 
R - I: vi - 1222.92 - 1.0532· 

The total number of cows in the study area is 

Yn = RX = 1.0532 x 2924 = 3080. 

The esti.inates of variance of Yn is 

z - ..11.L 
i - Np, v· - ..L.i.... 

i - Np; 
r - 1ii. 

i - Xi 

143.33 133.48 1.0738 
143.93 123.20 1.1682 
131.65 130.19 1.0112 
110.23 115.24 0.9565 
105.32 97.21 1.0833 
103.26 105.19 0.9816 
119.91 102.78 1.1667 
151.26 141.18 1.0714 
97.02 85.93 1.1290 

182.11 188.52 0.9660 

1288.02 1222.92 10.6077 

N2 n· 2 . 

v(Yn) = n(n _ l) £;(Zi - Rvi)
2 = n(:- l) [L zf - 2R 2: Ziv,+ R2 ~ zf] 
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~ !Ogg~ 1) [172331.5674 - 2 x 1.0532 x 164153.9021+(1.0532)2 x157158.8404] 

= 625 x ~~5.3181 = 4064.7092. 

(ii) The sirnple estimator of cows is 

Y = Nz ,-= 25 x 
1288

·
02 

= 3220.05 
10 

v(Y) = N2 [""' z2 - (2:: Z;)2] 
n(n - 1) L., i n 

= 44666.7733. 

(25)2 [172331.5674- (128~~02)2] 
10(10 - 1) 

The relative precision of ratio estimator compared to simple estimator is 

v(Y) - v(Yn) 44666.7733 - 4064.7092 
89

o-t 

. - x 100 = 064 7092 x 100 = 998. 10. 
v(Yn) 4 . 

The sample is selected with probability proportional to number of catties (p; = a;/ A). The 
sample can also be selected with p; = x;/ X. In that case, 

....:.. -- - 1"" Yn=NZ, Z=rX, where'f=~L.,r;=l.06077. 

z = 1.06077 x 116.96 = 124.0676 

and Y = 25 x 124.0676 = 3101.69 ~ 3102. 

The estimate of variance of Yn is 
- 2 2 -2 2 2 

v(Yn) = X N ""(r; - r)2 = X N [2= r2 - (2:: ri) ] 
n(n - I) L., n(n - 1) i n 

(124.0676)2(25)2 

10(10 - 1) 

= 6068.3931. 

15.5 Unbiased Ratio Type Estimator 
It has already been observed that the estimators of population total and population mean 

1 1 n 
are unbiased if these estimators are found out using the value of 'F = - Lr; = - L Yif Xi. 

n n i=l 

However, the estimator is unbiased if sampling units are selected under PPS sampling scheme. 
Let us now consider the estimator using 'F when sample is selected under simple random sampling 
scheme. Hartley and Ross (1954) have proposed ratio estimator using 'f. They also proposed 
to modify the bias in the ratio estimator. 

Let 

Now, 

1 n . 1 n 

'F = - L Yi = - Lr;. 
n i=l x; n i=l 

1 N - 1 N N Lr;(x; -X) =NL 
i=l i=l 

Yi 1 
-x·--
X;' N 

N 

L y;
-X 
X; 

i=l 

= Y - X E(r;) = X[R - E(r;)]. 
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But in simple random sampling E(r;) = E(r). 

1 N -
Therefore, bias (r) = E(r) - R = - -= Lr; (x; - X). 

N X i=l 

Hence, to get the unbiased estimator of R we need to find unbiased estimator of 

1 N 
--= ~r·(x - X). 
NX ~ i ' 

i=l 

421 

We know that, if (Yi· xi) is the joint value of variable observed from i-th unit (i = 1, 2, .... N) 
and if y, x are the simple random sample mean of n observations of the variable y and x, 
respectively, then 

- - N-n 1 N - -
E(y- Y)(x- X) = -- --L(Yi - Y)(x; - X). 

nN N- l 
i=l 

Using this result, we can say that the estimator 

n 
1 ~ ri(xi - x) = _n_(y- rx) 

n-1 ~ n-l 
i=l 

N 

. b" d . f 
1 L ( X) 1s an un 1ase estunator o -- ri x; - . 

N- l 
i=l 

Therefore, using this value in the formula of bias of r, we get the ratio estimator [Hartley 
and Ross] 

, n(N-l) 
RHR =r+ (y-rx). 

(n - l)X N 

The ratio estimator of population total is 

, [ n(N-l) ] n(N-l) 
YHR= r+ (y-rx) X=rX+ ( ) (y-rx). 

(n-l)XN n-1 

Also, we have, the ratio estimator of population mean, where 

_.::_ , --'- [ n(N - 1) J- - n(N - 1) 
Y HR= RHRX = r + (y- rx) x = r x + ( ) (y-rx). 

(n-l)NX Nn-l 

For large sample size the variance of Y HR is 

N 

(_.::_ 1[2 22 l~y 
VY HR)~ - SY+ R1Sx - 2R1SyxJ, where R1 = N ~ ....!:.. 

n i=l X; 

For large sample size, we have 

V(Y R) ~ .!.[s; + R2s;~- 2RSyxJ, where R = Y / X. 
n 

' ' 
Now, comparing V(Y n) and V(Y HR), we have 

(...::.. ) (...::.. ) s; [( 2 2] Syx VY R - VY HR = - R- B) - (R1 - B) , where B = S 2 . 
n x 
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A A 

Thus, it is observed that, for n large, Y HR will. be more precise than YR' if and only if.Bis 
more close to R1 compared to R. Both estimator viii be equally precise, if R1 = R. Herice, we 
can write: 

The unbiased estimator of variance of Y HR is 

~ 1[2 22 J . In 
v(Y HR)~ - Sy+ r sx - Zfsyx' where r = - LYdXi· 

n . n 
i=l 

Example 15.3 : Using the data of previous example, find unbiased ratio type estimator of 
total cows and also find estimate of variance of your estimator. . 

. 1 ~ Yi 10.6077 
Solution: We have N = 25, n = 10, r = - ~ - = = 1.06077. 

n. X; 10 
t=l 

The estimate of total cows (unbiased-type ratio estimator) is 

YHR = rX + n((N - ?cy-rx) 
n-1 

= 1.06077 x 2924 + l0(~5 .- 1
) (141. 7 - 1.00077 x 134.3) 

1 - 1 
= 3081.4. 

We haves~= n ~ l [LY2 
- O::~v)

2

J = lO ~ l [228403- (l~~7)
2

] = 3068.2333 

s2 = -
1

- ["'"" x 2 - (I:x)
2

] = - 1
- [203711 - (I

343
)

2
] = 2594.0111 

x n-1 ~ n 10-1 10 

= _1 _ ["'"" - I: x LY] = _1_ rl215093 - 1343 x 1417] = 2754.4333. 
Syx n - 1 ~ xy n 10 - 1 10 

The unbiased estimator of variance of Y HR is 
2 . 

v(YHR) ~ ~[s~ + r2 s~ - 2rsyx] 
n 

= (215[ [3068.2333 + ( 1.06077)22594.0111 - 2 x 1.06077 x 2754.4333] 

= 8966.23. 

15.6 ·Conditions Under which Ratio Estimator is a Best Linear 
Unbiased Estimator 

The ratio estimator is not best linear unbiased for every population. Brewer (1963) and 
Royall (1970) have .discussed the situation when ratio estimator becomes best linear unbiased 
for finite population. According to them, (y;, xi), i = 1, 2, ... , N, are N pairs of values which 
are ass~med to be observed from a random sample drawn from a super population. The super 
population observations are related by Yi = /3x; + E;. Assume that x; and li are independent 
and Xi > 0. For a class in which Xi is fixed, it is assumed that E(l;) = 0 and V(l;) = AX;, 
where Xi(i = 1, 2, ... N) are known value. 
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Theorem : If the population observations are related by Yi = {3x; + l;, the n1.tio estimator 
Yn =RX for random or non-random sample is best liner unbiased estimator when the sample 
is selected on the basis of x;. · 

Proof: We have y; = {3x; + l;. 
The condition is E(l;/x;) = 0 and V(l;/x;) = >.x;. 
Now, under repeated sampling, we can write : 

N N 

Y = {3X +Lt:;, where Y = LYi· 
i=l i=l i=l 

Then E(Y) = {3X. 
n n n 

Let Y = L l;y;. Then the ratio estimator of population total is Y = f3 L l;x; + L l;l;. 
t=l i=l i=l 

Now, if n values of x; in a sample of n units are fixed, then 
n n 

E(Y) = f3 L l;x; and V (Y) = >. L t?x;. 
i=l i=l 

n 

It is observed that, if L l;x; = X, then Y is _unbiased in terms of model. Now, under the 
i=l 

n 

condition L liXi = X, the variance of Y can be minimized using Lagrange's multiplier. We 
i=l 

can use . x 
Zl;x; = Cx;, where li = -= = constant. 

nx 
Hence, Y = nfjX/nx =RX= Yn-

, · . • >.(X - nx)X 
This Y is best linear unbiased estimator. The variance of Yn is V(Yn) = _ . 

nx 
. 1L:n1 . 2 

The estimator of>. is >. = -- -(y; - Rx;) . 
n - 1 x· 

i=l t 

· . . ~(X - nx)X 
The unbiased estimator of V(Yn) is v(Yn) = _ . 

nx 

15.7 Ratio Estimator when X is not Known 
It is observed that the estimator of p'opulation mean depend~ on X and the ratio estimator 

of population total depends on X. In practice, the value of X may not be known. Therefore, 
the-value of Xis to be estimated. For this, double sampling technique is used, where a random 
sample of size n 1 is selected to estimate the value of X. Finally, a random sample of size 
n(n < n1) is selected to estimate the parameter of the distribution of study variable. The ratio 
estimator in such a situation of double sampling is 

, _ l n1 

Y y_ h - " RD= =xi, w ere x 1 = - ~x;. 

x n1 i=l 

- l " - l " H h' · y" . b' d S kh d y = - ~Yi. x = - ~ x;. owever, t 1s estnnator RD 1s not un 1ase . u atme an 
n n . 

Sukhatme (1970) have derived the relative bias of this estimator. Let us investigate the bias of 
the estimator. Let fj = Y + l, x = X + €1 and x1 = X + l2. 
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Let us assume that E(f) = E(fi) = E(f2) = 0. Then 

YRD=(Y+E)(X+E2)=Y[1+ f] [1+c2] [1+c1]-1 
(X + fi) Y X X 

. f1 [ f1]- 1 
It 1s assumed that = < 1, so that 1 +-::- can be expanded. x x 

Now, neglecting the terms with power more than two in expanding the term, we get 

Y' y[ f f2 f1 ff2 ffl f1f2 EI] RD = 1 + = + = - = + = - = - - + - . 
. Y x x x Y x Y x2 x2 

But E[c E2] = Cov (y, x1) = Cov [E(y/ni), E(xi/ni)] + E[Cov (y. xi/n1)] 

1 " 1 N - n 
= Cov (y1,x1), where y1 = - LYi = N 

1 
Syx· 

n1 i=l n1 

N-n 
Also, we have E(f ci) = Cov (y, x) = -N Syx· n . 

N - n1 N - n 
E(E1 c2) = V(x1) = N S'f, and E(c~) = V(x) = -N S'f,. 

n1 n 

Now, to find the E(Y RD) we can replace the above values of covariances. On simplification, 
we get 

[...::.. J [ ( 1 1 ) 2 ] Sx Sy E Y RD ~ 1 + - - - (Cx - pCxCy) , where Cx = =, Cy = =· 
n n1 X Y 

Therefore, the bias of Y RD is (~ - ~) (C'f, - pCxCy). 
n n1 

This bias is negligible if the sample size (n) in the second stage is large enough. Moreover, if 
the regression of y on x is linear and the r~gression line passes through the origin, then for the 
approximation up to the first degree the Y RD becomes unbiased. In such a case, the variance 
of the estimator is 

V(YRD) =E[YRD-Y]2 =Y
2
E[f + c

2 
- c

1
]

2 

. y x x 

= y2 E [.:.:_ + E~ + _:l + 2E c2 _ 2c c1 _ 2E1c2] 
Y2 x2 x2 Y x Y x x2 

(
1 1) 2 22 (1 1) 2 = - - - (S + R S - 2RS x) + - - - S . n n1 Y x Y n1 N Y 

c 1 
The variance formula indicates that, if R 2 S; - 2RSyx < 0 or if 2pSy > RSx or, pc: > 2' 

then Y RD is more precise than y. 
In practice, the use of Y RD depends on the cost of survey at the second stage. Sukhatme 

and Sukhatme (1970) have also considered the estimator assuming a cost function for the second 
stage sampling. They have assumed the linear relationship of x and y variables and mentioned 
that the precision of the estimator under double sampling Scheme will be increased sufficiently, 
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if f3 2'. ~. If f3 < ~, the precision of the estimator is not increased snfficiently when a is not 
small enough. Here 

N 
Syx C2 , 1 '°"'( )2 

a= S' f) = Ci, Sy·x = N _ l L.,, y, - Rx; . 
y t=l 

The cost function is C0 = C1n + C2n1. 
Example 15.4 : To estimate the number of dead children in a district in a year, a survey 

is conducted in the district. For the purpose of the survey 100 villages are randomly selected 
from the villages in the district. The number of married couples (within the age limit 14-49 
years; x) and the number of dead children (y) below age 4 years are recorded from each village. 
The total ·number of villages in the district is 1250. The number of couples in the district is 
not known. Estimate the total number of dead children in the survey year. Also estimate the 
variance of year estimator. 

SL. No. x y SL. No. x y SL. No. x y SL. No. x y 
of village of village of village of village 

001 112 5 026 103 2 051 105 3 076 111 2 
002 178 2 027 66 1 052 119 5 077 172 10 
003 108 4 028 78 0 053 168 4 078 83 4 
004 52 2 029 42 2 054 142 3 079 84 3 
005 170 3 030 63 1 055 147 4 080 118 2 
006 98 2 031 71 2 056 99 3 081 123 3 
007 123 1 032 70 3 057 143 5 082 140 3 
008 107 4 033 105 2 058 72 2 083 145 6 
009 133 2 034 108 1 059 63 1 084 74 2 
010 95 0 035 112 2 060 68 0 085 55 1 
011 66 1 036 92 1 061 77 2 086 138 4 
012 77 2 037 98 2 062 '42 2 087 82 2 
013 85 2 038 125 2 063 45 2 088 77 3 
014 98 3 039 100 2 064 112 3 089 128 4 
015 160 2 040 78 1 065 77 0 090 156 5 
016 175 4 041 95 2 066 78 2 091 178 4 
017 180 5 042 162 7 067 117 2 092 144 3 
018 162 3 043 180 6 068 184 7 093' 168 7 
019 112 2 044 108 3 069 195 12 094 182 10 
020 73 1 045 99 2 070 122 4 095 92 0 
021 70 1 046 88 2 071 128 3 096 98 3 
022 85 0 047 73 2 072 99 2 097 160 5 
023 42 1 048 66 2 073 144 4 098 168 4 
024 . 99 2 049 75 1 074 97· 2 099 101 3 
025 111 3 . 050 67 1 075 52 ,o 100 ,J02 2 

Total 2771 57 2324 52 2695 77 3079 95 

Solution : We have N = 1250, n 1 = 100, x 1 = 10869, x is not known. To estimate the 
total number of dead children a simple random sample of 50 villages from the first sample is 
selected. The information of double sample are given below : 
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SL. No. x y SL.No. x y SL. No. x y SL. No. 
of village · of village of village of village 

014 98 3 090 156 5 004 52 2 035 
061 . 77 2 027 66 1 097 160 5 052 
081 123 3 015 160 . 2 047 73 2 092 
037 98 2 075 52 0 018 162 3 068 
053 168 4 095 92 .0 051 105 3 082 
011 66 1 016 175 4 033 105 2 083 
046 88 2 058 72 2 019 112 2 084 
042 162 7 072 99 2 079 84 3 024 
021 70 1 062 42 2 029 42 2 002 
064 112 3 077 172 10 059 63 1 092 
100 102 2 061 77 2 069 195 12 020 
040 78 1 032 70 3 063 45 2 
067 117 2 078 83 4 041. 95 2 

Total 1359 33 1316 37 1293 41 

. 1 lOO 10869 . 1 5380 
n = 50, X'1 = ni L:x = lOO ~ 108.69, x =:;; L:x = 5Q = 107.6,. 

1 147 
y = - LY= - = 2.94, 

n 50 

82 = _1_ [" 2-'- (2:y)2] = _1_ [681- (147)2] = 5.078 
Y n - 1 ~ Y n 50 - 1 50 ' 

s; = - 1
-['°'x2 - (2:x)

2
] = - 1

-[u65874- (
5380

)
2

] = 1775.224, 
n - 1 ~ n 50 - 1 · 50 · . . . 

= _1 _ [" . _ Ex Ev] ·= _1 _ [19031 _ 5380 x 147] = 65.588 Syx n - 1 . ~ xy n 50 - 1 50 · · 

The estimate of total dead children in tl,ie district is 

Here 

....:... y 2.94 
Y RD = N ~X! = 1250 X 

107
.
6 

x 108.69 = 3712. 

R = "P.. = 2.M =· 0.021. 
x 107.6 

The estimate of variance of y RD is . 

....:... · · 2 [n1 - n 2 • 2 2 • · N - n1 2] 
v(Y RD)= N -.-(sy + R .sx - 2Rsyx) + N Sy 

nn1 n1 

x y 

112 2 
119 5 
144 3 
184 7 
140 3 
145 6 
74 2 
99 . 2 

178 2 
144 3 
73 1 

1412 36 

= (1250)2 [ !~x-l~~ (5.078 + (0.027)21775.224 - 2 x 0.027 x 65.588) . . 

. . . . 1250 - 100 x 5.0.75] 
. . + 1250t x 100 . 

= {1250) 2[0.028~038 + 0.0467176] :::; 117220.9375. 
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The simple estimate of total dead children using second sample is . 

Y = Ny= 1250 x 2.94 = 3675. 

The estimated variance of this estimator is 

(Y) = 2 N - n s2 = (1250) 21250 -
50 

x 5.078 = 152340. 
v N nN Y 50 x 1250 

The relative precision of ratio estimator compared to simple estimator is 

v(Y)--:_ v(Y RD) x 
1003 

= 152340 - 117220.9375 x 
100 

= 29_
963

_ 

v(Y RD) · 117220.9375 

15.8 Difference Estimator 
It has already been mentioned that if the study variable y and the auxiliary variable x are 

related by the relation 
Y = f3x + t:, 

[i.e., y and x are linearly related and the regression line passes through the origin] then the 
ratio estimator is best linear unbiased estimator. But the relation of y and x may not exist for 
all populations. Let us assume that y. and x linearly related but the regression line does not 
pass through the origin, i.e., 

y =a+ (3x + t:, where E(t:) = 0. 

Then E(y) = a+ (3x. In such a situation the difference y - (3x can be used to find an estimator 
of population parameter. The estimator which is found out using the difference y...., (3x is called 
difference estimator. 

The difference estimator of population mean is 

YD= ('!J- (Jx) + /3X, 

l n l n N • 

where 'fl= - LY;, x = - L Xi, X = NI L Xi and (3 is a constant. 
n n 

i=l 

Theorem : In case of simple random sampling without replacement the difference estimator 
of population mean is unbiased and the variance of this estimator is 

....:.... 1-f 2 2 2 
V(Y D) ~ -n- [Sy+ (3 Sx - 2/3Syx]· 

Proof: We have YD = ('fl - (Jx) + (3X 
A • 

E[Y o] ·= E(y - px) + E((3X) = E(y) - (3E(x) + {3X = Y - (3X + /3X = \". 

Hence, YD is unbiased estimator of Y. 

V(Y D) = E[Y D - YJ2 = E[('!J- (Jx) + (3X - Y] 2 = E[('!J- Y) - (3(x - X)]2 

= E(y - .Y)2 + (32 E(~ - X)2 - 2(3E(x-X)('!J- Y) = 
1

: f [s; + {328; - ~f3S11xl· 
Here f3 is a known value. Des Raj (1968) has shown that 

{3 Syx 1 t · · . ffi · t = s2 = popu a ,Jon regression coe Cien .. 
x 
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For known /3, the variance of Y v is minimum, where the minimum variance is 

...:;... 1-f 2 2 
V(Y v)min = --(1 - p )Sy, n . 

where p is the popnlation correlation coefficient. 

For known value of /3 the unbiased estimator of variance of Y v is 

...:;... l-f2 22 
v(Y o) = --[sy + /3 sx - 2/3syx]· 

n 

The relative efficiency of difference estimator depends on the vahH' of /3. If x.i values 
(i = 1, 2, ... N_) are the Y! values recorded in any previous survey, then the value of /3 can be 

assumed 1. In that case, Yo becomes unbiased and its variance becomes minimum. However, if 

/3 = f, then Y v and YR are the similar estimates. Des R:aj has shown that, if /3 lies within zero . 

and twice of the population regression coefficient, then Y 0 is more efficient than y, otherwise 
y is more efficient. 

Example 15.5 : In a district there are 1250 villages. One hundred villages are randomly 
selected to estimate the number of married couples who have adopted family planning program. 
The survey is conducted in two consecutive years. The number of adopter couples in the district 
~uring first year of survey is estimated as X = 90000. The number of adopter couples in the 
first year (x) and in the second year (y) in the selected villages are shown below : 

SL. No. x y SL. No. x y SL. No. x y SL. No. x y 

1 70 72 29 60 72 57 50 52 85 llO 115 
2 110 120 30 65 46 58 68 70 86 97 92 
3 65 68 31 36 30 59 71 73 87 71 65 
4 30 33 32 55 62 60 121 124 88 92 101 
5 102 110 33 85 98 61 108 92 89 95 97 
6 60 68 34 92 . 97 62 95 98 90 42 38 
7 71 74 35 52 28 63 88 101 91 28 32 
8 65 62 36 45 49 64 77 72 92 26 30 
9 72 78 37 64 60 65 62 70 93 44 52 

10 67 70 38 12 28 66 42 48 94 53 62 
11 40 45 39 42 45 67 32 31 95 72 88 
12 30 32 40 28 40 68 44 44 96 128 126 
13 92 97 41 49 42 69 28 28 97 162 160 
14 52 28 42 36 38 70 42 47 98 178 182 
15 100 l12 43 53 55 71 52 50 99 66 70 
16 85 90 44 48 38 72 55 62 100 72 78 
17 108 115 45 120 128 73 111 109 
18 96 90 46 88 92 74 99 95 
19 62 54 47 97 95 75 82 78 
20 42 45 48 51 61 76 97 96 
21 43 44 49 55 65 77 62 61 
22 60 72 50 37 48 78 58 55 
23 95 94 51 41 44 79 77 72 
24 108 108 52 45 48 80 50 55 
25 112 109 53· 121 128 81 48 47 
26 108 112 54 178 195 82 23 31 
27 90 85 55 66 72 83 15 18 
28 120 138 56 92 90 84 87 90 

Total 2093 2190 1813 1894 1844 1869 1336 1388 
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Estimate the number of adopter couples in the following year. Also estimate the standard 
error of your estimator. Compare your estimator with simple estimator. 

Solution : N = 1250, n = 100, X = 90000, x = 7086, y = 7341. x = 70.86, y = 73.41. 
Here y; values are the values of x; in the following year. Hence, /3 = 1 can be assumed. Under 
this a.4'snmption the ~lilforcnce estimate of total number of adopter couples in the district is 

Yv = NY o = N[y - (JX + {3Xj = 1250[73.41 - 1 x 70.86 + 72] = 93188. 

2 = _
1_ ['"' 2 _ (l::x)

2
] = 

1 [612085- (7086)
2

] = 1110.8186. 5
x n - 1 ~ x n 100 - 1 100 

8
2 = _l_ [""" y 2 - (LY)

2

] = 1 
[654605 - (

7341
)

2

] = 1168.709. 
Y n - 1 ~ n 100 - 1 100 

Syx = n ~ 1 [ L xy - L XnL Y] = 1001-- 1 [ 630719 - 70861~07341] = 1116.523. 

The estimate of variance of Yo is 

A N2(1 - f) 2 2 2 
v(Y D) [sy + /3 sx - 2/3syx] 

n 

= (
1250

)
2
(1 - 0·08) [1168.709 + (1) 2 1110.8186 - 2 x 1 x 1116.523] 
100 

= 668173. 

s.e. (Yv) = y/v(Yo) = 817.42. 

The simple estimate of total adopter couples is 

Y = Ny= 1250 x 73.41 = 91763. 

v(Y) = N
2

(1 - f) s~ = 16800191.88. 
n 

, , v(Y) - v(Yv) 
The relative precision of Yo compared to Y is , 1003 = 2414.33. 

v(Yo) 

15.9 Ratio Estimator in Case of Stratified Sa~pling 
Let the population units N be divided into L strata such that the size of h-th stratum 

L 

(h ;::: l, 2, .... L) is Nh(N = L Nh)· Let Yhi be the value of study variable y recorded from 
h 

i-th unit in h-th stratum (i = 1, 2, ... , N,,). The corresponding value of an auxiliary variable x 
is xh;. The problem is to find a ratio estimator of population total Y. 

There are two methods to estimate the population parameter. These are (a) separate ratio 
estimator, (b) combined ratio estimator. 

(a) Separate Ratio Estimator : Let us discuss the setiarate ratio estimator of population 
total. The estimator is 

where X,, = total of values of Xhi of h-th stratum, 
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.. 
x1i. = total of.values of Xhi of h-th stra~um "in sample, 
Yh =;= total of values of Yhi of h:.th stratum in sample. 

If the sample is selected under SRSWOR from each stratum, then the variance of YRs is 

( · ~ Nl(·l - fh) [ 2 2 2 
V YRs) = ~ Sh11 + RhShx - 2RhShyxJ, 

h=l nh 

: Yh . nh 
where Rh= Xh, fh = Nh, 

Yh = total of value of Yhi of h~th. stratum, 
nh = sample of size from h-th stratum, 

L 

n= l:nh. 
h=l 

Since sample is selected under SRSWOR from h~th stratum, the variance of YHR is 

· N~(l - fh) [ 2 2 2 ] 
V(YHn) = Shy+ RhShx - 2RhShyx, 

nh . . 

Yi. 8 2 i ~( - )2 2 . · 1 ~ - 2. 
where :Rh= Xh, hy = Nh _ l ~ Yhi - Y h , Shx = N,, _ l ~(xhi - X 1i) , 

1 "' - -S1iyx = Nh - l ~(xhi -Xh)(Yhi -Yh)· 

The separate ratio estimator is 

Yns = t ~h Xh = LYhn, where l\n = ~h X,,. 
Xh . Xh 

Since Yns = LYhn, V(Yns) = ·L V(Yhn), 
h h 

[ ·: ratio estimators from different strata an~ independent}. 

~ '°' N~(l - fh) 2 2 2 
.. V(Yns) = ~ [Shy+ RhShx - 2RhShyx]· 

h nh 

The estimator of V(Yns) is 

. '°' N~ ( 1 - /h) 2 • 2 "2 • 
v(Yns) = ~ [shy+ Rhshx - 2R1ishyx], 

h n,, 
Since ratio estimator is ·biased, the Y1in is biased. Therefore, we can write : 

lbias (Y1in)I ::;; c.v:(xh)· 
O"yhR 

If the bias of each stratum is of same direction, the bias of Yns is approximately L times the 
bias of YhR· But the standard error of Yns is V£ times of standard error of YhR· Hence, · 

lbias Ynsl . 1r -
---- is of order v L C.V. (xh)· 

O"yl•R 
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(b) Combined Ratio Estimator : In case of separate ratio estimator, it is mentioned 
that large size sample is to be selected from each stratum. But it is not always possible to select 
large sample from all strata in all sample survey. In such a case combined ratio estimator can 
be found out. Hansen, Hurwitz and Gurney (1946) have mentioned such combined estimator. 
According to them, if n is big and if SRS is selected from all strata, then the combined estimator 
of population total is YRC, where 

Y, _ Yst X ~ Y st X RC - -,_- - =- · 
Xst Xst 

1 L 1 L 
Here Yst = N L Nhyh, Xst = N L NhXh 

h=l h=l 

L Ni. 

and X = -~ L xhi and the value of X is assumed to be known. 
h=li=l 

For this estimator the stratum total Xh may not be known, whereas in separate estimator X11 
must be known. 

The bias of YRc can be obtained using the formula suggested by Hartley and Ross (1954), 
where 

Here Re = ~st . 
Xst 

Cov (Re, X8 t) = Y 1 - X E(Rc) 

A 1 A 

E(Rc) = R- =Cov (Re,'Xst) x 
, , 1 , _ PRr;:,x./'RC x ax., 

Bias (Re) = E(Re) - R = -=Cov (Re. 'Xst) = x x 
Bias (Re) = PfiC,x., IJx., -<· CV (- ) 
- · · Xst · 

O'fiC x 
It is clear that, if C.V. (xst) < 0.1, then the bias of Re and YRc will be Jess than their 

standard error. -

Theorem : If SRSWOR scheme is applied to select sample from all strata ~nd if n is big, 
then the variance of YRC; is given by · 

( 

A ~ N~(l - fh) [ 2- 2 2 
V YRc) = ~ Shy+ R S1ix --2RShyx]· 

h=l nh 

• A Yt - - -
Proof: It is known that YRc = -=:!-X and Y =NY - N RX. 

Xst 

, Y st - N X - - - -
YRc - Y = =-X - N RX= -=--(Yst - RXat) = N(Yst - RXst)· 

Xst Xst 
Then 

Let U~i = Y~i-RXhi (i = 1,2, ... ,Nh) 

U = Y - RX = 0 and 'iist = 'fist :_ RXat, _N'iiat = N('iia_t - RXst)· 
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V(Ync) = E(Ync - Y) 2 = E[Nu.t - NV] 2 = N 2V(ust) 

where 

~ N~(l - fh) [S2 R2S2 S J = L hy + hx - 2R hyx · 
h=l nh . 

The unbiased estimator of this variance is 

Now, we can compare the separate and combined ratio estimator. We have 

A • A ~ N~(l - fh) 2 2 2 
V(Ync) - V(Yns) = L [(R - Rh)Shx - 2(R- Rh)Shyx] 

h=l Tlh 

The last term in right-hand side of the above result is normally small. The value will be 
zero, if Yhi and Xhi of h-th stratum are linearly related and if the straight line of Yhi on x1i; 

passes through the origin. Thus, it can be said that, if R1i of h-th stratum is not constant, then 
the separate ratio estimator is more efficient than the combined ratio estimator. But the bias 
of combined ratio estimator is less than that of separate ratio estimator. 

Thus, to use any of the estimator the following rules can be followed : 

(1) The combined estimator is to be preferred if the value of Rh does not vary too much and 
if small size sample is selected from all strata. Separate ratio estimator is preferred if 
strata can be rearranged and if large size sample is selected from all strata. 

(2) If xh is known, then separate ratio estimator is preferred. 

15.10 Optimum Allocation in Case of Ratio Estimator 
Let the cost function be 

h=l 

The value of nh is to· be selected on the basis of the given cost function so that V (YRS) is 
minimum. 
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Here 

Now 

P . 8¢ 0 . uttmg -
8 

= , we get 
nh 

>.Ch= N~;~d or, 
nh 

Also, we get 
1 L 

J",\=-2:: 
n 

h=l 

433 

Cochran {1977) has mentioned that, when ratio estimator is best linear unbiased, Sd1t is 
· proportional to v'J[;.. Then 

15.11 Ratio Estimator to Estimate the Parameter Related to 
Qualitative Variable 

Let Yi = 1, if i-th unit possesses the characteristic under study and Yi = 0, otherwise 
(i = 1, 2, ... N). Total number of units in the population possessing the characteristic is 
N . 

LYi = A. Therefore, (N - A) unlts do not possess the characteristic. The population 
i=l 
proportion of. the units possessing the characteristic is 

. A 1 N -

p = N = N L Yi = y. 
i=l 

Also, we have 

5 2 = _1_· [~ 2 _ (L:N y;)
2

] =~[A- A
2

] = NPQ 
Y N - 1 ~ Y, N · N - 1 N N - 1' 

i=l 

. A 
where Q = 1 - P = 1 - N. 

Let x; = 1, if i-th unit does not possess the characteristic under study, and Xi = 0, otherwise. 

D.E.S.M.-28 
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Then 
- 1 N N-A 
x = N L X; = --;;;-- = 1 - p = Q. 

i=l 

S~ = _l_ [~x;- O:=x;)2
] = _l_ [N-A- (N__:_A)

2
] = NPQ. 

N-l L, N N-1 N N-l 
i=l 

s = _1_·[~, -tx; "tvi] = _1_ [Q- A(N-A)] = - NPQ 
xy N - 1 L, Xi Yi N N - I N N - I. 

i=l 

The population ratio is 
N 

LYi A p 
R=--=--=-tx; N-A Q. 

Let the estimate of R be 
N 

, LYi a p 
R=--=--=-

n n-a q' Lx; 
a 

where p = - , q = I - p. 
n 

Th c V(R') = 1-f [NPQ R
2
NPQ 2RNPQ] = NP(I - f)[I R2 _ 2R] 

ere1ore, nQ2 N - 1 + N - 1 + N - 1 n(N - l)Q + 

= NP(l - f) (l _ R)2 . 

n(N - l)Q 

P[ N-n l] 
= Q l + N- l nQ . 

A 1 
Thus, it may be concluded that, if N is large enough, the relative bias of R is nQ. The 

bias is reduced, if n increases. 

15.12 Regression Estimator 
The ratio estimator is defined using the information of auxiliary variable. Let ( x1, Y1), 

(x2 , y2 ), ... , (xn, Yn) be n pairs of values recorded from an investigation on randomly selected 
n sampling units from a population of size N. Consider that the study variable is Y and 
its auxiliary variable is X. Since the auxiliary variable X is one which is measured from the 
sampling units in different occasions or it is a related variable to the study variable Y, there 
may be a linear relationship of these two variables. Let us assume such a_ linear relationship of 
Y and X as . 

y =a+ (Jx + f, 

such that E(y) =a+ (Jx (·: E(E) = 0). 

(1) 
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Using this relationship of X and Y, we can estimate the population mean Y. Such an 
esfimator of Y using the regression estimator b of fJ is known as regression estimator. 

To define ratio estimator, it is assumed that there is a linear relationship of X and Y. It is 
observed that the ratio estimator is best if the regression line of y on x passes through the origin. 
But, the regression line may not pass through the origin. In such a situation the estimator is 
derived using the regression moder (1). In the regression model fJ is the regression parameter. 
We can use difference estimator and V07D) becomes minimum, if fJ is known. Here YD is the 
difference estimator of Y. 

In practice, fJ is not known. The sample estimator. of fJ is given. by 

b = ~ = =E'--n (=x_-_x_)(_y -_-_Y) 
E(x - x)2 

Then the regression estimator of population mean Y is given by 

'!hr= y- b(x - X), 

where 'iizr is the linear regression estimator of Y. The linear regression estimator of population 
total is Yir = Nfizr · · 

The regression estimator '!hr is a consistent estimator since n -t oo, x -t X and in such a 
situation fizr -t Y. But fizr is riot an unbiased estimator of Y. The value of 'fitr takes different 
shapes depending on value of b. Let b = 0, then 'iizr = y, which takes the form of simple 
estimator and this estimator is consistent and unbiased. If b = 1, then fizr = y + (X - x). This 
estimator is also consistent and unbiased. Again, let us consider that b = y/x. Then 

Ytr ='ii+ ~(X-x) ='!i+ ~X -Ji= RX, x x • 

where R = 'fi/x. The estimator 'fizr now. transforms to ratio estimator. This estimator is a 
bia.Sed one. Let us now investigate the _bia.S of general regression estimator. 

15.13 Bias of Regression Estimator 
The regression estimator is 'fizr = 'fi + b(X - x). Assume that 

x = x + €1, Sxy = Sxy + t:2, si = s~ + (3. 

E(t:1) = E(1:2) = E(t:3) = 0. 

Then 

Let I~~ I< 1. . 

Sxy 
where fJ = s2 . 

"' 

This restriction indicates that the expansion of ( 1 + ~~) - l is possible. 

Neglecting the terms involving powers more than equal to 2 in 1:3, we get 

- - - fJ [f1C::2 C::1f3] Ytr - Y - S - 82 · 
. xy x 
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E[- J - E(-· _ f.I [E(f1f2) _ E(f1t3)] ~ '7 _ f.I [Cov(x,sxJI) _ Cov(x,s~)] 
Y1r ...., y) P S . = r P . S . S2 . . 

• ~ . q x 

. . 2 .. 
E(r. ) .:_ y = _ f.I [Cov (x, SxJI) - Cov (x, sx)] 

111r P S' 52 · · xy x 

Hence, the regression estimator is biased one and th~ bias :s given by 

B. c- ) = _ R [Cov (x, sxy) _ Cov (x, s!)] 
ias Y11· IJ S s2 . 
· xy x 

Sukhatme and Sukhatme (1970) have shown that 

. _ N - n [ µ21 µ20] · 
Bias (Y1r) = -r:;:;;-f3 Sxy - S'; ' 

where µ 21 = E(x - X) 2(y- Y) and µ20 = E(x.- X) 2 . 

The amount of bias of regression estimator can also be shown alternatively. For this, let 

y=Y(l+e), x=X(l+ei) and b=f3(1+e2 ) 

with assumption E(e) = E(ei) = E(e 2 ) = 0. Now, putting the values ofy, x and x. in regression 
estimator, we get 

Y1~· = Y + eY + /3Xe1 - /3Xe1e2. 

E(y1r) = Y - {JX E(e1e2) = Y - E(x - X)(b - /3) = Y - Cov (x, b). 

Bias (!hr) = -Cov (x, b). 

This bias will be negligible, if sample size becomes large. Moreove~, for bivariate normal 
distribution Cov (x, b) = 0 and in that case, .Ylr becomes unbiased estimator of Y. 

The latter bias in y1;. is estimated by 
k 

~)xi - yi)(bi - b} 
Bias (Y1r) ~ _i=_l ___ ~--

k - 1 

where k is the number of sub-samples selected from sample of size n. The i-th sub-sample 
pr.ovides Xi, Yi and bi (i = 1, 2, .... k). Using this estimatot of bias, one can find unbiased 
regression estimator of population mean and hence, population total·. 

15.14 Variance of Regression Estimator 
it· has already been mentioned that the regression estimator becomes unbiased if b is any 

known constant, say bo. Then y"' = y + bo(X - x). The variance of this estimator is given by 

V('fi1r) = 
1 

- f [s; - 2boSyx + b~S;J, 
n 

· 1 N 1 N 
2 """" - 2 2 . """" - 2 where Sy = N _ l L.)Yi - Y) , Sx = N _ l L..,(xi - X) . 

i= 1 i=l 

1 N 
Sxy = N _ l L(Xi - X)(yi - Y). 

. i=l 
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Proof: Let (xi, Yi), (i:2, Y2), ... , (x,., Yn) be n pairs of values observed from n sample 
points selected at .random from a population of size N, where xi values are the values of some 
auxiliary variable related to Yi values (i = 1, 2, ... , n). Let bo be a known value. ·Then the 
linear regression estimator of population mean Y is 

Ytr =y + bo(X - x). 

Let us define ui =Yi - bo(xi - X), i = 112, ... ,_n. 

Then u = 'iJ - bo(x - X) = 'iJ + bo(X - x) = Ytr· 

E('ihr) = E(y) + boE(x - X) = Y. 

Hence, Ytr is unbiased estimator of Y. 

Now, V('Yir) = 
1 

- f S~ (·: Ui :values ar~ observed from simple random sampling) 
n 

'-"2 1 .f. -2 Here .,,. = N _ 
1 

L.,(ui - U) , 
. i=i 

·· N N 
- 1~ 1~ -
U = N L... ui = N L.,[Yi - bo(xi - X)J 

. i=i i=l 

N 

= N ~ 
1

L[Yi - bo(xi - X) - Y - bo{X - X)] 2 

i=l 

1 - 2 b5 - 2 2b0 · - -
= N _ 1 L(Yi - Y) + N- 1 L(xi - X) - N _ 1 L(Yi - Y)(xi - X) 

= s; + b5S; - 2boSyx· 

V(y1r) ~. l - f [s; + b~s; - 2boSyxl· 
n 

Corollary : In simple random sampling if 'fl1r is the regression estimator of population 
mean, then the estimator of variance of 'fltr is given by 

(-) 1-/[2 b22 2 I V Ytr = -- Sy + osx - boSyx , 
n 

where Yir = y + bo(X - x). Here bo is a· known constant. 

Proof: Since Ui =Yi - bo(xi - X), i = 1, 2, ... , n are observed f~om simple random sample 
of size n from a population of size N, 

1 n . 1 N -

s! = n _ 
1 

L(ui - u)2 is an unbiased estimatqr of S~ = N _ 
1 

L(ui - U) 2
. 

Here s! = n ~ 
1 

t[(Yi - 'fl) - bo(xi - x)J 2 = s~ + b~s~ -·2bos11 x 

E(s~) = s; = E[s; + b5s~ - 2bosyxl = s; + b5S; - 2boSyx· 

E{v('Y1r)J = V(y1,;) = 
1 

- f [Sy2 ·+ b~s;--' 2boS11x]· . n 

. i=l 
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We have discussed the formula for V(y1.r), whei1 f3 is known. In practice, f3 is not known. 
It is estimated from sample observations. In such a case we need to estimate f3 so that VOltr) 
becomes minimum. 

Theorem : In simple random sampling the variance of regr~ssion estimator of population 
mean becomes minimum, if 

N 

L(Xi - X)(Yi - Y) 

b - Syx - i=l , where -Ytr = -y + bo(X - x). o- S2 - N 

x """"' - 2 ~(xi -X) 
i=l 

Proof: Given b0 = -;; = B = population regrnssion coefficient of yon x. If b0 I= B, let 

bo = B + d, where d is a positive constant. 

(- ) 1 - f [S2 2 2 s I Then V Ytr = -- y + b0 Sx - 2bo yx . n 

= I - J [S~ + (B + d) 2S~ - 2(B + d)Syx] 
n 

= 1 - J [s2 + (Syx + d)2 s"l - 2 (Syx + d) S l n y s;, x s; yx 

· 1 f r ( s2 s ) 2s
2 J = -=- ls2 + S2 -E.. + d2 + 2d yx. - -1E - 2dS n y x s: s; s; yx 

At this stage V(y1r) will be minimum, if d = 0. Then 

-- 1 - f [ 2 s;x l V(y1r) = -n- SY - s; . 

Thus, VOlt,.) becomes minimum if bo = B = ;; . The minimum value of V("y1r) is 
x 

Corollary : The estimator of V(y1r) for large sainple size is 

1 - f 2) 2 v("Y1r) = --(1 - r sy, 
n 

h 2 . I ~( _) 2 ~)xi ~ x)(Yi - y) 
w ere sY = n _ 

1 
~ Yi - y , r = --;~~===;:::;;::=:::::;:::===::::;: 
i=l JL:(xi - x) 2 L(Yi - y) 2 
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The linear regression estimator fi1r = y + b0 (X - x) is considered assuming population 
regression coefficient .known. In practice, the population regression coefficient B is not known 
and it is estimated from sample observations, where the sample estimator is 

n 

'L)xi - x)(yi -Y) 
b = /:J = _i=_l_n ____ _ 

~)xi -x)2 

i=l 

The regression estimator of population mean is then Yir = y + b(X - x). 
Let us now investigate V (Yir) 

We have already shown that 

Y1r = fi - f3£1 [ 1 + ;:J £3 
[ ]

-1 

I+ s; , 
where 

But E(- ) ~ y N - n{J [µ21 µ20] Yt ~ --- ---
r nN Sxy S'i ' 

where µ21 = E(x - X) 2(y - Y), µ20 = E(x - X)2. 

Therefore, V(fi1r) = E[fi1r - E(fi1r)J2 ::;::: E[y - Y - {3£1] 2 

= E[(y- Y) 2 + {32 £~ - 2{3£1(fi- Y)] 

= E(y- Y) 2 + {32E(in - 2{3E{£1(fi ~ Y)} 

= V(Y) + {3 2V(x) - 2{3Cov (x, Y) 

= 
1 

- ! [s; + {32 s; - 2{3Syx] 
n 

= 1 - J s; (1 _ P2). 
n 

Therefore, if b = /:J is used instead of {3, the variance becomes 

V(fi1r) = 
1 

- f [s; + b2s; - 2bSyx]· 
n 

This formula is valid if sample size n is large. 

Corollary : In simple random sampling if sample size n is large, then the estimator of 
variance of linear regression estimator is 
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1-/ . 
Proof: We know V(y1r) = --s;(1 - p2

). 
n 

We define u; = y; - f3(xi - X). 

2 1 ~ -2 
Then Su = N _ 

1 
L..,,(u; - U) . 

Estimate of S~ is s~ = -
1

- ~(u; - u) 2
. 

n-lL..,, 

Again, u = y + f3(X - x) = Y1r· 
1 - f . 

V(Y1r) = V(u) = --S~ . 
n 

.. 
Hence, estimator of V(y11.) is v(y1r) = 

1 
-/ s~. 
n 

DESIGN OF EXPERIMENTS AND SAMPLING METHODS 

We have U; - u = (y; -Y) - f3(x; - x) = [(y; -Y) -C b(x; - x)] + (b - f3)(x; - x). 

For large n the last term in the right-hand side becomes negligible. Then 

u; - u = (y; -Y) - b(x; - x). 

1 n 

s~ = n _ 
1 

L[(y; -y) - b(x; - x)]2. 

v(y ) = 1 - f [~(y; -Y) 2 _ {L:(x; - x)(y~ - y)}
2

] · 
Ir n(n - 2) L..,, · L:(x; - x) 2 

Here ( n - 2) instead of ( n - 1) is used since in regressions analysis s~ is calculated using ( n - 2) 
in the denominator. 

15.15 Comparison of Regression Estimator, Ratio Estimator and 
Simple Estimator 

· Let Y1, Y2, ... , Yn be a random sample of n observations selected from a finite population 
of size N. Then the variances of simpl~·estimator, ratio estimator and ,regression estimator of 
population mean are, respectively, 

V(y) = 1 - f s2 
n Y 

~ 1-/ 2 2 2 
V(Y R) = --. [Sy + R Sx - 2RSyx] 

n 

V(Y.ir) = 
1 

- f is;+ {32s; - 2{3Syxl· 
n 

Let us assume that n is large. For large n the regression coefficient b of f3 tends to {3. Then 

- 1-/ 2 2 
V(Y1r) = --Sy(l - p ). 

n 

Since IPI > 0 [-1 <p ~ 1], 

V(Y1r) < V(y). 

However, if p = 0, V(y1r) = V(y). 
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The variance of regression estimator becomes less than the variance of ratio estimator, if 

or, 

VC1hr) < V(Y n) or, - p2s; < R2S~ - 2RSySxp 

(pSy - RSx)2 > 0 or, ({3 - R)2 > 0. 

It is observed that, unless {3 = R the regression estimator is more efficient than the ratio 
estimator. However, if Yi and Xi are linearly related and the regression line of y on x passes 
through the origin, then ratio estimator is the best. 

Example 15.6 : There are 400 villages in a sub-division of a district. Thirty villages out of 
400 villages are randomly selected to estimate the total cultivated land for jute in the district. 
The number of jute grower farmers (x) and amount of land cultivated (yin acres) for jute by 
these farmers are recorded by an inspection. The information are given below : 

SL. No. of y x SL. No. of y 
villages villages 

1 5.4 3 11 6.2 

2 10.6 5 12 4.4 

3 15.2 10 13 .8.5 

4 12.7 8 14 20.8 

5 8.5 4 15 24.0 

6 10.0 4 16 20.0 

7 16.2 8 17 18.8 

8 . 15.5 6 18 14.2 

9 12.2 7· 19 11.3 

10 10.5 3 20 14.4 

(i) Estimate total land area cultivated for jute. 

'(ii) Estimate the variance of your estimator. 

x SL. No. of y 
vill?.ges 

3 21 20.2 

2 22 18.5 

5 23 12.2 

10 24 15.0 

10 25 8.2 

8 26 10.5 

6 27 12.6 

7 28 17.2 

12 . 29 5.6-

8 .30 8.5 

(iii} Compare your estimator with ratio estimator and simple estimator ... 

· Given that there are 2450 jute grower farmers in the study area. · 

x 

5 

6 

4 
7 

2 

5 

8 

6 

2 

4 

Solution : (i) We have N =. 400,. n = 30, X = 2450. Then X = 6;125. · We have 
E(Y -:-y)2 = J40.983, y = 1293, x = 5.93, s; = 6.9fr. E(x - x)2 =·201.87.: · 

s~ = 25.55, L:(x - x)(y -y) =·259.56~ 

. ·b = S = E;{x - x)(y -y) = 259.s& i= i.286 .. 
. E(x - x)2 20l.8'T" : . · . · 

' .. - .. \ .• 

The estimate of mean land area cultivated for jute is ·.,. 

. 'Yir = y .~ ~(X-x) = 12.93 + i.2s6(6:12s-.!>;93) = ia .. 1s1 acrea.· 
The estimate pf total land ar~ cultivated f.or jl(te in the study· area is 

. . Y1.r:::::: N'ii1r =· 400 x 13.181 = 5272.40 acres.· 
I a :• .. ··. • 

If bo = 1 is considered, theri .Yir = N. ('Jj+ bo(X ~ x)} =. 5250.00 acres. 
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(ii) The estimator of variance of Ytr is 

. v(Yir) = N2v('ii ) = N2(1 - f) 1" (y - 'ii)2 - {L:(x - x)(~ - y)}] 
Ir n(n - 2) L, L:(x - x) 2 

= 400
2
(1.- 0.075) [740 983- (259.56)

2
] 

. 30(30 - 2) . 201.87 

= 71752.95. 

The estimat~ of variance of Yi • ., when b0 :== 1, is an assumed value, 

' - 2l-f2 22 v(Yir) = Nv(y1,.) = N --[sy + b0sx - 2bosyx] 
n 

= (400)
2

(~~ 0·
075

) [25.55 + 12 x 6.96 - 2 x 1 x 8.95] 

= 72076.00. 

{iii) The simple estimate of total land area cultivated for jute is 

' 387.9 
Y = Ny= 400 x 3Q = 5172.00 acres. 

v(Y) = N 2v(y) = (400)21 - f sy2 = (400)2 (l - 0.0
75

) x 25.55 = 126046.67. 
n 30 

The ratio estimate of total land area cultivated for jute is 

Yn =NY R = N"'ff...x = 
4
00 x 

12
·93 x 6·

125 
= 5342.07 acres. 

x 5.93 

The estimate of variance of YR is 

v(YR} = N 2v(Y R) = N~(l - !) [s; + R2s; - 2Rsyx] 
n 

= {400)
2

{~~ 0·
075

) (25.55 + {2.18)26.96.:... 2 ~ 2.18 x 8.95] 

= 96716.54. 

It is observed that, even if {:J is estimated, the variance of fir is less than the variances of Y 
and YR. The relative efficiency of Ytr compared to Y is 

v(Y) -. v(f/r) x lOO% = 126046.67,,- 71752.95 x 100% = 75_673. 
v(Yir) 717v2.95 

Therefore, the gain in precision of regressio11 estimator compared to simple estimator is 
75.67%. The gain in precision of regression estimator compared to ratio estimator is 

v(Yn) -::- v(Yt~) x 
1003 

= 96716.54 - 71752.95 x 
1003 

~ 
34

_
793

_ 
v(Yir) 71752.95 

15.16 Regression Estimator in Case of Stratified_ Random Sampling 
We have already mentioned that the population units are divided into strata so that the 

observations within a stratum are internally homogeneous and then sampling units from each 
stratum are selected by si~ple random sampling. This process of selection of sampling units 
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from a population is known as stratified random sampling. Let Y h and X h be the population 
means of the study variable y and its related variable x of h-th stratum (h = 1, 2, ... , L). 
Consider that N1i is the population size of h-th stratum, where the entire population units are 

L 

N = L Nh. Let 'fh and x,. be the simple estimate of Y h and X h, respectively observed from 
h 

L 

sample size nh selected from h-th stratum. The total sample size from all strata is n = L nh. 
h=l 

The problem is to estimate population mean Y using 'fh,"X1t and X1i: This estimator can be 
found out by regression method of estimation. 

Let Yhlr = Y,:, + b1i(X - xh), h = 1, 2, · · · , L be the regression estimator of Y,., where bh is 
the sample regression coefficient of yon x. Using these separate regression estimators from all 
strata, we can find the regn~~sion estimator of Y, where such an estimator is 

This estimator Ylrs is a precise estimator of Y, if the values of /31i vary too much. This estimator 
is known as separ.ate regression estimator. 

We can also define a combined regression estimator for population mean Y. This is done 
if the values of f3h do not vary much. Here f3h is the regression coefficient of y on x for h-th 
stratum. The combined regression estimator is defined by 

Ylrc =;= Yst + b(X - Xst), 

l L l L _ l L Ni. 

where Yst = N L N,.y,., Xst = N L Nhxh, X = NL L Xhi· 
h=l h=l h=l i=l 

L Ni. 

L L(Yhi - Yh)(xhi - xh) 
n,. 
L(~hi - Xh)(Yhi - Yh) 

b = h i=l 
L ni. 

and bh = _i=_l _______ _ 
ni. 

L L(Xhi - Xh) 2 L(xhi -xh)2 

h=l i=l i=l 
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Since bha is known, E('flhtr) = Yh· 
. L 

We have Ylra = E W1.ii111r· 
h=l 

L L 

. E(111r.) = E WhE(flh1r) = E whYh = Y. 
h=l h=l . 

• L L 1 f 
V('fltr.) = E W~V(Yhir) = E w~ : h [S~y + b~OS~:i, - 2bhoShyx], 

. ~l ~l h . 

Now, 

nh 
\Vhere fh = /iT,;.' h = 1,2, ... ,L. 

This result is true since sample is selected from h-th stratum under SRS scheme. 
Corollary : In stratified random sampling if bho is a known value of f3h, then the variance 

of 1ltra becomes minimum and this minimum variance is given by 

v. . c-· ) - ·~ WG(l - fh) (s2 - s:hx) 
mm Ytra - L_,; · hy T · 

. h=l. nh hz 

Then the •egression estimator of Y,. is 
. Yhlr = Tlh +'bh(Xh - Xh)· 

But this estimator Yhtr is not unbiased and hence, 
L L 

Y1ra = E·WhJih1r "".' E Wh[Yh + b1a.CXh -xh)) 
1a:1 h=l 

is also not 'lm unbiued estimatOr of Y. The vaciance of this ~timator is 
. . . ~ WG(l ;_ fh) [ 2 2 2 . l 

V(J,,.,} i::::: ;t..- . . Shy + bhShz r 2bhShy:1: . 
1a::1 n1a · . · 

The estimator of this variance is· 

. _ ~ w:c1 .... fh) 
v(1ltra) - L, n (n - 2) 

h=t h h 

Ali ~heite reaulU. are presented using the results of the previous section. 
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Let us now consider the ~ombined regression-estimator,·wbere the combined estimator is 

"fl1rc ,;, Y.t + HX - Y.e). 

If b is known, E(Jlircl = Y, the combined regression estimator is unbiased. But, when b is 
not known, we need to. replace it by its estimator. In that case, oombined estimator is not an 
.unbi~ estimator of Y, because 

Tl1rc - Y = Y8 t - b(X - Y.t) - Y = (J8 t - V) - b(X - ~.t} 

= [Yst - Y + f3(X - x.t)] + (b -13)(X - x.t). 

It is clear that, if the sampling error of b is not zero, the combined regression estimator will 
not be unbiased. However, for large sample size, (b- {3) can be considered negligible and then 
VO/ire) becomes 

(- ) ~ WK(l -fh) [S2 /.1252 BS l 'fb /.1 V Y1t-c = L.., hy + /J hx - 2 hyx • I == /J• 

h=I nh 
'· 

L W2(1 - fh) Ni, . 
L h L(Yhi - 'Jh)(Xhi - Xh) 
h n,. . 

Here f3 = b = = 1 •= 1 

~ Wl(l - /,.) ~( - )2 
L,_, L,_, Xhi - Xh 
h=I nh i=I 

In such a situation VOhrc) becomes minimum. The estimator of f3. from sample observations is 

L W2(1 - f ) "'' 
L h h L(Yhi - iih){Xhi - Xh) 
h 

nh . 
1 b = =1 •= t Wl(l - fh) f:(xhi - Yh)2 

h=I nh i=I 

However, if sample from h-th stratum is selected under proportional allocation and if (nh-1) 
is replaced by nh; then 

L· ni. 

L L(Yhi -.'lihHxhi - xh) 
b = h=I° i=I 

L n,, 
L L($hi - Yh)2 

h=I · i=l 

Using this value ol b the estimator of V(iiirc) is 
.. · . L . 2 . .. ·. . ,_.· .. · . L.:. 

. · · "Wh(1- J,.) ··2 · 2· 2: · · ··. ·}, ..... 
v(Jiirc) = 4-' . fah 11 +b B1az·~·· ·>.h. 

h=l n,. . .. ·· .. ·.·.; \·;··. 
··•.: 

Example 15. 7 : A researcher has decided to estimate the· land ... cultivated (oj'~:tl,igh 
·yielding varieiy of rice. The study area is consisted of 74 villages. These village& are dividecf 
into 7 strata in respect of total cultivabl('l land~ · From each stratum, villages are selecte<J by 
proportional aUdcation. The information of total culti\rable land (X1a-) i~ all village& <N~) of 
h-th stratum, th~"<:ultivable land in selected villages (zhi), number ofeelected villages (nitt) and 
the amount of land _cultivated for HYV rice in selected villages (Jlh;}are ~Wn b"elow : . 
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Estimate the total amount of cultivable land for HYV rice. Also estimate the variance of 
your estimator. 

SL. No. Nh n,. x,. Xhi Yhi 
stratum (in hectares) (in hectares) 

1 15 4 5750 150, 370, 475, 320 20, 60, 75, 101 

2 12 3 3180 225, 465, 570 75, 180, 270 

3 11 3 3678 460,.392, 282 125, 220, 68 

4 7 2 1877 312, 162 170, 92 

5 10 3 2895 575, 603, 475 150, 200, 180 

6 8 2 • 2662 380, 420 120, 210 

7 11 3 3192 472, 662, 390 150, 212, 203 

Total 74. 20 23234 

Solution : We have N = 74, n = 20, X = 23234 

Yi = 256, Yi = 64.00, xi = 1315, 'Xi = 328. 75, s~ = 1147.33 

Y2 = 525, ]h = 175.00, X2 = 1260, 'X2 = 420.00, S~y = 9525.00 

Y3 = 413, 'jj3 = 137.67, X3 = 1134, X3 = 378.00, S~y = 5896.33 

Y4 = 262, 'jj4 = 131.00, X4 = 474, X4 = 237.00, s~y = 3042.00 

Y5 = 530, 'fis = 176.67, X5 = 1653, X5 = 551.00, S~y = 633.33 

YB = 330, y6 = 165.00, x6 = 800, X6 ,;,, 400.00, s~Y = 4050.00 

Y7 = 565, 'fh = 188.33, X7 = 1524, X7 = 508.00, s?y = 1122.33 

s~x = 18372.92, s~x = 31275.00, s~x = 8068.00 

S~x = 11250.00, S~x = 4528.00, S~x f 800.00 

s?x = 19468.00, bi = 0.16301, b2 = 0.54316, b3 =. 0.42159 

b4 ~ 0.52, b5 = 0.03533, b6 = 2.25, b7 = 0~846. 

x 1 = 383.33, x 2 = 265.00, x 3 = 334.36, x 4 = 268.°14, x 5 = 289.50, 

X6 = 332.75, X1 = 290.18. 

Now, Yhtr=y,.+bh(X,.-x,.); h=l,2,. .. ,7 .. 

So, we have 

Y11r = 72.897, 'fi21r = 90.810, Y3lr = 119.272, Y41; ='= 147.193, 

Ystr = 167.431, Y6lr = 13.687, Y7l~ = 169.902. 

Therefore, from separate regression estimator, we have 

1 L ' · 1 
Ytrs = N L NhYhlr = 

74 
(15 X 72.897 + 12 X 90.81 + 11 X 119.272 + 7 X 147.193 

h=i 
+ 10 x 167.431 + 8 x 13.687 + 11 x 169.902] 

= 110.517 
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The estimate of total cultivable land for HYV rice is 

Ytrs = Nfi1rs = 74 X 110.517 = 8178.258 (hectares). 

The estimator of variance of this estimator is 

v(firs) = L :~~(~h-!~~ [~(Yhi - 1h)
2 

- b~ L(Xhi - Xh)
2 l · 

SL. No. ~-/,.) -c 
h-2) - h ch Li(Yhi - 'fh) 2 Chb~ L:(xhi - xh) 2 

1 20.615 70956.62 30193.35 

2 36.000 685800.00 664332.31 

3 29.322 345765.02 84094.98 
4 - ~ -

5 23.333 29554.98 263.75 

6 - -· -
7 29.322 65817.92 8171.20 

Total 1197894.54 787055.59 

Hence, v(Ytrs) = 1197894.54 - 757055.59 = 410838.95. 

In this selection, the sample from h-th stratum is selected by proportional allocation and 
hence, we can use the estimator of b as 

L nh 

L L(Yhi -fh)(xhi -xh) 
b = h=l i=l 

L nh 

L L(Xhi - Xh) 2 

h=l i=l 

1294944 - 2881 x8160 119496 
____ ..,.(_,2 .... 0.,...,),..... = 3720 8 = 0.3212. 

3701338 - 20 5 

'fist = 143.91, X8 t = 406.57, X = 313.973 

Y!rc = 'fist + b(X - Xst) 

= 143.91 + 0.3212(313.973 - 406.57) = 114.17. 

Therefore, estimated· tota.l cultivable land for HYV rice using c~mbined regression estimator is 

Ytrc = N'fi1rc = 74 X 114.17 = 8448.58 (hectares). 

· The estimated variance of Ytrc is 
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SL. No. N~(l-/1.) _ C 
nh - lh C1hS~y Cihs~x 2bC1hShyx 

Strata 

1 . 41.231 47305.56 78154.34 79327.95 
2 36.000 342900.00 116158.47 392859.72 
3 29.322 172892.19 24406.78 : 64062.77 
4 17.493 53213.71 20303.36 65739.39 
5 23.333 14777.49 10900.04 2398.26 

' 6 24.000 97200.00 1980.85 27751.68 
7 29.322 32908.96 58.893.31 31073.64 

Total 761197.91 310797.15 663163.41 

•• v('Yirc) = 761197.91-f 310797.15 - 663163.41=.408831.65. 



Chapter 16 

Cluster· Sampling 

16.1 Introduction 
The basic need to select simple random sample, stratified random sample and systematic 

sample is the list of population units (frame). The preparation of such a list is not very difficult 
if the population size is smaller and if the population units are confined in a smaller area. 
But if the survey is to be conducted throughout the country, it is difficult, time taking and 
expensive to prepare a frame. For example, the objective of a survey is to estimate the number 
of couples adopting family planning methods in a specified area or in a state or in the country. 
The couples of child-bearing ages are the population units and they are spread over the entire 
survey area. It is very difficult to prepare a list of couples of child-bearing ages and hence, 
a representative group of couples cannot be selected using simple random sampling, stratified 
sampling or using systematic sampling. Even if the list is available, the sampling units will be 
spread over the entire survey area and it will not be convenient to conduct the survey within 
the stipulated time period and within the limit of resources for the survey. 

To avoid the problem, the entire study area can be divided into smaller administrative units 
and some of the units are to be selected by simple random sampling. The ultimate sampling 
units of each selected administrative units are to be investigated to collect the data according 
to the pre-determined objective. For example, to estimate the proportion of adopter couples, 
the study area can be divided into villages (if it is rural area) and some of the villages are to be 
selected by simple random sampling. The couples of child-bearing ages of each selected village 
are to be investigated. Here a village is called a cluster and the selection of clusters is known as 
cluster sampling. This cluster sampling is called one-stage cluster sampling, where the couples 
of villages constitute the cluster units. To investigate the couples, some of the districts can 
be selected randomly; from the randomly selected districts, some of the smaller administrative 
units, some of the villages can be selected randomly and finally the couples of child-bearing 
ages of a village can be investigated. This type of sampling is known as multi-stage cluster 
sampling or simply known as multi-stage sampling. 

In case of one-stage cluster sampling, data can be collected from a randomly selected group 
of couples instead of all couples of the cluster. Such sampling is known as two-stage sampling. 
In the subsequent chapters and sections, the different aspects of multi-stage sampling will be 
discussed. 

From the above discussion it is clear that, if the population units are divided into groups, 
where the units within a group are adjacent irrespective of homogeneity or heterogeneity in 
characteristic under study are called clusters. If in any sampling scheme the clusters are 
considered as a sampling units and some of the clusters are selected randomly to investigate 
the ultimate units within a cluster is called cluster sampling. 

The cluster sampling is applied profitably in selecting the population units where list of units 
are not available. However, the necessary pre-condition of cluster sampling is that each popula
tion unit must be accommodated once and only once in any one cluster. This ensures that 

449 . 
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neither a unit has chance to l>e excluded from the survey nor a unit has the chance to l>e 
included more than once in the sample. The al><we mentioned condition is needed to avoid the 
bias in cluster sampling. 

The important step in cluster sampling is to prepare the clusters. Therefore, the. cluster 
size plays a vital role in cluster sampling. If the cluster sizes are sma11er, the ultimate sampling 
units are expected to be more homogeneous. In such a case the precision of the estimate of 
population parameter is expected to be increased. In practice, in an agricultural survey the 
nearby farmlands can constitute a cluster; in socioeconomic survey the families living in a 
smaller area may constitute a cluster; in studying the family planning activities of couples, a 
group of couples living nearby may constitute a cluster. 

Advantages of Cluster Sampling : The advantages of cluster sampli!1g are: 

(i) Since clusters are formed with neighbouring population units, the data collection from 
units within a cluster is easier, less costly. The survey can be conducted·.:within a 
short period of time. Cluster sampling is also advantageous from the point' of view 
of administration of survey work. 

(ii) This sampling scheme is used easily if the frame of population units is not available. 

16.2 Method of Estimation in Cluster Sampling 
Let there be NM units in a population, where the units are divided into M clusters each 

of M units. The problem is to select n clusters from N clusters by a random process. Let 
Yi.i (i = 1, 2, ... , M) l>e the value of the variable under study of jth unit in ith cluster. Then 
the population mean per element of ith cluster is 

- 1 M 
Y;= MLYi.i· i=l,2, ... ,N. 

The cluster sample mean is 

l n _ l n M 

Ye=:;; LY;= nM LLYi.i· 
i=l i j 

The population mean per cluster is 

The population mean per element is 

_ l NM l N_ 

Y= NMLLY;1= NL.:Y;. 
i j i=l 

The variance of observations within ith cluster is 
M 

2 1 '""" -2 
S; = M - 1 L..)YiJ - Y;) ' 

The mean of variances of cluster is 

j 

N 

s2 = _!_ '""" s2 w N L-, • . 
i 

i = 1, 2, ... , N. 
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The variance of the cluster means (mean square error of clusters) is 

The variance of population observations is 

2 1 "'"' -2 S = NM _ l L... L._)Yi.i - Y) . 

Intra-cluster correlation coefficient of observations is 

E(Yij - Y)(Yik - Y) 
p= 

E(y;1 - Y) 2 

LL L(YiJ - Y)(Yik - Y) 
j koF} 

(M - l)(N M - l)S2 

Since all clusters have equal number of observations, Y N = Y. The estimate of this Y is Ye· 
Theorem : If n clusters are selected from N clusters by simple random sampling without 

replacement (SRSWOR), then Ye is an unbiased estimator of Y with variance. 

V(yc) = 1 - f si ~ 1 -Mf s2[1 + (M - l)p], 
n n 

where p is the intra-cluster correlation coefficient of observations and /'vf is the cluster size. 

l n M l n _ 

Proof: We have Ye= nM LLYi1 =;LY;. 
i j 

Since clusters are selected by SRS scheme, 

E(Y;) ~ E [ ~ ~ YiJ l ~ ~ ~>, 
1 ~ - 1 ~ 1 "'- 1 ~- -E(yc) =; L... E(Yi) =; L... NL... Y; =-;;: L... Y = Y. 

Again, as clusters are selected by SRS scheme, the variance of Ye is 

V(- ) ·= N - n _1 _ '°'(Y - Y)2 = N - n 52 = 1 - f s2 
Ye nN N - 1 L... ' nN b n b• 

But ( )
2 ( )2 N NIM IN M 

L(Yi - Y)2 = L M LYi.i - y = M2 L LYij - MY 
i i J i .1 

l N M _
2 

l N M _ _ 

= M2 LL(Yij -Y) + M2 LLL(Yij -Y)(yik -Y) 
i j i j kjj 

_ (NM-l)S2 pS2(M-l)(NM-1) _ (NM-l)S2[ (M ) ] 
- M2 + M2 - M2 1 + - 1 p 
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_ N - n 1 MN - 1 2 Then V(yc) = -;JV N _ l M 2 S [1 + (M - l)p] 

1-/ NM-I . 1-/., 
= ~ (N - l)M2S2[1 + (M - l)p]:.:::: -n-s~r1 + (M_- l)p] 

S2 n = --[I+ Uvf - l)p], if f = --; is neglected. 
n N 

It is observed that, in case of cluster sampling the variance of cluster sample mean depends 
on cluster size, number of clusters and intra-cluster correlation coefficient. If the number of 
observations per cluster is NI = 1, then the cluster sampling is equivalent to simple random 
sampling of size n from N units. Hence, cl~ster sampling and simple random sampling are 
equally efficient. But if NI > 1 and p is positive, the variance of cluster sample mean is greater 
than the variance of the simple random sample mean. The variance of cluster sample mean will 
be less than the variance of simple random sample mean, if p < 0. Therefore, cluster sample is 
profitably applied, if p < O. 

Corollary : The estimate of population total in case of cluster sampling when n clusters 
are selected by SRS s,cheme from N clusters each of M units is 

Y = NMyc 

and its variance is 

Corollary : Let there be NM elements in a population. Consider that nM elements are 
selected from the population oy SRSWOR technique. Then the estimator of population mean is 

} n M 

y= nM LLYi.i· 
I j 

The variance of this estimator is 

N M 

2 1 '""'"" -2 where S = NM_ 
1 

L.., L..,(Yij - Y) . 
i .i 

16.3 Method of Estimation in Cluster Sampling when Clusters are of 
Unequal Sizes 

Let there be N clusters in a population and ith cluster be of size M; ('i = 1, 2, ... , N) such 
N 

that total number of population units are Mo= L M;. 
i=l 

Then the population mean is 

_ } N M; } N _ 

Y= M LLYi.i=Ml:M;Y;, 
0 i j 0 i=l 

- 1 M; 
where Y; = - LYi.i = the mean of ith cluster. 

M; . 
j=l 
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- 1 N -
The population mean per cluster is Y N = NL yi· 

t=l 

Let us consider that n clusters are selected by SRS scheme from N clusters. Let .l/i.i be the 
observation of jth unit in ·ith selected cluster (t = 1, 2, ... , n; .i = 1. 2, ... , M,). Now, we can 
define three estimators of population mean Y. The estimators are : 

and 

N n - 1 n -

Ycl = -M L M;Yi =-= L M1Yi, 
n o i=l nM i 

1 n -
Yc2 = - LYi 

n i=l 

- Mo 
M=

N 

l n _ _ l M, n 

Yc'J =ML Mi Yi, where Yi= M LY;j, M1 = L M;. 
• 1 i t j=l i 

Theorem : If n clusters are selected by SRS\VR scheme from N clusters, where ith cluster 
is of size Mi, then Yci is the unbiased estimator of Y and the variance of this estimator is 

1-f 
V(yci) = --Slc 

n 

S2 n 
= ~c • if f = N is neglected. 

Here Slc = N ~ l t (~Yi -Y) 
2 

t=l 

1 n -
Proof: The estimator 'ilci is given by Yci = --= L Mi Y.i· 

nM i=l 

_ 1 n - 1 n N Mi - -
E(yci) =-= LE(M;Yi) =-=LL Nyi = Y. 

nM i=l nM i=l .i=l 

Hence, Yci is an unbiased estimator of Y. 
The variance of the estimator is 

V(yci) = E(iici - Y)2 = E w MiY, - y = -;.E w M;Yi - nY [ 
"""'n - ] 2 [ """'" . - ] 2 

nM n M 

1 ~ - ~ - ~ -
[( ) ( ) ( )] 

2 

= n 2 E M - y + M - y + ... + M -- y 

= ~2 [t E (Mi Y; _ y) 
2 

+ EL t (Mi Yi _ y) ( M1Y 1 _ y) ]· . 
i=1 M ; i#i M M 

- 2 

B E (
M,Y; y) N - ls2 

ut --=- - = -- be M N (
M;Yi -) (M1Y1 -) and E --=- - Y --=- - Y 

M M 
[Accordin~ to the variance of simple random simple mean] 

-· Slc 
N 
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- N - ns2 
- -;:;JV be 

= I - f s2 
n be 

= ~S~c' if f = !!:.. is neglected. 
n N 

Theorem : If n clusters are selected under SRSWR scheme from N clusters of unequal 
sizes, then the sample mean Yc2 is not unbiased estimator of population mean. The bias ~nd 
variance of this estimator are, respectively 

where 

1 -
Bias (yd= =Cov(Yi, Mi) 

M 

- 1-f 2 -
V(Yc2) = --Sbc2(Yi, Mi), 

n 

1 n -
Yc2 = - LY,, 

n i=I 

N 

2 1 "'- - 2 sbc2 = N - 1 L.)Yi - y N) . 
i=l 

. 1 n - 1 " 1 N - - -
Proof: We have E(yc2 ) = - "°' E(Yi) = - "°' - "°'Yi= Y Ni= Y. n~ n~N~ . 

t=l i=l i=l 

Therefore, Yc2 is not unbia • .;;ed estimator of Y. The bias of this estimator is given by 

- 1 N - 1 N - 1 N -- -
Bias (Yd = E(yc2) - Y = N LY; - -:= L Mi Yi=-= L(M Yi - M;Y;) 

NM i=I NM i=I 

= _ 1 °"" Y(M _ M) = _ Cov(Y;, Mi). 
NM~ ' ' M 

It is clear that, if the Cov (Y;, M;) is small, Yc2 can be used as an unbiased estimator of 
population mean. This covariance will be smaller if the variation in M; 's is smaller. If M; and 
Yi are independent, covariance will be zero and :Yc2 can be used as unbiased estimator of Y. 

Agair;, the variance of Yc2 is 

N 
- - - 2 1-/2 2 1 "'- - 2 V(Yc2) = E(Yc2 - Y N) = -n-Sbc2• where Sbc2 = N _ l ~(Y; - Y N) · 

. i=l 

16.4 Estimation of Sampling Variance in Case of Cluster Sampling 
Let there be NM units in a population, where units are divided into N clusters each of size 

M. Consider that n clusters are selected under SRSWOR scheme. Let the sample mean be 

· l n_ l n M 

Ye=~ LY;= nM LLYij· 
i=l i j 

Then the variance of sample observations is 

n M 

2 1 "'"'. - 2 s = nM - 1 ~ ~(Yii - Ye) . 
. ' j 
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The total sum of squares (nM - 1 )s2 can be partitioned using the technique of analysis of 
variance. The analysis of variance table is shown below : 

ANOVA Table of Sample Observations 

Sources of variation 'd.f. M.S. 
n 

Intra-class n-1 ML- -2 2· -- (Y;-yJ =M5b 
n-1 

i=l 

n M 

Inter-class n(M - 1) 1 LL - 2 2 
n(M - 1) i=l .i=l (YiJ - Y;) = sw 

n M 

Total nM-1 1 LL - 2 2 nM _ l . (Yi:i - Ye) = s 
t=l .i=l 

Using the above results of ANOVA table it is easy to show that s~ and s~ are unbiased 
estimators of 5~ and 5~, respectively. But s2 is not an unbiased estimator of S2 since cluster 
sample of size nM cannot be considered as a simple random sample from NM observations in 
the population. However, from the identity of analysis of variance, we have 

52 = M(N - 1)5~ + N(M - 1)5~. 
NM-1 

But unbiased estimators of 5~ and 5~ are s~ and s~, respectively. Hence, replacing 5~ by 
s~ and 5~ by s~, we get an unbiased estimator of 5 2 as 

52 = M(N - l)s~ + N(M - l)s~v. 
NM-1 

Corollary : If n clusters are selected from N clusters by SRSWOR scheme, then the 
unbiased estimator of variance of Ye is 

1 - f 
v(yc) = --s~, 

n 

s2 
~ 
n 

if f = ~ is neglected. 

This latter variance is obtained if the sample is selected with replacement. 

Corollary : In cluster sampling if clusters are of equal sizes and they are selected without 
replacement, then the unbiased estimator of variance of the estimator of population total is 
given by 

v(Yc) ~,N
2

M
2

(l - !) s~ = N
2
M

2 
s~, if f = Nn is neglected 

n n 
or if sample is selected with replacement. 

Corollary In cluster sampling if clusters are of unequal sizes, then the variance of Ycl is 
estimated by 

n - 2 

v(ycl) = 
1

: f s~c• where s~c = n ~ 
1 
~ ( M:, -ycl) 
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The unbiased estimator of variance of Yc2 and Yc3 are given respectively by 

- 1-1 2 2 1 I:n - - 2 v(Yc2) = ~sbc2• where sbc2 = --
1 

(Y; - Yd 
n n-

i=l 

1 - f 2 1 ~ - - 2 M;2 
v(Yc3) = --sgc3• where sbc3 = n - 1 L.,,(Y; - Yc3) ==2· 

n i=l M1 

Here 

Corollary : In cluster sampling if clusters are of equal size and sample is drawn under 
SRSWOR scheme, the unbiased estimator of intra-cluster correlation coefficient is given by 

, (n-l)Ms~-ns! 
p= --.....,---,,---"-------(n - l)Ms~ + n(M - l)s~ · 

16.5 Relative Efficiency of Cluster Sampling 

Let qiere be NM elements in a population. Consider that nM elements are selected by 
simple random sampling without replacement (SRSWOR) scheme. Then the variance of the 
sample mean y is 

l n M 

where y = nM L LY;J, 
i=l j=l 

N M 

2 1 "'"' -2 S = NM - 1 L.,, L.,, (YiJ - Y) . 
i=l j=l 

Also, consider that NM units are divided into N clusters each of size M and n clusters are 
selected from N clusters by SRSWOR scheme. Then the variance of the cluster sample mean is 

N M N M 

We have (NM- l)S2 = LL(Y;j -Y) 2 = LL[(Yii -Y,) + (Y; -Y)] 2 

j j 

'"" '"" - 2 '"" - - 2 = L.,, L.,,(Y;j - Y;) + M L.,,(Y; - Y) 

N 

= (M -1) LSf + M(N - l)St = N(M - l)S~ + M(N - l)St, 

2 1 . '""'"" - 2 2 1 '""- -2 where Sw = N(M _ l) L.,, L.,,(Yii - Y;) , MSb = N _ 1 L.,,(Y; - Y) . 

Again, MSt = _Nl [(NM- l)S2 
- N(M- l)S~J. 

- 1 
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Therefore, th<' relative efficiency of cluster sampling compare<l to simple random sampling 
is given by 

V(Y) 5 2 (N - 1)52 

R.E. (Cluster) = V(yc) = M 5t = (NM - 1)52 - N(M - 1)5~. 

It is observed that, if the variance of the cluster means is minimum, the relative efficiency 
of cluster sampling is increased. Again, with the increase in the variance of observations within 
the clusters the efficiency is increased. Therefore, the cluster sample will provide efficient 
estimator of population parameter if clusters are formed in such a way that the variance of the 
observations within a cluster is more but the variance of the cluster means is less. But if nM 
units are selected randomly from NM units in the population and n clusters are formed, then 
the variance of the observations with clusters and the variance of the cluster means will be of 
same order and cluster sampling and SRS will be of same efficiency. 

It is noted that the clusters are so formed that the varian{:e of the observations within cluster 
becomes minimum. As a result the variance of sample mean of cluster sample is expected to be 
more than the variance of the sample mean when a sample of nM units are selected randomly 
from the population. The variance of cluster sample mean increases with the increase in number 
of clusters. The phenomenon can be observed if variance is expressed in terms of intra-cluster 
correlation coefficient. The intra-cluster correlation coefficient is 

= E(y;1 - Y)(y;k - Y) . --£ k = 1 2 M 
p E(Yij - Y) 2 ' J I , ' ... ' . 

_ 1 - f (NM - 1) 2 
We have. V(yc) = -n- M 2 (N _ l) 5 [1 + (M - l)p] 

52 n 
~ nM [1 + (M - l)p], if f = N is neglected. 

V(y) 5 2 /nM 1 
Then R.E. (cluster) = -( -) ~ 82 ~ ( ) · 

V Ye nM [1 + (M - l)p] 1 + M - 1 p 

It is observed that, if M = 1, both sampling schemes are of equal efficiency. But, if M > 1, 
(M - l)p increases and efficiency decreases. Hence, (M - l)p is a measure of relative change 
in the sampling variance of cluster sampling. In practice, p is positive and its value decreases 
with the increase in size of M. However, the rate of decrease in the value of pis not similar to· 
the rate of iru!rease in the value of M. Hence, V(yc) increases if M increases. If p = 1, S~ = 0, 
and in such a situation, cluster sampling .is not efficient. 

Let us now discuss the relative efficiency of cluster sampling when clusters are of unequal 
sizes. We have noted that Yci is an unbiased estimator of population mean and its variance is 

- l-f 2 - 1 ~ -
V(ycl) = --5bc• where Ycl =-= L..J Mi Yi· 

n nM i=I 

n 

Here the sample size M 1 = L Mi is a random variable with expectation nM. If a sample of 
i=l 

size nM is selected from any population by SRS technique, then the variance of sample mean 
will be 

V (Y) = MN - nMsz = 1 .- ! s2. 
NMnM nM 
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In such a case, the relative efficiency of cluster sampling compared to simple random 
sampling bec·omes 

V(Y) S 2 

R.E. (Cluster) = v(- ) = _ 2 . 
YcI MSbc 

It is observed that the efficiency of cluster sampling is increased if the variance of cluster 
means (Slc) is d~creased. 

16.6 Cluster Sampling with Varying Probabilities 

To select cluster sample we have mentioned that clusters are selected randomly by sjmple 
random sampling where all clusters have equal chance of selections. Clusters may be selected 
randomly with varying probabilities, i.e., ith cluster ~ill be selected with probability p;, where 
Pi= Mi/Mo (i = 1, 2, ... , N); 

N 

Mo= LM;. 
i=l 

This is specially done if clusters are of unequal sizes. The total probability of selection is 

L Pi = 1 ( 0 < Pi < 1). 

The clusters can be selected using Lahiri's method of selection. The method is described 
below: 

Let there be N clusters numbered. I, 2, ." .. , N. Consider that in any cluster the maximum 
number of units is M. Now we need to select a pair of random numbers to include a cluster in 
the sample. The first number of the pair is a random number from 1 to N·. The second number 
of the pair is a random number from 1 to M. If this second number is less than or equal to the 
size (M) of cluster corresponding to the first selected number, then that cluster is included in 
the sample, otherwise th.is pair of random numbers is deleted and a second pair is selected. If 
the second pair corresponds to a cluster and second number in the pair of random numbers is 
less than or equal to size of the cluster, then the respective cluster is included in the sample. 
The process is repeated unless required n cluster are selected in the sample. For example, 
let us consider that there are 10 clusters in a population and the elements in the clusters are 
Mi = 150, M2 = 90, MJ = 240, M4 = 25, Ms = 98, M 6 = 140, M1 = 80, M 8 = 75, M 9 = 120, 
Mio = 165. Now, we need to select a random number from 1 to 10 and a number from 1 to 240 
(·: MJ = 240 is the largest size of the cluster). Using Random Number Table of Appendix, we 
get the pair (01,034). This pair corresponds to first cluster. Hence, first cluster is included in 
the sample. The second pair is (06,161). But sixth cluster has M 6 = 140 elements. Hence, this 
cluster is not included in the sample. The pair is deleted. Another- pair is to be selected. The 

. process is continued until the required sample is selected. 

Let Yij be the value of the variable under study of jth unit in ith cluster. Let us define a 
new variable Z such that 

Z .. _ MiYi1. N 
tJ - , i = 1, 2, ... , ; j = 1, 2, ... , M;. 
. MoPi 

My - 1 
M; 

Then Zi = _i_i, where Yi= M· ~ YiJ· 
Mo Pi ~ 

• j=l 
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Here Y; is the mean of ith cluster and Z; is the mean related to Yi. We have 

N N -- '°' - '°' M; Y; -E(Zi) = ~p;Zi =~Pi~= Y. 
i=l i=l oPi 

Let us write Y = Z .. and define an estimator Z on the basis of n selected clusters such that 

- 1~- 1~-
z = - ~zi = - ~Yi. n n 

i=l i=l 

This result is also true, if Pi =/:- Mi/ Mo. 
Theorem : In cluster sampling if clusters are selected by probability proportional to size 

(PPS) of cluster with replacement, then sample mean Z is an unbiased estimator of population 
mean Y. The variance of Z is given by 

N - 1'°' - - 2 V(Z) = - ~Pi(Zi - Z .. ) , 
n i=l 

- i L.,. -
where z = - zi. 

n 
i=l 

Proof: E(Z) = .!_ t E(Z;) = .!_ t Y = Y. 
n n 

i=l i=l 

We know V(Z) = E(Z
2

) - [E(Z)] 2 

= E [~ tzi] 2 

- z~ [·: E(Z) = y = Z.] 
t=l 

1 [ ~ -2 " - - ] -2 = n 2 E ~ Zi + E ~ ZiZJ - Z ... 
i=l ii) 

N 

Again, E(Z~) = LPiZ~ and E(ZiZj) = E(Zi)E(Z1) = z~ .. 
i=l 

'- 1 -2 n - 1 - - -2 1 [ N -2 -2] Therefore, V(Z) = ;;,E(Zi) + -n-E(Zi)E(Z1) - Z .. =;;, LPiZi - Z .. . 
t=l 

N I" - - 2 IL - -2 = - ~Pi(Zi - Z .. ) = - p;(Yi - Y) . 
n n 

i=l 

Corollary : In cluster sampling under PPS sampling scheme the unbiased estimator of 
variance of Z is 

- 1 "'-. I"-
v(Z) = n(n _I) L(Yi -y), where y =;;,LY;. 

i=l i=l 

Corollary : In cluster sampling if ith cluster is selected with probability Pi, then the 
unbiased estimator of V (Z) is 
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Example 16.1 : To estimate the family planning adopter couples in a police station area a 
survey is conducted. In that police station area there are 120 villages. These villages are divided 
into 40 clusters. The ·.umber of villages in clusters are different. Ten chisters are selected by 
probability proportional to number of villages in a cluster. The number of villages in a cluster, 
number of couples of child-bearing ages who adopted family planning are shown below : 

SL Number of villages Number of Yi M Z· - M;Y; Pi= Xf.; ' - Mop; 
No. in clusters adopter couples . M; M;Y; 

1 4 150 37.5 0.0333 

2 2 95 47.5 0.0167 

3 3 175 58.33 0.025 

4 2 120 60.00 0.0167 

5 2 70 35.00 0.0167 

6 4 250 62.50 0.0333 

7 4 300 75.00 0.0333 

8 3 275 91.67 0.025 

9 3 120 40.00 0.025 

10 2 135 67.5 0.0167 

(i) Estimate the total adopter couples in the police station area. 

(ii) Estimate the standard error of your estimator. 

41.67 

39.58 

58.33 

50.00 

29.17 

69.44 

83.33 

91.67 

40.00 

56.25 

(iii) In the above example, if Pi #- Md Mo, then what would he your estimators. 

Solution : (i) Here Pi= Mif M0 . Hence, average adopter couple is 

Z = ~ tY; = 575.0 = 57.5. 
n 10 

i=l 

The estimate of total adopter couples in the study area is 

Y = M 0Z = 120 x 57.5 = 6900. 

(ii) The estimatea variance of this estimator is 

v(Y) = MJv(Z~, 

where - 1 ~ - _ 2 1 [""'-2 o::::Y-;)2] 
v(Z) = n(n -1) 6t(Yi - y) = n(n - 1) ~Yi - n 

= 10(1~ - 1) [35980.7778 - ( 5~~)
2

] = 32.4253. 

Therefore, v(Y) = (120) 232.4253 = 466924.32. 

s.e.(Y) = Mi= 683.32. 

(iii) If p; #- M; /Mo, then we define 

_. M.Y, - 1 L- 559.44 
Z - -·-· and Z = - Z; = -- = 55.944. 

' - Mop; n 10 

Given 
p; 

0.03 

0.02 

0.025 

0.02 

0.02 

0.03 

0.03 

0.025 

0.025 

0.02 
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Hence Y = MoZ = 120 x 55.944 = 67132.8 :::::: 67133. 

v(Y) = MJ ["' z2 - (L:Zi)2] = (120)2 [34989.497- (559.44)2] 
n(n-1) ~ ' n 10(10-1) 10 

= 590749.7024. 

s.e.(Y) ~ F<Y) = 768.60. 

Example 16.2 : To estimate the total production of marigold in a police station the area 
is divided into 55 clusters in such a way that in each cluster there are 10 farmers living nearby 
area. The production data of marigold of each farmer are shown below : 

Sl.No. of Production of marigold (in kg) of different farmers 

clusters 1 2 3 4 5 6 7 8 9 10 Total Yi 
1 4.5 5.0 6.2 7.5 4.0 4.0 5.6 8.2 7.6 9.5 62.1 
2 5.0 5.6 7.2 8.5 9.0 5.0 5.0 6.7 6.0 6.0 64.0 
3 8.0 8.0 8.0 7.6 7.8 6.2 4.5 4.2 4.0 4.0 62.3 
4· 5.5 3.2 3.4 6.8 8.0 9.0 9.2 9.0 6.7 8.2 69.8 
5 4.0 5.5 6.0 6.0 6.5 6.5 6.5 8.0 8.7 8.5 66.2 
6 6.2 3.7 3.8 4.5 4.0 9.7 4.6 4.8 5.6 6.7 53.6 
7 4.0 8.0 9.3 9.8 3.6 2.8 5.5 5.0 5.0 6.5 59.5 
8 8.6 8.9 6.3 9.7 4.2 4.0 3.8 3.0 3.5 7.6 59.6 
9 6.0 4.6 4.8 3.0 9.7 8.7 4.2 4.5 6.0 8.7 60.2 
10 8.0 9.0 8.5 8.0 4.2 5.0 8.7 5.6 3.2 3.0 63.2 
11 4.0 9.0 6.5 6.2 8.7 3.5 3.5 4.2 4.8 5.0 55.4 
12 7.5 7.2 6.0 8.7 4.8 9.6 4.8 5.0 6.6 6.0 66.2 
13 3.5 3.0 4.0 5.5 6.7 6.2 6.4 7.0 8.0 4.2 54.5 
14 5.0 6.0 6.3 4.8 7.0 7.2 5.0 5.5 5.6 8.8 61.2 
15 4.4 6.2 6.0 5.8 6.3 9.0 6.7 8.0 8.2 4.8 65.4 
16 6.0 3.0 4.4 5.0 5.8 6.2 8.7 6.4 7.8 6.5 59.8 
17 8.4 9.6 4.5 6.0 6.7 6.6 3.8 3.0 4.0 5.7 58.3 
18 5.5 5;0 5.2 6.2 4.8 7.6 7.0 6.2 6.4 6.0 59.9 
19 p.2 6.0 4.5 6.0 8.5 7.2 6.0 4.5 5.0 5.2 59.1 
20 8.0 7.2 7.0 6.2 4.0 4.5 7.0 4.8 6.7 9.2 64.6 
21 7.2 4.0 5.2 6.3 4.8 6.6 8.2 5.2 3.4 3.0 53.9 
22 6.0 8.2 9.6 9.0 4.0 5.2 5.3 6.0 6.4 3.5 63.2 
23 7.0 7.5 6.0 6.6 5.0 5.0 4.3 3.8 4.1 4.0 53.3 
24 7.2 6.0 4.1 4.2 4.0 4.0 3.8 9.7 6.8 7.4 57.2. 
25 6.0 6.2 5.0 5.0 5.5 5.5 6.0 7.2 3.8 4.5 54.7 
26 4.5 4.0 6.2 7.0 7.2 8.0 5.6 5.0 5.0 4.8 57.3 
27 4.0 6.0 5.0 4.8 3.6 4.4 5.2 4.6 6.7 7.2 51.5 
28 6.4 7.2 3.0 3.4 2.7 6.6 4.8 6.4 4.2 4.5 49.2 
29 5.0 5.2 9.8 6.7 6.8 4.4 6.7 4.2 5.0 4.9 58.7 
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SI.No. of Production of marigol~ (in kg) of different farmers 

clusters 1 2 3 . 4 5 6 7 8 9 10 Total Yi 
30 6.2 7.0 6.0 5.8 8.0 7.5 7.0 6.8 4.0 3.8 62.1 
31 4.8 5.0 6.7 4.8 7.2 9.0 9.2 6.0 6.0 7.5 66.2 
32 8.2 8.0 3.8 4.0 3.8 3.0 3.6 4.8 7.6 5.4 52.2 

\ 

33 7.6 7.0 6.2 8.7 6.2 6.0 8.0 8.2 6.7 7.0 71.6 
' 34 4.4 5.5 6.2 4.8 7.0 7.2 6.2 5.6 5.0 5.0 56.9 

35 4.8 4.4 5.4 6.2 6.0 7.0. ·6.8 8.7 9.0 8.0 66.3 . 
36 5.6 6.2 6.8 7.0 6.7 6.4 5.8 5.4 6.7 6.8 63.4 
37 7.4 9.0 8.1 8.0 5.0 5.5 4.8 3.6 4.2 4.0 60.2 -
38 6.7 6.2 7.0 7.0 5.2 5.4 3.9 4.9 4.1 5.1 55.5 
39 6.0 6.0 6.0 6.0 5.2 4.8 5.0 4.6 5.0 4.8 53.4 
40 7.0 7.4 7.0 5.5 5.3 5.1 6.1 6.2 3.8 4.7 58.l 
41 8.0 8.2 7.6 7.6 4.8 3.0 3.6 4'.2 4.8 5.6 57.4 
42 5.5 6.5 4.5 4.1 4.2 4.4 6.0 7.2 6.6 5.0 53.6 
43 5.0 5.2 5.1 7.0 7.3 4.3 8.0 7.1 7.2 5.5 61.7 
44 6.1 6.4 6.3 7.2 7.0 4.8 7.2 4.9 5.0 5.2 60.1 
45 8.5 7.6 7.2 7.4 6.2 6.7 5.8 5.9 4.2 4.8 64.3 
46 7.2 7.0 4.3 3.9 3.0 3.2 4.4 4.6 4.7 9.0 53.3 
47 6.4 6.2 6.4 8.0 8.1 7.5 3.4 3.0 3.8 9.5 62.3 
48 4.7 4.8 6.0 6.2 6.0 6.2 6.0 6.4 5.8 5.0 57.l 
49 4.0 4.5 6.5 6.7 9.0 6.7 6.8 5.0 5.8 4.4 59.4 
50 6.0 8.0 9.2 9.3 9.4 6.4 6.7 4.4 5.5 5.0 69.9 
51 3.8 3.8 4.0 6.6 7.0 7.2 4.0 4.0 4.0 4.2 48.6 
52 4.4 4.6 6.7 6.2 6.7 7.2 3.0 3.8 6.8 7.0 58.4 
53 4.8 4.0 8.7 8.0 8.2 6.6 6.0 7.7 7.1 6.2 67.3 
54 9.2 9.0 4.6 5.8 6.2 7.6 7.8 6.0 3.8 4.0 64.0 
55 7.4 8.2 4.2 4.3 3.8 6.6 6.0 4.0 4.8 5.0 54.3 

(i) Select a cluster sample of size n = 15 to estimate tlie total marigold production in the 
area. 

{ii) Find the relativ<' efficiency of cluster sampling compared to simple random sampling. 
Also estimate the relative efficiency. 

Solution : (i) Given N = 55, M = 10. We need to select n = 15 clusters. The selected 
clusters are shown below : 

. SJ. Random Production of marigold (in kg) of different farmers Total 

No. Number 1 2 3 4 5 6 7 8 9 10 Yi 
1 51 3.8 3.8 4.0 6.6 7.0 7.2 4.0 4.0 4.0 4.2 48.6 
2 16 6.0 3.0 4.4 5.0 5.8 6.2 8.7 6.4 7.8 6.5 59.8 
3 48 4.7 4.8 6.0 6.2 6.0 6.2 6.0 6.4 5.8 5.0 57.1 . 
4 28 6.4 7.2 3.0 3.4 2.7 6.6 4.8 6.4 4.2 4.5 49.2 
5 40 7.0 7.4 7.0 5.5 5.3 5.1 6.1 6.2 3.8 4.7 58.1 
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SI. Random Production of marigold (in kg) of different farmers Total 

No. Number 1 2 3 4 5 6 7 8 9 10 Yi 
6 11 4.0 9.0 6.5 6.2 8.7 3.5 3.5 4.2 4.8 5.0 55.4 

7 39 6.0 6.0 6.0 6.0 5.2 4.8 5.0 4.6 5.0 4.8 53.4 

8 09 6.0 4.6 4.8 3.0 9.7 8.7 4.2 4.5 6.0 8.7 60.2 

9 .17 8.4 9.6 4.5 6.0 6.7 6.6 3.8 3.0 4.0 5.7 58.3 

10 10 8.0 9.0 8.5 8.0 4.2 5.0 8.7 5.6 3.2 3.0 63."2 

11 30 6.2 7.0 6.0 5.8 8.0 7.5 io 6.8 4.0 3.8 62.1 

12 29 5.0 5.2 9.8 6.7 6.8 4.4 6.7 4.2 5.0 4.9 58.7 

13 21 7.2 4.0 5.2 6.3 4.8 6.6 8.2 5.2 3:4 3.0 53.9 

14 19 6.2 6.0 4.5 6.0 8.5 7.2 6.0 4.5 5.0 5.2 59.1 

15 26 4.5 4.0 6.2 7.0 7.2 8.0 5.6 5.0 5.0 4.8 57.3 

The means and variances of sample clusters are shown below : 

M 

[M l SI.No. Cluster Mean Y; LY?j MY
2 2 1 2 -2 
i S; = M - 1 L Yij - MY i 

j=l .1=1 

1 4.86 254.92 236.196 2.0804 

2 5.98 381.18 357.604 2.6196 

3 5.71 329.61 326.041 0.3966 

4 4.92 266.10 242.064 2.6707 

5 5.81 349.29 337.561 1.3032 

6 5.54 343.56 306.916 4.0716 

7 5.34 288.28 285.156 0.3471 

8 6.02 408.56 362.404 5.1284 

9. 5.83 379.35 339.889 4.3846 

10 6.32 450.18 399.424 5.6396 

11 6.21 403.01 385.641 1.9299 

12 5.87 370.11 344.569 2.8379 

13 5.39 316.01 290.521 2.8321 

14 5.91 363.07 349.281 1.5321. • 
15 5.73 343.93 328.329 1.7334 

Total 85.44 

The total production of marigold is 

' · · 1 n - 55 X 10 · 
Ye= NMyc =NM;, :LY,= 15 x 85.44 = 3132.8 kg. 

(ii) We haves~ = -
1
-· [~ Y~ '-- (2:: Y;)

2

] = 2_ [489.1596 - (85·44)
2

] = 0.1781. 
· n - 1 ~ n 14 · 15 
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The estimated variance of Ye is 

(y. ) - N2M2 (-) - N2M2(1 - !) 2 
V c - V Ye - Sb 

n 

= (55)
2
(10)

2
(1 - 0·27) x 0.1781 = 2621.9288. 

15 

Al h 2 1 [~ ~ y'fJ. - (2: ~ij)
2

] so, we ave s = nM _ 1 ~ ~ . 
~ 

= 1 
[5247.16 - (

854
.4)

2
] = 2.5536. 

10 x 15 - 1 10 x 15 

1 [ n · M Ln y2] 
s; = n(M-1) LLY?j - J;f-

= 
1 

[5247.16-
48915

"
96

] = 2.6338. 
15(10 - 1) 10 

Hence, the estimate of S 2 is 

S2 = (N - l)Ms~ + N(M - I)s; 
NM-I 

= (55 - 1)10 x 0.1781+55(10- 1)2.6338 = 2.5499. 
55 x 10 - 1 

Now, the estimate of relative efficiency of cluster sampling compared to SRS is 

. . s2 2.5499 
r.e. (cluster)= Ms~= 

10 
x 

0
_
1781

=143.17%. 

The estimate of intra-cluster correlation ~oefficient is 

Again, 

. (n - I)Ms~ - ns; 
·p = (n - l)Ms~ + n(M - l)s~ 

14 x 10 x 0.1781 - 15 x 2.6338 = -0.0383. 
14 x 10 x 0.1781+15 x 9 x 2.6338 

8 2 = 1 ['"" '""y2. _ (2: LYij)
2

] 
NM-l ~~ '1 NM 

= ' 
1 

[21006.77 - (
3284

"
5

)
2

] = 2.5361. 
55 x 10 - 1 55 x 10 

s2 = _1_. ['°" y2 - (2:Y;)2] 
b N - l ~· ' N 

= -
1
- [1972.9027 - (

328
.4

5
)
2

] = 0.2122. 
55 - 1 55 
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The~efore, the relative efficiency of cluster sampling compared to SRS is 

R.E. (Cluster)°= M
8
8

2 

2 ;== 

2
·
5361 = 119.51%. 

b 10 x 0.2122 . 

We have 8 - ~~y 2 1 [ N M 2 EN ~2] 
w - N (M - 1) ~ ~ ii - M 

1 
[21006.77 -

197
·
290

·
21

] = 2.5813 . 
. 55(10 - 1) 10 

.. p= 
N-132 S?,, 
--;rb-M 22=.! x 0 2122 - 2·5813 

55 . 10 - 0 0197 
NM-132 

.NM 
55x10-l - - · · 

55 xl0 X 2.5361 

It is observed that p is negative and cluster sampling is more efficient than simple random 
sampling. 

Example 16.3 : In a police station area there are 120 villages. These villages are divided 
into 20 clusters, where a cluster is formed with 6 neighbouring villages. In each cluster there 
are different number of farmers who have milk producing cows. The number of cows of farmers 
in different dusters are shown below : 

Number of cows (Yij) of farmers in different clusters 

SI.No. of Cluster Number of cows in clusters . 
clusters size M; 

1 19 4, 3, 2, 1, 4, 4, 2, ;2, 2, 2, 1, 1, 2, 2, 3, 3, 2, 4, 2 
2 22 5, 1, 2, 4, 4, 2, 2, 3, 3, 3, 4, 4, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5 
3 22 4, 4, 4, 4, 2, 2, 1, 1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 1, 1, 2, 2, 2 . 
4 2.1 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 4, 4, 2, 2 
5 39 2, 2, 2, 2, 2, 2, 2, 2, 4, 1, 3, 1, 2, 3, 4, 1, 4, 1, 4, 5, 2, 3, 1, 2, 1, 3, 3, 3, 3, 

3, 4, 2, 2, 1, 1, 1, 1, 1, 5 
6 42 1, 1, 4, 4, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 1, 4, 1, 1, 2, 2, 3, 2, 2, 2, 2, 4, 

3, 2, 1, 1, 2, 4, 2, 2, 2, 1, 1, 1, 2 
7 18 2, 1, 1, 4, 2, 2, 3, 4, 1, 3, 1, 1, 2, 2, 2, 2, 1, 4 
8 34 1, 1, 4, 1, Q, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 4, 3, 1, 2, 2, 3, 2, 2, 2, 1, 1, 

2, 2, 1, 1, 2 
9 14 4, 1, 2, 2, 3, 1, 2, 3, 1, 2, 2, 1, 4; 2 
10 20 4, 1, 4, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3,,3, 2, 2, 2, 4, 1 
11 . 16 2, 2, 2, 2, 4, 1, 1, 3, 3, 1, 4, 2, 2, 1, 4, 2 
12 18 1, 1, 2, 2, 2, 4, 2, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 1 
13 22 1, 1, 2, 3, 3, 3, 4, 5, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 2, 2 
14 34 4, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 4, 4, 3, 3, 2, 2, 2, 1, 1, 3; 2, 1, 1, 

1,2,2,1,1 
15 19 2, 2, 1, 2; 3, 3, 2, 2, 1, 4, 2, 2, 1, 1, 2, 4, 1, 1, 2 
16 33 2, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 2, 1, 2, 2, 4, 2, 2, 4, 

3, 2, 2, 2 
17 40 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 3, 3, 1, 2, 3, 4, 4, 2, 2, 3, 3, 1, l, 1, 

1, 1, 1, 2, 2, 2, 2, 3, 4, 5, 1 

D.E.S.M.-30 
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SI.No. of Cluster ·Number of cows in clusters 
clusters size M, 

18 37 1, 1, 1, 4, 5, 6, 1, 2, 2, 1, 2, 3, 3, 3, 2, 1, 4, 4, 4, 2, 1, 2, 2, 3, 3, 2, 1, 2, 3, 
3, 4, 5, 2, 4, 3, 2, 1 

19 34 2, 3, 3, 3, 2, 4, 5, 5, 4, 3, 2, 1, 1, 2, 2, 2, 3, 4, 1, 1, 4, 2, 3, 2, 2, 3, 2, 1, 1, 
3, 2, 2, 1, 2 

20 30 3, 2, 4, 5, 4, 4, 6, 4, 2, 2, 2, 2, 1, 2, 2, 1, l, 2, 2, 3, 1, 1, 1, 2, 2, 3, 2, 2, 4, 3 

(i) Select 403 cluster to estimate the total number of cows in the study area. 

(ii) Estimate the variance of your estimate. 

(iii) Estimate the relative efficiency of cluster sampling compared to SRS. 

N 

Solution : We have N = 20, Mo = L Mi = 534. Forty per cent of clusters are 
i=l 

20 x 0.40 = 8. We have to select 8 cluster$ randomly. The selected clusters are shown below : 

SI.No. Random Cluster Number of cows in clusters Total 
Number Size, M; Yi1 Yi 

1 11 16 2, 2, 2, 2, 4, 1, l, 3, 3, 1, 4, 2, 2, 1, 4, 2 36 

2 16 33 2, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 2, 1, 83 
2, 2, 4, 2, 2, 4, 3, 2, 2, 2 

3 08 34 1, 1, 4, 1, 2, 2, l, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 4, 3, l, 2, 2, 61 
p, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2 

4 03 22 4, 4, 4, 4, 2, 2, 1, 1, l, 1, 1, 1, 3, 3, 3, 5, 5, l, l, 2, 2, 2 53 

5 15 19 2, 2, 1, 2, 3, 3, 2, 2, l, 4, 2, 2, 1, 1, 2, 4, 1, 1, 2 38 

6 14 34 4, 2; 1, 1, 3, 2, 1, l, 2, 2, 2, 1, 1, 1, 2, 2, 4, 4, 3, 3, 2, 2, 2,. 64 
1: 1, 3, 2, 1, 1, 1, 2, 2, 1, 1 

7 04 21 1, 1, 1. 2, 2, 2, 2, 2, 2, 2, 1,.1, 1, 1, 1, 2, 2, 4, 4, 2, 2 38 

8 12 18 1, 1, 2, 2, 2, 4, 2, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 1 33 

Total Mi= 197 406 

Other calculations related to sample observations 

Cluster Mean 1 2 3 4 5 6 7 8 Total 

Y; 2.25 2.52 1.7~ 2.41 2.00 1.88 1.81 1.83. 16.49 

M, 

LYT1 98 225 131 169 87 150 84 73 1017 

-2 
MiY; 81.00 209.56 108.94 127.78 76.00 120.17 68.80 60.28 

s2 
' 

1.1333 0.4825 0.6685 1.9628 0.6111 0.9039 0.76 0.7482 

2 2 ~2 1 
[ 

M, l 
Here si = Af, _ 1 LYij - M;Y; 
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The estimate of total number of cows in the study area is 

, · . N n - N n M; 20 X 406 
Yci = Mo1Jci = -; L M;Yi = -; L LYi1 = 8 = 1015. 

• i=l i=l j=l 

· - Mo 534 
We have M = N = 2o = 26.7. 

The average number of cows per farmer is 

N n - N n M; 20 X 534 . 
Yc! = nMo LMiYi = nMo LLYiJ = 8 x 537 = 2.48.6. 

(ii) 
Mi Yi (MY )2 

- - 2 SI.No. . . --- M -ycl Mi(Yi - Ycl) 
M 

1 1.3483 1.2943 0.8911 

2 3.1086 0.3876 0.0381 

3 2.2846 0.0405 16.4701 

4 1.9850 0.2510 0.1271 

5 1.4232 1.1295 4.4877 

6 2.3970 0.0079 12.4860 

7 1.4232 1.1295 9.5965 

8 1.2359 1.5626 7.7460 

Total 5.8029 51.8426 

n . -. 2 
2 - 1 L (M,Y; - . ) _;, 5.8029 - 0 82898 sbc - -- -=-- - Yc1 - -- - · · 

n-1 . ·M 8-1 
'& ,, 

I - J 1-0.4 
v(yci) = -n-s~c = -

8
-.-··x 0.82898 = 0.0621735. 

. . 
Hence, the estimate of variance of totJ1.l cows in the study area is 

v(Yc1) =' Mgv(1hi) = (534)20.0621735 = 17729.1466. 

(iii) We have (M1 - l)s2 = L L(Yii -yci)2 

=LL ~?1+ M11J~1 ·~ 21Jci { t f Yij) 

=·1017 + 197(2.486)2 - 2 x 2.486 x 406 = 4253.1306. 

s~ = Mi 
1
_ n [(M1 - l)s

2 
- L Mi(Yi -1lcd2

] 

= 1 
8 [4253.1306 - 51.8426] = 22.2290. 197- . 

467 
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, ::; 1 [N - 1 ~~ - _ 2 2] 
$ = !vfo - 1 -n - 1 L }l;J,(Y; -- Ycd +(Mo - N)sw 

1 [20 - 1 ] = 534 - 1 --s=T51.8426 + (534 -- 20)22.229 ~ 21.7006. 

Therefore, the estimate of relative efficiPncy of cluster sampling compared to SRS is 

S2 21.7006 
r.e. (cluster)= M s~c = 26.7 x 0.82898 = 98.043 .. 

It is observed that cluster sampling is less efficient than simple random sampling. 

16. 7 Cluster Sampling to Estimate Proportions 
The problem of estimation of proportion arises if the variable under study is qualitative in 

nature. Let Yii be the observation of jth element in ith cluster (i = 1, 2, ... , N; j = 1, 2, ... , M), 
where YiJ = 1, if the population element possesses the character under study, otherwise Yi.i = 0. 
Also, consider that 

M; 

ai = LYi:i = number of elements in ith cluster possessing the character under study. 
j=l 

Then the proportion of element in ith cluster possessing the character is 
ai 

pi= J\1." 

The population proportion of units possessing the character is 

The unbiased estimator of Pis Pc=~ t P; = P. 
n i=I 

The variance of Pc is 

N N 
' 1-f ""' . 2 1-f""' 2 

V(Pc) = n(N _ l) {;;;_(Pi - P) ~ nN {;;;_(?; - P) . 

Again, if N is large, 

and 

S2 ~ Sl + S~ = PQ, where Q = 1 - P 

1 N 
S~= NLPiQi, Qi=l-P;. 

i=l 

Then the intra-class correlation coefficient is 

= 1- Ml:;:,1 P;Q;. 
p (M - l)PQ . 

Hence, 
- (1 - f)NPQ 

V(Pc) = (N _ l)nM [1 + (M_ - l)p]. 
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If a simple random sample of nM observations is selected from the population, then the 
estimate of population proportion is 

, l N M l n l n 

P= -LLY;7= -2.:a; = -2.:P,. 
nM i .i . nM i=l n i=l 

" " 1 - f 
The variance of Pis V(P) = nM(N _ l) N PQ. 

Then the relative efficiency of cluster sampling compan•d to simple randorri. sampling is 

N-1 NPQ 
R.E. (cluster) = (NM_ ) _ N . . 

. 1 N PQ ~i=l P,Q, 

The estimate of variance of Pc is 

" 1-f ~ -2 
v(Pc) = n(n _ l) 6.(P; - P) , 

Let A be the total number of units in the population possessing the characteristic under 
study. 

The estimate of A is Ac= NM Pc. 
The variance of this estimator is 

V(A ) = N 2 M 2V(P.) = N
2 
M

2
(l - f) ~(R - P)2 

c c n(N - 1) L ' . 

The estimator of this variance is 

v(.(.) = N2~2(1) J) "°"'.N (P; - P)2. 
nn-l L 

i=l 

The above estimator can also be obtained if the clusters are of unequal sizes. Let the 
elements in ith cluster be M;. Then 

1 
M; "°"' a; P;=-LY;..J=-. 

Mi j=I M; 

The estimator of population proportion is 

, Nn Nn 1 n 
Pei= -M La;= -M LM;P; =--= LM;P;. 

n o i=l n o i=l nM 

The variance of this estimator is · 

" 1- f 
V(Pcl) = --S~C' 

n 

N - ' N (tM;P;)' 
s~c = N ~ 1 L (A~i -Y) = M2(Z-1) 2.:MlPl- --'--N--'---

•=l 0 i=l 

where 
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The estimator of this variance is 

, (1 - f)N 2 

v(Pc1) = n(n - l)MJ 

Example 16.4 : There are 105 villages in a police station area. Each village is considered 
a cluster. From the population clusters 18 cluster11 are selected by SRS scheme. The number of 
babies under age 5 years are investigated to study the proportion of babies who are given polio 
vaccine. The total number of babies under age 5 years in the selected villages and the number 
of babies who are given polio vaccine are shown below : The total number of babies in that 
police station area are Mo = 4882. 

SJ. No. of Babies in Babies under Proportion of Babies who are given 
Clusters Clusters Mi Polio vaccine ai polio vaccir1e P - .£;. 

' ' - /\;[i 

1 68 48 0.706 
2 46 36 0.783 
3 25 12 0.480 
4 38 28 0.737 
5 52 32 0.615 
6 44 30 0.682 
7 80 32 0.400 
8 46 20 0.435 
9 55 40 0.727 
10 70 55 0.786 
yll 28 15 0.536 
12 56 42 0.750 
13 60 40 0.667 
14 32 25 0.781 
15 46 20 0.435 
16 66 ·28 0.424 
17 42 24 0.571 
18 58 40 0.690 

(i) Estimate the proportion of babies in the police station area who are given polio vaccine. 

(ii) Also, estimate the variance of your estimate. 

Solution : (i) The estimate of population proportion is 

P. = ~ ~ . = 105 x 567 = 0.677 
c nM0 ~a, 18 x 488 

(ii) The estimate of variance of Pc 

v(Fc) = n\~-_1{)1;;J [L:a~ - (L:•>
2
], f = ~ = 0.17 

= (1-0.17)(105)2 ··(20075- (567)2] =0.00278 
18(18 ~ 1)(4882)2 \ 18 



Chapter 17 

Two-Stage Sampling 

17.1 Definition 
It has already been discussed that cluster samples are drawn when population units are 

divided into several groups (clusters). The number of elements in each cluster may be large. But 
cluster sampling principle states that some clusters are selected randomly and all elements 
within a cluster are investigated. If clusters are of larger sizes, the cost and time required to 
finish the survey are increased. To obviate the problem, some clusters are randomly selected 
and from each selected cluster some elements are randomly selected for a survey. Since ultimate 
sampling units are selected at two stages, the sampling technique is known as two-stage samp
ling. For example, Jet us consider the survey to estimate the total produ.ction of jute in a 
district. The entire district is divided into several administrative blocks. In each block there are 
many farmers who grow jute in their cultivable lai:ids. Here blocks can be considered as clusters, 
and farmers within a block are considered as ultimate sampling units. Some blocks can be 
selected at random and from each selected block some jute growers can be selected at random. 

The process of selection of jute growers as mentioned above is known as two-stage sampling. 

In two-stage sampling the clusters are known as first-stage units(fsu) and elements within a 
cluster are called ultimate sampling units or second stage sampling units (ssu). The first stage 

· units, also called primary sampling units, may be of equal size or of unequal sizes. The number 
of secondary units may also be equal or unequal. Whatever be the number of secondary uni.ts, 
equal or unequal, the list of the units is not essential to select the sample. However, the list of 
the primary units must be known so that some of the primary units can be selected a'- random. 
If the list of the secondary units is not known, it can be prepared for the selected primary units 
during pilot survey. 

17.2 Advantage and Use of Two-Stage Sampling 
The two-stage sampling is a mixture of cluster sampling and random sampling, where 

clusters are usually selected by SRS scheme. Hence, this sampling is expected to be more 
efficient than cluster sampling but less efficient than random sampling. This sampling is 
equivalent to one-stage sampling if the second stage selected units are m = M, where M 
is the size of second stage units in a primary unit. The main advantage of this sampling is that 
the sample can be selected even if the frame of all population units is not available. The list of 
the second stage units can be prepared after selecting the primary units. . 

This sampling scheme is used in agricultural as well as in soeial survey work. For example, 
let us consider the survey to estimate the proportion of children who are given BCG vaccine. If 
the survey is confined in a municipality, the study area is divided into streets, where each street 
can be considered as a cluster. In each cluster some families are living. The families can be 
considered as second stage units. Hence, as a primary units some streets are selected at random 
and from the selected streets some families are selected at random. The selected families are 
investigated for the survey purpose. The sampling design mentioned above to select families is 
a two-sta&e sampling technique. 

471 
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17.3 Estimation of Parameter in Two-St~ge Sampling 
Let us first consider. the estimation proeedure with equal second stage units in every first 

stage unit. Let there be NM elements in a population, where population units are divided 
into N clusters each of size M. Consider that n clusters out of N are selected under SRSWR 
scheme and from each selected cluster m(m < M), second stage units are selected by SRSWR 
scheme. 

Let YiJ be the value of the variable under study of j-th second stage unit within i-th first 
stage unit Ii= l, 2, ... , N; j = 1, 2, ... , M). Then the mean per element of i-th first stage unit 
is 

- . 1 tit 
Y; = M LYij· 

j=l 

The population mean per element is 

_ l NM l N_ 

Y= NMLLY;1= NLY;. 
i=l .i=l i=l 

The variance of the means of first stage units is 

N . 

32 = _1_ "(Y - Y)2. 
b N-1~ i 

i=l 

The variance of the observations within the i-th first stage unit is 

M 

2 1 "' - 2 Sw; = M _ l ~(YiJ - Y;) . 
j=l 

The variance of the observations within the first stage units is 

1 N M l N 

2 "'"' - 2 "' 2 SW= N(M - 1) ~ ~(Yij - Y;) = N ~ swi· 
.i=l j=l i=l 

The mean of the selected second stage units from i-th first stage unit is 

1 
Th= - LYij· 

m j=l 

The mean per element of sample observations is 

l n m l n 

'jj= -2:2:Yij = - LY;· 
nm i=I j=l n i=I 

Theorem : In two-stage sampling, if n primary units and from each selected primary unit 
if m secondary units are selected by SRSWOR scheme, then sample mean y is an unbiased 
estimator of Y and the variance of this estimator is 

V(-) 1 - J82 M - m S~ 
y =-- b+ M -. n nm 
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1 n m 1 
Proof: We know y = - " L YiJ = - L Yi· nm~ n 

i=l j=l 

Since second stage units are selected by SRSWOR scheme, Yi is an unbiased estimator of 
Yi[E2(Yi) = Y;]. We can write, 

Here £ 1 ana £ 2 are used to find expected values for first stage sampling and second stage 
sampling, respectively. Therefore, 

E(y) = E1 - Lyi = - I:- Lyi [
1 n -] 1 n 1 N -

n i=I n i=I n i=I 

[according to the property of SRSWR scheme] 

Hence, sample mean y is an unbiased estimator of Y. The variance of y is 

Here also Vi and V2 are used for variances in case of first stage and second stage sampling, 
respectively. We have 

Since Yi is sample mean under SRSWR scheme, 

But second stage units are also selected under SRSWR scheme. Hence, 

Now, 
' 

M-rn _ 1 ~M-m 2 
V2(Yi) = mM s;i and V2(Y) = n2 ~ mM Swi· 

i=l 

n N · 2 
= _.!._ M - m " " 82 . = M - m Sw 

N n 2rnM ~ ~ w• mM n · 
i=l i=l 

V(-) _ N - n 82 M - m S! 
· y - !i;:;- b + mM ~ 

1-f · 1-fi n 
= --S~ +--Si, where I= N' n mn 

sz sz 
= -1!.. + ___1!!.., if f and Ji are negligible. 

n nm 

m 
Ji= -M 
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Corollary : In two-stage sampling if first stage units are selected under SRSWR scheme 
and second stage units' are selected under SRSWOR scheme, the sampling variance of sample 
mean is . s2 s2 

V(y) = -1L + (I -:- fi)_.JE... 
n nm 

Corollary : In two-stage sampling if first stage units are selected under SRSWOR scheme 
and if all units in a primary units are selected in the sample, then 

- 1- f 2 V(y) = --Sb (•: m = M). 
n 

Theorem : .In two-stage sampling, if n first stage units are selected and from each selected 
first stage unit m second stage units are selected ·under SRSWOR scheme, then the estimator 
of variance of sample mean y is given by 

(-) I - I 2 + /(i - Ji) 2 
Vy =--Sb. SW, 

n nm 
· n· m In I m 

where f :::i: N' Ji= M' s~ = n- 1 ~)Yi -Y)
2 

and s~ = n(m _I) L L(YiJ -yi)
2

. 
1=1 i=l j=l 

n 

Proof: We have (n - l)s~ = L(Yi -y)2 =LY~ - ny2 = nfi. 
i=l 

Now, (n - l)E2(s~) = E2 LY~ - nE2('jj2). 

Again, [~-2] [.f.-2 ~ M - m 82] 
E2 ~Yi = . L Yi + ~ mM wi 

E [E ("':...2)] = !!:_ [~y2 N(M - m) 82 ] 
i 2 ~ Y, N {.....- i + mM · w 

•=l 

M-m -2 
nE2(Jj2) = (t - !)Sl + mM S! + nY . 

Hence, putting the values of E2(E'Yf) and E(y2 ) and on simplification, we get 

,2 2'M-m2 
E2~sb) = Sb +. mM Sw. 

. . 

We know that for any value of i E(sn = S!i, since sf is the variance of simple random 
sample observations. For different values of i, we have 

N 

.E(~ L:s~) = ~ Ls~i = s~. 
i=l 

Hence, the unbiased estimator of S! is s~,, where 
n 

L(m - ~)s~ 
s~ = i=~(m _I) and s~ = .m ~ 1 ~(Yij -yi)

2
• 
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The unbiased estimator of St is 

Therefore, v(y) = 1 - f sl + /(l - Ji) s~. 
n nm 

If m = M, the variance formula becomes 
. 1-/ 
v(y) = --sl (·: h = 1). 

n 

Again, lf f = ~ is negligible, 

v(y) = sl + f (l -_J.!l 82. 
n nrn w 

82 
If f is negligible and h = 1, then v(Y) = -l!.. 

. n 
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Corollary : If n clusters are selected under SRSWR and if m elements are selected from 
each selected.cluster under SRSWOR, then 

_ s~ 1 - h 2 v(y) = - + -N sw. 
n m 

Corollary : In two-stage sampling, if n clusters are selected under SRSWOR and m units 
from each selected clusters are selected under SRSWOR, then the estimator of fQpulation total 
is given by · 

Y = NMfi.. 

The estimate of variance of this estimator is 

v(Y) = N 2 M 2 (1 - !) 8~ + N 2 M 2 /(l - Ji) s2 . 
· n nm w 

Example 17.1 .: The rural administrative unit under a police station is divided into 6@. 
clusters in such a way that in each cluster there are 10 ·farmers living nearby and they have 
milking cows. Twenty per cent of the clusters are selected by simple random sampling without 
replacement (SRSWOR) and 50% farmers of each selected cluster are also selected by SRSWOR 
technique to e~timate the total milk production in the study area. The populati~ri data of milk 
production (in kg) are given below. Estimate the total milk production and also estimate its 
standard error. Compare two-stage sampling with simple random sampling. 

Milk production of different farmers in clusters 

SI. No. Milk production (Yij kg) of ft.rmers in a day 

of clusters. 1 2 3 4 5 6 7 8 9 10 

1 5.0. 6.2 7.4 10.2 2.8 3.0 1.5 1.5 2.0. 3.ft 
2 6.0 3.0 4.5 2.5 3;0 2.0 1.5 6.5 5;g. 4.0: 
3 4.0 6.0 5.0 4.0 4.0 6.2 9.5. 10.0 11.2 10.2 
4· 5.0 3.0 3.0 5.0 5.0 5.0 4.5 9.0 8.0 7.5 
5 8.0 4.5 5.0 3.0 3.5 4.0 2.0 1.5 1.0 6.0 
6 7.5 3.0 8.0 3.0 4.0 5:0 5.0 5.0. 2.5 2.4 
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Milk production. of different farmers in clusters 

SI. No. Milk production (Yii kg) of farmers in a day 

of clusters 1 2 3 4 5 6 7 8 9 10 

7 1.5 1.5 1.5 2.0 6.0 7.0 8.0 7.5 5.0 5.0 
8 4.0 3.5 3.0 6.0 7.5 10.0 8.6 7.2 6.0 4.0 
9. 5.0 5.0 6.0. 8.0 9.2 4.2 1.5 2.0 2.0 3.0 

10 6.0 1.8 1.5 L5 4.6 4.5 5.0 6.0 7.5 7.5 
11 4.0 4.5 5.0 3.5 3.0 3.2 3.0 3.0 8.0 10.0 
12 8.0 9.0 10.0 10.0 8.0 4.5 2.0 2.0 4.0 2.5 
13 3.0 2.0 2.5 2.0 1.5 10.5 12.0 6.0 6.0 2.0 
14 8.0 7.5 4.2 4.0 4.0 6.5 1.5 1.5 8.0 9.0 
15 2.0 2.5 12.6 1.8 2.0 8.6 9.5 4.5 4.0 4.0 
16 8.0 9.0 10.2 11.6 7.0 1.2 2.4 5.6 6.0 6.0 
17 5.0. 6.2 7.5 8.0 1.5 2.0 3.0 3.5 6.0 3.2 
18 6.0 2.5 4.5 6.0 5.0 5.0 4.9 6.0 2.0 1.0 
19 8.1 7.2 6.2 7.0 2.0 2.0 2.0 3.0 4.5 5.0 
20 7.0 6.0 2.4 1.5 2.0 4.6 5.0 5.0 4.0 3.2 
21 1.8 1.9 2.0 4.6 7.2 7.0 6.5 3.0 3.5 3.0 
22 2.0 1.4 2.6 6.8 7.0 6.0 4.0 3.0 2.0 8.0 
23 4.6 1.5 7.6 10.0 9.2 3.5 2.0 2.0 2.5 3.5 
24 1.5 7.0 6.8 4.3 2.5 2.5 4.6 5.0 5.0 6.3 
25 4.0 5.2 2.6 2.7 1.8 9.6 8.7 2.0 1.8 1.5 
26 3.0 4.8 5.6 2.5 1.5, 1.0 4.8 4.6 6.0 2.4 
27 4.6 5.8 2.5 3.0. 9.6 9.2 4.2 5.0 3.0 4.6 
28 5.0 1.5 2.0 4.6 3.0 6.2 4.0 3.5 4.0 2.0 
29 6.2 9.2 4.0 4.2 1.8 7.2 4.2 4.0 6.0 6.5 
30 4.2 7.2 1.8 3:8 1.5 6.5 1.8 '6.2 4.0. 1.5 
31 5.0 6.2 2.0 1.5 7.6 9.0 4.0 4.8 1.8 1.0 
32 6.2 4.0 2.8 7.6 8.0 10.5 3.0 3.0 3.0 3.5 
33 4.6 5.2 1.0 10.2 3.0 3.5 4.0 4.0 6.6 7.2 
34 4.0 ·i.2 1.5 6.4 3.0 4.0 4.5 4.8 2.6 2.8 
35 4.8 6.0 7.2 8.6 4.0 1.0 1.5 10.0 3.0 5.0 
36 4.2 6.2 4.0 3.2 5.0 6.2 6.0 9.0 8.2 10.0 
37 1.5 3.0 8.0 4.2 8.0 4.6 7.2 5.2 6.0 5.2 
38 5.2 10.2 4.6 5.0 1.2 1.0 5.2 1.5 5.0 3.0 
39 10.0 4.5 6.2 1.8 2.0 9.6 4.6 6.7 5.0 6.8 
40 7.2 4.0 8.7 4.8 9.0 7.2 10.0 8.0 4.6 9.0 
41 3.0 7.6 4.8 6.4 7.5 8.0 3.0 5.8 10.6 7.4 
42 5.5 8.7 2.0 5.6 6.2 6.4 9.7 7.2 4.2 4.0 
43 5.0 2.3 4.6 9.8 7.0 6.2 3.5 4.7 8.0 2.6 
44 2.0 2.8 7.6 4.3 3.0 3.5 8.7 6.2 6.4 10.5 
45 6.0 4.8 3.5 3.0 6.8 10.0 4.5 5.0 2.0 4.6 
46 3.4 2.0 1.5 1.8 7.8 4.8 10.7 3.0 4.8 6.2 
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Milk production of different farmers in clusters 

SI. No. Milk production (Yij kg) of farmers in a day 

of clusters 1 2 3 4 5 6 7 8 9 10 

47 5.0 4.8 7.6 9.2 3.5 1.5 1.5 1.5 6.4 7.0 

48 4.J 2.2 10.8 4.6 1.5 2.8 4.6 7.0 1.8 2.6 

49 2.0 1.8 7.4 6.3 1.3 1.4 10.6 9.8 6.4 5.0 

50 8.7 4.2 3.5 4:6 6.7 1.8 2.5 2.5 4.6 5.8 

51 2.2 8.0 9.7 5.2 6.0 4.8 3.0 3.0 4.2 5.0 

52 3.5 4.6 2.8 5.6 8.0 2.0 1.8 4.0 6.7 3.8 

53 3.0 8.7 10.6 5.2 4.6 7.0 6.8 2.8 9.7 4.2 

54 6.2 4.6 8.7 4.0 3.0 4.8 5.0 6.7 4.8 3.0 

55 1.8 9.0 7.2 3.5 5.0 6.0 6.0 4.0 3.2 9.2 

56 8.2 3.0 4.6 2.0 1.8 1.5 4.6 10.5 3.6 6.0 

57 7.2 4.0 2.8 4.6 3.0 3.2 4.8 5.0 2.8 4.6 

58 9.6 3.2 4.8 5.0 1.6 4.7 7.6 3.0 3.0 3.8 

5~ 4.0 5.0 6.2 7.4 3.0 3.5 4.0 2.8 4.6 6.0 

60 7.2 4.8 1.8 4.0 5.5 3.0 6.2 2.8 3.5 4.0 

Solution : We have N = 60, M = 10. We need to select n = 60 x 0.2 = 12 primary units 
and from each selected primary unit we need to select m = 10 x 0.5 = 5 second stage units. 
The selected primary units are shown below : 

SI. No. Random Milk production (Yij) of farmers 

No. 1 2 3 4 5 6 7 8 9 10 

1 51 2.2 8.0 9.7 5.2 6.0 4.8 3.0 3.0 4.2 5:0 

2 16 8.0 9;0 10.2 11.6 7.0 1.2 2.4 5.6 6.0 6.0 

3 48 4.0 2.2 10.8 4.6 1.5 2.8 4.6 7.0 1.8 2.6 

4 23 4.6 1.5 7.6 10.0 9.2 [l.5 2.0 . 2.0 2.5 3.5 

5 35 4.8 6.0 7,2 8.6 4.0 
.. 

1.0 1.5 10.0 3.0 5.0 

6 11 4.0 4.5 5.0 3.5 3.0 3.2 3.0 3.0 8.0 10.0 

7 34 4.0 1.2 l.5 6.4 3.0 4.0 4.5 4.8 2.6 2.8 

8 04 5.0 3.0 3.0 5.0 5.0 5.0 4.5 9.0 s.o 7.5 

9 12 8.0 9.0 10.0 · 10.0 8.0 4.5 2.0 ·2.0 4.0 2.5 

10 10 6.0 1.8 1.5 1.5 4.6 4.5 5.0 6.0 7.5 7.5 

11 25 4.0 5.2 2.6 2.7 1.8 9.6 8.7 2.0 1.8 L5 

12 24 1.5 7.0 6.8 4.3 2.5 2.5 4.6 5.0 5.0 6.3 
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From the selected primary units the ultimate selected sample observations are shown below : 

m 

SI. No. Milk production (YiJ) of Mean LYfj L: 2 -2 YiJ - myi 
farmers in the sample 'fh 

1 2 3 4 5 

1 2.2 4.8 3.0 9.\7 6.0 . 5.14 166.97 33.3255 
2 8.0 11.6 9.0 1.2 6.0 7.16 317.00 6.0.672 
3 1.5 4.6 2.8 1.8 2.2 2.58 39,33 6.048 
4 4.6 2.0 2.5 9.2 2.0 4.06 120.05 37.632 
5 1.0 1.5 7.2 4.8 5.0 3.90 103.13 27.080 
6 8.0 3.5 4.0 3.ci 3.0 4.30 110.25 17.800 
7 1.5 4.5 6..4 4.0 1.2 3.52 80.90 18.948 
8 3.0 5.0 5.o 5.0 8.0 5.20 148.00 12.800 
9 10.0 8.0 10.0 2.0 9.0 7.80 349.00 44.800 

10 5.0 1.5 1.8 4.5 4.6 3.48 71.90 11.348 
11 8.7 2.6 1.8 1.8 1.5 3:28 . 91.18 37.388 
12 5.0 5.0 4.6 4.3 2.5 3.28 95.90 4.308 

Total 54.7 

The mean milk production per farmer is 
1 54.7 . 

'i.i=; LYi = 12 = 4.56 kg. 

The estimate of total milk production in the study area is 

, · 60x10~ .· 
Y = N My= L 'fh = 2735:00 kg. 

n i=l '-

We have s~ = n ~ 1 L(Yi - 'i.i) 2 
= n ~ 1. [LY~.-=- nfi2

] 

= - 1
-[275.9828 -12{4 .. 56)21 = 2.4054. 12 - 1 I., 

s~ = n(m
1
-1).t.f(YiJ -Jh)

2 ~ n(m
1
-1) t [LY:J -my:] 

. . •=l J=l . .• 

1 . 
12(5 - 1) x 312.1495 = 6.5Q31. 

The estimated variance of Y is 
2 . 2 

v(Y) = N 2.M2v(y) = N 2 M 2{1 - !)~ + N 2M 2 + f(I - Ji) ;:::i 
= (60) 2 (10) 2 [(1- 0;2) 

2-~~54.+ 0.2(1_ - 0.5) ~~5~3~] 
= 360000[0.1603~ + 0.0108385]~ "61631.46. 

, .. 
Hence, the standard error of the estimate ~f total milk production is 

s.e. (Y) = {:(F> = v'61631.46 = 248.26. 
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The comparison of two stage sampling with simple random sampling is done considering 60 
observations in the sample drawn under SRSWOR scheme. In such a case, 

( 
1 1 ) . 

v(Y) = ~ - NM s2' 

where s2 = N ~ :-
1 

[ M(N - l)sg + { N(M - 1) - (M - m) N r: 1 s!}) 

= 
60 

x .!o _ 
1 

[ 10(60 - 1)2.4054 + { 60(10 - 1) ~ (10 - 5) (
60 ~ 1r·5031

}] 

= 2.3386. 

Hence; v(y) = ( 
12 
~ 

5 
-

60 
~ 

10
) 2.3386 = 0.035079. 

Again, v(Y) two-stage = 0.1712 > v(y) random. 

Hence, simple random sampling is more efficient than two-stage sampling. 

17.4 Estimation of Parameters in Two-Stage Sampling with Unequal 
First Stage Units 

Consider that i-th (i = 1, 2, ... , N) first stage unit has Mi elements (second stage unit) such 
that total elements in the population are Mo= 2:~ 1 .Mi. Also consider that from N primary 
units n are selected under SRSWOR scheme and from i-th selected primary units mi second 
stage ilni,ts ·are selected at random by simple random sampling without replacement. 

The population mean of Mo elements is 

_ l N M; . l N _ l N _ 

Y = M LLYij =NM LMiYi = N LuiYi. 
0 i=l j=l i=l i=l 

The mean of second stage units selected from i-th first stage unit is 
1 m; 

'fh = -LYiJ· 
mi j=l 

Total sample observations are 

i=l 

Now, the estimators of population mean Y are 

ln '1 n ln 
Y1 =.,... LUiYi =--= LMiyi, Y2 = - I:Yi· 

.n i=l · nM i=l n i=I 
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Moreover, a ratlo estimator of population mean is also available. For this, let us define a 
variable X with values Xij =values of correlated auxiliary variable corresponding to j-th second 
stage unit within i-th first stage unit. Then 

_ l N M; l N _ l N _ l N _ 

X = u LLXij = u LMiXi =-= LMiXi = - L:uiXi, 
ivio i=l 1=l ivio i=l NM i=l N i=l 

- l M; 

where xi= M· L Xij· 
1 j=l 

1 m; 1 n l n 

Xi = - L Xij and X'1 = - L UiXi = -= L Mix;. 
mi J=l Tf i=l nM i=l 

Let 

Then the ratio estimator of popu\ation mean Y is 

- Y1-
Y1R = -:=-X. 

X1 

Theorem : In two-stage sampling- in case of unequal first stage units if simple random 
sampling without replacement is used at each stage, then y1 is an unbiased estimator of 
population mean Y. The variance of y1 is 

N 
_ N - n 2 1 '°" 2 M; - m; 2 

V(y1) =~Sib+ N Lt ui M S;. 
n n i=l mi ; 

2 1 ~ - 2 and S; = M=1 Lt(Y;1 - Y;) . 
1 j=l 

. 1 n 1 n 

Proof: Given y1 = ~ L u;y; = -= L MiY;. 
n i=l NM i=l 

= ~1 [.!_ t u;Y;l = .!_ t·_!_ t UiY; = Y. 
n i= 1 · n i= 1 N i= 1 

.Hence, y1 is an unbiased estimator of Y. 

V(yi) = ViE2 (~) + Ei V2 (~) 

.·=Vi [E2~ t UiY;l + E1 [:2 t u~V2(Yi)l 
•=l •=l 

_ 1- ! 8 2 E [__!_ Ln 2Mi - m; 82] 
...,. lb+ i 2 u, M ' n n mi i 
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N 
_ 1 - f 82 1 L 2 Mi - mi 82 -- lb+- u . 
- n nN ' m M ' 

i=l ' ' 

- 1 - f 52 1 LN M((l - f;) 5[ l f m; 
- -- lb + - - w iere i = M,·. n nN M 2 ni·' 

i.=l t 

Theorem : In two-stage sampling in case of unequal first-stage units if sample is selected 
by SRSWOR scheme at each stage, then Th is biased estimator of Y. The bias and variance of 
'ih are respectively 

N 

2 1 ""- - 2 where 52b = N _ 
1 
~(Yi - Y N) . 

i=l 

Proof: Given 'ih = .!_ t Yi· 
n 

i=l 

Hence, Th is not an unbiased estimator of Y. 

The bias of 'ih is 

N 

Bias ('ih) = Y N - Y = ~ 8 Yi - Y 

= ~ tyi - N~ tMiYi = - N~ [tMiYi - Mt Yi] 
i=l t=l . i=l t=l 

N 

=-
1 

L(M;-M)(Yi-YN). 
NM i=l 

Again, V(]h) = V1E2(Jh/n) + E1[V20i2/n)J 

=Vi ( E2~ tYi) + E1 [:2 ~ V(yi)l 
= N - n 52 + E1 [2_ ~ Mi - mi 52] 

nN 2b n 2 L m·M· ' 
i=l • • 

N 
N - n 82 l L Mi - mi 82 =-- +- ·, 

· nN 2b nN m · M ' 
i=l ' • 

D.E.S.M.-31 
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Therefore, the mean square error (M.S.E.) of 'fh .is 
N 

MSE (""' ) - N - n 32 _l_ ~ Mi - mi 32 (Y - Y)2 
Y2 - N 2b + N ~ M i + N · 

n n i=l rni i 

Corollary : In two-stage sampling in case of unequal first stage units the unbiased estimator 
of population mean is 

...:.... N-l 1 n - 1 " 
Y = 'fh +-=- --L:(M; - Mi)(Yi - y2 ), where M1 =; L Mi. 

NM n - 1 i=l i=I 

Corollary : In two-stage sampling in case of unequal first stage units the unbiased estiniator 
of population total is 

, N n 

Y = MoY1 = - L M;Yi· 
n i=I 

The variance of this estimator is 

V(Y) = MJV(yi) = N
2
MJ(l - f)S~b + N t M;2(1- J.)S'f. 

n n i=I m; 

Theorem : In two-stage sampling in case of unequal first stage units the ratio estimator 
YIR is not an unbiased estimator of Y. The mean square error of YIR is 

N N 
N - n 1 ~ 2 - - 2 1 ~ 2 M; - m; 2 

MSE (ylR) = -:;;;y- N _ l ~ ·u; (Y; - RX;) + nN w u; m M D; 
i=l i=l t t 

N 
N - n 2 2 2 1 ~ 2 M; - mi 2 

= -:;;;y-(S1by - 2RS1bxy + R slbx) + nN w U; m M D;, 
i=l t t 

where D'f = Sfy - 2RS;xy + R2 S'fx. 

N N 
2 1 '""' - -2 2 1 ~ - -2 

S 1by = N _ l w(uiYi - Y) , S 1bx = N _ l w(u;Xi - X) . 
i=l i=l 

1 ~ - - - - 2 1 ~ -2 
S1bx = N _ l w(·uiYi - Y)(uiXi - X), S;y = M _ l w(YiJ. - Yi) . 

i=l •• j=l 

2 1 ~ -2 1 ~ - -
Six= M _ l w(xi.i - X;) , S;.cy = M _ l w(x;.i - Xi)(Yij - Y;). 

t .i=l t .1=! 

Proof: According to the property of ratio estimator, we can write, 

E(""' ) ~ y [l + V(xi) _ Cov(x1, y1)] R. 
Y1n x2 XY 

Hence, YIR is not an unbiased estimator of Y. The relative bias of Yin is 
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Agaiq, 

Th c B ~ N - n (Sf bx - Sfbxy) + _1_ LN 2 Mi - mi ( sfx - Sixy) ere1ore, ~ N _ 2 -- N u, M -2 -- · 
n x X Y n i=l m; i x X Y 

Hence, up to first degree approximation, 

_ N - n 1 '"°" 2 - - 2 1 '"°" 2 M; - m; 2 MSE (Y 1n) ~ -N -N l ~ u;(Yi - RXi) + -N L.,ui M D; n - n mi; 

N 
N - n 2 2 2 ) 1 '"°" 2 M; - mi 2 

= -N (S1by - 2RSibxy + R slbx + N ~ U; M Di. 
n n i=l rn; i 

Sukhatme and Sukhatme (1970) have mentioned that if the values of M; do not vary too 
much, 'ilrn is more precise compared to other estimators. We have mentioned that simple 
random sampling scheme without replacement is followed in two-stage sampling. As a result, 
the value of V(!Ji) depends on the totals of first stage units. Hence, if M; varies too much, the 
value of S[b will be more. Again, M; and s; are positively correlated and hence, the second 
term in V(y1 ) will also be larger. Thus, V(y1 ) is expected to be larger. As a result, the use of 
estimator 'i]1 is not suitable though it is unbiased. 

Theorem : In two-stage sampling, in case of unequal first stage units the unbiased estimator 
of variance of y1 is 

1 n 
h 2 "'"""< - - )2 w ere s 1b = n _ 

1 
~ u;y; - Yi , 
i=l 

1 m; 

s2 = -- '"°'(y-r1 -y )2. 
' m· -1 ~ ' 

• J=l 

Proof: It 'is easy to show that 
N 

( 2 ) 2 1 '"°" M; - m; 2 2 
E s1b = Sib + N - 1 ~ m M U; S; . 

i=l • • 

(In a similar way as it is done in case of two-stage sampling with equal first stage unit]. 

2 [ 1 ~ 2] 2 E(s;) = E m; - l ~(Y;1 -yi) = S;. 

[·:second stage units are selected under SRSWOR scheme]. 

Th ·£{.!.~ 2 [M;-m;] 2 }--2_~M;-m;s2 2 en ~ u, M s, N ~ M , u, . 
n i=l rn; i i=l TTt; i 

Hence, the unbiased estimator of S[b is 

S, 2 2 1 '"°" 2 ( M; - mi ) 2 
lb = s1b - N ~ ui m;M; s;. 
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Now, we have 

N 
" ( ) 

~ _ - n .2 1 2 Mi ·- m; 2 v(y1) -- -Ns1b + W LU; M si. 
n n. i~.=1 m, , . 

2 

If N is large enough v(jiJ) = s 16 . 
n 

Corollary : In two-stage sampling in case of unequal first stage units the unbiased estimator 
of variance of Jh is 

l 
_ N - n 2 1 '"" Mi - mi 2 

v(y2) = -N s2b + N ~ M s;' 
n n J=l mi ; 

where 
1 n 

2 '""(- - )2 s2b = n _ 1 ~ Y; - Y2 · 

i=l 

Corollary : In two-stage sampling in case of unequal first stage units the estimator of 
variance of ratio estimator y 1 R is 

where 

1 n 
2 I:( _ _ )2 

slbx = -- U;X; - xi ' n-1 
i=l 

1 n 
SJbxy = n - 1 L(u;'fl; - yi)(u;x; - xi), 

i=l 

1 m; 

2 '""c _ )2 six = ---1 ~ Xij - X; . 
· mi - J=l 

1 m; 

Sixy = ---1 l:)Yij -y;)(Xij - xi), R = yifx1. 
m·-

' j=l .. 

Example 17.2 : To estimate the total unemployed graduate.s in a police station area a 
survey is conducted. The number of administrative blocks in the police station area is 15. In 
each block there are different numbers of villages. Total villages in the study area arc 120. Six 
administrative blocks are selected at random and from the administrative blocks some villages 
are selected at random. The number of unemployed graduates in the villages are shown bj!low. 
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Estimate the total unemp!Dyed graduates in the police station area. Also estimate standard 
error of your estimate. 

Number of unplayed graduates (Yii) in the selected villages 
m, 

SL. No. No. of villages in No. of unemployed No. of 'fh LYfi 
the administrative graduates . in the selected 
block selected villages villages Ttl.i 1 M; Yij rni = -LYi1 

m; 

1 15 12, 8, 6, 7, 14 5 9.40 489 
2 13 10, 9, 6, 16 4 10.25 473 
3 8 18, 11 2 14.50 445 
4 10 12, 16, 8 3 12.00 464 
5 12 14, 20, 8, 12 4 13.50 804 
6 9 15, 13, 8 3 12.00 458 

Total 67 21 71.65 3133 

n - 1 N 120 
Solution: We have N = 15, Mo= 120, n = 6, L:m; = 21, M = N LM; = 15 = 8. 

i=l i=i 

The average unemployed graduates per village is 

1 11 780'.25 
Th = -= L Mi'fh = -6-- = 16.25. 

nM i=i x 8 

Estimate of total unemployed graduates in the police station area is 

Y = Mo'!Ji = 120 x 16.25 = 1950. 

'Ui =!!ft 1 [I: ' 2 -21 - 2 m;-i Yij - rn;yi - S; ( - - )2 U;Y; - Yi 
u 2 (M;-mi) 2 s 

niiMi i 

0.625 11.80 107.6406 0.61458 
0.500 17.583 123.7656 0.76080 
0.250 24.500 159.3906 0.57422 
~.375 16.000 138.0625 0.525 
0.500 25.000 90.2500 1.04167 
0.375 13.000 138.0625 0.40625 

Total 757.1718 3.92252 

. 2 1 I: _ _ 2 151.1118 
Sib= --

1 
(u;y; -y1) · = = 151.43436. 

n- 5 

(- ) N - n 2 1 L 2 ( M; - m;) 2 v Y1 = --s1b + - U; si 
nN nN m;M; 

15 - 6 1 
= 6 x 15 x 151.4346 + 6 x 15 x 3.92252 = 15.187019. 

v(Y) = M;fv(yi) = (120)215.187019 = 218693.0816. 

s.e. (_Y) = R} = 467.65. 
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17.5 Estimation of Proportion in Two-Stage Sampling with Equal 
First Stage Units 

Let us consider that the variable under study in two-s,tage sampling is qualitative in nature. 
Then 

Yi.i = 0, if j-th second stage unit within i-th first stage unit does not possess the character. 

= 1, if j-th second stage unit within i-th first stage unit possesses the character. 
i = 1, 2, ... , N; j = l, 2, ... , M. Then, the proportion of units in the selected 'i-th first stage 
unit possessing the character is 

1 M a, 
Pi= - """"Yii = -2..,- i = 1,2, ... ,n. 
m~ m 

j=l 

Let P be the proportion of units in the population possessing the character, where 

1 N M L;:,1 Ai A 1 
P=NMLLYi.i= NM =NM=N"LP;, 

i j=l 

1 M Ai 
where Pi= M LYii = M' 

.i=l 

The estimator of P is 

1 N 1 n 
fa= - "'"""a; = - "'"""Pi· mnw nL. 

i=l i·:.1 

The estimator of variance of this P is 

A 1 - f ~ A 2 f (l - Ji) ~ 
v(P) = n(n - 1) ~(p; - P) + n2 (m - 1) {;;rp;q; 

= 1 - f s~ + J(l ~Ji) s~, 
n nm 

2 1 ~ A2 2 m ~ 
where sb "" n _ 1 ~(Pi - P) , sw = n(m _ l) ~PiQi, q; = 1 - Pi· 

Example 17.3 : To estimate the proportion of patients admitted in a hospital in a month 
who suffer from Hepatitis-B virus, a survey is conducted. In the month total patients in the 
hospital are 500. These _patients are treated in 10 wards. In each ward there are 50 patients. 
Each ward is considered as a cluster. Five clusters are randomly selected. From each randomly 
selected cluster 50% patients are randomly selected and investigated. The number of patients 
suffering from Hepatitis-B in each selected ward are shown below : 

SI. No. Patients suffering Pi=~ q; = 1 - Pi p;q; 
from Hepatitis-B 

a; 

1 12 0.48 0.52 0.2496 
2 8 0.32 0.68 0.2176 
3 10 0.40 0.60 0.2400 
4 16 0.64 0.36 0.2304 
5 10 0.40 0.60 0.2400 
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Estimate' the total paticnti suffering from Hepatitis-B and also estimate the standard error 
of your estimate. · 

Solution: N = 10, n = 5, M = 50, m = 25 

The proportion of patients suffering from hepatitis-B vims is 

· 1 n 2.24 
p = ~ LPi = -5- = 0.448. 

i=l 

The estimate of total patients is 

A = NM p = 10 x 50 x 0.448 = 224. 

The estimator of variance· of P is 

(p.) - 1- f 2 + f(l - Ji) 2 
V - --Sb SW, 

n nm 

n m 
where f = N = 0.5, Ji = M = 0.5, 

2 1 L.::.. . 2 1 [L.:: 2 • 2] 
sb = -- (Pi - P) = -- Pi - nP 

n-l n-l 
i=l 

= - 1
-[l.0624 - 5 x (0.448) 2

] = 0.01472. 
5-1 

2 m Ln 25 
SW = ( ) Piqi = ( ) x 1.1776 = 0.24533. nm - 1 5 25 - 1 

i;= 1 

( 
. ) 1 - 0.5 0.5 x 0.5 

v p = -5- x 0.01472 + 5 x 25 x 0.24533 = 0.0019625. 

Therefore, v(A) = N 2 M 2v(F) = (10)2(50) 2 x 0.0019625 = 490.65. 

The estimate of standard error of A is 

s.e. (A) = f:(i0 = 22.15. 

11.6 .· Allocation of Sample Sizes in Two-Stages 
Let us discuss the problem in two-stage sampling in case of equal first-stage units. The 

variance of sample mean of two-stage sampling when first-stage units are equal is 

V (y) = N - n 82 + M - m 8~ . 
nN b mM n 

It is observed that the precision of the estimator y depends on the value of n, m, 8~ and S.~. 
The expenditure of the survey depends on n and m. Hence, the values of n and m are to be 
determined in such a way that for a fixed cost V (Y) is minimum. 

Let the fixed cost function C = anm, where a = proportionality constant. Let the fixed . 
cost for the survey be Co such that 

Co 
Co= anrn ==? rn = -. 

na 

Putting the value of min the formula for V(Y), we get 

v(-) = N - n 82 M - Co/an 82 = (82 _ 8~) 2_ a8~ _ 8~ 
y Nn b + M£2. w b M n + C N. 

an 0 
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This variance is a monotone decreasing function of n. Therefore, V (T.i) will be minimum if 
n takes highest value when St - S~/M > 0. Let us consider that the estimate of m is in= 1. 
Then the estimated value of n is n = C0 /a. Again, if S~ - S~/M < 0, V(y) is a monotone 
increasing function of n and the variance will be minimum if n is minimum. The value of ii will 
be minimum when iii = M, because 

, Co 
n= aM· 

The values of iii and n are decided for a fixed cost C0 . These estimated values may also be 
found out for a definite amount of precision of esti.mator. Let the fixed value of variance of y is 

Vr _ N - n sz M - m S~ 
o - -:;:;:;-- b + rnM -:;: 

From this variance formula, we have 

S2 + M-ms2 n _ b mM w 

- Vo+~ 
Putting the value of n in the cost function C = anm, we get 

[s2 - ~] asz 
C =am b ~ + ws2 · 

Vo + it Vo + it 

From the above value of C it may be concluded that if Sl - ~ > 0, C will be minimum 

when m is minimum. Thus, C is minimum if iii = 1. Again, if Bl- ; < 0, C will be minimum 

when m becomes maximum. The maximum value of rn is rri = M. 

The value of m and n can be derived for a general cost function also. Let this general 
function be C = C1 n + C2nm, where C 1 is the cost of including a first-stage unit in the sample 
and C2 is the cost of inclusion of m second stage sampling units in the sample. 

The variance of sample mean is 

V(y) = _!_ ·(sl _ s~) + s~ _St. 
n M nm N 

The last term in the right-hand side of V(Y) does not depend on norm, the middle term 
is a function of variance of first stage units and the first term is the function of variance of first 
stage units and the variance of means of first stage units. The first· term becomes minimum 
if n is maximum and the middle term becomes minimum if both n and m become maximum. 
Therefore, it is noted for maximum values of n and m V(y) will be minimum. Sut, when n and 
m become maximum, the cost of survey will be increased. Therefore, the values of n and m are 
to be estimated in such a way that the estimator becomes precise for a fixed amount of cost. 

Putting the value of n from cost function in the formula of V(y), we get 

{ (-) sb } c (s2 s~) c 82 c (s2 s~) C1 s~ VY + N = C1 b - N + 2 w + 2m b - M + ---;:;;-· 

The optimum values of n and m are derived by minimizing the above variance function. 
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Let S't - ~ > 0. Then the above variarice function can be written as 

2 2 

c { V(Y) +;} ~ [ c, ( s1 - ~) + Jc,sc] + [ c,m (s1 -~ )-VC;:0] 

The above variance function becomes minimum if the last term in the right-hand side 
becomes zero. That is, if 

Therefore, we have 

rh = C1 S~ ~ 

C2 (St -11) 
C1 (~ - l), 
C2 ·p 

where p is the intra-class correlation coefficient of observations of first-stage units. 

Again, if St - S~/ M < 0, the right-hand side term of the above variance function becomes 
minimum, when m becomes maximum. Now, if the total cost is fixed, i.e., C = Co and 
C0 > C1 + C2 M, then m =Mand the value of ii will be the maximum value of 

Again, if Co< C1 + C2 M, then rh will be the maximum, if in-::; Co ;
2 
Ci and ii= 1. 

2 8 2 

It is observed that the value of rh depends on C1 , C2 and p. Generally, Sb - i;f > 0. Hence, 
m will be minimum, if 

(i) the cost of travelling of first-stage units is less, 

(ii) the cost of selection of second-stage units. from the selected first-stage units is more, 

(iii) p is maximum. 

Corollary : In two-stage sampljng, if C0 > C1 + C2 M, the formula to decide optimum m 
from sample observations is 

m = [C1 s~ 
2

] t 
C2 s~ - ~ 

Corollary : In two-stage sampling the minimum variance of y for optimum m and n is 

(st-~)+ Jc1s~J 
2 

The estimator of this variance is 

Vmin(Y) = ~ + - C1 
82 1 [ 
N Co 
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Allocation of sample size in two stages when first stage units are unequal 

Let there be Mo elements in a population. The population units are divided into N 
clusters, the size of i-th cluster is M;(i = 1, 2, ... , N). According to the definition of two
stage sampling, we need to select n clusters (primary units) from N clusters by a random 
process and then from i-th primary units m; second stage units are to be selected by a random 
process. The problem is to decide the values of n and m;('i = 1, 2, ... , n). The value of m; 
may be proportional to M;, it may be independent of M; or by any arbitrary process all m;'s 
may be same [rri1 = m2 = · · · = mn]· However, the value of m; is to·be chosen in such way 
that the sample observations must provide more precise estimator of population parameter. 
The precision is to increase in such a way that the cost of the survey becomes minimum or the 
estimator is to be found out .for a pre-fixed precision so that the cost is reduced. 

Let the total cost of the survey be 

N 

C=C1n+C2~Lm;. 
i=I 

. . n 
Here C1 n is the cost of survey of first-stage units and C2 N L m; is the average cost of 

survey of second-stage units. Then 

N 

where 6. = sf b - l L u;Sf. 
NM i=l .. 

Tf 6. is positive, then right-hand side of the variance function is ~ritten as 

+ terms independent of m; 

This quantity becomes minimum if both the squares are zero. In such a case, the estimated 
value of m; is 

m; = ~u;S; (i = 1,2,. .. ,N). 

It is observed that, the value of m; depends on the cost of survey, the selected first-stage 
units and on the ariance of the observations of first-stage un'its. In practice, the value of s; 
is not known. He .ce, m, should be independent of s;_ To get m; independent of Sl, it is not 
essential for m; to be optimum. 

If Sr's are same for all i(i = 1, 2, ... , N), then m; can be taken proportional to M;. However, 
S;'s are not equal, in practice, rather it increases with the increase in the value of M;, though 
the rat~ of increase of s; is less than the rate of increase of M;. To avoid the problem, strata can 
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be formed with clusters of equal sizes and mi can be taken proportional to Mi. Let m; = K Mi, 
where K is a constant and 

N 
C1 1 '°' 2 K = c -2 L,.; UiSi . 

2 NM ~ i=l 

The value of k leads to get minimum variance. 

Example 17.4 In an agricultural research station an experiment is conducted to study the 
productivity of improved variety of mango. 400 mango plants arc planted in different areas. 
In each area 20 plants are nursed. To estimate the total production of mango, 10 areas are 
randomly selected and from each selected area 5 plants are randomly selected. The total mango 
production per selected plant are shown below : 

Sl. No. Production of mango (Yii in number) in. Mean 
selected plants 

Yi 
1 2 3 4 5 

1 15 28 22 40 35 28.00 

2 42 12 42 48 55 39.80 

3 22 32 35 52 60 40.20 

4 52 38 30 24 28 34.40 
5 50 15 45 48 53 42.20 

6 18 24 37 46 62 37.40 
7 19 38 46 42 36 36.20 

8 20 24 54 50 52 40.00 
9 56 17 15 38 44 34.00 

10 29 44 40 48 31 38.40 

Total 370,60 

(i) Estimate the total number of mango produced in the farm. 

(ii) Estimate the standard error of your estimate. 

m 

LY?j 
j=l 

4318 

9001 

9037 

6408 

9863 

8229 

6981 

9096 

7030 

7642 

77605 

(iii) If the cost functi~n for the survey is 1000 = 20n + lOnm, then find the optimum values 
ofn and m. 

(iv) Find the minimum estimated variance of the estimator of total production. 

Solution : (i) Given N = 20, M = 20, n = 10, m = 5. 
The estimated mean production of mango is 

- 1 '""" '""" 1 370.6 Y = - L,.; L,.; Yii = - '°'W· = -- = 37.06. nm n L,.; ' 10 

The estimated total mango production is 

Y = M Ny= 20 x 20 x 37.06::; 14824. 

(ii) s~ = n ~ 
1 

[LY? - ny2
] = 5 ,~ 

1 
[13888.04 - 10.x {37.06)2

] = 38.401. 
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2 - : 1 ~ [~ 2 . -2] - 1 ['"' '"' 2 ~ -2] Sw - n(m - 1) L, L.,~ij - myi - n(m -1) L.,L.,Yij - m L., Yi 
., J=l i=i 

1 
= 10(5 - 1) [77605 - 5 x {13888.04)] = 204.12. 

·Therefore, the estimate of variance of Y is 
v(Y) = N2.M2 [.l - f s2 + /(1 - fi)·s2] 

n b nm w 

= (20)
2
(20)2 

[
1 ~i·5 38.401+ 0·5~~~0~25> x 204.12] 

= 552152.00. 

. . s.~. (Y) = R} = 10.01. 

(iii) The cost function C =Gin+ C2nm, where C = 1000 =Co, Ci = 20, C2 = 10. It is 
observed that C-0 >Ci+ C2N. 

, _ [Ci s~ l t m- ---~ 
C2 s~ - * 

But s~ - 8~ = 38.401 -
204

·
12 

= -2.423 < 0. 
m 5 

Co 1000 
Therefore, m = M = 20 and ii = Ci + C

2
M = 20 + 10 x 20 = 4.5 ~ 5. 

Now, the Vmin(Y) form and ii is 

, · 2 2 { s~ 1 [ Umin(Y) =MN N +Co 

"' (20 )
2 

(20 )
2 

{ 
38~: l + l~O [ 20 ( 38.401-

20:~ 12
) + v'IO x 204.12 n 

= 160000 { 1.92~05 + 1;00 [75.0933 + 45.1796)2
} 

= 2621699.276. 

17. 7 Two-Stage Sampling with. Varying Probabilities 
In two-stage sampling, sampling units are selected at each stage by simple random sampling. 

This sampli~g scheme is good if the sizes of first stage units are smaller and if the variance of 
observation within first-stage unit is smaller. The efficiency of the sampling scheme is decreased 
if the sizes of first.:.stage units are laige and if the obServations within a first-stage unit vary too 
mt)ch. The efficiency of the sampling plan is not increa.Sed. even if smaller number of first-stage 
units are selected and even if equal number of second-stage units are selected from the selected 
first-stage units. Therefore, an alternative sampling technique is needed to avoid the problem 
mentioned above. -
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The problem is obviat.ed if sampling units are selected with varying probabilities. This i::; 
possible if first-stage units are grouped into strata according to the homogeneity of sizes of first
stage units and from each stratum if first-stage units are selected with probability proportional 
to sizes of first-stage units. The second-stage units are selected from each selected first-stage 
unit with equal probability. 

Hausen and Hurwitz (1943, 1949) have discussed the technique in details. Singh (1954) has 
compared two estimators when first-stage units are selected by probability proportional to sizes 
of units without replacement and second-stage units are selected with equal probability with 
replacement and without replacement. Rao (1966) have proposed alternative estimators in case 
of above mentioned sampling procedure. 

17 .8 Method of Estimation in Two-Stage Sampling with Varying 
Probabilities 

N 

Let there be Mo = L M; elements in a population which are divided into N-clusters. The 
i=l 

number of second-stage units in i-th first-stage unit is M; ( i = 1, 2, ... ; N). Consider that 
a sample of n primary units is needed and these will be selected with replacement. Let the 
selected first primary unit is i-th unit. Then from this selected i-th unit mi second-stage units 
are to be selected without replacement. Since first-stage units are selected with replacement, 
the i-th unit has chance to be included in the sample repeatedly. In that case, to select the 
second-stage units the selected m; units are replaced again and again. Consider that i-th unit 
is included t; times in the sample. Then mi second-stage units are included in the sample ti 
times and every time the sub-sampling will be independent. 

Let p; (i = 1, 2, ... , N) be the probability of selection of i-th unit in the sample such that 
N 

L Pi = 1. Let us define a variable Z;j which is observed from j-th second-stage unit of selected 
i=l 
i-th unit, where 

M;Yij - 1 M; 
Zi; = -- and Zi = M· Lzii· 

. MoPi i J=I 

- 1 m; 

Then Z;. = - L Zij· Using this Z;. we can formulate an estimator of population mean Y, 
m; j=l 

where the estimator is 
- 1~-z = - L,;Z;. 

n i=I 

Theorem .: In two-stage sampling, if first-stage units are selected by probability propor- . 
tional to size (PPS) of first stage wiit, then the unbiased estimator of population mean Y is Z 
and the variance of this estimator is -

N N 
V(Z) = ~"" M; (Yi -Y)2 +~""Mi (Mi - m;) Slz• 

n L,; Mo n L,; Mo m·M· · 
. i=l i=l • • 

M· 

where 8 2 = -
1
- ~(Z· · - Z)~ . 

•z M. - 1 L,; '.7 • 
' j=l 
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.. 1 n 
Proof: The estimator z is defined by z = - L zi·· 

n i=l 

- [1~-J [·1~ - ]· E(Z) = E ;;: L,, Zi. = E ;;: '{;;: E(Z;.)/i 

1 ~- 1 ~ - -
= E- L,, Zi = - L,, E(Zi) = Z . ., 

n n 

N N 1 M; N. M; M . . 1 N M; 

where Z .. = LPizi = LPi M· Lzii =LL 1;,; ;t1 
= M LLYi1 = Y. 

i=l · i=l ' J"'l i=l 1=1 ' op, o i J=l 

Hence, Z is an unbiased estimator of Y. 

The variance of Z is written as 

Again, we have 

Then 
N N 

- 1 '"°' - - 2 1 "7" Mi - mi 2 V(Z) = - L,,Pi(Zi - Z .. ) + - £_,Pi M Siz· 
n i=l n i=l m, i 

But 
M 

Pi= M~ [i = 1,2, ... , NJ gives Zij = YiJ 

( 
1 '"°' '- ) ~ Mi - - ~ v ;;: L,, zi = L,, M(Yi - Y) . 

i=l 0 
and 

Also 

N N 

Hence, V(Z) = .!. L MMi (Yi - Y)2 + .!. L MMi (Mi -,;;i) s;. 
n i=l o n i=l o m, ' 

Theorem : In two-stage sampling if first-stage units are selected by PPS sampling scheme, 
then the unbiased estimator of variance of Z is 

2 n 
- - sbz - 1 L - - 2 v(Z) - - - ( ) (Zi. - Z) . 

n n n-1 
i=l 
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1 n 1 . 2 · 2:: - - 2 [~ -2 -2] Proof: Given sbz = -- (Zi· - Z) = --
1 
~ Z;. - nZ 

n- l n-
i=l 

E[s~zl = n ~ 
1 

[E (L Z~.) - nE(Z
2

)] 

= ~- l [Et E(Z~./i) - nE(Z
2
)] 

n i=I 

= -
1 [E~ {z~ +(Mi -mi) Sfz}- n{Z~ + V(Z)}l 

n-l ~ mM · 
i=l i ' 

1 [ ~ {-2 Mi - m; 2 } -2 - l = n _ l n {:rPi Zi + miMi Siz - n{Z .. + V(Z)} . 

Now, putting the value of V(Z) and on simplification, we get 
N N 

2 ~ - - 2 ~ ( M; - mi) 2 
E(sbz) = {:rp;(Z; - Z .. ) + {:rp; m;Mi Siz· 

2 
V(Z) = sbz. 

n 

Example 17.5 : In a poultry farm there· are 120 sheds to rear the chicks. The sheds are 
divided into 10 blocks. In each block there are different numbers of chicks. Below is given the 
number of chicks in each shed and in different blocks. 

SL. No. No. of sheds Number of chicks (YiJ) per shed 
of blocks in a block 

1 8 20, 22, 18, 17, 15, 25, 18, 16 

2 12 10, 15, 12, 14, 15, 11, 13, 12, 10, 15, 12, 10 

3 15 9, 6, 15, 18, 12, 12, 12, 10, 14, 12, 12, 11, 13, 10, \o 
4 9 15, 12, 8, 12, 16, 18, 12, 10, 8, 
5 14 10, 10, 10, 10, 12, 11, 9, 9, 10, 12, 15, 16, 12, 10 

6 14 12, 11, 11, 11, 8, 10, 10, 12, 12, 11, 13, 14, 10, 11 

7 8 15, 18, 14, 20, 20, 18, 20, .17 

8 13 15, 16, 17, 13, 16, 16, 17, 18, 20, 18, 19, 10, 12 

9 12 16, 20, 19, 8, 14, 16, 12, 14, 18, 17, 15, 10 

10 15 10, 12, 16, 9, 15, 18, 19, 20, i2, 16, 17, 18, 13, 
14, 15 

(i) Select a sample of 5 blocks proportional to· size of sheds in blocks with replacement and 
select 253 sheds from selected blocks. 

(ii) Estimate the total number of chicks in the farm. 
(iii) Estimate the standard error of your estimator. 

Solution : (i) The sample can be selected using Lahiri's method of sample selection. 
According to the method, first block is to be selected selecting a pair of numbers. The first 
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value of the pair is a selected number from 1 to N and the second value of the pair is a random 
number from 1 to M, where M is the largest size of the clusters. If this pair corresponds to a 
cluster along with its size, the cluster is to be included in the sample. For example, the. first 
selected number from 1 to 10 (·: N = 10), using random number in Appendix, is 01 and the 
second value of the pair is from 1 to 15 is 01. Hence, the pair is (01, 01). This pair corresponds 
to first block. Hence, first block is included in the sample. Other clusters are selected in a 
similar way. Accordingly, the other pairs are (06, 06), (08, 08), (03, 03) and (05, 05). The 
sample blocks and sheds along with number of chicks in sheds are shown below : 

' 
SL. No. No. of No. of Probability No. of chicks 'ik 

of blocks sheds in sheds of selection in sample 
selected blocks Mi selected in M 

Pi= jfo-
th~ -sample mi 

1 8 2 0.06667 20, 25 22.5 

6 14 4 0.11667 12, 11, 8, 12, 10.75 

8 13 3 0.10833 13, 16, 16, 15.00 

3 15 4 0.125 12, 12, 18, 12, 13.50 

5 14 4 0.11667 10, 10, 15, 10, 11.25 

We have N = 10, Mo = 120, n = 5. 

- 1 ~ - 1 ~ 73.00 z = - ~ zi = - ~Th = -- = 14.60. 
n i=l n i=l 5 

Estimate of total chicks is 

Y = M 0 Z = 120 x 14.60 = 1752. 

(ii) V(Z) =· n(n 
1
_ l) ~(Zi. - Z)

2 
= n(n 

1
_ l) [LYT. - nz

2
] 

1 \ 2 . 
( ) [1155.625 - 5(14.60) l = 4.49125. 

5 5-1 . 

Hence, the estimator of yariance of Y is 
v(Y) = MJv(z) = (120)24.49125 = 64674. 

s.e. (Y) = M} = 254.31. 

Example 17.6 : Estimate tbe total number of chicks in the farm using data of example 
17.5. Sele~t 5 blocks by probability proportional to number of chicks per block. Also estimate 
the standard error of your estimator. 

Solution : N = 10, n = 5, 

SL. No. of blocks 1 2 3 4 5 6 7 8 9 10 Total 

No. of chicks Yi. 151 149 176 111 156 156 142 207 179 224 1651 

No. of sheds Mi 8 12 15 9 14 14 8 13 12 15 120 
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Using Lahiri's method we can select the sample. The selected pairs are (01. 066), (OS, 033), 
(03, 165), (05, 057), (01, 111). The sample observa'ions and related results are shown below: 

SL. No. No. of No. of Probability Sample observations Z· - M;!J;j 
'J - Mop; Zi 

of selected sheds sheds in of selection YiJ 
cluster Mi sample mi Pi=~ 

1 8 2 0.09146 18, 20 13.12, 14.58 13.85 
8 13 3 0.12538 20, 10, 13 17.28, 8.64 

11.23 12.38 
3 15 4 0.10660 12, 12, 18, 11 14.07, 14.07 

21.11, 12.90 15.54 
5 14 4 0.09449 12, 10, 16, 15 14.82, 12.35 

19.76, 18.52 16.36 
1 8 2 0.09146 20, 18 14.58, 13.12 13.85 

Total 71.98 

The average chicks per shed is 

Z = _!.. t Zi. = 71.
98 = 14.396. 

n i=I 5 

The estimate of tota,l chicks is 

Y = MoZ = 120 x 14.396 = 1728. 

The estimate of variance of Z is 

(- . 1 "" - - 2 1 [""-2 -2] v Z) = n(n _ l) L)Zi. - Z) = n(n _ l) L..t Zi. - nZ 

5(5 ~ 1) [1046.0506- 5(14.396)2
] = 0.491326 

Then V(Y) = MJv(Z) = (120) 20.491326 = 7075.0944 

s.e.(Y) = y1v(f) = 84.11. 

17.9 Two-Stage Sampling With Varying Probabilities at Each Stage 
We have discussed the method of selection of first-stage units by probability proportional 

to the size 'of first-stage unit. The second-stage units can also be selected by probability 
proportional to size or any other measure of size of second-stage units. Let us now discuss 
the selection of units of both stages by PPS sampling scheme. 

Let Xii = the measure of size of j-th second-stage unit in i-th first-stage unit; 1 = 1, 2, 
... ,N; j = 1,2, ... ,Mi· 

Yii = the value of the variable under study of j-th second-stage unit in i-th first-stage 
unit. 

M, 

xi = L Xi] = the total size of i-th first-stage unit. 
j=l 

n ~SM-~? 
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M; 

Yi = L YiJ = the total value of the variable of i-th first-stage unit. 
j=l 

N NM; 

x = L xi = L L Xij = total of population units. 
j=l i=l .i=l 

N NM; 

Y = L Yi = L L YiJ = total value of the variable in the population. 
i=l i=l J=l 

T"ij = YiJ = ratio of variable to size of j-th second-stage unit in i-th first-stage unit. 
Xij . 

Ri = ;i = ratio of total value of i-th first-stage unit to size of i-th first-stage unit. 

y 
R = X = ratio of total value of total size in the population. 

Theorem : In two-stage sampling if sample is selected by PPS scheme at each stage, then 
the unbiased estimator of population ratio R is r and the variance of this estimator is 

N M; 

) 1 L xi ( )2 1 L Xij ( )2 V (r = - - Ri - R + - - ri·· - R; , 
n x nm xi J 

i=l j=l 

l n m l n 

where f'= -Z::Z::rij = - LTi. 
. nm i=l J=l n i=I 

Proof : The probability of inclusion of j-th second-stage unit from i-th first-stage unit in 
the sample is 

Xij . 1 2 N . 1 2 M PiJ = Xi, i = , , ... , ; J = , , ... , i· 

Again, the probability of inclusion of i-th first-stage unit in the sample is 

Given 

But 

Xi . 1 2 N 
Pi = X, i = , ' ... ' . 

1 
Tl rtl 

YiJ d - '"''"' T"iJ = - an r= -~~T"iJ· 
Xij nrn i=l j=l 

· l n m 
E(f) = -E"" E(r;1/i) - nm~~ 

i j 

n m M; M; 

= _1 '"''"' '"'r;j Xij = E'"' Yij Xij = E(R;). 
nm~~~ X ~x X 

i=l j=l j=l ' j=l •J ' 

N 

E(R,) = '"' Yi X; = y = R. 
~xx x 
i=l ' 

Hence, r is an unbiased estimator of R. 
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= V [~ t ~J + E [~2 t V(ri/n)] 
i=l i=l 

=· ~2 ~ V(~) + E [~2 L V(rdi)]. 

N M; 

"'"""' - 2 "'"""' 2 But V(~) = L,_,Pi(~ - R) a.nd V(ri1/i) = L,_,PiJ(Tij - ~) . 

i=l 

M; 

V(- I") 1 "'"""' Xij ( R )2 Ti l = - L,_, X Tij - i · 
m j=l , 

j=l 

1 Xi 2 1 Xi.j - 2 n N [ n ~ l 
Hence, V(r) = n2 LL x(Ri - R) TE n2m LL xi (rij - Ri) 

N N M; 
1 "'"""' xi 2 1 "'"""' xi "'"""' Xij (. )2 = 2 L, x(ni - n) + - L, x L, x. Tij - ~ . 

n i=l nm i=l j=l ' . 
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Corollary : fo two-stage sampling if sampling units are selected by PPS sampling scheme 
at each stage, then the unbiased estimator of V (r) is 

1 n 

v(r) = n(n _ l) t;(ri - r)
2

. 

Example 17. 7 : In an area there are 106 villages. The villages are divided into 10 
administrative blocks. 

The number of villages in the blocks are different. Each village has cultivable land to produce 
potato. The amou~t of potato and the amount of cultivable land for potato are shown below. 

SL. No. No. of Amount of lands in Amount of potato produced 
villages villages (Xij acre) in villages (YiJ Q) 

Mi 

1 12 15.6, 12.2, 11.8, 16.6, 240.0,.225.0, 180.0, 280.7, 200.0, 
15.0, 10.2, 9.6, 12.5 195.5, 150.0, 205.0, 255.0, 240.0 
16.0, 17.2, 10.0, 13.0 160.5, 172.0 

2 8 10.5, 17.5, 16.2, 8.6 200.0, 295.0, 265.0, 190.4, 
12.5, 13.0, 14.0, 10.0 260.0, 261.2, 242.0, 210.5 

3 15 5.2, 6.7, 12.0, 15.0, 140.0, 165.0, 180.0, 270.0 
7.2, 10.5, 16.0, 11.5 148.0, 175.0, 140.0, 200.0 
10.0, 12.6, 18.2, 15.5 180.0, 192.0, 288.0, 212.0 
9.5, 6.2, 10.0 150.0, 135.0, 200.0 

4 11 16.0, 17.2, 15.0, 8.8 295.0, 312.0, 275.0, 165.0 
12.0, 15.0, 6.7, 10.5 195.0, 298.0, 140.4, 175.2 
13.5, 14.0, 9.2 240.5, 260.2, 198.0 

5 13 10.0, 11.2, 12.6, 9.9 180.5, 215.0, 220.0, 175.0 
14,2, 13.4, 10.2, 11.5 240.0, 250.5, 190.0, 210.0 
15.6, 10.2, 7.4, 8.8, 6.7 280,0, 210.0, 150.0, 165.0, 140.0 
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SL. No. No. of Amount of lands in Amount of potato produced 
villages villages (Xij acre) in villages (Yij Q) 

Mi 

6 7 15.5, 20.2, 20.0, 18.6 280.0, 260.0, 300.0, 290.0 
10.2, 14.2, 9.8 180.0, 225.0, 160.0 

7 10 6.0, 8.7, 12.6, 13.0. 150.0, 165.0, 195.0, 180.0 
15,8, 14,6, 9.5, 10.0 225,0, 235.0, 200.0, 165.0 
16.2, 20.0 235.0, 320.0 

8 8 15.0, 18.0, 10.2, 9.5 300.0, 324.0, 180.0, 195.0 
12.6, 17.2, 11.4, 12.0 225.0, 275.0, 220.0, 165.0 

9 14 12.0, 12,0, 14.6, 18.0 195.0, 180.0, 240.0, 310.0 
15.8, 16.2, 6.4, 5.5 250.8, 195.0, 120.0, 100.0 
6. 7, 9.5, 10.0, 11.0 125,0, 175.0, 175.0, 190.0 

10.0, 10.0 145.0, 160.0 

10 8 15.0, 16.2, 18.6, 20.0 245.0, 265.0, 300.0, 320.0 
5.0, 10.2, 12.0, 13.0 112.0, 220.0, 230.0, 245.0 

(i) Select 5 blocks and 3 villages from each selected block by PPS sampling scheme without 
replacement. 

(ii) Estimate the per acre production of potato in the area. 
(iii) Estimate the standard error of your estimate. 

Solution : (i) Given N = 10, n = 5, m = 3. The blocks are to be selected with probability 
Pi =Xi/ X and blocks are selected by Lahiri's method. The Pi values are shown below : 

SL. No. No. of villages xi= I:1 xij 
x 

Pi= 7f 

1 12 159.7 0.1213 

2 8 102.3 0.0777 

3 15 166.l 0.1262 

4 11 137.9 0.1048 

5 13 141.7 0.1076 

6 7 108.5 0.0824 

7 10 126.4 0.0960 

8 8 105.9 0.0805 

9 14 157.7 0.1198 

10 8 110.0 0.0836 

Total 106 1316.2 

To select blocks we need to select five pairs of random numbers on the basis of serial number 
of blocks and the values of Xi. Using random number table of Appendix, the pairs of numbers 
are (10, 102), (01, 011), (04, 043), (05, 055), (09, 092). Therefore, the selected blocks are 1, 4, 
5, 9, 10. 
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The second-stage units are also selected using Lahiri's method. Pairs of random number 
are selected using serial number of villages and the values of Xij. The selected pairs of values, 
selected villages and the probability of selection of villages are shown below : 

SL. No. Pairs of random SL. No. of PiJ = Xij/Xi 

of blocks numbers selected villages 

1 (10,10), (09,09), (01, 01) 10, 9, 1 0.1077, 0.1002, 0.0977 

4 (05, 05), (10, 10), (09, 09) 5, 10, 9 0.0807, 0.1015, 0.0979 

5 (02, 02), (05, 05), (01, 01) 2, 5, 1, 0.0790, 0.1002, 0.0706 

9 (01, 01), (07, 07), (08, 08) 1, 7, 8 0.0761, 0.0406, 0.0349 

10 (8, 8), (5; 5)~ (7,7) 8, 5, 7 0.1182, 0.0454, 0.1091 

Selected observations in the sample. 

SL. No. Xij Yi1 r·· -1!.il 1.J - Xij 
r - k.!.!i. 

1. - 111. 

1 17.2, 16.o; 15.6 240.0, 255.0, 240.0 13;95, 15.94, 15.38 15.09 
4 12.0, 14.0, 13.5 195.0, 260.2, 240.5 16.25, 18.59, 17.81 17.55 
5 11.2, 14.2, 10.0 215.0, 240.0, 180.5 19.20, 16.90, 18.05 18.05 
9· 12.0, 6.4, 5.5. 195.0, 120.0, 100.(} 16.25, 18.75,18.18 17.73 

10 13.0, 5.0, 12.0 245.0, 112.0, 230.0 18.85, 22.40, 19.17 20.14 . 
(ii) 'P.er acre production of-potato in the study area is 

1 . n ' m 1 ~ 88.56 
'f = -L::I>•j = - 2..... Ti= -5- = 17.712 Q. 

nm i=l j=l n . 

(iii) The estimated variance of the estimator of.per acre production of potato is 

~('f) = n(• 1- 1) L(ri - r)2 = n(n ~ 1) [L::r~ - nr2] 
1 . 

= 5(5-::- 1) [1581.4856 - 5(17.712)2
] = 0.645544. 

• . s.e. (r) = JV(ij = 0.8034. 



Chapter 18 

Three-Stage Sampling 

18.1 Three-Stage Sampling with Equal First-Stage Units 
Let there be N MT elements in a population. The elements are divided into NM sub

groups of T elements each. The sub-groups are divided into N clusters of M elements each. 
The elements in sub-groups are called third-stage units, the N clusters are called primary-stage 
units and the M elements in each cluster are called second-stage units. The problem is to select 
a random sample of nmt elements. ... 

Consider that n primary units are selected by SRSWOR technique. In each selected cluster, 
there are MT elements divided into M secbnd-stage unit~. A simple random sample without 
replacements of m second-stage units are to be selected forthe sa.:nple. In each selected second
stage unit, there are T third-stage units. A simple random sample of t units are to be selected 
without ·replacement. The resultant sample is a three-stage sample. 

Let YiJI be the value of the variable under study which is recorded.from /th third-stage unit in 
jth second-stage unit within itb first-stage unit [·i =-1, 2, ... , N; j = 1, 2, ... , M; l = 1, 2, ... , T]. 
Then · 

T 

Y ij =: ~ L Yiil = the mean of third-stage l.lllitl?. 
i=l . 

_ l MT lM-
y ;. = -T LL Yiil = M L Y ij = the mean of observations of ith first-stage unit. 

M j I j=l 

The population mean of the observations is given by 

_ l NMT l. ·_ lN-

Y= NMTLLLYiJi= NMLLY;j= NLY;: 
i=l j=l 1=1 i j i=l 

The corresponding sample means of the above population means are 

1 t 1 m_t 1. 
Y;1 = t LYi11, Yi= mt L LYiJI =-;;:; LYiJ 

l=I 1 

and Y = _.!_t LL LYijl = _1 L LYij = .!_ LYi· 
nm nrn . . n 

J 

Let us now define the variances of observations of different stages. The variances are · 
T 

S'f1 = T ~ 
1 

L(Yijl - Y;1) 2 = the variance of observations of third-stage units of jth 
l=I second-stage unit in ith first-stage unit. . 

502 
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M 

8 2 = --
1
- "(Y;1 - Y;) 2 =the variance of the means of jth second-stage unit in ith 

' M-1~ · . 
J==I first-stage urnt. 
N 

Bl = -
1
- "(Y; - Y) 2 = the variance of the means of first-stage units. 

N-1~ 
i==l 

Also, we car. define 

2 1 ~ 2 1 ~~ - - 2 
SW= N ~Si= N(M-1) ~~(Y;j -Y;) 

i==l i J 

Theo.rem : In three-stage sampling, if n first-stage units are selected and from each selected 
first-stage units m second-stage units are selected and finally if from each second-stage unit t 
third stage units are selected by SRSWOR scheme at each stage, then the sample mean y is an 
unbiased estimator. of population mean Y. The variance of y is . 

v(-) N - n 82 M - m S'! T - t S:f 
Y = -:;;Ji.I b + mM n + ---rr- nm· 

1 1 . 1 Tl 

Proof: We have y = nmt LL L YiJI = :;;:;;; L L Yij = ;;: L Yi. 
. i j i== 1 

= E1[E2(Yi1)J, ·: Yij is a simple random sample mean oft observations 

[ 
1 M - ] = Ei M ,t; Yij , ·; jth second-stage _units are selected by SRSWOR scheme. 

M 

= E[Yi] = ~ L yi = Y, ·: ith first-stage units are selected by SRSWOR scheme. 
i==l 

Here E1, E2 and E3 are used to indicate the expectation of first-stage, second-stage and third
stage samplings, respectively. 

But Yi is the mean observed from two-stage sampling. Hence, its variance is 

M 
V (y ) = M - m 82 + T - t _1_ " 82 . 

' mM ' tT nm ~ '1 
j== 1 
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Again, V [ ~ L Yi] = Nn~ n 8l, ·: this mean is a mean of simple random sample. 

Hence, V(y) = V [_!.~Yi] + E []__ ~ { M - m 5 2 + T - t _l ~ 52. }] 
n ~ n 2 ~ mM ' tT nm ~ '1 

i i=l j 

N N M 
= N - n 82 + _1_ M - m " 82 + _l_ T - t _l_ "" 82 

nN b nN mM ~ ' nN tT mM ~ ~ '1 
.i=l i j=l 

_ N - n 82 1 M - m 82 1 T - t 82 - -:;;N b + n mM w + nm ---;:r- T 

8 2 1 8 2 8 2 
= (1 - J)-1!.. + -(1 - fi).....1E.. + (1 - !z)-L, 

n n m nmt 
n m t 

where f = N' Ji= M' h = y· 

52 32 32 
V(y) = -1!.. +--!!!.. + -L, if f, Ji and h are negligible. 

. n nm nmt 

It can also be mentioned that V(y) is 

32 32 52 
V(y) = -1!.. +--!!!.. + -L, 

n nm nmt 

if sample is selected with replacement at each stage. 
If all third-stage units are included in the sample (t = T), then the variance stands 

52 52 v (Y) = -1!.. + --!!!.. . 
n nrn 

Again, if all elements of first-stage units are included in the sample (m = M), then 

52 
. V(y) = -1!... 

n 

If second-stage units are selected from all primary-stage units (n = N), then 

32 . 52 
V(y) = (1 - Ji)-!!!.+ (1 - !z)-L. 

mn nmt 

. Corollary : In thre~stage sampling if sample observations are selected by SRSWOR scheme 
at each stage, then the estimator of variance of sample mean is 

. s2 s2 s2 
v(Y) = (1- !)...!!.. + (1- fi)Nw + (1- h)NMT · 

n m t 

2 1 " - - 2 2 1 ~ 2 2 1 ~~ 2 where sb = --1 ~(Yi - y) , sw = - ~si, sr = - ~ ~sij' 
n - n i=I nrn i .i 

1 m 1 t 
2 "c- _ )2 2 "c- - )2 si = in _ l ~ Yi.i - Yi , siJ = t _ l ~ YiJI - YiJ · 

j t=l 
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Example 18.1 : For administrative convenience the entire garments industry of an owner 
is divided into 10 units. In each unit there are 10 machines. The products of each machine 
are recorded after every two-hours. The machines run from morning 7.00 AM to 7.00 PM. in 
the evening. To estimate the total production (in pieces) of the industry in a day, 5 units are 
randomly selected, from each selected unit 4 machines are randomly selected and the products 
of selected machines are recorded four times at random. The products of selected machines are 
shown below : 

Primary Second-stage Products of selected Yii 82. = _1_ [2:::v2 _ (LY•;i)
2

] 
• '.l t-1 . tJ l t 

units units machines (l/ijl) 

1 1 15,18,16,15 16.0 2.00 

2 18,20,18,20 19.0 1.3333 

3 14,12,12, 12 12.5 1.00 

4 16,16,16,16 16.0 0.00 

2 1 11, 10, 12, 12 11.25 0.9167 

2 13,15,13,13 13.50 1.00 

3 17, 17, 17, 16 16.75 0.25 

4 15,16,16,16 15.75 0.25 

3 1 18,18,18,18 .18.0 0.00 

2 17, 17, 18, 18 17.5 0.3333 

3 15,15,15,16 15.25 0.25 

4 14,14,14,15 14.25 0.25 

4 1 12, 11, 12, 12 11.75 0.25 

2 13,15, 15,14 14.25 0.9167 

3 15,15,15,15 15.00 0.00 

4 16,15,16,14 15.25 0.9167 

5 1 10, 12, 12, 10 11.00 0.3333 

2 15,15,15, 15 15.00 0.00 
3 18,18,18,19 18.25 0.25 

4 14,14,14,14 14.00 0.00 . 

Total 300.25 10.25 

Estimate the total production of-a day. Also estimate the standard error of your estimator. 

Solution : Given N = 10, M = 10, T = 6, n = 5, m = 4, t = 4. 
The average production per machine is 

1 . n m 300.25 
fl= - "'"'fl = --- = 15.0125. 

·nm LL· '1 5 x 4 
i .1 

Estimate of total production in all machine is 

Y = N MTy = 10 x 10 x 6 x 15.0125 = 9007.5 ::::::; 9008. 
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1 
8 2 = _1_ [2:)1' _ (L:v,,J'] SI.No. Y; =;;: LYij 'rn-l '.7 rn 

J 

1 . 15.875 7.0625 
2 14.3125 6.0156 
3 16.25 3.2083 
4 14.0625 2.5573 
5 14.5625 8.9323 

Total 75.0625 27.776 

82 = .!. ~ 82 = 27.776 = 5.5552. 
w n~' 5 

i=l 

s~ = -
1

- ['°'Ji~ -(LYi)
2

] = -
1

- [1130.746094- (
75

·
0625

)
2

] = o.967578. 
n-1 ~ n 5-1 5 

2 1 " " 2 10.25 sr = ~ ~~siJ = 5 x 4 = 0.5125. 

s2 s2 : s2 
v(y) = (1 - !) ~ + (1 - Ji) N':n + (1 - h) N ~t, 

n m t 
where Ji= N = 0.5, h =·M = 0.4, h = T = 0.67. 

(-) = (1 - 0 5) 0.967578 (1 - 0 4) 5.5552 . (1 - 0.67) 0.5125 = 0.1805086. 
vy · 5 + · 10x4+ 10xl0x4 

Hence, v(Y) = (N MT) 2v(y) =(IO x 10 x 6)2 x 0.1805086 = 64983.1005. 

. . ·s.e. (Y) = ~ = 254.92. 

18.2 Three-Stage Sampling with Unequ.11 First-Stage and Second
Stage U~its 

Let there be To elements in a population. The population elements are divided into N 
clusters. Consider that the size of ith cluster is M; (i = 1, 2, ... , N). Thus, the primary units 
are unequal. Also consider that each cluster is sub-divided into sub-clusters and the size of jth . 
sub-cluster (second-stage units} in ith cluster is T;J (j = 1, 2, ... , M;). The M; elements in each 
sub-duster are called third-stage or ultimate sampling units. Here 

N M; N N 

To= LLT;J ==LT;= L:M/T;, 
i=l j=l i=l i=l 

Let Yijl be the value of a variable .under study recorded from lth third-stage unit of 
jth second-stage tinit within ith cluster (first-stage unit). For example, let us consider the 
estimation of dropout student.'; from primary schools in a district. The district has some police 
stations. In each police station area there are some administrative blocks. In each block there 
are some primitry schools. Here primary schools within a block can be considered as third-stage 
uni~s; the blocks are second-stage units and the police stations are primary units. For the survey 
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to estimate the number of drop out students in a year some police stations can be selected at 
random. From the selected police stations some administrative blocks and from the selected 
blocks some primary schools can be selected at random. Here YiJl b ~he number of dropout 
students in a year from lth primary school in jth block within ith police stations. Then, 

Here 

Here 

T;; 

Yi/= }, . L Yijl = mean per element of third-stage unit in jth second-stage unit within 
·1 l=I ith cluster 

_ . l M; T;1 l M; _ l M; _ 

Yi = - '°""' '°""' YiJI = - '°""' ~j Y ij = - '°""' n1 y ij . T, Li Li T, Li M·T. Li 
' j= 1 I= 1 ' j= 1 ' ' j= 1 

1 M; - . 
= M· L kij Y i.i = mean of ith first-stage unit. 

' j=l 

1 ~- - 1 "'"""'. - 1 ~ -
= '°' . . Li TiMiYi = -N-- Li Qi Yi= N Li WiYi 

L..J M,T, -1 '°""' . -1 ,_ Li Qi ·-
i=I 

= population mean. 

Let us ~onsider that, for a survey n primary units are selected. From the selected ith primary 
units m; second-stage units and from the selected second-stage units tiJ third-stage units are 
selected. At each stage the selection is done by SRSWOR (i = 1, 2, ... , n; j = 1, 2, ... , m;; 

l = 1, 2, ... , tij)· Then 

1 t;j 

YiJ = :-- L Yijl = mean per element of selected third-stage units. 
t;j l=l 

1 n 1 m, 
Let us Aefine a simple mean y38 =; L Wi;;- L kiJYij· 

. . . i=l ' j=l . 

Theorem : In three-stage sampling, if first-stage and second-stage units are unequal and 
if at each stage sampling units are selected by SRSWOR scheme, then the sample mean y38 is 
an unbiased estimator of population mean Y. The variance of y38 is 
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Hence, 'fhs is an unbiased estimator of Y. 
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M; 

Ti= LTij 
j=l 

Now, using the concept of variance. of sample mean in case of two-stag~ sampling with 
unequal first-stage units, we can write .: 

· fe N M 
V(- ) = N . ..,.. n 82 + _.:!__. '"""W~ (Mi - mi) 82. + _1_ '""" ~ ~ k2 ( 7i1 - ti1) 82 . 

Y3s · nN lb nN L....t ' m·M· h nN L....t m·M L....t •J t"T,.. '1 
' i= 1 ' ' i'"' 1 . ' ' j = 1 lJ lJ 

Corollary : In three-stage sampling in case of 'unequal first-stage and second-stage units 
if sampling units are selected by SRSWOR scheme at every .stage, the estimator of variance of 
Yas is 

. 1 n 
. 2 '"""( - )2 'Where s 1b = n _ 1 L....t WiYi - Yas , 

. i=l 

1 m; 
2 . . "(k - - )2 sli = ---.1 L....t iiYiJ - Yi.. , . "'i - . j=l 

1 m; 

Yi=-. L~lih;· 
m, 3.;,1 

. . 

Example 18.2 : In a tea garden the tea pla.nts ar~ planted into 50 small areas, where 
each area is divided into several. blocks. In each block, different number of plants are nurtured. 
To estimate the total production of tea in a day 10 areas are randomly selected. From the 
randomly selected .areas 20% blocks are selected randomly and from each selected block 103 
plants are selected at random. In each stage of selection sampling is done by SRSWOR. The 
tea production of a day is recorded from each plant .. The data are shown below : 
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SI. No. Number of blocks Number of plants Production of tea 
of area in each area in a block in a day (in kg) 

In population In -sample In population In sample Yil 

Mi mi Ti; ti1 

1 15 3 20 2 0.25, 0.22 
40 4 0.30, 0.18, 0.20, 0.15 
20 2 0.18, 0.20 

2 20 4 25 3' 0.13, 0.15, 0.14 
28 3 0.18, 0.22, 0.26 
20 2 0.17, 0.19 
30 3 0.20, 0.22, 0.24 

3 16 3 16 2 0.20, 0.17 
18 2 0~1s, 0.15 
20 2 0.12,'0.13 

4 25 5 30 3 0.15, 0.16, 0.16 
25 3 0.14, 0.18, 0.17 
22 2 0.20, 0.20 
20 2 0.25, 0.15 
30 3 0.10, 0.15, 0.18 

5 20 4 18 2 0.22, 0.18 
20 2 0.15, 0.16 
25 3 0.15, 0.15, 0.15 
20 2 0.15, 0.18 

6 10 2 40 4 0.10, 0.10, 0.12, 0.12 
45 5 0.10, 0.12, 0.14, 0.12, 0.10 

7 18 4 25 3 0.15, 0.16, 0.15 
20 2 0.18, 0.18 
20 2 0.20, 0.22 
30 3 0.20, 0.20, 0.18 

8 20 4 30· 3 0.15, 0.16, 0.16 
40 4 0.18, 0.18, 0.20, 0.20 
30 3. 0.20, 0.15, 0.12 
25 3 0.16, 0.16, 0.18 

9 12 2 36 4 0.20, 0.20, 0.20, 0.20 
38 4 0.21, 0.18, 0.16, 0.16 

10 15 3 30 3 0.16, 0.18, 0.22 
22 2 0.25, 0.24 
28 3 0.25, 0.22, 0.22 

Total 171 mli = 34 906 ho= 95 

(i) Estimate the total tea production in the garden in a day. Given the total number of 
plants in the garden is 2000. 
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(ii) Estimate standard error of your estimator. _ 

Solution : . Given N =· 50, M1 ,; I: Mi = 171,Ti = 80, T2 = 103, T3 = 54, T4 = 127, 
T5 = 83, TG = 85, T1 = 95, Ts= 125, Tg = 74, T10 = 80. · . . 

Calculation Related to Estimator of Mean and Variance 

SI. No. Ti 
T . 

Qi= M/Ti Wi=% Yii 8 2 ~ 1 [E 2 q::;y;,i)~] kij = ~ T; ii - t:;"='f Yijl - t,1 

1 26.67 0.75 400.05 0.875 0.235 0.00045 

1.50 0.2075 ' 0:00422 
0.75 0.19 0.00020 

2 25.75 0.97 515 1.126 0.14 0.0001 
1.09 0.22 0.0016 
0.78 0.18 0.0092 
1.16 0.22 0.0004 

3 18 0.89 288 0.629 0.185 0.00045 
1.00 0.165 0.00045 
1.11 0.125 0.00005 

4 25.4 1.18 635 1.388 0.157 0.00003 
0.98 0.163 0.00043 
0.87 0.20 0.00 
0.79 0.20 0.005 

1.18 0.143 0.00163 

5 20.75 0.87 415 O.J)07 0.20 0.0008 
0.96 0.155 0.00005 
1.20 0.15 0.00 
0.96 0.165 0.00045 

6 42.5 0.94 425 0.929 0.11 0.00013 
1.06 0.116 0.00028 

7 23.75 1.05 427.5 0.935 0.153 0.00003 
0.84 0.18 0.00 
0.84 . 0.21 . 0.0002 
1.26 0.193 0.00013 

8 31.25 0.96 625 ·i.366 0.157 0.00003 
1.28 0.19 0.00013 
0.96 0.157 0.00163 
0.80 0.167 0.00013 

9 37 0.97 444 0.971 0.20 0.00 
1.03 0.177 0.06056 

10 26.67 1.12 400 0.874 0.187 0.00093 
0.82 0.245 0.00005 
1.05 0.23 0.0003 

Q = _!_'"'Qi = 4574.55 = 457.455 
N~ 10 
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Calculation continued 

SI. No. ki/YiJ 
- 'L,ki/ih1 2 L,(kiJYiJ - 'Y°i) 2 L k2· (Tij - tij) 2. WiYi Y· = sli = 

ffii -1 'J T s,J 
' mi . tij ij 

J 

1 0.17625 
0.31125 0.21 0.0080992 0.0043814 0.18375 
0.1425 

2 0.1358 
0.2398 0.1928 0.0040325 0.0008096 0.21709 
0.1404 
0.2552 

3 0.16465 .. 
0.165 0.1561 0.0002267 0.0003837 0.09819 
0.13875 

4 0.18526 
0.15974 
0.174 0.1691 0.0001240 0.0022188 0.23471 
0.158 
0.16874 

5 0.174 . 
0.1488 0.1653 0.0002039 0.0004765 0.14993 
0.18 
0.1584 

6 0.1034 
0.12296 0.1132 0.0001913 0.0000818 0.10516 

7 0.16065 
0.1512 0.1828 0.0017253 0.0001351 0.17092 
0.1764 
0.24318 

8 . 0.15072 . 
0.2432 0.1696 0.0024753 0.0005313 0.23167 
0.15072 
0.1336 

9 0.194 
0.18231 0.1881 0.0000683 0.0001329 0.18265 

10 0.20944 
0.2009 0.2173 0.0004582 0.0004637 0.18992 
0.2415 

Now, we have the estimator of mean production 

1 n 1.76399 
Y3s = ;; L WiYi = 10 = 0.176399 

i=l . 
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Calculation ·continued 

SI. No. ( - - )2 2 (Mi-mi) 2 _:d__ [I>' ( T;j - •• , ) •' ] WiYi -Y3s wi M sli mi i miMi 
1 

' 1 tiiTii '1 

1 0.00005404 ; 0.00165359 
. 

-0.00007754 
2 0.00165576 ~'. 0.00102254 0.00001283 
3 0.006fl665 0.00002429 0.00000316 
4 0.00340017 0.00003822 . 0.00003420 
5 0.00070061 0.00003355 0.00000490 

6 0.00507499 0.00006604 0.00000353 

7 0.00003002 0.00029328 0.000001640 . 
8 0.00305488 0.00092376 0.00001239 

9 0.00003907 0.00002683 0.00000421 

10 0.00018282 0.00009334 0.00000787 

Total 0.02030901 0.00417544 0.00016227 

The estimate of total tea production in a day is 

Y = To 1}38 = 2000 X 0.176399 = 352,80 kg. 

.. 2 1 I: _ · _ 2 0.02030901 
(n) We have s1b = --· . (WiYi - y38 ) = 

10 
= 0.00225656. 

n-1 -1 

.50-10• 1 1 
= 10 x 50 x 0.00~25656 + 10 x 50 x 0.00417544 + 10 x 50 x 0.00016227 

= 0.00018920022. 

Hence, v(Y) = TJv(y38 ) = (2000)2 x 0.00018920022 = 756.8009. 

s.e. (Y) = R-} = 27.51. 

18.3 Allocation of Sample· Sizes in Three-Stages 
Let there be N MT elements in a population. The elements are divided into N clusters. 

There are MT elements in each cluster. Each cluster is sub-divided into M sub-clusters. In 
each sub-cluster there are T elements. The clusters are primary units, the sub-clusters are 
second-stage units and the elements in each sub-cluster are known as third-stage linits. The 
problem is to select n primary units, m second-stage units and t third-stage units. We need a 
deeision about the values of n, m and t. 

Let us consider that the survey is to be conducted within the limit of a fixed cost Co. Let 
the cost function for the survey be 

C = C1n + C2nm + C3nmt, 

where Ci, C2 and C3 are the cost to include each first-stage, second-stage and third-stage units, 
respectively in the sample. The values of n, m and t are to be found out so that the survey 
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is completed within the fixed cost but the variance of the estimator is minimum. We know 
variance of the sample mean is 

(-) N - n S2 1 M - rn S2 1 T - t sz 
Vy=-- b+- +--- T · nN n mM, w nm tT 

( f) Sc ( f ) S~ ( f ) S:} = 1 - - + 1 - 1 - + 1 - 2 --. 
n nm nmt 

The values of n, m and t are also found out so that the V ('.i]) is fixed but the cost of the 
survey is minimum. We have 

Putting the value of n in the variance formula and on simplification, we get 

[ Sc] { ( 2 S!) ( 2 Sj.)C1} { ( 2 Sj,) C2S}} C V + N = C2 Sb - M m + Sw - T -;;; + C3 Sw - T t + -t-

+ { C3 ( SG - ~) mt + C~~f } + quantities independent of m and t. 

Here V(Y) = V. This variance function is to be minimised with respect tom and t. 
Let us consider that (SG - S!/ M) and (S! - S}/T) are positive. Then the variance given 

above can be written as 

2-c1 (s2 - s:;. )] 2 
m w T 

[ 
. ( 2 Sj.) . /~f [ ( 2 S~) + C3 Sw - T t - V ~-t-J + C3 Sb - M mt -

,---...,2 
C1Sj. 

mt 

+ terms free of m and t. 
This variance function is minimum when the three squares in the right-hand side are zero. 

Then, we have 

ih = 
C1 ( S~ - ¥-) 
c2 (si- ~) 

However, m and i will be the integer. 

and i = 

Let us now consider that (sc -~) < 0 and ( S! - s;) > 0. 

In such a case, the value of m will be maximnm. The value of m may be M. The value of 
i is to be decided so that 

becomes minimum. This will be minimum, if 
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But if this term is positive, then 

But i is an integer. 

Let us now consider that si - ~ and S~ - !(j are negative quantities or both are zeros. 
In such a case, the variance function will be minimum, if t takes the maximum value. The 
maximum value oft is i = T. Also the value of m is to be estimated in such a way that the 
quantity 

is minimum. The term can be written as 

and it will be minimum if m takes maximum value. 
s2 s2 

Let us again consider the si - =rt > 0 and s~ - T < o. Under the above conditions the 
integer value of tm is 

C3 ( Sl - ~ )" 

From this it may be concluded that the value oft will be maximum and the value of m will 
be minimum. 



Chapter 19 

Multiphase Sampling 

19.1 Introduction 
The ratio and regression estimators are based on information of some auxiliary or correlated 

variable correlated to study variable. The correlated variable may be observed from sample 
points but this does not help to know the population total or population mean of correlated 
variable. But to find ratio or regression estimator the population total or population mean of 
correlated variable is needed. 

N - X 
Let x 1 , x2 , ... , XN be the values of auxiliary variable x, where X = L:x; and X = N 

i=l 
are the population total and population mean, respectively. If these values are not available, 
their estimators X or x can be found out from a survey which can be performed using smaller 
survey before conducting the survey using resource available for the survey. 

Let there be N units in a population. Consider that n 1 units (n1 ~ N) are randomly selected 
from N units. These n 1 units are investigated to observe the values of auxiliary variable x. Let 
these values be x 1 , x2 , ... , Xn,. The estimator of population mean (X) and population total 
(X) are 

At this stage a second sample of size n (n ~ ni) is selected from first selected n1 units to 
observe the values of the main variable y. Such a sampling when n units are selected at random 
at second phase from first randomly selected n 1 units is called double sampling or two-phase 
sampling. 

The sampling method what has been discussed above is first has been proposed by Neyman 
(1938). If the method of selection is continued at different phases from the first selected units, 
the sampling is known as multiphase sampling. In this section we shall confine our discussion 
within double sampling. 

Since the sample size n becomes smaller to study the main variable, the estimator may be 
less efficient. But, if the estimator is obtained using ratio or regression method of estimation, 
there may be a chance to increase the efficiency of the estimator. In such a case, the double 
sampling is advantageous. 

We have discussed multistage sampling in the previous sections. However, there is difference 
between multistage sampling and multiphase sampling. For multistage sampling there is no 
need of population frame. Only frame of last stage sampling units are needed. On the other 
hand, the frame of population units is needed for two-phase sampling. Since sampling units 
are selected twice and survey is conducted twice in two-phase sampling, the cost of the survey 
is increased. Still two-phase sampling is advantageous, if the efficiency of the estimator is 
increased sufficiently compared to the increased cost. 

515 
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19.2 Double Sampling for Stratification 
Neyman {1938) has proposed double sampling for stratification. Let there be N units in a 

population and the population units are divided into L strata. But the sizes of strata are uot 
known, even the units which are to be included in hth stratum (h = I, 2 .... , L) is not known. 
Therefore, the weight Wh = N1./ N for hth stratum is not known which is needed to estimate 
the population parameter. The problem can be obviated, if at the first step a random sample 
of n1 units are selected. On investigation the selected units can be divided into strata and then 
the stratum size n1h (h = 1. 2, ... , L) can be found out. This nu, helps us to estimate W,., 
where the estimate is W111 = n11,/n1. This W1h is an unbiased estimator of W,.. 

At the second step a random sample of size n is to be selected from n 1 units selected at the 
first step. Let n1i be the size of sampling units selected from hth stratum so that L:L n1i = n. 

Let Yhi be the value of the study variable recorded from ith unit of hth stratum. The sample 
mean of the variable from hth stratum is 

1 "" 
'fh = - LYhi, h = 1,2, ... ,L. 

nh i=l 

Then the estimate of population mean from double sampling is 

Here the population mean is 

L 

Ystd = L W11,Y1i· 
h=I 

- 1 N,, 

where Y,, = N LYhi· 
h i=I 

The population variance of the observation is 

1 
L Nh 

2 '"''"' -2 S = N - 166(Yhi - Y) 
h=I i=I 

and the population variance of observations of hth stratum is 

Here the problem is to decide the values of n 1 and n,. so that V(Ystd) becomes minimum. 

Theorem : In double sampling if first sample of size n 1 is selected randomly and if second 
sample of size n (n < ni) is a sub-sample of first sample, then Ystd is an unbiased estimator of 
population mean Y. The variance of this estimator is 

V(Ystct) = s2 ( N -- n1) + t W1iSFi (_2_ - 1) ' 
Nn1 n1 V,, 

h=l 

where V1i = .!!:!!:. , 0 -::; V1i -::; 1. 
n11i 

Proof: It is considered that n1i is the sample size of sub-sample selected from first sample 
of size n 1,,. Therefore, V,, = ~· 0 :S V,, :S 1 is to be decided first. 
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If the sampling procedure is repeated, every time first and second samples are selected. As 
a result, lVu,, nh and Th become random variables. Since the first sample is a simple randor_n 
sample of size nu" E(l1'"u,) = w,,. Again, if Wh is considered fixed and if we calculate the 
mean of all sample means, the E(Th) = Y "' since Th is the simple random sample mean from 
hth stratum. Since first sample is a simple random sample, we can write : 

Hence, Ystd is an unbiased estimator of Y. 

To find the variance of Ystd• let us assume that Yhi are observed after selecting the first 
sample of size nu,. Since W1h = n 11i/n1 , we can write, 

L 

L W11,J.i11, = Yi. 
h=l 

Here 'iii is the sample mean of simple random sample of size n1. If the sample of size n 1 is 
selected repeatedly, then 

1 
L N,, 

2 LL -2 where S = -- · (Yhi - Y) . 
N-1 

h=li=l 

But the double sampling mean Ystd can be written as 

L L L 

Ystd = L WthYh = L W11iY11i + L W11,(Yh - YuJ· 
h=l h=l h=l 

Again, since 'ih is the simple random sample mean from first sample, E2('Y1i) =Yu.- Here 
E 2 is used for the expectation in case of second sample. Now, 

Cov [y1,,, (y,. - Y'11i)] = 0 and Cov [y1,., y1,)] = 0 = V(y1,.). 

Again, V(y" -- 'Yu,)= V(y,.) + V(y11,). 

Hence, if W 11, is fixed, 

r, ( ) Lws2(1 ) - - 2 2 1 1 lh h Vz [L W11,(Y1i - Yu,)] = L Wu,S1i - - - = L -- I/ - 1 . 
h=l n1i n1i h=l ni v1i 

But the values of W1,, are not fixed. Since samples are selected repeatedly, the distribution 
of W1h can be found out. In that case, if the means of all samples are calculated, 

Corollary : In double sampling for stratification, if first sample is simple random sample 
and second sample is a simple random sub-sample of first sample, then the variance of Ystd is 

L L 

- ""' 2 ( 1 1 ) 91 ""' - -V(Y§td):::::: L,, W,.S,, n Vi - N + :;;:- L,, W,,(Y 1i - Y), 
h=l 1 h 1 h=l 

(N - n1) 
where Y1 = ---N - I . 
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The above result is obtained by partitioning the total sum of squares as follows. We can 
write: 

L 

2 "' 2 "' - -2 (N - l)S = L)N1i - l)S1i + L,.; N1i(Y1i - Y) . 
h=I 

Multiplying both sides of the above equality by 9ifn1N, we get 

N - n1 2 2 ( 1 1 ) 91 L ( 1 ) 2 91 L - - 2 ---S = S - - - = - W1i - - S1i + - W,, (Y 1t - Y) . 
n1N n1 N n1 N n1 · 

Now, putting the value of S 2 in V(Ystd), we get 

L 'V S2 ( ) L ( ) L - • h h 1 .91 1 2 91 - - 2 
V(Ystd) = 2:-- Vi"" - 1 + - L w,, - N sh+-· L W1i(Y1i - Y) . 

h=l n1 h n1 h=l n1 h=.l 

Again, we can write, 
1 91 1 !/l --+- = --+--. 

-n1 n1 N n1N 

Using this result, we can write, 

Now, if y1 /n 1N is negligible, we have 

- ~ 2 ( 1 1 ) 91 ~ - - 2 V(:l/std);::::: L,.; W11S1i n Vi -- N +-;- L,.; W1i(Y 1i - Y) . 
h=l 1 h 1 h=l 

The estimator of this variance is 

_ n 1(N-l) 2 1 1 

[ 

L 

v(Ystd) = (n1 - l)N {; W11,s1i (n1 V,, - N) 

According to Rao (1973) this estimator becomes 

19.3 Double Sampling for Ratio Estimator 
The ratio estimator is defined on the basis of estimator of population ratio R = f, where 

Y is the total of population observations and X is the total of population observations of the 
auxiliary variable x. If the information of X and X is not known, these can be estimated by 
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selecting a random sample of n 1 observations (n1 $ N) and investigating the sampling units 
for the variable x. Let this estimator of X be x1 . 

0

The estimator of X is 

At the second step, a random sample of n observations (n $ n 1) are selected from the first 
selected n 1 observations. The information on the study variable y and the auxilliary variable 
x are observed from the sub-sample of n observations. Let the sample mean of y and x be y 
and x, resp~ctively. Then the ratio estimator of population mean Y from double sampling is 
defined by 

- y_ A 

Yrd ==Xi = RX1 
x 

Theorem : In double sampling if first sample is .a simple random sample of size n 1 and 
if second sample is a sub-sample of first sample sele~ted under SRS scheme, then the ratio 
estimator Yrd is a biased estimator of population mean. The relative bias and sampling variance 
of this estimator are 

and (- ) ( 1 1 ) 2 ( 1 1 ) 2 2 ,2 v Yrd = - - - s + - - - (S + R s - 2RS x). 
n1 N Y n n 1 Y x Y 

N N 
Bx Sy 2 1 ""°' - 2 2 1 ""°' - 2 Cx = X, Cy= y, SY= N _ l L.)Y; - Y) , Sx = N _ l L(x; - X) , where 

1 """ - -Syx = N _ 
1 

L(x; - X)(y; - Y). 

Proof: Let y = Y(l + e), x = X(l + ei), x1 = X(l + e2). 
Assume that E(e) = E(e1) = E(e2) = 0 
The ratio estimator is 

y Y(l + e) ,.--- - 1 
Yrd = =X1 = X(l + ez) = Y(l + e)(l + e2)(1 + e1)-

x X(l+e1) 

= Y[l + (e - e1 + ez) + · .. J. 

If we ignore the error terms above power 2, we have 

and y,.d is unbiased. The bias (y,.d) = 0 and the variance of 'f},.d becomes 

But, if we consider the terms of e, e1 and e2 with higher powers, then Yrd is not an unbiased 
estimator. We can write, 

- - 2 
Yr·d = Y[l + (e - e1 + ez) + (-ee1 + ee2 - e1e2 + ei) + · · · ]. 
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Cov(-y, x) (l - 1..) S 
Here E[eei] = = n N yx 

y x YX 
Cov (y, xi) 1 , 

E[ee2] = y X = y X [Cov {E (y/ni), E (xifn1)} + E {Cov (y, xi/ni)}] 

= 
1 

Cov(y1 ,xi) = -
1 (~ - Nl) Syx· 

YX Y X n1 

Here y1 is the sample mean of variable y from first sample. 

2 1 (1 1) 2 and E(e 1) = V(x) = X 2 :;:;: - N Sx. 

Therefore, if e, e1 and e2 with powers two are considered, then 

Hence, the relative bia.s of y,.d is 

Again, if we consider the first powers of e, e1 and e2 the variance of Yi·d is 

V(Yrd) = E[y,.d - Y] 2 ~ Y2
[e - e1 + e2] 2 

= Y
2
[E(e2) + E(eD + E(e~) - 2E(eei) + 2E(ee2) - 2E(e1e2)]. 

2 1 - -2 1 (1 1) 2 Here E[e ] = y 2 E(y - Y) = y 2 :;:;: - N SY. 

2 1 - -2 1 (1 1) 2 E[e2] = _ 2E(x1 - X) = =2' - - N Sx. 
X X n1 . 

= (~ - ~) S2 + (.!. -~) (S2 + R2 s; - 2RSyx). 
n 1 N Y n n1 Y 

Corollary : In double sampling, if first sample is a simple random sample and if second 
sample is a simple random sub-sample of first sample, then the unbiased estimator of variance 
ofyrd is 

v(yrd) = (~1 - ~) s~ + (~ - ~1 )(s~ + R2s; - 2Rsyx), 

1 n 1 n 1 n 

where s~ = n _ 
1 

L(Yi -y)2
, s; = n _ 

1 
L(xi - x) 2

, Syx = n _ 1 L(xi - x)(Yi -Y), 

k=E. x 
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Example 19.1 : To estimate the total mango production in a district the entire district 
is divided into 4000 units. The units are the areas producing mangoes in large scale. Out of 
4000 units 50 units are randomly selected for the survey and during mango season the amount 
of production of mango and number of mango trees in the selected area are recorded. 

Later on a sub-sample of 15 units from the first selected 50 units are selected randomly. 
The information on the number of mango trees and total mango production in those trees of 
selected units are given below : 

Estimate the total mango production in the district. Also estimate the variance of your 
estimator. 

SI. No. No. of No. of SI. No. No. of No. of 
of Unit Mango trees Mangoes of Unit Mango trees Mangoes 

x y x y 

1 30 4048 26 20 4042 

2 25 4567 27 30 5618 

3 38 5012 28 42 8018 

4 46 7018 29 45 9612 

5 15 2011 30 19 4011 

6 37 4112 31 18 3102 

7 27 4445 32 18 2506 

8 32 5045 33 25 4002 

9 28 4152 34 28 6501 

10 25 3047 35 32 4418 

11 19 4672 36 42 7018 

12 40 7023 37 31 6012 

13 29 5660. 38 35 7015 

14 18 3032 39 40 6008 

15 16 6730 40 42 6518 

• 16 25 4912 41 33 6818 

17 24 6870. 42 27 5012 

18 20 . 6556 43 19 3718 

19 42 8011 44 30 6012 

20 37 5343 45 33 5802 

21 32 4845 46 34 7502 

22 29 3912 47 38 8011 

23 12 2815 48 42 9008 

24 22 5032 49 18 3812 

25 20 6872 50 22 4015 
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The information of sub-sample are as follows : 

SI. No. x y SI. No. x y SI. No. x y 
of Unit of Unit of Unit 

01 30 4048 11 19 4672 35 32 4418 

16 25 4912 44 30 3012 34 28 6501 

48 42 9008 14 . 18 3032 26 20 4042 . 
33 25 4002 22 29 3912 19 42 8011 

45 33 5802 10 25 3047 21 32 "4845 

Solution : We have n 1 = 0, n = 15, x1 = 29.02, x = 28.67, y = 5084.27, R = ¥ = 177.34, 
N = 4000. 

The average amount of mangoes produced in a unit is 

Yrd = Rx1 = 177.34 x 29.02 = 5146.41. 

Total mango production in the district is 

Yrd =NY rd= 4000 X 5146.41 = 20585627. 

The estimate of variance of Yr·d is 

v(Yrd) = N 2v(fi,.d) = N 2 
[ (~1 - ~) s~ + ( ~ - ~1 ) (s~ + R2 s; - 2Rsyx)] . 

Heres~= 2936653.~52, s; = 51.6667, Syx = 9780.7381. 

.. v(Yrd) = ( 4000) 2 
[ ( 

5

1

0 
- 40~0 ) 2936653.352 + (i1

5 
-

5

1

0
) (2936653.352 

+ (177.34) 251.6667 - 2 x 177.34 x 9780.7381)] 

= (4000) 2[57998.9037 + 50983.8825] = (4000) 2 x 7015.0212. 

s.e. (l'rd) = J v(Yrd) = 335022.8935. 

v(!Jrd) = 7015.0212. 

19.4 Double Sampling fqf Regression Estimator 
The regression estimator also needs the value of population mean of auxiliary variable x. If 

it is not known,, it can .be estimated by selecting first a simple random sample of size n1 from 
the population of N units and then selecting a sub-sample of size n (n s; ni) from the first 
·sample at random. Let X 1 be the simple random sample mean of auxiliary variable x observed 
from the first sam1 le. This is an unbiased estimator of X. The sample means of y and x from 
the second sample are 1J and x, respectively. Then the linear regression estimator of population 
mean Y is defined by 

Y1rd = Y + b(xi - x), 

where b is the regression coefficient of y on x observed from second sample. 
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The second sample from first sample is to be selected in such a way that the size of second 
sample becomes n = Vn 1 = ni/k. the value of Vis a fraction which needs to be decided before 
selecting the sample. 

Theorem : In double sampling, if first sample is selected by SRS scheme and second sample 
is a sub-sample of the first sample selected at random, then the regression estimator 'fiird is a 
biased estimator of population mean Y. The bias and variance of y1,.d are 

Proof: Given Yi rd= y + b(x1 - x) = y- b(x - x1). 

E('fiird) = E1E2(Y1r·d/xi) = Ei[y- E1(x-xi)b] = Y- E1E2{b(x-xi)/xi}. 

. . Bias (y1,.d) = -E1E2{b(x -- X-1)/xi}. 

Let us consider that x = (X + e), X1 = X(l + e1), Sxy = Sxy(l + t:i), s; = s;(1 + f2). 

Here E(e) = E(ei) = E(t:1) = E(t:2) = 0. 

Bias (Ylr·d) = -E1E2 [ B(e - e1) ( 1 + ;~Y) ( 1 + ~~ )-
1

] = -E1E2{B(e - e1)(t:1 - t:2)} 

= -B [Cov(sxy.x1)-Cov(sxy 1 x) _ Cov(s;,xi)- Cov(s;,x)] 
s; s; 

This is similar to the bias of regression estimator y11.. Here µ 21 
/t20 = E(x - X) 2 . 

The bias reduces with the increase in the value of n 1 . 

E(x - X)(y - Y), 

To find the variance of y1,.d, let us use B instead of b, where B is the population regression 
coefficient of y on x [ B = Syx / s;J. Due to the use of B, bias of order /Jn will be introduced in 
the estimator. But, if l/n and 1/n1 are neglected, we shall get a value near to V('fiird)· Now, 
let us consider 

Yi rd =Ii+ B(xt - x) and ·ui = Yi - Bx;. 

If the first sample is bigger compared to the second sample, the first sample can be considered 
a finite population and the second sample is a simple random sample from finite population. 
Hence, 

Here Y 1 is the mean based on the first sample. Then 

Here S[,, is the variance of Ui based on first sample. Therefore, 

(- ) (1 l) 2 (1 1) 2 . 2 V Y1rd ~ - - - S + - - - S (1 - p ). 
n1 N Y. n n1 Y 
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Here Sru is an unbiased estimator of s; = S~(l - p2 ). 

_ s2(:i _ P2) p2s2 5 2 
V(Y1rd) :;:::: y ·-- + __ Y - Ny· 

n n1 

The unbiased estimator of this variance is given by 

2 2 2 52 

(
- ) Sy·x Sy - Sy·x y 

V Y1rd = -n + - ·N' 
n1 

1 [ n n l wheres;.,,= n _ 
2 

L(Y; - y) 2 
- b2 L(x; - x) 2 is an unbiased estimator of s;(l -- p2 ) and 

s~ - s;.x is an unbiased estimator of p2 s;. 
If the second sample is small in size, then 

- 2 1 y y·x y 

[ 
1 (-x· - x)2 ] s 2 - s2 s2 

v(ylrd) = Sy·x - + I;( )2 + - N. n x - x n1 

Example 19.2: Using data of Example 19.1 estimate total mango production in the district 
and also estimate the standard error of your estimator. Use regression method of estimation. 

Solution : We have n 1 = 50, n =; 15, N = 4000, y = 5084.27, x = 28.67, x1 = 29.02, 
b = ~ = 9~~06~~~1 = 189.30, s; = 2936653.352. 

s;.x = n ~ 2 [L(Y -Y)2 
- b2 L(x - xi] 

= -
1

-[41113146.93- (189.30)2723.333] = 1168682.906. 
15 - 2 

The regression estimator of mean mango production per study unit is 

y1,.d = 'iJ - b(x - xi) = 5084.27 - 189.30(28.67 - 29.02) = 5150.525. 

Estimate of total marigo production in the study area is 

Yh·d = Nfhrd = 4000 X 5150.525 = 20602100. 

The estimate of variance of Y1rd is 

A 2 -
v(Y1rd) = N v(Y1rd), 

,2 2 2 2 

Where (
, ) Sy·x + Sy - Sy·:& Sy 

v Ylrd = - - -
n n1 N 

= 1168682.906 2936653.352 - 1168682.906 - 2936653.352 = 112537.4393. 
15 + . 50 4000 

v(Y1rd) = (4000) 2 112537.4393: 

s.e. (Y1rd) = V v(Y1rd) = 1341864.013. 
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19.5 Optimum Allocation in Double Sampling for Ratio Estimator 
Let there be N units in a population. Assume that N is large. The problem is to decide 

about the values of n 1 and n, where n1 is the sample size of the first sample and n is the sample 
size of the sub-sample. Since N is large, 

s: (1 1) 2 2 2 V("y,.d) = - + - - - (Sy+ R Sx - 2RSyx)· 
n1 n . n1 

Consider that the cost function to conduct the survey is . 

C=n1C1+nC. 

The problem of optimum allocation is to find the value of n 1 and· n on the basis of cost 
function mentioned above so that V07rd) is minimum. 

1 N 
Let V = N _ 

1 
L(Y; - Rx;)2

. 

i=.) 

v 1 2 
Then VO/rd)= - +-(Sy - V). 

· n n1 · 

Let Co be the fixed cost for the survey. We need to find the value of n and n1 so that 
¢ = V07rd) + /\(C - C0 ) becomes minimum. The value of n 1 and n are to be found out from 
the solution of the equations 8 ¢ = 0 and !i.t8

8 = 0. 8n;- n 

Solving these two equations, we get 

nVC n1~ Co 

JV Js;-v 
At this stage the minimum value of V (Yrd) is given by 

· V(y,.d)min = ~[VCV + Jc1(s;- V)]2. 

19.6 Optimum Allocation in Double Sampling for Regression 
Estimator 

The variance of the regression estimator of population mean is 

_ s;(1 - p2) p2s; s; 
V(Y11·d);:::::; + -- - N · 

n ni 

Let this variance be V. Consider a cost· function 

C = C1n1 +en 
for the survey work. Then we can write, 

8 2 8 2(1 _ P2) p2s2 
V+_}L= y +--Y. 

N n ni 

Let us put the values of n and n 1 from cost function in variance formula. Using Cauchy
Schwarz inequality and minimizing VG, we get 

Cn2 

[
C1 . .!..::LJ ! c p2 
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The minimum variance of 'iiird is given by 
s2 . s2 

Vmin = c5 [ JC(l - p2
) + v1Ci"P2J 2 

- ~. 

19. 7 Double Sampling for Difference Estimator 
The difference estimator is defined by 

y D = (y - Px) + frx, 

1 1 - 1 N 
where 'ii = ; LY· x = ; L x, X = N L x. 

This estimator is defined on the assumption that the study variable y and the auxiliary 
variable x are linearly related and the regression line of y on x is y = a+ f3x + e with assumption 
E(e) = O. Then E(y) =a+ (3x. The difference estimator is based on the difference of y - f3x. 

The.difference estimator defined above needs population mean X of auxiliary variable x. If 
it is not known, its estimate can be found out from a preliminary survey. Let ni units of N 
units be selected under SRS scheme to observe the values of x variables. Then a simple random 
sample of n observations are selected from the first sample of ni observations. Let xi be the 
sample mean of x variable from the first sample. The sample means of variables y and x from 
second sample are y and x, respectively. Then the difference estimator of population mean from 
double sampling is 

Ydd ='ii+ f3(xi - x), 
y 

where f3 = X. 

Theorem : In double sampling, if the first sample is selected under SRS scheme and 
the second sample is a sub-sample under SRS scheme from first sample, then the differmcf' 
estimator Ydd is an unbiased estimator of population mean Y. The variance of this estimator is . . 

Proof: We have Ydd ='ii+ f3(xi - x). 

Let us considEI[ that the first sample is of large size and the sample mean 'iii is the population 
mean. Then 

Ed'iidd/xi) = E2{['ii- f3(xi - x)]/xi} ='iii. 

Hence, Ei('iii) = Y and E('iidd) ~ Y. 

V('iidd) =. ViE2 ('iidd/'iii) + Ei Vi ('iidd/'iii). 
N 

But ViEd'iidd/yi) = (~i - ~) s~. wheres~= N ~ 1 L(Yi - Y)
2

. 

(
1 i)r2 22 I = - - - Sy + f3 Bx - 2(3pSySx . 
n ni 
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( 1 1) 2 (1 1) 2 2 2 ) V(Ydd) = ni - N SY+ -;;: - ni (Sy+ (3 Sx - 2(3pSySx 

= - - - S + - - - ((3 S - 2(3pS Sx). (1 1) 2 (1 1) 2 2 
n N Y n n 1 x Y 

Corollary : In double sampling, the estimator of variance of difference estima,tor Ydd is 

_ ( 1 1) 2 ( 1 1 ) 2 2 1 L:n {( _) ( _)}2 v(ydd) = - - - sy + - - - sd, where sd = -- Yi - y - (3 X; - x . 
n N n · ni n - 1 

Corollary : In double sampling, if the second sample is independent of the first sample, 
then the difference estimator Ydd is an unbiased estimator of Y. The sampling variance of this 
estimator is · 

V(ydd) = (~ - ~) (s; + (3 2
s;- 2(3pSySx) + (32 (~1 - ~) s;. 

The unbiased estimator of this variance is 

_ ( 1 1 ) 2 2 ( 1 1 ) 2 2 1 L:ni . _ 2 
v(ydd) = - - N sd + (3 - - N six' where s 1x = -- (x; - xi) . 

n ni ni - 1 

For this 
0

independent sample at the second step it is assumed that the first sample of size ni 

is selected by an organisation and the second sample of size n is selected by another organisation 
and the values of y and x are observed by the second organisation. Thus, the first and second 
samples are independent. The values of x are observed from the first sample also. Since two 
samples are independent, 

E(y - (Jx) = Y - (3X and E((Jxi) = (3X, :. E(ydd) = E[y + (3(xi - x)] = Y. 

Similarly, we can write, 

V(ydd) = V(y- Px) + V(fJx1) = (~ - ~) (s; + (3 2s; - 2(3pSySx) + (32 (~i -~) s;. 

Corollary : If the cost of double sampling is spent directly for simple random sampling, 
then the variance of the sample mean is 

_ ( 1 1) 2 niCi 
V(y)ran = no - N Sy, where no= n + c-· 

Here C1 and Care the costs to collect the information on variables y and x. Then the total 
cost for the survey is 

C =Cini+ en. 

At this stage, if double sample is not used and the values of y variables are observed directly, 
then the sample size should be · 

C1n1 + Cn . n1C1 
no= ·c =n+c-· 

Now, if f3Sx/ Sy = h is considered, then it can be shown that when 

the double sampling is more precise than direct simple random sampling. 



Chapter 20 

Sampling witl:i Varying Probabilities 

20.1 Introduction 
In simple random sampling every unit is selected with equal probability. This sampling 

is suitable and preferable if frame is available and if all the units in the population have the 
same weight. In practice, the different units in the population may have different weights. For 
example, one may need to estimate the total production of wheat in an area. In the area there 
are many villages. If each village is tonsidered as a sampling unit, different villages may have 
different sizes in respect of total land area cultivated for wheat. In that case, if simple random 
sample is selected with equal probability of selection of every village and if total production of 
wheat is recorded from each selected village, then the weight of a village producing more wheat 
from more cultivated land is not considered. As a result, the· estimate of total production of 
wheat may not be efficient. For efficient estimate of total production, the land area cultivated 
in the village should be considered and village should be selected proportionately to the total 
number of plots cultivated for wheat. Because, total production of wheat is correlated with 
total number of plots or total area used for production. In such a situation, if villages are 
selected with probability proportional to the number of plots cultivated for wheat or probability 
proportional to total land area cultivated for wheat, then the sampling is called sampling with 
varying probabilities, where sampling unit is selected with probability proportional to size of 
(PPS) sampling unit. 

The PPS sample can be selected in two ways, viz., (a) PPS sampling with replacement and 
(b) PPS sampling without replacement. However, if sample is selected with replacement of 
preceding unit selected from the population, then every unit is selected with equal probability. 
In this chapter the estimation procedure of both sampling schemes will be discussed. 

20.2 Method .Qi Selection of Sampling Units with Varying 
Probabilllies 

Let us considered that the frame is available and the population units are identified by serial 
numbers 1 to N, and n units are selected at random using 'Random Number Table'. But for 
PPS sampling the units and their sizes or any other characteristic related to the sampling units 
are also recorded and frame is formed using serial number for the units according to variable 
under study and the related variable. For example, in estimating total maize production in a 
locality if village is used as a sampling unit, the list of villages along with land area cultivated or 
number of plots used for production in each village are to be recorded. Later on the cumulative 
land area or plot numbers is calculated. However, the sample can be selected without the 
cumulative value of unit sizes. Thus, PPS sampling can be done in two ways. These are : 

(a) Method of Cumulative Total (b) Lahiri's Method. 

(a) Method of cumulative total : Let there be N units in a population. Consider that 
the size of i-th unit (i = 1, 2, ... , N) is x;. With first unit the number from 1.to x 1 is to be 

528 
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·assigned. The value from x1 + 1 to x1 + x2 is to be assigned with .2nd unit, and so on. Here 

N 

SN= Exi .. 
Now, using 'Random Number Table' a number from 1 to SN is to be selected. The selected 

random number is associated with some of the sampling unit in the population. This unit is 
included in the sample. If every unit is selected in a similar way, the sampling is known as PPS 
sampling, where the probability of selection of i-th unit is proportional to Xi(i = l, 2, ... , N). 
The process of selection is repeated n-times for a sample of size n and every time the sample is 
selected by replacing the preceding selected unit in the population. The process of selection is 
known as PPS sampling with replacement. 

Example 20.1 : In a district there are 25 administr.ative units. The number of families in 
each unit is recorded and given below : 

SL No. of No. of families C.f. of 
administrative unit in the unit families 

01 200 200 
02 150 350 
03 180 530 
04 50 580 
05 200 780 
06 300 1080 
07 500 1580 
08 450 2030 
09 700 2730 
10 670 3400 
11 800 4200 
12 500 4700 
13 600 5300 
14 400 5700 
15 355 6055 
16 482 6537 
17 263 6800 
18 350 7150 
19 250 7400 
20 420 7820 
21 500 8320 
22 200 8520 
23 180 8700 
24 230 8930 
25 470 9400 

Select a PPS sample of 5 administrative units. 

Solution : To select the sample the cumulative number of families are calculated. The 
total number of families in the population is 9400. It is a number of 4 digits. To select the first 
unit we need to select a random number of 4 digits. One such number is 2315. This number is 
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related to population unit 9. So, 9th administrative unit is included in the sample. The process 
is .repeated for 4 other units needed in the sample. Below are given the other random numbers 
selected, the admi~istrative units selected and the number of families of the selected units. 

SI. No. of Random Administrative Number of families in 
sample number selected unit selected the selected units 

1 2315 09 ' 700 
2 0554 04 50 
3 1487 07 500 

.4 3897 11 800 
5 1174 07 500 

The above method of selection is not adva.ntageous if population size is large. In that case, 
the calculations of cumulative size of unit is time consuming. As an alternative to this method, 
Lahiri (1951) suggested another method. Let us discuss the Lahiri's method. 

(b) Lahiri's method : · In this method a random number from 1 to N is selected first. 
Later on another random number is selected from 1 to the largest size of the units. If the size 
of i-th unit is large, say M, then a random number from 1 to M is selected. So, we get a pair of 
random numbers. If this pair coincides with the unit and size of unit, then this unit is included 
in the sample, otherwise new pair of random numbers is selected. Let us consider that the first 
2-digit number [as N is of two digits(25), in case of Example 20.l] is 23 and the second number 
is 231 [as the size of population unit is 800, which is largest and is of 3 digits] which is a 3-digit 
rand0m number. So, we have a pair of random numbers (23, 231). But the size of population 
unit 23 is 180. So, this unit 23 is not included in the sample. The process· of selection of pair 
of random number is CO!}tinued until a sample of size n is selected. For the given example the 
selected pair of random numbers are (14, 148); (11, 117), (07, 070) (05, 055) and (09, 092). The 
sample of n = 5 units are shown below. · 

SL No. of sample Selected limit Family size 

1 14 400 
2 11 800 
3 07 500 
4 09 700 
5 05 200 

20.3 Method of Estimation in PPS Sampling with Replacement 
Let there be N units in a population. We need a s&mple of size n. Sample is to be 

selected with PPS sampling scheme with replacement. Let Yi(i = 1, 2, ... , N) be the value of 
characteristic to be studied of i-th unit. 

Let us consider that the i-th unit is selected with probability 

N 
Xi ~ 

Pi = S, where L.,, Pi = l. 
N i=l 

Consider that n units are selected independently and hence, Yi, Pi (i 
independently and uniformly distributed. Let 

Zi = Yi (i = 1, 2, ... , n). 
Pi 

1, 2, .. ., n) are 
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Here zi values are also independently distributed. The sample mean of Zi is 

1 n 1 n . 
z=-L:zi=-L:Y'. 

n i=l n i=l Pi 

Again, consider that 

Zli = NYi (i = 1, 2, ... 'N) 
Pi 

and 
1 n 1 n . 

- '"" '"" Yi Z1 = - L...., Z1i = -·- L...., -. 
n i=l Nn i=l Pi 

531 

Theorem : In PPS sampling with replacement the sample mean z1 is an unbiased estimator 
of population mean Y and the variance of z1 is 

N 

V(z1) = 2. LPi(Zli - Y)2 = .!.. LPi(zli - 'Z1)2. 
n i=l n 

. . _ 1 ~ Yi 
Proof: Given z1 = ;, L...., zli, zli = N . 

i=l Pi 

E(zi) = ~-L E(zli) = .!_ t [tPi ;;] 
n i=l i=l p, 

n · N 
1 '""- - - - 1 '"" = - L...., Y = Y = Z i, where Z i = N L...., Zli. 
n i=l i=l 

(·: E(z1) = Z1) 

Again, 
i=l 

_ . 1 2 n - 1 . -2 1 [~ 2 -2] Therefore, V(zi) = ;E[zli) + -n-E(zli)E(z;1) - Z 1 =-; L....,PiZli - Z 1 . 

i=l 

'N N 2 

2 '"" ( - )2 · · 1 '"" - 2 .a a = L....,Pi Zli - Z1 ~ - L....,P;(zli - Z1) = -. 
i=l n i=l n 

Corollary : The estimator of variance of sample mean under PPS sampling with replace
ment is 

s 1 Yi y A 1 Yi 2 n ( • )2 n 

v(z1) =-;;-- = n(n _ l) {; Np; - N , where Y = Nz1 =-;{;Np; 

2 1 Yi Y n ( A )2 
8 

= n - 1 {; Np; - N 
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Proof: Let s2 = - 1
- '°'(zi; - zi) 2 

= -
1

- ['°'.n z~i - nz~J n-1L... n-1 L... 
i=l 

We know 

E(s2
) = n ~ 1 [L E(z~i) :__ nE(z~)]. 

V(z1) = E(z~) - [E(zi)j2 
q2 2 

E(z~) = V(zi) + [E(z~)J2 = - + Z1. 
n 

E(s
2

) = n~l [~{t.Pizri-n{: +z~}.}] 

= n ~ 1 [n (t. p;zr; - z~) -a2
] 

N 

- 2 • • 2 - "' 2 -2 - a , . a - L,..P;Z1; - Z1 . 

i=l 

v(zi) is an unbiased estimator of V(z1 ) and 

[ 
n ( )2 l _ 1 Yi '-2 

v(zi) = ( )N2 L - - nr . 
n n - 1 i=l Pi 

Theorem : In PPS sampling with replacement the unbiased estimator of population total 
Y is 

1 1 n . 1 N ( . )2 
z = - L Zi = - L Yi and v(z) = - L p; Yi - Y , 

n n i=l Pi n i=l Pi 

N 

Proof: Let Zi =Yi (i = 1,2, ... ,N); E(zi) = LPiYi = Y. 
Pi i=t Pi 

z = _!. t Yi. 
n i=l Pi 

n ( ) n [N l 1 ~ . 1 ~ 
E(z) =;; L:E -:- =;; L LPi-:- = Y. 

i=l p, i=l i=l Pi 

Again, V(z) = tPi(Zi - Y) 2 = tPi (y~ -y) 2

. 

• i=l i=l Pi 

V(z) = V [~ L z;] = ~2 V [t zi] = ~2 [L V(z;) + L: Cov(ziz1)] 
•=l i#J 

1 1 N (y )2 
= - V { Z;) = - '°'Pi _..: - y · 

n n L... Pi 
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Corollary : In PPS sampling with replacement the estimated variance of the estimator of 
population total is 

Proof: We know, z = Nz1. 

2 N Yi - 2 2 [ n ( )2 l V(z) = N V(z1 ) = n(n __ l)N2 8 ~· -nY 

Example 20.2 : Estimate average number of families and total of families along with their 
estimated standard error using the data of example 20.L Also, find 953 confidence limits of 
estimated total families. 

Solution : The sample observations and the corresponding probability of selection of sample 
units (Pi) \Ising data of Exarnple 20.1 are as follows : 

Yi : 700 50 500 800 500 
Pi : 0.0745 0.0055 0.0532 0.0851 0.0532 

The estimate of average family per administrative unit is 

_ _ 1 Ln Yi _ 47027.63295 _ 
7 Z1 - - - - - 3 6. 

Nn p· 25 x 5 
i=l i 

The estimate of total families in the district is 

1 ~Yi -z = - ~ - = Nz1 = 25 x 376 = 9400 = Y. 
n i=I Pi 

The estimated variance of z1 is 

1 2 • 
5(5 - 1)(25)2 [442320674.2 - 5 x (9400) l = 41.6539. 

s.e. (zi) = ~ = 6.45. 

Again, v(z) = N 2v(z1 ) = (25) 241.6539 = 26033.6875. 

s.e. (z) = 161.35. 

953 confidence interval of estimated population total is 

YL = Y. - to.o5,4 s.e. (Y) = 9400 - 2.776 x 161.35 = 8952.09. 

Yu = Y + to.o5.4 s.e. (Y) = 9400 + 2.776 x 161.35 = 9847.90. 

Corollary : In PPS sampling ~ith replacement if Pi = p = j,, then the sampling is 
equivalent to simple random sampling. 
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In PPS sampling with replacement the estimator of population mean is 

Z1 = _1 L Yi = _1 L ~i = .!. L 'Yi (·: Pi = p = ..!..) , 
Nn Pi Nn N n · N 

Here z1 = y, where y = ~ 2: Yi is the estimator of Y in simple random sampling, 

(- 1 ~ ( _ 2 1 ~ 1 ( Yi 1 ~ Yi ) 
2 

Again, V zi) = ~ {;rPi Zli - z1) = ~ {;r N N/N - NL., N/N 

n 2 N 
1 '"'"' -2 a 2 1'"'"' -2 

= Nn L.,(Yi - Y) = -;:;-• where a = N L.,(Yi - Y) , 
i=l i=l 

Example 20.3 : In an union there are 15 villages. The total area (xi acre) and total 
water land area (Yi acre) are given. Select a sample of 5 villages by PPS sampling .8ChemP wii:h 
replacement and estimate total water land area in the union. Also find 953 confidence interval 
forthe total land area under water. 

SI. No. of villages .'(, }~ 

01 2200 325 
02 2550 450 
03 2800 228 

~ 04 1600 100 
05 3310 750 
06 2150 280 
07 1855 155 
08 2604 280 
09 3000 400 
10 2560 560 
11 2400 150 
12 2950 180 
13 1752 80 
14 2880 160 
15 2995 162 

Solution : Following the method of selection of Lahiri and using random numbers we have 
pairs of random numbers as follows : 

(05,0554), (14,1487), (11, 1174), (07, 0709), (09, 0924). 
Therefore, the selected sample is : 

SI. No. of sample SI. No. of villages Yi 

1 05 750 
2 14 160 
3 11 150 
4 07 155 
5 09 400 

Total 1615 

Pi = fiv. Yi/Pi 

0.08802 8520.7907 
0.07658 2089.3183 
0.06382 2350.3604 
0.04933 3142.1042 
0.07977 5014.4164 

21116.99 
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Here SN = total area of the villages = 37606. The estimate Qf water land of the villages is 
' 

_ 1 Yi SN Ln Yi 1 ' 
z = - """"' - = - - = - x 21116.99 = 4223.40 = y 

n L., p· n x 5 · 
i i=l i 

- 1 Yi A 2 
v z = - -nY 

[ ( ) 2 l 
() n(n-1) L Pi 

( 
1 

) [117506811.6 - 5 x ( 4223.40) 2
] 

5 5 - 1 

= 1416063.69. 

s.e. (z) = v'1416063.69 = 1189.98. 

Therefore, 953 confidence interval of total water land area of the union is 

YL = Y - to 05,4 s.e. (z) = 4223.40 - 2. 776 x 1189.98 = 920.01. 

Yu = Y - to 05,4 s.e. (z) = 4223.40 + 2. 776 x 1189.98 = 7526. 78. 

If simple random sample is considered, then the estimated total water land area is 

Yran.= Ny, 

= 15 x 323 = 4845. 

(y,) _ N(N - n) 2 
V ran - S , 

n 

l 5 (l~ - 5) x 68245, 

= 2047350. 

s.e. (Y) = v'2047350 = 1430.86. 

1 1615 
y = - L Yi = - = 323 

n 5 

s2 = _1 [""""' y2 - (I: y;)2] 
.n-1 L., 1 n 

= ~ [794625 - (l 6~5 )
2

] = 68245 

It is seen that the estimated variance of the estimate of population total is more in case of 
simple random sample than that of PPS sample with replacement. The relative efficiency of 
PPS sampling with replacement compared w simple random sampling is 

RE = (Y)ran = 2047350 
v(z) 1416063.69 = 

144
'
583

· 

The gain in precision of PPS sampling with replacement compared· to simple random sampling 
is : 

G 
. . . . v(Y)ran - v(z) 2047350 - 1416063.69 

0 4 am m prec1s1on = ( ) = · 
9 

= . 458. 
v z 1416063.6 

20.4 PPS Sampling without Replacement 
The selection of sample under PPS sampling scheme without replacement can be done by 

three methods. These are : 

(a) General Selection Procedure 

(b) Narain's Scheme of Sample Selection 

(c) Sen-Midzuno Method. 
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(a) General selection procedure : In this method the first unit is selected according to 
the sampling scheme discussed in section 20.2. The second unit is selected assuming that the 
first selected unit is not present in the population. The third unit is selected assuming that 
the first and second selected units are not in the population. The procedure is continued until 
a sample of n observations is selected. Thus, the probability of selection of diffewnt units arc 
different. 

Let us consider that in a population there are N units. The size of i-th unit (i = 1, 2, ... N) 
is Xi and total size of population units are 

N 

SN= L:x;. 
i=l 

Now, the first unit is selected under PPS scheme with probability 

X; . 1 2 N 
Pi = s N ' i = ' ' ... ' ' 

if the i-th unit is selected first. As the i-th unit is assumed to be absent in the population 
before the selection of j-th unit, the probability of selection of second unit under the condition 
that at first i-th unit is selected is 

_ P1 
Pj/i - --. 

1 - Pi 
It is assumed that j-th unit (j =f i = 1, 2, ... , N) is included in the sample as second unit. This 
Pj/i indicates that the probabilities of selection of the first and second are not equal. Assume 
that the characteristic of selected units under study are y1 , Y2, ... , Yn, where Pi ( i = 1, 2, ... , n) 
is the probability of selection of Yi· Let us discuss the process of selection of sample under this 
scheme by an example. 

Example 20.4 : There are 15 higher secondary schools in a police station area. The 
number of teachers and students in different schools are different. Below are given the numbers 
of teachers and students of these schools. 

SL No. of schools No. of No. of x· 
Pi = ff:; 

students, Xi teachers, Yi 

01 500 15 0.066 
02 800 30 0.105 
03 400 12 0.053 
04 700 25 0.092 
05 600 20 0.079 
06 300 15 0.039 
07 550 18 0.072 
08 458 16 0.060 
09 570 20 0.075 
10 762 28 0.100 
11 380 15 0.050 
12 410 18 0.054 
13 260 12 0.034 
14 250 11 0.033 
15 660 17 0.088 

Total 7600 272 1.000 
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Select a sample of size n = 5 under PPS sampling scheme without replacement. Here 
SN= LXi = 7600. 

Solution: We have N = 15. We need n = 5. Let us select the first unit according to Lahiri's 
method of selection. According to random number table the first pair of random number is 
(05,555). As the number of students in 5th school is 600 > 555, 5th school can be included in 
the sample. The second pair of random number is (14, 148) and hence, 14th school is selected 
in the sample. Here it is assumed that 5th school is not in the population when second school 
is selected. Thus, the 15th school is becoming 14th school when second school is selected. That 
is 15th school is included in the sample. Before the selection of next school it is assumed that 
5th and 15th school are not in the population. The random number for the selection of third 
unit in the sample Jet us consider the pair of random numbers (11, 117). At this stage 12th 
number school bears serial number 11. Hence, 12th school is included in the sample. The pair 
of random number for 4th unit to be selected is (07, 070). The 8th school becomes the 7th 
school as 5th school is selected earlier. So, 8th school is included in the sample. To select 5th 
unit the pair of random number is (09, 092). The 11th school in the original list becomes 9th 
school. So, 11th school is included in the sample. Finally, the selected sample is as follows : 

Sl. No. of sample Sl. No. of school No. of No. of 
observation in the population teachers, Yi students, Xi 

1 05 20 600 
2 15 17 660 
3 12 18 410 
4 08 16 458 
5 11 15 380 

Total 86 2508 

(b) Narain's scheme of selection : In this scheme, the primary probability of selection 
of sample is not needed. Let p~(i = 1, 2, ... , N) be an adjusted probability of selection of i-th 
unit. Narain proposed an inclusion probability 'lri to select i-th.unit in the sample. This 'lri is 
proportional to Pi• where 

ni = npi, i = 1, 2, ... , N. 
In this scheme, the sampling becomes sampling without replacement and the probability of 
selection of second and other units becomes proportional to the adjusted probability p~. 

Narain (1951) has discussed the method of finding the value of n;(i = 1, 2, ... , N). Yates 
and Grundy (1953) also have discussed the method of finding 'lri, but the method of finding the 
value of 7ri is labour intensive and the sampling method is not advantageous. Brewer and Undy 
(1962) have discussed the sampling method when n = 2 and they have suggested an iterative 
procedure to determine the value of 'lri. They have also showed that the sample estimate 
under this scheme is more efficient than the estimate under PPS sample with replacement. 
The adjusted probability p~ for this method of sample selection can be obtained by solving the 
following equations. 

Let the probability of inclusion of first unit in the sample be Pil and the probability of 
inclusion of second unit be p;2, where 

Pi2 = P(yi not included 1st) x P(yi included second time/it is not included first). 
N 

= L P(Y#i selected first) x P(y; included second time/Y#i included first) .. 
#i=l 
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LN [ P1 Pi ] [ Pi ] = -----Pi= S--- Pi· 
j= 1 1 -

0

PJ 1 - Pi 1 - Pi 

N 

H S ~ Pi ere = ~ ~· where Pil =Pi· 
i=l Pi • 

Again, 'Tri = Pil f: Pi2 = P [Yi included in the sample of size n = 2] 

= Pi [s + 1 - ....12_] . 
1 - Pi 

71';. = p~ [S' + 1 - ~~ , ] = npi, where S' = t ~~ 1 . 

p ~ ~l 1 ~ 

Solving the equation the value of 7r; can be found out. Let 11'iJ be the probability of inclusion 
o.f i-th unit at first and at second step j-th (j -f. i) unit is included in the sample. Then 

(c) Sen-M.idzuno method : Midzuno (1952) and Sen (1952) have discussed the method 
of selection of sample independently. Midzuno (1950) has suggested to select first unit with 
unequal probability, and the other units are selected with~ equal probability a!_ld without 
replacement. If there are N units in the population, the next (n - 1) units are selected from 
(N.:... 1) units without replacement by simple random sampling scheme. In this method the 
prol>ability of selection of every unit and pairs o( units is 

7r; = Pil + Pi2 + · · · +Pin 

~ p;1 + P(yi not included in the sample first, rather it is included in other steps) 

. n-1 N-n n-1 
=Pi+ (1- Pi) N - 1 = N - 1 Pi+ N.- 1 

and 
n-:-1 n-l · (n-l)(n-2) 

7r;i.=p;N-l +Pi N-l +{l-p1-P2)(N-l)(N- 2)' i-f.j="l,2, ... , 

n-1 [N-n . n-2] 
·= N - 1 N - 2 (Pi + Pj) + N - 2 . 

. . ( n - 1) ( n - 2) [ N ·_ n . . n - 3 ] 
S1milarly, 1rijk = (N _ l)(N _ 2) N _ 3 (p; + PJ +Pk)+ N _ 3 · 

With the same atgument, 
\ 

(n - l)(n ~ 2)(n - 3)- · · 1 
1rijk···q = (N - l)(N - 2)- · · (N - n + 1) (Pi+ Pj + ... + Pq) 

= ( ) (Pi+ P1 +Pk + · · · + Pq). N-1 
n-1 . 

1 
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Here Yi, y1, Yk, ... , yq are the included sample observations in the sample of size n. It is 
seen that, if Pi is proportional to population size, then the probability of selection of sample is 
proportional to the size of all units included in the sample. 

20.5 Method of Estimation in PPS Sampling without Replacement 
The probability of selection of any unit in case of PPS 11ampling without replacement is 

changed. The expected probability of inclusion of any unit is changed when unit is selected in 
the sample. To avoid this problem a new variable is considered which is correlated to the value 
of the variable of the unit to be investigated. The expected value of the new variable should be 
equal to the expected value of the studr variable. In such a case, the unit which is selected first 
time or second time is to be considered. The order of selection is important. Thus, we have 
two types of estimators. These are (a) Ordered estimators, and (b) Un-ordered estimators. Das 
(1951), Sukhatme (1953) and Des Raj (1956) have discussed the ordered estimator. Horvitz 
and Thompson (1952), Mu!'thy (1957) and Basu (1958) have discussed un-ordered estimator 
and they have shown that un-ordered estimator is more efficient than ordered estimator. 

(a) Ordered estimator : Des Raj (1956) has proposed ordered estimator for n = 2. The 
estimator of population mean and population total are as follows : 

Let Yi and Y2 be the values of the units selected first and second times, respectively. Of 
course, Yi and y2 may not be the values of 1st and 2nd units in the population. Let p1 be the 
probability of selection of Yi and P2 be the probability of selection of y2 . Let us define two new 
variables 

Z1 = ;~l and Z2 = ~ [YI + Y2 1 ;2Pl] . 

Then _ 1 ( 1 [ YI Y2] z = 2 z1 + z2) = 2N (1 + Pi)lh +(1- P1)p
2 

z = ~ [< 1 + pi) Yi + ( 1 - Pi) Y2
] , where z is the estimator of population total. 

pi P2 . 
and 

Theorem :. The sample 'mean z is the unbiased estimator of population mean Y in PPS 
sampling without replacement, and variance of z is 

Proof : The expected value of z1 is • 

~ Yi 1 ~ -
E(z1) = .L N. Pi= N £-Yi= Y. 

i=l Pi i=l · 

Similarly, E(zi), if Y1 is selected first, is 

N 

E(z1) = E [y2(l ~Pi) /Yi] = L YJ(I ~ P1) -1 P} =NY - Yi· 
P J=l Pi - P1 

Here E(zi) is calculated on the assumption that y1 is selected first and y1 is not in the 
population when second unit is selected. The above summation. is for the other values of Yi 
except y1 . 
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Therefore, E[z2/Y1] does not depend orr y1, ·: E(z2) = Y. 

rz1+z2] 1 -•. E(z) =EL --
2
- = 2 [E(z1) + E(z2)] = Y. 

Therefore, z is an unbiased estimator of Y. 
. 2 

V(z) = E(z2
) - [E(z)]2 = E { lN [(1 + P1)~~ + (1 - pi)~:]} -Y

2 

= _1_ ~ {(l +Pi) Yi+ (1 - Pj)Yj }
2 

PiPj _ Y2. 
4N2 ~ p · p · 1 - p · 

i=l i J i 

On simplification, we have 

Corollary : In case of PPS sampling without replacement, the estimate of population total 
is z, where 

z = Nz1 ·= ~ [(1 + pi)y1 + (1 - pi)y2] 
2 Pl P2 

and the variance of z is 

Theorem : In case of PPS sampling without replacement, the estimator of variance of the 
estimator of population mean Y is 

v(z) = (1 - Pi)~ [YI - Y2]
2

, 

4N2 PI P2 

. Proof: V(z) = E(z2
) - Y

2 

Therefore, v(z) = z2 - Y
2 

is the estimator of V(z). 

We know E[z2/Y1) =Y and E(zi) = Y. 
·. - -2 

But E(z1z2) = E[zi{E(z2/yi)}] = Y E(z1) = Y . 
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Corollary : In case of PPS sampling without replacement, the estimator of variance of the 
estimator of population total z is 

1 2 (Y1 Y2 )
2 

v(z) = -(1 - pi) - - -
4 Pl P2 

Ordered estimator when n is general : Let y1 1 y2, ... , Yn be the values of study 
variable observed from n sample units. Assume that Pi is the probability of selection of i-th 
unit and hence it is the probability of Yi(i = 1, 2, ... , n). Let us define 

· 1 · ( 1 - Pi - P2 - · · · - Pi-1 ) 
Zi = N (Yi+ Y2 + · · · + Yi-1 +Yi) Pi 

YI 
and z1 = Npi. 

Then E(zi)=Y and E(zify1,y2, ... ,yi_i)=Y(i=2.3, ... ,n). 

This means that the above expectation is independent of Y1, Y2, ... , Yi-1 · 

E(zi) = Y; 'i = 1, 2, ... , n. 

Theorem : In PPS sampling without replacement, the estimate of population mean when 
n is general is 

and the estimated variance of z is 
1 1 n 

v(z) = z2 
- n(n _ l) l:ziz1 = n(n _ l) 2,)zi - z)

2
. 

•#1 •=1 

1 n 1 n - -
Proof: E(z) = - L E(zi) = - LY = Y [·: E(z) =VJ. 

n i=l n i=l 

Now, V(z) = E(z2 ) - [E(z)] 2 = E(z2 ) - Y 2
. 

Therefore, the estimator of V (z) is z2 - Y
2

. 

But, if i < j, 

Corollary : In PPS sampling without replacement, the estimator of variance of the 
estimated total is 

. • N2 n 

. v(Y) = n(n - i) L(zi ~ z)2. 
•=1 
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Example 20.5 Using data of Example ~.4 estimate (i) population mean of teachers 
per school, (ii) estimate population total of teachers. Also, estimate the variances of your 
estimates. Use Des Raj's (a) ordered estimator for n = 2, (b) ordered estimator for general 

. n(n = 5). Estimate 95% confidence interval for population total. 
Solution : (a) Using Lahiri 's method of selection the following two units a~e selected, where 

Yi (5th unit in the population and y2 (17th unit in the population) are the two observations 
(n = 2) in the sample. Here the unit values and the, corresponding probabilities are : 

xi = 600, Yi = 20, Pl = 0.079; 

~2 = 660, Y2 = 17, P2 = 0.088. 

(i) .Estimate of population mean is 

z = -
1
- [(1 + P1)y

1 + (1 - P1)Y
2

] 
2N Pi P2 

1 .[ 20 17]_,. 
= 2 x 15 (1 + 0.079) 0.079 + (1 - 0.079) 0.088 = 15. 

(ii) Estimate of population total is z =NZ= 15 x 15 = 225. 
The estimates of variance of z is 

v(-) = (1 - P1)
2 

( y1 · _ J!3.). -
2 

= (1 - 0.079)
2 [~ _ 2I._] 2 

= 3.39. 
z 4N2 Pl P2 4(15)2 0.079 0.088 

The estimates of variance of z is 

v(z) = N 2v(z) = .(15)23.39 = 762.75. 

(b) For n = 5. The selected sample ol?servations [aecording to Lahiri's method] are 

X1 = 600, X2 = 660, X3 = 410, X4 = 458, X5 = 380; 

Yi = 20, Y2 = 17, y3 = 18, Y4 = 16, Ys = 15; 

Pi = 0.079,, P2 =r 0.088, p3 = 0.054;, .P4 = 0.060, Ps = 0.050. 

Yl 20 . 
Now. z1 .= Np1 = 15 x 0.079 = 16.88. 

.. 

z2 = ~ [Yi+ Y2 i ;
2
p

1
] = ·l~ [ 20 + :17 x l ~.g~~79] == 13.19 . 

. 
-~[. (l-p1-p2)]. - 1 [20 17 18(1-.0.079-0,088)]-2098 

Z3 - N Yi + Y2 + Y3 p
3 

- 15 + - + 0.054 - . ' 

1 [ 1 - Pl - P2 - P3 ] 
Z4 = N Yl + Y2 + Y3 + Y4 - p4 -

= 2- (20 17 18 16(1- 0.079- 0.088- 0.054)] ~ 17.52. 
15 + + + 0.060 

1 [ 1-~-~-~-~] zs = N Y1 + Y2 + Y3 + Y4 + Ys · Ps 

= 2- [20 17 18 16 15(1 - 0.079 - 0~088 - 0,054 - 0.060)] = 19 11 
15 + + + 7- 0.050 . . 
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1 1 . . 
(i) Z = - ""Zi = -[16.88 + 13.19 + 20.98 + 17.521+19.llj = 17.536::;:: 18 

nL,_, 5 . 

and (ii) z = Nz = 15 x 18 = 270. 

_ 1 "" _ 2 1 ["" 2 (L Zf)
2

] v(z) = n(n _ l) L-,(zi - z) = n _ .1 L,_, zi - N 

1 .. . . 
= 5(5 - 1) [1571.2134 - 1537.556;5] = 1.6828 

and v(z) = N 2v(;z) = {15)2 x 1.6828 = 378.63. 

953 confidence interval for population total (Y) is 

YL = z - to.os.4 s.e. (z) = 270 - 2.776 x 19.46 = 216. 

Yu = z + to.o5,4 s.e. (z) = 270 + 2.776 x 19.46 = 324. 
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(b) Unordered Estimator : Two unordered estimators are discussed here. These are 
(i) Horvitz-Thompson Estimator, and (ii) Murthy's Estimator. . 

For the estimation procedure the order of selected unit is not considered. Let us consider 
that. there are N units in a finite population and n sample units are selected under PPS scheme 
without replacement. The n units can be ordered in n! = M ways. Therefore, an unordered 
sample of size n can be considered equivalent to M-ordered sample. Let Zij be the estimate 
of any parameter of population. This estimator _is obtained from j-th order <;>f i-th sample 
[i = 1, 2, ... ·, ( ~); j = 1, 2,. .. M]. Consider that Pij is the probability of selection of j-th 
order of i-th sample. Then · 

M 

Pi= LPij· 
j=l 

Let z1 be an unordered estimator, where 
M 
"" I h I Pij , "Z1 = L,_, Zij Pii• w ere Pij = -. 
j=l Pi 

[
M l (~)[M l {~) M 

Now, E(z1) = E LZij P~j =. L LZij p~j Pi= L L Zij ·Pi1 = E[Z'iJ]· 
j=l i=l j=l i=l. j=l 

:. unordered estimator is unbiased. 

The variance of the ordered estimator Zij is 

( ~) M 

V(z;1 ) = E[z?jl- [E(z;1)] 2 = L Lz?1 Pij -
i=l j=l 

The variance of the unordered estimator z1 is 

. ( ~) [ M l 2 
V(z1) = E(zD - [E(z1)]2 = ~ .t;Zij P~j Pi -
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. .. 

=I: L:-zri P:j Pi - I: [L::-zij P~1] 
2 

Pi 
' J ' J 

~ ~P• [~z1,~, -{ ~z.,v;, }'] 

= LPi [LP:1(zii - zi)
2

] 

' .I 

= L LPiJ(zi1 - z1)2 

i 

=a +ve term . 

This implies that the unordered estimator z1 is more efficient than ordered estimator ZiJ. 
This is true for all estimators. However, V (zii) = V (z1), if all ordered sample is equivalent to 
any unordered sample. 

It is seen that 
(~) M 

V(z1) = V(zi1) - L LPii(zii - z1)2. 
i=l i=l 

From the above result, it can be ~ritten : 

EsUmate [~(Zi)J ~ Esti,,;ate [V(Z>;)] - Estimate [ ~ ~P>;(Y>; - z1)
2 l 

M M 

= LP~jEstimate[V(zij)] - LP~j(Zij - zi) 2
• 

i=l i=l 

Now, to obtain the unbiased estimator of V(zi) Jet us consider a sample of size n = 2 and 
consider the estimate of Des Raj (1956) for ZiJ· 

Let Yi and Yi be the sample observations in a sample of size n = 2 and these are selected 
. under PPS sampling scheme without replacement. Consider that Pi is the probability of selection 

of Yi and PJ is the probability of selection of Yi. If these observations are ordered, then the 
total number of order becomes M = 2! = 2. Consider that Yi is selected first and YJ is selected 
second. Then the Des Raj's estimator is 

1 [< ) Yi ( ) YJ 1 Z;J = 2N 1 + Pi Pi + 1 - Pi PJ · 
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But, if Yj is selected first, then 

1 [ YJ ( ) Yi] Zi2 = - (1 + P1)- + 1 - PJ - · 
2N ~ ~ 

Again, let us consider that Yi is selected first and Yj is selected second. Then the probability 
of selection of these observations is 

Pi PJ 
PiI = --. 

1 - Pi 

If y1 is selected first and y; is selected ~econd, then 

Pi PJ 
p;2=--. 

1 - P.i 

Therefore, the probability of selection of 2 units in the sample is 

~ ( 1 1 ) PiPJ(2-p;-P1) 
Pi= L.,,PiJ = Pil + Pi2 = PiP.i -1-- + -1-- = (1 )(1 ) . 

j=I - Pi - PJ - Pi - P.i 

I Pil 1 - PJ 
P·1 = - = 

' Pi 2 - Pi - P.i 
and 

I Pi2 1 - Pi 
Pi2 = - = 

Pi 2 - Pi - PJ 

Using these probabilities the unordered estimator of population mean is 

~ 1 [.{ y y} 1-p 
'Z1 = L.,, Zij P~J = 

2
N (1 +Pi)__:+ (1 - Pi)-2.. 

2 
1 

J=l Pi Pj - Pi - Pi 

{ ( ) YJ ( ) Yi } 1 - Pi ] + 1 + PJ - + 1 - Pi - . 
P.i . Pi 2 - Pi - PJ 

_ (1 - P1 )~ + (1 - Pi)~ 

- N(2-pi-PJ) 

This unordered estimator is proposed with respect to Des Raj's (1956) estimator. Here ZiI and 
'Z;2 are equivalent to the estimator of z1 of Des Raj (1956) for n = 2. Therefore, the unbiased 
estimators of variance of ZiI and Zi2 are 

- 1 2 ( y, Y1) 2 
- 1 2 (Yi Y1) 2 

v(zi1) = 4N 2 (1 - Pi) p, - PJ and v(z,2) = 4N 2 (1 - P1) p, - PJ 

On simplification the unbiased estimator of :Z1 is 

v(zi) = (l - p, - P1)(l - p,)(l - P1) (Y· - Y1 ) 2 

N 2 (2 - p, - P1 ) 2 Pi P1 

The estimator of population total Y is 

(1 - p )lli + r1 - p )!ti. y = J Pi \ i PJ 

(2 - Pi - P.i) 

and the estimator of variance of Y is 

v(Y) = N2v(zi) = (1 - Pi - P1)(l - Pi)(l - p1 ) (y, _ y1 ) 
2 

(2 - p, - P1 )2 p, Pi 

Example 20.6 : Using the data of Example 20.5 find unordered estimate of average number 
of teachers per school. Also, estimate the variance of your estimator. Estimate total number 
of teachers in the schools along with estimated variance of your estimator. 

D.l':.::;.M.-·35 
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Solution : We have- [Example 20.5] 

x1 = 600, Yl = 20, Pl = 0.079, N = 15; 

X2 = 660, Y2 = 17, P2 = 0.088 .. 

The estimate of average teachers per school is 

_ ( 1 - P.i) ~ + ( 1 - Pi)~ 
Z1 = 

N(2 - P1 - P2) 

z = (1 - 0.088)~ + (1 - 0.079)& = 15 
1 15(2 - 0.079 - 0.088) . 

The estimate of total teachers is Y = Nz1 = 15 x 15 = 225. 

The estimate of variance of z1 is 

(
-) (l-pi-P1)(l-pi)(l-p.i)(Yi Yi) 2 

V Z1 = - - -
N 2 (2 - Pi - P1) 2 Pi P.i 

_ (1 - PI - p2)(l - pi)(l - P2) (Yi . Y2)
2 

- i = l, j = 2 
- N 2(2 - P1 - P2)2 Pl P2 ' 

= (1 - 0.079 - 0.088)(1 - 0.074)(1- 0.088) (~ - --22_) 2 
= 3.33. 

(15)2(2 - 0.079 - 0.088) 2 0.079 0.088 

The estimate of variance of Y is 
v(Y) = N 2v(z1 ) = (15) 2 x 3.33 = 749.25. 

Horvitz-Thompson estimator : We have considered unordered estimator z1 for n = 2 
observations. This calculation of z1 will be lengthy if n exceeds 2. To avoid this problem 
Horvitz and Thompson (1952) have suggested an estimator. 

Let there be N units in a population and n units be selected from N units under PPS 
scheme without replacement. The values of study variables in the population are y1, Y2, ... , 
YN. For the estimation the sample observations are selected in such a way that every unit is 
selected with some defined probability distribution. The probability distribution may be or 
may not be dependent on the elementary probability of selection of the first unit. 

Let us consider a variable the value of which is ai when i-th unit is included in the sample, 
where· 

ai = 1, if Yi is included in the sample, 

ai = 0, if Yi is not included in the sample. 

Also, consider a constant Ci which is associated with the inclusion of i-th unit in the sample. 
Let the probability of selection of i-th unit in the sample be Pi, where Pi = fi:; (i = 1, 2, ... , JY). 
Then the probability of inclusion of ·i-th unit in the sample is 

"'"' PiP1 [ • "'"' P.i l 1ri =Pi + ~ (l _ .·) =Pi 1 + ~ ~ 
.i#i P1 . #i P.1 

=Pi [s + 1 - ~]., 
1 - Pi 

N 

S="'~ ~ l-p·· 
i=l t 
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Also, consider that the probability of inclusion of i-th.and j-th unit in the sample is 

Pi P.i PiPJ [ 1 1 ] 
7r;J = -- + -- = PiPJ -- + -- · 

1 - Pi 1 - PJ 1 - Pi 1 - P.i 
' 

From the above discussion, it is seen that, if n = 1, ai = 1 or 0. This ai follows binomial 
distribution, where E(a;) ='Tri and V(ai) = rri(1 ·-'Tri)· If i-th and j-th units are different and 
if these units are focluded in the sample, then ·aiaJ = 1 and Cov (a; aJ) = 'TriJ - 7r; 'Tr.J. 

L n Yi . 2 N et z; = N - , i = 1, , ... , . 
'Tr; 

n n N 
1 1 ny 1 y 1 y 

Then z = ; L Zi = ; L N 'Tri = N L 'Tri = N Lai 'Tri . 

i i=l ' i=l ' 

Now, 
. 1 N . 1 N - I: y, I: -E(z) =·- E(a;)- = - Yi= Y. 

N 7r N 
i=l ' i=l 

Therefore, z is an unbiased estimator of Y and Y = Nz is an unbiased estimator of population. 
total Y. 

· Theorem : The variance of estimator of population mean when sample is selected under 
PPS scheme without replacement is · 

[

N 2 N N l _ _ 1 Yi 1ri.J - 7r; 1rJ . 
V(z) - N 2 'L:(l - 'Tri)-:-+ LL . . Yi YJ . 

. 'Tri i j#i 'Tr, 1r1. 

11. y 
Proof: We have Zi = N .-:., i = 1, 2,. .. , N 

'Tri 
and 

1 n 1 N . 

- '"' '"' y, Z = - ~ Z; = - ~ lli - . 
n N . rr; 

7.=l 

1 
N2 

L y~ V(a;) + L L YiYJ Cov (ai, a1) 
[

N 2 N N . l 
i=l 'Tr; i=l J#i=l 7r,7rJ 

This vari~nce depends on 'Tri, 'Trj and 'Trij. The values of 'Tri, 7r.J and 'Tri.J are to be selected on 
the basis of sampling scheme. 

Corollary : In PPS sampling without replacement the estimated variance of the unordered 
estimator of population mean is 

(-) - _1 { .c-.. 1 - 7r; 2 .c-.. 'Trij - 'Tr; 'Trj . . } 
v z - N2 ~ 2 Yi + ~ y, Y1 · 

. ~i i#j 'Tr; 'Trj 'Trij .. 
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Corollary : In PPS sampling without replacement the estimate of population total is 

Y=Nz 
and its variance is 

The unbiased estimator of V(Y) is 

Example 20. 7 : Using the information of Example 20.5 estimate the average number of 
teachers per school along with its estimated variance. Use Horvitz-Thompson estimator. 

Solution : We have [from Example 20.5] 

x1 = 600, Y1 = 20, P1 = 0.079; N = 15 

x2 = 660, Y2 = 17, P2 = 0.088; n = 2. 

15 
Pi 

S= L ~ = 1.0808. 
i=l Pi 

Then 7r1 = p 1 [ S + 1 - l ~1p1 ] = 0.079 [ 1.0808 + 1 - l ~·~~i79 ] = 0.1576. 

7r2 = P2 [ S + 1 - l ~2p2 ] = 0.088 [ 1.0808 + 1 - l ~-·~~g88 ] = 0.1746. 

7!'12 = P1P2 [ l ~Pl - l ~ p
2

] = 0079 x 0.088 [ l _ ~.079 - 0.~88 ] = 0.015.2. 

Now, z = _2_ (Y1 + Y2) = ~ (~ + ~) = 15. 
N 7r1 7r2 15 0.1576 0.1746 

The estimate of variance of z is 

(-) - _1 [~ 1 - 11'i' 2 ~ 11'ij - 11';11'j . ·] 
v z - N 2 L., 2 Yi + L., Yi Y1 

i=l 7l'i ii) 11'ij11'i11'j 

1 [1-0.1576 2 1-0.1746 2 

= (15) 2 (0.1576) 2 <20) + (0.1746)2 (l 7) 

+ 2(0.0152- 0.1576 x 0.1746) x 20 x 17] = 6.07. 
0.0152 x 0.1576 x 0.17 46 

This variance is more than the variance of the unordered estimator z1 given in Example 20.6. 
This problem of higher variance can be obviated, if n1 , 71'2 and 71'12 are calculated according to 
the suggestion of Sen-Midzuno, where 

N - n n - 1 15 - 2 2 - 1 
7r1 = N _ l P1 + N _ l = 15 _ l x 0.079 + 15 _ l = 0.1448. 
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N - n n - 1 15 - 2 2 - 1 
7r2 = ~P2 + N _ l = 

15 
_ l x 0.088 + 15 _ l = 0.1531. 

· n-1 [N-n n-2] 
7r 12 = N - 1 N - 2 (pi + p2 ) + N - 2 

2-1 [15-2 2--2] = 15 - 1 15 - 2 (0.079 + 0.088) + 15 - 2 = 0.0119. 

Now, the estimated variance of Horvitz-Thompson estimator is 

(-) _ 1 [~ (1 - 7r;)Yt """'1riJ - 1ri'rr.i . ·] v z - t2 L..,, 2 + L..,, y, Y1 
I\ . 7r . . 7r iJ. 7r i 11'1· 

i=l ' •i'J 

- 1 [(1-0.1448)(20)2 (1-0.1531)(17)2 

- (15) 2 (0.1448) 2 + (0.1531) 2 

+2 x 0.0119- 0.1448 x 0.1531x20x17] = 1.28. 
0.0119 x 0.1448 x 0.1531 

It is seen that Horvitz-Thompson estimator is more efficient when inclusion probability is 
calculated according to the suggestion of Sen-Midzuno. 

Murthy's Unordered Estimator : Let there be N units in a population. We need a 

sample of size n(:S N). There will be ( ~) unordered sample. Each unordered sample can be 

ordered in M ways. Let us consider the case of selection of a sample, where Pl is the probability 

of selection of l-th sample [l = 1, 2, ... , ( ~) J. Let Pil be the probability of i-th ordered sample 

corresponding to l-th unordered sample. Then 

M 

Pl= LPil· 
i=l 

Let Bit be the estimator of population parameter (), where Bil is obtained from i-th ordered 
sample corresponding to l-th unordered sample. The unordered estimator of B is 

M 
" """' " I Pil () = L..,,B,1Pil• where '!1;1 = -. 

i=l . Pi 

Theorem : In PPS sampling w,ithout replacement the unbiased estimator of parameter () 
is iJ and the variance of iJ is 

(~) 

V(B) = L Pi 
i=l 

M 

[( 

M ) 2 (( ~) M ) 

2

] 
L jjilP~1 - L L {JilP~t 
•=l l=l •=' 

Proof : Given iJ = L BilP~1 · 
i=l 

M 

where iJ = L Bilp~1 . 
i=l 
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( 

M )2 ( M . )2 
V(B) = E(B 2

) - [E(B)] 2 
= E ~ Bilp:1 - E ~ B,1p:1 

~ ~P• ( ~bup:,)'- (LLO., P>1)'. 

The unbiased estimator of this variance is 

v(B) = (2-) 2 

t t{PiP(lij) - PilPii}PiPi (Yi - y1
)

2 

Pl i=l .i>l Pi P1 

Here P(lij) is the conditional probability of selection of i-th and j-th unit in l-th sample. 

Let us, now, discuss the unordered estimator of Murthy for n = 2. Assume that y; and YJ 
are selected with preliminary probabilities Pi and P.J· These two obsrrvations can be ordered iu 
M = 2 ways. Then the ordered estimator of Murthy is 

Bu=~ [(1 + p1)y1 + (1- pi)Y.!lj, 
2 p1 P2 

if y; is included first in the sample. 

if YJ is included in the sample first, then 

012 = ~. [(1 + p2)y2 + (1 - P2)Y
1
], i = 1, 2. 

2 P2 Pl 

The i-th and j-th units will be included in the samples first and second, respectively with 
probabilit; 

Pll = PiPJ = P1P2(l - P1). 
1- p; 

Similarly, the probability of j-th and i-th units to be included in the samples first and second, 
respectively is 

P1P2 
P21=--. 

1 - P2 
Therefore, the unordered estimator of () is 

2 

e =I: 0;1P:1 =I: e;1Pil/P1· 
i=l 

2 

[ 1 1 ] Here Pt= LPit = Pll + P21 = P1P2 -
1
-- + -

1
-- · 

i=l . - Pl - P2 

() = - - (1 +pi)-+ (1 - pi)- -- + - (1 + p2)- + (1 - P2)- --A 1 [ 1 { Yl Y2 } P1P2 1 { Y2 YI } P1P2 ] 
Pl 2 P1 P2 1 - P1 2 P2 P1 1 - P2 

[ 
YI Y2] = (1 - P2}- + (1 - pi)- /(2 - Pi - P2). 
P1 P2 

The variance of B is 

V(B) = tP1P2 (1- Pi - P2) (Yi -y1)2 
i=l (2 - Pl - P2) PiP1 
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The unbiase9 estimator of V(B) is 

v(B)= (l-pi)(l-p2)(l-p1-P2) (Y1 _ Y2)
2 

(2 - P1 - P2) 2 P1 P2 

This variance is always positive. 

Example 20.8 : Using the data of Example 20. 7 let us estimate the average number of 
teachers per school along with the estimated variance following the suggestion of Murthy. 

Solution : ·we have N = 15, n = 2. The information of sample observations are 

Here 

Now, 

X1 = 600, Y1 = 20, Pl = 0.079 

X2 = i:60, Y2 = 17, P2 = 0.088. 

15 

s = ~ ~ = 1.0808. 
L.. 1-p· 
i=l ' 

0 = [(1- P2)y1 + (1- P1)y2] /(2-p1 - P2) 
P1 P2 

. [ (1 - 0.088) o.~~9 + (1 - 0.079) o.~~8 J /(2 - 0.019 - 0.088) 

= 223. 

Thus, the average number of teacher per school is 

, e 223 
µ= - = ~ ~ 15 N 15 . 

Here 0 is the estimator of total teachers in the school. 

The estimate of variance of 0 is 

v(O) = (l-p1)(l-p2)(l-p1-P2) (Y1 _ Y2)
2 

(2 - P1 - P2) 2 Pl P2 

(1 - 0.079)(1 - 0.088)(1 - 0.079 - 0.088) [ 20 17 ] 
2 

(2 - 0.079 - 0.088)2 0.079 0.088 

= 749.25. 

v(') = v(O) = 749.25 = 3 33 µ N 2 225 . . 

If n = 2, then the estimator of population mean according to Murthy's unordered 
estimator is 

fl,= N(2 - ~1 - P2) [(1- p2 )~~ + (l - pi)~~] 
and the unbiased estimator of V (µ) is 

(
') (1- P1)(l - P2)(l - Pl - P2) 

v µ = -------------'-
N2(2 - P1 - P2)2 (

Yl _ Y2)
2 

P1 P2 
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20.6 Other Methods of Sampling with Varying Probabilities 
The methods of sampling with varying probabilities discussed in the previous sections are 

not suitable for practical application. The complexity arises either in selection procedure or in 
estimation, specially in the estimation of variance of the estimator, when n = 2. In some cases, 
the complexity arises in calculating modified probability based on preliminary probability of 
selection of unit. The problem increases, if the value of n increases. 

To avoid the problem Stevens (1958) has discussed a method. He has suggested to make k 
clusters of the population units. The clustering is done, according to him, by considering an 
auxiliary variable x so that population units are measured depending on the values of x and 
then population units are clustered into k clusters. After that n clusters are selected without 
replacement. The clusters are selected in such a way that the probability of selection of a 
cluster is proportional to total size of the population units. If a cluster is selected t times, then 
t units are selected from that cluster and each unit is selected with equal probability without 
replacement. Let us consider that i-th cluster (i = l, 2, ... , k) has Ni units and the size of each 
unit is Xi. Let us consider that the preliminary probability of selection of every unit of Ni units 
is Pi= xif X, where 

k 

X = LNixi. 
i=l 

This X is the total size of population units. 

Let the value of j-th unit of i-th cluster is YiJ· Then according to Stevens (1958) the estimate 
of population mean Y is 

A 1 L YiJ µ=- -. 
Nn Pi 

The sum is for all the units included in the sample. Cochran (1963) has discussed the 
method of clustering in detail. He suggested to make n clusters and from each cluster one unit 
is selected with probability proportional to the size of units in the cluster. Let us consider that 
Xij is the size of j-th unit in i-th cluster and Xi = LJ Xij. This X; is the total units in i-th 
cluster. The probability of selection of j-th unit from i-th cluster is XiJ/Xi. 

As .one unit is selected from each cluster, the value of i-th unit selected from i-th cluster is 
assumed Yi and the size of this unit is Xi. Then the estimator of population mean is 

, 1 L Yi 1 Ln X;yi µ-- ---- --- N x/X - N x . 
' ' i=l ' 

Here, if Xi = X2 = · · · = X,., then the probability of selection of Yi is maintained and this 
probability is Pi· But, the estimator of ~ariancc of fl is not available, if the sample is selected 
according to the method of selection discussed in the section. 

Rao, Hartley and Cochran (1962) have proposed another method of sample selection. They 
have suggested to make n clusters with the N units in the population. Let there be N; units 
in i-th cluster (i = 1, 2, ... , n) and y; be the value of the variable under study of i-th unit and 
Pi be the probability of selection of i-th unit. Then the estimator of population mean is 

fl = _!._ ~ _J!!_ = _!._ ~ 1riYi where 7r; = ~ PiJ. 
N ~ p/7r N ~ 'Pi ' ~ 

i=l ' ' i=l j=l 
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Theorem : In PPS sampling under random clustering of population units the Rao-Hartley
Cochran estimator µ is unbiased estimator of population mean and the variance of this estimator 
is 

t Nf - N [ N,. 2 l 
V(u) = i=I . '°' Y.i _ y 2 ' 

N 2(N -1) ~ p· 
J=l J 

where µ, = ~ t 1riYi and Y is the population total. 
i=l p, . 

Proof : If µ is the estimator of population mean µ, then E(fl,) = µ. In calculating 
expectation, we have to consider two expectation, one for the selection of j-th unit from i
th cluster. The second one is considered for the inclusion of N1 , N2 , ... , Nn observations in n 
clusters. 

Thus, E(f;,) = E 1 E2([1,), where E 1 is used for the N units to be clustered into n and E2 is 
used for the selection of a cluster. 

E(µ) = E1_!_ tE2 (1riYi) = ..!_ tEi L Pi 1riYi 
N i=I . Pi N i=l 'Tri p, 

1 n 

= N L Ei Yi, Yi is the total of the variables in ·i-th cluster. 
i=l 

= Y [·: ~Yi = Y, E(Y) = Y l · 
.. fl, is the unbiased estimator.of Y. Again, 

V(fl,) = Ei Vi(f;,) + ViE2(M = Ei V2([1,) ['.' E2([1,) = µ, V(µ) = O] 

~ ~' [~ ~ (.,7~. -Y; )'] 

Here }j is the total value of Nj units in j-'th cluster. 
Again, the probability that a pair of values of a random cluster will fall in i-th duster is 

Ni(Ni - 1)/N(N - 1). Replacing this probability and on simplification, we have 

( 

n ) . 
LNf-N N, 

V(µ.) = i=l ['°' Yj _ y2] . 
N 3 (N -1) ~ p · 

J=l J 

If N1 = N2 = · · · = Nn =~'then 

V(µ) ~ ~2 [ ~ tp;{I - (n-1)/N} (:: -Y) ']. 
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The unbiased estimator of V (fi,) is 

This process of random clustering is diffurent than that of random clustering suggested by 
Cochran (1963). Cochran (1963) has proposed that the values of Ni should be equal, as far as 
possible. 

The method of sample selection according to the method discussed above can be applied if 
n = 2. Then 

Here Yl and y2 are the values of study variable of two units of two clusters and p 1 and 
p2 ar~ the probabilities of two 'values, respectively. 7T1 and 7T2 are the sum of the preliminary 
probabilities of.those two units selected from the clusters. 

The fi, is also unbiased, _because 

and V(') 
1 [v( Yi )+v( Y2 )] 

. µ = N 2 ' pifrr1 p2f rr2 

Here N1 1.nd N2 are the population size of those two dusters from which the two units are 
selected. The population meau of these clusters are Y Ni and Y N 2 • 

{ 

Nr 2 N2 2 } , 1 Y1 Y2 . ,2-2 . 2-2 
V(µ)= N 2 E 7r1:l:-+rr2:l:--J\i1YN1 -N2 YN2 • 

Pi P2 

But E (11"± y~) = E { [tP1] t Yr}= E [tyr + f, Yfp~] Pl Pi l#l' P1 
~ N1 ~ 2 N1(N1 - 1) ~ Yf I 

- N ~ Y1 + N(N - 1) ~ p P1 
1¥1' 1 

. . Y2 1N2 2 2 2 - 1 Y2 

[ 

N2 2 l· N N2 N (N ) N 2 

Similarly, E rr2 L P
2 

= N(N _ l) LY2 + N(N _ l) L P
2 

· 
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Again, E[Y
2 

] = (-
1
- - 2-) S2 + Y 2 

N~ N1 N N 

N 

E[Y~2 ] = (~2 - 1~) S2 + Y~, where S
2 

= N ~ l ~(y; - Y)
2

. 

V(~) = Nf+Ni-N [~..J!]__-Y2] = 2(Nf+Ni-N)~ ~ (~-Y )2 
µ N(N-1) ~N2p, N N(N-1) 2~p, Np, N 

i=l i=l 

If N1 = N 2 = Jf, then V(P,) becomes less. If N is an even number, then N1 = N2 = If and 

N )2 
A 1 1 Yi -

V(µ) = (1- -)- '"'Pi (- -YN N-1 2 ~ Np· 
i=l ' 

If N is an odd number, let N1 = N2I and N2 = Nil, then 

( 
1 ) 1 N ( Yi _ ) 

2 

V(P,) = 1 - - - LPi - - y N 
N 2 . . Np, 

•=l 

The estimator of V(P,) is 

v(P,) = (1 ~ ~) [7r1 (;~I ·-p,r + 7r1/4 (~~: - P, rJ · 
Here 

N 
R = 2', if N is an even number 

= N ; 
1 

, if N is an odd number. 

20. 7 Sampling Procedures -where Inclusion Probability is 
Proportional to Size ( 7r PS Sampling) 

Durbin's rrPS sampling technique : According to Durbin (1967) the i-th unit is selected 
with probability proportional to Pi, where Pi = f,; is the probability of selection of i-th unit. 

N 

Here Xi is the size of i-th unit and SN = L Xi. Durbin has proposed the inclusion probability 

for n = 2. According to him the first unit is selected with probability Pi, where Pi is the 
preliminary probability of selection of i-th unit. The probability of selection of the second unit 
is conditional probability under the condition that the first unit has already been selected. Let 
the second selected unit is j-th unit and the first selected one is the i-th unit in the population. 
Then the conditional probability of selection of j-th unit under the condition that i-th unit is 
selected first is given by 

P.i/i = p; (i _\Pi+ 1-12pJ (1 + t, Pk )-l 
1- 2pk 

Here j =I i. The inclusion of probability of i-th unit to be included in the sample is 
1ri = 2pi (i = 1,2,3, . .. ,N). 



556 DESIGN OF EXPERIMENTS AND SAMPLING METHODS 

The inclusion probability Of j-th unit to be selected second is 

1riJ = 2PiPJ ( l + l ) (1 + ~ Pk , )- l 
1 - 2pi 1 :;-- 2pj 6 1 - 2pk 

Using this inclusion probability of selection of. i-th and j-th units the Horvitz-Thompson 
estimator can be found out. · 

Hanurav's 7rPS sampling technique : In this method "two units are selected under PPS 
sampling scheme with replacement. If the ~lected units are different, then these two units are 
considered the sampling units in the sample. If the unit is the same one, then another two units 
are selected. In that case, i-th unit will be selected with probability proportional to P?. At this 
stage, if two units are different, the selected two units will be the sample units. If same 11nit is 
selected, then another two units are to be selected. The i-th unit is selected with probability 
proportional to Pt. The probability of inclusion of units in the sample is 

( 
~ ) (PiPJ)2k - 1 ) ~ t 

'Trij = 2PiPJ 1 + 6 wk I where wk= S(l)S(2) ... S(k)' S(t = ~pj2 . 

Using this inclusion probability, Horvitz-Thompson estimator of population mean can be 
obtained. However, the estimator of variance of this estimator is found out by the method of 
Yates and Grundy (1953), where 

v(j.L) = _l_ 7r17r2 ~ rr12 (~ _ Y2) 
2 

N 2 
rr12 Pl P2 

Example 20.9 : There are 30 villages in a police station area. The number of ever married 
coupl.es (xi) and the number of adopter couples (Yi) of the villages are shown below : 

SI. No. of Xi Yi p;=~ SI. No. of X; Yi Pi= i;; 
villages villages 

01 540 324 0.021 16 522 218 0.020 
02 1008 570 0.039 17 1130 609 0.044 
03 842 480 0.033 18 1368 700 0.054 
04 932 408 0.036 19 940 500 0.037 
05 424 201 0.017 20 1220 480 0.048 
06 672 302 0.038 21 1167 640 0.046 
07 580 300 0.023 22 452 200 0.018 
08 1050 678 0.041 23 545 250 0.021 
09 1250 542 0.049 24 980 544 0.038 
10 1300 705 0.051 25 792 432 0.031 
11 482 168 0.019 26 978 500 0.038 
12 550 300 0.022 27 1250 750 0.049 
13 672 360 0.038 28 1380 800 0.054 
14 480 168 0.019 29 690 300 0.027 
15 578 300 0.023 30 785 305 0.031 

Total 11360 0.469 14199 0.556 
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N 

Here SN= L Xi= 25559, N:::: 30. 

Let us make random clusters of villages and select a sample of size n = 2 to ·estimate 
average number of adopter couples per village using ~Hartley-Cochran estimator. Also, 
estimate variance of your estimator. 

Solution : We have N = 30 (N is an even number) and hence, we can consider N1 = N2 
= ~ = 15. Therefore, the first 15 villages can be considered as cluster-I and second 15 villages 
can be considered as cluster-2. We need to select one unit from cluster-I and one unit from 
cluster-2. Using Lahiri's method of sample selection and using the random number given in 
Appendix, we have pair of observations to select one unit from cluster-I, which is (01, 0314). So 
the first unit in the population is selected in the sample. The second pair of random numbers 
is (03, 0674). The corresponding unit in the population is I8. So, village IS is selected in the 
sample. The sample information are 

X1 = 540, Yi = 324, Pl = 0.021, Ni = 15, N = 30 

and X2 = 1368, Y2 = 700, P2 = 0.054, N2 = 15, n = 2. 

15 15 

7r1 = L Pij = 0.469, 7r2 = L P2j = 0.556. 
j=l j=l 

The estimate of average adopter couples per village is 

2 
, _ ~ ~ 1riYi _ ...!._ [0.469 x 324 0.556 x 700] _ ~ 
µ - N ~ Pi - 30 0.021 + 0.054 - 241.2 ~ 241. 

The estimated variance of P, is 

v(p,) = (1- ~) [7r1 (;~l -{Lr +7r2 (;;2 -{Lr] 
~ (I - 3~) [ 0469 ( 30 :~4021 - 241 )' + 0:556 ( 30 :~0054 - 241) '] 

= ( 1 - 3
2
0) [0.469(514.286 - 241)2 + 0.556(432.099 - 241)21 

= ( 1 - 3
2
0) [35027:376 + 20283.436] . 

= 0.933 x ·55310.812 = 51604 .. 9876. 



Chapter 21 

Non-Sampling Error . . 

21.1 Introduction 
A geiieral idea about non-sampling error is discussed in chapter 11. The objeetive of sampling 

is to estimate the population parameter using the observations recorded from sample survey. 
' The population characteristic can also be calculated if data related to the characteristic are 

recorded from census. The dats recorded from census or sample survey are assumed to be free 
of error. The errors crept in the survey data distort the estimate of the population characteristic. 
The data are collected by investigator using some measuring devices. Data can also be provided 
by the sampling unit himself. But willingly or unwillingly some error may be crept in the data 
by the enumerator. The error whkh creeps in the data during its collection is termed as non
sampling error. 

The non-sampling error can be classified in two classes, viz., (a) Errors of reporting or 
Response errors, and (b) Non-response errors. The response error can again be classified into' 
several classes. These are (i) Errors in sample selection, (ii) Failure to collect information from 
som.e sampling units, and (iii) Errors in pre-analysis of data. The failure of collection of data 
can, again, be divided into 2 classes. These are: (1) Failure to identify the sampling unit, and 
(2) Refuse to provide information. 

Besides non-sampling errors, the sampling errors are also discussed. It is seen that the 
sampling error is reduced if sample size is increased. But with the increase in sample size the 
non-sampling errors are increased or probability of non-sampling error is increased. 

Because of limitation of resources in terms of trained man power, time and money involved 
in the survey the probability of non-sampling error increases. As a result, the estimate of 
population parameter may be free of sampling error when data are collected through census 
but it is not free of non-sampling error. 

The non-sampling error what creeps in the data may be increased in such an extent that the 
· analytical results may provide wrong or distorted information about population characteristic. 

However, the estimation procedure may be modified to reduce the impact of non-sampling error. 
As a part of modification the resources available for the survey are to be utilized in such a way 
that the non-sampling error is reduced. The method of reduction of non-sampling error has 
been discussed by many authors. The important works in reducing non-sampling errors are 
proposed by Mahalonobis (1940, 1944, 1946), Deming (1944, 1950), Hansen et al. (1946, 1951), 
Birnbaum and Sirken (1950), Sukhatme and Seth (1952), Durbin (1954), Lahiri (1958), Moser 
(1958), Mahalanobis and Lahiri (1961), Zarkovich (1963, 1965, 1966), Kish (1965) and Singh 
et al. (1974). Hansen et al. have discussed the problems of non-sampling errors in census and 
sample survey data. Sukhatme and Seth have proposed some model to measure the amount of 
non-sampling errors. In this chapter the impact of non-sampling errors and adjustment in the 
estimator will be discussed. 

558 
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21.2 Effects of Non-Response 
Let us discuss the non-sampling error due to the failure' of collection of information from 

some units. Let there be N units in a population. The units are divided into two strata. Let 
there be N1 units in stratum-I and N2 units in stratum-2. Assume that if sample is selected 
from stratum-I, then information from sampling units will be available. The information will 
not be available if sample is selected from stratum-2. Further assumption is that the enumerator 
will try at least 3 times to collect information, so that number of units in stratum-2 is reduced. 

Consider that the simple random sample is selected from this population and sample is 
selected only from stratum-I. Let y1 be the sample mean when sample is selected from st'ratum-I 
and Y1 be the population mean of this stratum. The population mean of stratum-2 is Y 2. Let 
w1 = !fJ- and w2 = !ft-, where w2 is the ratio of population units from which information are 
not available. Then the bias due to sampling is 

E('ih)-Y = Y1 -Y = Y1 -(w1Y1 +w2Y2) = w2(Y1 -Y2). 

Here Y is the population mean. As nothing.is available to estimate Y 2, the information of bias 
are not available. However, if the information on Y 2 are not available, then the information on 
bias of estimator are not available. However, if the information of Y 2 are available from any 
other sources, then a limit of bias can be calculated. 

The limit of bias can easily be calculated if the variable under study is qualitative. In 
that case, let P be the population proportions of units possessing a particular characteristic. 
The corresponding proportions are P1 and P2 for population units of stratum-I and stratum-2, 
where 0 ~ P2 ~ 1. If w2 is known, then using the limit 0 ~ P2 ~ I, a confidence interval can be 
estimated for P. Let us consider that n units are included in the sample and n 1 ( < iJ) units are 
selected from stratum-I and information are collected from these n 1 units. If n 1 :rs big, then 
953 confidence limits of P1 is given by 

Here Pt is an estimator of P1 and q1 =I - p1. Now, assuming P2 = 0 and P2 =I the 953 
confidence limits can be obtained by 

h = Wt (P1 - 2Jff!!0 + w2(0) 

and Pu= w2 [Pi+ 2~ + w2(I). 

A formula for calculating n is proposed by Birnbaum and Sirken (1950a, 1950b). According to 
them, if w2 is known, then a formula can be proposed to calculate the value of n, where 

n = z~PQ/d2 . 

Here z0 is the 53 value of z and dis the value of error. Let P = 0.5, then 

(1.96)2 . 
n = 4T' where. 53 value of z, i.e., zo.os = 1.96. 

Birnbaum and Sirken have shown that, if 
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then the error in the estimator is confined to d. However, if w2 > d, then the value of n is not 
available. 

21.3 Technique for Adjustment of Non-Responses 
In the previous section it is shown that the bias in the estimate of population mean is 

E(Ih) - y = W2,(Y1 - Y2). 

This bias will be negligible, if w2 or Yi - Y 2 is very small and if Y 1 - Y 2 becomes insignificant 
for a standard value of w2. 

Hansen and Hurwitz (1940) have discussed a method to remove the bias due to non-response. 
Accordirig to them, from a sample of size n(S N) the information are available from n 1 ( < n) 
units .. Then the number of units from which information are not available are n 2 = n - n 1 . In 
such a situation a sample of size n2( < n2) is to be selected without replacement. Then N 1 and 
N2 are to be estimated on the basis of n 1 and n 2, where the estimators are 

, n1 , n2 
N1 = -N and N2 = -N. 

n n 

The n2 units are to be investigated personally to collect information. These collected 
information and the information collected from n 1 units are to be utilized to have a combined 
estimate of Y, where the combined estimator is 

Theorem : In case of non-response error, if a sub-sample of n2 units is selected without 
replacement, then the combined sample estimator Yw becomes unbiased estimator of Y and the 
variance of Yw is .. 

s2 k -1 
V('Yw) = (1 - !)- + --w2S?, 

'- n n 
· N2 N 

2 1 ~ · - 2 2 1 ~ - 2 n2 
where S2 = N

2 
_ l L.)Yi - Y 2) , S = N _ l L.)Yi - Y) , k = -;;;:t· 

~l ~l 2 

and ( 
n2 ..,.., ) [ n2 ( , · ] ( n2 ) N 2 -E1E2 -:;Y2/n2 = E1 -:;E 'jj2/n2) = E1 -:;'Y2 = Ny 2· 

N1- N2- 1 - - -
E('fiw) = NY1 + NY2 = N[N1Y1 + N2Y2] = Y 

V(yw) = ViE2(Yw) + E1 V2(Yw) =Vi (Y) + E1 [V2(Yw/n1, n2)] 

N-n S 2 

Vi(y) = --S2 = (1 - J)-
Nn n 

But 
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and _ ( n2 _, ) n~ [ 1 1 ] 2 n2 [ ] 2 V2(Yw/n1,n2) = V2 -y2/n1 = 2 -, - - S2 = 2 k - 1 S2· 
n n n 2 n2 n 

_ k - 1 (n2 2) k - 1 N2 2 E1V2(Yw/n1,n2)=--E1 -S2 =---NS2. · n n n 

. s2 k - 1 N2 2 s2 k - 1 2 
V(yw) = [1 - fl-:;+ -n- NS2 = (1 ~ n-;- + -n-w2 S2 

s2 . 
= ( 1 - !)- , if k = n~ = l. 

n n 2 

Further information regarding the sample selection from non-response group and the 
estimate of population mean are studied by El-Badry (1956) and Foradori (1961). 

Hansen and Hurwitz have discussed the value of n~. For this a cost function is considered, 
where the cost function is 

C' =Co+ Cn + C1n1 + C2n;, 

where Co is the overall cost of survey, C is the cost of inclusion of every unit in the first sample, 
C1 is the cost of collection of data from n 1 units, and C2 is the cost of collection of data from 
n~ units. The value of n~ is to be selected in such a way that the value of C' is minimum. 
Assume that the value of C' is different for different samples. Then a cost function of average 
cost of survey can be considered. 

, · , ( ni n~) Given C =Co+Cn+C1n1+C2n2 =Co+n C+C1-:;+C2-:; 

E( C') = Co + n ( C + C1 ~ + C2 :
2

) = Co + n ( C + C1 w1 + C2 ·~2 ). 

Let us consider that V(yw) = V and a specific value of V is Vo. Then the value of n is to 
be selected ill such a way that for fixed cost Vo the value of E(C') is minimum. 

Let E(C') = C. Then n and k are to be estimated in such a way that 

becomes minimum. Here A is the Lagrange's multiplier. By minimizing¢, we have 

I 

( ) _ S
2 

+ (k - l)w~S~ d k( ) _ [C2(S
2 

- w2SD] 2 

n opt - ( 52 ) an opt - (C C , )S2 Vo+ N + iw1 2 

If k (opt) is known, the value of n~ can be estimated. 

In practice, the survey can be started by selecting a sample of size n (opt) without 
replacement. Then from the non-response units another sample of size n~ can be selected 
without replacement and these n~ units are to be investigated personally. To study more 
regarding adjustment of non-response Kish and Hess (1959) and Srinath (1971) can be discussed. 

21.4 Call Backs and its Effects 
The causes of non-response can be classified into 4 classes. These are (1) Non-coverage, 

(2) Not-at-homes, (3) Unable to answer, (4) The hard core. Due to these 4 causes of non
response and hence, non-sampling error creeps in the the estimate. The error due to non
response can be reduced by repeated visits to the unit. However, the error due to non-coverage 

D.E.S.M.--:l6 
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cannot be reduced by repeated visits. The techuique of reduction of non-sampling error due to 
non-coverage has been discussed by Kish and Hess (1958), and Woolsey (1956). Stephan and 
McCarthy (1958), Durbin (1954), and Durbin and Stuart (1954) have proposed the technique 
of reduction of non-sampling error by repeated visits to the sampling unit. They have also 
discussed the costs involved in the repeated samples. 

Deming (1953) has considered a model to examine the analytical results after repeated visit 
to the unit. 

Let a population can be classified into r classes. The classification is done on the basis of 
probability of availability of a sampling unit at home. 

Let w;1 = probability of availability of a unit of j-th class during i-th visit (j = 1. 2, ... , r). 

PJ = proportion of a population unit to be included in .i-th class. 

µj = mean of units of .i-th class. 

O'J == variance of units of .i-th class. 

YiJ = the average of units of j-th class during i-th visit or before the i-th visit. 

Let W;.J > 0 [for all values of j] and E(yiJ) = µ1. Then the population mean of all units is 

r· 

Ti= LP:iVJ· 
j 

Let us now observe those sampling units which are not available during r visits. These units 
can be considered as the units in (r + 1)-th class. Some of the units may be available in the 
first visit and data are collected from those units during first visit. The data may be collected 
during second visit from some of the units, during third visit from some of the units, and so 
on. If finite population correction is neglected, then the units of (r + 1)-th class will follow 
multi-dimensional distribution. The value of this multi-dimensional variable is 

WilPl + W;2P2 + ... + W;rPr + ( 1 - L WijPj) no, 

where n0 is the preliminary sample size. 

Let us consider that the data are collect from n; units during i-th visit. Then the distribution 
of n; units will be binomial distribution, where n 0 units are observed and probability of success 
is L, Wi.JPJ. Therefore, E(n;) = n 0 L, Wi.JPi =expected number of units visited during i-th visit. 

For a fixed value of n;, we have 

n;WiJP.i " , .i = 1, 2, ... , r. 
L., WijP.J 

Here n;1 follows multivariate distribution and its probability is 

Wij PJ 

L WiJPi. 

Let Y; be the mean of sample observations observed during i-th visit, where 

n;LW;JP.J 
j 
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But this conditional expectation does not depend on the values of ni and hence, E(y;) = /i;· 
The bias of Yi is (/ii - µ). 
The conditional variance of Yi for any value of n; .is 

r 

L WiiP.da} + (µJ -µ;)2] 
V(yi/ni) = -1=-

1
-------

n; LWiJPJ 

If n; is replaced by E(n;) and 1/nI is considered negligible, then the conditional variance 
of Yi is found out. Then after i-th visit the mean square error of fh is found out, where 

MSE('.i]i/i) = V(ff;/i) + (Ii; - µ;) 2
. 

21.5 Politz-Simmons Technique 
Hansen and Hurwitz (1946) have proposed an adjustment in the estimator if there is error in 

the estimator due to non-response. Their suggestion is mainly applied when data are collected 
through mail questionnaire. But non-response may occur even in case of data collection by the 
investigator by face to face conversation. The sources of non-response are : (a) the sampling 
unit may be not-at-home during survey, (b) the sampling unit may not be identified, etc. The 
investigator may try repeatedly to collect information, because the estimator will be biased due 
to the non-availability of information from some sampling units. But Politz-Simmons (1946, 
1950) have proposed a method by which the bias due to non-response can be adjusted without 
repeated investigation of the sampling units. · 

The Politz-Simmons method can be explained in the following way : 

(a) The sampling units are to be investigated during randomly selected time, specially at 
night. 

(b) Each unit is to be investigated once. 

(c) The information regarding the stay of sampling units at home before 5 days of survey 
date. This information is collected by any means of communications with the units. 

Let us consider that the i-th unit was present at home ( r, - 1) times before the survey. Then 
r; is the random variable, the values of which are 1, 2, 3, 4, 5, 6. The proportion of i-th unit 
to be present at home during the period is r;/6. At this stage the value of the study variable is 
to be collected for every segment of 6 segments of the time and the total value of each segment 
is to be weighted by 6/r; to estimate the population total. 

Let there be N units in the population. Let us consider the value of the study variable 
of i-th unit is Yi ('i = 1, 2, ... , N) and the total value of Yi for the units who are present at 
home during j-time is Y1. Here j-tirne is the time of collection of data. Then the estimator of 
population total is 

where d; = 1, if i-th unit is found at home 

= 0, otherwise. 
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Let the probability of availability of ·i-th unit during evening is p;. Then 

, ~ (c5;) E(Y) = 6 ~yiE ~ . 
i=l • 

Again, E (~:) = E [c5;E (~;Jc5;)] = P(Ji = l)E [:/c5; = l]. 

Now, if i-th unit is at home, then the probability of r·; = h(I, 2, ... 6} is equal to the 
probability of that i-th unit is at home in preceding (h - 1) times. Then 

6 

E (c5;) = p; ~ _!. ( 5 
) p"- 1 (1 - p;)5-(h-IJ = ~[l - (1 - Pi)6]. 

T; ~ h h - 1 ' 6 
h=I 

(Ji) , Replacing the value of E T; in E(Y), we have 

N N N 

E(Y) = LYdl - (1 - p;)6
] = LYi - LY;(l - p;)6

. 

i=l i=l i=l 

It indicates that Y is not unbiased. The bias will be less, if the units which are not-at-home 
are very small in number. This indicates that the survey should be conducted during a time in 
which most of the units are available at home. 

The mean square error of Y is 

MSE (f') ~ v (Y) + (mas)' ~ E(Y') - [t y, { 1 - (1 - p,)') l + { t y.[l - p,J' r 
E(Y

2
) =E{6z=

8
;.Yi}

2 =36{tyfE(~i) 2 

+ t YiYkE(~' ~k)}· 
' i=l ' i#k=I ' k 

[c5 c5k] (J) (Jk) o ok E ~ - = E ~ E - as i ~ k and hence, ~ and - are independent. 
r, Tk r, Tk r; Tk 

[ 
o; ok] 1 6 6 E - - = -[1 - (1 - p;) J[l - (1 - Pk) ]. 
T; T'k 36 

Then 
, N 6 l ( 6 ) N . 

E(Y2
) = 6 L YTL h h P7(l - p;)6

-h + L YiYk[l - (1 - Pi)6][1 - (1 - Pk) 6
]. 

i=l h=I i#k=I 

MSE (f') ~ t Y? { 6 t. ~ (~) p~(l - p,)'-h - [1 - (1 - p,)6
)'} + [t y,(1 - p,)']' 

If the bias of Y is negligible, then 

MSE (Y) = V(Y) = tYT {t ~ (~) p7(1- p;)6
-" - [1- (1- p;)

6
]
2
}. 

•=l h=l 
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The unbiased estimate of MSE (Y) is also available. For this, let us consider that out of 6 
times j times a unit is at home. Let the number of such units be ni. Let the value of ·i-th unit of 
j-th group he YiJ. Then the estimator of P; of each unit of j-th gro~p is Pi = j /6: j = 1. 2 ..... 6. 
Then the estimator of MSE (Y) is 

6 n1 

v(Y) = LA.i LY;J, 
.i=l i=l 

where 

.. 
This Politz-Simmons technique is fruitful if repeated visits are not possible or repeated visits 

·are not justified. Moreover, the technique is suitable for a situation where the study variable 
value is changed over time. The technique will be less efficient if all the units can be visited 
and information for all units are available during main survey. 

21.6 Response Errors 

The data are collected, usually, by the investigator by face to face conversation. In 
some cases the information are provided by the sampling units himself, specially in case of 
mail ques.tionnaire. If sampling unit is not human being, information are collected by the 
investigator. Whatever be the mode of collection of information there may be a chance of 
misreporting of the information. The misreported information or distorted information are the 
sources of response errors. The sources can be classified as follows : 

(a) Wrong information deliberately provided by the respondent : This case arises 
if data are related to income and expenditure of the respondent. During family budget inquiry 
the response error arises. In opinion poll, specially in political opinion survey, the s?Lmpling 
unit tries to avoid the answer which may go against the government or against the influential 
person. 

(b) Difficulty in understanding questionnaire : Some questions in the questionnaire 
may not be understood by the respondents or the respondents may not know the exact answer 
to some questions. In such cases, answer may be avoided or misinformation may be provided. 
The proper answer to the quest~on regarding health may not be known to a respondent. He 
may give distorted answer. 

( c) Error due to investigator : An investigator may not collect the information properly, 
if he is not well trained for conducting the survey. Distorted information may be recorded due 
to misunderstanding of measuring devices. Question may be asked wrongly or distorted answer 
may be recorded deliberately. In case of question related to opinion survey, the investigator 
may try to influence the respondent according to his/her belief. The investigator may record 
the information by himself if a sampling unit is not available during survey. 

Beside these, there are many other sources of errors. Whatever be the type of error or 
whatever be the direction of error, it affects the estimate of the population parameter. Thus, 
during analysis the errors should not be avoided. Modified analytical techniques should be 
applied to reduce the impacts of the errors. Different authors have discussed the sources of 
errors and they have proposed the analytical techniques to handle such errors. The important 
works in this context are due to Deming (1944), Marks and Mouldin (1950), Marks et al. (1953), 
Mahalanobis (1944), Sukhatme and Seth (1952), Hansen et al. (1951, 1953, 1961, 1964), Kish 
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and Lansing (1954) and Madow (1965). In this section the estimation procedure in presence of 
response error will be discussed. 

Let there be N units in a population and n(::; N) units are selected by simple random 
sampling scheme to estimate the parameter of the population. Let us assume that the 
exact value of the study variable of i-th unit be Xi(i = l, 2, ... , N). Also, assume that the 
collected information of the study variable of i-th unit by j-th investigator during k-th visit be 
YiJk (i = 1, 2, ... , n; j = 1, 2, ... , m and k = 0, 1, 2, ... ni.i ). There are m investigator and j-th 
investigators have collected information l;j times from i-th sampling unit. 

Hore the difference between x, and YiJk is the error due to response. In the error, there may 
be the impact of investigator as well as the interaction of investigator and sampling unit. The 
error may be due to some other random causes. Thus, the value Yi.ik can he expressed as a 
linear function of the impacts of sources of errors, where the model is : 

YiJk = Xi + O:j + /3;1 + e;jk. 

where x; = real value of st1=1dy variable of i-th unit, 

O:j = impact of j-th investigator, 

{3;.i = interaction of j-th investigator with i-th unit, 

eiJk = random error. 

Assume that E[eiik/i,j] = 0 and E[~;j/j] = 0. 
In most cases, the data are collected once. For such type of data the model is 

YiJ =Xi+ Oj + lij· 
Assume that E[i:;1 ] = 0 · 

and E[lu 1 c,,J']=O,ifi=Ji', j=Jj' 

=S;,ifi=i', j=j'. 

Let us discuss the analysis of data using the latter model. For analytical process of former 
model the works of Sukhatme and Seth (1952), Zasepa (1961) and Hansen et al. (1953, 1961, 
1964) may be studied. 

To estimate the population mean let us consider the calculation of sample mean based on 
latter mo<~el. For this, let 

nt n n m 

lij = 0 or 1, l1. = I:Z•i• l-j = L l,_;, l .. =LL lij 
j=l i=l i=lJ=l 

Y-j = mean of l-j observation collected by j-th investigator. 

'fl .. = mean of l .. observations. 

Then Y-.i can be written as 

1 n 1 n 

Y.j = r I: x;l;j + O:j + r I: lijzij 

J i= 1 J i= 1 

Let us investigate whether these two sample means are the unbiased estimators of the 
population mean. Let us assume that there are M investigators in the population. All of them 
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may be employed for the survey or m(~ M) of them can be selected at random for the survey. 
Again, the sampling units can be allocated to the randomly selected investigator at random. 
Let us assume that 

(i) m investigators are selected at random from M investigators, 

(ii) the sampling units are allocated at random to the investigators, 

(iii) every investigator has collected information from same number of sampling units, i.e., 

l.. ( l,. = - = p say). 
n 

Thus, we 'Can have 

1 n 1 n - l.. 
'iJ.1 = l L XiliJ + CtJ + l L lijli.i, where l = nm 

i=l t=l 

and 

Then 

and 
1 N 1 M 

E(Ti .. ) = N L:x; + M La.i =µ+a. 
i=l J=l 

Here µ is the population mean and a is population mean of the bias of investigator. 

It is seen that the sample mean y .. is not the unbiased estimator of the population mean. 
The estimator will be unbiased if a = 0. This will be zero, if the response error is random That 
means on addition of positive and negative values of a.i we shall get the sum as zero. However, 
even if a.i is random its sum may not be zero. Hence, Ti .. is not unbiased. The estimator is to 
be found out so that a becomes minimum. 

Let us now calculate the variance of the estimator. By definition, we have 

. [1 n l n ]
2 

V(y) = E[y-.i - E(y-.i)] 2 = E = L x;l;1 - µ + a1 - a+= L Eijli_i 
l i=l l i=l 

~ E { r t x. ,., _ ,, } , + E( ", _ 1'), + E { r t ,., ,., r 
E [cross-product term] = 0 

The mean TI: x;l;.i is the mean of I units and these I units are randomly investigated by j-th 

investigator. Again, I units are selected from n units and hence, these I units can be considered 
as simple random sample unit selected from N units. Then 

N 
2 1 '°'( . )2 where Sx = N _ 

1 
~ x; - µ . 
i=l 
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It has already been assumed that the j-th inve:;;tigator is selected at random from M 
investigators and D:.J is the bias of j-th investigator. Therefore, the variance of the random 
variable a1 is 

( 
1 ) 1 M 

E(aj - a)2 = 1 - M s;, where s; = M - 1 L(aj - a) 2
. 

J=l 

Again, E;j is the error of data collection recorded from I units investigated by j-th investigator 
and mean of E;j is 

It is known that E(t:;j) = 0 and V(t:;J) = s;. 

Bence, E { ! t t:;.i l;i } 

2 

[ i=I 

s2 
i 

I 

and 
- 2 _ N - l 2 M - 1 2 Sa 

V(y.1) = NL Sx +-;:{Sa+ T· 
1 1 

If M and N are big, M and N may be neglected. 

- 1 2 2 2 
Then V(y) = 7(Sx + S,) +Sa. 

Similarly, V(y .. ) = E[y. - E(Y . .]2 

[

1 n 1 1 n m ]

2 

= E ~ L X; - µ + -:;;; L O'.j - Q + l LL lij l;j 

' J 

~ E { ~ ~ x; - µ}' + E { ~' ~a; - "}' + E {IL L •.,l.,}' 
But x 1 , x2 , ... , Xn are the values of the variable observed from n sampling units selected 

from N units by simple random sampling method. So, 

It has already been mentioned that m investigators are selected from M investigators at random 
and O'.j is the bias of j-th investigator. Therefore, 

{ }

2 

l m M - -m 2 
E. - L(a1 - a) = M Sa. 

rn .i=I m 

l n m _ 

Again, l LL E;jli:i is the mean of l =ml observations Eij· 
i j 
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Therefore, 

1 1 
Neglecting N and M, we have 

v(- ) 3; 8~ 3; 
y. =-:;;+-:;;;+-z 

32 + 32 32 
V (iJ .. ) = x < + __!!, if p = 1 and l = np = n. 

n rn 

It can also be written as 

V(iJ .. ) = 3; + 8~ + 3; + 8 2 (]__ _ .!_) = 8; + 8 2 (]__- .!_)· 
n "'rn n n "'rn n 

569 

This result is true if population is infinite and M is big and data are collected from any unit 
once. In that case, 

32 = 32 + 32 + 32 
y x "' <. 

Hansen et al. (1951) have given another form of V(i] .. ), where 

v (iJ .. ) = ~ { 1 + p (; - 1) } . 
Here p is thP correlation coefficient . of data collect.Pd from different units by the same 
investigator. If N and M an' snfficicntly large, 

p8; = 8~. 

The above V(i] .. ) formula ii:tdicates that, if the number of investigators are less, then any 
investigator will collect data from more units. In that case, even if p is small, the V(i] .. ) will 
be increased. If p = 0, then 

32 
V(iJ .. ) = -1L, 

n 
which is the usual variance of iJ... Again, if a.i is same for all investigators or rn = n, p = 0. 
But in practice, p > 0 as there is a tentlency among the investigators to record high or low 
value of any characteristic. 

The variance of the estimator 'Y .. can be estimated by 

_ s~ n - rn 1 2 2 v(y) = - + -- -(s - s ). n rn - 1 n u eo 

Here 
1 n 

2 L:(- - )2 s =-- .-
u n - l Y.. Y .. 

i=l 
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Example 21.1 : In a police station area there are 1000 jute growing farmers. Thirty 
farmers are selected by simple random sampling scheme. The data on production of jute from 
the selected farmers are collected by two investigators. The data on jute production (y in 
quintal) of selected farmers are collected by asking questions to the head of household and are 
given below. Estimate tqe average production of jute per farmer and also estimate the variance 
of your estimator. 

SI. No. Jute production y quintal SI. No. Jute production y quintal 

1st investigator 2nd investigatpr 

Yi1 Yi2 

01 10.5 10.0 16 

02 12.8 13.0 17 

03 15.0 15.8 18 

04 20.5 19.0 19 

05 21.5 20.5 20 

06 16.0 17.0 21 

07 25.0 24.0 22 

08 14.8 14.0 23 

09 10.5 9.0 24 

10 15.G 16.0 25 

11 18.0 18.5 26 

12 20.5 20.0 27 

13 25.8 25.0 28 

H 10 0 9.5 29 

15 11.8 11.0 30 

Total Y·I = 247.7 y.2 = 242.3 Total 

Solution: Here N = 1000, n = 30, m = 2, li].= 1. 
n 2 

Total' number of observations, l.. = L L lij = 60 = l, 
i=l j=l 

1st investigator 

Yi I 

30.0 

22.0 

24.0 

18.5 

16.7 

12.0 

11.5 

5.8 

20.0 

24.0 

20.0 

10.2 

9.5 

8.0 

12.5 

Y·I = 244.7 

2 30 
. " " - l.. 60 li. = ~ lij = 2, l-j = ~ l;j = 30, l = n x m = 30 x 2 = 1. 

j=l i=l 

30 2 

Total of observatif,ns, L L Yii = 982.6 = y ... 
i=l j=l 

30 30 

Y·l = L Yil = 492.4, Y·2 = L Yi2 = 490.2. 
i=l i=l 

Yi· = Yil + Yi2, 'ih = -l
1 

x Yi, i = 1, 2, ... , 30 . .. 

2nd investigator 
Yi2 

32.0 

20.0 

26.0 

20.0 

16.0 

13.5 

11.0 

6.8 

22.0 

25.0 

19.0 

10.5 

8.0 

4.0 

14.0 

y.2 = 247.8 
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Yi· 20.5 25.8 30.8 39.5 42.0 33.0 49.0 28.8 19.5 31.0 36.5 40.5 

Th 10.25 12.9 15.4 19.75 21.0 16.5 24.5 14.4 9.75 15.5 18.25 20.25 

Yi· 50.8 19.5 22.8 62.D 42.0 50.0 38.5 32.7 25.5 22.5 12.6 42.0 

'ih 25.4 9.75 11.4 31.0 21.0 25.0 19.25 16.35 12.75 11.25 6.3 21.0 

Yi· 49.0 39.0 20.7 17.5 12.0 26.5 24.5 19.5 10.35 8.75 6.0 13.25 

Assume that rn = 2 investigators are selected from M investigators, where M is large. Then, 
the average production of jute per farmer is 

1 30
' 

2 982.6 
y .. = ~ L L Yij = 60 = 16.38. 

i=l j=l 

' .......... "" 2 y
2 (982.6) 2 

Total sum of squares = ~ ~ Yij - _l .. = 17989 -
6 

= 1897.287. 
" 0 

L: y~ y 2 482753.8 (982.6) 2 

Sum of squares (investigators) = --;;2 - f. = 
30 

-
60 

= 0.0807. 

s~ = n ~ 
1 
[L fit. - ny~] = 3~ [9158.4625 - 30 x (16.38) 2

] = 1109.3305. 

s;0 = l-l rn [LLYfj -lLY~j], fi.1=15.41, fi.2 = 16.24 

= -
1

-[17989-1x536.2837] = 300.9089. 
60 - 2 

Therefore, the estimate of V (y .. ) is 

v(y .. ) = 
8~ + ~ 2.(s~ - s;0 ) = ll0~~305 + 3

2
°_-

1
2 

x 
3
1
0

(1109.3305- 300.9089) 
n rn-ln · 

= 36.9768 + 754.5268 = 791.5036. 

21. 7 Determination of Optimum Number of Investigators 
The variance formula of 'Y .. indicates that, if a large number of investigators are employed, 

the V(fi .. ) will be small. But, in practice, there are some problems if a large number of 
investigators are employed. The cost of the survey will be increased with the increase in 
number of investigators. There will be possibility of employment of inefficient investigators 
when its number will be increased and due to inefficient investigators there will be chances of 
higher response error leading to inefficient estimator. Thus, the number of investigators is to be 
employed in such a way that the cost of the survey will be fixed but variance of the estimator 
will be minimum. 

Let there be a simple random sample of n units and the sample units are allocated randomly 
to rn investigators. Let us consider that cost function of the survey is 

C = C1n + C2m + C3,;:;;:m,, 

where C1 = cost of data collection from each unit, 

C2 =cost of employment of an investigator, 

C3 = proportional cost to the cost of travel to each unit. 
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I:et us consider that the cost of survey is fixed and it is C0 . The values of n and m are to be 
fouria out so that for fixed cost the variance of the estimator is minimum. Let ¢ be a function 
which indicates the minimum variance of y. subject to fixed cost, where 

Here >. is the Lagrange's multiplier. Now, the values of>., n and m are to be found out from 
the equations : 

8¢ 8¢ 
a>. = 0, an = 0 and 

From the solution of these 3 equations, we have 

8¢ = 0 am . 

m2 C3 (m)3/2 C3 S~ C1S~ 
~ + 2C2 -; - 2C2 (S~ - s;) - C2 (S~ - S~) = O. 

This equation has one positive real root and one negative real root. Moreover, it is difficult 
to have a simple formula of root. As a result, we have to find the root by trial and error method. 
Accordingly, if C1 = 0, we have 

(
rn)3/2 C3 m C3 S~ 
°;' + 2C1 -:;;:; - 2C1 (S~ - S~) = O. 

A.t this stage also it is difficult to have simple formula for m/n. 
Again, let C3 = 0, then we have 

Let Co = C1 n + C2m, then 

Co n = ~~~~-;::::===:;:;;== 
Jc s 2 

C1+C2 *~ 2 II o 

• 

and m ~Co 
C1 s; 
C2 S~ - S · S(a)' 

This last result indicates that the number of investigators will be increased with the increase 
in S~ compared to S~. Again, if number of investigators is increased, the response error is also 
increased and the value of a will be increased. 

Exercise 

1. Distinguish population and sample. What is meant by sampling? Discuss, in short, the 
different sampling techniques. 

2. What is sampling? Write down its advantages, disadvantages and uses. 

3. Distinguish between census and sample survey. Explain the sources of errors in sample 
survey. 

4. What is sample survey? What is the objective of sample survey? Explain the sources of 
errors in sample survey. 

5. Define population, sample, frame, sampling error and non-sampling error. 

Prepare a questionnaire to conduct the following survey : 

(i} To study the causes and effects of dropout in primary education. 
(ii} To study the impacts and reasons of non-adopting family planning methods. 
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(iii) To estimate the number of diabetic and heart patients in a rural area. 
(iv) To study the housing problem in rural area. 
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(v) To study the socioeconomic condition of industrial workers in an industrial belt. 

6. Distinguish between 

(a) Precision and efficiency pfestimator 

(b) Biased and unbiased estimators 

(c) Standard error and standard deviation. 

What is meant by survey? How does sample survey differ from census? Explain the 
merits and demerits of sample survey. 

7. Write down the objectives of the sample survey. Discuss the principles of sample survey. 
Explain the sources of errors in sample survey. 

8. Whaf, do you mean by simple random sampling? How docs it differ from random sampling. 
Explain the method of selection of a simple random sample. 

Show that sample mean from a simple random sample is an unbiased estimator of 
population mean. Find the variance of your estimator. 

9. Explain simple random sampling with and without replacement with examples. Find an 
unbiased estimator of variance of simple random sample mean. 

The following data represent the number of ever-born children of some couples in a 
rural area. 

Select a simple random sample of 253 couples and estimate the average ever-born children 
per couple. Also find 953 confidence interval for the average ever-born children per couple. 

SI.No. Ever born SI.No. Ever born SI.No. Ever born I 
of couple children of couple children of couple children 

1 5 21 6 41 6 
2 3 22 7' . 42 2 
3 0 23 4 43 2 
4 4 24 5 44 1 
5 2 25 2 45 1 
6 2 26 3 46 2 
7 1 27 3 . 47 2 
8 2 28 0 48 3 
9 4 29 1 49 4 

'10 3 30 2 50 4 
11 0 31 3 51 2 
12 1 32 2 52 3 
13 1 33 2 53 4 
14 2 34 4 54 4 
15 5 35 5 55 2 
16 4 36 4 56 4 
17 3 37 3 57 6 
18 3 38 ? 58 5 
19 2 39 4 59 2 
20 2 40 5 60 3 
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10. What is meant by simple random sampling? Explain the method of estimation of 
population proportion along with its estimated standard error. 

How would you decide about the sample size t'o estimate a parameter for a pre-determined 
precision? 

In a sample survey on family planning activities it is observed that 55% out of 500 ever 
married couples have adopted at least one ,of the family planning methods. Find 95% 
confidence interval for the population proportion of adopter couples. 

If the population size N = 10000, find the sample size to estimate population proportion 
of adopter couples with 95% confidence and 5% precision. 

11. Ex.plain the advantages and disadvantages of simple random sampling. Distinguish 
.between random sampling and simple random sampling. How does random sampling 
differ from judgement sampling? Let there be N units in a population, two observations 
of which are YI and y2 . Let a sample of size n be selected without replacement from 
the population apart from· these two observations. Consider that YI + y2 + Ny' is the 
estimator of population total and Ny is the usual estimator of population total. Compare 
the efficiency of these two estimators. 

In an· area there are N = 1000 farmers involved in white revolution. A simple random 
sample of n = 25 has been selected and milk production (y kg) per day of these farmers 
are recorded and given below : 

y: 15.5, 12.8, 15.0, 20.0, 10.5, 16.0, 14.0, 10.0, 10.0, 11.0, 12.4, 13.0, 20.0. 24.0, 8.5, 12.0, 
15.0, 16.0, 17.5, .20.0, 16.5, 17.8, 11.5, 16.2, 18.5. 

Estimate total milk production of the farmers in the study area. Find 95% confidence 
interval for the total milk production. 

12. Define simple random sampling. Write down the different steps to select a simple random 
sample of size n to estimate the socioeconomic condition of people living in a slum area. 

Show that in case of simple random sampling sample variance is an unbiased estimator 
of population variance. Also show that for a simple random sample of size n, 

V(Y) = -- -. (
N - n) a 
N- l n 

13. Define stratified random sampling. How does it differ from simple random sampling? 
Explain the necessity of stratified sampling. 

What is meant bi allocation problem in stratified sampling? What arc the different 
methods of allocation of sample sizes? 

Show that, for a stratified sample the variance of stratified random sample mean is 
minimum, if n,. ex N,.S,.. Also find the minimum variance ofy81 • 

14. Write down the advantages and disadvantages of stratified sampling. Explain a practical 
situation where stratified random sampling can be applied profitably. 

. 1 '""" For stratified random sampling when 'fl = - ~ n11'fl1i becomes an unbiased estimator of 
n 

h 
population mean, find the variance of this estimator. 

Show that stratified random sampling is more efficient than simple random sampling. 
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15. Discuss the methods of deciding strata and strata sizes. Find the effect of f'rror in strata 
sizes. Show that, for a fixed total cost of survey V(Yst) is minimum, if nh ex NhSh/y'Ch. 
Find the formula to find n. Also find the minimum variance of Yst· 

16. Discuss the necessity of stratified random sampling. Show that, if 1/ Nh is negligible, then 

Distinguish between quota sampling and stratification after sampling. 

17. Discuss the method of construction of strata. Suggest a stratified random sampling scheme 
to estimate the total fish production in an area. Also suggest the estimator along with 
its sampling variance. 

18. What do you mean by stratified random sampling? Explain the practical situation where 
we need stratified random sampling. Show that stratified sampling is more precise than 
simple random sampling. 

What is meant by allocation problem? Explain different methods of allocation. 

19. Define strata, stratified sampling. Suggest estimator of population .total in case of 
stratified sampling. Find sampling variance of your· estimator. 

What is meant by optimum allocation? Find the variance of fist in case of optimum 
allocation. 

20. To estimate the proportion of adopter females in a district a survey is conducted. The 
survey result is shown below : 

Level of education No. of couples Sample number Proportion of adopter 
of female in .the area of couples couples in the sample 

Illiterate 640 150 0.35 

Primary 648 145 0.48 

Secondary 344 92 0.45 

Higher 198 46 0.58 

Estimate the proportion of adopter couples in the area. Also estimate the standard error 
of your estimator. Find the values of n,, for Neyman allocation using sample information. 
Do you think that the estimator will be affected due to the allocation of n,, using sample 
information? 

21. What arc the different methods of estimation. Co111parc each method of estimation in 
case of simple random sampling. 

22. What do you mean by ratio and regression methods of estimation? Under what conditions 
a ratio estimator will be unbiased? Find the relative bias of ratio estimator. 

23. Define rcp;rcssion estimator. How docs if differ from ratio estimator? Show that regression 
estimator is more efficient than ratio estimator. 

24. What is the difference between unbiased ratio estimator and unbiased type ratio 
estimatbr? Suggest an unbiased ratio estimator of population total. How would you 
estimate the standard error of your estimator? · 

25. The variables y and x are related by y; =a+ (Jx; + E;. 

Find an estimator of popplation total assuming the above linear model of y and x. Also 
suggest an estimator of variance of your estimator. 
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26. If R is distributed normally for large sample size, find V(R). · 

If in a simple random sample the value of b is known, then 

VOJir)= l-f_NI "°'{(yi-y)-b(xi-y)} 2
, where Yir=y+b(X-x). 

n -IL,, 

27. Discuss the importance of using auxiliary varjable in estimating parameter. Show that 
ratio estimator is BLUE. Also show that ratio estimator is more precise than simple 
estimator. 

28. In an administrative unit, there are 150 villages. Thirty villages are randomly selected 
from .these 150 villages. The number of cows (y) in· the selected villages are recorded. 
'rM number of cows in those villages during agriculture census (x) are also recorded. The 
information are given in the next page : 

SI.No. x~ y SI.No. x y SI.No. x Y. 
of village of village of village 

01 400 415 11 125 120 21 900 905 
02 180 202 12 240 230 22 870 950 

03 275 320 13 180 201 23 660 650 

04 240 220 14 95 90 24 225 228 

05 126 150 15 115 108 25 278 315 

06 97 120 16 120 128 26 570 460 

07 140 125 17 172 168 27 300 350 

08 275 270 18 290 295 28 230 260 

09 180 210 19 315 310 29 500 525 

10 200 200 20 440 460 30 610 580 

The total number of cows in the study area during agriculture census was recorded as 
60000. Esti.r,nate the total number of cows in the study area. Find 953 confidence interval 
for your estimator. 

29. Distinguish between regression and ratio estimator. Find bias and mean square error of 
ratio estimator. Under what _conditions ratio estimator becomes unbiased? 

Estimate total number of cows by regression method of estimation. Use data of Example 
28. Compaxe ratio estimator and regression estimator. 

30. Give a comparative study of ratio estimator, regression estimator and simple estimator. 

Prove that, if population regression coefficient B is known, then regression estimator is 
unbiased and variance of this estimator becomes minimum. 

31. What is meant by systematic sampling? Write down the merits and demerits of this 
sampling scheme. Show that, systematic sampling is more precise than simple random 
sampling and stratified random sampling. 

32. Explain the method of selecting systematic sample. Show that, stratified random ~ampling 
is more precise than systematic sample when there is a linear trend in population 
observations. 

33. Discuss the method of selecting systematic sample from different populations. How would 
you estimate the variance of systematic sample mean? 

Show that, if S! > S 2 , systematic sampling is more precise than simple random sampling. 



NON-SAMPLING ERROR 577 

34. Explain linear and circular systematic sampling. Give a comparative study of these two 
sampling schemes. 

N-n 1 N 
Show that Cov (Yn• Xn) = -:;;:N N _ l ~)xi - Xn)(yi - Yn), 

where 'Xn and Yn are the sample means of n observations selected from N units of the 
variables x and y, respectively. 

35. The following data represent the amount of cultivable land (x hectare) and amount of 
land for jute (y hectare) cultivation in some villages. 

SI.No. x y SI.No. x y SI.No. x y SI.No. x y 

of village of village of village of village 

01 1600 218 16 875 115 31 672 220 46 603 121 
02 1508 108 17 1348 546 32 812 183 47 882 208 
03 592 12 18 1550 212 33 970 178 48 472 115 
04 2001 316 19 975 178 34 664 172 49 1692 442 
05 508 112 20 1664 352 35 360 82 50 1308 348 
06 2408 15 21 510 108 36 472 115 51 1550 550 
07 618 211 22 692 207 37 698 220 52 1012 392 
08 1542 312 23 428 12 38 890 165 53 888 144 
09 651 178 24 1005 118 39 1507 312 54 907 268 
10 750 121 25 572 119 40 1175 476 55 765 119 
11 1548 225 26 648 212 41 225 52 56 908 178 
12 1672 348 27 1565 365 42 365 88 57 555 126 
13 1807 478 28 972 182 43 750 155 58 845 321 
14 592 18 29 1015 362 44 872 178 59 932 122 
15 672 211 30 908 184 45 987 384 60 1068 328 

(i) Select a systematic sample of 253 observations and show that systematic sampling 
is more precise than simple random sampling and stratified random sampling. 

(ii) Find ratio and regression estimator of total cultivable land for jute from a simple 
random sample of n = 10 villages. Also estimate the standard error of your 
estimators. 

(iii) If these 60 villages are considered a simple random sample of villages from 300 
villages, then select a second sample of 15 villages and find ratio estimator for 
double sampling to estimate the total cultivable land for jute. Also estimate the 
standard error of your estimator. 

36. Define cluster sampling. What is the need of this sampling technique? Write down 
the advantages and disadvantages of this sampling procedure. Suggest an estimator of 
population total under cluster sampling. Also find its sampling variance. 

37. What are the reasons of cluster sampling? Compare this sampling technique with simple 
random sampling. Wh~n this sampling technique and simple random sampling become 
equally precise? 

38. Discuss the advantages of cluster sampling. Consider that the clusters are of unequal 
sizes. In such a situation suggest an estimator of population total along with its sampling 
variance . . 

D.E.S.M.-37 
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39. Distinguish between cluster sampling and two-stage sampling. Mention some practical 
situations where two-stage sampling can be used profitably. Discuss the advantages 
of these two sampling schemes compared to simple 'random sampling. If intra-class 
correlation coefficient is positive, then how would you plan cluster sampling? 

40. What do you mean by multi-stage sampling? What is the need of this sampling scheme? 
Explain it with special reference to two-stage sampling. 

If n clusters are selected at random from N clusters and if m ultimate units are selected 
from M ultimate units, then suggest an estimator of population total. How would you 
estimate the variance of your estimator? 

41. In a district there are 1800 villages. The' district is divided into 16 administrative units. 
Four administrative units are randomly selected and from the selected units some villages 
are randomly selected. The number of families in each village and number of cows in the 
villages are recorded and given below : 

SI.No. No. of Villages No. of Selected No. of families No. of cows in 
of Unit in unit villages in selected villages selected villages 

Mi mi ·.t..·i; Yi1 

1 18 5 28, 132, 96, 50, 62 12, 110, 45, 15, 20 

2 10 3 62, 75, 44 15, 48, 12 

3 7 2 70, 82 50, 62 
4 15 4 52, 48, 110, 92 25, 12, 68, 88 -

Estimate the number of cows in the district. Also estimate the standard error of your 
estimate. 

Estimate the number of cows by ratio tnethod of estimation and estimate the variance of 
your estimate. 

42. Define two-stage and three-stage samplings. Mention some practical situations where 
these sampling techniques can be used. 

Suggest estimator of population total in two-stage sampling when clusters are of unequal 
size. Find the sampling variance of your estimator. 

43. Explain three-stage sampling with example. To estimate the cost of living index number 
of industrial workers in a state, suggest a two-stage sample design to select the workers. 

How would you estimate the population characteristic from such a sampling design? Also 
find the sampling variance of your estimator. 

44. What is the difference between two-stage sampling and two-phase sampling? Explain the 
necessity of two-phase sampling. 

How would you estimate the population mean under double sampling scheme? Is your 
estimator unbiased? 

45. Show that ratio estimator and regression estimator in case of double sampling are biased. 
Find the relative bias of ratio estimator in case of double sampling. Also fi~d the variance 
of such an estimator. 

46. Explain double sampling for difference estimator along with the method of estimation. 

41. Explain the rules for double sampling. Mention some practical populations where double 
sampling can be used. 
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Find the conditions under which double sampling is more precise than simple random 
sampling for same cost. 

48. Define double sampling. How would you construct strata using double sampling scheme? 
Suggest estimator of population mean in such stratified sampling. Also find the sampling 
variance of your estimator. 

49. How docs double sampling differ from two-stage sampling? Explain the necessity of double 
sampling. 

From a double sample the following information are recorded : n 1 = 300, n = 87, 
l:(Y - Y) 2 = 17284, l:(x - x) 2 = 3248, l:(x - x)(y - y) = 5114. 

Estimate the variance of the regression estimator of population mean. 
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1 2 3 4 

1 51449 39284 85527 
2 16144 56830 67507 
3 48145 48230 99481 
4 83780 48351 85422 
5 95329 38482 93510 

6 11179 69004 34273 
7 94631 52413 31524 
8 64275 10294 35027 
9 72125 19232 10782 

10 16463 42028 27927 

11 10036 66273 69506 
12 85356 51400 88502 
13 84076 82087 55053 
14 76731 39755 78537 
15 19032 73472 79399 

16 72791 59040 61529 
17 11553 00135 28306 
18 71405 70352 76763 
19 17594 10116 55483 
20 09584 23476 09243 

21 81677 62634 52794 
22 45849 01177 13773 
23 97252 92257 90419 
24 26232 77422 76289 
25 87799 33602 01931 

26 46120 62298 69126 
27 53292 55652 11834 
28 81606 56009 06021 
29 67819 47314 96988 
30 50458 20350. 87362 

31 59772 27000 97805 
32 94752 91056 08939 
33 01885 82054 45944 
34 85190 91941 86714 
35 97747 67607 14549 

36 43318 84469 26047 
37 47874 71365 76603 
38 24259 48079 71198 
39 31947 64805 34133 
40 37911 93224 87153 

41 82714 15799 93126 
42 82927 37884 74411 
43 65934 21782 35804 
44 56953 04356 68903 
45 16278 17165 67843 

46 96339 95028 48468 
47 84110 49661 13988 
48 49017 60748 03412 
49 43560 05552 54344 
50 25206 15177 63049 

Appendix-1 
Table of Random Digits 

5 6 7 8 

67168 91284 19954 91166 
97275 25982 69294 32841 
13050 81818 25282 66466 
42978 26088 17869 94245 
39170 63683 40587 80451 

36062 . 26234 58601 47159 
02316 27611 15888 13525 
25604 65695 36014 17988 
30615 42005 90419 32447 
48403 88963 79615 41218 

19610 01479 92338 55140 
98267 73943 25828 38219 
75370 71030 92275 55497 
51937 11680 78820 50082 
05549 14772 32746 38841 

74437 74482 76619 05232 
65571 34465 47423 39198 
64002 62461 41982 15933 
96219 85493 96955 89180 
65568 89128 36747 63692 

01466 85938 14565 79993 
43523 69825 03222 58458 
01241 52516 66293 14536 
57587 42831 87047 20092 
66913 63008 03745 93939 

07862 76731 58527 39342 
47581 25682 64085 26587 
98392 40450 87721 50917 
89931 49395 37071 72658 
83996 86422 58694 71813 

25042 09916 77569 71347 
93410 59204 04644 44336 
55398 55487 56455 56940 
76593 77199 39724 99548 
08215 95408 46381 12449 

86003 34786 38931 34846 
57440 49514 17335 71969 
95859 94212 55402 93392 
03245 24546 48934 41730 
54541 57529 38299 65659 

74180 94171 97117 31431 
45887 36713 52339 68421 
36676 35404 69987 52268 
21369 35901 86797 83901 
49349 90163 97337 35003 

12279 81039 56531 10759 
75909 35580 18426 29038 
09880 94091 90052 43596 
69418 01327 07771 25364 
12464 16149 18759 96184 

. 581 

9 10 11 

70918 85957 19492 
20861 83114 12531 
24461 97021 21072 
26622 48318 73850 
43058 81923 97072 

82248 95968 99722 
43809 40014 30667 
02734 31732 29911 
53688 36125 28456 
43290 53618 68082 

81097 73071 61544 
13268 09016 77465 
97123 40919 57479 
56068 36908 55399 
45524 13535 03113 

28616 98690 24011 
54456 95283 54637 
46942 36941 93412 
59690 82170 77643 
09986 47687 46448 

44956 82254 65223 
77463 58521 07273 
23870 78402 41759 
92676 12017 43554 
07178 70003 18158 

42749 57050 91725' 
92289 41853 38354 
16978 39472 23505 
53947 11996 64631 
97695 28804 58523 

62667 09330 02152 
55570 21106 76588 
68787 36591 29914 
13827 84961 76740 
03672 40325 77312 

28711 42833 93019 
58055 99136 73589 
31965 94622 11673 
47831 26531 02230 
00202 07054 40168 

00323 62793 ll995 
35968 67714 05883 
19894 81977 87764 
68581 02397 55359 
34915 91485 33814 

19579 00015 22829 
79111 56049 96451 
21424 16584 67970 
77373 34841 75927 
15968 89446 07168 
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z 

-3.4 
-3.3 
-3.2 
-3.l 
-3.0 
-2.9 
-2.8 
-2.7 
-2.6 
-2.5 
-2.4 
-2) 
-2.2 
-2.1 
-2.0 
-1.9 
-1.8 
-1.7 
-1.6 
-1.5 
-1.4 
-1.3 
-1.2 
-1.1 
-1.0 
-0.9 
-0.8 
-0.7 
-0.6 
-0.5 
-0:4 
-0.3 
-0.2 
-0.l 
-0.0 
-3.5 
-4.0 
-4.5 
-5.0 
-6.0 

DF..SIGN or• ExPF.RIMF:NTS AND SAMPI,ING Mr-:nmos 

Appendix-2 

The table gives the probability that the standard 
normal random varlable will fall at or below z 

The Standard Normal Probability Distribution 

.00 .01 .02 .03 .04 .05 .06 .07 

.0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 

.0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 

.0007 .0006 .0006 .0006 .0006 .0006 .0006 .0005 

.0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 

.0013 :0013 .0013 .0012 .0012 .0011 .0011 .0011 

.0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 

.0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 

.0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 

.0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 

.0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 

.0082 .0080 .0078 .0075 .0073 .. 0071 .0069 .0068 

.0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 

.0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 

.0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 

.0228 .0222 .0217 .0212. .0207 .0202 .0197 .0192 

.0287 .0281 .0274 .0268 ,.0262 .0256 .0250 .0244 

.0359 .0351 .0344 .0336 .0329 .0322 .O::ll4 .0307 

.0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 

.0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 

.0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 

.0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 

.0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 

.1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 

.1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 

.1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 

.1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 

.2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 

.2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 

.2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 

.3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 

.3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 

.3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 

.4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 

.4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 

.5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 

.0002 

.00003 

.000003 

.0000003 

.000000001 

.08 .09 

.0003 .0002 

.0004 .0003 

.0005 .0005 

.0007 .0007 

.0010 .0010 

.0014 .0014 

.0020 .0019 

.0027 .0026 

.0037 .0036 

.0049 .0048 

.0066 .0064 

.0087 .0084 

.0113 .0110 

.0146 .0143 

.0188 .0183 

.0239 .0233 

.0301 .0294 

.0375 .0367 

.0465 .0455 

.0571 .0559 

.0694 .0681 

.0838 .0823 

.1003 .0985 

.1190 .1170 

.1401 .1379 

.1635 .1611 

.1894 .1867 

.2177 .2148 

.2483 .2451 

.2810 .2776 

.3156 .3121 

.3520 .. 3483 

.3897 .3859 

.4286 .4247 

.4681 .4641 



APPENDIX 583 

Appendix-2 (Continued) 

z ' .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .81:33 

0.9 .8159 8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 
1. 0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 

1.2 .8849 .8869 .~888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
1 .. .I .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 

2.3 .9893 :9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 
3.3 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9996 .9997 
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 
3.5 .9998 

3.6 .99997 

3.7 .999997 

3.8 .9999997 

3.9 .999999999 
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Appendix-3 
Critical Values for Chi-Squared Tests 

Degrees of 10% Level 5% Level 1% Level 0.1% Level 
Freedom 

1 2.706 3.841 6.635 10.828 
2 4.605 5.991 9.210 13.816 
3 6.251 7.815 11.345 16.266 
4 7.779 9.488 13.277 18.467 
5 9.236 11.071 15.086 20.515 

6 10.645 12.592 16.812 22.458 
7 12.017 14.067 18.475 24.322 
8 13.362 15.507 20.090 26.124 
9 14.684 16.919 21.666 27.877 

IO 15.987 18.307 23.209 29.G88 

11 17.275 19.675 24.725 31.264 
12 18.549 21.026 26.217 32.909 
13 19.812 22.362 27.688 34.528 
14 21.064 23685 29.14! :36.12:3 
15 22.307 24.996 :m.578 37.697 

16 23.542 26.296 32.000 39.252 
17 24.7,69 27.587 33.409 40.790 
18 25.989 28.869 34.80& 42.:312 
19 27.204 30.144 36.191 43.820 
20 28.412 :n.410 37.566 45.315 

21 29.615 32.671 38.932 46.797 
22 30.813 33.924 40.289 48.268 
23 32.007 35.172 41.638 49.728 
24 33.196 36.415 42.980 51.179 
25 34.382 37.652 44.314 52.620 

26 35.563 38.885 45.642 54.052 
27 36.741 40.113 46.963 55.476 
28 37.916 41.:3.17 48.278 56.892 
29 39.087 42.557 49.588 58.301 
30 40.256 43.773 50.892 59.703 

31 41.422 44.985 52.191 61.098 
32 42.585 46.194 53.486 62.487 
33 43.745 47.400 54.776 63.870 
34 44.903 48.602 56.061 65.247 
35 46.059 48.802 57.342 66.619 

36 47.212 50.998 58.619 67.985 
37 48.363 52.192 59.893 69.346 
38 49.513 53.384 61.162 70.703 
39 50.660 54.572 62.428 72.055 
40 51.805 55.758 63.691 73.402 

41 52.949 56.942 64.950 74.745 
42 54.090 58.124 66.206 76.084 
43 55.230 59.304 67.459 77.419 
44 56.369 60.481 68.710 78.749 
45 57.505 61.656 69.957 80.077 

46 58.641 62.830 71.201 81.400 
47 59.774 64.001 72.443 82.720 
48 60.907 65.171 73.683 84.037 
49 62.038 66.339 74.919 85.351 
50 63.167 67.505 76.154 86.661 
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Appendix-3 (Continued) 

Degrees of 10% Level 5% Level 1% Level 0.1% Level 
Freedom 

51 64.295 68.669 77.386 87.968 
52 65.422 69.832 78.616 89.272 
53 66.548 70.993 79.843 90.573 
54 67.673 72.153 81.069 91.872 
55 68.796 73.311 82.292 93.167 

56 69.919 74.468 83.513 94.461 
57 71.040 75.624 84.733 95.751 
58 72.160 76.778 85.950 97.039 
59 73.279 77.931 87.166 98.324 
60 74.397 79.082 88.379 99.607 

61 75.514 80.232 89.591 100.888 
62 76.630 81.381 90.802 102.166 
63 77.745 82.529 92.010 103.442 
64 78.860 83.675 93.217 104.716 
65 79.973 84.821 94.422 105.988 

66 81.085 85.965 95.626 107.258 
67 82.197 87.108 96.828 108.526 
68 83.308 88.250 98.028 109.791 
69 84.418 89.391 99.228 111.055 
70 85.527 90.531 100.425 112.317 

71 86.635 91.670 101.621 113.577 
72 87.743 92.808 102.816 114.835 
73 88.850 93.945 104.010 116.091 
74 89.956 95.081 105.202 117.346 
75 91.061 96.217 106.393 118.599 

76 92.166 97.351 107.583 119.850 
77 93.270 98.484 108.771 121.100 
78 94.374 99.617 109.958 122.348 
79 95.476 100.749 111.144 12:3.594 
80 96.578 101.879 112.329 124.839 

81 97.680 103.010 113.512 126.083 
82 98.780 104.139 114.695 127.324 
83 99.880 105.267 115.876 127.565 
84 100.980 106.395 117.057 129.804 
85 102.079 107.522 118.236 131.041 

86 103.177 108.648 119.414 132.277 
87 104.275 109.773 120.591 133.512 
88 105.372 110.898 121.767 134.745 
89 106.469 112.022 122.942 135.978 
90 107.565 113.145 124.116 137.208 

91 108.661 114.268 125.289 138.438 
92 109.756 115.390 126.462 139.666 
93 110.850 116.511 127.633 140.893 
94 111.944 117.632 128.803 142.119 
95 113.038 118.752 129.973 143.344 

96 114.131 119.871 131.141 144.567 
97 115.223 120.990 132.309 145.789 
98 116.315 122.108 133.476 147.010 
99 117.407 123.225 134.642 148.230 

100 118.498 124.342 135.807 149.449 
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Confidence level : 
Two-sided 
One-sided 

Hypothesis Test level : 
Two-sided 
One sided 

For one 
Sample: 

n 

2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

In general: 
Degree of 
freedom 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

Infinity 

DRSIGN OF EXPRRIMRNTS AND SAMPLING MBTllODS 

Appendix-4 

The t table 

80% 90% 95% 983 993 99.83 99.9% 
90% 953 97.53 993 99.53 99.93 99.95% 

0.20 0.10 0.05 0.02 0.01 0.002 0.001 
0.10 0.05 0.025 0.01 0.005. 0.001 0.0005 

Critical values 

3.078 6.314 12.706 31.821 63.657 318.309 636.619 
1.886 2.920 4.303 6.965 9.925 22.327 31.599 
1.638 2.353 3.182 4.541 5.841 10.215 12.924 
1.533 2.132 2.776 3.747 4.604 7.173 8.610 

1.476 2.015 2.571 3.365 4.032 5.893 6.869 
1.440 1.947 2.447 3.143 3.707 5.208 5.959 
1.415 1.895 2.365 2.998 3.499 4.785 5.408 
1.397 1.860 2.306 2.896 3.355 4.501 5.041 
1.383 1.833 2.262 2.821 3.250 4.297 4.781 . 

1.372 1.812 2.228 2.764 3.169 4.144 4.587 
1.363 1.796 2.201 2.718 3.106 4.025 4.437 
1.356 1.782 2.179 2.681 3.055 3.930 4.318 
1.350 1.771 2.160 2.650 3.012 3.852 4.221 
1.345 1.761 2.145 2.624 2.977 3.787 4.140 

1.341 1.753 2.131 2.602 2.947 3.733 4.073 
1.337 1.746 2.120 2.583 2.921 3.686 '. 4.015 
1.333 1.740 2.110 2.567 2.898 3.646 3.965 
1.330 1.734 2.101 2.552 2.878 3.610 3.922 
1.328 1.729 2.093 2.539 2.861 3.579 3.883 

1.325 1.725 2.086 2.528 2.845 3.552 3.850 
1.323 1.721 2.080 2.518 2.8.'H 3.527 3.819 
1.321 1.717 2.074 2.508 2.819 3.505 3.792 
1.319 1.714 2.069 2.500 2.807 3.485 3.768 
1.318 1.711 2.064 2.492 2.797 3.467 3.745 

1.316 1.708 2.060 2.485 2.787 3.450 3.725 
1.315 1.706 2.056 2.479 2.779 3.435 3.707 
1.314 1.703 2.052 2.473 2.771 3.421 3.690 
1.313 1.701 2.048 2.467 2.763 3.408 3.674 
1.311 1.699 2.045 2.462 2.756 3.396 3.659 

1.310 1.697 2.042 2.457 2.750 3.385 3.646 
1.309 1.696 2.040 2.453 2.744 3.375 3.633 
1.309 1.694 2.037 2.449 2.738 3.365 3.622 
1.308 1.692 2.035 2.445 2.733 3.356 3.611 
1.307 1.691 2.032 2.441 2.728 3.348 3.601 

1.306 1.690 2.030 2.438 2.724 ;).340 3.591 
1.306 1.688 2.028 2.434 2.719 3.333 3.582 
1.305 1.687 2.026 2.431 2.715 3.326 3.574 
1.304 1.686 2.024 2.429 2.712 3.319 3.566 
1.304 1.685 2.023 2.426 2.708 3.313 3.558 
1.282 1.645 1.960 2.326 2.576 3.090 3.291 
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Appendix-6 

Dunnett Table 

· Number of Groups 1n'~luding Control Group 

dfe alpha 2 3 4 5 6 7 8 9 10 

5 0.05 2.57 3.03 3.29 3.48 3.62 3.73 3.82 3.9 3.97 

O.Dl 4.03 4.63 4.98 5.22 5.41 5.()6 5.69 5.8 5.89 

6 0.05 2.45 2.86 3.1 3.26 3.39 3.49 3.57 3.64 3.71 

0.01 3.71 4.21 4.51 4.71 4.87 5 5.1 5.2 5.28 

7 0.05 2.36 2.75 2.~7 3.12 3.24 3.33 3.41 3.47 3.53 

0:01 3.5 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89 

8 0.05 2.31 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41 

0.01 3.36 3.77 4 4.17 4.29 4.4 4.48 4.56 4.62 

9 0.05 2.26 2.61 2.81 2.95 3.05 3.14 3.2 3.26 3.32 

O.Dl 3.25 3.63 3.85 4.01 4.12 4.22 4.3 4.37 4.43 

IO 0.05 2.23 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24 

O.Dl 3.17 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28 

11 0.05 2.2 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19 

O.Ql 3.11 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16 

12 0.05 2.18 2.5 2.68 2.81 2.9 2.98 3.04 3.09 3.14 

0.01 3.05 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07 

13 0.05 2.16 2.48 2.65 2.78 2.87 2.94 3 3.06 3.1 

O.Dl 3.01 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99 

14 0.05 2.14 2.46 2.63 2.75 2.64 2.91 2.97 3.02 3.07 

O.Ql 2.98 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93 

15 0.05 2.13 2.44 2.61 2.73 2.82 2.89 2.95 3 3.04 

. O.Ql 2.95 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88 

16 0.05 2.12 2.42 2.59 2.71 2.8 2.87 2.92 2.97 3.02 

0.01 2.92 3.22 3.39 3.51 3.6 3.67 3.73 3.78 3.83 

17 0.05 2.11 2.41 2.58 2.69 2.78 2.85 2.9 2.95 3 

O.Ql 2.9 3.19 3.36 3.47 3.56 3.63 3.69 3.74 3.79 

18 0.05 2.1 2.4 2.56 2.68 2.~6 2.83 2.89 2.94 2.98 

O.Dl 2.88 3.17 3.33 3.44 3.53 3.6 3.66 3.71 3.75 

19 0.05 2.09 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96 

0.01 2.86 3.15 3.31 3.42 3.5 3.57 3.63 3.68 3.72 

20 0.05 2.09 2.38 2.54 2.6,5 2.73 2.8 2.86 2.9 2.95 

001 2.85 3.13 3.29 3.4 3.48 3.55 3.6 3.65 3.69 

24 0.05 2.06 2.35 2.51 2.61 2.7 2.76 2.81 2.86 2.9 

0.01 2.8 3.07 3.22 3.32 3.4 3.47 3.52 3.57 3.61 

30 0.05 2.04 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86 

0.01 2.75 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52 

40 0.05 2.02 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81 

O.Ql 2.7 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44 

60 . 0.05 2 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77 

O.Dl 2.66 2.9 3.03 3.12 3.19 3.25 3.29 3.33 3.37 
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Alias, 166 

Basic design, 72 
Best linear unbiased estimate, 17, 423 
Bias; definition, 339 

due to errors in stratum weights, 505 
in ratio estimator, 420 
of regression estimator, 436 

Barlett 's test, 305 

Census, 332 
Cluster sampling (single stage), 450 
Clusters of equal sizes, 451 
Circular, systematic sampling, 394 
Cochran's theorem, 19 
Combining inter-block and intra-block 

information, 221 
Confounded factorial experiment, 151 
Contrast, 12 
Covariance analysis, 236 
Cost function in determining sample size, 367, 

433 

Defining contrast, 166 
Double sampling, 516 

for stratification, 517 
for ratio estimator, 519 
for regression estimator, 523 · 

Duncan's multiple range test, 21 
Dunnett 's test, 23 
Estimation of population variance, 347 
Estimation of variance component, 267 
Finite population correction, 345 
Frame, 331, 334 

Graeco Latin square design, 121 
Generalized interaction, 166 

Incomplete block design, 213 
Interaction, 135 
Inter-block analysis, 220 
Intra-block analysis, 218 

Judgement sampling, 330 

Latin square design, 90 
Linear regression estimator, 435 
Lottery method, 341 

Main effect, 124 
Missing values, 257 
Multiple comparison, 20 
Multiphase sampling, 516 

Neyman allocation, 367 
Nonresponse, 570 

Optimum allocation in stratified sampling, 367 
Orthogonal latin square design, 119 

Pilot survey, 333 
Principal block, 166 
Primary units, 472 
Proportional allocation, 358 
Proportion, 350 
Purposive seJection, 330 

Quota sampling, 331 

Random numbers, 332, 339 
Random sampling, 331 
Random effect model, 6, 266 
Ratio estimator, 408 
Randomized block design, 101 
Replication, 9 
Regression estimator, 435 
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Sampling error, 336 
Sampling fraction, 345 
Sampling with replacement, 341 
~imple random sampling, 341 
Size of sample, 337 
Steps in sample survey, 333 
Strata, 357 
Statified random sampling, 357 
Systematic sampling, 393 

Three-stage sampling, 503 

DESIGN OF EXPERIMENTS AND SAMPLING METHODS 

'lreatment combination, 136 
Two-phase sampling, 516 
Two-stage sampling, 4 72 

Unbiased ratio-type estimator, 415 

Variance component, 266 

Weighted analysis, 300 

Yates algorighm, 139 
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